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Abstract: We present a systematic cosmological study of a universe in which the visible

sector is coupled, albeit very weakly, to a hidden sector comprised of its own set of parti-

cles and interactions. Assuming that dark matter (DM) resides in the hidden sector and

is charged under a stabilizing symmetry shared by both sectors, we determine all possible

origins of weak-scale DM allowed within this broad framework. We show that DM can

arise only through a handful of mechanisms, lending particular focus to Freeze-Out and

Decay and Freeze-In, as well as their variations involving late time re-annihilations of DM

and DM particle anti-particle asymmetries. Much like standard Freeze-Out, where the

abundance of DM depends only on the annihilation cross-section of the DM particle, these

mechanisms depend only on a very small subset of physical parameters, many of which

may be measured directly at the LHC. In particular, we show that each DM production

mechanism is associated with a distinctive window in lifetimes and cross-sections for par-

ticles which may be produced in the near future. We evaluate prospects for employing the

LHC to definitively reconstruct the origin of DM in a companion paper.
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1 Introduction

As our understanding of theoretical high-energy physics has evolved, top-down considera-

tions have motivated the exploration of “parallel sectors” comprised of their own particles

and interactions but “hidden” from us (the visible sector) due to the weakness of the cou-

plings connecting hidden and visible sector particles. In addition to providing new avenues

for model-building, this broad framework opens up a range of exciting possibilities for the

origin of Dark Matter (DM), which is the focus of this work. Understanding the origin

of DM and its interactions within this framework is very important because experimental

observations have only measured the gravitational effects of DM, leaving a large number

of logical possibilities.

Assuming that the visible sector and other possible hidden sectors are initially in a

state of thermal equilibrium, what are the possible production mechanisms for DM? If DM

shares sizeable interactions with visible sector particles, then thermal equilibrium will be

efficiently maintained until Freeze-Out (FO) renders a thermal relic abundance of DM via

the standard WIMP paradigm [1]. Alternatively, it may be that DM couples extremely

weakly to the visible sector and to itself, as is the case for so-called superWIMPs [2, 3] and
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FIMPs [4, 5]. A third and final possibility is that DM is very weakly coupled to the visible

sector, but has substantial couplings to a hidden sector to which it is thermally equilibrated.

In general, this hidden sector will contain its own set of particles and interactions and will

have a temperature different from that of the visible sector.1 The purpose of the present

work is to systematically identify and characterize all possible origins of DM which might

arise in this enormous class of theories.

We will assume throughout that DM is stable due to a symmetry shared by the visible

and hidden sectors. Moreover, let us denote the lightest visible and hidden sector particles

charged under this symmetry by X and X ′, which have masses m and m′ taken to be

broadly of order the weak scale such that m > m′. By definition, X ′ is the DM particle.

We also assume the existence of a weak coupling which bridges the visible and hidden

sector and mediates the decay

X → X ′ + . . . , (1.1)

where the ellipses denote what are typically visible decay products.

Remarkably, the cosmological evolution of this setup is entirely fixed by only a handful

of parameters. This is analogous to standard single sector FO, where the DM abundance

is solely determined by the DM annihilation cross-section. Here we find that DM relic

abundance is fixed by following set of parameters in general:

{m,m′, 〈σv〉, 〈σv〉′ , ξ, τ, ǫ}, (1.2)

where 〈σv〉 and 〈σv〉′ are the thermally averaged annihilation cross-sections for X and X ′,
respectively, ξ is the ratio of the visible and hidden sector temperatures, τ is the lifetime of

X, and ǫ is a measure of the CP-phase in X decays. In particular cases, the relic abundance

depends on only a subset of the above parameters, as will be shown below.

We have evolved the cosmological history of the visible and hidden sectors over the

parameter space defined in eq. (1.2) in order to systematically identify all possible origins

of hidden sector DM. Of course, the simplest possibility is that DM undergoes hidden

sector Freeze-Out (FO′), yielding a thermal relic abundance. This has been considered in

many hidden sector models, and was studied systematically in [6]. On the other hand, the

remaining possibilities for the origin of DM fall into two very broad categories:

• Freeze-Out and Decay (FO&D). X undergoes FO and then decays out of equilibrium,

yielding an abundance of X ′. As we will see later, the final abundance of X ′ goes as

Ω ∝ m′

m〈σv〉 . (1.3)

• Freeze-In (FI). X decays while still in thermal equilibrium with the visible sector,

yielding an abundance of X ′. As we will see later, the final abundance of X ′ goes as

Ω ∝ m′

m2τ
. (1.4)

1If the temperature of the two sectors are the same, the sectors have equilibrated implying that there is

only one sector.
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Figure 1. Hidden sector DM can originate via a handful of production mechanisms, each cor-

responding to a distinctive window in the τ − 〈σv〉 plane. Aside from hidden sector FO′, these

mechanisms are {FO&D, FO&Dr, FO&Da, FI, FIr, FIa}, denoted by {blue, green, purple, red,

orange, yellow}. Each point corresponds to Ωh2 = 0.11, where we have scanned over a very in-

clusive parameter space defined by 10−5 < 〈σv〉/〈σv〉0 , 〈σv〉′/〈σv〉0 < 105, 10−3 < ξ < 10−1,

10−8 < ǫ < 10−3, where 〈σv〉0 = 3 × 10−26 cm3/s. In the left panel, the masses have been scanned

over a broad region 10 GeV < m < 1 TeV and 1/20 < m′/m < 1/2, while in the right panel, the

masses have been fixed to a narrow region m = 100 GeV and 1/4 < m′/m < 1/3.

Within the categories of FO&D and FI exist a number of distinct variations. For example,

if FO&D or FI happen to produce an abundance of X ′ particles exceeding a particular

critical value, then the X ′ particles will promptly undergo an era of “re-annihilation.”

During this time the X ′ particles will efficiently annihilate within a Hubble time despite

the fact that X ′ is no longer thermally equilibrated with the hidden sector. Because the

final DM abundance changes accordingly, we refer to this mechanism of DM production

as FO&Dr and FIr. Another variation arises if X decays are CP-violating, in which case

FO&D and FI may produce an abundance of DM endowed with a particle anti-particle

asymmetry. Such an effect is possible because although the visible and hidden sectors are

separately in thermal equilibrium, they are not in equilibrium with each other. We denote

these asymmetric modes of DM production by Asymmetric Freeze-Out and Decay (FO&Da)

and Asymmetric Freeze-In (FIa). Note that these mechanisms are entirely distinct from

the framework of Asymmetric DM [7, 8], in which the DM particle anti-particle asymmetry

is inherited from an already existent baryon asymmetry.

Crucially, as seen in eqs. (1.3) and (1.4), each of these DM production mechanisms maps

to a rather distinctive window in the parameter space spanned by τ and 〈σv〉—and where

all other parameters, m, m′, 〈σv〉′, ξ, and ǫ, are scanned over an inclusive range of values.

This is remarkable because τ and 〈σv〉 can, in principle, be measured at the LHC — after

all, they are attributes of X, which is a visible sector field! For example, see the left panel of

figure 1, where each point corresponds to Ωh2 = 0.11, and each color denotes the dominant

mechanism of DM production at that particular point in parameter space. Even though all

parameters but τ and 〈σv〉 have been scanned over a generous range, one sees that FO&D

corresponds to a narrow band in 〈σv〉 while FI corresponds to a narrow band in τ .

On the other hand, it is also very likely that m, and perhaps even m′, might be

measured at colliders, for instance if the visible decay products of X → X ′+. . . can be used
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to kinematically reconstruct the event. In the event that m and m′ are indeed measured,

the boundaries between DM production mechanisms in the τ − 〈σv〉 plane become even

more distinct, as shown in the right panel of figure 1.

Because each production mechanism lies in a distinctive region in the τ − 〈σv〉 plane,

we are left with the tantalizing possiblity that the origin of DM might be successfully re-

constructed at the LHC even in this much broader framework compared to that of standard

single sector FO. The purpose of the present work, however, is to establish a comprehensive

understanding of the structures depicted in figure 1, leaving a more detailed collider study

to a companion paper [9].

The outline of this paper is as follows. In section 2 we present a broad overview of

two-sector cosmology. We begin with an analysis of our setup in a decoupled limit in

which the visible and hidden sectors couple only through gravitational interactions. We

then introduce portal interactions, and present a detailed discussion of the FO&D and

FI mechanisms of DM production. Afterwards, we go on to discuss the effects of “re-

annihilation”, followed by an analysis of the thermal properties of the coupled two-sector

system. In section 3, we present a series of cosmological phase diagrams depicting the

dominant production mechanisms for DM as a function of the parameter space. We go on

to discuss how the boundaries in these phase diagrams change with various parameters. In

section 4 we present a discussion of DM production from particle anti-particle asymmetries,

and we conclude in section 5.

2 Overview of two-sector cosmology

Our setup is comprised of a visible and hidden sector, each with sizeable self-interactions

which serve to maintain thermal equilibrium in each sector at temperatures T and T ′,
respectively. We assume that these sectors couple to one other only through portal inter-

actions which are extremely feeble, so these temperatures are not equal, i.e. T 6= T ′. To

begin, we limit the present discussion as well as that of sections 2.1 and 2.2 to the case in

which the visible and hidden sectors are entirely decoupled but for gravitational effects. In

section 2.3 and onwards we introduce portal interactions connecting the visible and hidden

sectors and study the significant impact of these couplings on the cosmological history.

Throughout, we assume that the visible and hidden sectors enjoy a symmetry, discrete

or continuous, that keeps DM cosmologically stable. The lightest visible sector particle

charged under this stabilizing symmetry is denoted by X, and likewise in the hidden

sector, X ′, which we take to be lighter than X. In the limit in which the visible and hidden

sectors are decoupled, X and X ′ are, of course, simultaneously stable. However, as portal

interactions are switched on, X becomes unstable and decays with a width Γ into particles

which ultimately yield an X ′ in the final state. We will study the cosmological evolution of

the number densities n and n′ of X and X ′, which obey the coupled Boltzmann equations

d

dt
n + 3Hn = −(n2 − n2

eq)〈σv〉 − Γn (2.1)

d

dt
n′ + 3Hn′ = −(n′2 − n′2

eq)〈σv〉′ + Γn, (2.2)
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where neq and n′
eq are the thermal equilibrium abundances and it is understood that here

Γ is thermally averaged and we work in a regime in which the effects of the corresponding

inverse decays are negligible. Here we take the thermally averaged annihilation cross-

sections, 〈σv〉 and 〈σv〉′, to be independent of temperature. A primary aim of this paper

is to study the most general cosmological evolution which follows from these equations,

subject only to the requirement that 〈σv〉 and 〈σv〉′ are large enough that both X and X ′

undergo freeze-out. Note that we take the masses of X and X ′, m and m′, both to be

broadly of order the weak scale.

The relative size of T and T ′ can have a drastic impact on the cosmological history.

To see why this is so, let us define the ratio of temperatures to be

ξ ≡ T ′

T
. (2.3)

If we assume the standard picture of slow-roll inflation, then the inflaton can, in principle,

couple with different strengths to the visible and hidden sectors. As a consequence, the

decay of the inflaton reheats each sector to a different temperature, corresponding to an

initial condition for ξ given by ξinf = T ′
inf/Tinf , the ratio of temperatures in each sector

immediately after the decay of the inflaton, which we take to be less than 1. Naively

ξ = ξinf for all time. However, interactions between the sectors can change ξ from ξinf . For

example, scatterings between the sectors which are generically dominated in the UV, can

increase the high temperature value of ξ to ξUV, which is taken to be a free parameter. In

addition, there can be IR contributions to ξ as well. These contributions are discussed in

more detail in section 2.7.

Even ignoring interactions between the two sectors, ξ actually varies as a function

of temperature due to the separate conservation of the co-moving entropies, S = g∗ST 3

and S′ = g′∗ST ′3, in each sector. Specifically, this implies that ξ varies as a function of

temperature to the extent to which the numbers of degrees of freedom in the visible and

hidden sectors vary with temperature:

ξ(T ) ∝
(

g∗S(T )

g′∗S(T )

)
1
3

, (2.4)

where g∗S(T ) and g′∗S(T ) are the number of relativistic degrees of freedom in the visible

and hidden sectors, respectively, when the visible sector is at a temperature T . A change

in g∗S(T ) or g′∗S(T ) by an order of magnitude only affects ξ at the level of a factor of

two; hence, when comparing DM production from processes at different temperatures, this

effect may be justifiably ignored.

In general, the energy density in the hidden sector affects the expansion rate of the

universe during BBN, which places an important, albeit weak constraint on ξ. In particular,

any hidden sector particles which are relativistic at BBN contribute an effective number of

extra neutrino species

∆Nν =
4

7
g′∗(TBBN) ξ(TBBN)4. (2.5)
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The present bound from experiment is ∆Nν < 1.4 [10], which is surprisingly mild: that is,

for g′∗(TBBN) = 100, this is satisfied by taking ξ(TBBN) = 1/3. Furthermore, according to

eq. (2.4), at higher temperatures ξ can be close to unity even if g′∗ > 100 [6].

2.1 Visible sector freeze-out (FO)

In the early universe, visible sector particles reside in a thermal bath at temperature T

with abundances fixed accordingly by equilibrium thermodynamics. As T drops below the

mass of X, m, the number density of X particles, n, remains in thermal equilibrium and

undergoes the usual Boltzmann suppression. The X particles undergo FO as the rate of

annihilations, n〈σv〉, drops below the expansion rate H, which occurs at a temperature

TFO ≃ m/xFO. The parameter xFO depends only logarithmically on 〈σv〉, and for roughly

weak scale cross-sections xFO ≈ 20−25. Defining the yield, Y = n/s where s is the entropy

of the visible sector, we obtain the familiar expression for the yield at FO,

YFO ≃ 3

2π

√

5

2

√
g∗

g∗S

1

MPl〈σv〉
1

TFO
. (2.6)

In the decoupled limit, X is stable and will account for the totality of DM in the universe

if mYFO ≃ 4 × 10−10 GeV. This corresponds to a critical cross-section of 〈σv〉0 ≃ 3 ×
10−26 cm3/s.

Because we have thus far assumed that the visible and hidden sectors only interact

gravitationally, the only effect of the hidden sector on FO in the visible sector is through

its contribution to the energy density of the universe. However, this effect is tiny and can

be accounted for in eq. (2.6) by increasing g∗ by a factor

1 +
7

43
∆Nν

(

g∗(TFO)

g∗(TBBN)

)
1
3
(

g′∗(TBBN)

g′∗(TFO)

)
1
3

, (2.7)

where we have ignored the difference between g∗ and g∗S . For TFO < MW this increases

YFO by at most 17% for ∆Nν = 1. Thus the BBN constraint implies that the standard

relation between the DM abundance and the DM annihilation cross-section is preserved to

a good accuracy.

2.2 Hidden sector freeze-out (FO′)

As the temperature T ′ of the hidden sector falls below m′, the number density of X ′

particles, n′, tracks the equilibrium distribution and becomes exponentially suppressed.

Ultimately, the X ′ particles undergo FO′ once the hidden sector drops to a temperature

T ′
FO′ = m′/x′

FO′ , just as X undergoes FO at TFO = m/xFO. Here the prime on T ′ indi-

cates that the temperature is that measured in the hidden sector, while the prime on FO′

indicates that this temperature is being evaluated at the time of FO′, not FO. Thus, the

ratio of visible sector temperatures at FO′ compared to FO is

TFO′

TFO
=

1

ξFO′

m′

m
, (2.8)
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Figure 2. X and X ′ yields as a function of m/T for a particular choice of parameters. The visible

and hidden sectors separately undergo FO and FO′, respectively. At high temperatures Y ′/Y ∼
ξ3
UV = 10−6. Since m′ is not much less than m, a cool hidden sector, ξ ≪ 1, implies that FO′ occurs

before FO. A cool hidden sector tends to make Y ′
FO′ < YFO, but this is more than compensated by

having 〈σv〉′ ≪ 〈σv〉. Using the quoted parameters in eq. (2.9) gives Y ′
FO′ ≃ 200 YFO.

where we took x′
FO′ ≃ xFO. Consider the parametric scaling of the above expression.

Reducing m′/m tends to shift FO′ to a later time than FO, while reducing ξFO′ tends to do

precisely the opposite. While in principle either ordering is possible, we focus on a scenario

in which FO′ occurs before FO, as this leads to a richer set of cosmological histories once

portal interactions between the sectors are included.

First, consider the case 〈σv〉′ = 〈σv〉. Because n′ at FO′ is fixed by H at TFO′ and

TFO′ > TFO, there is naively a greater number of X ′ particles yielded by FO′ than X par-

ticles yielded by FO. However, because FO′ occurs earlier, there is also a commensurately

greater amount of entropy dilution, so the total X ′ yield actually turns out to be less than

the X yield. To see this, let us define Y ′ = n′/s to be the X ′ yield normalized to the

visible sector entropy, which will be useful for comparing with the X yield. We find that

for arbitrary 〈σv〉′/〈σv〉

Y ′
FO′

YFO
≃ TFO

TFO′

〈σv〉
〈σv〉′ ≃ ξFO′

m

m′
〈σv〉
〈σv〉′ . (2.9)

Hence, the yield of X ′ from FO′ is subdominant to the yield of X from FO as long as the

hidden sector is sufficiently cool or if its annihilations are sufficiently strong. See figure 2

for a plot of the evolution of X and X ′ abundances as a function of x = m/T , for a choice

of parameters making the contribution from FO′ greater than that from FO.
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2.3 The portal

Until now, we have not considered the effect of direct, albeit tiny couplings which might di-

rectly connect the visible and hidden sectors. Consider a portal operator O which connects

X and X ′, thereby mediating the decay

X → X ′ + . . . , (2.10)

where the ellipses denote what is typically visible SM particles. For the moment, let us

ignore the particulars of O and attempt to characterize the gross features of the cosmo-

logical history as a function of the X lifetime, τ = 1/Γ. As the lifetime is taken from

cosmological scales to microscopic scales, the cosmology typically transitions through four

broadly defined scenarios:2

• Multi-Component Dark Matter. X is so long lived that it is stable over cosmological

time scales. Thus X and X ′ comprise the DM of the universe.

• Freeze-Out and Decay. X decays late, after leaving thermal equilibrium, yielding a

contribution to the X ′ abundance.

• Freeze-In. X decays fast enough that it produces a substantial X ′ abundance from

decays occurring while X is still in thermal equilibrium.

• Thermalized at Weak Scale. X decays so quickly that the visible and hidden sectors

are actually in thermal equilibrium at the weak scale. From the point of view of

cosmology, the visible and hidden sectors are a single sector.

While the first category is certainly a logical possibility, it has been well explored in the

literature and is hard to test experimentally since the DM abundance depends on 〈σv〉′,
so we will ignore it. Moreover, we will not consider the last category because we are

specifically interested in cosmological scenarios in which the visible and hidden sectors

are not thermally equilibriated at the weak scale. Thus, our discussion will center on the

FO&D and FI phases of the two-sector cosmology.

2.4 Freeze-out and decay (FO&D)

In the presence of the portal operator, O, X is no longer stable. Thus, after X undergoes

FO, it eventually decays into X ′ particles; we call this DM production mechanism “Freeze-

Out and Decay” (FO&D). The resulting X ′ may form the dominant contribution to the

final yield of X ′, as illustrated in figure 3. Assuming the X decay process, X → X ′ + . . .,

produces exactly one X ′ for each X, we find

Y ′
FO&D = YFO. (2.11)

Consequently, the energy density produced by FO&D is suppressed relative to that of con-

ventional FO by a factor of m′/m. If FO&D accounts for the total DM abundance in the

2This is only a rough sketch; a more precise understanding of the various possibilities is given in section 3.
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Figure 3. X and X ′ yields as a function of m/T for DM production dominated by FO&D. The

X particles undergo FO and then later decay, yielding an X ′ abundance that is larger than that

which arises from FO′. The parameters ξ, 〈σv〉, m and m′ are the same as in figure 2, but 〈σv〉′ is

increased giving Y ′
FO′ > YFO. For τ = 1 second, X decays are occurring at the MeV era.

universe, then this implies that 〈σv〉 = (m′/m)〈σv〉0, where recall that 〈σv〉0 is the annihi-

lation cross-section needed to account for the measured DM abundance in standard single

sector FO. This dilution factor is useful in theories in which FO normally produces an over-

abundance of DM, for instance as occurs in supersymmetric theories if the LSP is a bino.

Mechanisms similar to FO&D have been discussed extensively in the literature for a

small subset of candidates for X and X ′ and operators O. In particular, there is a large

body of work [2, 3] concerning the so-called superWIMP scenario in which X is effectively

a bino or right-handed slepton and X ′ is the gravitino. Axinos [11] and goldstini [12, 13]

have also been studied as alternative choices for X ′.

2.5 Freeze-in (FI)

As the X decay rate is increased, at a certain point a new DM production mechanism,

“Freeze-In” (FI), begins to dominate. Here X ′ particles arise from decays of X particles

which are still in thermal equilibrium. As long as the X ′ have already undergone FO′, the

X ′ produced by FI can comprise the dominant source of DM, as shown in figure 4.

At any temperature T > m the production of X ′ by FI generates a yield which goes

schematically as

Y ′
FI(T ) ∝ Γt ∝ ΓMPl

T 2
, (2.12)

where t is the total time that X is relativistic. A key aspect of FI by decays is that it is IR

dominated by low temperature dynamics; this is true independent of the dimensionality

of the connector operator which mediates the decay. FI can also occur by two-to-two

– 9 –
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Figure 4. X and X ′ yields as a function of m/T for DM production dominated by FI. While X

is relativistic and in thermal equilibrium, the small fraction of X that decay yield an important

contribution to the X ′ abundance. As soon as X ′ undergoes FO′, the FI mechanism begins to

effectively populate an X ′ abundance that grows until T drops below m, when the X abundance

becomes exponentially suppressed. Once the age of the universe reaches τ , the relic X particles

from FO all decay but, for the parameter choice for this figure, the increase in Y ′ from this FO&D

process is sub-dominant to the FI contribution.

scattering via a marginal coupling (this is also IR dominated). However it turns out to be

numerically subdominant compared to that from decays and inverse decays [4], so this will

not be discussed from now on for simplicity. As Γ becomes larger, FI plays an important

role in increasing ξ(T ) as the temperature drops, as we will discuss in section 2.7. Here

we focus on the X ′ produced after FO′. The FI yield from X decay is dominated by

contributions from T ∼ m and is the same as computed in [4] for FI from inverse decays.

The precise formula for the FI yield is

Y ′
FI = CFI(xFO′)

ΓMPl

m2
(2.13)

CFI(xFO′) ≃ 135

2π5

√

5

2

gX

g∗S
√

g∗

∫ ∞

xFO′

K1(x)x3dx
xFO′→0→ CFI = 1.64

gX

g∗S
√

g∗
, (2.14)

where gX is the number of degrees of freedom of X and xFO′ ≡ m/TFO′ . As shown in

eq. (2.8), in the limit in which the hidden sector is much cooler than the visible sector,

X ′ freezes out very early so xFO′ → 0. Finally, note that if FI accounts for the total

DM abundance today, then for weak scale masses this implies a range of lifetimes given

by τ ≃ 10−4 s − 10−1 s. If the decay of X is mediated by a marginal operator with the

dimensionless coefficient λ, then this range of lifetimes corresponds to λ = 10−12 − 10−11.

For decays mediated by a higher dimensional portal interaction, this range applies to

λ ≡ (m/M∗)d−4 where d and M∗ are the dimension and scale of the higher dimension

– 10 –
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operator. Interestingly, for d = 5 operators, this corresponds to M∗ ≃ 1013 − 1015 GeV,

which is roughly of order the GUT scale.

2.6 Re-annihilation

For simplicity, we have ignored the effects of X ′ annihilation on FO&D and FI. Naively, this

is a justifiable omission, since both FO&D and FI occur only after the hidden sector has

undergone FO′. However, even after FO′, the X ′ abundance arising from non-equilibrium

production may be so large that the X ′ annihilation rate grows to exceeds the expansion

rate, initiating a new era of X ′ annihilation that we dub re-annihilation. Re-annihilation

and the resulting X ′ abundance can be understood through a study of the Boltzmann

equation, written in terms of yield variables and x = m/T ,

x
d

dx
Y ′ ≃ − Y ′2

Y ′
crit

+
ΓY

H
, (2.15)

where

Y ′
crit ≡ H

〈σv〉′s. (2.16)

The first term on the right-hand side of eq. (2.15) corresponds to X ′ annihilation; since we

are interested in times well after FO′, Y ′ ≫ Y ′
eq and we ignore inverse annihilations. The

second term is effectively a source term for X ′ production, corresponding to the decays

of X to X ′. At T ≃ m this is the source term which drives FI, while for T ≈
√

ΓMP l

this is the source term which drives FO&D. However, the analyses of FI and FO&D in the

previous sections ignored the annihilation term.

The destruction and production of X ′ occur faster than the Hubble rate if the first

and second terms on the right-hand side of eq. (2.15) are larger than Y ′, respectively, that

is if

Y ′ > Y ′
crit &

ΓY

H
> Y ′. (2.17)

In this case the Y ′ abundance rapidly evolves to a Quasi-Static Equilibrium (QSE) in which

the production of X ′ particles is counter-balanced against depletion from the annihilation

process. This causes the two terms on the right-hand side of eq. (2.15) to cancel, so that

Y ′ becomes equal to Y ′
QSE, where

Y ′2
QSE =

ΓY

H
Y ′

crit =
ΓY

〈σv〉′s. (2.18)

Setting Y ′ = Y ′
QSE in the first equation of (2.17), one discovers that QSE is possible only

during eras having

Y ′
QSE > Y ′

crit. (2.19)

As X ′ undergo FO′, the depletion of X ′ will stop once Y ′ drops to Y ′
QSE, provided

eq. (2.19) is satisfied, as shown in figures 5 and 6 which were produced by numerically

– 11 –
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m
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Figure 5. X and X ′ yields as a function of m/T for DM production dominated by FI followed

by re-annihilation. Re-annihilation occurs because the FI yield exceeds Y ′
crit at some temperature

where Y ′
QSE > Y ′

crit. Once this happens, Y ′ tracks Y ′
QSE until it dips below Y ′

crit, which occurs as Y

drops rapidly at FO. The value of Y ′ at this crossing point is the final yield of X ′ particles.

HY¢LCrit

HY¢LQSE

Y¢

Y
Ξ
UV
= 1 �100

< Σv > = 9.6´10-26 cm3
sec
-1

< Σv >' = 9.6´10-20 cm3
sec
-1

m = 100 GeV

m
' = 50 GeV

Τ = 10-2 sec

0.01 1 100 104 106
10-19

10-15

10-11
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0.001

m�T

Y
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L

Figure 6. X and X ′ yields as a function of m/T for DM production dominated by FO&D followed

by re-annihilation. Y ′ tracks Y ′
QSE until it drops below Y ′

crit, which occurs when Y drops sharply

as X decay.

solving the exact Boltzmann equations. Subsequently Y ′ tracks Y ′
QSE until eq. (2.19) is

violated. This always eventually happens because Y ′
crit grows linearly with m/T and Y ′

QSE

drops as Y is reduced by FO or X decay. When QSE ends, i.e. when Y ′
QSE = Y ′

crit, the

re-annihilation rate drops below the expansion rate so that QSE is lost and the X ′ yield
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becomes constant. The final X ′ abundance is fixed by the value of Y ′ at this point. We will

denote FO&D and FI which are subsequently followed by re-annihilation by FO&Dr and

FIr. Note that re-annihilation did not occur in the examples shown in figures 2–4 because

eq. (2.19) was violated at FO′ and all subsequent eras.

Figures 5 and 6 show yield plots for cases where DM is dominated by FIr and FO&Dr,

respectively. The dashed lines indicate Y ′
QSE and Y ′

crit. In both plots, one sees that, once

inverse annihilations of X ′ can be neglected, QSE occurs during eras with Y ′
QSE > Y ′

crit, with

Y ′ accurately tracking Y ′
QSE. Eventually, Y ′

QSE falls below Y ′
crit and QSE ends. The final

DM abundance reflects the value of Y ′
QSE at the end of the QSE era, which we now study.

To analytically compute Y ′
FO&Dr

and Y ′
FIr

, we must compute the temperature at the

end of QSE, Tr, which is by definition the solution to the equation

Y ′
QSE(Tr) = Y ′

crit(Tr). (2.20)

According to eq. (2.18), Y ′
QSE ∝

√
Y , so the solution to this equation depends on the

expression for Y during the era under consideration. Going from T to x variables, then for

FO&Dr and FIr we must solve the transcendental equations











x
1/2

FO&Dr
e−xFO&Dr = 1

2

(

5
18π2g⋆

)1/4
1

YFOM
3/2

Pl
Γ1/2〈σv〉′

, FO&Dr

x
5/2

FIr
e−xFIr =

√
2π7/2

45
g∗
g

m
M2

Pl
Γ〈σv〉′ , FIr

(2.21)

Hence, the final yields for FO&D and FI followed by re-annihilation are given by

Y ′
FO&Dr

= Y ′
crit(TFO&Dr

) (2.22)

Y ′
FIr = Y ′

crit(TFIr), (2.23)

This result is very similar in structure to the yield obtained from standard FO′, namely

Y ′
FO′ = Y ′

crit(TFO′). For s wave annihilation Y ′
crit ∝ 1/T , so the re-annihilation yields obey

the simple relation

TFO&Dr
Y ′

FO&Dr
= TFIrY

′
FIr = TFO′Y ′

FO′ (2.24)

To be concrete, this implies that the DM yield for FO&Dr and FIr are given by the formulas

Y ′
FO&Dr

≃ 3

2π

√

5

2

√
g∗

g∗S

1

MPl 〈σv〉′
1

TFO&Dr

Y ′
FIr

≃ 3

2π

√

5

2

√
g∗

g∗S

1

MPl 〈σv〉′
1

TFIr

, (2.25)

where TFIr = m/xFIr , and TFO&Dr
= TDecay/

√
xFO&Dr

so that the exponential in eq. (2.21)

goes simply as e−x. Here TDecay is the temperature at which X decays and xFIr and xFO&Dr

are given by the solutions of eq. (2.21).

As we have seen, the DM yield from FO&D and FI can differ substantially from FO&Dr

and FIr. The condition for avoiding re-annihilation effects is Y ′
FI < Y ′

crit(T = m) for FI and

YFO < Y ′
crit(T =

√
ΓMPl) for FO&D.
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2.7 Sector equilibration

Thus far we have ignored the effects of the connector operator O on the thermal properties

of the visible and hidden sectors. Specifically, there is the danger that O couples the sectors

so strongly that they actually come into thermal equilibrium. This scenario corresponds to

the case where ξ = T ′/T ≈ 1 near the weak scale. In general, ξ is temperature dependent

and receives contributions from UV and IR-sensitive physics,

ξ4(T ) = ξ4
UV + ξ4

IR(T ). (2.26)

The UV contribution to the hidden sector temperature, ξUV, arises from two sources,

so ξ4
UV = ξ4

inf + ξ4
R. If the inflaton couples directly to the hidden sector, then ξinf is

generated by an initial heating of the hidden sector from inflaton decays. This contribution

is independent of the portal interactions, and was discussed in earlier sections. On the

other hand, ξR results from scattering processes mediated by O occurring at the reheat

temperature, TR. These processes are active if O is a higher-dimension operator. In this

case, O contributes a 2-to-2 scattering cross-section, 〈σv〉R, which produces an X ′ yield of

Y ′
R ∼ MPlTR〈σv〉R. (2.27)

The TR dependence of 〈σv〉R depends on the dimensionality of O. If X ′ is inert, Y ′
R can

easily overclose the universe unless TR is sufficiently small. For instance, in the case of

gravitino LSP this is the origin of the well-known bounds on TR from overclosure [14].

On the other hand, our assumption is that X ′ possesses self-interactions, so X ′ particles

produced by scattering at reheating will be efficiently thermalized via the X ′ annihilation

until the onset of FO′. Only after FO′ can an abundance X ′ particles be produced via

FI. Consequently, in the presence of X ′ annihilations, the FI abundance from the higher

dimension operator O is given by eq. (2.27), only with TR replaced by TFO′ . Because TFO′

is not exceedingly far from the weak scale, this UV dominated FI contribution from 2-to-2

scattering will in general be subdominant to the IR dominated FI contribution from decays

discussed in section 2.5.

Since the X particles are produced with energy TR, the hidden sector is reheated by

the visible sector to an energy density given by T ′4
R ∼ Y ′

RT 4
R. Thus, the ratio of visible and

hidden sector temperatures is given by

ξR ∼ (MPlTR〈σv〉R)1/4, (2.28)

in the case where there is 2-to-2 scattering processed mediated by higher dimension oper-

ators.

Finally, let us consider the IR contribution to ξ, which essentially arises from FI. For

decays of X at temperature T , FI produces a yield Y ′
FI given by (2.12). The produced X ′

particles have an energy distribution characteristic of temperature T . We assume that the

interactions of the hidden sector are sufficient to rapidly thermalize the energy of these

X ′ into distributions of all the hidden sector particles at temperature T ′. As long as the

hidden sector remains sufficiently cool, then FI will be mediated by decays and inverse
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decays can be ignored. From this point of view, FI leaks energy and entropy out of the

visible sector into the hidden sector. This effect is especially important when the lifetime of

X is short, since the strength of this energy leakage is proportional to Γ. The contribution

to ξIR from FI is

ξ4
IR(T ) = A

MPlΓ

T 2
(T > m), (2.29)

with an analytic estimate giving A ≈ 135
√

5 gX/(π5 √g∗g′∗). As T drops below m the FI

process gets exponentially switched off, so

ξIR(T ) ≃ ξIR(m) (T < m). (2.30)

As Γ increases we reach a critical point where ξIR(T ≃ m) = 1; the FI process is now

so strong that the two sectors are equilibrated when T ≃ m. Since m > m′ the X

particles no longer undergo FO, and instead track their equilibrium abundance by decaying.

Consequently, there is single thermalized sector and DM results from the single process of

FO′. For ξ4
UV ≪ 1, the critical lifetime that leads to this equilibration scales as m−2

τmin ≃ 10−13 s

(

100GeV

m

)2 (

100

g′∗(T ≃ m)/gX

)

, (2.31)

where the numerical coefficient has been extracted from our numerical results. Since the

contribution to the heating of the hidden sector from FI is model-independent, we include

its effects throughout our analysis. On the other hand, the UV-sensitive contributions are

very model-dependent, so we take ξUV to be a free parameter which is small.

2.8 Summary of results

Let us now summarize the results of the entire section. We have shown that in our setup the

present day abundance of DM particles can originate only from a handful of cosmological

production mechanisms. In the simplest case, the hidden sector undergoes FO′, yielding

a thermal relic abundance of X ′ particles. Alternatively, via the FO&D mechanism, an

abundance of X particles can FO in the visible sector, and then decay very late into

X ′ particles. The FI mechanism functions so that X particles, while still in thermal

equilibrium, provide an abundance of X ′ particles through decays. Lastly, if the X ′ yields

from FO&D and FI exceed a certain critical yield, Y ′
crit, then the hidden sector enters an

era of re-annihilation. The final abundances for FO&Dr and FIr are controlled by the

temperature at the end of this re-annihilation era. The analytic expressions for the DM
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T x

TFO = m
xFO

xFO ∼ ln
[√

45
2

1
π5/2

g√
g⋆

MPlm〈σv〉
]

TFO′ = 1
ξFO′

m′

x′

FO′

x′
FO′ ∼ ln

[√
45
2

1
π5/2

g√
g⋆

ξ2
FO′MPlm

′〈σv〉′
]

TFO&Dr
=

TDecay√
xFO&Dr

=
(

45
2π2g⋆

)
1
4
√

MPlΓ
xFO&Dr

xFO&Dr
∼ ln

[ (

90
π2g⋆

)
1
4
√

2xFO
〈σv〉′
〈σv〉

√
ΓMPl

m

]

TFIr = m
xF Ir

xFIr ∼ ln
[

45√
2π7/2

g
g⋆

M2
Pl
〈σv〉′Γ
m

]

Table 1. Expressions for the various temperatures relevant for each DM production mechanism.

The “x′′ quantities employed in the first column are given approximate expressions in the second

column. The quantity ξFO′ is computed in (2.38) below.

yield are

Y ′
FO&D = CFO

1

MPl〈σv〉
1

TFO

∝ 1

m〈σv〉 (2.32)

Y ′
FO′ = CFO

1

MPl〈σv〉′
1

TFO′

∝ ξFO′

m′〈σv〉′ (2.33)

Y ′
FO&Dr

= CFO
1

MPl〈σv〉′
1

TFO&Dr

∝
√

τ

〈σv〉′ (2.34)

Y ′
FIr = CFO

1

MPl〈σv〉′
1

TFIr

∝ 1

m〈σv〉′ (2.35)

Y ′
FI = CFI

ΓMPl

m2
∝ 1

τm2
(2.36)

in the cases where the various mechanisms dominate the contribution to the total yield.

Here we have defined the dimensionless constants CFO = 3
2π

√

5
2

√
g∗

g∗S
and CFI = 1.64 g

g∗S
√

g∗
,

and the various temperatures are defined in table 1. The dimensionless values “x” defined

in the second column of this table are determined in each case by solving a transcendental

equation of the general form:

xn e−x = f(m,m′, 〈σv〉, 〈σv〉′ , ξ, τ) (2.37)

for some rational number n and where f is a some function of the arguments. Here we

have taken an approximate solution in which the effect of xn is neglected.

Note that only FO′ depends on ξ; in particular it depends on the value of ξ at TFO′

which is denoted in the table 1 as ξFO′ . From the analysis in section 2.7, one notes that

the quantity ξFO′ ≡ ξ(TFO′) has different forms depending on whether TFO′ is greater or

smaller than m. ξFO′ can be computed as:

ξFO′ =















(

ξ4
UV + AΓMPl

m2

)1/4

, TFO′ < m
(

AΓMPl x2
FO

2 m′2

)1/2
[

1 +
(

1 +
4 ξ4

UV m′4

A2Γ2 M2
Pl

x4
FO

)1/2
]1/2

, TFO′ > m
(2.38)

where A is as defined after eq. (2.29).
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3 Cosmological phase diagrams

A primary aim of this paper is to identify and characterize all possible mechanisms of

DM production which can arise within our general two-sector framework. To this end, we

have simulated the cosmological history of this system over a broad range of values for the

relevant parameters:

{m,m′, 〈σv〉, 〈σv〉′ , ξUV, τ}, (3.1)

where ξUV is the UV initial condition for ξ which receives contributions from the decay of

the inflaton as well as scattering processes from higher-dimensional operators described in

eq. (2.26).3 As noted earlier, it is quite remarkable that the cosmology is determined solely

by just a handful of quantities.

In this section we present a series of “cosmological phase diagrams” depicting the

regions in parameter space in which each mode of DM production, i.e. FO&D, FI, etc.,

accounts for the dominant contribution to the present day DM abundance. For example,

figure 7 is a cosmological phase diagram in the τ − 〈σv〉′
〈σv〉 plane for particular values of

{m,m′, 〈σv〉, ξUV}, as explained in the caption. Each colored shaded region corresponds

to a particular DM production mode which is dominant in that region. The boundaries

of each phase have been computed analytically. The solid black contours correspond to

the present day DM relic abundance, calculated numerically using the coupled Boltzmann

equations in eqs. (2.1). Let us consider some of the features of figure 7 in detail.

First, note that the lifetime τ is constrained both from above and below as shown by

the red vertical lines in figure 7. The upper limit is easy to understand as it originates

from the requirement the decay products of X do not ruin the successful predictions of

BBN [14]. While the precise constraint depends on the nature of X and its decay products,

here we use

τmax ≃ 100 s, (3.2)

as depicted by the red line at large τ in figure 7. The lower limit on τ comes from demanding

that the two sectors are not in thermal equilibrium with each other at the weak scale. In

section 2.7 we found that for ξ4
UV ≪ 1, the two sectors becomes thermally equilibrated if

the lifetime is shorter than

τmin ≃ 10−13 s

(

100GeV

m

)2 (

100

g′∗(T ≃ m)/gX

)

. (3.3)

For τ . 10−13 s, the two sectors are, from a cosmological perspective, a single sector.

As a consequence, there is no distinction between FO and FO′—the visible and hidden

sectors together maintain thermal equilibrium until X ′ undergoes single sector FO′. This

is depicted by the brown region in the left in figure 7. The yield Y ′
FO′ in this region is

3Here we also take ξUV to include effects from additional sources of entropy dumping into either sector

before the weak era, so that ξUV is effectively the weak scale value of ξ, modulo the contribution from X

decays in the IR.
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Figure 7. Cosmological phase diagram showing regions in the 〈σv〉′

〈σv〉0
versus τ plane where different

mechanisms contributing to the relic abundance dominate. The values of the other relevant pa-

rameters are chosen as: ξUV = 0.01, m = 100 GeV, m′ = 50 GeV, 〈σv〉 = 〈σv〉0 = 3× 10−26 cm3/s.

Contours of Ωh2, computed from a full numerical analysis for Y ′ (numerical solution of eq. (2.1)

and eq. (2.2)), are shown. Regions in which the various mechanisms dominate are shown in different

colors. These regions are computed analytically and overlaid on the numerical plot. The agreement

is quite good.

independent of τ because ξFO′ = 1 in the expression for Y ′
FO′ in table 1. Note that the

brown region extends to τ larger than τmin, as will be discussed soon.

Next, let us discuss the salient features of figure 7 as we move from the largest to

the smallest allowed values for τ . Furthermore, for a given value of τ , the dominant

DM production mechanism changes as a function of 〈σv〉′
〈σv〉 . For example, for the choice of

parameters in figure 7, one finds that FO&D and FO′ dominate over FI for 10−1 s . τ . 100

s. This is because the lifetime is too long (the coupling is too weak) for the FI mechanism
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to set in, as shown in section 2.5. For values of τ in the above range with 〈σv〉′
〈σv〉 & 10−1,

corresponding to the blue shaded region, FO&D is the dominant mechanism. Indeed, from

the shape of the contours one can see that in this region the relic abundance is independent

of 〈σv〉′
〈σv〉 and τ as dictated by the expression for Y ′

FO&D in table 1. For 〈σv〉′
〈σv〉 . 10−2,

FO′ starts to dominate over FO&D since the annihilation cross-section of X ′ becomes

sufficiently small. This is shown by the brown region in the right in the figure. For such

long lifetimes, one finds that ξFO′ ≈ ξUV from (2.26), implying that Y ′
FO′ is essentially

independent of τ (see the expression for Y ′
FO′ in table 1). Thus, the contour lines in this

region are roughly horizontal. The boundary between the FO&D and FO′ regions for this

range of τ is given by:

Y ′
FO&D = Y ′

FO′ =⇒ 〈σv〉′
〈σv〉 = ξFO′

m

m′

〈σv〉′
〈σv〉 ∝ constant (3.4)

which in the 〈σv〉′
〈σv〉 − τ plane corresponds to 〈σv〉′

〈σv〉 ≈ constant, since ξFO′ ≈ ξUV.

For 10−8 s . τ . 10−4 − 10−1 s, FI and FIr begin to dominate over FO&D and FO′

because the portal interactions between sectors is growing stronger. In particular, FI is

dominant in the narrow band shown by the red shaded region in figure 7. For FI to be the

dominant mechanism, the yield from FI must be larger than that from FO′ but smaller

than that from FIr; hence the narrow band in which FI is the dominant mechanism. The

boundary curves between the FI region and the FO′ & FIr regions are given by:

Y ′
FI = Y ′

FIr =⇒ ΓM2
Pl〈σv〉′
m

=
CFO

CFI
xFIr

〈σv〉′
〈σv〉 ∝ τ (3.5)

Y ′
FI = Y ′

FO′ =⇒ ΓM2
Pl〈σv〉′m′

ξFO′ m2
=

CFO

CFI
xFO′

〈σv〉′
〈σv〉 ∝ τ (3.6)

Both curves imply a linear relation between 〈σv〉′
〈σv〉 and τ , only with different coefficients.4

Also, note from table 1 that Y ′
FI does not depend on 〈σv〉′

〈σv〉 , hence the contour lines for the

relic abundance are almost vertical. They are not completely vertical since it turns out

that FI never fully dominates the contribution to the relic abundance.

For 10−8 s . τ . 10−4 − 10−1 s with 〈σv〉′
〈σv〉 . 1, the FI yield becomes so large that it

exceeds the critical yield at TFIr , implying that X ′ starts to re-annihilate and the yield is

given by Y ′
FIr

. This is shown by the orange region in the figure. From table 1, one sees

that contours for Y ′
FIr

are essentially horizontal since the dependence on τ only arises from

the logarithm. As one increases 〈σv〉′
〈σv〉 above roughly unity, FO&D starts to dominate over

FIr as shown by the blue region, since the annihilation cross-section of X ′ becomes large

4The boundary shown in eq. (3.6) depends on ξFO′ as well, but in this region ξFO′ ≈ ξUV is a constant.

– 19 –



J
H
E
P
0
3
(
2
0
1
1
)
0
4
2

enough that the yield Y ′
FIr

becomes smaller than Y ′
FO&D. The boundary curve between

these two regions is defined by:

Y ′
FO&D = Y ′

FIr =⇒ 〈σv〉′
〈σv〉 =

xFIr

xFO

〈σv〉′
〈σv〉 ∝ xFIr ∝ ln

[〈σv〉′
〈σv〉

1

τ

]

(3.7)

showing that 〈σv〉′
〈σv〉 is essentially constant up to a logarithmic dependence.

If 〈σv〉′
〈σv〉 is further increased, FO&D is eventually superseded by FO&Dr as shown by

the green region. In this case the X ′ yield from the freezeout and decay of X is so large

that it becomes larger than the critical yield; so X ′ starts re-annihilating with a yield

given by Y ′
FO&Dr

. From table 1, the contour plots for Y ′
FO&Dr

follow a simple power law

( 〈σv〉′
〈σv〉 ∝ √

τ). The boundary curve between the FO&D and FO&Dr regions is given by:

Y ′
FO&Dr

= Y ′
FO&D =⇒ 〈σv〉′

〈σv〉 =
1

AFO&Dr

√
xFO&Dr

xFO

m√
ΓMPl

〈σv〉′
〈σv〉 ∝

√
τ (3.8)

showing that the boundary also follows the same power law as the DM yield contours.

For few × 10−13 s . τ . 10−8 s, FIr is again the dominant mechanism as shown by

the orange region. It dominates over FO&Dr in particular, since the yield is inversely

proportional to the relevant temperatures for FO&Dr and FIr, which are TFO&Dr
and TFIr

respectively, and TFOr is larger for small lifetimes (large Γ) compared to TFIr from table 1.

The boundary curve between these two regions is given by:

Y ′
FO&Dr

= Y ′
FIr =⇒

√

ΓMPl

xFO&Dr

AFO&Dr
=

m

xFIr

τ ∝
x2

FIr

xFOr

∝

(

ln
[

〈σv〉′
〈σv〉

1
τ

])2

ln
[

〈σv〉′
〈σv〉

1√
τ

] (3.9)

which is roughly τ ∝ constant, although more precisely there is a dependence on 〈σv〉′
〈σv〉 and

τ from the logarithms.

Finally, for τmin < τ . few × τmin, FO′ again dominates for the entire range of 〈σv〉′
〈σv〉

as is shown by the brown region in figure 7. To understand this, it has to be compared to

the next relevant mechanism, namely FIr. Since the lifetime τ is short in this region, ξFO′ ,

which is given by the expression in the top line in eq. (2.38) in this case, becomes large and

close to unity. Hence, in this region, ξFO′ > m′

m
xFIr

xFO′

, or equivalently TFO′ < TFIr < m from

table 1. Since 〈σv〉 has been fixed in figure 7, from table 1 and (2.38), the contours for the

DM yield in this region have a dependence 〈σv〉′
〈σv〉 ∝ τ−1/4. The boundary curve between
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Figure 8. Sequence of cosmological phase diagrams with 〈σv〉 varying. Other parameters are as in

figure 7: (ξUV = 0.01, m = 100 GeV, m′ = 50 GeV). The black contour corresponds to Ωh2 = 0.11,

the observed DM relic abundance.

the two regions is given by:

Y ′
FO′ = Y ′

FIr =⇒ 1

ξFO′

m′

xFO′

=
m

xFIr

τ ∝ 1
(

ln
[

〈σv〉′
〈σv〉

1
τ

])4
(3.10)

which is again approximately τ ∝ constant, but more pecisely with an additional depen-

dence on 〈σv〉′
〈σv〉 and τ in the logarithm.

3.1 Behavior of phase space diagram

In the cosmological phase space diagram depicted in figure 7, the parameters

{m,m′, 〈σv〉, ξUV} were fixed. Let us now examine how each phase region changes as

we vary these four parameters. Figures 8, 9, and 10 are cosmological phase diagrams show-

ing the variation of one of these parameters while keeping the remaining three fixed. The

effects on the regions can be understood by referring to the formulae in section 3 which

define the boundaries between regions. In addition, we would like to examine how the

mechanism of DM production is affected. To this end we include in these figures a single

“critical DM abundance” contour (black line) corresponding to the Ωh2 = 0.11.

Figure 8 illustrates the effect of varying 〈σv〉. The most dramatic change is in the

contours of total yield. As can be seen from the analytic yield formulas in section 3,

when 〈σv〉 is decreased, 〈σv〉′
〈σv〉 must increase in order to maintain a constant yield, whether

dominated by FO′, FO&D, FO&Dr, or FIr. In addition the boundaries of the FI region

shift to smaller lifetimes. Thus the yield contours “rise” in the τ − 〈σv〉′
〈σv〉 plane. For larger

values of 〈σv〉, as in the left panel of figure 8, the black line corresponding to Ωh2 = 0.11

can access the FI region but not the FO&D region. Once FI dominates it will give the
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Figure 9. Sequence of cosmological phase diagrams with ξUV varying. Other parameters are as in

figure 7: (m = 100 GeV, m′ = 50 GeV, 〈σv〉 = 3× 10−26 cm3/s). The black contour corresponds to

Ωh2 = 0.11, the observed DM relic abundance.

correct DM abundance when:

τ ≃ (3 × 10−15 s) × MPl

m′

m2

g

g
3/2
⋆

(3.11)

≃
(

4 × 10−2 s
)

(

m′

m

)(

100GeV

m

)(

228.5

g⋆

)3/2

(3.12)

this corresponds to a lifetime of ≃ 10−2 s in the left panel of figure 8. As 〈σv〉 is decreased

the critical DM contour rises and can start to access the FO&D region. For FO&D to give

the correct DM abundance the following relation must hold:

〈σv〉m
m′ ∼ 4 × 1010

MPl
√

g⋆
∼ 2 × 10−25 cm3sec−1

√
g⋆

(3.13)

This is the case for the center panel of figure 8 with g⋆ = 228.5. Decreasing 〈σv〉 even

further leads to FO&Dr domination, as shown in the right panel of figure 8.

Figure 9 illustrates the effect of varying ξUV. As is expected from eq. (46) decreasing

ξUV results in a smaller large-τ FO′ region. This makes sense since decreasing ξUV cor-

responds to an earlier FO′ (for large τ , ξFO′ ∼ ξUV) and a smaller Y ′
FO′ which will thus

dominate in a smaller region of parameter space. It is clear that the FI region expands as

ξUV is decreased.

Figure 10 illustrates the effect of varying m′. From (3.12) it is clear that the lifetime

that yields the observed DM abundance from FI is proportional to m′. In the left panel of

figure 10, m′ = 50 GeV and the FI lifetime is τ ∼ 10−2 s; decreasing m′ it is possible to

lower this lifetime. This is shown in the center and right panels of figure 10; m′ = 10 GeV

requires τ ∼ 10−3 s for FI to dominate. Also note that decreasing m′ results in a larger

FO′ region at small τ , as expected since this boundary is approximately the line ξ = m′

m .

Finally we comment on the variation of m. The only major effect is the change in the

lifetime at the thermalization bound (red line) which corresponds to ξ (τ,m) = 1. Thus as

m is increased this lifetime is decreased.
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Figure 10. Sequence of cosmological phase diagrams with m′ varying. Other parameters are as in

figure 7: (ξUV = 0.01, m = 100 GeV, 〈σv〉 = 3 × 10−26 cm3/s). The black contour corresponds to

Ωh2 = 0.11, the observed DM relic abundance.

4 Dark matter asymmetry

Until now our discussion has been limited to cases in which the final abundance of the

DM, X ′, is symmetric under the exchange of particles and anti-particles. As such we have

implicitly assumed that either X ′ is its own anti-particle or that the mechanism of DM

production dynamically produces equal numbers of X ′ and X̄ ′. In this section we determine

the conditions necessary for DM to arise from a particle anti-particle asymmetry

η′ =
n′ − n̄′

s
(4.1)

rather than from a symmetric yield, Y ′ = (n′ + n̄′)/s. An asymmetric mechanism of DM

production requires that the hidden sector possess a global U(1) symmetry, Q′. A crucial

question is then whether the portal interactions connecting each sector either completely

break Q′, or whether they preserve some combination of Q′, baryon number B, and lepton

number L. We study two possible scenarios in which there exists a global U(1) symmetry

S having the properties

• S1 = Q′ rotates only hidden sector fields and is broken by the connector interactions.

• S2 = αB + βL + γQ′, with real parameters α, β and γ, is exact, except possibly for

anomalies.

4.1 Asymmetric FI and asymmetric FO&D

At temperatures well above the weak scale we assume that there does not exist any asym-

metry between the DM particles and anti-particles, so η′ = 0. Is it possible for a non-zero

asymmetry to be generated by the thermal production mechanisms studied in the last

section? At first sight the answer is no, since each sector is separately in thermal equilib-

rium. While thermal equilibrium is lost right at the end of FO and FO′, these processes

involve total annihilation cross-sections 〈σv〉, 〈σv〉′ which are the same for anti-particles as

for particles, so an asymmetry cannot be generated. However, the sectors are at differ-

ent temperatures, so processes mediated by the connector interactions are not in thermal
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equilibrium. This offers new possibilities for generating a DM asymmetry, and indeed for

baryogenesis. For the symmetry S1, the connector interactions may generate η′, but it is

unrelated to the baryon and lepton asymmetries, ηL,B. On the other hand, symmetry S2

is exact so any Q′ charge that is generated must be compensated by baryon and lepton

charges, so that the universe remains neutral under the charge of S2. Asymmetric FI that

provides such a correlation between the baryon and DM densities is discussed in [15], and

explicit supersymmetric models are constructed.

There are now four Boltzmann equations to be studied for the evolution of n, n̄, n′ and

n̄′. The equations for n and n̄ are identical and take the form of eq. (2.1). The decay rate Γ

is the total decay rate of X, and by CPT the total decay rate of X̄ is also Γ. However, the

equations for n′ and n̄′ become more complicated once we consider multiple decay modes

for X, which is one of the necessary conditions to generate an asymmetry. We index each

decay mode by i, with a partial width Γi corresponding to

X → piX
′ + p̄iX̄

′ + (particles with Q′ = 0) (4.2)

where pi and p̄i are integers denoting the number of X ′ and X̄ ′ particles produced via the

ith decay mode. The X ′ and X̄ ′ may result from a cascade of decays in the hidden sector.

In general, there can be modes containing particles other than X ′ and X̄ ′ (say Y ′) with

Q′ 6= 0; however we assume that the hidden sector interactions are large enough that Y ′

rapidly decays into X ′ and X̄ ′, so that we only need to consider modes of the form in (4.2)

above. If X is not equal to its own anti-particle then X̄ has a set of decay modes to the

corresponding anti-particles with partial widths Γ̄i, and by CPT the total decay rates of

X and X̄ are equal, i.e. defining Γ ≡
∑

i Γi and Γ̄ ≡
∑

i Γ̄i, then Γ = Γ̄. On the other

hand, if X is real it can decay both via eq. (4.2) and by the decay to the corresponding

anti-particles, so that its total lifetime is Γ =
∑

i Γi +
∑

i Γ̄i.

The Boltzmann equations for n′ and n̄′ are:

d

dt
n′ + 3Hn′ = −(n′n̄′ − n′

eqn̄
′
eq)〈σv〉′ + n

∑

i

piΓi + n̄
∑

i

p̄iΓ̄i (4.3)

d

dt
n̄′ + 3Hn̄′ = −(n′n̄′ − n′

eqn̄
′
eq)〈σv〉′ + n

∑

i

p̄iΓi + n̄
∑

i

piΓ̄i. (4.4)

As with the analysis of the symmetric abundance Y ′ in the previous section, we omit

scattering process contributions to FI. They are UV dominated both for Y ′ and η′, and it

is unclear how they can be distinguished experimentally from a high scale initial condition

on η′. Taking sums and differences of these two equations, the source terms for n′ ± n̄′ are
∑

i(pi ± p̄i)(nΓi ± n̄Γ̄i). The goal of this analysis is to understand how η′ is generated from

these equations starting from symmetric boundary conditions, i.e. when n̄ = n. As such,

this mechanism is markedly different from using these equations to transfer a pre-existing

asymmetry in X to X ′, as has been studied in the context of ADM [7, 8]. With n̄ = n

the source terms become Γn
∑

i(pi ± p̄i)(ri ± r̄i), where we introduced the branching ratios

ri = Γi/Γ and r̄i = Γ̄i/Γ̄. This last form is also the correct source term for the case that

X is the same as its anti-particle.
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Using these source terms, the symmetric and asymmetric contributions to the DM

yields are given for FO&D by

Y ′
FO&D =

CFO

MPlTFO〈σv〉
∑

i

(pi + p̄i)(ri + r̄i)

η′FO&D =
CFO

MPlTFO〈σv〉
∑

i

(pi − p̄i)(ri − r̄i), (4.5)

and for FI by

Y ′
FI = CFI

MPlΓ

m2

∑

i

(pi + p̄i)(ri + r̄i) η′FI = CFI
MPl Γ

m2

∑

i

(pi − p̄i)(ri − r̄i). (4.6)

The symmetric yields Y ′
FO&D and Y ′

FI were studied in great detail in sections 2 and 3. Note

that these yields do not take re-annihilation into account; this will be discussed soon. On

the other hand, the asymmetric yields η′FO&D and η′FI, are new — we denote these DM

production mechanisms by Asymmetric Freeze-Out and Decay (FO&Da) and Asymmetric

Freeze-In (FIa). As seen from (4.5) and (4.6), generating an asymmetry requires decay

modes with p̄i 6= pi so that the final state has Q′ 6= 0, as well as r̄i 6= ri.

According to eqs. (4.5) and (4.6), the symmetric and asymmetric mechanisms obey

the general relation,

η′ = ǫ Y ′, (4.7)

where

ǫ =
∑

i

(pi − p̄i)(ri − r̄i)

(pi + p̄i)(ri + r̄i)
. (4.8)

Here ǫ is a general measure of CP violation occurring in decays of X. If, for example, there

are two relevant decay modes such that p1,2 and p̄1,2 are not large, then ǫ is roughly given

by r1 − r̄1.

Next, let us determine the typical size of ǫ for a simple case with two decay modes.

We take the two decay modes of interest to be X → X ′ + f1 and X → Y ′ + f2, where

fi are particles in the final state that have Q′ = 0, and Y ′ and X ′ have different Q′

charge. We introduce dimensionless amplitudes Ai to describe these decays, defined by

Γi = |Ai|2m/8π. Furthermore, as mentioned earlier we assume the existence of additional

(hidden) interactions which allow for the rapid decay of Y ′ via Y ′ → p2X
′ + p̄2X̄

′, with

p2 − p̄2 6= 1. In addition, a vertex allowing for the rescattering process Y ′ + f2 → X ′ + f1

(with dimensionless amplitude A12) is also required. This allows the final state of process

2 above to rescatter into the final state of process 1 at one loop (and vice versa), which is

necessary for successful asymmetry production.

If the aforementioned amplitudes are too large, they will cause the two sectors to

equilibrate at the era T ≈ m and destroy the viability of the FI and FO&D mechanisms.

Applying the equilibration condition eq. (2.31) demands that

|Ai| . 10−6

√

m

100GeV

√

g′∗(T ≃ m)/gX

100
. (4.9)
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A non-zero value for ǫ results from interference between tree and one loop contributions to

the decays

ǫ ≃ 1

16π

Im(A1A
∗
2A12)

|A1|2 + |A2|2
. (4.10)

In general the rescattering involves both visible and hidden sector particles so that, to

avoid equilibration of the sectors at T ≈ m, A12 must satisfy the same bound, (4.9), as Ai,

giving

ǫ . 10−8 sin φ

√

m

100GeV

√

g′∗(T ≃ m)/gX

100
(4.11)

where φ = arg(A1A
∗
2A12).

Is it possible to evade this bound? For theories with a global symmetry of type S2

such that a combination of B, L and Q′ is preserved, the requirement that the two decay

modes have different Q′ charge implies that the two modes also have different B/L charge

so that the set of particles comprising f1 and f2 are different. This further implies that

rescattering A12 between the final states of the two decay modes involves both visible and

hidden sector particles so that it is not possible to evade the bound (4.11) above.

However, this bound may be evaded in theories where the global symmetry is of type

S1 since then it is possible for f1 and f2 to contain the same set of visible sector particles.

Rescattering then only involves the hidden sector and A12 can be O(1) in principle. There

is still the requirement that the rescattering amplitude not wash-out the asymmetry once

it is produced, but this is highly model dependent since the asymmetry may be produced

at T ′ ≪ mX′ , so that the washout is exponentially suppressed. Hence, in these theories ǫ

can be as large as 10−2 for A12 of O(1).

Can these new mechanisms generate sufficient DM? This requires m′η′=4×10−10 GeV.

For Asymmetric FI

m′η′FI ≃ 4 × 10−10 GeV

(

10−10 s

τ

|A12|
10−6

)(

CFI

10−3

)(

m′

40 GeV

)(

100GeV

m

)2 sin φ|A1A2|
|A1|2 + |A2|2

while for Asymmetric FO&D

m′η′FO&D ≃ 4×10−10 GeV

(

10−8〈σv〉0
〈σv〉

|A12|
10−6

)(

CFO

10−1

)(

m′

40 GeV

)(

100GeV

m

)

sin φ|A1A2|
|A1|2+|A2|2

.

Since the last factor in these equations is always less than unity, Asymmetric FI requires a

short lifetime τ < 10−10 s |A12|/10−6 and Asymmetric FO&D requires a small annihilation

cross-section 〈σv〉 < 10−8〈σv〉0 |A12|/10−6.

The symmetric yields Y ′ in (4.5) and (4.6) do not take re-annihilation into account.

As has been discussed earlier in section 2.6, if the (symmetric) yields for FO&D and FI are

sufficiently large, then re-annihilation occurs giving rise to much smaller values for the final

(symmetric) yields Y ′
FO&Dr

and Y ′
FIr

. This is crucial for the asymmetric yield to dominate

the symmetric yield since ǫ arises at the loop level and is expected to be small. DM

will be dominated by the asymmetric component of X ′ only if 〈σv〉′ is sufficiently large
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Figure 11. Cosmological phase diagrams similar to figure 7, only depicting FO&Da and FIa along

with other production mechanisms. Here the numerically evaluated contours correspond to Ωh2

arising from the sum of Y ′ and η′. The left and right panels correspond to ǫ = 10−8 and 10−2,

respectively.

for re-annihilation to occur, hence reducing the symmetric component Y ′ while leaving

the asymmetric component η′ unaltered. Thus a DM asymmetry can be the dominant

component of DM only in the re-annihilation regions for the symmetric abundance depicted

in figure 7. It is interesting that while FI dominates the DM density only in a narrow region

of parameters as shown in figure 7, asymmetric FI can dominate over a very wide region

of parameters (assuming other conditions for generating the asymmetry are satisfied).

4.2 Cosmological phase diagrams for DM asymmetries

Cosmological phase diagrams are shown in figure 11 for non-zero values of ǫ. The param-

eters held fixed are the same as in figure 7, allowing a comparison of the asymmetric and

symmetric DM production mechanisms. The contours are of Ωh2, now arising from the

sum of Y ′ and η′, and we have included purple and yellow regions denoting FO&Da and FIa
phases, respectively. The left and right panels of figure 11 correspond to ǫ = 10−8, 10−2.

Here the lower value of ǫ arises from the non-thermalization bound in eq. (4.11) and the

upper value arises in theories of type S1 where ǫ is only bounded from above by the fact

that in the perturbative regime, CP violating decays must always be at least a loop factor

down from the CP respecting decays.

In figure 11 we see that the regions corresponding to FO&D and FI are essentially

unchanged from figure 7, while the regions for FO&Da and FIa are shown encroaching on

the FO&Dr and FIr regions. This is reasonable because these asymmetric DM production

mechanism are only active when re-annihilation effects are maximal, so the symmetric

component of the DM relic abundance is efficiently destroyed. As expected, for larger ǫ, as

depicted in the right panel of figure 11, FIa becomes dominant at larger values of τ , which

is reasonable because in this case the CP phase in X decays is larger so the decay rate of X
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can be smaller while producing the same asymmetric DM abundance. On the other hand,

at large ǫ, FO&Da can dominate at smaller values of 〈σv〉′/〈σv〉, since the large CP phase

in X decays allows for the abundance of X arising from FO to be smaller while producing

the same DM asymmetry from late decays. There are no contours in the FO&Da region

because this production mechanism gives an abundance independent of 〈σv〉′ and τ .

Note the behavior of the contours of Ωh2 depicted in figure 11. In particular, as soon

as these curves enter the FIa region, they turn vertically upward. This is an indication that

the abundance of DM contributed by Asymmetric FI is entirely independent of 〈σv〉′/〈σv〉,
and instead only depends on τ—thus, FIa behaves essentially identically to FI without

re-annihilation effects.

Next, let us consider the boundary between Asymmetric FI and Asymmetric FO&D.

In particular, the abundance from FIa dominates the contribution from FO&Da when

η′FI > η′FO&D, so

τ < CFI
MPl

m2Y ′
FO&D

=
CFI

CFOxFO

M2
Pl〈σv〉
m

. (4.12)

Thus FO&Da dominates at large τ , since then FIa is negligible, and for 〈σv〉 ≪ 〈σv〉0, so

there is a very large FO abundance of X. Notice that the right-hand side of eq. (4.12)

depends on quantites which are fixed between the two panels of figure 11, which is why the

boundary between FIa and FO&Da is at the same value of τ in both.

FO&Da requires very small 〈σv〉, especially if ǫ is small, and also dominates for large

τ where it might lead to signatures in big bang nucleosynthesis. On the other hand, FIa is

independent of 〈σv〉 and can successfully account for DM over a very wide range of τ . The

challenge for both asymmetric mechanisms is to construct theories where the CP violating

phase in ǫ can be measured in the laboratory.

5 Conclusions

The nature and origin of DM remains a deep mystery. A priori, there is no reason for DM

to couple to the visible sector with interactions other than gravity, as only the gravitational

properties of DM have been definitively verified through astrophysical probes. As such,

one seeks theoretical motivations for why DM should be anticipated at other laboratory

experiments, for example in direct detection, particle colliders, or indirect signals from

cosmic rays.

One popular theoretical justification is the so-called “WIMP miracle”, whereby DM

is initially in thermal equilibrium with visible sector particles and undergoes FO, yielding

approximately the correct DM relic abundance for weak scale masses and cross-sections.

This setup has the advantage that DM generation is “IR dominated”, and fixed wholly by

the DM annihilation cross-section, which may be directly accessible at colliders.

That said, it is clear that the single sector setup required for the WIMP miracle is only

a very particular slice within the totality of theory space. In general, extra dimensional and

string theoretic constructions motivate the existence of one or more hidden sectors which are

very weakly coupled to our own visible sector. The inclusion of a weak-scale hidden sector,
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complete with its own set of particles, dynamics, and thermal history, substantially expands

the allowed space of mechanisms for DM generation. Concretely, single sector FO is ex-

tended to two sector FO&D and FI, along with their re-annihilated and asymmetric cousins.

Despite the proliferation of DM production modes, this broad two sector framework

retains the IR dominated features lauded in the WIMP miracle. As we have shown, since

both the visible and hidden sectors are initiated in a thermal state, the origin of DM and

its final abundance are dictated entirely by the handful of quantities shown in eq. (1.2).

Remarkably, many of these quantities, namely m, m′, 〈σv〉, and τ may be measured at

particle colliders! This offers the exciting prospect that the origin of DM might be suc-

cessfully reconstructed from collider physics in this enormous and theoretically motivated

class of theories. We consider the details of such an endeavor in a companion paper [9].
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