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1 Introduction

Modern accelerator experiments require precise perturbative calculations for the event rate

of a variety of physical processes. Jets, electroweak gauge bosons and heavy quarks are

being produced copiously at the Tevatron and the LHC. The precision of the measurements

of physical masses, coupling parameters and the structure of colliding hadrons depends

significantly on theoretical uncertainties which are better controlled at higher orders in

perturbation theory. The exclusion of hypotheses for novel particles and interactions is

more significant when candidate signal processes are predicted accurately. With the arrival

of new discoveries, the nature of physics laws will be deciphered more confidently with the

aid of solid quantitative theory predictions.
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Our abilities to simulate complicated physical processes beyond the leading order (LO)

have been improved dramatically in the last few years. At next-to-leading-order (NLO),

previously inaccessible calculations with up to five particles in the final state are now

possible [1]. Basic collider processes with fewer particles have also been computed at next-

to-next-to-leading (NNLO) order in QCD [2–13]. For hadron colliders, the experimental

frontier in particle physics, only cross-sections for 2 → 1 processes have been computed

at NNLO. Such computations must be extended to 2 → 2 processes which are relevant to

the experimental program. These include top and bottom quark pair production, inclu-

sive jet production, electroweak diboson production, electroweak gauge boson and Higgs

production in association with jets, single top production and beyond the Standard Model

signals. It is unclear whether existing methods are suited to this task, and refinements

of traditional methods or the development of new ones are required in order to face the

increased complexity of such calculations.

A fundamental technical difficulty in NNLO calculations is the appearance of multi-

dimensional integrals over the momenta of up to two additional real or virtual particles

with respect to the Born process. These integrals are separately infrared divergent and only

their sum is finite. Higher order computations are performed almost exclusively within di-

mensional regularization, where real and virtual corrections are expanded in a dimensional

regulator ǫ = 2− D
2 , where D is the number of dimensions. Laurent expansions in ǫ are in-

tricate in the presence of overlapping singularities. In this paper we present a new method

for the calculation of the Laurent series in ǫ of multidimensional integrals which typically

appear in NNLO computations and generic higher order computations.

Existing methods which tackle or bypass the problem of overlapping singularities are

based on differential equations [14–16], Mellin-Barnes representations [17–20] and sector de-

composition [21–23]. The first two approaches can be applied to the calculation of virtual or

inclusive real radiation corrections. A subtraction method can reduce the problem of fully

differential real radiation calculations at NNLO to inclusive phase-space calculations [10–12]

enabling the method of differential equations and Mellin-Barnes for fully differential calcu-

lations. Sector decomposition can be applied universally, for virtual inclusive phase-space

integrations and fully differential integrations of real radiation matrix-elements.

Sector decomposition has been the first successful method for performing fully differ-

ential NNLO calculations for hadron collider processes [7, 8]. This is largely attributed to

the conceptual simplicity of the method and its algorithmic nature which permits a full au-

tomatization. The algorithm eliminates overlapping singularities by slicing the integration

volume such that variables which contribute to an overlapping singular limit are ordered.

In this way, the singularity is always factorized and it appears as a single singular limit

of only the largest variable. While this algorithm leads to numerically stable evaluations,

it requires a large number of integrals due to the slicing of the integration volume. This

hinders the application of the method to processes with more complicated matrix-elements.

We present here an alternative method for the factorization of overlapping singular-

ities. We have observed that a factorization is possible by means of simple rescaling of

the integration variables and non-linear transformations which preserve the geometry of

the integration boundaries. Our method leads to a rather small number of numerically

stable integrations.
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We apply our technique to all singular integral topologies which appear in the eval-

uation of NNLO double real radiation corrections to production processes of a massive

system at hadron colliders. We present suitable phase-space parameterizations, analyze

the singularity structure of the matrix-elements, and demonstrate how to obtain their ex-

pansion in ǫ with simple changes of integration variables. We then demonstrate how our

technique can be applied to very complicated and maximally singular two-loop master in-

tegrals. In massless two-loop boxes overlapping singularities are very hard to treat with

non-linear transformations, and we have not been able to find suitable ones which factorize

them completely. On the other hand, a hybrid approach of non-linear transformations

combined with sector decomposition is straightforward and more efficient than applying

only sector decomposition.

In section 2, we review existing methods for the Laurent expansion in the dimensional

regulator of integrals in higher perturbative orders. In section 3 we present our method

and we demonstrate it on typical examples of integrals with overlapping singularities in

section 4. In section 5 we discuss phase-space parameterizations and the singularity struc-

ture of double real radiation at NNLO. In section 6 we present the numerical evaluation of

integrals from all topologies which appear in double real radiation corrections at NNLO.

In section 7 we apply our method to maximally singular two-loop integrals, the crossed-

triangle and the crossed-box. Finally, we present our conclusions in section 8.

2 Laurent expansion of Feynman integrals in the dimensional regulator

Loop integrals and phase-space integrals for the calculation of production rates of phys-

ical processes in quantum field theory are divergent in four space-time dimensions. In

dimensional regularization, d = 4 − 2ǫ, all divergent integrals are computed as a Laurent

expansion in the dimensional regulator ǫ. This task is tedious due to physical singularities,

corresponding to infrared and collinear configurations of real and virtual particles. Sin-

gular manifolds in the integration volume are of increasing complexity at higher orders in

perturbation theory. We shall consider examples of physical loop and phase-space integrals

in later sections of this paper. Here, we shall present illustrative mathematical examples

with similar singular behavior as in realistic cases.

The easiest category of singular integrals is when divergences in the integrand occur

as poles of a single variable. Consider an integral

I =

∫ 1

0
dN~x

f(x1, . . . , xN )

x1−ǫ
1

. (2.1)

with f(~x) being a finite function in the integration volume. This integral is divergent for

ǫ = 0 due to the pole in x1 = 0. To expand in ǫ we use a subtraction technique, isolating

the pole contribution,

I =

∫ 1

0
dN~x

f(x1, x2, . . . , xN ) − f(0, x2, . . . , xN )

x1−ǫ
1

+

∫ 1

0
dN~x

f(0, x2, . . . , xN )

x1−ǫ
1

. (2.2)

In the first term, we are allowed to perform a Taylor expansion in ǫ, given that the integrand

is finite in the limit x1 → 0. In the second term, we can perform the integration in ǫ easily.
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We then have

I =

∫ 1

0
dN~x

f(x1, x2, . . . , xN ) − f(0, x2, . . . , xN )

x1

[

∞
∑

n=0

ǫn

n!
logn(x1)

]

+
1

ǫ

∫ 1

0
dN~xf(0, x2, . . . , xN ). (2.3)

Equivalently, we write

∫ 1

0
dN~xx−1+ǫ

1 f(x1, . . . , xN ) =

∫ 1

0
dN~x

{

δ(x1)

ǫ
+

∞
∑

n=0

ǫn

n!

[

logn(x1)

x1

]

+

}

f(x1, . . . , xN ). (2.4)

All integral coefficients in the Laurent series of the last expression can be evaluated nu-

merically. In case of many factorized singularities,

I =

∫ 1

0
dN~x

f(~x)

x1−a1ǫ
i1

. . . x1−amǫ
im

, (2.5)

we can apply readily the same procedure, and obtain a Laurent expansion in ǫ with the

substitution

x−1+aiǫ
i =

δ(xi)

aiǫ
+

∞
∑

n=0

an
i ǫn

n!

[

logn(xi)

xi

]

+

(2.6)

We note that one may also encounter singularities due to poles of second or higher order,

as for example in

I =

∫ 1

0
dx

f(x)

x2−ǫ
. (2.7)

The subtraction method can be also applied here, writing

I =

∫ 1

0
dx

f(x) − f(0) − xf ′(0)

x2−ǫ
+ f(0)

∫ 1

0
dxx−2+ǫ + f ′(0)

∫ 1

0
dxx−1+ǫ. (2.8)

The integrals in x of the above expression can be computed numerically (as an expansion

in ǫ).

The extraction of divergences is more complicated for integrals with overlapping sin-

gularities. Consider as an example the integral

I =

∫ 1

0
dx1dx2

1

(x1 + cx2)
2+ǫ . (2.9)

For ǫ = 0 the integrand becomes divergent when both x1, x2 → 0. Here, it is easy to

perform successively both integrations, finding the explicit result

I =
1

ǫ(1 + ǫ)

{

−c−1−ǫ +
(1 + c)−ǫ − 1

c

}

. (2.10)

– 4 –



J
H
E
P
0
3
(
2
0
1
1
)
0
3
8

2.1 The differential equation method

Analogous problems in realistic NNLO calculations are very hard to tackle with direct

analytic integrations. A powerful method which has found numerous applications is the

method of differential equations. In this approach we find a physical parameter for the

integral and formulate a differential equation using integration by parts. In our example,

we can write a differential equation with respect to the parameter c, by integrating the

total derivative
∫ 1

0
dx1dx2

∂

∂x2

x2

(x1 + cx2)2+ǫ
. (2.11)

This yields the differential equation,

c
∂I

∂c
+ I = Isimpler (2.12)

The inhomogeneous term on the right side of the above equation is simpler than I. Specif-

ically,

Isimpler =

∫ 1

0
dx1

1

(c + x1)2+ǫ
. (2.13)

and we find

Isimpler =
−1

1 + ǫ

[

(1 + c)−1−ǫ − c−1−ǫ
]

. (2.14)

The general solution of eq. (2.12) involves integrals over one variable only,

I =
1

c

[

const. +

∫ c

dc̃ Isimpler(c̃)

]

(2.15)

thus bypassing the problem of overlapping singularities. The constant of integration can

be determined from knowing the integral at a special value of c or by exploiting a known

limiting behavior or scaling. For example, in our case, we could be using that

I(1/c) = c2+ǫI(c), (2.16)

which we can easily derive with a change of variables x1 ↔ x2 in eq. (2.9).

2.2 The Mellin-Barnes representation method

Mellin-Barnes representations allow a straightforward Laurent expansion of Feynman inte-

grals by using Cauchy’s theorem. Such representations are obtained by using the identity,

Γ(N)

(A + B)N
=

1

2πi

∫ w0+i∞

w0−i∞
dwΓ(−w)Γ(N + w)AwB−N−w, (2.17)

where the contour of integration is a straight line parallel to the imaginary axis, crossing

the real axis at a point w0 such that the real part of the arguments of the gamma functions

are positive. Using eq. (2.17) and integrating x1 and x2 for the toy example of eq. (2.9),

we obtain the Mellin-Barnes representation

I =
1

2πi

∫

dw
Γ(−w)Γ(2 + ǫ + w)

Γ(2 + ǫ)

Γ(1 + w)Γ(−1 − ǫ − w)

Γ(2 + w)Γ(−ǫ − w)
cw, (2.18)
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where the representation is valid (all Gamma functions have arguments with positive real

part) if we choose, for example, ǫ = −0.9 and Rew = −0.2. Notice that we cannot find any

value of Rew which renders the integral well defined if we choose ǫ = 0. This means that

the integral develops a pole in ǫ. A Laurent expansion can be achieved with an analytic

continuation method, moving the value of ǫ from a value that the integral is well defined,

ǫ = −0.9 in our example, to ǫ = 0 and isolating with Cauchy’s theorem the poles which arise

when the arguments of ǫ dependent Gamma functions become zero or negative integers. In

our example, we find that Γ(−1− ǫ−w) = Γ(0) develops a pole as ǫ = −0.8 (and w = w0).

No other pole is encountered by continuing the value of ǫ further to ǫ = 0. We can then

write,

I = TaylorExpand(I)ǫ=0 + Resw=−1−ǫ(I). (2.19)

2.3 The subtraction method

The differential equation method and the Mellin-Barnes method bypass the problem of

overlapping singularities by integrating out Feynman parameters and phase-space variables

and generating equivalent representations where overlapping singularities cannot occur.

Both methods rely on the integration volume being well known and free of parameters, other

than the space-time dimension. This is the case for loop integrals and inclusive phase-space

integrations. An important class of phase-space integrals requires parametric boundaries

which are determined according to varied selection criteria for the experimentally measured

observables. For such integrals the differential equation and Mellin-Barnes methods are not

generally suitable.

One approach is to use a subtraction method in order to map the problem of fully

differential phase-space integrations onto a problem of fully inclusive phase-space. Consider

the toy example,

I [J ] =

∫ 1

0
dx1dx2

J(x1, x2)

(x1 + x2)2+ǫ
, (2.20)

where the function J(x1, x2) plays the role of selecting an arbitrary subregion of the in-

tegration volume according to, for example, the wishes of the experimentalists. Using

subtraction, we can re-write

I [J ] =

∫ 1

0
dx1dx2

J(x1, x2) − J(0, 0)

(x1 + x2)2+ǫ
+ J(0, 0)

∫ 1

0
dx1dx2

1

(x1 + x2)2+ǫ
. (2.21)

The first integral contains only an integrable singularity as ǫ → 0 and can be computed

numerically. The second integral is a “fully inclusive” integral and may be computable

with the Mellin-Barnes or differential equation method.

2.4 The sector decomposition method

A different approach is to use sector decomposition. We divide the integration region

according to the relative magnitude of the integration variables which are required for

the singular limit (in our example x1 = x2 = 0), by multiplying the integrand with an

appropriate unity,

1 = Θ(x2 > x1) + Θ(x1 > x2). (2.22)

– 6 –
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This gives rise to two integration domains (sectors). In the sector with x1 > x2 we rescale

x2 = x2x1, and in the sector with x2 > x1 we transform x1 = x1x2. We then obtain

I [J ] =

∫ 1

0
dx1dx2x

−1−ǫ
1

J(x1, x1x2)

(1 + x2)2+ǫ
+

∫ 1

0
dx1dx2x

−1−ǫ
2

J(x1x2, x2)

(1 + x1)2+ǫ
. (2.23)

The singularities in both integrands are now factorized and a Laurent expansion can be

easily achieved with a simple subtraction. The method of sector decomposition is suited

for all types of loop and phase-space integrals.

It is instructive to see how the method is used on a physical example. Let us consider

the one-loop box scalar integral,

I =

∫

ddk

iπ
d

2

1

k2(k + p1)2(k + p1 + p2)2(k + p1 + p2 + p3)2
. (2.24)

The corresponding Feynman parameterization reads,

I =

∫ 1

0
dx1 . . . dx4δ (1 − x1 − . . . − x4) f(x1, . . . , x4) (2.25)

with

f(x1, . . . , x4) ≡
Γ(2 + ǫ)

[−sx1x3 − tx2x4 − i0]2+ǫ . (2.26)

To avoid creating poles at the upper limit of the xi integrations we apply first the method

of primary-sectors [21]. We write

I =

∫

dx

∫ 1

0

(

∏

i

dxi

)

δ
(

1 −
∑

xi

)

f({xi})
∑

i

δ(xi − x)
∏

j 6=i

Θ(xi ≥ xj) (2.27)

We now rescale

xk = ykx, (2.28)

and perform the x integration. This yields

I = Γ(2 + ǫ)

∫ 1

0
dy1 . . . dy4

(

∑

i

yi

)2ǫ
∑

i δ(1 − yi)

[−sy1y3 − ty2y4 − i0]2+ǫ . (2.29)

All terms in the sum can be computed in exactly the same fashion. For convenience,

although not necessary, we use the special symmetry of this problem, y1 ↔ y3 and y2 ↔ y4,

and cast the integral as

I = 2Γ(2 + ǫ)

∫ 1

0
dy1dy2dy3 (1 + y1 + y2 + y3)

2ǫ

×
{

[−sy1 − ty2y3]
−2−ǫ + [−ty1 − sy2y3]

−2−ǫ
}

(2.30)

We observe that the integral becomes singular in the following instances

y1 = 0 and (y2 = 0 or y3 = 0). (2.31)

– 7 –
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We now apply sector decomposition to factorize the entangled singularity structure. We

multiply the integrand with

1 = Θ(y2 < y1) + Θ(y1 < y2) (Θ(y1 < y2y3) + Θ(y2y3 < y1))

= Θ(y2 < y1) + Θ(y1 < y2y3) + Θ(y2y3 < y1 < y2) (2.32)

In each of the three sectors of the above equation we rescale the smallest variables with

respect to the large ones, mapping the boundaries of the sectors to the unit cube. Specifi-

cally,

Θ(y1 < y2y3) : y1 → y1y2y3 (2.33)

Θ(y2y3 < y1 < y2) : y1 → y1y2 and y3 → y3y1 (2.34)

Θ(y2 < y1) : y2 → y2y1 (2.35)

We then obtain a representation of the one-loop box,

I = I1 + I2 + I3, (2.36)

with a simple, factorized, singularity structure:

I1 = 2Γ(2 + ǫ)

∫ 1

0
dy1dy2dy3 (1 + y1y2y3 + y2 + y3)

2ǫ

×
{

[−sy1 − t]−2−ǫ + [−ty1 − s]−2−ǫ
}

(y2y3)
−1−ǫ , (2.37)

I2 = 2Γ(2 + ǫ)

∫ 1

0
dy1dy2dy3 (1 + y1y2 + y2 + y3y1)

2ǫ

×
{

[−s − ty3]
−2−ǫ + [−t − sy3]

−2−ǫ
}

(y2y1)
−1−ǫ , (2.38)

I3 = 2Γ(2 + ǫ)

∫ 1

0
dy1dy2dy3 (1 + y1 + y2y1 + y3)

2ǫ

×
{

[−s − ty2y3]
−2−ǫ + [−t − sy2y3]

−2−ǫ
}

y−1−ǫ
1 . (2.39)

The resulting integrals I1, I2, I3 of sector decomposition can all be expanded in ǫ with the

subtraction method.

3 Factorization of singularities with non-linear transformations

In this section, we propose a new method for the factorization of overlapping singularities.

We consider again the very simple case of an overlapping singularity in the two-dimensional

toy example integral

I1 =

∫ 1

0
dx1dx2

1

(c1x1 + c2x2)
2+ǫ (3.1)

We shall perform a rescaling transformation over the entire integration region,

x2 = λx1, (3.2)

– 8 –
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This yields,

I1 =

∫ 1

0
dx1x

−1−ǫ
1

∫ 1

x1

0
dλ

1

(c1 + c2λ)2+ǫ
. (3.3)

We notice that there is a factorized singularity at x1 = 0. In this singular point of the

x1 integration, the variable λ ranges up to +∞. However, the λ integration is convergent

at ǫ = 0, since the integrand scales as 1
λ2 for very large values of λ. Therefore, we could

immediately treat the singularity at x1 = 0 with the subtraction method

I1 =

∫ 1

0
dx1x

−1−ǫ
1

∫ ∞

0
dλ

1

(c1 + c2λ)2+ǫ

[

Θ(λ <
1

x1
) − 1

]

− 1

ǫ

∫ ∞

0
dλ

1

(c1 + c2λ)2+ǫ
. (3.4)

We can then evaluate numerically the integrals which are produced after we perform an

expansion in ǫ.

Alternatively, we could perform a transformation1 on λ to bring the integration region

back to [0, 1].

λ = g(u), (3.5)

Such a transformation maps the integration region to,

∫ 1

0
dx1dx2 =

∫ 1

0
dxx

∫ g−1(1/x)

g−1(0)
dug′(u) (3.6)

It is very important to select carefully this transformation. A linear mapping

g(u) =
x1

u
, (3.7)

is clearly ineffective, since it undoes the original rescaling of x2 = λx1. However, non-linear

mappings, such as

g(u, x) =
u

x + δ(1 − u)
(3.8)

g(u, x) =
u

x + δ1(1 − u)δ2
(3.9)

g(u, x) =
1 + x

√

(1 + 2x)(1 − u) + x2
− 1 (3.10)

. . .

are effective. For almost all practical applications in this paper we employ the mapping

g(u, x) =
u

x + δ(1 − u)
. (3.11)

with δ often chosen equal to 1.

Explicitly, the transformation

x2 =
x1x

′
2

x1 + (1 − x′
2)

, 1 − x2 =
(1 + x1)(1 − x′

2)

x1 + (1 − x′
2)

, (3.12)

1Integrating λ numerically, with Monte Carlo methods, requires a transformation as well, in practice,

since one needs to generate λ from some random variable that is produced in [0, 1].

– 9 –
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with a Jacobian
∂x2

∂x′
2

=
x1(1 + x1)

[x1 + (1 − x′
2)]

2 (3.13)

disentangles the overlapping singularity, transforming the integral of eq. (3.1) as

I1 =

∫ 1

0
dx1dx′

2x
−1−ǫ
1 (1 + x1)(1 − x′

2 + x1)
ǫ[c1(1 − x′

2 + x1) + c2x
′
2]
−2−ǫ (3.14)

The singularity in the limit x1 = 0 and ǫ = 0 can be subtracted away, and a Laurent series

expansion around ǫ = 0 is achieved using the expansion

x−1+ǫ =
δ(x)

ǫ
+

∞
∑

n=0

ǫn

n!

[

lnn(x)

x

]

+

. (3.15)

In this approach, we have achieved to factorize the overlapping singularity with a

simple transformation. In comparison, a factorization with sector decomposition doubles

the number of integrals, as we have seen in the previous section. Economizing in the

number of integrals is even more significant for physical applications where entanglement

of singularities with more variables may take place.

Let us now revisit the one-loop box calculation using the new method instead of sec-

tor decomposition. Following the “analytical-transformation” approach, we perform the

change of variables on the integral of eq. (2.30)

y1 → y1y2y3

1 − y1 + y2y3
. (3.16)

This yields the integral

I = 2Γ(2+ǫ)

∫ 1

0
dy1dy2dy3(y2y3)

−1−ǫ(1−y1+y2y3)
−ǫ[y1y2y3+(1+y2+y3)(1−y1+y2y3)]

2ǫ

×
{

[−sy1 − t(1 − y1) − ty2y3]
−2−ǫ + [−ty1 − s(1 − y1) − sy2y3]

−2−ǫ
}

(3.17)

In this integral, the singularities have nicely factorized in the term (y2y3)
−1−ǫ. In compar-

ison to sector decomposition, we now have to perform one integration rather than three.

4 Characteristic forms of entangled singularities

In this section, we present some typical examples of integrals with overlapping singularities

and the mappings that we use to disentangle them.

Our second example is the integral

I2 =

∫ 1

0
dx dy dz

1

(x + yz)2+ǫ
(4.1)

which is a trivial extension of eq. (3.1). We use the mapping

(x + yz) : x → xyz

1 − x + yz
(4.2)
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where we have also designated the singularity structure of the integral. This mapping leads

to

I2 =

∫ 1

0

dx dy dz

(yz)1+ǫ

(1 − x + yz)ǫ

(1 + yz)1+ǫ
(4.3)

where the singularities are factorized in terms of y and z.

Next, let’s consider

I3 =

∫ 1

0
dx dy dz

1

(x + y + z)3+ǫ
. (4.4)

Here we use the simultaneous double mapping

(x + y + z) : y → yx

1 − y + x
, z → zx

1 − z + x
(4.5)

which leads to

I3 =

∫ 1

0

dx dy dz

x1+ǫ

(1 + x)2(1 − y + x)1+ǫ(1 − z + x)1+ǫ

((1 + x)2 − zy)3+ǫ
. (4.6)

Next, let’s consider the integral

I4 =

∫ 1

0
dx dy dz dw

1

(x + y(z + w))2+ǫ
. (4.7)

Here we use successively

(x + y(z + w)) : z → zw

1 − z + w
, x → xyw

1 − x + yw
. (4.8)

The integral then becomes

I4 =

∫ 1

0

dx dy dz dw

y1+ǫ

(1 + w)(1 + yw)(1 − x + yw)ǫ(1 − z + w)ǫ

[1 − zx + w(1 + y + yw)]2+ǫ . (4.9)

It is maybe instructive to see how this integral of eq. (4.7) behaves under simple rescaling.

Consider z = λzw and then x = λxyw. We get

I4 =

∫ 1

0

dy dw

y1+ǫ

∫ 1/w

0
dλz

∫ 1/yw

0
dλx

1

(λx + λz + 1)2+ǫ
. (4.10)

Only the integral over λx extends to infinity and in that limit the behavior of the integrand

is dλx/λ2
x which vanishes at infinity.

Next let’s consider

I5 =

∫ 1

0
dx dy dz dw

(xyzw)ǫ

(x + y + zw)3
. (4.11)

Here we use the successive mappings

(x + y + zw) : x → xzw

1 − x + zw
, y → yzw

1 − y + zw
(4.12)

which brings the integral to the factorized form

I5 =

∫ 1

0
dx dy dz dw

(xy)ǫ

z1−3ǫw1−3ǫ

(1 + zw)2(1 − x + zw)1−ǫ(1 − y + zw)1−ǫ

(1 − xy + 2zw + z2w2)3
. (4.13)
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When overlapping singularities appear together with factorized singularities in the

same variable, a slight complication appears. Consider the integral

I6 =

∫ 1

0
dxdy

(xy)ǫ

x(x + y)
. (4.14)

It has a factorized singularity at x = 0 and an overlapping singularity at x = 0 = y. Let us

call the singularity at x = 0 active and the one at y = 0 passive. In order to disentangle the

singularity we would like to use the same mapping as in the previous examples. It turns

out that we can do this, but only as long as we choose to remap the active singularity, i.e.

x(x + y) : x → xy

1 − x + y
. (4.15)

The integral then becomes

I6 =

∫ 1

0
dxdyx−1+ǫy−1+2ǫ(1 − x + y)−ǫ. (4.16)

which can be subtracted easily.

Note that applying the wrong rescaling y = λx one gets

I6 =

∫ 1

0
dx

∫ 1/x

0
dλ

(λ)ǫ

x1−2ǫ(1 + λ)
. (4.17)

We can see immediately that the dλ integral is logarithmically divergent at the active

singularity x → 0 due to the upper limit of the integration region. On the contrary,

applying the correct rescaling x = λy one gets

I6 =

∫ 1

0
dy

∫ 1/y

0
dλ

(λ)ǫ

y1−2ǫλ(1 + λ)
(4.18)

which, as y → 0, behaves as dλ/λ2 which is finite.

We see that the simple λ-rescaling works as a guideline, showing when a mapping prop-

erly factorizes the singularities of an integral. It will be instrumental in more complicated

cases presented below.

Let us now consider the integral2

I7 =

∫ 1

0
dxdydz

(xyz)ǫ

xy(xy + z)
. (4.19)

Identifying x = 0 = z and y = 0 = z as two independent overlapping singularities, where z

is passive and both x and y are active, we know from the previous example that we should

not map z from the previous example. So one is left to map x → z or y → z. By the

symmetry of the integrand it does not matter which one of these one can choose. Let us

choose x and a slightly modified mapping that keeps the expressions simpler:

xy(y + z) : x → xz

1 − x + zx
. (4.20)

2We find similar singularity structures in double real radiation.
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The integrand then becomes

I7 =

∫ 1

0
dxdydz

(xy2z)ǫ(1 − x + zx)−ǫ

xyz(x(y + z) + (1 − x))
. (4.21)

We have now managed to “activate” the singularity at z = 0. At the same time the

singularities at y = 0 and at x = 0 have remained active as well. However, we now find

an overlapping singularity at z = 0 = y and x = 1, where the singularity at x = 1 is

passive. Notice that we started with two independent (partially interfering) overlapping

singularities, have treated one of them and are now left with only one, which lies at a

different point. We shall remap z and y as follows

y → y(1 − x)

1 − y + (1 − x)y
, z → z(1 − x)

1 − z + (1 − x)z
. (4.22)

The integrand becomes

I7 =

∫ 1

0
dxdydz

(xy)−1+ǫ((1 − x)z)−1+2ǫ

(1 − xy)ǫ(1 − xz)ǫ(1 − x2yz)
. (4.23)

Note that the remaining singularity of the integrand is integrable.

Let’s now explore the potential of a slightly different kind of mapping. We have the

integral

I =

∫ 1

0

∏

i

dyi
dx

(ax + b)N
(4.24)

with a, b independent of x but potentially dependent on yi. In the latter case the integral

might have overlapping singularities, as a, b → 0 or x, b → 0. We employ

x → xb/a

1 − x + b/a
(4.25)

and get

I =

∫ 1

0

∏

i

dyi
dx(a(1 − x) + b)N−2

bN−1(a + b)N−1
. (4.26)

If N ≥ 2 this mapping factorizes the singularity at b → 0 and, at the same time, exposes the

a+b structure of the overlapping a, b → 0 singularity, making it ready for further mappings.

Let’s see, as an example,

I8 =

∫ 1

0

dx1 dx2 dx3 dx4 dx5

(x1 + x2x3 + x2x4 + x4x5)3+ǫ
. (4.27)

We map:

x1 → x1(x2x3 + x2x4 + x4x5)

1 − x1 + (x2x3 + x2x4 + x4x5)
(4.28)

to get

I8 =

∫ 1

0
dx1 dx2 dx3 dx4 dx5

(1 − x1 + x2x3 + x2x4 + x4x5)
1+ǫ

(x2(x3 + x4) + x4x5)2+ǫ(1 + x2x3 + x2x4 + x4x5)2+ǫ
. (4.29)
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We can now use the mapping of eq. (4.25) with a = x3 + x4 and b = x4x5 to get

I8 =

∫ 1

0
dx1 dx2 dx3 dx4 dx5

F (xi)

x1+ǫ
4 x1+ǫ

5 (x3 + x4 + x4x5)1+ǫ
(4.30)

where F (xi) is a finite function of xi. Noting that x4 is an active singularity, we use the

mapping of eq. (4.25) again with a = 1 + x5 and b = x3 to get

I8 =

∫ 1

0
dx1 dx2 dx3 dx4 dx5

F ′(xi)

x1+ǫ
4 x1+ǫ

5 x1+ǫ
3

. (4.31)

Let us now see some examples where we employ a hybrid method of one-step of sector

decomposition and non-linear transformations to factorize overlapping singularities. A

similar singularity structure appears in two-loop massless box integrals.

We consider

I9 =

∫ 1

0

dx1 dx2 dx3 dx4 dx5

[x1x3 + x1x2 + x2(x4 + x5 + x3x4x5)]
3+ǫ . (4.32)

We split this integral in two sectors

x2 > x3 :

∫ 1

0

1

x2+ǫ
2

dx1 dx2 dx3 dx4 dx5

[x1(1 + x3) + x4 + x5 + x3x4x5]
3+ǫ (4.33)

which has the singularity structure of eq. (4.4) and can be factorized by the mapping of

eq. (4.5), and

x3 > x2 :

∫ 1

0

1

x2+ǫ
3

dx1 dx2 dx3 dx4 dx5

[x1(1 + x2) + x2(x4 + x5 + x4x5)]
3+ǫ (4.34)

which is of the type of eq. (4.7) and can be factorized with the mapping of eq. (4.8).

We now move to the most complicated example of this section, the integral

I10 =

∫ 1

0

dx1dx3dx4dτ1dτ2

[x1B + x1x3A + x4τ1C + x4τ2D + x3τ1τ2E]3+2ǫ
(4.35)

with A,E finite and B,C,D finite functions of τ1,2.

We split this integral in two sectors, x1, x4, and we get

x1 > x4 : I10A =

∫ 1

0

dx1dx3dx4dτ1dτ2 x1

[x1(B + Ax3 + Cx4τ1 + Dx4τ2) + Ex3τ1τ2]3+2ǫ
(4.36)

which is of the type of eq. (4.1) and can be immediately factorized with the mapping

eq. (4.2). The other sector is

x4 > x1 : I10B =

∫ 1

0

dx1dx3dx4dτ1dτ2 x4

[Bx1x4 + Ax1x4x3 + Cx4τ1 + Dx4τ2 + Ex3τ1τ2]3+2ǫ
. (4.37)

This should be further split in x3, x4 to get

x4 > x3 : I10B1 =

∫ 1

0

dx1dx3dx4dτ1dτ2

x1+2ǫ
4

1

[Bx1 + Ax1x4x3 + Cτ1 + Dτ2 + Ex3τ1τ2]3+2ǫ

(4.38)
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which is of the type of eq. (4.4) and we can use the mapping eq. (4.5) to factorize it. The

other sector is

x3 > x4 : I10B2 =

∫ 1

0

dx1dx3dx4dτ1dτ2

x1+2ǫ
3

x4

[Bx1x4 + Ax1x4x3 + Cx4τ1 + Dx4τ2 + Eτ1τ2]3+2ǫ

(4.39)

and requires further splitting. We choose to split in the variables x4, τ1 to get

x4 > τ1 : I10B2A =

∫ 1

0

dx1dx3dx4dτ1dτ2

x1+2ǫ
3 x1+2ǫ

4

1

[B′x1 + Ax1x3 + Cx4τ1 + D′τ2 + Eτ1τ2]3+2ǫ

(4.40)

which is of the type of eq. (4.11), and

τ1 > x4 : I10B2B =

∫ 1

0

dx1dx3dx4dτ1dτ2

x1+2ǫ
3 τ1+2ǫ

1

x4

[Bx1x4 + Ax1x4x3 + Cx4τ1 + Dx4τ2 + Eτ2]3+2ǫ

(4.41)

which requires a final split in x4, τ2,

τ2 > x4 : I10B2B1 =

∫ 1

0

dx1dx3dx4dτ1dτ2

x1+2ǫ
3 τ1+2ǫ

1 τ1+2ǫ
2

x4

[Bx1x4 + Ax1x4x3 + Cx4τ1 + Dx4τ2 + E]3+2ǫ

(4.42)

which is finite and

x4 > τ2 : I10B2B2 =

∫ 1

0

dx1dx3dx4dτ1dτ2

x1+2ǫ
3 τ1+2ǫ

1 x1+2ǫ
4

1

[Bx1 + Ax1x3 + Cτ1 + Dx4τ2 + Eτ2]3+2ǫ

(4.43)

which is of the type of eq. (4.7). The original integral can be written in terms of its five

sectors as

I10 = I10A + I10B1 + I10B2A + I10B2B1 + I10B2B2. (4.44)

Finally, let’s consider

I11 =

∫ 1

0

dx1dx2dx4dτ1dτ2 x1+ǫ
2

[x1A + x1x2B1B2 + x2x4τ1B2C + x2x4τ2B1D + x2τ1τ2E]3+2ǫ
(4.45)

with A,E,C,D finite and B1,2 = 2 − τ1,2, also finite for all values of τ1,2. We begin by

splitting the integral in τ1,τ2. We get

τ1 > τ2 : I11A =

∫ 1

0

dx1dx2dx4dτ1dτ2 x1+ǫ
2

[x1A + x1x2B1B12 + x2x4τ1B12C + x2x4τ2τ1B1D + x2τ2
1 τ2E]3+2ǫ

(4.46)

and

τ2 > τ1 : I11B =

∫ 1

0

dx1dx2dx4dτ1dτ2 x1+ǫ
2

[x1A + x1x2B2B12 + x2x4τ1τ2B1C + x2x4τ1B12D + x2τ1τ2
2 E]3+2ǫ

(4.47)

where B12 = 2 − τ1τ2. We notice that we can get I11B from I11A if we exchange C and D

and rename the dummy integration variables τ1 ↔ τ2, so that

I11B(C,D) = I11A(D,C). (4.48)
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We will use the same decompositions and mappings to factorize I11B and I11A (with τ1 and

τ2 interchanged), so we only describe the latter below. We split I11A in two sectors with

respect to τ1 and x4. We get

τ1 > x4 : I11A1 =

∫ 1

0

dx1dx2dx4dτ1dτ2 x1+ǫ
2 τ1

[x1(A + x2B1B12) + x2τ
2
1 (x4B12C + x4τ2B1D + τ2E)]3+2ǫ

. (4.49)

We perform the mappings

τ2 → τ2x4

1 − τ2 + x4
(4.50)

and then

x1 → x1τ
2
1 τ2x4

1 − x1 + τ2
1 τ2x4

(4.51)

which factorize all singularities. We also have

x4 > τ1 : I11A2 =

∫ 1

0

dx1dx2dx4dτ1dτ2 x1+ǫ
2 x4

[x1(A + x2B
′
1B

′
12) + x2x

2
4τ1(B

′
12C + τ2B

′
1D + τ1τ2E)]3+2ǫ

. (4.52)

We will split with respect to τ1,τ2 to get

τ1 > τ2 : I11A2a =

∫ 1

0

dx1dx2dx4dτ1dτ2 x1+ǫ
2 x4τ1

[x1(A + x2B′
1B

′′
12) + x2x2

4τ1(B′′
12C + τ2τ1B′

1D + τ2
1 τ2E)]3+2ǫ

(4.53)

which can be factorized by

x1 → x1x2x
2
4τ1

1 − x1 + x2x2
4τ1

(4.54)

and

τ2 > τ1 : I11A2b =

∫ 1

0

dx1dx2dx4dτ1dτ2 x1+ǫ
2 x4τ2

[x1(A + x2B′′′
1 B′′′

12) + x2x2
4τ1τ2(B′′′

12C + τ2B′′′
1 D + τ1τ2

2 E)]3+2ǫ

(4.55)

which can be factorized by

x1 → x1x2x
2
4τ1τ2

1 − x1 + x2x2
4τ1τ2

. (4.56)

The original integral can, therefore, be factorized in six different integrals:

I11 = I11A + I11B = I11A1 + I11A2a + I11A2b + (u ↔ t) (4.57)

5 Double real radiation for final states with massive particles

One of the major challenges at NNLO in QCD has been the computation of the double real

emission part of the cross-section. While the computation of the matrix elements with N+2

particles in the final state is not a problem per se, difficulties arise when one integrates over

the phase space of the two unresolved particles. The corresponding integrals are infrared

divergent in the soft and collinear limits and are dimensionally regulated. The divergences

have to be subtracted before the integrals can be numerically evaluated. As long as the

singularities are factorized, as they usually are at NLO, it is straightforward to use a
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Laurent expansion over the singular variables, and evaluate its coefficients numerically. At

NNLO, the singularity structure of the integral is more intricate, as line and overlapping

singularities appear, and the desired factorization is not straightforward.

The method of sector decomposition has already been applied successfully to achieve

this factorization for hadron collider [7, 8] and decay processes [24–26]. A drawback of the

method is that it leads to a large number of sectors. The goal of this paper is to replace

sector decomposition for double-real radiation integrals with an economical factorization

method based on non-linear transformations.

5.1 Infrared singularities in double real radiation

We consider double real emission to a generic NNLO 2 → n + 2 process (see Fig 1) with n

massive particles and 2 massless partons in the final state. We denote the momenta of the

incoming particles by q1, q2, those of the outgoing massive particles by p1 . . . pn and those

of the two unresolved partons by q3 and q4. Infrared singularities in this phase space will

occur whenever q3 and/or q4 become soft or collinear to q1, q2 or to each other. For the

case of double real radiation to the production of a single massive particle (e.g. Higgs, W

or Z production) potentially singular propagators can be summarized as

s34 = 2q3.q4

s13 = −2q1.q3

s23 = −2q2.q3

s14 = −2q1.q4

s24 = −2q2.q4 (5.1)

and

s134 = (q3 + q4 − q1)
2 = s34 + s13 + s14

s234 = (q3 + q4 − q2)
2 = s34 + s23 + s24. (5.2)

Note that s123, s124 are bounded from below. Further soft singularities can be found if

there are colored massive particles in the final state, which can radiate off soft gluons. One

can then get also the following possibly singular denominators:

t3i = 2q3.pi

t4i = 2q4.pi (5.3)

and

t34i = (q3 + q4 + pk)
2 − m2

k = s34 + t3i + t4i (5.4)

for i ≥ 1. Since

t3i = 2q3.pi = 2E3(Ei − |pi| cos θ3i), Ei > |pi| (5.5)

the soft singularity is factorized in E3. Whenever some heavy colored state radiates off

two gluons we can also get the denominator t34i, it can only become singular in the double
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Figure 1. Notational setup: qi are massless particles, while pi are massive.

soft limit when E3 = 0 = E4. However the double soft limit will always be factorized as

we will show in the next section.

Let us now discuss the denominator structure of the most singular diagrams which

one could expect in double real radiation: those where radiation is emitted by initial

state particles. We have illustrated the propagator structure of these topologies using

some diagrams containing gluons in figure 2 (diagrams containing just massless quarks

correspond to the same topologies).

Diagrams whose propagator structure can be related to the ones in figure 2 by a simple

interchange of q3 with q4 or of q1 with q2 will also fall into the same topology.

By considering square and interference terms of the topologies C1, C2 and C3, we obtain

the following list of integrals:

1. Topology C1 ⊗ C1:
∫

dΦ3N({sij})
(s13s24)2

,

∫

dΦ3N({sij})
s13s23s14s24

(5.6)

2. Topology C2 ⊗ C2:
∫

dΦ3N({sij})
(s34s134)2

,

∫

dΦ3N({sij})
s2
34s134s234

(5.7)

3. Topology C3 ⊗ C3:
∫

dΦ3N({sij})
(s13s134)2

,

∫

dΦ3N({sij})
s13s23s134s234

,

∫

dΦ3N({sij})
s13s24s134s234

(5.8)

4. Topology C1 ⊗ C2:
∫

dΦ3N({sij})
s34s234s13s24

(5.9)

5. Topology C1 ⊗ C3:
∫

dΦ3N({sij})
s134s13s23s14

,

∫

dΦ3N({sij})
s134s2

13s14
(5.10)

6. Topology C2 ⊗ C3:
∫

dΦ3N({sij})
s34s2

134s13
,

∫

dΦ3N({sij})
s34s134s234s23

(5.11)
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7. Topology C4 ⊗ C4:
∫

dΦ3N({sij})
t2i3t

2
j4

,

∫

dΦ3N({sij})
ti3tj4tj3ti4

(5.12)

8. Topology C4 ⊗ C1:
∫

dΦ3N({sij})
ti3tj4s13s14

(5.13)

9. Topology C4 ⊗ C2:
∫

dΦ3N({sij})
ti3tj4s34s134

(5.14)

10. Topology C4 ⊗ C3:
∫

dΦ3N({sij})
ti3tj4s13s134

(5.15)

Where dΦ3 is the differential double emission phase space element for 2 + n final state

particles, and N({sij}) is in general a finite function of the kinematical invariants.
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The topology C4 contains only soft singularities similar to those in C1. The topologies

C4 ⊗C4 and C4 ⊗C1 are, therefore, easier than C1 ⊗C1. They can be treated exactly like

C1 ⊗ C1 and we will not discuss them in what follows.

5.2 Phase-space of double real parton radiation

We would like to point out that different parameterizations of the phase-space can factorize

different sets of kinematic invariants. We will derive two such parameterizations which allow

for a more convenient numerical evaluation of diverse diagrams, according to their topology.

The phase-space of n massive particles in four dimensions is:

dΦn(
√

s;m1, . . . ,mn) = (2π)4−3n

(

n
∏

i=1

d4piδ
+(p2

i − m2
i )

)

δ(4)

(

q1 + q2 −
n
∑

i=1

pi

)

, (5.16)

where s = (q1+q2)
2. We assume that a 2 → n process exists at leading order in perturbation

theory, and a strictly four-dimensional evaluation is therefore sufficient. At NNLO, the

double emission phase space is given by including two further massless particles (whose

momenta we denote by q3 and q4)

dΦn+2(
√

s;m1, . . . ,mn, 0, 0) = (2π)4−3n

(

n
∏

i=1

d4piδ
+(p2

i −m2
i )

)

(2π)2−2dddq3δ
+(q2

3)d
dq4δ

+(q2
4)

×δ(d)

(

q1 + q2 −
n
∑

i=1

pi − q3 − q4

)

. (5.17)

We factorize the double real phase space into a 3-particle phase space times an n-particle

phase space as follows

dΦn+2(
√

s;m1, . . . ,mn, 0, 0) =

∫

ds1...n

2π
dΦ3(

√
s; 0, 0,

√
s1...n)dΦn(

√
s1...n;m1, . . . ,mn).

(5.18)

with s1...n = (
∑n

i=1 pi)
2 shall denote the center of mass energy (or invariant mass) of the

n massive momenta p1, . . . , pn. This is depicted graphically in figure 3. The limits of

integration of s1...n are

s ≥ s1...n ≥
(

n
∑

i=1

mi

)2

(5.19)

and parameterizing s1...n linearly we get

s1...n =



s −
(

n
∑

i=1

mi

)2


x5 +

(

n
∑

i=1

mi

)2

. (5.20)

The parameter x5 ∈ [0, 1] then uniquely defines the double soft limit when x5 = 1. In

the following discussion we will use the variable

z =
s1...n

s
(5.21)
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Figure 3. Phase space factorization.

which in the special case of n = 1 reduces to z =
m2

1

s . Then the variable x5 is trivially

removed and the double soft singularity occurs whenever s = m2
1.

In the following we will assume that one can parametrize the n-particle phase space

dΦn, and we will focus on the phase-space of the potentially unresolved massless par-

tons dΦ3.

5.3 Energies and angles parameterization

The three particle phase space element dΦ3 is

dΦ3(
√

s; 0, 0,
√

s1...n) = (2π)3−2dddq3δ
(+)(q2

3)d
dq4δ

(+)(q2
4)d

dQ

×δ(+)(Q2 − s1...n)δd(q1 + q2 − q3 − q4 − Q). (5.22)

Integrating out Q and using that ddqδ(+)(q2) = dEEd−3dΩ(d−1)/2 we get

dΦ3(
√

s; 0, 0,
√

s1...n) = (2π)3−2d 1

4
dΩ

(d−1)
3 dΩ

(d−1)
4 dE3dE4(E3E4)

d−3

×δ(+)(s − s1...n − 2
√

s(E3 + E4) + 2E3E4(1 − cos θ34)). (5.23)

We can solve the delta constraint for the energies in a symmetric way using the following

ansatz:

E3 =
1

2

√
s(1 − z)x1κ

E4 =
1

2

√
s(1 − z)(1 − x1)κ. (5.24)

We find

κ =
1 −

√

1 − 2(1 − z)x1(1 − x1)(1 − cos θ34)

(1 − z)x1(1 − x1)(1 − cos θ34)
∈ [1, 2) (5.25)
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The double soft limit now appears when z → 1, while the single soft singularities occur as

x1 → 0, 1. After this transformation the phase space volume becomes

dΦ3 =(2π)3−2d dΩ
(d−1)
3 dΩ

(d−1)
4 dx1κ(1 − z)

16
√

1−2x1(1−x1)(1−z)(1−cos θ34)

(

s(1 − z)2κ2x1(1 − x1)

4

)d−3

. (5.26)

Having solved the energy constraint we move on to parametrize the angles. Choosing

the z-axis as the direction of q1, we directly parameterize the angles which q3 and q4 make

with the z-axis. Finally we parametrize the angle φ between q3 and q4 in the x-y plane

leading to the following expressions of the solid angles

dΩ
(d−1)
3 = dΩ

(d−2)
3 d cos θ3(sin θ3)

d−4

dΩ
(d−1)
4 = dΩ

(d−3)
4 d cos θ4(sin θ4)

d−4d cos φ(sin φ)d−5. (5.27)

Suppressing any extra dimensional components our 4-vectors are then fully parametrized

as q3 = E3(1, sin θ3, 0, cos θ3) and q4 = E4(1, sin θ4 sin φ, sin θ4 cos φ, cos θ4). Mapping the

remaining angles linearly, i.e. cos θ3 = 2x3 − 1, cos θ4 = 2x4 − 1 and φ = x2π, one obtains

∫

dΦ3 =
(2π)−3+2ǫ

16Γ(1 − 2ǫ)

∫ 1

0
dx1dx2dx3dx4

(

s(1 − z)3κ4x1(1 − x1)

2 − κ

)

×
(

s2(1 − z)4κ4x2
1(1 − x1)

2x3(1 − x3)x4(1 − x4) sin2(πx2)
)−ǫ

(5.28)

The following lists the propagators of massless partons in this parameterization:

s13 = −s(1 − z)κx1x3

s23 = −s(1 − z)κx1(1 − x3)

s14 = −s(1 − z)κ(1 − x1)x4

s24 = −s(1 − z)κ(1 − x1)(1 − x4) (5.29)

and

s34 = s(1 − z)2κ2x1(1 − x1)x̃34

s134 = s(1 − z)κ [(1 − z)κx1(1 − x1)x̃34 − x1x3 − (1 − x1)x4]

s234 = s(1 − z)κ [(1 − z)κx1(1 − x1)x̃34 − x1(1 − x3) − (1 − x1)(1 − x4))] (5.30)

where

x̃34 = x3 + x4 − 2x3x4 − 2 cos(x2π)
√

x3(1 − x3)x4(1 − x4) (5.31)

and

κ =
1 −

√

1 − 4(1 − z)x1(1 − x1)x̃34

2(1 − z)x1(1 − x1)x̃34
. (5.32)

The angle between q3 and q4 is related to

x̃34 =
1 − cos θ34

2
=

1 − cos θ3 cos θ4 − cos φ sin θ3 sin θ4

2
. (5.33)

This expression exposes the weak point of this parameterization: it gives rise to an over-

lapping line singularity when φ = 0 and θ3 = θ4 i.e. when q3 is parallel to q4. Nevertheless
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the above construction can be used to fully subtract all phase space integrals which do not

contain singularities in x̃34, i.e. which do not contain s34,s134,s234.

Let us now analyze the singularities in this parameterization. While s13, s23, s14 and

s24 are fully factorized, there is a overlapping line singularity in s34 when x̃34 = 0.

Furthermore there are overlapping singularities in s134 and s234. For s134 there are 3

different possibilities

a)x3 = 0 and x4 = 0

b)x3 = 0 and x1 = 1

c)x4 = 0 and x1 = 0 (5.34)

while for s234 the singularities are located at

a)x3 = 1 and x4 = 1

b)x3 = 1 and x1 = 1

c)x4 = 1 and x1 = 0. (5.35)

We can now apply this parameterization to all integrals of type C1 ⊗ C1,C3 ⊗ C3 and

C1 ⊗ C3.

5.3.1 Line singularities in the energy and angles parameterization

One can use a non-linear transformation to get rid of the overlapping structure in x̃34 [27].

A convenient way to derive such a mapping is remapping x̃34 from x̃−
34 = x̃34(φ = 0) to

x̃+
34 = x̃34(φ = 1) using

x̃34 =
x̃−

34x̃
+
34

x̃+
34 − x2(x̃

+
34 − x̃−

34)
(5.36)

It is then apparent that x̃34 will vanish whenever x̃−
34 or x̃+

34 will, for any value of x2.

And that the overlapping line singularity is then re-casted into just a line singularity.

To aid numerical stability we perform the mapping x2 → (1 − cos(x2π))/2, such that x̃34

becomes

x̃34 =
(x3 − x4)

2

x3 + x4 − 2x3x4 + 2cos(x2π)
√

x3(1 − x3)x4(1 − x4)
. (5.37)

This is in fact identical to the mapping in [28]. The phase space volume then becomes

Φ3 =
(2π)−3+2ǫ

16Γ(1 − 2ǫ)

∫ 1

0
dx1dx2dx3dx4

(

s(1 − z)3κ4x1(1 − x1)

2 − κ

)

×
(

s2(1−z)4κ4x2
1(1−x1)

2x3(1−x3)x4(1−x4) sin2(πx2)
)−ǫ
(

x̃34

|x3 − x4|

)1−2ǫ

. (5.38)

To factorize the line singularity in s34 (at x3 = x4) we are forced to split the integration

region in two, separating x3 < x4 from x4 < x3.
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5.4 Hierarchical parameterization

Since in the energy and angles parameterization the invariants s34, s134, s234 had line and

overlapping singularities, it is worth having a second parameterization which factorizes

these, but may not factorize the others. Our second parameterization closely resembles the

features of the rapidity parameterization published in [7], however it is somewhat simpler.

In this parameterization the three particle phase space element dΦ3 is

dΦ3(
√

s; 0, 0,
√

s1...n) = (2π)3−2dddq3δ
(+)(q2

3)d
dq4δ

(+)(q2
4)d

dQ

×δ(+)(Q2 − s1...n)δd(q1 + q2 − q3 − q4 − Q) (5.39)

is first factorized into a product of two 2-particle phase spaces

dΦ3(
√

s, 0, 0,
√

s1...n) =

∫

ds34

2π
dΦ2(

√
s,
√

s34,
√

s1...n)dΦ2(
√

s34, 0, 0). (5.40)

with

dΦ2(
√

s,
√

s34,
√

s1...n)=(2π)2−dddQδ(+)(Q2− s1...n)ddQ̃δ(+)(Q̃2− s34)δ
d(q1+q2 − Q̃−Q)

(5.41)

and

dΦ2(
√

s34, 0, 0) = (2π)2−dddq3δ
(+)(q2

3)d
dq4δ

(+)(q2
4)δ

d(Q̃ − q3 − q4). (5.42)

We can parameterize dΦ2(
√

s,
√

s34,
√

s1...n) in terms of s134, yielding

dΦ2(
√

s,
√

s34,
√

s1...n) = (2π)2−d 1

4s
dΩd−2(Q̃⊥)d−4ds134. (5.43)

To satisfy Q̃⊥ ≥ 0, we take

0 ≤ s34 ≤ s134(s + s134 − s1...n)

s134 − s1...n

0 ≥ s134 ≥ (s1...n − s). (5.44)

dΦ2(
√

s34; 0, 0) can be parameterized in terms of the invariants s13 and s23 yielding

dΦ2(
√

s34; 0, 0) = (2π)2−d 1

8Q̃⊥s
ds13ds23dΩd−3 [(p3)⊥ sinφ]d−5 (5.45)

where φ is the angle between (p3)⊥ and Q̃⊥. We fulfil the constraint (p3)⊥ sin φ ≥ 0 to find

the limits of integration for s13 and then for s23.

Parameterizing s134, s34, s13 and s23 linearly we arrive at

∫

dΦ3 =
(2π)−3+2ǫ

16Γ(1 − 2ǫ)

∫ 1

0
dx1dx2dx3dx4

(

s(1 − z)3x1(1 − x1)

z + x1(1 − z)

)

×
(

s2(1 − z)4x2
1(1 − x1)

2x2(1 − x2)x3(1 − x3) sin2(πx4)

z + x1(1 − z)

)−ǫ

. (5.46)
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The invariants in this parameterization are

s34 =
s(1 − z)2x1(1 − x1)x2

z + x1(1 − z)

s134 = −s(1 − z)x1

s234 = −s(1 − z)(1 − x1)

[

z + x1(1 − x2)(1 − z)

z + x1(1 − z)

]

s23 = −s(1 − z)(1 − x1)x3

s24 = −s(1 − z)(1 − x1)(1 − x3) (5.47)

and

s13 =−s(1 − z)x1

[

x3(1 − x2) +
x2(1 − x3)

z + x1(1 − z)
− 2 cos(πx4)

√

x2(1 − x2)x3(1 − x3)

z + x1(1 − z)

]

s14 =−s(1 − z)x1

[

(1 − x3)(1 − x2) +
x2x3

z + x1(1 − z)
+ 2 cos(πx4)

√

x2(1−x2)x3(1−x3)

z + x1(1 − z)

]

.

We see that the only invariants which are not factorized are s13 and s14. The variable

s13 contains overlapping singularities at x3 = 0 = x2 and x3 = 1 = x2 as well as an

overlapping line singularity at x4 = 0, x1 = 1, x3 = x2, while s14 contains overlapping

singularities at x3 = 0, x2 = 1 and x3 = 1, x2 = 1 as well as an overlapping line singularity

at x4 = 1, x1 = 1, x3 = 1 − x2.

5.4.1 Line singularities in the hierarchical parameterization

Consider the expressions

J(p1, p2, p3, p4)

s13s24
,

J(p1, p2, p3, p4)

s13s23
(5.48)

with J(p1, p2, p3, p4) a finite numerator function. They both contain a line singularity due

to s13 in the denominator. We now use the partial fractioning identities,

1

s13s24
=

1

s13s234 + s134s24

(

s134

s13
+

s234

s24

)

, (5.49)

1

s13s23
=

1

s13s234 + s23s134

(

s134

s13
+

s234

s23

)

. (5.50)

The term s13s234 + s134s24 has an overlapping singularity at x3 = 1 = x2, while the term

s13s234 + s134s23 has an overlapping singularity at x3 = 0 = x2. Then we exchange 1 ↔ 2

and 3 ↔ 4 in the term containing s13 to rotate the line singularity out, i.e.

J(p1, p2, p3, p4)

s13s24
=

J(p1, p2, p3, p4) + J(p2, p1, p4, p3)

s13s234 + s134s24

s234

s24
(5.51)

J(p1, p2, p3, p4)

s13s23
=

J(p1, p2, p3, p4) + J(p2, p1, p3, p4)

s13s234 + s23s134

s234

s23
. (5.52)

and we are left with just overlapping singularities, which can be treated as explained in

the following section. This trick was first discovered by Frank Petriello [29] and it has been

used in the implementation of the program FEHiP described in [7], it has been also been

used in the evaluation of doublereal counterterms in [30].

– 25 –



J
H
E
P
0
3
(
2
0
1
1
)
0
3
8

6 Numerical evaluation of double-real radiation phase-space integrals

In this section, we present a numerical evaluation of all types of scalar phase-space integrals

which appear in NNLO calculations. To evaluate our integrals numerically we choose the

point (s = 1, z = 0.1). We will use the notation

x̄i = 1 − xi, (6.1)

where the xi ∈ [0, 1] are parameters of integration.

1. Topology C1 ⊗ C1:

(a) The integral

I11a =

∫

dΦ3

s13s23s14s24
(6.2)

fully factorizes in the energies and angles parameterization (section 5.3), we

obtain

I11a = 0.09400(2) +
0.010951(4)

ǫ
− 0.0035586(5)

ǫ2
− 0.001119844946(1)

ǫ3
. (6.3)

(b) The integral

I11b =

∫

dΦ3
(s34s − s14s23)

2

s2
13s

2
24

(6.4)

with the numerator structure as in [7], factorizes in the energies and angles

parameterization (section 5.3), we get

I11b = 0.023885(3) +
0.0041606(3)

ǫ
+

0.00036930(4)

ǫ2
. (6.5)

2. Topology C2 ⊗ C2:

(a) The integral

I22a =

∫

dΦ3N({sij})
(s34s134)2

(6.6)

factorizes in the hierarchical parameterization (section 5.4). The numerator

function has the scaling behavior N({sij}) ∼ s34s134 [7]. We obtain

I22a =

∫

dΦ3

s34s134
= 0.0011728(1) − 0.00050726(1)

ǫ
− 0.000125982556(0)

ǫ2
. (6.7)

(b) The integral

I22b =

∫

dΦ3N({sij})
s2
34s134s234

(6.8)

factorizes in the hierarchical parameterization (section 5.4). The numerator

scales as N({sij}) ∼ s34. We obtain

I22b =

∫

dΦ3

s34s134s234
= −0.0015003(2) +

0.00112726(5)

ǫ
+

0.000279961236(1)

ǫ2
.

(6.9)
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3. Topology C3 ⊗ C3:

(a) The integral

I33a =

∫

dΦ3
(s34s − s14s23)

2

s2
234s

2
24

(6.10)

factorizes in the hierarchical parameterization (section 5.4). The numerator

structure can be found in [7]. We obtain

I33a = −0.003841(2) +
0.0007814(4)

ǫ
+

0.00018465(1)

ǫ2
. (6.11)

(b) The integral

I33b =

∫

dΦ3

s134s234s13s23
(6.12)

neither factorizes in energies and angles nor in the hierarchical parameteriza-

tion. We use the hierarchical parameterization (section 5.4), since fewer over-

lapping singularities are present there. Using partial fractions, as described in

section 5.4.1 we can rewrite the integral as

I33b =

∫

2dΦ3

s23s134(s134s23 + s234s13)
. (6.13)

This contains the following substructure

1

x3

1

x3A + x2x̄3B + C
√

x2x̄2x3x̄2
(6.14)

with A,B,C finite. This becomes singular when x3 = 0 = x2 where x3 is active.

We factorize this singularity by applying

x3 → x3x2

(1 − x3) + x2
(6.15)

and obtain

I33b = 0.023155(3)+
0.0076371(1)

ǫ
+

0.00007730(6)

ǫ2
−0.000279961236(1)

ǫ3
. (6.16)

(c) The integral

I33c =

∫

dΦ3

s134s234s13s24
(6.17)

is similar to I33b in the hierarchical parameterization (section 5.4). Partial frac-

tioning as before we get

I33c =

∫

2dΦ3

s24s134(s134s24 + s234s13)
. (6.18)

This contains the substructure

1

x̄3

1

x̄2A + x̄3x2B + C
√

x2x̄2x3x̄3
(6.19)
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with A,B,C finite. This becomes singular when x̄3 = 0 = x̄2 with x̄3 being

active. We disentangle this singularity by applying

x̄3 → x̄3x̄2

(1 − x̄3) + x̄2
. (6.20)

We then obtain

I33c = 0.12567(9) − 0.03645(1)

ǫ
− 0.018566(1)

ǫ2
+

0.002799612364(0)

ǫ3
. (6.21)

4. Topology C1 ⊗ C3:

(a) The integral

I13a =

∫

dΦ3
(s34s − s14s23)

2

s234s
2
24s13

(6.22)

with the numerator structure as in [7]. The singularities factorize in energies

and angles. We immediately obtain

I13a = −0.0040885(4) − 0.00036930(1)

ǫ
. (6.23)

(b) The integral

I13b =

∫

dΦ3
N({sij})

s134s13s14s23
(6.24)

has a quadratic divergence due to the term s134s13s14. This means that

N({sij}) ∼ {s134, s13, s14}. Such that

I13b =

{
∫

dΦ3

s13s14s23
,

∫

dΦ3

s134s14s23

}

(6.25)

the first of which is a sub-topology of C2
1 while the second is a sub-topology

of C2
3 .

5. Topology C1 ⊗ C2:

(a) The integral

I12 =

∫

dΦ3N({sij})
s34s234s13s24

(6.26)

has a quadratic divergence due to the term s34s234s24. The numerator can have

the following scalings: N({sij}) ∼ {s34, s234, s24}. We therefore consider the

following possibilities

I12 =

{∫

dΦ3

s34s13s24
,

∫

dΦ3

s34s234s13
,

∫

dΦ3

s234s13s24
.

}

(6.27)

The last of these is a sub-topology of C2
3 and does not merit further attention.

We will evaluate the other two in the hierarchical parameterization. For

I12a =

∫

dΦ3

s34s13s24
(6.28)
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we use the same strategy as we used for I33c. We obtain

I12a = 0.07115(1) +
0.006996(1)

ǫ
− 0.0029912(1)

ǫ2
− 0.000839883709(0)

ǫ3
. (6.29)

The integral

I12b =

∫

dΦ3

s34s234s13
(6.30)

factorizes in the hierarchical parameterization. We obtain

I12b = 0.0198554(9) +
0.0023667(2)

ǫ
− 0.00088965(4)

ǫ2
− 0.000279961236(1)

ǫ3
.

(6.31)

6. Topology C2 ⊗ C3:

(a) The integral

I23a =

∫

dΦ3N({sij})
s34s2

234s23
(6.32)

factorizes in the hierarchical parameterization, but carries a cubic divergence in

(1 − x1) ∼ s234. Taking N({sij}) ∼ s2
234, we get

I23a =

∫

dΦ3

s34s23
(6.33)

which just is a sub-topology of I12a. While other numerators are possible these

do not give different singularity structures.

(b) The integral

I23a =

∫

dΦ3N({sij})
s34s134s234s23

(6.34)

factorizes in the hierarchical parameterization, but carries a quadratic divergence

in (1 − x1) ∼ s234. A minimal choice for the numerator is N({sij}) ∼ s234 in

which case we recover I22b. Hence no new singularity structures can be obtained

from this topology.

7. We will now consider interferences of C4 with C2 and C3. One can evaluate these

interferences in the energies and angles parameterization. In the following we will

use t13 ∼ E3 ∼ (s13 + s23) and t24 ∼ E4 ∼ (s14 + s24).

(a) Topology C2 ⊗ C4:

The integral

I24 =

∫

dΦ3

s34s134(s13 + s23)(s14 + s24)
(6.35)

has the following singularity structure

1

x1x̄1(x3 − x4)

1

Ax1x̄1(x3 − x4)2 + Bx1x3 + Cx̄1x4
(6.36)

in the energy and angle parameterization after the mapping (see 5.3.1) is applied.

We first split the integration region into two sectors which we define as x3 < x4
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(sector 1) and x4 < x3 (sector 2). After this sector decomposition we are still

left with overlapping singularities at x3 = 0 = x̄1 in sector 1 and at x4 = 0 = x1

in sector 2. These can be disentangled using

x̄1 → x̄1x3

(1 − x̄1) + x3
(6.37)

in sector 1 and

x1 → x1x4

(1 − x1) + x4
(6.38)

in sector 2. We then obtain

I24 = −0.006956(3) − 0.0010708(3)

ǫ
+

0.00065900(1)

ǫ2
+

0.000207378694(0)

ǫ3
.

(6.39)

(b) Topology C3 ⊗ C4:

The integral

I34 =

∫

dΦ3

s13s134(s13 + s23)(s14 + s24)
(6.40)

has the following singularity structure

1

x1x3

1

Ax1x̄1(x3 − x4)2 + Bx1x3 + Cx̄1x4
. (6.41)

It contains no line singularity but several overlapping ones located at x3 = 0 =

x4, x4 = 0 = x1 and at x3 = 0, x̄1 = 0. To separate the two singularities we first

partial fraction the soft singularities by multiplying by 1 = x1 + x̄1. We then

treat the two terms with different nonlinear transformations. For the first term

we apply the mapping

x3 → x3x4x̄1

(1 − x3) + x4x̄1
. (6.42)

since x3 is the only active singularity, it is clear that we had to remap it. The

second term is more difficult, since both x3 and x1 are now active. We apply

the following sequence of mappings:

First let

x3 → x3x4

(1 − x3) + x4
(6.43)

and then

x1 → x1x̄3

(1 − x1) + x̄3

x4 → x4x̄3

(1 − x4) + x̄3
. (6.44)

(6.45)

We obtain

I34 = −0.32519(4) − 0.048942(2)

ǫ
− 0.0062917(3)

ǫ2
− 0.000559922473(3)

ǫ3
. (6.46)
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p2

p1

p12

Figure 4. The massless non-planar two-loop triangle with one legs off-shell.

7 Two loop examples

In what follows we show how one can use non-linear mappings to disentangle singularities

in two-loop integrals appearing in NNLO virtual amplitudes. We treat only two indicative

cases, the massless non-planar triangle with one leg off-shell and the massless non-planar

box with all legs on-shell, due to their particularly intricate singularity structure. Integrals

involving masses are in general simpler as far as factorization of singularities is concerned.

7.1 The massless non-planar triangle with one leg off-shell

The two-loop, non-planar triangle with one off-shell leg (see figure 4) and momenta p1, p2

Xtri =

∫

ddk1

iπd/2

ddk2

iπd/2

1

k2
1(k1 + p1)2k2

2(k2 + p2)2(k1 + k2)2(k1 + k2 + p1 + p2)2
(7.1)

A Feynman parameterization reads:

Xtri = 42+2ǫ

∫ 1

0
dx1dx2dzdydx

zy1+ǫ(1 − y)−1−ǫ(1 − z)−1−ǫ

[x(1 − x) + yz(x − x1)(x − x2)]
2+2ǫ (7.2)

The first overlapping singularity is at x = 0 or x = 1 and y = 0. We also notice that

there is a singularity at y = 1. To avoid infinite looping we must first guarantee, as in

sector decomposition, that no singularities occur at the upper limit of integration.

We split x in the two intervals Ra = [0, 1/2] and Rb = [1/2, 1] and map the integration

region back to the unit hypercube. In Ra,

x → x/2,

and in Rb,

x → 1 − x/2, x1 → 1 − x1, x2 → 1 − x2.

This gives two identical integrals (the integral in eq. (7.2) is invariant under the combined

x → 1 − x, x1 → 1 − x1, x2 → 1 − x2), and we can write

Xtri = 42+2ǫ

∫ 1

0
dx1dx2dzdydx

zy1+ǫ(1 − y)−1−ǫ(1 − z)−1−ǫ

[x(2 − x) + yz(2x1 − x)(2x2 − x)]2+2ǫ (7.3)

Note here that the denominator of eq. (7.3) has the same singularity structure as

x + yzx1x2 − yzx(x1 + x2) (7.4)
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In particular, there are still singularities at upper corners of the hypercube, when

y → 1 and z → 1. This leads us to split the y integration region, y → y/2 and y → 1− y/2

and the z → z/2 and z → 1 − z/2.

We obtain

Xtri = Xtri11 + Xtri12 + Xtri21 + Xtri22, (7.5)

where

Xtri11 = 26+9ǫ

∫ 1

0
dx1dx2dzdydx

zy1+ǫ(2 − y)−1−ǫ(2 − z)−1−ǫ

[4x(2 − x) + yz(2x1 − x)(2x2 − x)]2+2ǫ (7.6)

Xtri12 = 26+9ǫ

∫ 1

0
dx1dx2dzdydx

(2 − z)y1+ǫ(2 − y)−1−ǫz−1−ǫ

[4x(2 − x) + y(2 − z)(2x1 − x)(2x2 − x)]2+2ǫ (7.7)

Xtri21 = 26+9ǫ

∫ 1

0
dx1dx2dzdydx

z(2 − y)1+ǫy−1−ǫ(2 − z)−1−ǫ

[4x(2 − x) + (2 − y)z(2x1 − x)(2x2 − x)]2+2ǫ (7.8)

Xtri22 = 26+9ǫ

∫ 1

0
dx1dx2dzdydx

(2 − z)(2 − y)1+ǫy−1−ǫz−1−ǫ

[4x(2 − x) + (2 − y)(2 − z)(2x1 − x)(2x2 − x)]2+2ǫ (7.9)

The first three sectors, Xtri11,Xtri12,Xtri21 are free of singularities at 1. They can

be directly treated by a non-linear mapping.

Xtri11 has a singularity structure equivalent to that of x+ yzx1x2, similar to eq. (4.1)

and we use the mapping (directly analogous to eq. (4.2))

x → xyzx1x2

1 − x + yzx1x2
. (7.10)

Xtri12 has a singularity structure equivalent to that of x + yx1x2, also similar to

eq. (4.1) and we use the mapping

x → xyx1x2

1 − x + yx1x2
. (7.11)

Xtri21 has a singularity structure equivalent to that of x + zx1x2, also similar to

eq. (4.1) and we use the mapping

x → xzx1x2

1 − x + zx1x2
. (7.12)

Xtri22 is a bit more complicated. Its singularity structure is the one of

x + x1x2 − x(x1 + x2) (7.13)

It retains singularities at x1,2 → 1. We therefore split this integral further in x1 → x1/2

and x1 → 1 − x1/2 as well as x2 → x2/2 and x2 → 1 − x2/2.

We obtain

Xtri2211 = 25+9ǫ

∫ 1

0
dx1dx2dzdydx

(2 − z)(2 − y)1+ǫy−1−ǫz−1−ǫ

[4x(2 − x) + (2 − y)(2 − z)(x1 − x)(x2 − x)]2+2ǫ (7.14)
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with a singularity structure equivalent to x + x1x2 (i.e. eq. (4.1)) for which we will use the

mapping

x → xx1x2

1 − x + x1x2
. (7.15)

Xtri2212 = 25+9ǫ

∫ 1

0
dx1dx2dzdydx

(2 − z)(2 − y)1+ǫy−1−ǫz−1−ǫ

[4x(2 − x) + (2 − y)(2 − z)(x1 − x)(2 − x2 − x)]2+2ǫ

(7.16)

with a singularity structure equivalent to x1 + x(x1 + y + z + x2), similar to eq. (4.7) for

which we will use the following sequence of mappings

x1 → x1x

1 − x1 + x
, y → yx2

1 − y + x2
, z → zx1

1 − z + x1
, x1 → x1x2

1 − x1 + x2
(7.17)

Xtri2221 = 25+9ǫ

∫ 1

0
dx1dx2dzdydx

(2 − z)(2 − y)1+ǫy−1−ǫz−1−ǫ

[4x(2 − x) + (2 − y)(2 − z)(2 − x1 − x)(x2 − x)]2+2ǫ

(7.18)

with a singularity structure equivalent to x2 + x(x2 + y + z + x1),similar to eq. (4.7), for

which we will use the following sequence of mappings

x2 → x2x

1 − x2 + x
, y → yx1

1 − y + x1
y , z → zx2

1 − z + x2
, x2 → x2x1

1 − x2 + x1
(7.19)

Xtri2222 = 25+9ǫ

∫ 1

0
dx1dx2dzdydx

(2 − z)(2 − y)1+ǫy−1−ǫz−1−ǫ

[4x(2 − x) + (2 − y)(2 − z)(2 − x1 − x)(2 − x2 − x)]2+2ǫ

(7.20)

which is finite!

We therefore end up with 7 different integrals to be numerically evaluated. This should

be contrasted with the 64 number of sectors one arrives using sector decomposition. The

numerical convergence of these integrals poses no additional problems and we have checked

that the numerical result agrees with the analytic result known in the literature.

7.2 The non-planar double box

Using the representation of ref. [31] for the two loop non-planar box (see figure 5), we get

the expression

Xbox = Cǫ

∫

dx1dx2dx3dx4δ(1 − x1 − x2 − x3 − x4)dτ1dτ2 x1+ǫ
2

(x1x3s + x2x4tc + x1x2Q2 + x2x3Q2
t )

3+2ǫ
(7.21)

where

Q2
t = (1 − τ1)(1 − τ2)s, Q2 = τ1τ2s, tc = τ2(1 − τ1)u + (1 − τ2)τ1t (7.22)

and

Cǫ =
2Γ(3 + 2ǫ)Γ(−ǫ)Γ(1 − ǫ)

Γ(1 + ǫ)2Γ(1 − 2ǫ)
(7.23)
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p2

p1

p3

p4

Figure 5. The massless non-planar double box with all legs on-shell.

In order to avoid the singularities at the upper corners of the integration region we

split the integral in four, mapping τ1 → τ1/2, τ1 → 1 − τ1/2 and then τ2 → τ2/2 and

τ2 → 1−τ2/2. Two of the resulting integrals can be mapped to the other two by exchanging

x1 and x3, so we end up with

Xboxa = Cǫ
43+2ǫ

2

∫

dx1dx2dx3dx4δ(1 − x1 − x2 − x3 − x4)dτ1dτ2 x1+ǫ
2

(4x1x3s + x1x2B1B2s + x2x3τ1τ2s + x2x4(τ2B1t + B2τ1u))3+2ǫ

(7.24)

Xboxb = Cǫ
43+2ǫ

2

∫

dx1dx2dx3dx4δ(1 − x1 − x2 − x3 − x4)dτ1dτ2 x1+ǫ
2

(4x1x3s + x1x2τ1B2s + x2x3B1τ2s + x2x4(B1B2u + τ1τ2t))3+2ǫ

(7.25)

where

B1,2 ≡ 2 − τ1,2 (7.26)

Subsequently, we use the method of primary sectors on the variables x1, x2, x3, x4 on each

of the above integrals, to get eight primary sectors:

1. Xboxa1: Xboxa where x1 > x2,3,4 has the singularity structure of x2 +x3, and we use

the mapping of eq. (3.12).

2. Xboxa2: Xboxa where x2 > x1,3,4 has the rather intricate singularity structure of

the example eq. (4.45). We follow the discussion given there and decompose it to

six integrals.

3. Xboxa3: Xboxa where x3 > x1,2,4 has the rather intricate singularity structure of

the example eq. (4.35). We follow the discussion given there and decompose it to

five integrals.

4. Xboxa4: Xboxa where x4 > x1,2,3 has the singularity structure of eq. (4.32). We

follow the discussion given there and decompose it in two sub-sectors, in x2, x3, each

of which can be factorized.

5. Xboxb1: Xboxb where x1 > x2,3,4 has the singularity structure of eq. (4.7) and we use

the mapping of eq. (4.8).

6. Xboxb2: Xboxb where x2 > x1,3,4 has the singularity structure of eq. (4.27) and we

follow the mappings described there to factorize it .
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7. Xboxb3: Xboxb where x3 > x1,2,4 has the singularity structure of eq. (4.7) and we use

the mapping of eq. (4.8).

8. Xboxb4: Xboxb where x4 > x1,2,3 has the singularity structure of eq. (4.1) and we use

the mapping of eq. (4.2).

We end up with 18 integrals to be evaluated numerically. This should be contrasted

with the 119 sectors that are necessary if one factorizes the non-planar double box with

sector decomposition.

8 Conclusions

Higher order perturbative calculations are very important for precision phenomenology at

modern accelerator experiments. We believe that NNLO computations will be particularly

relevant for signals of yet undiscovered physics, such as a Higgs boson or candidates of

dark matter, in 2 → 1 and 2 → 2 processes. This motivates the development of powerful

integration methods of matrix-elements of up to two virtual or real, potentially unresolved,

partons. Such integrations entail the disentanglement of overlapping singularities.

In this paper, we have introduced a method for the factorization of singularities based

on non-linear transformations. As proof of principle, we presented the most singular inte-

gral topologies which appear in NNLO double-real radiation processes with massive par-

ticles in the final state. We find that all overlapping singularities can be factorized with

our method, which yields a small number of numerically stable integrals. We have also

applied our method to complicated crossed two-loop master integrals for massless QCD

scattering processes. We find that we can factorize most of the overlapping singularities

with non-linear transformations. However, some remaining singularities are cumbersome

to be treated purely with our method. In such situations, we employ a hybrid of our

method and sector decomposition. This is more efficient than employing a pure sector

decomposition approach.

The reduction of the number of integrals which emerge in higher order corrections

should facilitate NNLO computations. We are looking forward to applying our method for

precision phenomenological studies of basic collider processes.
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