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1 Introduction

M-theory has been providing us important insights into the non-perturbative aspects of

string theory. However, its microscopic definition is still lacking. M2-branes and M5-

branes are fundamental building blocks of M-theory. Considering the current status, any

new information on their properties could be important for finding more fundamental

formulation of M-theory.

Recent few years have seen a rapid progress in the description of M-theory branes: A

model for multiple M-theory membranes with a symmetry based on Lie 3-algebra was pro-

posed in refs. [2–4]. Starting from the BLG model, an action for M5-brane was constructed

in Ho-Matsuo [5] and Ho-Imamura-Matsuo-Shiba [6] by taking the Lie 3-algebra which is

defined through the Nambu-bracket [7].1 This is in parallel with the construction of a

Dp-brane in a constant B-field background from infinitely many D(p − 2)-branes [9–12].

The low energy effective action on the Dp-brane is given by Yang-Mills theory on non-

commutative space. In fact, soon after the discovery of the non-commutative description

of the D-brane worldvolume theory, the uplift to M-theory, namely M5-brane in a constant

C-field background, was also investigated by several groups.2 What was missing at the time

1Also see ref. [8] for a similar construction of M5-brane action in a different background.
2A partial list includes [13–18]. Also see ref. [19] for a study after the recent developments of M-theory

brane models.
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was the appropriate uplift of the non-commutative description to that for the worldvolume

theory of M5-brane, which now we have a candidate.

Interestingly, in the case of a D-brane in a constant B-field background, there is also

an S-matrix equivalent description on a space with ordinary commutative coordinates.

The map between the non-commutative description and the ordinary description is called

Seiberg-Witten map [20].3 With this historical background in mind, Ho et al. conjectured

that the Nambu-bracket description of M5-brane is related to the previously found ordinary

description of M5-brane [22–29] in a constant C-field background via a straightforward

generalization of the Seiberg-Witten map. The first non-trivial check of this conjecture was

made in ref. [30] for the BPS string-like soliton configurations on the M5-brane [31–33],

which describe M2-branes ending on the M5-brane.

A peculiar feature of the M5-brane action of refs. [5, 6] was that some components

of the two-form gauge field were absent. In ref. [1], it was demonstrated how the missing

components of the two-form gauge field as well as self-dual relations for the field strength of

the two-form gauge field can be obtained from this M5-brane action. The self-dual relations

for the two-form gauge field are characteristic feature of M5-brane, and how to describe the

self-dual two-form gauge field [34–38] was a central issue in the previous constructions of

the M5-brane action [24–26]. It will be also important to clarify how the self-dual relations

are maintained in the Nambu-bracket description of M5-brane.

In this paper, the derivation of the self-dual relations initiated in ref. [1] is completed

by including contributions from all the fields in the Nambu-bracket description of M5-

brane. The necessity of the inclusion of the scalar fields to the self-dual relations can be

understood considering the fact that the scalar fields are related to the embedding coor-

dinate fields in the ordinary description of M5-brane via the Seiberg-Witten map: In the

ordinary description of M5-brane, the self-dual relations involve the embedding coordinate

fields through the induced metric on the M5-brane. The obtained self-dual relations in the

Nambu-bracket description of M5-brane are then used to examine the conjectured equiv-

alence between the Nambu-bracket description and the ordinary description of M5-brane

via the Seiberg-Witten map, in the case of the BPS conditions for the string solitons. Since

the string solitons involve non-trivial configurations of a scalar field, the inclusion of the

contribution of the scalar fields in the self-dual relations is essential.

2 The Nambu-bracket description of M5-brane in a constant C-field

background

In this section I review the Nambu-bracket description of M5-brane in a constant C-

field background constructed in ref. [6] and fix my notation. (Also see ref. [39] for a

concise review).

The action given in ref. [6] describes an M5-brane in the eleven-dimensional Minkowski

space whose worldvolume extends in one time and five spacial directions. The direction

along the worldvolume are parametrized by coordinates xa (a = 0, 1, 2) and yȧ (ȧ =

3A similar map has appeared in the study of lowest Landau level fermions [21].
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3, 4, 5). The metric on the worldvolume is specified by the components ηab = diag(− +

+), δ
ȧḃ

, and other components are zero. There is a constant C-field background, with

only C012 and C345 components are non-zero. Although both C012 and C345 components

are turned on, the treatments of 012 directions and 345 directions are quite asymmetric,

which might be one of the reasons why this action was not discovered until recently. The

field content of the Nambu-bracket description of M5-brane is as follows: The scalars XI

(I = 6, · · · , 10) describe embedding coordinates transverse to the M5-brane worldvolume.

The six-dimensional chiral fermions can be conveniently parametrized by a single eleven-

dimensional Majorana spinor Ψ satisfying

ΓΨ = −Ψ, (2.1)

where Γ is given by

Γ = Γ0Γ1Γ2Γ3Γ4Γ5. (2.2)

The Γ-matrices are those for the eleven-dimensional space-time. The salient feature of the

M5-brane worldvolume theory is the self-duality of the two-form gauge field A, which is

the focus of this paper. The components of the self-dual two-form gauge field A should be

given by Aab, A
aḃ

, A
ȧḃ

, but the components Aab do not appear in the action. They will

appear from the equations of motion, as will be described in the next section.

The M5-brane action is given as follows:

S =
TM5

g2
(SB + SCS + SF ) , (2.3)

where

SB =

∫

d3xd3y

[

−
1

2
DaX

IDaXI −
1

2
DȧX

IDȧXI

−
1

4
HaḃċH

aḃċ −
1

12
HȧḃċH

ȧḃċ −
g4

4
{X ȧ,XI ,XJ}{X ȧ,XI ,XJ}

−
g4

12
{XI ,XJ ,XK}{XI ,XJ ,XK}

]

, (2.4)

SCS = −

∫

d3xd3y

[

1

2
ǫabcBa

ȧ∂bAcȧ + g det Ba
ȧ

]

, (2.5)

SF =

∫

d3xd3y

[

i

2
Ψ̄ΓaDaΨ +

i

2
Ψ̄ΓȧDȧΨ

+
ig2

2
Ψ̄ΓȧI{X

ȧ,XI ,Ψ} −
ig2

4
Ψ̄ΓIJΓ345{X

I ,XJ ,Ψ}

]

. (2.6)

{∗, ∗, ∗} is the Nambu-bracket on R
3:

{f, g, h} = ǫȧḃċ ∂

∂yȧ
f

∂

∂yḃ
g

∂

∂yċ
h, (2.7)
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with ǫ345 = 1. The covariant derivatives in the action are given as

Daϕ = (∂a − gBa
ȧ∂ȧ)ϕ, (ϕ = XI ,Ψ), (2.8)

Dȧϕ =
g2

2
ǫ
ȧḃċ

{X ḃ,X ċ, ϕ}, (2.9)

where

X ȧ =
yȧ

g
+ Aȧ, Aȧ =

1

2
ǫȧḃċA

ḃċ
, (2.10)

and

Ba
ȧ = ǫȧḃċ∂

ḃ
Aaċ . (2.11)

It follows that ∂ċBa
ċ = 0. When one derives the M5-brane action from the BLG model, the

components of the two-form gauge field A
aḃ

arise from the gauge field in the BLG model [6].

The gauge transformation laws are given as

δΛϕ = gκċ∂ċϕ, (ϕ = XI ,Ψ), (2.12)

δΛA
ȧḃ

= ∂ȧΛḃ
− ∂

ḃ
Λȧ + gκċ∂ċAȧḃ

, (2.13)

δΛA
aḃ

= ∂aΛḃ
− ∂

ḃ
Λa + gκċ∂ċAaḃ

+ g(∂
ḃ
κċ)Aaċ , (2.14)

where

κȧ = ǫȧḃċ∂ḃΛċ . (2.15)

It follows that ∂ċκ
ċ = 0. Thus, the gauge transformation by the parameter κ generates

volume-preserving diffeomorphisms, and Ba
ȧ is the gauge field for the volume-preserving

diffeomorphisms:

δΛyȧ = gκȧ. (2.16)

The transformation law of Ba
ȧ under the volume-preserving diffeomorphisms follows from

eq. (2.14):

δΛBa
ȧ = ∂aκ

ȧ + gκḃ∂
ḃ
Ba

ȧ − gBa
ḃ∂

ḃ
κȧ . (2.17)

From eq. (2.17) it follows that the covariant derivatives (2.8) and (2.9) transform as scalars

under the volume-preserving diffeomorphisms (2.16) [1, 6]. This allows one to construct

gauge field strengths which transform as scalars under the volume-preserving diffeomor-

phisms.

It is worth mentioning a subtle point here, which was nicely explained in ref. [1]:

Although the fields X ȧ carry index ȧ, they transform as scalars under the volume-preserving

diffeomorphisms (2.16). Indeed, in the derivation of the M5-brane action from the BLG

model in ref. [6], initially the target space indices of the scalar fields X in the BLG model

(with the Nambu-bracket as the Lie 3-algebra) have nothing to do with the indices of the
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coordinates yȧ on the Nambu-Poisson manifold (R3 in current case). What relates these

different types of indices is the background values of the scalar fields X:

X ȧ
bg =

yȧ

g
, ȧ = 3, 4, 5. (2.18)

Since the identification of the indices in eq. (2.18) was made in a particular choice of coordi-

nates, it would appear different if one makes a volume-preserving reparametrization of the

coordinates. However, one can keep the identification (2.18) intact instead, and absorb the

induced change into the transformation of the “fluctuation” part Aȧ of the field X ȧ (2.10).

This was how the gauge transformation law (2.13) arose from the scalar fields X ȧ.4

The field strengths for the two-form gauge field which are made of the components A
aḃ

and A
ȧḃ

are given by

Haḃċ = ǫḃċḋDaX
ḋ = Faḃċ − gBa

ḋ∂ḋAḃċ , (2.19)

H
ȧḃċ

= g2ǫ
ȧḃċ

(

{X3,X4,X5} −
1

g

)

(2.20)

= Fȧḃċ + gǫȧḃċ

(

(∂ḟAḟ )∂ġA
ġ − (∂ḟAġ)∂ġA

ḟ
)

+ g2ǫȧḃċ{A
3, A4, A5},

where F
aḃċ

and F
ȧḃċ

are components of the linear part of the field strength:

F
aḃċ

= ∂aAḃċ
− ∂

ḃ
Aaċ + ∂ċAaḃ

, (2.21)

Fȧḃċ = ∂ȧAḃċ + ∂ḃAċȧ + ∂ċAȧḃ . (2.22)

As mentioned above, the field strengths (2.19) and (2.20) transform as scalars under the

volume-preserving diffeomorphisms (2.16).

It is convenient to define a matrix Mȧ
ḃ following ref. [1]:

Mȧ
ḃ = g∂ȧX

ḃ. (2.23)

The matrix Mȧ
ḃ transforms as a vector with respect to the lower index ȧ:

δΛMȧ
ḃ = gκċ∂ċMȧ

ḃ + g(∂ȧκ
ċ)Mċ

ḃ. (2.24)

4It may be useful to make a comment on a related but different topic for clarification. One may try

to compare the Nambu-bracket action of M5-brane with the DBI-type action of M5-brane which has the

worldvolume reparametrization invariance, as discussed in the Discussions section (note that the BLG model

with the Nambu-bracket only has the invariance under the volume-preserving diffeomorphisms in the dotted

directions). In this case, yȧ may be interpreted as (a part of) the worldvolume coordinates of the M5-brane.

From the results in D-branes in a constant B-field background [40–44], it is expected that by choosing the

so-called static gauge X ȧ = yȧ/g for the worldvolume reparametrization of the DBI-type M5-brane action,

one obtains the “commutative” description of M5-brane. In this description, the fluctuation of the Nambu-

Poisson structure is parametrized by the ordinary gauge field in the DBI-type action. On the other hand,

one can choose the gauge where the Nambu-Poisson structure is fixed. The fluctuation part Aȧ of the scalar

field cannot be eliminated in this gauge: X ȧ = yȧ/g + Aȧ. The volume-preserving part of the worldvolume

reparametrization remains as a residual symmetry, and one obtains the Nambu-bracket description of M5-

brane. Please see the above mentioned papers for more detail in the case of D-branes in a constant B-field

background. In the case of M5-brane, the detail has not been worked out at this moment.
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Because of this property the matrix Mȧ
ḃ and its inverse can be used as a “bridge” which

converts scalar quantities to vector quantities, and vice versa. In particular, the following

identity holds:

Dȧϕ = detMM−1

ȧ
ḃ∂

ḃ
ϕ. (2.25)

The equations of motion of XI and Ψ following from the action (2.3) are

0 = DaD
aXI + DȧD

ȧXI

+g4{X ȧ,XJ , {X ȧ,XJ ,XI}} +
g4

2
{XJ ,XK , {XJ ,XK ,XI}}

+
ig2

2
{Ψ̄ΓȧI ,X

ȧ,Ψ} +
ig2

2
{Ψ̄ΓIJΓ345,X

J ,Ψ}, (2.26)

0 = ΓaDaΨ + ΓȧDȧΨ + g2ΓȧI{X
ȧ,XI ,Ψ} −

g2

2
ΓIJΓ345{X

I ,XJ ,Ψ}. (2.27)

The equations of motion of gauge fields A
aḃ

and A
ȧḃ

and the Bianchi identity can be written

as

DaH
aḃċ + DȧH

ȧḃċ = gJ ḃċ, (2.28)

DaH̃
abċ + DȧH

ȧbċ = gJbċ, (2.29)

DaH̃
abc + DȧH̃

ȧbc = 0, (2.30)

where Hȧbċ = −Hbȧċ and

J ȧḃ = J ȧḃ
B + J ȧḃ

F , Jaḃ = Jaḃ
B + Jaḃ

F , (2.31)

J ȧḃ
B = g

(

{XI ,Dȧ,X ḃ} − (ȧ ↔ ḃ)
)

−
g3

2
ǫȧḃċ{XI ,XJ , {XI ,XJ ,X ċ}}, (2.32)

J ȧḃ
F =

ig

2

(

{Ψ̄Γȧ,X ḃ,Ψ} − (ȧ ↔ ḃ)
)

+
ig2

2
ǫȧḃċ{Ψ̄ΓċI ,X

I ,Ψ}, (2.33)

Jaḃ
B = g{XI ,DaXI ,X ḃ}, (2.34)

Jaḃ
F =

ig

2
{Ψ̄Γa,Ψ,X ḃ}. (2.35)

The Hodge dual on the six-dimensional M5-brane worldvolume is defined through the

totally anti-symmetric tensor ǫµνρλσδ (µ, ν = 0, 1, · · · , 5):

ǫ
abcȧḃċ

= −ǫ
ȧḃċabc

= ǫ
aḃċbcȧ

= ǫabcǫȧḃċ
, (2.36)

with ǫ012 = −ǫ012 = −1. A three-form H is said to be (linearly) self-dual when it satisfies

H̃µνρ = Hµνρ , (2.37)

where

H̃µνρ =
1

6
ǫµνρλσδH

λσδ . (2.38)

– 6 –
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3 Non-linearly extended self-dual relations from the Nambu-bracket de-

scription of M5-brane

In ref. [1], it was shown how the missing components of the two-form gauge field as well

as (the non-linear extension of) the self-dual relations appear from the Nambu-bracket

description of M5-brane action. Their analysis was restricted to the two-form gauge field

part of the action. In the following, I will extend their results by including contributions

from all the fields in the M5-brane action. The readers are recommended to go through

the relevant part of ref. [1].

Below I explain calculations involving only bosonic fields in some detail. Calculations

involving fermions are bit lengthy but similar, so I will just quote the final result in the

appendix B.

Following ref. [1], I start from multiplying M−1

ċ
ḋ to eq. (2.29), where the matrix Mȧ

ḃ

was defined in eq. (2.23):

M−1

ċ
ḋDaH̃

abċ + M−1

ċ
ḋDȧH

ȧbċ = gM−1

ċ
ḋJbċ

B . (3.1)

Here, as mentioned above, I consider the case involving only bosonic fields, so only Jbċ
B in

Jbċ (2.31) is taken into account. In ref. [1], it was shown that the left hand side of eq. (3.1)

can be written as a total derivative:

M−1

ċ
ḋDaH̃

abċ + M−1

ċ
ḋDȧH

ȧbċ

=
1

2
ǫȧḃḋ∂ȧ(Mḃ

ḟ ǫ
ḟ ġk̇

Hbġk̇) − ǫbacǫȧḃḋ∂ȧ

(

∂aAcḃ
+

g

2
ǫ
ḃḟ ġ

Ba
ḟBġ

c

)

. (3.2)

On the other hand, the right hand side of eq. (3.1) can also be written as a total derivative:

gM−1

ċ
ḋJbċ

B = g2M−1

ċ
ḋǫėḟ ġ(∂ėX

I)(∂
ḟ
DbXI)∂ġX

ċ

= gǫėḟ ḋ(∂ėX
I)∂

ḟ
DbXI = g∂

ḟ
(ǫėḟ ḋ(∂ėX

I)DbXI)

= −ǫbacǫȧḃḋ∂ȧ

(g

2
ǫacd(∂ḃX

I)DdXI
)

. (3.3)

Notice the convention for the anti-symmetric tensor ǫabc (see appendix A). Eq. (3.2) and

eq. (3.3) are total derivatives. By the Poincaré lemma one obtains

Haḃċ =
1

2
ǫḃċėǫabcM−1ḋ

ė

(

F
bcḋ

+ gǫ
ḋḟ ġ

Bb
ḟBc

ġ − gǫbcd(∂ḋ
XI)DdXI

)

, (3.4)

where

Fabċ = ∂aAbċ − ∂bAaċ + ∂ċAab , (3.5)

and Aab(x, y) was introduced when integrating the total derivative. Eq. (3.4) reduces to

the linear self-dual relation (2.37) in the g → 0 limit. One may define a field strength as

a scalar quantity with respect to the area-preserving diffeomorphisms made only from the

– 7 –



J
H
E
P
0
3
(
2
0
1
0
)
1
2
7

two-form gauge fields which reduces to the linear field strength in the g → 0 limit:5

Habċ = Mċ
−1ḋ(F

abḋ
+ gǫ

ḋėḟ
Ba

ėBb
ḟ ). (3.6)

Then, eq. (3.4) takes the following form:

Haḃċ = H̃aḃċ + gǫḃċėMė
−1ḋ(∂

ḋ
XI)DaXI . (3.7)

The appropriate gauge transformation law for Aab which achieves the correct transforma-

tion property required by eq. (3.4) is given as [1]:

δΛAab = ∂aΛb − ∂bΛa + g(κċ∂ċAab + Aaċ∂bκ
ċ − Abċ∂aκ

ċ)

= ∂aΛb − ∂bΛa + g(κċ∂ċAab − (∂bAaċ)κ
ċ + (∂aAbċ)κ

ċ)

+∂b(gAaċκ
ċ) − ∂a(gAbċκ

ċ)

= ∂aΛb − ∂bΛa + gFabċκ
ċ + ∂b(gAaċκ

ċ) − ∂a(gAbċκ
ċ). (3.8)

The last two terms in eq. (3.8) can be absorbed in the redefinition of the gauge transfor-

mation parameter Λa. The form in the last line in eq. (3.8) is convenient for finding the

Seiberg-Witten map for Aab which will be discussed in the next section. From the gauge

transformation law (3.8) as well as (2.12)–(2.14), one can check that inside the parenthesis

of the right hand side of eq. (3.4) transforms as a vector in the dotted directions. Then,

the multiplication of the matrix M−1 converts this vector into a gauge scalar (invariant

under the gauge transformation generated by Λa, and scalar under the volume-preserving

diffeomorphisms (2.16)), which is the same transformation property with the left hand side

of eq. (3.4), i.e. Haḃċ.

Next I look at eq. (2.28). Multiplying Mȧ
ḋǫ

ḋḃċ
to eq. (2.28), one obtains

Mȧ
ḋǫḋḃċDaH

aḃċ + 2Mȧ
ḋDḋH345 = gMȧ

ḋǫḋḃċJ
ḃċ
B . (3.9)

As noted before, I only considered the bosonic fields above. The second term in the left

hand side of eq. (3.9) is equal to a total derivative:

2Mȧ
ḋD

ḋ
H345 =

1

g
∂ȧ

(

(det M)2 − 1
)

, (3.10)

where in the right hand side the constant was introduced to ensure a smooth limit for

g → 0. Here the identity (2.25) has been used, and notice that

H345 =
1

g
(det M − 1). (3.11)

5In ref. [1] the authors imposed linear self-dual relations to define Habċ. If one follows this reasoning

here, one needs to define Habċ using scalar fields, which seems little bit odd. It would be more natural to

define the field strength as in eq. (3.6), and interpret eq. (3.4) as modified self-dual relations. Note that in

the ordinary description of M5-brane, the self-dual relations are also extended to the non-linear one (the

three-form field strength in the ordinary description can be related to a self-dual three-form, which might be

closer to their identification). In the case of Habc discussed later, imposing the linear self-duality does not

uniquely fix the definition, because the self-dual relation includes a quadratic term in H
ȧḃċ

, see eq. (3.17).

Anyway, it is not necessary to define the field strength Habċ or Habc at this moment, and one can regard

eq. (3.6) as a shorthand notation for the combination (3.7).
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The first term in eq. (3.9) can be rewritten as

Mȧ
ḋǫḋḃċDaH

aḃċ

= ǫabcMȧ
ḋDa(H̃bcḋ

− gǫbcdMḋ
−1ė(∂ėX

I)DdXI) (3.12)

+2Mȧ
ḋDa

(

DaX
ḋ
−

1

2
ǫabc(H̃

bcḋ
− gǫbcdMḋ

−1ė(∂ėX
I)DdXI)

)

= ǫabcDa

(

Fbcȧ + gǫ
k̇ġȧ

Bb
k̇Bc

ġ − gǫbcd(∂ȧX
I)DdXI

)

− 2g(Da∂ȧX
ḋ)DaX

ḋ

+2Da

(

Mȧ
ḋ

(

DaX
ḋ
−

1

2
ǫabc(H̃

bcḋ
− gǫbcdMḋ

−1ė(∂ėX
I)DdXI)

))

.

The last term in eq. (3.12) can be set to zero by the self-dual relation (3.4). Compared

with the result in ref. [1], there is an extra term

−ǫabcDa(gǫbcd(∂ȧX
I)DdXI)

= −2gDa((∂ȧX
I)DaXI) (3.13)

= −g∂ȧ(DaX
IDaXI) − 2g2(∂ȧBa

ċ)(∂ċX
I)DaXI − 2g(∂ȧX

I)DaD
aXI .

The second term in the last line in eq. (3.13) cancels a term from the second term in the

last but one line in eq. (3.12), the difference from ref. [1] being the modification in the

self-dual relation eq. (3.4). The last term of the last line in eq. (3.13) can be rewritten

using the equation of motion for XI (2.26), with the fermions being set to zero:

−2g∂ȧX
IDaD

aXI

= 2g(∂ȧX
I)

[

g4

2
{X ċ,X ḋ, {X ċ,X ḋ,XI}} + g4{X ċ,XJ , {X ċ,XJ ,XI}}

+
g4

2
{XJ ,XK , {XJ ,XK ,XI}}

]

. (3.14)

Now I turn to the right hand side of eq. (3.9). It can be rewritten as

gMȧ
ḋǫ

ḋḃċ
J ḃċ

B (3.15)

=g∂ȧX
ḋǫ

ḋḃċ

[

g2({XI ,DḃXI ,X ċ}−(ḃ↔ ċ))−
g4

2
ǫḃċė{XI ,XJ , {XI ,XJ ,Xė}}

]

=−2g5∂ȧX
ḋ{X ċ,XI , {X ċ,XI ,X ḋ}} − g5∂ȧX

ḋ{XI ,XJ , {XI ,XJ ,X ḋ}}.

Eq. (3.14) and eq. (3.15) are combined to give

−2g∂ȧX
IDaD

aXI − gMȧ
ḋǫ

ḋḃċ
J ḃċ

B

=−g5∂ȧ

[

1

2
{X ċ,X ḋ,XI}{X ċ,X ḋ,XI} +

1

2
{X ċ,XI ,XJ}{X ċ,XI ,XJ}

+
1

6
{XI ,XJ ,XK}{XI ,XJ ,XK}

]

(3.16)

+2g5{X ċ,XI , (∂ȧX
ḋ){X ċ,XI ,X ḋ}} + g5{X ċ,X ḋ, (∂ȧX

I){X ċ,X ḋ,XI}}

+2g5{X ċ,XJ , (∂ȧX
I){X ċ,XJ ,XI}} + g5{XI ,XJ , (∂ȧX

ḋ){XI ,XJ ,X ḋ}},
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where the derivation property of the Nambu-bracket (see eq. (C.1) in the appendix) has

been used. The last two lines in eq. (3.16) can also be rewritten as total derivatives similar

to the upper lines using eq. (C.2) in the appendix. Thus, I obtain the following non-linearly

extended self-dual relation:

0 =
1

3
ǫabcFabc − gǫabcBa

ḃF
bcḃ

− 4g2 detBa
ḃ −

g

2
H

aḃċ
Haḃċ +

1

g

(

(det M)2 − 1
)

−gDaX
IDaXI + gDȧX

IDȧXI (3.17)

+
g5

2
{X ȧ,XI ,XJ}{X ȧ,XI ,XJ} −

g5

6
{XI ,XJ ,XK}{XI ,XJ ,XK}.

Again, if one takes the g = 0 limit, eq. (3.17) reduces to the linear self-dual relation (2.37).

Thus eq. (3.4) and eq. (3.17) are regarded as the non-linear extension of the linear self-

dual relations. One may define another component of the field strength with the similar

reasonings for the definition (3.6) (see the footnote 5):

Habc = Fabc +
g

2
ǫabcǫ

defBd
ḃF

efḃ
+ 2g2ǫabc detB. (3.18)

One can check that Habc in eq. (3.18) transforms as a scalar under the gauge transforma-

tions (2.14) and (3.8).

Calculations including the contributions from fermions are similar. The complete re-

sults including fermions are included in the appendix B.

4 Seiberg-Witten map of BPS conditions for the string solitons

In this section, I examine the Seiberg-Witten map of the BPS conditions for the string

solitons on M5-brane which was studied in ref. [30]. The non-linearly extended self-dual

relations (3.4) and (3.17), which include all the bosonic fields in the M5-brane action, are

essential since the string solitons involve non-trivial configuration of a scalar field.

Only in this section, the fields in the Nambu-bracket description are denoted with ˆ on

them, in order to distinguish them from the corresponding fields in the ordinary description

which are denoted without .̂

Seiberg-Witten map is a solution to the condition: “Gauge transformations in the

Nambu description is compatible with gauge transformations in the ordinary description”:

δ̂
Λ̂
Φ̂(Φ) = Φ̂(Φ + δΛΦ) − Φ̂(Φ), (4.1)

where Φ̂ (Φ) collectively represents fields in the Nambu-bracket (ordinary) description of

M5-brane. The Seiberg-Witten map for the fields ϕ̂ (ϕ̂ = X̂I , Ψ̂), Âȧ, B̂a
ȧ and the gauge

– 10 –



J
H
E
P
0
3
(
2
0
1
0
)
1
2
7

transformation parameter κ̂ȧ were obtained in ref. [6]:

ϕ̂ = ϕ + gAȧ∂ȧϕ + O(g2), (ϕ̂ = X̂I , Ψ̂), (4.2)

Âȧ = Aȧ +
g

2
Aḃ∂

ḃ
Aȧ +

g

2
Aȧ∂

ḃ
Aḃ + O(g2), (4.3)

B̂a
ȧ = Ba

ȧ + gAḃ∂ḃBa
ȧ −

g

2
Aḃ∂a∂ḃA

ȧ +
g

2
Aȧ∂a∂ḃA

ḃ

+g(∂
ḃ
Aḃ)Ba

ȧ − g(∂
ḃ
Aȧ)Ba

ḃ −
g

2
(∂

ḃ
Aḃ)∂aA

ȧ

+
g

2
(∂

ḃ
Aȧ)∂aA

ḃ + O(g2), (4.4)

κ̂ȧ = κȧ +
g

2
Aḃ∂

ḃ
κȧ +

g

2
(∂

ḃ
Aḃ)κȧ −

g

2
(∂

ḃ
Aȧ)κḃ + O(g2). (4.5)

On the other hand, from the gauge transformation law (3.8) one obtains the Seiberg-Witten

map for Âab:

Âab = Aab + gAċFabċ + O(g2). (4.6)

Here, I have absorbed the last two terms into the redefinition of Λa. Notice that the gauge

transformations generated by Λa do not transform A
ȧḃ

nor Ba
ȧ.

I’d like to examine the BPS conditions for the string solitons which were studied in

ref. [30] (see also ref. [45]):6

Dµ̂X̂6 + η
1

6
ǫµ̂

ν̂ρ̂σ̂Ĥν̂ρ̂σ̂ = 0, (4.7)

and other fields set to zero, where η = ±1 and µ̂, ν̂ = 2, · · · , 5. From the Seiberg-Witten

map (4.2)–(4.6) as well as the definitions (2.19) and (2.20), one obtains

Ĥȧḃċ = Hȧḃċ + g(Aḋ∂ḋHȧḃċ + (∂ḋA
ḋ)Hȧḃċ) + O(g2), (4.8)

Ĥ
aḃċ

= H
aḃċ

+ g(Aḋ∂
ḋ
H

aḃċ
+ (∂

ḋ
Aḋ)H

aḃċ
) + O(g2), (4.9)

Dȧϕ̂ = ∂ȧϕ + g(Aċ∂ċ∂ȧϕ + (∂ċA
ċ)∂ȧϕ) + O(g2), (4.10)

Daϕ̂ = ∂aϕ + g(Aċ∂ċ∂aϕ + (∂aA
ċ − Ba

ċ)∂ċϕ) + O(g2). (4.11)

Using these formulas, from the µ̂ = 2 case of eq. (4.7):

D2X̂ + ηĤ345 = 0, (4.12)

where X̂ ≡ X̂6, one obtains

F345 = −η(∂2X + ηg∂µ̂X∂µ̂X) + O(g2), (4.13)

where the BPS conditions at O(g0) have been used to rewrite the O(g) term in eq. (4.13).

On the other hand, from the µ̂ = ȧ case of eq. (4.7):

DȧX̂ − η
1

2
ǫȧḃċĤ

2ḃċ , (4.14)

6The BPS conditions are crucial to justify our analysis here, with the similar reason explained in ref. [46]

in the case of BPS monopoles on a D3-brane in a constant B-field background. We are planning to present

the detail of the scaling arguments to justify the use of the Nambu-bracket M5-brane action, analogous to

the zero-slope limit of the open string theory in a constant B-field background discussed in ref. [20], in our

forthcoming paper.
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one obtains

F
2ȧḃ

= ηǫ
ȧḃċ

∂ ċX + O(g2), (4.15)

where again the BPS conditions at O(g0) have been used to obtain the O(g) term.

Eq. (4.13) and eq. (4.15) should be compared with the results in the ordinary descrip-

tion which were obtained in ref. [32]:

F012 + C012 = η1(sin θ + cos θ∂2X), (4.16)

F01ȧ = η1 cos θ∂ȧX, (4.17)

F
ȧḃċ

+ C
ȧḃċ

= η2ǫȧḃċ

(

∂2X +
sin θ(1 + (∂µ̂X∂µ̂X))

cos θ − sin θ∂2X

)

, (4.18)

F
2ȧḃ = −η2ǫȧḃċ∂

ċX, (4.19)

where C012 and Cȧḃċ are the components of the background C-field in the ordinary descrip-

tion. Eq. (4.13) and eq. (4.15) match with eq. (4.18) and eq. (4.19) respectively in the case

η1η2 = −1, with the identifications7

χ ≡ ηθ = g + O(g2), η = η1. (4.20)

To examine whether one can obtain eq. (4.16) and eq. (4.17) from the Nambu-bracket

description via the Seiberg-Witten map, one needs to use the non-linearly extended self-

dual relations eq. (3.4) and eq. (3.17) obtained in the previous section. Substituting

eq. (4.8)–(4.11) into eq. (3.17), one obtains

F012 + F345 = −g∂µ̂X∂µ̂X + O(g2), (4.21)

where the BPS conditions and the self-dual relations at O(g0) has been used to rewrite the

O(g) term of eq. (4.21). Again, eq. (4.21) matches with eq. (4.16) and eq. (4.18) with the

identifications (4.20), up to O(g).

To complete the check at O(g), one should check whether eq. (4.17) can be obtained

from the Nambu-bracket description. In order to do this calculation, one needs the ex-

pression for the Seiberg-Witten map of Ĥabċ, which in turn requires the expression for

the Seiberg-Witten map of Â
aḃ

itself rather than the anti-symmetrized combination of its

derivatives B̂a
ḃ = ǫḃċḋ∂ċÂaḋ

. However, the Seiberg-Witten map of Â
aḃ

seems to require a

non-local expression [6]. I leave this check to the future work.

5 Discussions

In this paper, the derivation of the non-linearly extended self-dual relations initiated in

ref. [1] was completed by including contributions from all the fields in the Nambu-bracket

description of the M5-brane action in a constant C-field background. It is rather impressive

7This corrects sign errors in ref. [30]. Notice that the background C-field is specified by χ = ηθ, so

this identification is independent of the choice of the BPS conditions (the choice of η in eq. (4.7)), as it

should be.

– 12 –



J
H
E
P
0
3
(
2
0
1
0
)
1
2
7

that the procedure of ref. [1] also works with the inclusion of all the fields in the action,

though it should work in order for the action to describe M5-brane. This result suggests

the existence of a formalism with auxiliary fields and extra local symmetries where the

self-dual relations are more manifest, which reduces to the currently discussed action upon

gauge fixing. The self-dual relations are characteristic feature of M5-brane, and this result

is of essential importance when comparing the Nambu-bracket description of M5-brane to

the ordinary description via the Seiberg-Witten map.

To compare the M5-brane action in the ordinary description with the one in the

Nambu-bracket description, it will be useful to extend the new auxiliary field formalism

also introduced in ref. [1] to the non-linear DBI-type action in the ordinary description,

so that it can be gauge fixed to the form which is more convenient to compare with the

M5-brane action in the Nambu-bracket description. For this purpose, it will be useful to

understand the introduction the of auxiliary fields in a systematic way. An interesting

work in this direction is made in ref. [47].

In these few years, several new formulations for M-theory branes have been proposed,

and it is important to examine to what extent they can describe expected properties of

M-theory branes. Consistency with the reduction to type IIA string is a necessary condi-

tion [6, 48–51], but it tends to hide the information of M-theory which we are seeking for.

The comparison of the Nambu-bracket description of M5-brane to the ordinary description

via the Seiberg-Witten map is a direct check of the former as M-theory brane. The relation

to the ordinary description, which can be described in space-time covariant ways, will be

important for the Lie 3-algebra to play fundamental role in the description of M-theory.

The importance of relating the BLG model to the covariant formulations was stressed in

ref. [52], see also ref. [53]. Another trial to relate the BLG model to the light-cone Hamil-

tonian of M5-brane was made in ref. [54] without the C-field background, but only the

Carrollian limit of the BLG model was obtained. Another approach to M-theory branes is

the ABJM model of multiple membranes [55]. In refs. [56, 57], M5-brane solutions in the

ABJM model were constructed. To describe M-theoretical or eleven-dimensional aspects

by these M5-brane solutions one tends to encounter non-perturbative problems.8 Such

problems are certainly interesting, but also hard. The approach from the Nambu-bracket

description of M5-brane has an advantage that one can see the relation to the ordinary

formulation at the classical level through the Seiberg-Witten map. On the other hand, the

Seiberg-Witten map has been solved up to the first order in the expansion by the parame-

ter g which characterizes the strength of the interaction through the Nambu-bracket. This

is certainly not satisfactory, and one would like to obtain all order expression. Though

interacting nature of the M2-brane worldvolume theory makes the analysis complicated

compared with the open string worldsheet theory on a D-brane in a constant B-field back-

ground, results in that case (see e.g. refs. [40–44, 58–60]) will give clues for how to obtain all

order expression of the Seiberg-Witten map in the case of M5-brane in a constant C-field

background. Another issue which calls for better understanding is that in the case of a

D-brane in a constant B-field background, the product of fields is given by Moyal product,

8I thank Seiji Terashima for explaining this point.

– 13 –



J
H
E
P
0
3
(
2
0
1
0
)
1
2
7

whereas the Nambu-bracket is an analogue of the Poisson-bracket, and the product is not

defined. To obtain the Moyal product description of D4-brane from M5-brane via a com-

pactification on a circle, the Nambu-bracket should be deformed appropriately. This issue

is discussed in ref. [61].

Acknowledgments

I am grateful to Pei-Ming Ho for his question which led me to investigate the self-dual

relations in their M5-brane action, and Tomohisa Takimi for useful discussions. I am

also thankful to them for showing their drafts before publication. I am also thankful to

Takayuki Hirayama, Sheng-Yu Darren Shih and Dan Tomino for discussions and to Wen-

Yu Wen for reading the manuscript. I would like to thank Yukawa Institute for Theoretical

Physics for the hospitality and support during my stay for the workshop “Branes, Strings

and Black Holes,” where I could have useful discussions with Yutaka Matsuo and Seiji

Terashima to whom I am also grateful. It was a great pleasure to attend the symposium

“Symmetry Breaking in Particle Physics” in honor of Prof. Yoichiro Nambu where I could

have invaluable stimulations. I would also like to thank the organizers of the Taiwan String

Theory Workshop 2010 for the invitation which motivated me to look back our previous

work [30] and extend the results. I am also grateful to Andreas Gustavsson and Shiraz

Minwalla for explaining their works at the workshop. I would also like to thank Chuan-

Tsung Chan for bringing some references to my attention. This work is supported in part

by National Science Council of Taiwan under grant No. NSC 97-2119-M-002-001.

A Convention for the totally anti-symmetric tensor ǫ
abc

Convention (metric ηab = diag(− + +)):

ǫ012 = −ǫ012 = 1. (A.1)

It follows that

1

2
ǫabcǫ

dbc = −δd
a, ǫabcǫ

dec = −δd
aδe

b + δe
aδ

d
b . (A.2)

The determinant of a matrix Ba
ḃ can be written as

det Ba
ḃ =

1

6
ǫabcǫ

ȧḃċ
Ba

ȧBb
ḃBc

ċ . (A.3)

B Complete form of the self-dual relations

Haḃċ =
1

2
ǫḃċėǫabcM−1ḋ

ė

(

Fbcḋ+gǫḋḟ ġBb
ḟBc

ġ−gǫbcd

(

(∂ḋX
I)DdXI +i(∂ḋΨ̄)ΓdΨ

))

, (B.1)

– 14 –



J
H
E
P
0
3
(
2
0
1
0
)
1
2
7

0 =
1

3
ǫabcFabc − gǫabcBa

ḃFbcḃ − 4g2 detBa
ḃ −

g

2
HaḃċH

aḃċ +
1

g

(

(det M)2 − 1
)

−gDaX
IDaXI + gDȧX

IDȧXI

+
g5

2
{X ȧ,XI ,XJ}{X ȧ,XI ,XJ} −

g5

6
{XI ,XJ ,XK}{XI ,XJ ,XK}

−igΨ̄ΓȧDȧΨ − ig3Ψ̄ΓȧI{X
ȧ,XI ,Ψ} +

ig3

2
Ψ̄ΓIJΓ345{X

I ,XJ ,Ψ}. (B.2)

C Some formulas for the Nambu-bracket

Derivation property:

{A,B,CD} = {A,B,C}D + C{A,B,D}. (C.1)

A frequently used formula:

{A∂ȧB,C,D} + {A∂ȧC,D,B} + {A∂ȧD,B,C} = ∂ȧ (A{B,C,D}) . (C.2)

Here, it is assumed that A,B,C,D are bosonic quantities. When some of them are

fermionic, one should assign sign factors appropriately. Eq. (C.2) can be obtained from the

identity for the totally anti-symmetric tensor ǫȧḃċ:

δḃ
ȧǫ

ḟ ċḋ + δċ
ȧǫ

ḟ ḋḃ + δḋ
ȧǫḟ ḃċ = δ

ḟ
ȧ ǫḃċḋ . (C.3)
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