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1 Introduction

The problem of what happens when a large number of interacting fermions get together

remains interesting despite many decades of work. The sign problem obstructs a numerical

solution, leaving us to do experiments or theorize. The metallic states of such systems that

are well-understood theoretically are Fermi liquids. The basic assumption of this theory

is that the states of the interacting system can be usefully put in correspondence with

those of a collection of the same number of free fermions; in particular this means that the

low-lying excitations of the system are long-lived quasiparticles.

This assumption fails in many strongly-correlated materials. Quite a bit of effort has

been made to understand what replaces the Fermi liquid theory in the absence of stable

quasiparticles [1–16]. We believe that it is fair to say that it would be valuable to have

a non-perturbative description of such a state of matter. Inspired by work of Sung-Sik

Lee [17], a class of non-Fermi liquids was recently found [18, 19] (see also [20, 21]) using

holographic duality [22–24]. This allows us to study observables of the strongly-coupled

system using simple gravity calculations. For a review of these techniques in the present

context, see [25–28].

The analysis of [18, 19] applied to CFTs with a gravity dual, a conserved U(1) current,

and a charged fermionic operator. Depending on the charge and dimension of the operator,

it is possible to find Fermi liquid behavior, in the sense that the spectral function exhibits
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stable quasiparticles, or non-Fermi liquid behavior. At the boundary between these be-

haviors, one finds a marginal Fermi liquid, which arises as a phenomenological model [29]

of the strange metal phase of the cuprate superconductors (the resistive state at tempera-

tures larger than the critical temperature Tc for superconductivity, at a doping level which

maximizes Tc). In this case, the contribution of such a Fermi surface to the resistivity also

has the linear temperature dependence observed in the strange metal [30].

The calculation of the fermion spectral functions was done by solving the Dirac equa-

tion in a charged black hole background. The extremal Anti-de Sitter (AdS) Reissner-

Nordstrom black hole (hereafter referred to as ‘RN’), which represents the groundstate

of the simple system studied in [18, 19], has a ‘residual’ zero-temperature entropy. This

degeneracy is exact in the classical N → ∞ limit; at finite N one expects it to be lifted to

a large low-lying density of states. It is likely that the non Fermi liquid behavior does not

depend on the large low-energy density of states: the small-frequency behavior depended

on the existence of the IR CFT, not on the large central charge c ∝ s(T = 0) of the

IR CFT.

A closely related question regards the stability of the extremal black hole geometry. It

is a stable solution of the Einstein-Maxwell theory. However, many known AdS string vacua

which UV-complete this model contain charged boson fields which at finite density and low

temperature will exhibit the holographic superconductor instability [31–33]. Conveniently,

the physical systems to which we would like to apply these models also generically exhibit

a superconducting instability (e.g. [34, 35]): the T = 0 limit of most known non-Fermi

liquids is under a superconducting dome.1 The calculations in the RN black hole provide

a model for the “normal” state above the superconducting Tc.

As discussed in the last section of [19], this raises the following very natural question:

what happens to the holographic Fermi surface in the presence of superconductivity? One

might expect to see a gap in the spectral weight, and we will see below that this is realized.

Unlike the fermion two-point function calculation, here there are some choices for the bulk

action. In addition to choosing the self-couplings of the bulk scalar ϕ, one must decide how

to couple the scalars to the bulk spinor field ζ. It is always possible to include a |ϕ|2ζ̄ζ

coupling. In duals of matrix-like theories, where the spinor field is dual to an operator of

the form tr λ, it is natural to include a scalar ϕ with twice the charge of ζ, dual to the

operator tr λλ.2 Its dimension at strong coupling is not determined by this information. In

this case, a (as it turns out, much more interesting) coupling of the schematic form ζζϕ⋆ is

permitted by gauge invariance. We will specify the spinor structure of the coupling below.

The effect of this coupling is to pair up modes at the Fermi surface, in a manner

extremely similar to the Bogoliubov-deGennes understanding of charge excitations of a

BCS superconductor.

Interestingly, if the mass-to-charge ratio of bulk scalars is large enough, they do not

condense [39], and we pause here to comment on this case. This in itself is an interesting

phenomenon which does not happen at weak coupling, and should be explored further. It

1 Other possible groundstates for holographic finite-density systems, for example resulting from the

presence of neutral bulk scalars, have been explored recently in [36–38].
2This argument for the genericity of charge-2qF bosons is due to Shamit Kachru.
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means that the criteria for a string vacuum which exhibits the Fermi surfaces described

in [18, 19], but not the superconducting instability, are reminiscent of those required of a

string vacuum which could be that of our universe: one doesn’t want light scalar fields.

In the latter context, a large machinery [40–44] has been developed to meet the stated

goal, and similar techniques will be useful here. In such a case, the calculation of [18,

19] is valid to very low temperatures. One effect which cuts this off is the following3.

In the RN black hole background, there is a finite density of fermions in the bulk [30].

There is a Fermi surface (in the sense that the bulk-to-bulk fermion spectral density has

a nonanalyticity at ω = 0, k = kF ). There are interactions between these bulk fermions

mediated by fluctuations of the metric and gauge field. The Coulomb force is naively

always stronger [45], but can be screened. This leaves behind the interactions by gravity,

which are universally attractive. There is some similarity with phonons. Of course, these

interactions are suppressed by powers of N2 (where N2 ≡ G−1
N in units of the AdS radius).

This may lead to BCS pairing with an energy scale

Tc ∼ εbulk
F e

− 1
ν(0)V ∼ µe−N2

(1.1)

where ν(0) is the density of states at the bulk Fermi surface, and V ∼ N−2 is the strength

of the attractive interaction. This is a very small temperature. This is exactly the scale of

the splitting between the degenerate groundstates over which the RN black hole averages

which is to be expected at finite N . Nevertheless, this is one way in which the RN black

hole groundstate of the system studied in [18, 19] is unstable, without the addition of extra

scalar degrees of freedom.

In this paper, we will probe (a few examples of) holographic superconducting ground-

states with fermionic operators. The retarded Green’s functions GR(ω, k) we compute may

be compared with data from angle-resolved photoemission experiments on cuprate super-

conductors [46, 47]. In these experiments, a high-energy photon knocks an electron out of

the sample, which is then detected. Knowing the energy and momentum of the incident

photon and measuring the energy and momentum of the detected electron allows one to

infer that the sample has an electronic excitation specified by their difference; the intensity

of the signal is proportional to the density of such states, A(ω, k) ≡ Im GR(ω, k) (at least

in the sudden approximation, which is believed to be valid for the relevant photon fre-

quencies). Actual photoemission experiments have the limitation that they can only kick

electrons out of occupied states, and hence can only measure an intensity I ∝ A(ω, k)f(ω),

where f(ω) is the Fermi factor, which at zero temperature vanishes for ω above the chemical

potential. We do not have this limitation.

Lest the reader get the wrong idea, we emphasize here several features of our cal-

culations which differ from the experimental situation in any strongly-correlated electron

system. Perhaps most glaringly, as in previous work, the Fermi surfaces we discuss in

this paper are round. There is no lattice in our system. At short distances, our theory

approaches a relativistic conformal field theory; the UV conformal symmetry is broken

explicitly by finite chemical potential (we will also comment on the effects of a small tem-

3 We thank Nabil Iqbal for an instructive conversation on this point.
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perature). Also, our superconducting order parameter has s-wave symmetry, and so there

are no nodes at which the gap goes to zero. It would be very interesting to improve upon

this situation.

Above the superconducting critical temperature Tc, one usually has gapless excitations

at k = kF . When one cools the superconductor below Tc, the locus {k = kF } generally

remains the surface of minimum gap, i.e. the locus in momentum space where the gap

in the fermion spectral density is smallest. This is not precisely the case here. This is

because in general the holographic superconducting condensate also affects the geometry

outside the horizon region, i.e. UV physics, and changes the effective Schrödinger potential

determining the value of k at which the Dirac bound state occurs. The difference between

kF without the condensate and the surface of minimum gap will be small in the examples

we study, which have Tc small compared to µ, and are therefore close to the RN geometry

as we review below. [48] appeared as this paper was being completed. The crucial Majorana

coupling is not included there. Related work will appear in [49, 50].

1.1 Why the Majorana coupling is important

We focus here on the case of odd d (the number of spacetime dimensions of the boundary

field theory), where a single Dirac spinor in the bulk describes a single Dirac spinor operator

in the boundary theory. In the case of even d, we will need to couple together two bulk

Dirac fields.

The bulk action we consider for the fermion is

S[ζ] =

∫

dd+1x
√−g

[

iζ̄
(

ΓMDM − mζ

)

ζ + η⋆
5ϕ

⋆ζT CΓ5ζ + η5ϕζ̄CΓ5ζ̄T
]

. (1.2)

ϕ is the scalar field whose condensation spontaneous breaks the U(1) symmetry. C is

the charge conjugation matrix, which we specify below, and Γ5 is the chirality matrix,

{Γ5,ΓM} = 0. The derivative D contains the coupling to both the spin connection and the

gauge field DM ≡ ∂M + 1
4ωMABΓAB − iqζAM . We will occasionally refer to the coupling to

the scalar in (1.2) as a ‘Majorana coupling’ because ζTCΓ5ζ is like a Majorana mass term.

One reason for the necessity of the antisymmetric charge conjugation operator between

the fermion fields in this term is that the simpler-looking object ζαζα is zero because the

components are grassmann-valued.

As we will describe, the coupling ϕ⋆ζT Cζ+h.c. is also possible, but does not accomplish

the desired effect. The coupling with the Γ5 arises in descriptions of fermionic excitations

of color superconductors [51]. In that context, the chirality matrix is required by parity

conservation; since ϕ there is a bilinear of the same quarks to which it is coupling, the

intrinsic parity of the quarks cancels out.

One could worry that the perturbations of the scalar field will mix (in the sense that

one will source the other) with the fermion equations of motion. This does not happen in

the computation of two-point functions because of fermion number conservation.

We pause here to note the instructive similarity between (1.2) and the action governing
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electrons in a BCS s-wave superconductor

S[c] =

∫

dd−1kdω
(

c†α(ω, k) (iω − ξk) cα(ω, k) (1.3)

−∆(k)c†↑(ω, k)c†↓(−ω,−k) − ∆⋆(k)c↑(ω, k)c↓(−ω,−k)
)

where α =↑, ↓ are spin indices, ξk ≡ vF (|~k| − kF ), and ω is measured from the chemical

potential. This similarity is instructive because it explains why other couplings between

the spinor and the condensate do not automatically produce a gap.

The basis of modes which diagonalizes such an action is the Nambu-Gork’ov basis:

γα(k) ≡ u(k)cα(k) + Cα
β v(k)c⋆

β(−k) (1.4)

note that u and v do not have spin indices. The Green’s function which results from this

mixing is
〈

ck(ω)†ck(ω)
〉

R
=

ω + ξk

(ω + iǫ)2 − ξ2
k − |∆(k)|2

. (1.5)

This function has two poles for each k; they approach Re (ω) = 0 as k approaches the

Fermi surface. Each has a minimum real part of order ∆. The residues of these two poles,

however, varies with k: at large negative k − kF , the weight is mostly in the pole with

Re (ω) < 0 and the excitations is mostly a hole. As k moves through kF , the weight is

transferred to the other pole, and the excitation is mostly an electron. Without such a

mixing between positive and negative frequencies, the Green’s function would have only

one pole, which would be forced to cross Re (ω) = 0 as k goes from k ≪ kF to k ≫ kF ,

and there could not be a gap. This continuity argument assumes that in the absence of

the condensate, the dispersion is monotonic.

2 Review of groundstates of holographic superconductors

Consider the action

L =
1

κ2

(

R +
6

L2
− 1

4
(dA)2 − |(∇− iqϕA)ϕ|2 − m2

ϕ|ϕ|2
)

. (2.1)

We will work in units where the AdS radius L is unity. For m2
ϕ − 2q2

ϕ < −3/2, the

Reissner-Nordstrom AdS solution is unstable at low temperature to forming scalar hair.

The extremal limit of these hairy black holes was found in [52].4 Unlike the extreme

Reissner-Nordstrom black hole, the area of the horizon goes to zero in this limit. The

detailed behavior near the horizon depends on mϕ and qϕ, but for m2
ϕ ≤ 0, the solution

has Poincare symmetry near the horizon. This has an important consequence. Consider

solutions of the Dirac equation with eikµxµ
dependence. If k is timelike in the near horizon

region, then one can impose the usual ingoing wave boundary condition to compute the

4 Groundstates of holographic superconductors, including other forms of the scalar potential, were also

studied in [53]. Our analysis should apply to those whose IR region is AdS4; we leave the other cases for

future work.
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Figure 1. The speed of light in the IR CFT, cIR, as a function of the boson charge. The blue thick

curve is m2
ϕ = −1, the red thin curve is m2

ϕ = 0. The vertical dashed lines indicate the value of qϕ

below which the RN solution is stable.

retarded Green’s function GR. Since the boundary condition is complex, the Green’s func-

tion is complex, and hence Im GR is nonzero indicating a continuous spectrum of states.

However, if k is spacelike, the solutions are exponentially growing or damped. Normal-

izability requires the exponentially damped solution. This is a real boundary condition,

and so the solutions will be real and Im GR = 0. This is qualitatively different from the

extreme Reissner-Nordstrom AdS whose near horizon geometry is AdS2×R2. In that case,

there is a continuous spectrum for all (ω, ki).

The light cone in the near horizon region will not have the same speed of light as the

asymptotic geometry. One can show that as one approaches m2
ϕ − 2q2

ϕ = −3/2 where the

RN solution becomes stable, the speed of light in the IR CFT, cIR (not to be confused with

the central charge of the infrared CFT), goes to zero (see figure 1). This means that in

momentum space, the light cone opens up so all momenta are effectively timelike, and the

spectrum continuously matches onto the RNAdS case.

In more detail, the static, plane symmetric solutions take the form:

ds2 = −g(r)e−χ(r)dt2 +
dr2

g(r)
+ r2(dx2 + dy2) (2.2)

A = φ(r) dt, ϕ = ϕ(r) . (2.3)

For m2
ϕ = 0, the zero temperature solution not only has Poincare symmetry but approaches

AdS4 near the horizon, and r = 0 is just a Poincare horizon. The leading order corrections

can be found analytically and depend on a parameter α which is a function of qϕ, but stays

small (|α| < .3). Explicitly,

φ = r2+α, ϕ = ϕ0 − ϕ1r
2(1+α),

χ = χ0 − χ1r
2(1+α), g = r2(1 − g1r

2(1+α)) (2.4)

where

qϕϕ0 =

(

α2 + 5α + 6

2

)1/2

, χ1 =
α2 + 5α + 6

4(α + 1)
eχo (2.5)

g1 =
α + 2

4
eχo , ϕ1 =

qϕeχo

2(2α2 + 7α + 5)

(

α2 + 5α + 6

2

)1/2

(2.6)
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Figure 2. This plot of the emblackening factor g (left) and the electrostatic potential φ (right) in

the qϕ = 1.3, m2
ϕ = 0 groundstate solution exhibits the almost-RN horizon at r = 1. In this plot

and those below, we use units where µ = 2
√

3.

Although the curvature remains finite, derivatives of the curvature diverge at r = 0 unless

α = 0. Figure 2 shows the solution for g(r) and φ(r) for a choice of qϕ which is close to

the value
√

3/2 where Reissner-Nordstrom AdS is stable. One sees that g dips down and

has a local minimum at a value r ≈ 1. As qϕ →
√

3/2, g vanishes at this local minimum

which becomes the horizon of the extremal Reissner-Nordstrom AdS black hole.

For m2
ϕ < 0 (and q2

ϕ > −m2
ϕ/6), the zero temperature solution near the horizon is

ϕ = 2(− log r)1/2, g = (2m2
ϕ/3)r2 log r, eχ = −K log r (2.7)

φ = φ0r
β(− log r)1/2, (2.8)

where

β = −1

2
+

1

2

(

1 −
48q2

ϕ

m2
ϕ

)1/2

(2.9)

and φ0 is adjusted to satisfy the boundary condition at infinity. The near horizon metric

is (after rescaling t)

ds2 = r2(−dt2 + dxidxi) +
3dr2

2m2
ϕr2 log r

(2.10)

One clearly sees the Poincare symmetry (but not the conformal symmetry) in this case.

There is a rather mild null curvature singularity at r = 0.

3 Dirac equation

The Dirac action is

S0 = i

∫

dd+1x
√−g ζ

(

ΓMDM − mζ − λ|ϕ|2
)

ζ (3.1)

where we are using the conventions of [54]. The λ coupling could be replaced by a more

general function of |ϕ|2. We will set λ = 0 for now except to discuss its effects briefly below.

As discussed in section 1.1 if the charge of the scalar is such that qϕ = 2qζ then we

can add to this

Sη =

∫

dd+1x
√−g ϕ∗ζc

(

η∗ + η∗5Γ
5
)

ζ + h.c (3.2)
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where the charge conjugation matrix is

ζc = CΓtζ∗
(

CΓt
)

Γµ
(

CΓt
)−1

= Γµ∗ (3.3)

This term is essentially a Majorana mass term. There are two terms because there are two

Majorana spinors in the bulk (or Weyl spinors) and these can have independent masses.

In the case of odd numbers of bulk dimensions, there is no Γ5 and this term does

not exist. This matches the fact that in odd numbers of bulk dimensions, a single Dirac

spinor in the bulk describes a chiral fermion operator in the boundary theory [55]; such a

fermion cannot be paired with itself in a rotation-invariant way. The analogous coupling

in odd bulk dimensions requires two Dirac fermions. That this is possible can be seen by

dimensionally reducing a theory with an even number of bulk dimensions on a circle. We

will not discuss this in detail here.

Now we study the Dirac equation in more detail. It turns out that the same simplifi-

cation that appeared in the RN background occurs for the more general metric (2.2). Very

briefly, the form of the spin connection

ωt̂r̂ = dt
√

grr∂r (
√

gtt) ωîr̂ = −dxi√grr . . . (3.4)

implies that
1

4
ωabMeM

c ΓcΓab =
1

4
Γr∂r ln (−ggrr) (3.5)

so we can rescale F = (−ggrr)1/4ζ and remove the spin connection completely. The new

action is

S0 = i

∫

dd+1x
√

grr F
(

ΓMD′
M − mζ

)

F (3.6)

where D′
M = ∂M − iqζAM with no appearance of the spin connection.

The Dirac equation following from S0 + Sη is

(

/D′ − mζ

)

F + 2iϕ(η − η5Γ
5)CΓtF∗ = 0 . (3.7)

Expand this into Fourier modes with kx = k, ky = 0:

(

/D′(k, ω) − mζ

)

F(k, ω) + 2iϕ(η − η5Γ
5)CΓtF∗(−k,−ω) = 0 (3.8)

To get any further we must specify a basis of Dirac matrices. We focus on d = 3, that is,

a 3 + 1 dimensional bulk. We choose a basis of bulk Gamma matrices as in [19],

Γr =

(

−σ3 0

0 −σ3

)

Γt =

(

iσ1 0

0 iσ1

)

Γx =

(

−σ2 0

0 σ2

)

Γy =

(

0 σ2

σ2 0

)

Γ5 =

(

0 iσ2

−iσ2 0

)

(3.9)

such that Γt∗ = −Γt and Γr∗ = Γr which fixes the charge conjugation matrix to be CΓt =

Γr. This basis has the features that (with η5 = 0 and ky = 0) the Dirac equation is

completely real.
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We will now split the 4-component spinors into two 2-component spinors F = (F1,F2)
T

where the index α = 1, 2 is the Dirac index of the boundary theory. Then

0 =
(

Dr(±k) +
√

gttσ1ω
)

F1,2(k, ω)

−2iσ3ϕηF∗
1,2(−k,−ω) ± 2iσ1ϕη5F∗

2,1(−k,−ω) (3.10)

where5

Dr(k) ≡ −
√

grrσ3∂r − mζ −
√

gxxiσ2k +
√

gttσ1qζAt (3.11)

We see that the η5 term mixes F1(k, ω) with F∗
2 (−k,−ω) (and F2(k, ω) with F∗

1 (−k,−ω))

- this is the mixing that will most interest us, because for the RN background these two

fields have coincident Fermi surfaces (at ω = 0). Setting η = 0 (3.10) becomes

(

Dr(±k) ⊗ 1 + σ1 ⊗
(

√

gttω ±2iϕη5

±2iϕ∗η∗5 −
√

gttω

))

Ψ1,2 = 0 (3.12)

where

Ψ1 ≡
(

F1(k, ω)

F∗
2 (−k,−ω)

)

Ψ2 ≡
(

F2(k, ω)

F∗
1 (−k,−ω)

)

. (3.13)

are the bulk analogs of the Nambu-Gork’ov spinor.6 We see explicitly from (3.12) that

for a general black hole background in the absence of mixing (η5 = 0) the spectrum of

F1(k, ω) compared to the spectrum of F∗
2 (−k,−ω) is a reflection about the ω = 0 axis.

This is crucial for generically generating gapped states for non-zero η5.

We have set η = 0 both to make the analysis easier and because turning on both η

and η5 implies that some discrete symmetry of the boundary theory is broken.

For completeness, we record the Dirac equation with η5 = 0, η 6= 0. In this case, the

mixing would be between F1(k, ω) and F∗
1 (−k,−ω) with the equation being

((

Dr(±k) 0

0 Dr(∓k)

)

+

(

√

gttωσ1 −2iϕησ3

2iϕ∗η∗σ3 −
√

gttωσ1

))

Ψ̃1,2 = 0 (3.14)

where Ψ̃1,2 = (F1,2(k, ω),F∗
1,2(−k,−ω))T . Because the differential operators Dr in the

diagonal entries above are evaluated with opposite k, the two mixed components will

not have coincident spectra at ω = 0, η = 0 (see figure 5 of [19] to see this in the RN

background). As such there will only be eigenvalue repulsion if there is some accidental

eigenvalue crossing, and this will generically occur away from ω = 0. This should be

contrasted with the η5 mixing discussed above.

3.1 Boundary conditions

As reviewed in section 2, many of the solutions found in [52] have an emergent Poincare

symmetry in the deep IR, and some even have emergent conformal symmetry. For now

5 The frequency ω is measured from the chemical potential.
6 The index on Ψα is the boundary theory Dirac index. For the rest of this section (3) for simplicity of

the discussion we will concentrate mostly on one of these: Ψ1. In section (4) we will give results for Ψ2.
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we will mainly consider the latter case in which the solution approaches AdS4 near the

horizon. To determine the IR boundary conditions for the spinor appropriate for the

retarded Green’s function, we consider the Dirac equation in the far IR region, where the

metric is just pure AdS4 with no electric field and zero chemical potential:

ds2 = r2
(

−c2
IRdt2 + d~x2

)

+
L2

IRdr2

r2

φ = 0 ϕ = ϕ0 χ = χ0 . (3.15)

The speed of light in the dual IR CFT is cIR = e−χ0/2/LIR. The most relevant terms in

the Dirac equation close to the Poincare horizon are ∂rΨ1 = MΨ1, with

M ≡





LIR
r2

(

iσ2 ω
cIR

− σ1k
)

0

0 LIR
r2

(

−iσ2 ω
cIR

− σ1k
)



 . (3.16)

Very generally, the off-diagonal terms are subdominant, by arguments given in [52] in the

discussion of the Schrödinger potential for the optical conductivity: the relative magnitude

of the off-diagonal term to the terms appearing in (3.16) is ϕ
√

gtt = ϕ
√

ge−χ/2 which must

generally vanish on the horizon.

Because of the diagonal form of (3.16), we can construct a basis of ingoing solutions

by considering F1(k, ω) and F∗
2 (−k,−ω) separately. As is familiar from zero-temperature

AdS, the character of the boundary conditions depends on the sign of s2 ≡ −ω2/c2
IR + k2.

To begin with we will work outside the light cone where s2 > 0 is spacelike. Here the

behavior of the solutions is normalizable and non-normalizable. We will pick the one

which is normalizable at r → 0:

(I) F∗ I

2 (−k,−ω)
r→0≈ 0,

FI

1(k, ω)
r→0≈ ξI

Ne−sLIR/r =

(

√

k + ω/cIR

−
√

k − ω/cIR

)

exp

(

−
√

k2 − ω2

c2
IR

LIR

r

)

; (3.17)

ξI

N is an eigenvector of the matrix M in (3.16). This now allows us to formulate the general

incoming boundary conditions in order to compute retarded correlators. We simply use

the iǫ prescription to define how to continue the branch cuts in (3.17) to timelike s2 < 0.

That is, we take ω → ω + iǫ.

For the other component F2(−k,−ω) we can simply take ω → −ω in (3.17),

(II) FII

1 (k, ω)
r→0≈ 0,

F∗ II

2 (−k,−ω)
r→0≈ ξII

N e−sLIR/r =

(

√

k − ω/cIR

−
√

k + ω/cIR

)

exp

(

−
√

k2 − ω2

c2
IR

LIR

r

)

, (3.18)

and again for timelike s2 < 0 in (3.18) we continue ω → ω + iǫ.7 In the absence of the η5

mixing, the two solutions of the Dirac equation (3.12) for Ψ1 specified by the IR behavior

7Beware the following confusion: because there is a complex conjugation on F
∗
2 , one might expect

this to switch the sign of the iǫ. This is not the case because we should think of analytically continuing

F
∗
2 (−k,−ω) → F

∗
2 (−k,−ω∗); this procedure preserves the incoming boundary conditions.
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I, II compute the Green’s functions for the two boundary fermion operators, O1(ω, k) and

O†
2(−ω,−k).

Now we consider the boundary conditions at the boundary of the UV AdS4. This will

tell us how to read off the field theory correlators. The mixing term is again subdominant

at the UV boundary, so that the asymptotic behavior is the same as usual:

FI

1(k, ω)
r→∞≈

(

BI

1r
−mζ

AI

1r
mζ

)

F∗ I

2 (−k,−ω)
r→∞≈

(

B∗ I

2 r−mζ

A∗ I

2 rmζ

)

(3.19)

and similarly for I → II. The boundary retarded Green’s function is: 8

(

BI

1 BII

1

B∗ I

2 B∗ II

2

)

=

(

G
O1O

†
1

GO1O2

G
O

†
2O

†
1

G
O

†
2O2

)(

AI

1 AII

1

−A∗ I

2 −A∗ II

2

)

(3.20)

The definition of the Green’s functions appearing above is:

GCD(ω, k) = i

∫

dd−1xdteikx−iωtθ(t) 〈{C(x, t),D(0, 0)}〉 (3.21)

Note that the spectral densities (which should be positive by unitarity) are ImG
O

†
1O1

and

Im G
O2O

†
2
.

More generally including the analysis for Ψ2 the above matrix (3.20) will fit into the

Lorentz covariant correlator which is a 4× 4 matrix (recall that this is for kx = k, ky = 0):

(

GOO† G
OO

†
c

GOcO† G
OcO

†
c

)

=













G
O1O

†
1

0 0 GO1O2

0 G
O2O

†
2

GO2O1 0

0 G
O

†
1O

†
2

G
O

†
1O1

0

G
O

†
2O

†
1

0 0 G
O

†
2O2













(3.22)

where O = (O1,O2)
T and Oc = (Cγt)(O†)T where the boundary theory charge conjugation

matrix can be shown to be Cγt = 1. Note that all the entries in this 4 × 4 matrix will be

non-zero if both η, η5 are turned on.

3.2 Evolution equation

It turns out there is a super nice way to package the above linear differential equation

into a non-linear evolution equation, in the spirit of the evolution equations considered

in [56] and used in [18, 55]. This is useful for identifying the Fermi surfaces numerically,

because although the spinor components vary greatly with r, their ratios, which appear in

the evolution equation, remain order one.

Define the following matrices:

Y ≡
(

(

FI

1

)

1

(

FII

1

)

1
(

F∗I
2

)

1

(

F∗II
2

)

1

)

Z ≡
(

(

FI

1

)

2

(

FII

1

)

2

−
(

F∗I
2

)

2
−
(

F∗II
2

)

2

)

G ≡ Y Z−1 (3.23)

8The minus signs appearing in front of A∗ I,II
2 come from the fact that −(A∗

2)
† is the source for O

†
2 where

the minus sign is from anti-commuting this (Grassman valued) source in the boundary theory action so

that it is in the correct order and the action is real.
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Then one can write the following evolution equation:

(√
grr∂r + 2mζ

)

G = G

(

√
gxxkσ3 +

√

gtt(ω + qζAtσ
3) + 2iϕ

(

0 η5

−η∗5 0

))

G (3.24)

+

(

−
√

gxxkσ3 +
√

gtt(ω + qζAtσ
3) + 2iϕ

(

0 −η5

η∗5 0

))

The boundary conditions on this matrix at the IR AdS4 horizon and the UV AdS4

boundary become respectively:

G
r→0≈





−
√

k+ω/cIR
k−ω/cIR

0

0
√

k−ω/cIR
k+ω/cIR





G
r→∞≈ r−2mζ

(

G
O1O

†
1

GO1O2

G
O

†
2O

†
1

G
O

†
2O2

)

(3.25)

Note that when η5 = 0 the evolution equation preserves the diagonal form of the initial

condition in the IR.

This method runs into difficulty if Z becomes non-invertible at finite r; this happens

for the multi-node boundstates associated with secondary Fermi surfaces.

4 Results: bound states outside the emergent light cone

4.1 No mixing

We start by looking at η5 = η = 0 so there is no mixing. We will concentrate on the field

F2(k, ω) (from which we can reflect about ω = 0 to generate F∗
1 (−k,−ω).) Note that we

are now switching 1 ↔ 2 relative to the discussion of the previous section - all results in

this section will be for the Nambu Gork’ov spinor Ψ2. The reason being the primary Fermi

surface in the RN background (the one with largest kF ) was empirically found in [19] to

always appear in the Green’s function for F2(k, ω). We are interested in understanding the

fate of this primary Fermi surface in the condensed phase.

Now since the initial conditions are real for spacelike s2 > 0 and the Dirac equation

for F2 in the absence of mixing is real, the spectral functions should be zero outside the

emergent IR lightcone. This is true up to delta functions which can appear because the real

part of the Green’s function has a pole which becomes a delta function in the imaginary part

thanks to Kramers-Kronig. These are bound states of the Dirac equation since they are

normalizable at the IR AdS4 horizon and at the UV AdS4 boundary. They will represent

infinitely long lived fermion states in the field theory.

For now we will look for these states in a small set of the zero temperature hairy black

holes constructed in [52] and reviewed above. We will concentrate on the case with zero

scalar potential energy (V (ϕ) = 0 → m2
ϕ = 0) with general charge qϕ for the scalar. In this

case LIR = 1 and the speed of light in the IR CFT can be found numerically, see figure 1.
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Figure 3. Boundstates outside the IR lightcone for various values of qϕ = 1.5, 2, 3, 5. Note that the

frequency axis has been scaled by cIR which is different for each curve. We can’t resist mentioning

the approximate relation kF ≈ qϕ for where the curves cross ω = 0.

The fermion charge9 will be constrained by gauge invariance to be qζ = qϕ/2, so that

the η5 term can be added later. The mass of the fermion is a priori independent of the mass

of the scalar. We work with mζ = 0 for numerical convenience. It will be interesting to

look at small charges close to the critical charge qϕ →
√

3/2 where the critical temperature

Tc → 0 and cIR → 0. For qϕ <
√

3/2 the RN black hole is stable, and as can be seen

from figure 2, the superconducting groundstate approaches the RN solution. In this limit

the spectral densities should look more and more similar to the ones of the RN black hole,

which we have a good handle on. Indeed, for reference, we know that there is a Fermi

surface in the RN black hole for mζ = 0 and qζ =
√

3/4 when kF ≈ 0.75 with IR scaling

exponent ν ≈ .18.

Figure 3 shows the location of these states for different qϕ in these zero temperature

superconducting backgrounds.

4.2 Mixing

The stable gapless (ω = 0) excitations we have found in figure 3 seem rather surprising

in a strongly coupled theory. We now demonstrate that turning on η5 6= 0 (and keeping

η = 0) the stable excitations studied above develop a gap. The reason for this can be

simply understood by the general arguments of eigenvalue repulsion. Since the positive

frequency modes mix with the negative frequency modes (at the same k) the repulsion

occurs when ω = 0.

More carefully, we can study the Dirac equation with mixing. Because the initial

conditions (3.17) and (3.18) for spacelike s2 < 0 are real one might expect that again the

spectral functions are zero except for delta functions. This is a little subtle because the

Dirac equation (3.12) is real except for the η5 term. However it turns out that despite

this, the spectral functions are still zero. We can see this in two ways. Firstly, the spectral

functions are the difference in the retarded and advanced Green’s functions (this is more

9 There is a factor of two difference in the normalization of the charges for both scalars and spinors

in [18] (LMV) compared to [52] (HR) — they are related by qLMV = 2qHR. We will work with the qHR

normalization throughout.
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Figure 4. Mixing between positive- and negative-frequency modes due to the Majorana coupling.

Shown are density plots of the fermion spectral density A(k, ω) = ImG
O2O

†
2

for qζ = 3
4
, mζ = 0. The

first plot is in the T = 0 RN black hole, no scalar. The remaining plots are in the zero temperature

background with qϕ = 3
2
, m2

ϕ = 0, for various values of the Majorana coupling, η5 = 0, 0.2, 1.5.

general than the imaginary part of the retarded function). For spacelike s2 > 0 these

two Green’s functions are calculated with the same Dirac equation and the same initial

conditions (the difference comes from the iǫ prescription when going to s2 < 0.) Hence

GR = GA here and the spectral function is zero except for on bound states.

Secondly, the evolution equation (3.24) for spacelike s2 > 0 preserves the following form

of the 2 × 2 Green’s function matrix G (recall we have switched 1 ↔ 2 relative to (3.24)):

G
O2O

†
2
, G

O
†
1O1

∈ R GO2O1 , (G
O

†
1O

†
2
)∗ ∈ ei arg(η5)

R . (4.1)

Hence the spectral densities for G
O2O

†
2
, G

O1O
†
1

are zero. The phase of η5 is arbitrary since

we can change it by rephasing the operator O, hence it cannot matter for the spectral

density of GO2O1.

To find the bound state in this situation we should look for places where detG−1 = 0

at the boundary. Note that detG−1 ∈ R for s2 > 0 so indeed this is a well defined

problem. This delta function will appear in all 4 spectral densities. The residue however

will be different in each component. Of the four components of G we concentrate on G
O2O

†
2

because this is what should be accessible to photoemission “experiments”. The results are

given in figure 4 and figure 5.

We can learn something from perturbation theory in η5. The splitting is determined

by the eigenvalues of the matrix

V ≡
(

P↑ Q↑

Q↓ P↓

)

(4.2)

where

Pα ≡
∫

dr
√

grrχ
(0)†
α ω

√

gttχ(0)
α (−1)α = ωJ t

αα (4.3)
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Figure 5. The effect of the Majorana coupling on the fermion spectral density. Shown are plots of

A(k, ω) at various k ∈ [.81, .93] for qζ = 1
2
, mζ = 0 in a low-temperature background of a scalar with

qϕ = 1, m2
ϕ = −1, with η5 = 0.025 (top) and η5 = 0.075 (bottom). The blue dashed line indicates the

boundary of the region in which the incoherent part of the spectral density is completely suppressed,

and the lifetime of the quasiparticle is infinite. The red dotted line indicates the location of the

peak.

(J was defined in [19], appendix C) and

Q↑ ≡
∫

dr
√

grrχ
(0)†
↑ 2iη5ϕχ

(0)
↓ , Q↓ ≡

∫

dr
√

grrχ̄
(0)†
↓ 2iη⋆

5ϕ⋆χ
(0)
↑ (4.4)

where χ
(0)
α denotes the boundstate wavefunction in the basis χ↑ = F1, χ↓ = F⋆

2 (−ω,−k).

Thinking of the Dirac equation as a Schrödinger problem, this matrix V is the perturbation

Hamiltonian in the degenerate subspace.

The fact that at ω = 0, η5 = 0, the up and down boundstates are the same implies

that P↑ = −P↓ ≡ P and Q↑ = Q⋆
↓); the eigenvalues of V are therefore

±
√

−P 2 + |Q|2. (4.5)

Looking for low-energy boundstates with fixed k then requires these eigenvalues to vanish,

which occurs when −P 2 + |Q|2 = 0, i.e. when ω ∼ |η5|.
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Figure 6. The effective Schrödinger potentials for a probe scalar with mass m2
probe = −3/2 and

qprobe = 5. The horizontal axis is the tortoise coordinate; the UV boundary is to the right, at r̃ = 0.

The different curves are different values of ω > 0; the top curve in each plot is for ω = 0. Left: The

potentials for the groundstate with m2
ϕ = 0 and qϕ = 1. Right: The corresponding pictures for the

RN black hole with the same charge density.

4.3 Luttinger-like behavior near the lightcone

To understand what’s happening at ω2 = c2
IRk2, we consider the Schrödinger form of the

wave equation, where the role of the energy eigenvalue is played by −k2. For simplicity

(and because the pictures are nicer) we draw the potentials for the case of a charged scalar

probe (not to be confused with the charged scalar ϕ which is condensing.) For further

details, see appendix B of [19].

The physics of the IR lightcone is visible in figure 6. In the RN background (right

plot), turning on any nonzero frequency opens up a bottomless pit in the effective potential

leading into the AdS2 region where the tortoise coordinate r̃ → −∞. Therefore, in the

RN groundstate there are no infinitely-stable quasiparticles with nonzero frequency. On

the other hand, in the superconducting groundstate, the limiting value of the effective

potential as r̃ → −∞ is −ω2/c2
IR. Therefore, there is a threshold frequency |ω| = |cIRk|

below which the IR limit of the Schrödinger potential remains above the boundstate energy.

More precisely, there will be a normalizable bound state close to the boundary as long as

the energy (−k2) is less than the limiting value −ω2/c2
IR. Beyond this the bound state

enters the light-cone and is no longer a stable quasi particle.

The fact that we see a stable particle below the continuum is qualitatively what one

expects for systems with a gap ω0. For energies ω0 < ω < 2ω0, one excites a single

quasiparticle which is stable since there is nothing for it to decay into. Only at energies

above 2ω0 does one start to see a continuum.

The spectral density near the lightcone, and in particular the width of the quasiparticle

after it enters the lightcone can be computed by matching between the AdS4 regions in

UV and IR as in [19, 52]. The size of the overlap region is controlled by the quantity

s2 = k2 − ω2/c2
IR which should be small in units of the chemical potential. In the notation

of [19], the result for the Green’s function is of the form

G ∼ (B+ + B−G) (A+ + A−G)−1 (4.6)

where A±, B± are real10 data associated with the UV region, and G is the IR CFT Green’s

function to be discussed below. If there is mixing between positive and negative frequency

10They are only real if we take η5 ∈ iR which we can do without loss of generality.
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modes then A±, B± are 2×2 matrices in the basis of the Nambu-Gork’ov spinor. They are

smooth (analytic) functions of k, ω so the leading non analytic behavior in k, ω is from G.

For purposes of exposition we will describe the results for a probe scalar field in parallel to

that of the spinor. We will leave details of the spinor calculation to appendix A.

For a probe scalar, the IR CFT Green’s function is

G ∼







(

k2 − ω2

c2IR

)ν+
c

0

0
(

k2 − ω2

c2IR

)ν−
c






. (4.7)

The quantities ν±
c are related to the IR CFT scaling dimension of the boundary operator

by ∆±
IR = d

2 + ν±
c , and are determined by studying the behavior of the field at the UV

boundary of the IR AdS4 region in (3.15). They are given by

ν±
c ≡

√

(

d

2

)2

+ L2
IR(m2

probe ± |η5|ϕ0), (4.8)

where ϕ0 = ϕ(r = 0) (the subscript c is for ‘condensed’ and is intended to distinguish

this object from the analogous IR CFT scaling dimension in the AdS2 region of RN [19]).

Notice that the IR CFT scaling dimension depends on the coupling η5.

For the probe spinor the IR CFT Green’s function appearing in (4.6) is

G ∼





√

k+ω/cIR
k−ω/cIR

0

0
√

k−ω/cIR
k+ω/cIR





(

k2 − ω2

c2
IR

)νc

(4.9)

For the spinor case the relation between ∆IR and η5 is,

νc ≡ LIR

√

m2
ζ + 4|ϕ0η5|2 ∆IR = d/2 + νc, (4.10)

see appendix A for more details.

We can extract two interesting statements from these calculations. From the form

of (4.6) (and in particular the reality of A,B) we learn that at generic ω, k (but small |s|
so that this matching applies),

Im G ∝ (B− − B+A−1
+ A−) (ImG) A−1

+ . (4.11)

The dependence of νc on η5 has the following consequence. In the last plot of figure 4,

one can see that the coupling to the condensate is also suppressing the incoherent spectral

weight inside the lightcone. This is because the IR CFT dimension is becoming large as

we make η5 large.

Finally, if we look near a quasiparticle pole, which close to the light-cone occurs when

det A+ = 0, we see that the imaginary part of the location of the pole is determined by

the IR CFT Green’s function. This determines the width of the resonance as it enters the

lightcone. The result is that the width behaves as

Γ ∼ (ω − cIRk)ν
±
c Γ ∼ (ω − cIRk)νc±1/2 (4.12)
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for the scalar and spinor respectively, which can be compared to the behavior in figure 4.11

We emphasize that there are two mechanisms which suppress the spectral weight: one

sets it exactly zero (except for delta functions) outside the light cone. This is a property

of IR behavior of the background geometry. The other mechanism suppresses the weight

independently of the momentum (this is a numerical observation visible from the dashed

blue lines in figure 5), and depends on the scalar-spinor coupling. This mechanism generates

the gap for the quasiparticle peak, and can be understood in terms of the dependence of the

effective IR scaling dimension of the fermion operator on η5 as in the previous discussion.

The latter mechanism also affects physics at k = 0 whereas the lightcone mechanism

does not.

5 Discussion

We should make a few remarks about the effects of other possible couplings between the

bulk spinor and scalar. The coupling

Sneutral[ζ] = −i

∫

dd+1x
√−gλ|ϕ|2ζ̄ζ (5.1)

is possible whatever the charge of the spinor and scalar. By the argument given in sec-

tion 1.1, the Green’s function for the system with η5 = 0 near kF should have only one

pole (whose location may however be dramatically affected by the couplings λ, η), and

the effects of the interaction (5.1) cannot be interpreted as mixing of particle and hole

states. As the |ϕ|2ζ2 coupling is varied, it is easy to be fooled into thinking that there is a

gap even when there is not, when looking at energy distribution curves because the Fermi

momentum moves with λ.

As observed first in [49] increasing the mass of the effective field in the IR (which can

be achieved by either including the above λ coupling or changing the UV mass: mIR =

mζ + λϕ2
0) can lead to poles which never reach the ω = 0 axis and may be interpreted as

gapped. This mechanism for removing low-energy spectral weight (which happens because

increasing mIR pushes up the effective Schrödinger potential for the Dirac equation) is

qualitatively different from the mixing described in the previous sections. It is analogous

to adding a relativistic mass to particles and anti-particles in a relativistic field theory at

non-zero chemical potential. The gap in this situation is around ω = −µ and does not

generically produce a gap at ω = 0. This should be compared to the gap from the η5

coupling which is like adding a mass to particles and holes (absence of particles) about the

Fermi surface at ω = 0.

It was shown in [52] that the zero temperature superconductors we have studied here do

not have a hard gap in the optical conductivity: The real part of the conductivity remains

nonzero (although typically exponentially small) at low frequency and T = 0. Despite this

fact, one might have wondered whether such a hard gap in the conductivity exists for the

fermionic probes that we study in this paper. The existence of a non-zero spectral weight

11 Actually we need to be more careful for the case νc < 1/2 (for the spinor.) Here (4.12) should be

replaced by, Γ ∼ (ω − cIRk)1/2±νc .
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Figure 7. The effect of temperature (much less than Tc) on the fermion spectral function. Shown

are plots at qϕ = 1, m2
ϕ = −1, qζ = 1

2
, mζ = 0, η5 = .025, and momenta where the peak is closest to

ω = 0. The different curves correspond to different temperatures approaching T = 0.

around the origin of figure 4 suggests that this is not the case; however, to see this effect

in the conductivity it would be necessary compute a 1/N2 correction as in [30].

It would be interesting to understand better what property of the boundary theory is

reflected by the presence of the η5 coupling, which is required to produce an actual gap in

the fermion response. One clue is that its presence specifies the ‘intrinsic parity’ of the dual

operator, i.e. the dual operator acquires an interesting phase under a parity transformation.

Realizing string vacua where this coupling is nonzero would probably be valuable.

So far we have considered the fermion spectral function at zero temperature. FIG 7

shows what happens as one raises the temperature. The temperatures shown are much

less than Tc. As T → Tc, the condensate goes to zero, so its coupling to the fermions

goes to zero and the gap disappears. Actually, the thermal broadening of the peak makes

the gap disappear at about .7Tc. In the opposite limit, as T → 0, the width of the peak

vanishes rapidly. It appears to vanish faster than a power law, but the general temperature

dependence deserves further investigation.

We close with a few comparisons with real phenomena. Here we make a simple ob-

servation which follows from the sharpness of the peaks in the ‘no man’s land’ regime (i.e.

outside the IR light cone). This regime is induced by the superconducting order. This

means that if we start at high temperature in the normal phase with some Fermi surface

without stable quasiparticles (like say a marginal Fermi liquid case, ν = 1
2 in the nota-

tion of [19]), and cool into the superconducting phase, sharp quasiparticle peaks appear,

at least for η5 not too big. This matches a mysterious piece of cuprate phenomenology:

in the normal phase, photoemission experiments show no stable quasiparticle peak, but a

coherent peak emerges in the superconducting phase (see e.g. figure 47 of the review [59]).

From the gravity point of view, this is happening because the scalar condensate is removing

the AdS2 region which was responsible for the finite lifetime of the holographic quasipar-

ticles [19]: this is the gravity statement that the condensate is lifting the many gapless

– 19 –



J
H
E
P
0
3
(
2
0
1
0
)
1
2
1

excitations into which the quasiparticle could decay. The mechanism for the stability of

these excitations is very similar to the recent holographic explanation [60] of the critical

velocity in a (holographic) superfluid below which there is no drag, and above which energy

is dissipated by the creation of IR AdS4 unparticles.

This similarity can be made more precise. In a BCS superfluid, the decay of the

quasiparticles can be mediated by emission of a Goldstone boson (this mode is eaten in

a superconductor, and the following effect is absent). It can happen that this decay is

kinematically forbidden: the decay cannot happen if the group velocity of the quasiparticle

is larger than the speed of sound (see appendix B of [61]). In our system, the quasiparticles

develop a finite lifetime when they can decay into the modes of the IR CFT dual to the

IR AdS4 region. These modes are distinct from the Goldstone mode (which is apparently

hidden by powers of N), but the effect is the same.

The energy distribution curves (A(k, ω) at fixed k) shown in figure 5 exhibit another

feature in common with ARPES measurements on the cuprates, namely the so-called ‘peak-

dip-hump’ structure: in addition to the quasiparticle peak, one sees a broad maximum at

larger ω. This is a consequence of the IR lightcone. Over-ambitiously, if this were the

correct interpretation, the location of the hump would give a measurement of the speed of

light of the quantum critical theory.
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A Spinor in the IR AdS4 region

The Dirac equation in the IR AdS4 region including the mixing term is

((

∂r + σ3LIRmζ/r 2iσ2ϕ0η5LIR/r

2iσ2ϕ∗
0η

∗
5LIR/r ∂r + σ3LIRmζ/r

)

+

LIR

r2

(

kσ1 − iσ2ω/cIR 0

0 kσ1 + iσ2ω/cIR

))

Ψ = 0 (A.1)

Now to solve this we employ the following basis rotation F∗
2 → σ1F∗

2 . Then the Dirac

– 20 –



J
H
E
P
0
3
(
2
0
1
0
)
1
2
1

equation takes the form:
(

∂r +
LIR

r2
(kσ1 − iσ2ω/cIR) ⊗ 1

+
LIR

r
σ3 ⊗

(

mζ 2iϕ0η5

−2iϕ0η
∗
5 −mζ

))

Ψ̄ = 0 (A.2)

where

Ψ̄ =

(

F1(k, ω)

σ1F∗
2 (−k,−ω)

)

. (A.3)

We can now block diagonalize this equation into two independent Dirac equations. We

make the following basis rotation:

U

(

mζLIR 2iη5ϕ0LIR

−2iη∗5ϕ
∗
0LIR −mζLIR

)

U−1 =

(

−νc 0

0 +νc

)

. (A.4)

Here,

νc = LIR

√

m2
ζ + 4|ϕ0η5|2

U =

(

mζLIR − νc mζLIR + νc

−2iη∗5ϕ
∗
0LIR −2iη∗5ϕ

∗
0LIR

)

. (A.5)

where νc determines the conformal dimension of the spinor in the IR AdS4 region. These

Dirac equations are then exactly that of a spinor in AdS4 with mass ±νc/LIR. The (two)

general incoming solutions can be found, and at the boundary of this IR AdS4, a basis for

these solutions behaves like

(

FI

1(k, ω)

σ1F∗I
2 (−k,−ω)

)

∼ 1 ⊗ U











rνc

GIR(k, ω)r−νc

0

0











(A.6)

(

FII

1 (k, ω)

σ1F∗II
2 (−k,−ω)

)

∼ 1 ⊗ U











0

0

GIR(k,−ω)r−νc

rνc











(A.7)

where the IR Green’s function for a spinor is

GIR(k, ω) ∼ Γ(1/2 − νc)

Γ(1/2 + νc)

√

k + ω/cIR

k − ω/cIR

(

k2 − ω2

c2
IR

)νc

. (A.8)

We can then integrate these solutions out to the UV boundary where we can use similar

methods to ([19]) to read off a general form for the full Green’s function. The result is (4.6).
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