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1 Introduction

In recent years much progress has been made towards understanding supersymmetric M-

theory backgrounds. In particular, the maximally supersymmetric backgrounds have been

classified in [1, 2], and the Killing spinor equations for one Killing spinor have been solved

in [3, 4]. More rapid development took place with the introduction of the spinorial geome-

try technique [5] for solving the Killing spinor equations. This allowed the solution of the

Killing spinor equations for more than one Killing spinor [5] and initiated the exploration

of type II backgrounds with near maximal number of supersymmetries [6, 7]. In particular,

it has been shown that IIB backgrounds which admit more than 28 Killing spinors are

maximally supersymmetric [6, 8], and that the plane wave solution of [9] is the unique [10]

local geometry which admits 28 supersymmetries. Moreover, it has been demonstrated

that M-theory backgrounds which admit 31 Killing spinors are maximally supersymmet-

ric [7, 11]. A similar result holds for type IIA backgrounds [12] which was proven using a

different technique.

The above results on nearly maximally supersymmetric backgrounds in M-theory and

IIB supergravity have illuminated some long standing questions regarding the structure of

supersymmetric backgrounds in theories with 32 supercharges. In particular, the results

obtained are in agreement with a conjecture in [13] about the number of supersymmetries

preserved by M-theory and type II supergravity backgrounds. They are also consistent with

the homogeneity conjecture of [14, 15] which postulates that all solutions of supergravity

theories which preserve more than 1/2 of supersymmetry are homogeneous.

Another question that the results on nearly maximal supersymmetric backgrounds

elucidate is whether there are gravitational backgrounds for every BPS state of the super-

symmetry algebra with brane charges [16]. To explain this, it is expected that for every

BPS state there is a supergravity background with the same asymptotic charges as those

that characterize the state. This is because such states are massive and so self-gravitate.

BPS states of supersymmetry algebras with brane charges can be found that preserve

nearly maximal numbers of supersymmetries [17]. In particular, those which preserve 31

supersymmetries have been called preons. However, as we have mentioned there are no

solutions of supergravity theories with this number of supersymmetries. The reason be-

hind this is that in the supergravity calculation, apart from the kinematical effects which

are represented to some extent by the Killing spinor equations, the dynamics is also im-

portant. In particular the field equations and the Bianchi identities are used to rule out

the existence of such backgrounds.1 Moreover whenever nearly maximally supersymmetric

1If only the restrictions on the fields imposed by the Killing spinor equations are taken into account,

then there may be configurations which preserve 31 supersymmetries. This is because the holonomy of

the supercovariant connection of 11-dimensional and IIB supergravities is in SL(32, R) [18–21] but such

configurations do not satisfy the field equations and Bianchi identities.
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backgrounds are known to exist, they are typically plane waves and do not admit appropri-

ate asymptotic brane charges in order to be identified with the BPS states which preserve

the same number of supersymmetries. This incompatibility between the supersymmetry

algebra considerations and supergravity calculations is not fully understood and affects

many BPS states which preserve more than 1/2 of the supersymmetry.

In this paper, we shall extend the results on the existence of nearly maximally su-

persymmetric solutions of M-theory by showing that all solutions with 30 Killing spinors

are maximally supersymmeric. The proof relies on the use of the gauge symmetry of 11-

dimensional supergravity to choose the two normals to the 30-dimensional plane of Killing

spinors. This treatment is similar to that which has been used to examine other nearly

maximally supersymmetric solutions in [6, 7]. Putting the two normals in a canonical form

and using the orthogonality condition of the Spin(10, 1) invariant metric on the space of

spinors, we choose the 30 Killing spinors. Then the integrability condition of the Killing

spinor equations, which involves the supercovariant curvature, is solved. It is shown that

subject to field equations and Bianchi identities, all components of the supercovariant cur-

vature vanish. This establishes that all backgrounds with 30 supersymmetries are locally

isometric to the maximally supersymmetric solutions of 11-dimensional supergravity. To

complete the proof, it remains to show that there are no discrete quotients of maximally

supersymmetric backgrounds which preserve 30 supersymmetries. This is also established

using the general method proposed in [22, 23] and applied in [11] to show a similar result

for the case of 31 supersymmetries.

We also investigate the existence of plane wave solutions in M-theory which preserve

28 supersymmetries. This is motivated by the result in IIB supergravity, mentioned above,

that this solution is unique and not locally maximally supersymmetric. Moreover it pre-

serves the highest fraction of supersymmetry other than maximal. The possibility of the ex-

istence of such solutions in M-theory has been raised in [24] with the construction of a plane

wave superalgebra with 28 odd generators and even subalgebra (so(3)⊕su(3)⊕u(1))⊕s H9,

where H9 is a Heisenberg algebra and ⊕s denotes semi-direct sum. We find that the plane

wave solution which has as bosonic symmetry2 the subalgebra (so(3)⊕ su(3)⊕ u(1))⊕s H9

actually preserves either 16, 20 or 32, but not 28, supersymmetries depending on the choice

of parameters.3 The N = 20 solution has been constructed before in [25].

This paper is organized as follows. In section two, we state the identities on the

components of the supercurvature implied by the field equations and Bianchi identities of

11-dimensional supergravity, the R-identities. In section 3, we give the canonical forms

of the two normals to the Killing spinors. In section 4, we solve the R-identities for

backgrounds with 30 Killing spinors. In section 5, we show that the supercurvature of

backgrounds with 30 supersymmetries vanishes using in addition the explicit dependence

of the supercurvature on the fundamental fields. In section 6, we complete the proof

2The superalgebra considered here is the symmetry algebra, which includes the isometries, of the solution

in the spirit of [26, 27] and it should not be confused with asymptotic supersymmetry algebra with brane

charges mentioned earlier.
3 The apparent absence of a plane wave solution admitting a symmetry superalgebra with 28 odd

generators, as discussed in [24], is puzzling.
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by demonstrating that there are no backgrounds with 30 supersymmetries which arise as

discrete quotients of maximally supersymmetric backgrounds. In section 7 we investigate a

class of plane wave solutions conjectured to preserve 28 supersymmetries, and in section 8

we give our conclusions. In appendices A, B and C, we present details of the computation

for the choice of normal spinors and for the analysis of R-identities. In appendix D, we

investigate the existence of plane wave solutions with 28 supersymmetries.

2 The integrability conditions

The bosonic fields of 11-dimensional supergravity [28] are a metric g and a 4-form field

strength F . The first part the proof that all M-theory backgrounds with 30 supersym-

metries are maximally supersymmetric relies on the properties of the curvature of the

supercovariant connection. In particular, the integrability condition of the Killing spinor

equation, Dǫr = 0 is

RMNǫ
r = [DM ,DN ]ǫr =

5
∑

k=1

1

k!
(T k

MN )A1A2...Ak
(ΓA1A2...Ak)ǫr = 0 (2.1)

where {ǫr} for r = 1, . . . , 30 is a basis for the Killing spinors, and R is the supercovari-

ant curvature. The (real) components T of R depend on the physical fields and their

derivatives, and some of them contain the Riemann curvature of spacetime. Their precise

expressions are given in [1, 2].

An essential part of the proof is to show that if there are 30 linearly independent

Killing spinors, then R = 0. This will demonstrate that the backgrounds with 30 super-

symmetries are locally maximally supersymmetric. To show this, one has to implement

the field equations and Bianchi identities of 11-dimensional supergravity as well as utilize

the explicit dependence of R on the physical fields. In turn, some of these conditions can

be expressed as relations on the components T of R

(T 1
MN )N = 0 , (T 2

MN )P
N = 0 , (T 1

MP1
)P2

+
1

2
(T 3

MN )P1P2

N = 0 ,

(T 2
M [P1

)P2P3] −
1

3
(T 4

MN )P1P2P3

N = 0 , (T 3
M [P1

)P2P3P4] +
1

4
(T 5

MN )P1···P4

N = 0 ,

(T 4
M [P1

)P2···P5] −
1

5 · 5!ǫP1···P5

Q1···Q6(T 5
MQ1

)Q2···Q6
= 0 (2.2)

(T 1
MN )P = (T 1

[MN )P ] , (T 2
MN )PQ = (T 2

PQ)MN , (T 3
[MN )PQR] = 0 , (2.3)

(T 3
(M1|(N1

)N2)|M2)M3
= 0 , (2.4)

and

(T 4
(M1|(N1

)N2)|M2)M3M4
= 0 . (2.5)

For convenience, we shall refer to (2.2)–(2.5) as the supercurvature identities or R-identities

for short. In order to analyse the N = 30 solutions, it is particularly useful to note the
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following conditions, which relate the 4-form field strength to the T i:

F[N1N2N3N4
FN5N6N7N8] =

6

35
ǫN1N2N3N4N5N6N7N8

M1M2M3(T 1
M1M2

)M3
(2.6)

FM [Q1Q2Q3
F|N |Q4Q5Q6] =

1

5!
ǫQ1Q2Q3Q4Q5Q6

N1N2N3N4N5

(

9

10
(T 5

MN )N1N2N3N4N5

+
3

2
(T 5

[M |N1
)N2N3N4N5|N ] − 2(T 5

[M |L)N1N2N3N4

LηN5|N ]

−4ηMN1
ηNN5

(T 5
L1L2

)N2N3N4

L1L2

)

(2.7)

FL[N1N2N3
FN4]MN

L =
9

2
(T 4

MN )N1N2N3N4
+ 6(T 4

NL)[N1N2N3

LηN4]M

−6(T 4
ML)[N1N2N3

LηN4]N (2.8)

We use the method introduced in [7] to solve the integrability conditions (2.1). In

particular, we introduce the normals νp to the Killing spinors with respect to the Majorana

inner product B and write

RMN,ab = uMN,ip η
i
aν

p
b (2.9)

where a, b are spinor indices,4 and {ηi} for i = 1, . . . , 32 is a canonical Majorana basis,

either in the timelike or null basis, as described in [5, 29], and u’s are real spacetime

functions. Clearly R expressed as in (2.9) satisfies the integrability condition (2.1). Next,

on using the spinor identity

ηaθb =
1

32

5
∑

k=0

(−1)k+1

k!
B(η,ΓA1A2...Ak

θ) (ΓA1A2...Ak)ab , (2.10)

one finds that the components T are expressed in terms of the u’s as

(T k
MN )A1A2...Ak

=
(−1)k+1

32
uMN,ipB(ηi,ΓA1A2...Ak

νp) . (2.11)

Substituting these expressions for T ’s back into the R-identities, one obtains conditions

on u’s. In particular, if the R-identities imply that u = 0, then T = 0 and the associated

solutions are locally maximally supersymmetric.

In addition to the conditions on the u’s imposed by the R-identities, there is also

the restriction

uMN,iq B(ηi, νq) = 0 . (2.12)

This is because the (reduced) holonomy of the supercovariant connection is contained in

SL(32,R) [18, 19] rather than GL(32,R). The above condition is the requirement that the

trace of the supercovariant curvature vanishes.

4We follow the form and spinor conventions in [5, 29].
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3 Normal spinors

Further progress to proving whether R = 0 for backgrounds with 30 supersymmetries

depends on the use of gauge symmetry Spin(10, 1) of 11-dimensional supergravity to choose

the two normals ν1 and ν2 of the Killing spinors. The first normal can be chosen as in [7]. In

particular, there are two inequivalent orbits of Spin(10, 1) in the space of Majorana spinors

with isotropy groups SU(5) and Spin(7) ⋉ R
9. A representative of the SU(5) orbit is

ν1 = 1 + e12345 , (3.1)

and a representative of the Spin(7) ⋉ R
9 orbit is

ν1 = 1 + e1234 . (3.2)

It is essential to note that the representatives of the two different orbits have been expressed

in two different bases. The representative of the SU(5) orbit has been written in the time-

like basis while the representative of the Spin(7) ⋉ R
9 has been written in the null basis,

for the definition of these spinor bases see [5, 29]. Note that the 1-form spinor bi-linear of

the SU(5) invariant normal is time-like while the same form of the Spin(7) ⋉ R9 invariant

norma is null. In what follows, we shall use the remaining gauge symmetry to choose the

second linearly independent normal ν2 to the Killing spinors. We shall label the two cases

with the isotropy groups of the first normal.

3.1 SU(5)

Suppose that the first normal is ν1 = 1 + e12345. To choose the second normal up to SU(5)

transformations that leave invariant ν1, we first note that the most general form of ν2 in

the time-like spinor basis of [5] is

ν2 = α.1 + ᾱe12345 + βkek +
1

4!
(⋆β̄)m1m2m3m4em1m2m3m4

+
1

2
σn1n2en1n2

− 1

3!
(⋆σ̄)k1k2k3ek1k2k3

, (3.3)

where here k,m, n = 1, . . . , 5 and α, βk, σmn are in general complex valued, and ⋆ denotes

the Hodge dual on R
5. Then we decompose the Majorana representation of Spin(10, 1)

under SU(5) and appropriately choose representatives for the orbits of isotropy groups.

The procedure has been explained in detail in appendix A. It turns out that there are two

cases to consider, according to whether β = 0 or β 6= 0. In the β 6= 0 case, the second

normal spinor can be chosen as

ν2 = ix(1 − e12345) + e1 + e2345 + σ12(e12 − e345) + σ34(e34 − e125)

+σ45(e45 − e123) + σ23e23 − σ̄23e145 , (3.4)

where x, σ12, σ34, σ45 are real spacetime functions.

In β = 0 case , the second normal spinor can be chosen as

ν2 = ix(1 − e12345) + σ12(e12 − e345) + σ34(e34 − e125) , (3.5)

where x, σ12, σ34 are real spacetime functions.
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3.2 Spin(7) ⋉ R
9

Suppose that the first normal spinor is ν1 = 1 + e1234. To choose the second normal up to

Spin(7) ⋉ R
9 that leave invariant ν1, we first note that the most general form of ν2 in the

null basis of [29] is

ν2 = α1 + ᾱe1234 + we5 + w̄e12345 + τ jej −
1

3!
(⋆τ̄ )n1n2n3en1n2n3

+ψjej5 −
1

3!
⋆ ψ̄n1n2n3en1n2n35 +

1

2
(Aij − ⋆Āij)eij +

1

2
(Bij − ⋆B̄ij)eij5 , (3.6)

where here i, j, n = 1, . . . , 4, α,w, τ i, ψi, Aij , Bij are complex valued and ⋆ denotes the

Hodge dual on R
4.

After a detailed analysis which can be found in appendix A, the second normal can be

written in one of four possible canonical forms:

ν2 = c1(e5 + e12345) + i(e5 − e12345) + c2(e15 + e2345) + c3(e14 − e23) , (3.7)

or

ν2 = k1(e5 + e12345) + e15 + e2345 + ik2(e1 − e234) + k3(e2 − e134) , (3.8)

or

ν2 = ix(1 − e1234) + e5 + e12345 , (3.9)

or

ν2 = iy(1 − e1234) + τ(e1 + e234) , (3.10)

where c1, c2, c3, k1, k2, k3, x, y, τ are real functions.

Further simplification is possible. This is because if for one of the above normals the

associated 1-form bi-linear is not null, then the corresponding case is not new but part

of the cases for which the first normal is ν1 = 1 + e12345. Thus the new cases which

arise for ν1 = 1 + e1234 are those for which both normal spinors are associated with null

1-form bi-linears. Evaluating the norm of the 1-form bi-linears for (3.7)–(3.10), one finds

−16c23(1 + c21), −16(k2
2 + k2

3), −16x2 and 0 respectively. Setting these expressions to zero,

one obtains the solutions c3 = 0, k2 = k3 = 0 and x = 0 in (3.7)–(3.9). Using this, the

cases (3.7)–(3.9) can be combined as

ν2 = b1(e5 + e12345) + ib2(e5 − e12345) + b3(e15 + e2345) (3.11)

where b1, b2, b3 are real functions. In fact, an additional simplification is possible by requir-

ing that the 1-form bi-linear associated with ν2 + ν1 be null which forces b2 = 0. This is

because the second normal must be linearly independent and can be defined up to choice

of the first one.

To summarize, when ν1 = 1 + e1234, one can without loss of generality choose

ν2 = a(e5 + e12345) + b(e15 + e2345) (3.12)

or

ν2 = im(1 − e1234) + n(e1 + e234) (3.13)

where a, b,m, n are real functions.

– 7 –
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4 Solution of R-identities

Having specified the normals, the Killing spinors are determined using the orthogonality

condition. This allows us to express the T components of supercurvature in terms of u’s.

Substituting this into the R-identities, one obtains linear conditions on the u’s. In many

cases, the linear conditions on the u’s imply that all the u’s vanish and so such backgrounds

are locally maximally supersymmetric. In some other cases, the linear system for the u’s

does not imply that all the u’s vanish. As a result it may appear that there could be some

non-trivial solutions. However, after taking into account the explicit dependence of T ’s in

terms of the physical fields, one finds that all the u’s are forced to vanish.

4.1 Spin(7) ⋉ R
9

We have shown that if the first normal is ν1 = 1 + e1234, then ν2 can be chosen either

as (3.12) or as (3.13). Therefore there are two cases to investigate which in turn can be

separated into different subcases.

4.1.1 ν1 = 1 + e1234, ν
2 = a(e5 + e12345) + b(e15 + e2345)

To proceed, we solve the R-identities for the u’s first in the special cases for which either

b or a vanishes, and then for the case a, b 6= 0. If b 6= 0, then after a computer assisted

computation, one finds that the linear system implies that u = 0, and hence the solutions

are locally maximally supersymmetric.

In the remaining case, for which ν2 = e5 + e12345, one finds that after solving the

R-identities, there is one real u degree of freedom remaining. In addition, none of the

T i vanish.

4.1.2 ν1 = 1 + e1234, ν
2 = im(1 − e1234) + n(e1 + e234)

This case is separated into various special cases. The R-identities are solved for all these

and it turns out that some of the u’s do not vanish. In particular, we find the following.

(i) If ν2 = i(1 − e1234), the R-identities are not sufficient to set all u’s to zero. In fact

after solving the R-identities, one finds that there are 78 real u degrees of freedom

remaining. Nevertheless substituting the solution of the R-identities into (2.11), one

finds that

T 1 = 0, T 2 = 0 , (4.1)

However although several components of T 3, T 4 and T 5 vanish, T 3, T 4 and T 5 are

not zero.

(ii) If ν2 = e1 + e234, the R-identities imply that all, but 3 real u degrees of freedom,

vanish. Substituting this result into (2.11), one finds that

T 1 = 0, T 3 = 0 , (4.2)

However, T 2, T 4 and T 5 are not necessarily zero.

– 8 –
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(iii) If both n,m are non-vanishing and so the direction of the second normal can be

chosen as ν2 = i(1 − e1234) + y(e1 + e234), the R-identities again imply that 3 real u

degrees of freedom remain. Again one finds that

T 1 = 0 , (4.3)

however T 2, T 3, T 4 and T 5 are not necessarily zero.

4.2 SU(5)

We have shown that if the first normal is ν1 = 1 + e12345, there are distinct choices for

the second normal given in (3.4) and in (3.5). In the solution of the R-identities these in

turn separate into different subcases depending on the non-vanishing components of the

second normal.

4.2.1 ν1 = 1 + e12345, ν
2 = ix(1 − e12345) + σ12(e12 − e345) + σ34(e34 − e125)

To investigate the various subcases observe that if one σ’s is non-vanishing, then without

loss of generality we can choose it to be σ12. This is because the orbits represented by

(e12 − e345) and (e34 − e125) can be treated symmetrically-they are interchanged by the

lexicographic transformation 12 ↔ 34. Thus from now on, in such case, we shall choose

the normal direction by setting σ12 = 1. We also write σ34 = β.

The various subcases that arise are as follows.

(i) If both σ components vanish and so ν2 = i(1 − e12345), the R-identities imply that

78 real u degrees of freedom remaining. Nevertheless, one finds that

T 1 = 0, T 2 = 0 . (4.4)

In addition, several components of T 3, T 4 and T 5 vanish. However, the R-identities

do not force T 3, T 4 and T 5 to vanish.

(ii) If β 6= 0, then u = 0 and so R = 0. Therefore all such backgrounds are locally

maximally supersymmetric.

(iii) If x 6= 0, β = 0, the R-identities imply that all, but 2 real u degrees of freedom,

vanish. Moreover, one can show that

T 1 = 0, T 3 = 0, T 4 = 0 . (4.5)

In addition, several components of T 2 and T 5 vanish. However, the R-identities do

not force T 2 and T 5 to vanish.

(iv) If x = β = 0, the R-identities imply again that 2 real u degrees of freedom are not

vanishing. In case (iii) above

T 1 = 0, T 3 = 0, T 4 = 0 . (4.6)

However, although several components of T 2 and T 5 vanish, T 2 6= 0 and T 5 6= 0.

– 9 –
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4.2.2 ν1 = 1+ e12345, ν
2 = ix(1− e12345)+ e1 + e2345 +σ12(e12 − e345)+σ34(e34 − e125)+

σ45(e45 − e123) + σ23e23 − σ̄23e145

This case can be separated into various subcases depending on the non-vanishing compo-

nents of the second normal. In all the subcases that arise, the R-identities imply that u = 0

and so R = 0. Thus all these backgrounds are locally maximally supersymmetric.

5 Local maximal supersymmetry

Having solved the R-identities, we have found that in a number of cases some of the u’s do

not vanish. To make further progress, we shall utilize the explicit dependence of the T ’s

in terms of the physical fields. As we shall show, the resulting additional conditions are

sufficient to show that all T ’s vanish, and so all backgrounds with 30 supersymmetries are

locally maximally supersymmetric.

5.1 Solutions with T 1 = T 3 = T 4 = 0

These T ’s vanish in the cases (iii) and (iv) of 4.2.1. To solve these conditions, we first

observe that T 1 = 0 implies that

F ∧ F = 0 , (5.1)

which in turn gives

iXF ∧ F = 0 . (5.2)

Substituting this into T 3 = 0 and using the Bianchi dF = 0, one finds that

∇F = 0 , (5.3)

i.e. F is covariantly constant with respect to the Levi-Civita connection ∇.

It remains to explore T 4 = 0. For this observe that if T 4 = 0 then (2.8) implies that

FC[A1A2A3
FC

A4]MN = 0 . (5.4)

This is the fundamental identity of a Lorentzian 3-Lie algebra. The solutions of this identity

have been classified in [30]. Applying the classification results to our case, we find that the

solutions for F are either

F = λ1dVol(V1) + λ2dVol(V2) , (5.5)

where λ1, λ2 are constants and V1 and V2 are orthogonal 4-planes such that at most one of

them is Lorentzian and the rest Euclidean; or there is a null 1-form v such that

F = v ∧ ϕ , (5.6)

and ϕ are the structure constants of a Euclidean metric Lie algebra, g; or

F = v ∧ ϕ+ λdVol(V ) (5.7)
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where V is a Euclidean 4-plane orthogonal to the Lie algebra g. Since dim g ≤ 9, the

semisimple Lie algebras that may occur are

su(2) , su(2) ⊕ su(2) , su(2) ⊕ su(2) ⊕ su(2), su(3) . (5.8)

However, F ∧ F = 0. For the solution (5.5) this implies that λ1λ2 = 0 and so either

λ1 = 0 or λ2 = 0. In either case

F = λdVol(V ) (5.9)

is a simple form, but there are two cases to consider depending on whether V is a Euclidean

or a Lorentzian plane. The solution (5.6) satisfies F ∧ F = 0 automatically. Applying

F ∧ F = 0 in (5.7) and assuming that ϕ 6= 0, one concludes that λ = 0. As a result, the

solution of the conditions which arise from T 1 = T 3 = T 4 = 0 implies that either F is

simple and it is given in (5.9) for V a Euclidean or a Lorentzian 4-plane, or F is given

in (5.6).

It remains to examine whether T 2 and T 5 vanish. It turns out that it suffices to show

that T 5 = 0 since in all cases under consideration in this section a direct inspection of T 2

and T 5 implies that if T 5 vanishes so does T 2. Moreover T 5 can be simplified as

(T 5
MN )A1...A5

=
1

(72)2
[

− 6FMB1B2B3
FNC1C2C3

ǫB1B2B3C1C2C3
A1...A5

+9FLPB1B2
FLP

C1C2
ǫMN

B1B2C1C2
A1...A5

]

. (5.10)

Now if F is simple and so given in (5.9), T 5 = 0. Thus T 2 = 0 and so all such solutions

are locally maximally supersymmetric. Hence, the only remaining possibility is that for

which F is given by (5.6).

To proceed, observe that if F is given by (5.6), then the second term in (5.10) vanishes.

If a solution exists and F is given as in (5.6), the null vector field associated with v, also

denoted by v, satisfies

vM (SMQ1
)Q2Q3Q4Q5Q6Q7

= vM (SQ1Q2
)MQ3Q4Q5Q6Q7

= 0 , (5.11)

where

(SN1N2
)M1M2M3M4M5M6

= FN1[M1M2M3
F|N2|M4M5M6] . (5.12)

It is straightforward to verify, by direct computation, that in cases (iii) and (iv) of sec-

tion 4.2.1, if T 5 6= 0, there are no null vector fields satisfying (5.11). Hence these cases

must in fact have T 5 = 0, and hence be locally maximally supersymmetric.

5.2 Analysis of the remaining solutions

The remaining solutions consist of the Spin(7) cases with ν2 = e5 + e12345, ν
2 = e1 + e234,

ν2 = i(1 − e1234) + y(e1 + e234) (y ∈ R, y 6= 0), and ν2 = i(1 − e1234). There is also a

SU(5) solution with ν2 = i(1 − e12345). The analysis of these solutions is somewhat more

involved, and the details are presented in appendices B and C. In all cases, one finds that

the solutions are locally maximally supersymmetric.
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6 Discrete quotients

So far, we have ruled out the existence of local geometries that preserve 30 supersymmetries

in 11-dimensional supergravity. To prove that there are no solutions that preserve 30

supersymmetries, it remains to show that there are no such backgrounds which can be

constructed as discrete quotients of maximally supersymmetric ones. The simply connected

maximally supersymmetric backgrounds are isometric [1, 2] to Minkowski R
10,1, Freund-

RubinAdS4×S7 and AdS7×S4 [31], and plane wave [32] CW11 solutions. New backgrounds

that preserve less than maximal supersymmetry can arise by taking appropriate quotients of

these backgrounds with discrete subgroups of their isometry groups. The general procedure

for investigating the number of supersymmetries preserved by such discrete quotients has

been explained in [22, 23]. It has also been applied in [11] to rule out the existence of

discrete quotients with 31 supersymmetries in 11-dimensional supergravity, and in [8, 10]

to rule out the existence of such backgrounds with 28 and 30 supersymmetries in IIB

supergravity. Because the general method has already been explained in detail, we shall

not elaborate apart from saying that it suffices to consider elements in the appropriate

isometry groups which lie in the image of the exponential map, ie they are written as

eX where X is an element of the Lie algebra of the isometry group. Moreover X can be

specified up to a conjugation. As a result, X can be put onto a maximal torus. Since the

isometry groups are Lorentzian there are different maximal tori and so different canonical

forms for X leading to several different cases that should be investigated. We shall apply

this general procedure for the Minkowski and plane wave backgrounds. It turns out that

for the AdS backgrounds a simpler argument can be used to rule out the existence of

N = 30 backgrounds.

6.1 Minkowski

The isometry group of Minkowski space is the Poincaré group SO(10, 1) ⋉ R
10,1. It is easy

to see that identifications along the subgroup of translations preserve all supersymmetry.

Thus to preserve less than maximal supersymmetry, one should consider discrete subgroups

of the Lorentz group. Suppose that X ∈ spin(10, 1). Up to a conjugation, X can be written

either as

X =
1

2
[θ0Γ05 + θ1Γ16 + θ2Γ27 + θ3Γ38 + θ4Γ49] , (6.1)

or as

X =
1

2
[θ1Γ16 + θ2Γ27 + θ3Γ38 + θ4Γ49 + θ5Γ5♮] , (6.2)

or as

X =
1

2
[
√

2Γ♮(Γ0 + Γ5) + θ1Γ16 + θ2Γ27 + θ3Γ38 + θ4Γ49] . (6.3)

Let us first consider the (6.1) case first. Decompose the spinor representations ∆32 of

Spin(10, 1) in representations of the commuting elements Γ05,Γ16,Γ27,Γ38 and Γ49. One

finds that ∆32 = ⊕(σ0,...,σ4)Wσ0σ1...σ4
and X becomes

X =
1

2
[θ0σ0 + iθ1σ1 + iθ2σ2 + iθ3σ3 + iθ4σ4] , (6.4)

– 12 –



J
H
E
P
0
3
(
2
0
1
0
)
1
1
2

where σ0, . . . , σ = ±1.

Now assume that eX preserves 30 spinors. In such case, there is a choice of σ’s such

that both Wσ0σ1...σ4
and Wσ0σ̄1...σ̄4

with σ̄ = −σ are invariant, ie eX = 1 for both cases.

Using this, one concludes that

eσθ0 = 1 (6.5)

and so θ0 = 0. Supersymmetry is not preserved under time-like identifications as expected.

Using this next observe that if for some σ’s Wσ0σ1...σ4
is invariant, then the subspaces

W+σ1...σ4
, W−σ1...σ4

, W+σ̄1...σ̄4
and W−σ̄1...σ̄4

are also invariant. Therefore the invariant

subspaces have dimension 4k and so backgrounds with 30 supersymmetries cannot arise

this way.

To investigate the second case (6.2), again decompose the spinor representation ∆32

in eigenspaces Wσ1...σ5
of Γii+5, i = 1, 2, 3, 4, 5, and write X as

X =
1

2
[iθ1σ1 + iθ2σ2 + iθ3σ3 + iθ4σ4 + iσ5θ5] , (6.6)

where σ1, . . . , σ5 = ±1. Now in order the discrete elements to preserve precisely 30 su-

persymmetries, the invariant subspaces should be in complex conjugate pairs. As a result

the non-invariant subspace should be the sum of a 1-dimensional subspace and its com-

plex conjugate. Without loss of generality, assume that the non invariant subspace is

W1,1,1,1,1 ⊕ W−1,−1,−1,−1,−1. Since eX = 1 for σ1 = −1, σ2 = σ3 = · · · = σ5 = 1 and

σ1 = 1, σ2 = −1, σ3 = · · · = σ5 = 1 multiplying the two expressions of eX together, we

find that

ei[θ3+θ4+θ5] = 1 . (6.7)

Next, multiply both sides of eX = 1 for σ1 = σ2 = 1, σ3 = σ4 = σ5 = −1 with (6.7).

One concludes that eX = 1 for σ1 = · · · = σ5 = 1, and so W1,1,1,1,1 ⊕ W−1,−1,−1,−1,−1

is also invariant. Therefore assuming that 30 supersymmetries are preserved, one finds

that all 32 of the supersymmetries are preserved and so there are no backgrounds with 30

supersymmetries which can arise as discrete quotients in this way.

It remains to investigate the null case (6.3). eX can be written as

eX = eR(1 + Γ♮Γ+) (6.8)

where

R =
1

2
[θ1Γ16 + θ2Γ27 + θ3Γ38 + θ4Γ49] . (6.9)

Decomposing the spinor as ǫ = ǫ+ + ǫ−, with Γ+ǫ+ = 0, ie ∆32 = W+ ⊕W−, one has that

the invariance equations can be rewritten as

eRǫ+ + eRΓ♮Γ+ǫ− = ǫ+
eRǫ− = ǫ− (6.10)
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To preserve 30 supersymmetries, either eR leaves invariant either all of W−, or a co-

dimension one or codimension two subspace I in W−. When eR leaves all of W− in-

variant, (6.10) implies that eR = 1, and so the first equation implies that all ǫ− must

vanish. The background preserves 1/2 of supersymmetry.

If eR does not leave the whole of W− invariant, decompose W− into representations

of the commuting elements Γ16,Γ27,Γ38 and Γ49; W− = ⊕(σ1...σ4)Zσ1...σ4
. Observe that if

Zσ1...σ4
is invariant under eR then so is Zσ̄1...σ̄4

, where σ̄ = −σ. As the invariant subspaces

occur in complex conjugate pairs, it follows that there cannot be a co-dimension 1 subspace

I ⊂ W− invariant under eR. One can also exclude the possibility of a co-dimension 2

invariant subspace of W− by taking, without loss of generality, the non-invariant subspace

to be Z+1+1+1+1 ⊕ Z−1−1−1−1. Then as eR = 1 on W− for σ1 = 1, σ2 = −1, σ3 = 1, σ4 = 1

and also for σ1 = −1, σ2 = 1, σ3 = 1, σ4 = 1, multiplying the two expressions for eR

together gives

ei(θ3+θ4) = 1 . (6.11)

Next, multiply both sides of eR = 1 for σ1 = σ2 = 1, σ3 = σ4 = −1 with (6.11); one finds

that Z+1+1+1+1 ⊕ Z−1−1−1−1 must also be invariant.

In conclusion, there are no discrete quotients of Minkowski space R
10,1 which preserve

30 supersymmetries.

6.2 AdS4 × S7 and AdS7 × S4

The spinor ∆32 representation of Spin(10, 1) is decomposed under the isometry group

SO(3, 2) × SO(8) of AdS4 × S7 as ∆4 × ∆+
8 , where ∆4 is the Majorana representation of

Spin(3, 2) and ∆+
8 is the Majorana-Weyl representation of Spin(8). Invariant subspaces of

discrete subgroups of the isometry groups have dimension nm, where n ≤ 4 and m ≤ 8.

Since 30 cannot be written this way, there are no discrete quotients of the AdS4 × S7

background which preserve 30 supersymmetries.

Similarly ∆32 representation of Spin(10, 1) is decomposed under the isometry group

SO(6, 2) × SO(5) of AdS7 × S4 as ∆+
8 × ∆4, where ∆+

8 is the Weyl representation of

Spin(6, 2) and ∆4 is the Dirac representation of Spin(8). Again the dimension of the

invariant subspaces should be nm and so there are no discrete quotients of the AdS7 × S4

background which preserve 30 supersymmetries.

6.3 Plane wave

The symmetry superalgebra of the maximally supersymmetric plane wave solution [32] of

11-dimensional supergravity has been computed in [26]. The investigation of the existence

of discrete quotients of the plane wave solution which preserve 30 supersymmetries is similar

to that done in [11] for the existence of discrete quotients that preserve 31 supersymmetries.

However, there are some differences because the requirement of 30 supersymmetries is

weaker. Because of this, we shall repeat some of the steps of the analysis.

To examine the supersymmetry preserved by the discrete quotients of the maximally

supersymmetric plane wave, one needs the bosonic part of the symmetry superalgebra

and the way that the bosonic generators act on the spinorial generators. The bosonic
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part of the superalgebra has generators (e+, e−, ei, e∗i ) and (Mij) for i, j ≤ 3 and i, j ≥ 4,

i, j = 1, . . . , 9. The commutators of the bosonic generators are

[e−, ei] = e∗i ,

[e−, e
∗
i ] = −µ

2

9
ei (i ≤ 3) , [e−, e

∗
i ] = −µ

2

36
e− (i ≥ 4) ,

[e∗i , ej ] = −µ
2

9
δije+ (i, j ≤ 3) , [e∗i , ej ] = −µ

2

36
δije+ (i, j ≥ 4) ,

[Mij ,Mkl] = −δikMjl + δjkMil − (k ↔ l) (i, j, k, l ≤ 3) and (i, j, k, l ≥ 4) ,

[Mij , ek] = −δikej + δjkei , [Mij , e
∗
k] = −δike∗j + δjke

∗
i . (6.12)

In particular the generators (Mij) span the Lie algebra so(3)⊕ so(6). The commutators of

the bosonic generators with the spinorial generators Q± are

[e+, Q±] = 0 ,

[e−, Q+] = −µ
4
IQ+ , [e−, Q−] = − µ

12
IQ−

[ei, Q+] = −µ
6
IΓiΓ+Q− (i ≤ 3) , [ei, Q+] = − µ

12
IΓiΓ+Q− (i ≥ 4) ,

[e∗i , Q+] = −µ
2

18
ΓiΓ+Q− (i ≤ 3) , [e∗i , Q+] = −µ

2

72
ΓiΓ+Q− (i ≥ 4) ,

[Mij , Q±] =
1

2
ΓijQ± , (i, j ≤ 3) and (i, j ≥ 4) , (6.13)

where I = Γ123 and Γ±Q± = 0.

The most general Lie algebra element of the symmetry group of the background is

X = u−e− + u+e+ + viei + wie∗i + θ1M12 + θ2M45 + θ3M67 + θ4M89 (6.14)

where we have used the conjugation by SO(3) × SO(6) to put the component of X long

so(3) ⊕ so(6) in the Cartan subalgebra. Inspecting the commutators of the bosonic gener-

ators with the spinorial ones, X acts on the spinors as

X = −
[

µ

4
IΠ+ +

µ

12
Π−

]

u− −
∑

i

λi

2
viIΓiΓ+ −

∑

i

λ2
i

2
wiΓiΓ+

+
1

2
θ1Γ12 +

1

2
θ2Γ45 +

1

2
θ3Γ67 +

1

2
θ4Γ89 , (6.15)

where Π± are projections, Π±Q± = Q±, Π2
+ = Π+, Π2

− = Π−, Π+ + Π− = 1 and Π+Π− =

Π−Π+ = 0, and λi = µ
3 for i ≤ 3 and λi = µ

6 for i ≥ 4. Since (6.15) does not depend

on u+, any identification along this direction will preserve all the supersymmetry of the

background. Furthermore decomposing the spinor representation as W+ ⊕ W−, where

Γ+W+ = Γ−W− = 0, ie ǫ± = Π±ǫ, the invariance condition eXǫ = ǫ can be written as

eAǫ+ + Γ+βǫ− = ǫ+ ,

eAǫ− = ǫ− , (6.16)
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where

A = −
[

µ

4
IΠ+ +

µ

12
IΠ−

]

u− +
1

2
θ1Γ12 +

1

2
θ2Γ45 +

1

2
θ3Γ67 +

1

2
θ4Γ89 , (6.17)

and β is an involved expression5 associated with the components of X that contain Γ+

which its precise form is not needed at present.

To continue, first observe that for the invariance condition on ǫ−, eAǫ− = ǫ− A is

simplified as

A = − µ

12
Iu− +

1

2
θ1Γ12 +

1

2
θ2Γ45 +

1

2
θ3Γ67 +

1

2
θ4Γ89 (6.18)

To preserve 30 supersymmetries, eA should leave invariant either all W− or a codimension 2

subspace S. (As we shall see the codimension 1 case does not occur.) First we consider the

latter case to show if a codimension 2 subspace is invariant, then all W− is invariant. Since

the generators I, Γ12, Γ45, Γ67 and Γ89 commute and square to −1, (the complexified) W−
can be decomposed in their eigenspaces as W− = ⊕σ0...σ4

Wσ0...σ4
, where σ0, . . . σ4 = ±1

and σ0σ2σ3σ4 = −1. Then

A = − µ

12
iu−σ0 +

i

2
θ1σ1 +

i

2
θ2σ2 +

i

2
θ3σ3 +

i

2
θ4σ4 . (6.19)

Clearly if for some choice of σ’s, Wσ0...σ4
is invariant, then the complex conjugate subspace

Wσ̄0...σ̄4
, where σ̄ = −σ, is also invariant. Thus the invariant subspaces are always of

even codimension.

Next assume without loss of generality that W+1+1+1+1−1 ⊕W−1−1−1−1+1 is not an

invariant subspace and the remaining eigenspaces are invariant. This implies that eA = 1

for σ0 = σ2 = −σ3 = σ4 = σ1 = 1 and eA = 1 for −σ0 = −σ2 = σ3 = −σ4 = σ1 = 1. Using

this, one concludes that eiθ1 = 1. In addition eA = 1 for σ0 = σ2 = σ3 = −σ4 = −σ1 = 1.

Multiplying eA with this choice of σ’s with eiθ1 = 1, one finds that W+1+1+1+1−1 is also

invariant. Therefore, if one assumes that a codimension 2 subspace of W− is invariant,

then all W− is invariant.

Assuming that all W− is invariant to make further progress, one has to examine the

action of eA on W+. Again W+ can be decomposed as W+ = ⊕σ0...σ4
Wσ0...σ4

in eigenspaces

of the generators I, Γ12, Γ45, Γ67 and Γ89 but now σ0σ2σ3σ4 = 1, where σ0, . . . σ4 =

±1. Moreover

A = −µ
4
iu−σ0 +

i

2
θ1σ1 +

i

2
θ2σ2 +

i

2
θ3σ3 +

i

2
θ4σ4 , (6.20)

ie eA is represented differently on the W− and W+ subspaces. Using that eA = 1 for A

given in (6.19) and taking into account that on W+ σ0σ2σ3σ4 = 1, it is easy to show that

eAǫ+ = e−
µ

3
iu−σ0ǫ+ . (6.21)

5In [11], β is denoted with α̌.
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However eA = 1 for A given in (6.19) implies that µu− = 6nπ, n ∈ Z. Substituting this

into (6.21), one concludes that eA acts with the identity on W+. Thus the invariance

condition (6.16) reduces to

Γ+βǫ− = 0 . (6.22)

In order for a background to preserve 30 supersymmetries, the Kernel of β should have

dimension 14 for some choice of parameters u,w. However it has been shown in [11] that if

eA = 1, the dimension of a non-trivial Kernel is either 8 or 16. Thus there are no discrete

quotients of the maximally supersymmetric plane wave that preserve 30 supersymmetries.

7 Plane waves and 28 supersymmetries

It is clear that as in the case of IIB supergravity, the geometries of M-theory backgrounds

with near maximal number of supersymmetries are severely restricted. It is natural to ask

what is the highest possible fraction of supersymmetry, other than maximal, that can be

preserved. Although backgrounds with 29 supersymmetries cannot be ruled out, the plane

wave superalgebra construction of [24] indicates that there may be a plane wave solution

that preserves 28 supersymmetries. This plane wave superalgebra is characterized by a

(SO(3) × SU(3) × U(1)) ⋉ H9 bosonic symmetry, where H9 is the Heisenberg group with

19 generators. Assuming that this will be a symmetry of the background, one can analyze

all plane wave solutions of M-theory with (SO(3) × SU(3) × U(1)) ⋉H9 symmetry group.

The most general plane wave ansatz with this symmetry is

ds2 = 2dv(du +
1

2
λabx

axbdv) + ds2(R9) , F = dv ∧ Φ , (7.1)

where the transverse space R
9 of the plane wave is decomposed as R

9 = R
3 ⊕R

6 under the

SO(3) × SU(3) symmetry, ds2(R9) = (dxa)2,

Φ = k dvol(R3) + µχ+ µ̄χ̄ , (7.2)

where χ is the SU(3)-invariant (3,0)-form on C
6, and (λab) = λ113×3 ⊕ λ216×6. The inves-

tigation of the Killing spinor equations is presented in appendix C. In particular, one finds

that such plane wave solutions preserve either 16, or 20, or 32 supersymmetries, depending

on the choice of parameters λ1, λ2, k, µ, but not 28. The solution with 20 supersymmetries

has been found before in [25]. So we conclude that there is not a plane wave solution with

28 supersymmetries and (SO(3) × SU(3) × U(1)) ⋉ H9 symmetry group. Of course, this

does not rule out the existence of M-theory solutions with 28 supersymmetries. To estab-

lish the latter, an analysis similar to that which has been undertaken for IIB supergravity

in [10] is required. Nevertheless, it may turn out that the nearly maximally supersymmet-

ric backgrounds of M-theory are more restricted than those of IIB because of the larger

local Lorentz symmetry of the former. At present, the highest number of supersymmetries

known to be preserved by a non-maximally supersymmetric solution is 26, for the case of

the plane wave solution found in [33]. It is not known if this solution is the unique local so-

lution with 26 supersymmetries, or if there are other solutions with more supersymmetries

than this.
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8 Concluding remarks

We have shown that M-theory backgrounds that preserve 30 supersymmetries are maxi-

mally supersymmetric. First we have found that all such backgrounds are locally maximally

supersymmetric by demonstrating that the supercovariant curvature vanishes subject to

field equations and Bianchi identities, and then we proved that they cannot arise as dis-

crete quotients of maximally supersymmetric ones. This result combined with that of [7]

for M-theory backgrounds with 31 supersymmetries leads to the conclusion that all M-

theory backgrounds with more than 29 supersymmetries are maximally supersymmetric.

Moreover, we have explored the possibility of finding a plane wave solution which preserves

28 supersymmetries with symmetry superalgebra that of [24] which has 28 odd generators

and even subalgebra (so(3)⊕ su(3)⊕u(1))⊕s H9. We found that plane wave solutions with

(so(3)⊕ su(3)⊕ u(1))⊕s H9 isometry algebra preserve either 16, 20 or 32 supersymmetries

but not 28 depending on the choice of parameters. The solution with 20 supersymmetries

has been found before in [25].

To classify nearly maximal supersymmetric solutions that preserve less than 30 su-

persymmetries, one can in principle repeat the analysis we have done for the backgrounds

with 30 supersymmetries. For example, the investigation of backgrounds with 29 super-

symmetries will require the choice of three linearly independent normal spinors and so on.

It is clear that for backgrounds with progressively less supersymmetry more normal spinors

should be chosen, and so the gauge group will impose less restriction on the choice of nor-

mals. The analysis will become increasingly involved. Nevertheless, it may be possible to

make further progress in constructing solutions with nearly maximal supersymmetry. This

is based on the empirical observation that if the normal spinors are chosen such that they

have a large sigma group [34], then the R-identities impose less restriction on the supercur-

vature R. This increases the probability to find solutions which are not locally isometric

to maximally supersymmetric ones. An inspection of table 5 in [35] suggests that there are

five different possibilities that can be explored for backgrounds with 28 supersymmetries

in eleven dimensions. Although there is no guarantee that new solutions will be found, it

seems that these are the more promising cases to explore first.
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A Normal spinors

In this section, we construct the generic normal spinors associated with solutions of D=11

supergravity with a 30-dimensional space of Killing spinors. For such solutions, the spinors

are orthogonal (with respect to the Spin(10, 1) invariant inner product B) to two normal
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spinors ν1, ν2. Without loss of generality, ν1, ν2 can be taken to be Majorana. The

conventions for the spinors, differential forms, gamma matrices and inner products are

identical to those in [5, 29].

In particular, without loss of generality, the first normal spinor ν1 can be written in a

particularly simple form using Spin(10, 1) gauge transformations. There are two possibili-

ties, either ν1 is SU(5) invariant, with

ν1 = 1 + e12345 , (A.1)

or ν1 is Spin(7) ⋉ R
9 invariant with

ν1 = 1 + e1234 , (A.2)

where the two spinors have been expressed in the time-like and null spinor bases of [5, 29],

respectively. In what follows, we shall consider these two cases separately.

A.1 Solutions with ν1 = 1 + e12345

For solutions with SU(5) invariant ν1, it is particularly useful to work in the timelike basis

introduced in [5]. The generic form for the second Majorana normal is

ν2 = α 1 + ᾱe12345 + βkek +
1

4!
(⋆β̄)m1m2m3m4em1m2m3m4

+
1

2
σn1n2en1n2

− 1

3!
(⋆σ̄)k1k2k3ek1k2k3

, (A.3)

where here k,m, n = 1, . . . , 5 and α, βk, σmn are in general complex valued, and ⋆ denotes

the Hodge dual on R
5.

There are two cases to consider depending on whether β = 0 or β 6= 0. Suppose that

β 6= 0 and apply a SU(5) gauge transformation to set β2 = β3 = β4 = β5 = 0, with β1 = β,

and β ∈ R. Without loss of generality, set β = 1. Then apply a SU(4) transformation in

the 2, 3, 4, 5 directions to set σ13 = σ14 = σ15 = 0. Next, apply a SU(3) transformation in

the 3, 4, 5 directions to set σ24 = σ25 = 0. Then apply a SU(2) transformation in the 4, 5

direction to set σ35 = 0 also. Moreover ν2 can be chosen up to ν1. Using this, the second

normal can then be written as

ν2 = ix(1 − e12345) + e1 + e2345 + σ12e12 + σ23e23 + σ34e34 + σ45e45

−σ̄12e345 − σ̄23e145 − σ̄34e125 − σ̄45e123 , (A.4)

for x ∈ R. Next, by applying a SU(2) transformation in the 3, 4 directions, one can take

σ45 ∈ R, and a SU(2) transformation in the 4, 5 directions can be used to set σ34 ∈ R, and

finally a SU(4) transformation in the 2, 3, 4, 5 directions can be used to set σ12 ∈ R. The

second normal then simplifies to

ν2 = ix(1 − e12345) + e1 + e2345 + σ12(e12 − e345) + σ34(e34 − e125) + σ45(e45 − e123)

+σ23e23 − σ̄23e145 , (A.5)

where x, σ12, σ34, σ45 ∈ R.

– 19 –



J
H
E
P
0
3
(
2
0
1
0
)
1
1
2

In the second case, β = 0, using the reasoning given in appendix A of [5], one can

apply a SU(5) gauge transformation to write

ν2 = ix(1 − e12345) + σ12(e12 − e345) + σ34(e34 − e125) , (A.6)

for x, σ12, σ34 ∈ R.

A.2 Solutions with ν1 = 1 + e1234

For solutions with Spin(7) ⋉ R
9 invariant ν1, it is particularly useful to work in the null

basis introduced in [29]. In this basis, the most general form for ν2 is

ν2 = α 1 + ᾱe1234 + we5 + w̄e12345 + τ jej −
1

3!
(⋆τ̄ )n1n2n3en1n2n3

(A.7)

+ψjej5 −
1

3!
(⋆ψ̄)n1n2n3en1n2n35 +

1

2
(Aij − (⋆Ā)ij)eij +

1

2
(Bij − (⋆B̄)ij)eij5 ,

where here i, j, n = 1, . . . , 4, α,w, τ i, ψi, Aij , Bij are complex valued and ⋆ denotes the

Hodge dual on R
4.

It is particularly useful to observe that under a R
9 transformation generated by RiΓ+i+

RīΓ+ī + ξΓ+♯ where Rī = (Ri) and ξ ∈ R, w, ψi and Bij do not transform, and

α → α+ 2Riψ
i +

√
2ξw ,

τ j → τ j − 2wRj − 2Ri(B
ij − (⋆B̄)ij) +

√
2ξψj ,

Aij → Aij + 4R[iψj] +
√

2ξBij , (A.8)

where here Ri = δij̄R
j̄.

To proceed, note that one can without loss of generality set Bij = 0 for all i, j. To

see this, first apply a SU(3) transformation in the directions 1, 2, 3 to set the coefficients

of e145 and e245 to zero. Then

we5 + w̄e12345 +
1

2
(Bij − (⋆B̄)ij)eij5 = we5 + w̄e12345 + λe125 − λ̄e345 (A.9)

Next consider the transformation generated by

X =
1

2
ρ
[

eiθΓ12 + e−iθΓ1̄2̄ + e−iθΓ34 + eiθΓ3̄4̄

]

∈ spin(7) (A.10)

for ρ, θ ∈ R.

Under this transformation, one finds that

λ→ 1

2
(1 + cos 2ρ)λ− 1

2
(cos 2ρ− 1)e2iθ λ̄+

1

2
sin 2ρ(w − w̄)eiθ (A.11)

and one can always choose ρ, θ in order to make this expression vanish.

Having eliminated Bij there are a number of cases to consider.

(i) Suppose Im w 6= 0. Then one can set α = 0 and τ i = 0 for all i, by applying a R
9

transformation generated by RiΓ+i +RīΓ+ī + ξΓ+♯, where ξ is fixed by

√
2(Im w)

(

1 +
ψ̄jψj

|w|2
)

ξ + Im

(

α− 1

w
τ jψ̄j

)

= 0 , (A.12)
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and Ri is then given by

Rj =
1

2w
(τ j +

√
2ξψj) . (A.13)

Note that this transformation in fact only sets Im α = 0. However, the real part of

α can also be removed by subtracting a real multiple of ν1 from ν2.

Then apply a SU(4) transformation to set ψ2 = ψ3 = ψ4 = 0 with ψ1 = ψ ∈ R. Next

apply a SU(3) transformation in the directions 2, 3, 4 to eliminate the e12 and e13
terms, and set the e14 coefficient to be real. After applying all these transformations,

one has

ν2 = x(e5 + e12345) + i(e5 − e12345) + ψ(e15 + e2345) + µ(e14 − e23) , (A.14)

where x, ψ, µ ∈ R.

(ii) Suppose Im w = 0. Then we5 + w̄e12345 is Spin(7) invariant and by the reasoning

given previously one can apply a Spin(7) transformation to set Aij = 0 for all i, j,

whilst keeping Bij = 0 also. To proceed there are then a number of sub-cases to

consider.

(a) If ψ 6= 0, then one can apply a R
8 transformation, with Ri = σψi (and ξ = 0) for

appropriately chosen σ ∈ C in order to set α = 0, whilst keeping Aij = 0. Then

apply a SU(4) transformation to set ψ2 = ψ3 = ψ4 = 0 and take without loss of

generality ψ1 = 1. Then apply a SU(3) transformation in the 2, 3, 4 directions

to set τ3 = τ4 = 0 with τ2 ∈ R. Finally, apply a R
9 transformation with

R1 = − 1√
2
ξw, R2 = R3 = R4 = 0 , (A.15)

where

ξ = − Re τ1

√
2(1 + w2)

, (A.16)

which sets Re τ1 = 0. The second normal then simplifies to

ν2 = y(e5 + e12345) + e15 + e2345 + iλ(e1 − e234) + µ(e2 − e134) , (A.17)

for y, λ, µ ∈ R.

(b) If ψi = 0 for all i then there are two further possibilities.

In the first, w 6= 0, and one can use a R
8 transformation to set τ i = 0 for all i.

The second normal then simplifies to

ν2 = iy(1 − e1234) + e5 + e12345 , (A.18)

for y ∈ R.

In the second, w = 0. Then one can use a SU(4) transformation to set τ2 =

τ3 = τ4 = 0 with τ1 = τ ∈ R, and the second normal spinor can be written as

ν2 = iy(1 − e1234) + τ(e1 + e234) . (A.19)
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To summarize so far, the second normal can be written in one of four possible canon-

ical forms:

ν2 = c1(e5 + e12345) + i(e5 − e12345) + c2(e15 + e2345) + c3(e14 − e23) , (A.20)

or

ν2 = k1(e5 + e12345) + e15 + e2345 + ik2(e1 − e234) + k3(e2 − e134) , (A.21)

or

ν2 = ix(1 − e1234) + e5 + e12345 , (A.22)

or

ν2 = iy(1 − e1234) + τ(e1 + e234) , (A.23)

where c1, c2, c3, k1, k2, k3, x, y, τ ∈ R.

Further simplification can be obtained by computing the norms of the vector field

bilinears associated with ν2 in the above four cases (A.20)–(A.23). One finds −16c23(1+c21),

−16(k2
2 + k2

3), −16x2 and 0 respectively. If any of these norms does not vanish, then the

second normal is SU(5) invariant. Since the two normals are un-ordered, the corresponding

case has already been considered in the previous section. Therefore we demand that both

normals are associated with null vectors and as a result we set c3 = 0, k2 = k3 = 0 and

x = 0 in (A.20)–(A.22).

Using this, the cases (A.20)–(A.22) can be combined as

ν2 = b1(e5 + e12345) + ib2(e5 − e12345) + b3(e15 + e2345) , (A.24)

for b1, b2, b3 ∈ R. In fact, additional simplification to this case can be obtained by requiring

that the vector biliniear associated with ν2 + ν1 be null. This forces b2 = 0.

To summarize, when ν1 = 1+ e1234, and all possible real linear combinations of ν1 and

ν2 generate null vector fields, one can without loss of generality take

ν2 = a(e5 + e12345) + b(e15 + e2345) , (A.25)

or

ν2 = im(1 − e1234) + n(e1 + e234) , (A.26)

for a, b,m, n ∈ R.

B Analysis of Spin(7) solutions

Before we proceed with the detailed analysis, we shall first introduce some notation. In

particular, it will be convenient to define

(SN1N2
)M1M2M3M4M5M6

= FN1[M1M2M3
F|N2|M4M5M6] ,

(QN1N2
)M1M2M3M4

= FL[M1M2M3
FM4]N1N2

L . (B.1)
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It will also be useful to decompose the indices in a 2+9 fashion. We use the null basis

e± = 1√
2
(e5 ± e0) and use the index notation N̂ to denote any spacetime direction apart

from the lightcone + and −. We also write

φN̂1N̂2N̂3
= F+N̂1N̂2N̂3

,

χN̂1N̂2N̂3
= F−N̂1N̂2N̂3

,

ω
N̂1N̂2

= F+−N̂1N̂2
,

ψ
N̂1N̂2N̂3N̂4

= F
N̂1N̂2N̂3N̂4

. (B.2)

In all Spin(7) cases, after a computer calculation, one finds that the tensors S and Q

satisfy

(Q+N̂1
)+N̂2N̂3N̂4

= 0 ,

(S+N̂
)+N̂1N̂2N̂3N̂4N̂5

= 0 ,

(Q+−)+N̂1N̂2N̂3
= 0 ,

(QN̂1N̂2
)+N̂3N̂4N̂5

= 0 ,

(S+N̂ )N̂1N̂2N̂3N̂4N̂5N̂6
= 0 ,

(S+−)N̂1N̂2N̂3N̂4N̂5N̂6
= 0 . (B.3)

To proceed, note that the constraint (Q+N̂1
)+N̂2N̂3N̂4

= 0 implies that

φ
L̂[N̂2N̂3

φ
N̂4]N̂1

L̂ = 0 . (B.4)

Hence φ are the structure constants of a Euclidean Lie algebra, g, of dimension 9. The

constraint (S+N̂ )+N̂2N̂3N̂4N̂5N̂6
= 0 implies that

φ[N̂2N̂3N̂4
φ

N̂5N̂6]N̂
= 0 . (B.5)

Suppose that g is not abelian. Then write g = gss ⊕9−d u(1), where gss is a semi-simple

Lie algebra of dimension d. Split the indices N̂ as N̂ = {i, α} where i denote indices on

gss, and α are u(1) indices. Then (B.5) can be rewritten as

φℓ2ℓ3ℓ4φℓ5ℓ6n − 3φℓ5[ℓ2ℓ3φℓ4]ℓ6n + 3φℓ6[ℓ2ℓ3φℓ4]ℓ5n + 3φℓ5ℓ6[ℓ2φℓ3ℓ4]n = 0 . (B.6)

Suppose gss = su(2)⊕ su(2) or gss = su(2)⊕ su(2)⊕ su(2), by taking ℓ2, ℓ3, ℓ4 to lie in

one su(2), and ℓ4, ℓ5, n to lie in another su(2), (B.6) implies that φℓ1ℓ2ℓ3φℓ5ℓ6n = 0, which

is a contradiction. Next suppose that gss = su(3), then by contracting (B.6) with φℓ2ℓ3ℓ4 ,

one finds φℓ5ℓ6n = 0, which again is a contradiction. Hence, the only solution is gss = su(2)

for which (B.5) holds automatically. Therefore g = ⊕9u(1) or g = su(2) ⊕6 u(1).

To continue consider first the case g = su(2) ⊕6 u(1). Examining various components

of T 4 and T 5, we find

(i) (Q+−)+ℓ1ℓ2α = 0 implies that ωiα = 0.

(ii) (Qij)+β1β2β3
= 0 implies that ψkβ1β2β3

= 0.
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(iii) (Qij)+β1β2ℓ = 0 implies that ωβ1β2
= 0 and ψijβ1β2

= 0.

(iv) (S+β)ℓ1ℓ2ℓ3β4β5β6
= 0 implies that ψβ1β2β3β4

= 0.

(v) (S+−)ℓ1ℓ2ℓ3β1β2β3
= 0 implies that χβ1β2β3

= 0.

Next, note that in the Spin(7) case with ν2 = e5 +e12345, a computer calculation yields

the additional condition

(SN̂1N̂2
)+−N̂3N̂4N̂5N̂6

= 0 . (B.7)

It is straightforward to show that the vanishing of (Sn1n2
)+−n3n4αβ implies that χnαβ = 0.

For the remaining Spin(7) cases described in section (4.1.2) one finds, after a computer

calculation, the additional condition

(Q+N̂
)−N̂1N̂2N̂3

= 0 . (B.8)

The vanishing of (Q+i)−αβj again implies that χnαβ = 0.

To proceed further:

(a) If ν2 = e5+e12345, then as ω is a simple 2-form, one must have (S+−)+−N̂1N̂2N̂3N̂4
= 0.

One evaluating this component of S, one finds that all u vanish. Hence these solutions

are locally maximally supersymmetric.

(b) If ν2 = e1 + e234 or ν2 = i(1 − e1234) + y(e1 + e234) (for y 6= 0), then a computer

calculation yields

(Q+−)−N̂1N̂2N̂3
= 0 (B.9)

which implies that

χiβ[n1
ωn2]

i = 0 . (B.10)

Suppose first that ω 6= 0. As ω is a simple 2-form, this implies that χ is a simple

3-form. Hence it follows that

(S−N̂1
)−N̂2N̂3N̂3N̂5N̂6

= 0 . (B.11)

It is straightforward to show that this implies that all u = 0, and hence these solutions

also are locally maximally supersymmetric.

If, however ω = 0, then the vanishing of (Q+i)−αmn implies that χn1n2β = 0, and

hence all components of φ, ψ, ω, χ are constrained to vanish with the exception of

φℓ1ℓ2ℓ3, ψαℓ1ℓ2ℓ3, χℓ1ℓ2ℓ3 . These conditions imply that the 4-form F is simple, and

hence Q = 0 and S = 0. However, Q = 0 and S = 0 are sufficient to force all

remaining unfixed u to vanish, hence these solutions are once more locally maximally

supersymmetric.

(c) If ν2 = i(1 − e1234), then again there are two subcases. If ω = 0 then the vanishing

of (Q+i)−αmn implies that χn1n2β = 0, and hence all components of φ, ψ, ω, χ are

constrained to vanish with the exception of φℓ1ℓ2ℓ3, ψαℓ1ℓ2ℓ3 , χℓ1ℓ2ℓ3 . These conditions

imply that the 4-form F is simple, and hence Q = 0 and S = 0. However, Q = 0 and
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S = 0 are sufficient to force all remaining unfixed u to vanish, hence these solutions

are locally maximally supersymmetric.

If however, ω 6= 0, then a computer calculation yields

(Q+−)−N̂1N̂2N̂3
= 0 (B.12)

which by the reasoning in (b) again implies that

(S−N̂1
)−N̂2N̂3N̂4N̂5N̂6

= 0 . (B.13)

In addition, (B.12) implies that

χαn1n2
= Vαωn1n2

(B.14)

for some Vα, and note also that

ψαn1n2n3
= Wαǫn1n2n3

. (B.15)

Then the condition (Q+i)−αmn = 0 implies that Vα, Wα are linearly dependent.

It follows that the conditions on ψ and χ obtained so far are sufficient to imply that

(SMN )N̂1N̂2N̂3N̂4N̂5N̂6
= 0, (SN̂1N̂2

)±N̂3N̂4N̂5N̂6N̂7
= 0 . (B.16)

On evaluating the conditions imposed on u by (B.13) and (B.16), one finds that all

u = 0, hence once again, the solutions are locally maximally supersymmetric.

The analysis of the case for which g = ⊕9u(1) (i.e. φ = 0) is more involved, and

depends on the various cases under consideration.

B.1 Solutions with ν2 = e5 + e12345

In order to analyse these solutions, note that the condition (B.7) implies (on contracting

over the N̂2, N̂3 indices) that

ωµ1

λψλµ2µ3µ4
+ 3ω[µ2

λψ|λµ1|µ3µ4] = 0 . (B.17)

In addition, a computer calculation implies that

(Q+−)µ1µ2µ3µ4
= 0 (B.18)

which is equivalent to

ω[µ1

λψ|λ|µ2µ3µ4] = 0 . (B.19)

On comparing this equation with (B.17) one finds

ωµ1

λψλµ2µ3µ4
= 0 . (B.20)

If ω 6= 0, then this means there is a non-zero vector v ∈ R
9 such that ivψ = 0, and hence

in particular

vλ(Sλµ1
)µ2µ3µ4µ5µ6µ7

= vλ(Sµ1µ2
)λµ3µ4µ5µ6µ7

= 0 . (B.21)
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By applying an SU(4) gauge transformation, one can take without loss of generality v2 =

v3 = v4 = v6 = v7 = v8 = v9 = 0, then the above condition forces the remaining degree of

freedom in u to vanish; such solutions are therefore locally maximally supersymmetric.

If, however, ω = 0, then this implies that

(S+λ1
)−λ2λ3λ4λ5λ6

= 0 . (B.22)

On examining the components of this condition on the computer, one finds again that this

condition forces the remaining degree of freedom in u to vanish.

It follows that all solutions with ν2 = e5+e12345 are locally maximally supersymmetric.

B.2 Solutions with ν2 = im(1 − e1234) + n(e1 + e234)

In order to analyse these solutions, note that a computer calculation yields the conditions

(S+−)+−α1α2α3α4
= 0, (Q+α1

)−α2α3α4
= 0 (B.23)

which imply that

ψλα2α3α4
ωα1

λ = 0 (B.24)

and

ω ∧ ω = 0 . (B.25)

This implies that ω is proportional to a simple 2-form on R
9. We shall consider the cases

for which ω 6= 0 and ω = 0 separately.

B.2.1 Solutions with ω 6= 0

To proceed, note that (B.24) implies that there exists a non-vanishing vector field v ∈ R
9

such that

ivΨ = 0 (B.26)

which in turn implies that

vα(Sαλ1
)λ2λ3λ4λ5λ6λ7

= 0 ,

vα(Sλ1λ2
)αλ3λ4λ5λ6λ7

= 0 ,

vα(Qαλ1
)λ2λ3λ4λ5

= 0 ,

vα(Qλ1λ2
)αλ3λ4λ5

= 0 . (B.27)

Consider first the case for which ν2 = i(1 − e1234). In this case, one can use a SU(4)

transformation to set v2 = v3 = v4 = v6 = v7 = v8 = v9 = 0. A computer analysis of

the conditions (B.27) then implies sufficient conditions on the u to impose the additional

condition

(Qλ1λ2
)λ3λ4λ5λ6

= 0 . (B.28)

This constraint implies, using the result of [36–39], that one can write

ψ = k1η
1 + k2η

2 , (B.29)
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where η1, η2 are two totally orthogonal simple 4-forms on R
9. The constraint F ∧ F = 0

implies that k1k2 = 0. Hence ψ is proportional to a simple 4-form on R
9. It follows that

(Sλ1λ2
)λ3λ4λ5λ6λ7λ8

= 0 . (B.30)

On evaulating the additional constraints on u imposed by this condition, one finds, after a

further computer calculation, that

(S+λ1
)−λ2λ3λ4λ5λ6

= 0 . (B.31)

The conditions (B.24) and (B.31) are then sufficient to imply that

ψ = 0 . (B.32)

In addition, from further computer calculation, one finds that

(Q−i)+−α̂1α̂2
= 0 (B.33)

where i, j correspond to the two directions associated with the simple 2-form ω, and α̂1, α̂2

are the orthogonal directions. This implies that χjα̂1α̂2
= 0. Furthermore, ψ = 0 im-

plies that

(SMα1
)α2α3α4α5α6α7

= 0

(Sα1α2
)Mα3α4α5α6α7

= 0 (B.34)

for all M . On evaluating the extra constraints on u obtained from these conditions, one

finds sufficient conditions to imply that

(Q−i)jα̂1α̂2α̂3
= 0 (B.35)

which in turn implies that χα̂1α̂2α̂3
= 0. So, all components of χ must vanish, with the

exception of χijα̂. This implies that F is simple, and hence Q = 0 and S = 0. These

solutions are therefore locally maximally supersymmetric.

For the remaining Spin(7) cases (with ν2 = im(1 − e1234) + n(e1 + e234)) a more

straightforward computer calculation yields directly the following constraints

(S+λ1
)−λ2λ3λ4λ5λ6

= 0 ,

(Qλ1λ2
)λ3λ4λ5λ6

= 0 ,

(Q−i)+−α̂1α̂2
= 0 ,

(S+−)−ijα̂1α̂2α̂3
= 0 . (B.36)

As in the previous analysis, the first two of these conditions imply that ψ = 0, whereas the

last two conditions imply that all components of χ must vanish, with the exception of χijα̂.

This implies that F is simple, and hence Q = 0 and S = 0. These solutions are therefore

again locally maximally supersymmetric.
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B.2.2 Solutions with ω = 0

To proceed, we first consider the cases for which ν2 = e1 +e234 or ν2 = i(1−e1234)+y(e1 +

e234) for y ∈ R, y 6= 0. Note that a computer calculation yields the condition

(Qλ1λ2
)λ3λ4λ5λ6

= 0 . (B.37)

If ψ 6= 0, then this condition, together with F ∧ F = 0, implies that ψ is a simple

4-form on R
9. We therefore split the indices in a 4+5 fashion as λ = {i, α̂}, where i denote

the 4 indices in the directions of ψ, and α̂ denote the remaining 5 directions. Note that

F ∧ F = 0 implies that

χα̂1α̂2α̂3
= 0 . (B.38)

Furthermore, a computer calculation yields the condition

(T 4
LN1

)N2N3N4

L = 0 (B.39)

from which one finds

FL1L2[ijF
L1L2

α̂]− = 0 (B.40)

which implies

χmnα̂ = 0 . (B.41)

A computer calculation also implies that

(S−m)α̂1α̂2iℓ1ℓ2ℓ3 = 0 (B.42)

which in turn implies that

χiα̂1α̂2
= 0 . (B.43)

It follows that the only nonzero components of χ are χℓ1ℓ2ℓ3, and therefore F is simple.

Therefore, for these solutions Q = 0 and S = 0, which implies that they are locally

maximally supersymmetric.

It remains to consider the case when ψ = 0. Then the only non-zero components of S

are (S−α1
)−α2α3α4α5α6

. There are a number of subcases to consider,

Firstly, if (S−α)−α1α2α3α4

α 6= 0, then the constraint

(S−[β1|)−[α1α2α3α4α5
χα6α7]|β2] = 0 (B.44)

is sufficient to imply that either all u vanish, or χ = 0. In both cases, this implies the

solutions are locally maximally supersymmetric. Secondly, if (S−α)−α1α2α3α4

α = 0 then

this condition reduced the number of degrees of freedom in the u from 3 to 2, and implies

that χα1α2α3
are the structure constants of a 9-dimensional Euclidean Lie algebra h. If h

is not semi-simple then there exists nonzero v ∈ R
9 such that

vα(S−α)−β1β2β3β4β5
= 0 (B.45)

and

vα(S−β1
)−αβ2β3β4β5

= 0 . (B.46)
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By making an appropriately chosen SU(3) transformation which leaves ν1, ν2 invariant, one

can take, without loss of generality, v3 = v4 = v7 = v8 = v9 = 0. Then (B.45) and (B.46)

imply that all the u vanish, so the solutions are locally maximally supersymmetric. If,

however, h is semi-simple, one must have h = su(2)⊕su(2)⊕su(2); but there exists a nonzero

v ∈ R such that (B.45) holds, which is not possible in the case h = su(2) ⊕ su(2) ⊕ su(2).

It follows that h cannot be semi-simple.

Hence, we have shown that if ν2 = e1 + e234 or ν2 = i(1 − e1234) + y(e1 + e234),

the solutions must all be locally maximally supersymmetric. It remains to consider the

solutions with ν2 = i(1 − e1234). For these solutions, observe that φ = 0 and ω = 0

implies that:

(S+N̂1
)−N̂2N̂3N̂4N̂5N̂6

= 0 ,

(S+−)N1N2N3N4N5N6
= 0 ,

(SN1N2
)+−N3N4N5N6

= 0 . (B.47)

A computer computation shows that these conditions are sufficient to reduce the 78 degrees

of freedom in u to 30. Furthermore, one obtains the conditions

(QN̂1N̂2
)N̂3N̂4N̂5N̂6

= 0 (B.48)

and

(S−N̂1
)N̂2N̂3N̂4N̂5N̂6N̂7

= 0 . (B.49)

Then, from the reasoning used to analyse the solutions with ν2 = e1 + e234 or ν2 =

i(1 − e1234) + y(e1 + e234), one finds that if ψ 6= 0 then the solutions are locally maximally

supersymmetric. Therefore, consider the remaining case, with ψ = 0. For such solutions,

one must also have

(S
N̂1N̂2

)−N̂3N̂4N̂5N̂6N̂7
= 0 (B.50)

and these conditions are sufficient to reduce the numbers of degrees of freedom in u further,

from 30 to 18. It will be convenient to split the indices in an 8 + 1 fashion as N̂ = {i, ♯},
where i, j = 1, 2, 3, 4, 6, 7, 8, 9, and let α, ᾱ denote SU(4) holomorphic and antiholomorphic

indices in these 8 directions. A computer computation implies that the only non-vanishing

component of (S−i)−j1j2j3j4j5 is, up to complex conjugation, (S−α)−µ1µ2µ3µ4β̄, and moreover

χα[µ1µ2
χµ3µ4β̄] = − 9

10
ξδαβ̄ǫµ1µ2µ3µ4

(B.51)

where ξ is linear in u. However, note that one can use a SU(4) transformation, which

leaves ν1, ν2 invariant to set χ124 = χ134 = χ234 = 0 (in holomorphic indices). It is then

straightforward to show that (B.51) implies that ξ = 0. This imposes additional conditions

on u and reduces further the number of degrees of freedom from 18 to 16. Furthermore,

one finds

χi[j1j2χj3j4j5] = 0 . (B.52)

Note that (B.52) implies that χijk are the structure constants of an 8-dimensional Euclidean

Lie algebra h. As (B.52) does not hold for h = su(3) or h = su(2) ⊕ su(2) ⊕2 u(1), the
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remaining possibilities are h = su(2) ⊕5 u(1) or h = ⊕8u(1). Also observe that a computer

computation can be used to show that all of the previous constraints imposed on u are

sufficient to imply

(S−♯)−i1i2i3i4♯ = 0 (B.53)

which implies that χ♯ij defines a simple 2-form on R
8. Hence, there exists nonzero v ∈ R

8

such that

viχijk = 0, viχ♯ij = 0 (B.54)

which in turn implies

vi(S−♯)−ij1j2j3j4 = 0 ,

vi(S−j1)−♯ij2j3j4 = 0 ,

vi(S−i)−♯j1j2j3j4 = 0 . (B.55)

By applying a SU(4) transformation which leaves ν1, ν2 invariant, one can take, without

loss of generality v2 = v3 = v4 = v6 = v7 = v8 = v9 = 0, then it is straightforward to show

using a further computer calculation, that (B.55) is sufficient to imply that all u vanish.

Such solutions are therefore also locally maximally supersymmetric.

C Analysis of SU(5) solutions with ν
2 = i(1 − e12345)

To analyse these solutions, it is convenient to split the indices in a 10+1 fashion and write

N = {0, N̂} where N̂ 6= 0. Also, define

φN̂1N̂2N̂3
= F0N̂1N̂2N̂3

,

ψN̂1N̂2N̂3N̂4
= FN̂1N̂2N̂3N̂4

(C.1)

and Q and S are also defined as in (B.1). A computer calculation yields the following

conditions on Q and S;

(Q0N̂1
)0N̂2N̂3N̂4

= 0 (C.2)

and

(S0[N̂1
)|0|N̂2]N̂3N̂4N̂5N̂6

+ (Q
N̂1N̂2

)
N̂3N̂4N̂5N̂6

= 0 . (C.3)

Note that (C.2) implies that φN̂1N̂2N̂3
are the structure constants of a 10-dimensional

Euclidean Lie algebra g, whereas (C.3) can be rewritten as

ψL̂[N̂3N̂4N̂5
ψN̂6]N̂1N̂2

L̂ − 4

5
φN̂1N̂2[N̂3

φN̂4N̂5N̂6]
= 0 . (C.4)

There are two cases to consider, according as g is semi-simple or not semi-simple.

(i) Suppose g is not semi-simple. Then there exists nonzero v ∈ R
10 such that ivφ = 0,

and this, together with F ∧ F = 0, implies that

vN̂ (S0N̂
)0N̂1N̂2N̂3N̂4N̂5

= 0 ,

vN̂ (S0N̂1
)0N̂N̂2N̂3N̂4N̂5

= 0 ,

vN̂ (Q0N̂
)
N̂1N̂2N̂3N̂4

= 0 ,

vN̂ (S0N̂
)
N̂1N̂2N̂3N̂4N̂5N̂6

= 0 . (C.5)
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Without loss of generality, one can make a SU(5) gauge transformation, which leaves

ν1, ν2 invariant, to set vj = 0 for j 6= 1. After some computer analysis, one finds that

the resulting conditions on u are sufficient to imply that

(S0N̂1
)0N̂2N̂3N̂4N̂5N̂6

= 0 . (C.6)

On substituting this condition into (C.4) one finds

φN̂1N̂2[N̂3
φN̂4N̂5N̂6] = 0 (C.7)

and

φ
N̂1[N̂3N̂4

φ
N̂5N̂6]N̂2

= 0 (C.8)

and

ψ
L̂[N̂3N̂4N̂5

ψ
N̂6]N̂1N̂2

L̂ = 0 . (C.9)

In particular, (C.9) implies, together with F ∧ F = 0, that ψ is a simple 1-form on

R
10; and (C.7) implies that φ is proportional to a simple 3-form on R

10. There are

therefore two possibilities. In the first, φ = 0 and g = ⊕10u(1); then F is simple and

Q = 0, S = 0. Such solutions are locally maximally supersymmetric. In the second,

g = su(2) ⊕7 u(1). For this case, there must exits nonzero v ∈ R
10 such that

vN̂ (S
N̂L1

)L2L3L4L5L6L7
= 0 ,

vN̂ (SL1L2
)
N̂L3L4L5L6L7

= 0 ,

vN̂ (Q
N̂L1

)L2L3L4L5
= 0 ,

vN̂ (QL1L2
)
N̂L3L4L5

= 0 . (C.10)

These conditions are sufficient to imply that all u vanish, hence these solutions are

also locally maximally supersymmetric.

(ii) Suppose g is semi-simple, i.e. g = so(5). Let α, β̄ denote holomor-

phic/antiholomorphic SU(5) indices. A computer calculation yields the condition

(S0[α)|0|β̄]N̂1N̂2N̂3N̂4
= 0 (C.11)

which implies that

φ
αβ̄[N̂1

φ
N̂2N̂3N̂4]

= 0 . (C.12)

On contracting this expression with φN̂1N̂2N̂3, one finds that

φαβ̄N̂ = 0 (C.13)

i.e. φ is a (3, 0) + (0, 3) form. Using the reasoning set out in the appendix of [5], one

can make a SU(5) gauge transformation which leaves ν1, ν2 invariant, and take

φ = λ1(e
125 + e1̄2̄5̄) + λ2(e

345 + e3̄4̄5̄) (C.14)

for λ1, λ2 ∈ R. However, this does not satisfy the Jacobi identity unless λ1 = λ2 = 0,

in contradiction with the original assumption that φ are the structure constants of

so(5). Hence, there are no solutions for which g is semi-simple.
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D Plane wave solutions with (SO(3) × SU(3) × U(1)) ⋉ H9 symmetry

We begin the analysis with a more general ansatz than that of equation (7.1). In particu-

lar consider

ds2 = 2e−e+ + ds2(R9) , F = e− ∧ Φ , (D.1)

where

e− = dv, e+ = du+Hdv, ds2(R9) = δabe
aeb, ea = dxa , (D.2)

H is a function only of xa, a = 1, 6, ♯, 2, 3, 4, 7, 8, 9, H = H(x), and Φ is a constant 3-form

on R
9.

To investigate the Killing spinor equations first observe that the only non-vanishing

component of the spin connection is

Ω−,−a =
∂H

∂xa
. (D.3)

Next the + component of the KSE implies that ∂uǫ = 0 and the a components can be

solved to yield

ǫ =

(

1 − Γ+x
a

(

1

74
Γa

b1b2b3Φb1b2b3 −
1

12
Φab1b2Γ

b1b2

))

η (D.4)

where η depends only on v. Assuming that H is quadratic in the Euclidean coordinates x,

H(x) = 1
2λabx

axb, one finds that the the x-independent terms in the − component of the

Killing spinor equations give

dη+

dv
+

1

24
Γb1b2b3Φb1b2b3η+ = 0

dη−
dv

+
1

72
Γb1b2b3Φb1b2b3η− = 0 (D.5)

where η = η+ +η− and Γ±η± = 0, while the x-dependent terms give the algebraic equation

VaΓ+η− = 0 , (D.6)

where

Va =
1

2592
Γa

(

Γb1b2b3Φb1b2b3

)2

− 1

576
Φab1b2Γ

b1b2Γc1c2c3Φc1c2c3

+
1

192
Γc1c2c3Φc1c2c3Φab1b2Γ

b1b2 − 1

2
λabΓ

b . (D.7)

The equations (D.5) are first order and always have solutions for any choice of Φ. In

particular there are at least 16 Killing spinors given by the solutions for η+. There may

be additional Killing spinors provided Va has a non-trivial kernel. For the plane wave

solution to preserve 28 supersymmetries the kernel of Va must be the same for all a and

have dimension 12.

– 32 –



J
H
E
P
0
3
(
2
0
1
0
)
1
1
2

To continue let us specialize to the ansatz given in (7.1). To be more specific, we

introduce the hermitian basis in C
6 = R

6 ⊗ C as

eα =
1√
2
(dxα + idxα+5), α = 2, 3, 4 (D.8)

and eᾱ is defined as the complex conjugate of eα. In this basis, Φ and (λab) in (7.1) can

be written as

Φ = k e1 ∧ e6 ∧ e♯ + µ e2 ∧ e3 ∧ e4 + µ̄ e2̄ ∧ e3̄ ∧ e4̄ , (D.9)

and

λij = λ1δij , λαβ̄ = λ2δαβ̄ (D.10)

for i, j = 1, 6, ♯, respectively, where k, λ1, λ2 are constant real parameters and µ is complex.

Observe Φ and (λab) are the most general 4-form and quadratic form, respectively, invariant

under the SO(3) × SU(3) of the plane wave, see also [25, 33, 40].

To proceed, consider Viζ = 0, where ζ = Γ−η. Taking Γ(i)V(i)ζ = 0, where there is no

summation over the indices in the parenthesis, one finds that it can be expressed as

(

− 1

18
k2−λ1

2
− 1

36
|µ|2(1+Γ22̄Γ33̄+Γ22̄Γ44̄+Γ33̄Γ44̄)+

1

24
kΓ16♯(µΓ2̄3̄4̄+µ̄Γ234)

)

ζ = 0 . (D.11)

Moreover,

Vαζ =

[

1

72
Γα

(

− k2 − 2|µ|2(1 + Γ22̄Γ33̄ + Γ22̄Γ44̄ + Γ33̄Γ44̄)
)

+
1

48
µkΓ16♯ǫαβ1β2

Γβ1β2

− 1

96
|µ|2ǫαβ1β2

Γβ1β2Γ234 +
1

32
|µ|2Γ234ǫαβ1β2

Γβ1β2 − λ2

2
Γα

]

ζ = 0 (D.12)

and Vᾱζ = ¯(Vα)ζ = 0.

To proceed, consider the cases.

(i) Suppose µ, k 6= 0, then

Γ(α)V(α)ζ = 0, Γ(ᾱ)V(ᾱ)ζ = 0 (D.13)

imply that

ǫ(α)β1β2
Γ(α)Γ

β1β2ζ = 0, ǫ(ᾱ)β̄1β̄2
Γ(ᾱ)Γ

β̄1β̄2ζ = 0 , (D.14)

which in turn give

Γ22̄ζ = Γ33̄ζ = Γ44̄ζ . (D.15)

These give 2 independent and commuting conditions on ζ each breaking half of the

supersymmetry. This in particular implies that the kernel of Va has dimension of at

most 4. Thus such backgrounds cannot preserve 28 supersymmetries.
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(ii) Suppose that µ = 0. Then it is straightforward to show that (D.6) is equivalent to

(

− 1

9
k2 −λ1

)

ζ = 0,

(

− 1

36
k2 −λ2

)

Γαζ = 0,

(

− 1

36
k2 −λ2

)

Γᾱζ = 0 . (D.16)

Thus either the kernel of Va is trivial and so the plane wave preserves 16 supersymme-

tries or λ1 = −1
9k

2 and λ2 = − 1
36k

2 in which case the kernel of Va is 16-dimensional

and the background is the maximally supersymmetric plane wave [32].

(iii) Suppose that k = 0. Then (D.6) can be rewritten as

(

1

36
|µ|2(1 + Γ22̄Γ33̄ + Γ22̄Γ44̄ + Γ33̄Γ44̄) +

1

2
λ1

)

ζ = 0 , (D.17)

Vαζ =

(

1

2
(λ1−λ2)Γα−

|µ|2
96

ǫαβ1β2
Γβ1β2Γ234 +

|µ|2
32

Γ234ǫαβ1β2
Γβ1β2

)

ζ = 0 , (D.18)

and Vᾱζ = ¯(Vα)ζ = 0.

Observe that if µ = 0, then either the solution preserves 16 supersymmetries or

λ1 = λ2 = 0 and so it is Minkowski space. Next assuming that µ 6= 0, we consider

Γ(ᾱ)V(α)ζ + Γ(α)V(ᾱ)ζ = 0 to find

(

λ1 − λ2 −
1

12
|µ|2(Γ2̄3̄4̄Γ234 + Γ234Γ2̄3̄4̄)+

+
1

32
|µ|2ǫ(ᾱ)δ̄1δ̄2

ǫ(α)β1β2
(Γδ̄1δ̄2Γβ1β2 + Γβ1β2Γδ̄1δ̄2)

)

ζ = 0 . (D.19)

It is straightforward to see that these conditions imply again (D.15) and so the kernel

of Va has dimension at most 4.

We have already established that the plane wave (7.1) cannot preserve 28 supersym-

metries. It remains to find the number of Killing spinors of the solution when µ 6= 0. For

this observe that in all µ 6= 0 cases, the conditions (D.15) on ζ must hold. On substituting

these into (D.11), we find

(

− 1

18
k2 − 1

9
|µ|2 − 1

2
λ1 +

1

24
kΓ16♯

(

µΓ2̄3̄4̄ + µ̄Γ234

)

)

ζ = 0 . (D.20)

Using (D.15), we evaluate Vαζ to find

Vαζ = Γα

(

− 1

72
k2 − 1

36
|µ|2 − 1

2
λ2 −

1

48
kΓ16♯

(

µΓ2̄3̄4̄ + µ̄Γ234

)

)

ζ = 0 (D.21)

and Vᾱζ = ¯(Vα)ζ = 0. This calculation is most easily done by taking one value for α in

Vαζ = 0 and repeatedly using (D.15). Hence considering both Vαζ = Vᾱζ = 0, we find that

(

− 1

72
k2 − 1

36
|µ|2 − 1

2
λ2 −

1

48
kΓ16♯

(

µΓ2̄3̄4̄ + µ̄Γ234

)

)

ζ = 0 . (D.22)
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It now remains to solve (D.20) and (D.22). Indeed, if the kernel of Va is not triv-

ial, (D.20) and (D.22) are equivalent to

1

12
k2 +

1

6
|µ|2 +

1

2
λ1 + λ2 = 0 (D.23)

and
(

2λ2 −
1

2
λ1 +

1

8
kΓ16♯

(

µΓ2̄3̄4̄ + µ̄Γ234

)

)

ζ = 0 . (D.24)

This expression can be simplified further using the identity

Γ16♯φ = iΓ22̄φ (D.25)

which also follows from (D.15), to give

(

2λ2 −
1

2
λ1 +

i

8
k
(

− µΓ2̄3̄4̄ + µ̄Γ234

)

)

φ = 0 . (D.26)

On squaring (D.26) one finds that

(
1

2
λ1 − 2λ2)

2ζ = −1

8
k2|µ|2ζ . (D.27)

So if ζ 6= 0, then it follows that either k = 0 or µ = 0. Since we have assumed that µ 6= 0,

we shall take k = 0. In such a case Va has a non-trivial kernel provided that

k = 0, λ1 = −2

9
|µ|2, λ2 = − 1

18
|µ|2 (D.28)

and with ζ satisfying (D.15). These conditions are equivalent to the projections

Γ2378η− = η− , Γ2479η− = η− . (D.29)

Since the above projections commute with the equation for η− in (D.5), such plane wave

solutions preserve 20 supersymmetries. These solutions have been found before in [25].

One can easily show that the Einstein equations and the gauge field equations of eleven

dimensional supergravity are also satisfied. To summarize, the plane wave solution of (7.1)

preserves either 16, or 20, or 32 supersymmetries depending on the choice of parameters.
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