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1 Introduction

The cosmological horizon of de Sitter space resembles a black hole horizon in many ways,

exhibiting a thermal spectrum and having entropy proportional to the horizon area [1].

On the other hand, it is sharply different from a black hole horizon in the sense that it is

observer dependent, and its size does not decrease upon emission of Hawking radiation as

it reabsorbs its own radiation. An important open problem is to understand whether there

is a sensible theory of quantum gravity in a de Sitter background, and to account for its

entropy from a microscopic point of view. There have been various attempts to do so in two

and three dimensions [2–4], and in four dimensions [5–7]. The goal of this paper is to study

the de Sitter horizon in the special case that it is coincident with a black hole horizon.

In what follows, we consider rotating black holes in asymptotically de Sitter spacetime

in four dimensional Einstein gravity. A rotating black hole in de Sitter space has an inner,

outer and cosmological horizon. Extremal Kerr-de Sitter black holes are obtained by bring-

ing together the inner and outer horizons. The near horizon geometry of this configuration

is given by a generalization of the near-horizon extreme Kerr (NHEK) spacetime [8], which

is a fibered product of two-dimensional anti-de Sitter space and the two-sphere with an

SL(2,R) × U(1) isometry group.

It was discovered in [9] that there exist consistent boundary conditions on NHEK for

which the asymptotic symmetry group [10] enhances the U(1) isometry to a Virasoro alge-

bra with non-trivial central charge. This led to the conjecture that quantum gravity in the

near horizon geometry is holographically dual to a 2d CFT. In support of this conjecture,

the central charge of the Virasoro algebra and the Frolov-Thorne temperature [11] were
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used in the Cardy formula to account for the black entropy from the viewpoint of the pro-

posed dual CFT. This was extended to non-zero cosmological constant in [12, 13]. For both

positive and negative cosmological constant, the near horizon geometry is a fiber over AdS2.

There is another extremal limit for rotating black holes in de Sitter space: the limit

where the outer and cosmological horizons coincide. In this limit, the near horizon geometry

becomes a fibered product of two-dimensional de Sitter space and a two-sphere, with the

metric

ds2 = Γ(θ)

[

−(1 − r2)dτ2 +
dr2

1 − r2
+ α(θ)dθ2

]

+ γ(θ)(dφ+ krdτ)2 . (1.1)

The functions Γ, γ, α and k are given below in terms of the black hole parameters. This

spacetime, which was extensively studied in [14], is known as the rotating Nariai geometry

and reduces to the Nariai geometry dS2×S2 [15–18] in the non-rotating case. Observers in

the rotating Nariai spacetime live inside a cosmological horizon whose entropy corresponds

to the entropy of the original horizon in the full geometry.

We will see that the rules developed for the NHEK geometry are also applicable to the

rotating Nariai geometry. The asymptotic symmetry algebra of (1.1) at future spacelike

infinity is the Virasoro algebra with real, positive central charge

cL =
12r2c

√

(1 − 3r2c/ℓ
2)(1 + r2c/ℓ

2)

−1 + 6r2c/ℓ
2 + 3r4c/ℓ

4
, (1.2)

where 3/ℓ2 is the cosmological constant and rc is the cosmological horizon. We therefore

conjecture that quantum gravity in the rotating Nariai geometry is dual to a Euclidean 2d

conformal field theory. Assuming the Cardy formula, this together with the left-moving

temperature allow for a holographic derivation of the cosmological horizon entropy.1 While

the derivation of the asymptotic symmetry group and central charge is robust, this appli-

cation of the Cardy formula is on a speculative footing. Unlike in AdS/CFT or Kerr/CFT,

an understanding of how to map thermal states between the bulk and boundary is lacking.

Despite the apparent similarities to Kerr/CFT, there are important differences between

NHEK and rotating Nariai. Asymptotically, the rotating Nariai spacetime is naturally

foliated by a timelike “radial” coordinate and the foliations are spacelike. This is in contrast

to the timelike foliations of the NHEK geometry, suggesting that the appropriate conformal

field theory lives on a spacelike manifold and is in fact Euclidean very much in the same

vein as the dS/CFT proposal. Furthermore, it is unclear whether quantum gravity in the

rotating Nariai geometry is unitary and thus application of the Cardy formula remains

on a numerological footing much like it was in [19], where the entropy of asymptotically

dS3 conical defects was examined. Therefore we stress that this does not provide a firm

microstate counting of the de Sitter entropy. On the other hand, the fact that a naive

application of Cardy’s formula indeed accounts for the cosmological entropy is a clear

invitation for a solid explanation.

1In this extremal (or maximal) limit, what we call the cosmological entropy is of course also the black
hole entropy. Nonetheless the cosmological nature of the double horizon leads to a dual CFT qualitatively
different from that dual to ordinary extreme black holes.
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The rotating Nariai/CFT duality proposed here shares some characteristics with

Kerr/CFT and dS/CFT, but is not continuously connected to either of these, and should

be considered a separate class of dualities. Adjusting the black hole mass to bring the inner

black hole horizon toward the coincident outer and cosmological horizons, it seems possible

to interpolate between Kerr/CFT and Nariai/CFT. However, in the ultracold limit where

all three horizons coincide, the near horizon geometry has no apparent CFT interpreta-

tion. As in dS/CFT, the dual to rotating Nariai is Euclidean. In contrast, it is always

two-dimensional, regardless of the dimensionality of the bulk spacetime.

Various generalizations, applications, and tests of the rotating Nariai/CFT correspon-

dence are possible. As a first step, the derivation of the asymptotic symmetry group is

generalized to include electromagnetic charge in appendix B. The extension to higher-

dimensional de Sitter space is not considered here but should be straightforward (see [12]).

Since the near-horizon geometry in any number of dimensions is a fiber over dS2, we expect

the CFT to always be two-dimensional. Another open question is how the correspondence

applies to near-extremal black holes; progress along these lines in Kerr/CFT has been

made in [20–22].

A natural way to test the rotating Nariai/CFT correspondence and develop the holo-

graphic dictionary would be to examine instabilities, from both the gravity and CFT sides

of the duality. On the gravity side, it would be interesting to study the classical stability

of the rotating Nariai solution along the lines of [22, 23]. Understanding the quantum

instabilities of the rotating Nariai geometry (see [24] for example) would also be worth-

while. Instabilities must have a dual description in the CFT. A similar motivation has led

to non-trivial tests of the Kerr/CFT correspondence, where the instability on the gravity

side is related to black hole superradiance, which has a dual description in terms of CFT

two-point correlators [21, 25, 26]. In rotating Nariai/CFT, on the other hand, the poten-

tial instabilities on the gravity side are qualitatively different, so the dual description could

provide new insight into the properties of the CFT.

We should mention an interesting observation concerning Kerr/CFT and the dimen-

sionality of the quantum de Sitter Hilbert space [5–7, 27–30], before delving into our

analysis. One may initially suspect that an extremal rotating black hole in de Sitter space

with coincident inner and outer horizons, which has a near horizon geometry dual to a full

chiral CFT, must have an infinite dimensional Hilbert space. On the other hand, such black

holes - even though in thermodynamic equilibrium - are not thermodynamically stable due

to the incoming thermal radiation of the cosmological horizon that causes them to heat

up [31, 32], thus eliminating the original suspicion.

The outline is as follows. In section 2 we describe the geometry and thermodynamics

of Kerr-de Sitter space and the rotating Nariai geometry. In section 3 we study the asymp-

totic symmetries of the rotating Nariai geometry and propose the rotating Nariai/CFT

correspondence. In particular, we apply the Cardy formula to the CFT and find that it

reproduces the cosmological horizon entropy. Finally, we briefly discuss scalars in the ro-

tating Nariai geometry in section 4. In appendix B we show that the rotating Nariai/CFT

correspondence generalizes to maximal dyonic Kerr-Newman-dS black holes.
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2 Geometry and thermodynamics

Our story begins with a review of the Kerr-dS and rotating Nariai geometries as solutions

of Einstein gravity with a positive cosmological constant Λ = 3/ℓ2 in four-dimensions:

Sgrav =
1

16π

∫

M

d4x
√
−g (R− 2Λ) , (2.1)

where we have set Newton’s constant G = 1. The Kerr-dS metric is

ds2 = −∆r̂

ρ2

(

dt̂− a

Ξ
sin2 θdφ̂

)2

+
ρ2

∆r̂
dr̂2 +

ρ2

∆θ
dθ2 +

∆θ

ρ2
sin2 θ

(

adt̂− r̂2 + a2

Ξ
dφ̂

)2

(2.2)

where

∆r̂ = (r̂2 + a2)(1 − r̂2/ℓ2) − 2Mr̂, ∆θ = 1 + a2 cos2 θ/ℓ2 (2.3)

ρ2 = r̂2 + a2 cos2 θ, Ξ = 1 + a2/ℓ2 .

The three horizons are given by the positive solutions of ∆r̂ = 0 and we denote them by

r−, r+ and rc, with rc ≥ r+ ≥ r−. There are three extremal limits one can consider, all

with zero Hawking temperature: Taking the inner and outer horizon to coincide (extremal

limit) such that r+ = r−, taking the outer and cosmological horizon to coincide (Nariai

limit) such that r+ = rc, and taking the inner, outer and cosmological horizons to coincide

(ultracold limit) such that r+ = r− = rc. Each of these extremal configurations has a

different near horizon geometry.2

The extremal limit r+ = r− was studied in the context of Kerr/CFT in [12, 13]. Here

we instead focus on the Nariai limit r+ = rc. The Penrose diagram of the geometry in this

limit is given in appendix A. The parameters a,M in the Nariai limit are

a2 =
r2c (1 − 3r2c/ℓ

2)

1 + r2c/ℓ
2

(2.4)

M =
rc(1 − r2c/ℓ

2)2

1 + r2c/ℓ
2

.

2.1 Thermodynamics of the cosmological horizon

The thermodynamic properties of the Kerr-de Sitter spacetime were obtained in [36, 37].

The conserved charges associated to the ∂t̂ and ∂φ̂ Killing vectors are given by

Q∂t̂
= −M

Ξ2
, Q∂

φ̂
= −aM

Ξ2
. (2.5)

Since slices of constant r are asymptotically spacelike, the charges are evaluated as integrals

over φ̂, θ at future spacelike infinity, and are “conserved” in the sense that they do not

2It is amusing to note that these near horizon geometries at fixed polar angle are all present in topo-
logically massive gravity [33–35], where they were called warped AdS, warped dS, and warped flat space
respectively.
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depend on t̂. The entropy of the cosmological horizon is given by the usual Bekenstein-

Hawking relation

Scosm =
Area

4
=
π(r2c + a2)

Ξ
(2.6)

where we have set G = 1. The first law of thermodynamics for the cosmological horizon

becomes

dQ∂t̂
= THdScosm + ΩHdQ∂

φ̂
(2.7)

where TH is the Hawking temperature of the cosmological horizon and ΩH is the angular

velocity at the horizon. In the Nariai limit r+ = rc the variation of the entropy can

be expressed completely in terms of a variation of the angular momentum and takes the

following form:

dScosm = βLdQ∂
φ̂

(2.8)

where βL = 1/TL is the chemical potential associated to the angular momentum. We refer

to TL as the left moving temperature. Explicitly one finds

TL =
(r2c + a2)2

4πarcΞ

(6r2c/ℓ
2 + 3r4c/ℓ

4 − 1)

(r2c + a2)(1 + r2c/ℓ
2)

. (2.9)

2.2 Rotating Nariai geometry

The rotating Nariai geometry [14] is obtained when the cosmological and outer horizons

coincide, rc = r+. In this case, the Kerr-de Sitter solution becomes time dependent both in

the region outside the cosmological horizon as well as the region between the cosmological

horizon and the inner horizon.

We will take the Nariai limit r+ → rc and the near horizon limit simultaneously. This

is the Nariai analog of the near-NHEK limit of extremal black holes considered in [20, 21].

Define the non-extremality parameter

τ =
rc − r+
rc

. (2.10)

For small τ , the Hawking temperatures of the outer and cosmological horizons are both

TH ≈ bτ

4π
, (2.11)

where

b =
rc(rc − r−)(3rc + r−)

ℓ2(a2 + r2c )
=
rc(−1 + a2/ℓ2 + 6r2c/ℓ

2)

(r2c + a2)
. (2.12)

The near-horizon coordinates are

t = bλt̂ , r =
rc − r̂

λrc
, φ = φ̂− Ωct̂ , (2.13)

where

Ωc =
Ξa

r2c + a2
(2.14)
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is the angular velocity of the cosmological horizon. Taking λ → 0, τ → 0 with τ/λ, t, r, φ

held fixed, we find the rotating Nariai metric [14]

ds2 = Γ(θ)

(

r(r − τ)dt2 − dr2

r(r − τ)
+ α(θ)dθ2

)

+ γ(θ)(dφ+ krdt)2 , (2.15)

with φ ∼ φ+ 2π, r ∈ (0, τ), and

Γ(θ) =
ρ2

crc
b(a2 + r2c )

, α(θ) =
b(a2 + r2c )

rc∆θ
, γ(θ) =

∆θ(r
2
c + a2)2 sin2 θ

ρ2
cΞ

2
, (2.16)

k = − 2ar2cΞ

b(a2 + r2c )
2
, ρ2

c = r2c + a2 cos2 θ . (2.17)

The near horizon geometry is therefore a fiber over dS2. The coordinate change

r → τ

2
(r + 1) , t→ 2

τ
t , φ→ φ− kt (2.18)

puts the dS2 base into the familiar static coordinates

ds2 = Γ(θ)

(

−(1 − r2)dt2 +
dr2

1 − r2
+ α(θ)dθ2

)

+ γ(θ)(dφ+ krdt)2 , (2.19)

with r ∈ (−1, 1). The isometry group of this spacetime is U(1) × SL(2, R) generated by

K0 = ∂φ (2.20)

K̄0 = ∂t

K̄1 =
r sinh t√
1 − r2

∂t + cosh t
√

1 − r2∂r −
k sinh t√
1 − r2

∂φ

K̄2 =
r cosh t√
1 − r2

∂t + sinh t
√

1 − r2∂r −
k cosh t√
1 − r2

∂φ .

In the Penrose diagram shown in figure 1, static coordinates cover the patch inside

the dotted lines. The same metric with r > 1 covers a patch outside the cosmological

horizon, including a segment of the boundary.3 Observers in the rotating Nariai geometry

find themselves enclosed by a cosmological horizon at r = ±1. The entropy associated to

the cosmological horizon of the rotating Nariai geometry is

SNariai =
Area

4
=
π(r2c + a2)

Ξ
, (2.21)

which is precisely the cosmological entropy in the full Kerr-de Sitter geometry. The bound-

aries reside at I± and are spacelike for all values of θ. Note that constant r hyperslices are

spacelike for large r and thus r is a timelike coordinate for large enough values.

3This is equivalent to taking τ < 0, r ∈ (0,∞) in the metric (2.15), which is obtained as the near-horizon
limit of Kerr-dS starting outside the cosmological horizon rather than between the two horizons. This is
the dS2 analog of the thermal “near-NHEK” coordinates [21].
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I+

I−

r=1 r=1

r=1r=1r=-1

r=-1 r=-1

r=-1

Fig. 1. Penrose diagram of dS2 with the cosmological horizons explicit. The left and right sides
are identified.

The global coordinates defined by

tan(η/2) = tanh
(

1
2

sinh−1[
√

1 − r2 sinh t]
)

(2.22)

cosψ = r(cosh2 t− r2 sinh2 t)−1/2

ϕ = φ+
k

2
log

(

sin(η + ψ)

sin(η − ψ)

)

with ψ ∼ ψ + 2π, η ∈ (−π/2, π/2) cover all of dS2, with metric

ds2 = Γ(θ)

(

−dη2 + dψ2

cos2 η
+ α(θ)dθ2

)

+ γ(θ)(dϕ+ k tan ηdψ)2 . (2.23)

This coordinate change is useful to understand the dS2 Penrose diagram, but below we will

work in the coordinates (2.19).

2.3 Ultracold solution

For completeness we also include the near horizon geometry in the ultracold limit where

the inner, outer and cosmological horizons coincide [14]. (We do not know of any way

to identify the ultracold geometry with a CFT.) In this limit, the parameter b ∝ rc − r−
in (2.12) and (2.16) goes to zero, so we must rescale coordinates appropriately. Starting

with the static metric (2.19) on rotating Nariai, defining the ultracold coordinates

r = r̃
√
b , t = t̃

√
b , (2.24)

and taking b→ 0 with the ultracold coordinates held fixed, we find

ds2 = Γ̃[θ]
[

−dt̃2 + dr̃2 + α̃(θ)dθ2
]

+ γ(θ)
(

dφ+ k̃r̃dt̃
)2

(2.25)

– 7 –
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with

Γ̃ = bΓ , α̃ = α/b , k̃ = bk . (2.26)

The ultracold geometry is a fibered product of two-dimensional Minkowski space and the

two-sphere. We can also obtain the solution as a fibered product of two-dimensional Rindler

space and the two-sphere via a coordinate transformation. Which metric on Minkowski

space naturally appears in the ultracold limit depends on how the limit is taken starting

from the full Kerr-dS black hole.

3 The rotating Nariai/CFT proposal

The Kerr/CFT correspondence proposes that quantum gravity in the NHEK geometry is

dual to a thermal state in a 2d conformal field theory. The argument consists of imposing

a set of boundary conditions for all excitations of the geometry, finding the asymptotic

symmetry group satisfying these boundary conditions and computing any additional central

charges that may be present.

We will now show that a similar argument allows us to relate quantum gravity in the

rotating Nariai geometry to a 2d CFT. One of the differences between the proposal we make

and that of Kerr/CFT is that the putative dual CFT lives on a spacelike manifold given

that constant r slices are in fact asymptotically spacelike. We take this as an indication

that the dual CFT of the cosmological horizon is Euclidean. In this sense, the proposed

duality lies along the same vein as the dS/CFT correspondence. Furthermore, given that

there are two disconnected boundaries we are confronted with the question of where the

dual conformal field theory resides. We will not address this question which has yet to be

fully understood in the Kerr/CFT case.

The asymptotic symmetry group (ASG) of a theory is the set of allowed, nontrivial

symmetries. A symmetry is allowed if it generates a transformation satisfying the boundary

conditions, and nontrivial if it falls off at infinity slow enough for the associated conserved

charge to be nonzero on some background. The ASG depends on the boundary conditions

and on the action, which defines the conserved charges. Generally for a given action the

window of consistent boundary conditions is small; if one chooses boundary conditions that

are too loose, the conserved charges diverge, while if the boundary conditions are too tight,

then all excitations are gauge-equivalent to the vacuum and the theory is trivial.

Boundary conditions. We choose our boundary conditions in direct analogy to the

NHEK boundary conditions proposed in [9]. In the basis (t, φ, θ, r),

hµν ∼ O











r2 1 1/r 1/r2

1 1/r 1/r

1/r 1/r2

1/r3











(3.1)

always keeping in mind that r is asymptotically a timelike coordinate. Note that not

all components of the perturbation are subleading with respect to the boundary metric.

– 8 –
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Below, we also impose a supplemental boundary condition that eliminates excitations

above extremality.

Asymptotic symmetries. The boundary conditions are preserved by the diffeomor-

phisms

ζǫ = ǫ(φ)∂φ − rǫ′(φ)∂r (3.2)

ζ̄ = ∂τ (3.3)

Expanding in a basis ǫn = −e−inφ, the left-moving diffeomorphisms ζǫ give rise to a single

copy of the Virasoro algebra

i[ζn, ζm] = (n−m)ζn+m , (3.4)

with zero mode equal to the U(1) isometry, ζ0 = −∂φ.

Charges. For each diffeomorphism there is an associated conserved charge which can be

computed using the Barnich-Brandt-Compere formalism [38–40]. In particular, one finds

the conserved charges

Qζ(h, g) =

∫

I+

kζ [h; g] (3.5)

where kζ is constructed from the Einstein equations,

kζ [h; g] =
1

4
ǫαβµν [ζνDµh− ζνDσh

µσ + ζσD
νhµσ

+
1

2
hDνζµ − hνσDσζ

µ +
1

2
hσν(Dµζσ +Dσζ

µ)]dxα ∧ dxβ (3.6)

The integral is taken over the boundary of a constant-t slice at r → ∞ . To ensure a chiral

spectrum and finite charges we impose the supplemental boundary condition Q∂τ
(h, g) = 0.

The Dirac bracket algebra which dictates the algebra of asymptotic symmetries is given

by

{Qζm
, Qζn

} = −i(m− n)Qζm+n
+

1

8π

∫

kζm
[Lζn

ḡ; ḡ] (3.7)

Upon quantization, we transform the Dirac bracket algebra into a commutation relation

allowing us to interpret the classical central charge as a quantum central charge of the dual

conformal field theory. Replacing the classical charges Qζm
by their quantum counterparts

Lm, we find the Virasoro algebra,

[Lm, Ln] = (m− n)Lm+n +
cL
12

(m3 −m)δm+n (3.8)

with central charge

cL = 3|k|
∫ π

0

dθ
√

Γ(θ)α(θ)γ(θ) . (3.9)

– 9 –
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Explicitly, the central charge is

cL =
12ar2c

b(a2 + r2c )
, (3.10)

which equals (1.2). Note that cL is real and positive.

We therefore propose that quantum gravity in the rotating Nariai geometry is dual to

a 2d CFT (or its chiral left-moving sector).

Entropy. Using the central charge (3.9) and temperature (2.9), we find that the Cardy

formula for the CFT entropy correctly reproduces the entropy of the cosmological horizon:

SCFT =
π2

3
TLcL = Scosm . (3.11)

This is the appropriate temperature to use in the Cardy formula because it is the chemical

potential conjugate to angular momentum, which is the zero mode of the Virasoro algebra.

As discussed in the introduction, this application of the Cardy formula is speculative.

There is no conclusive evidence that quantum gravity in a de Sitter background is in fact

unitary, given that it only appears as a metastable vacuum in string theory [41]. Further-

more, a positive central charge does not guarantee the unitarity of a two-dimensional con-

formal field theory. Finally, it is not understood how the rotating Nariai geometry maps to

a thermal state in the CFT.4 Therefore, although satisfying, the above formula is somewhat

numerological and requires further explanation. The agreement persists straightforwardly

if we consider adding electric and magnetic charges, as is shown in appendix B.

If the above picture is reasonable, it implies that we should treat the cosmological

horizon as any black hole horizon: a thermal state in the dual field theory.

4 Scalars in rotating Nariai

We now briefly point out the difference in the behavior of scalars in the NHEK and rotating

Nariai geometries. In both cases, the scalar field can be separated into a product of

spheroidal harmonics and radial functions, Ψ = R(r)S(θ)e−iωt+imφ. In the rotating Nariai

metric (2.19), the wave equation for a scalar of mass µ is [42]

1

sin θ
∂θ (∆θ sin θ∂θS) −

(

(mΩca sin2 θ − Ξm)2

∆θ sin2 θ
+ a2µ2 cos2 θ − jlm

)

S = 0 (4.1)

(r2 − 1)R′′ + 2rR′ +

(

(ω + kmr)2

r2 − 1
+ j̃ℓm

)

R = 0 (4.2)

where

j̃ℓm =
rc(jℓm + r2cµ

2)

b(a2 + r2c )
, (4.3)

4We thank A. Strominger for discussions on this point.
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and jℓm is a separation constant the must be determined numerically. The radial equation

can be solved exactly in terms of Whittaker functions, but we need only the large r behavior,

R(r) ∼ r−
1
2
±βNariai , β2

Nariai =
1

4
− k2m2 − j̃ℓm . (4.4)

The exponent 1
2

+ β is the dimension of the dual operator, which is complex for generic

mass and angular momentum.

In NHEK, generalizing [8] to include a cosmological constant,

R(r) ∼ r−
1
2
±βNHEK , β2

NHEK =
1

4
− k2m2 + j̃ℓm . (4.5)

Scalars in NHEK are equivalent to charged scalars in an electric field in AdS2. The NHEK

conformal dimension 1
2

+ βNHEK can be complex for certain values of the parameters

and angular momentum, corresponding to the possibility of Schwinger pair production

in AdS2 [43, 44].

In rotating Nariai, on the other hand, the weight 1
2
+βNariai is always complex for large

enough µ2, as in the dS/CFT correspondence. The complexity of the conformal weight

may indicate that the theory is non-unitary. A possibility for the theory to be rendered

unitary would be to consider the unitary principal series representation rather than the

highest weight representation as in [45, 46]. The complexity of the conformal weight is

related to cosmological particle production given that r becomes a timelike coordinate for

large enough values.

Acknowledgments
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A Penrose diagram

The Penrose diagram of Kerr-de Sitter space for coincident cosmological and black hole

horizons is shown in figure 2. The dotted lines indicate the singularity, rn is the negative

root of the equation ∆r̂ = 0, and the left and right sides of the diagram are identified.

B Charged rotating Nariai

In this appendix we extend the computation of the asymptotic symmetry group and Vira-

soro central charge to include electromagnetic charge, along the lines of [13]. The charged

rotating Nariai solution is found as a near horizon limit of the Kerr-Newman-de Sitter

black hole with coincident black hole and cosmological horizons, which is a solution to

Einstein-Maxwell gravity with a positive cosmological constant

Sgrav =
1

16π

∫

d4x
√
−g

(

R− 2Λ − 1

4
F 2

)

(B.1)
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−
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Fig. 2. Penrose diagram of Kerr-de Sitter space when r+ = rc.

The metric with electric charge qe and magnetic charge qm is given by [14]

ds2 = Γ[θ]

[

−(1 − r2)dt2 +
dr2

1 − r2
+ α(θ)dθ2

]

+ γ(θ) (dφ+ krdt)2 (B.2)

where

Γ(θ) =
ρ2

crc
bq(r2+ + a2)

, α(θ) =
bq(r

2
c + a2)

∆θrc
, γ(θ) =

∆θ(r
2
c + a2)2 sin2 θ

ρ2
+Ξ2

(B.3)

and φ is an angular coordinate with periodicity φ ∼ φ+ 2π. We have further defined

ρ2
c = r2c + a2 cos2 θ, bq =

6r2c/ℓ
2 + 3r4c/ℓ

4 + q2/ℓ2 − 1

rc(r2c + a2)(1 + r2c/ℓ
2)

, k = − 2ar2cΞ

bq(r2c + a2)2
, (B.4)

with q2 = q2e + q2m. The gauge field is given by

A = f(θ) (dφ+ krdt) (B.5)

with

f(θ) =
(r2c + a2)[qe(r

2
c − a2 cos2 θ) + 2qmarc cos θ]

2ρ2
cΞarc

. (B.6)

It is a straightforward extension of the non-charged case to find that in the limit where the

black hole and cosmological horizons coincide, the first law for the cosmological horizon

reads

dScosm = βLdQ∂φ
+ ΦedQe + ΦmdQm (B.7)

– 12 –
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where βL = 2π|k|. The computation of the asymptotic symmetry group proceeds as before,

resulting in a single Virasoro algebra with central charge

cL =
12rc

√

(r2c − 3r4c/ℓ
2 − q2)(1 + r2c/ℓ

2)

−1 + 6r2c/ℓ
2 + 3r4c/ℓ

4 − q2/ℓ2
, (B.8)

and a similar entropy matching formula

SCFT =
π2

3
cLTL = Scosm . (B.9)
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