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1 Introduction

Theories of supersymmetry (SUSY) breaking and transmission from a hidden to a visible

sector has been the subject of much discussion over the last two to three decades. Much

of this discussion has had little to do with string theory and often it has been conducted

purely within a global SUSY framework. However a theory of supersymmetry breaking

must necessarily be embedded within a (N = 1) supergravity (SUGRA) which is derived

from string theory. The following is a summary of the arguments leading to this assertion.

1. Adding a set of explicit soft SUSY breaking terms to a global theory (like the Mini-

mally Supersymmetric Standard Model (MSSM)) leads to far too much arbitrariness

- it does not give us a theory.

2. Spontaneous SUSY breaking in Global SUSY leads to a cosmological constant (CC)

at the SUSY breaking scale which cannot be fine-tuned to zero.

3. A theory of SUSY breaking is therefore necessarily a SUGRA with a scalar potential

which has a minimum that breaks SUSY spontaneously.

4. A SUGRA needs to be embedded in string theory in order to have a quantum me-

chanically consistent and complete theory.

– 1 –



J
H
E
P
0
3
(
2
0
1
0
)
0
7
8

The main problem in relating string theory to phenomenology is that the starting point of

the theory is in ten dimensions. While there are only five weakly coupled string theories

(which are related to each other through various dualities) the number of four dimensional

‘compactifications’ is extremely large. At the time of the second string revolution of the

mid eighties, it was hoped that in spite of the existence of many compactifications, the

number of theories with stabilized moduli (the fields governing the size and shape of the

compact manifold) is small if not just one. However it was realized through the work of

many authors (for a review see [1, 2]) culminating in that of [3] (GKP) and [4] (KKLT)

that the number of such four dimensional models is extremely large. Thus at the current

stage any discussion of the phenomenological consequences of string theory must proceed

by first imposing a set of experimental inputs (in addition to requiring a compactification

to four dimensional N = 1 supergravity). These are:

• CC is tiny ∼ O((10−3eV )4)

• No light scalars with gravitational strength coupling

• SUSY partner masses & O(100GeV )

• Lightest Higgs > 114GeV

• Flavor changing neutral currents (FCNC) suppressed

• No large CP violating phases

The first of these is achieved by ensuring that there is a sufficiently large number of flux

configurations such that there would be many solutions that realize this value. For typical

Calabi-Yau compactifications of IIB string theory this certainly is the case. The second

is achieved by a combination of fluxes and non-perturbative (NP) effects. The remaining

four constraints are dependent on the particular mechanism of supersymmetry breaking

and transmission.

In this paper we will discuss a theory of supersymmetry breaking that emerges from the

so-called Large Volume Scenario (LVS) of type IIB string compactifications [5]. In addition

to fluxes which stabilize the dilaton and complex structure moduli, as in the original KKLT

model [4] non-perturbative (NP) effects may be used to stabilize the Kaehler moduli.

Although there appears to have been some controversy about the latter in the literature

the issue seems to have been settled - at least when the cycles in question are not wrapped

by branes that support a gauge theory with chiral fermions. (For a recent comprehensive

discussion and for references to earlier work see [6]).

However for a four-cycle which is wrapped by D7 branes carrying a chiral gauge theory

(such as the MSSM) the situation appears to be different. In this case it has been argued

in [7] that the chirality (of the MSSM) precludes the stabilization of the four cycle which

they wrap by NP effects. The argument depends on the observation that in a D-brane

construction of chiral theory, there would be an anomalous U(1) gauge group, which in effect

requires the presence of charged matter field factors in the NP superpotential contribution

that depends on the relevant four cycle volume. It has been argued in [7] (see also [8, 9])
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that such matter fields must have zero vacuum values, so that effectively this contribution

would be absent. This means also that this cycle would shrink below the string scale (this

follows from examining the associated D-term potential). Effectively the situation becomes

similar to that of having a D3 brane at a singularity (for more discussion see below). It

is not clear to the author that this argument has been rigorously established, however it

appears that requiring a reasonable phenomenology (in particular that MSSM fields should

not acquire vaccum values at the scales at which the moduli are stabilized) seems to justify

such a scenario. In any case we will take the attitude that such an outcome yields an

interesting set up whose phenomenology is worth investigating.

After discussing the basic physical inputs and reviewing the pertinent results of [8]

and [9], we go on to discuss the classical soft terms that arise from this class of theories

(the details of the calculations are given in appendix A). In particular we will find that the

classical soft mass squared is positive definite. This and the classical CC are both highly

suppressed by a power of the (large) volume. Furthermore we show that the suppression of

FCNC effects imply that there is a lower bound on the volume. If we ignore Weyl anomaly

effects, then comparison of the classical FCNC effects with the flavor diagonal classical

masses leads to a large V & 1012 value.

However Weyl anomaly effects (usually called AMSB) changes the phenomenology of

this class of theories. As shown in appendix B the Weyl anomaly gives an additional set

of terms (calculated by Kaplunovsky and Louis (KL) [10]) to the gauge coupling function,

leading to a contribution to the gaugino mass that is much larger than the classical one.

This in turn drives the scalar masses by the mechanism of gaugino mediation [11, 12].

However the lower bound on the CYO volume implies a tension between having TeV scale

soft masses (to address the hierarchy problem) and making the sGoldstino heavy enough

to avoid the cosmological modulus problem.

2 Generalities

We follow the notation and discussion of [8] and [9]. We also set MP ≡ (8πGN )−1/2 =

2.4 × 1018GeV = 1.

The superpotential, Kaehler potential and gauge kinetic function for the theory under

discussion are,

W = Ŵ (Φ) + µ(Φ)H1H2 +
1

6
Yαβγ(Φ)CαCβCγ + . . . , (2.1)

K = K̂(Φ, Φ̄) + K̃αβ̄(Φ, Φ̄)CαC β̄ + [Z(Φ, Φ̄)H1H2 + h.c.] + . . . (2.2)

fa = fa(Φ). (2.3)

Here Φ = {ΦA} and Cα are chiral superfields (including the two Higgs doublets H1,2) that

correspond to the moduli and MSSM/GUT fields respectively. Also

K̂ = −2 ln

(

V +
ξ

2

(

(S + S̄)

2

))

− ln

(

i

∫

Ω ∧ Ω̄(U, Ū)

)

− ln(S + S̄), (2.4)

Ŵ =

∫

G3 ∧ Ω +
∑

i

Aie
−aiT i

. (2.5)
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Here V is the volume (in Einstein frame) of the internal manifold and the ξ= -

(χζ(3)/2(2π)3) term is a correction term that is higher order in the α′ expansion. For

typical Calabi-Yau manifolds ξ ∼ O(1). S is the axio-dilaton, U = {Um} represents the

set of (m = 1, . . . , h21) complex structure moduli and T i (i = 1, . . . , h11) are the (complex-

ified) Kaehler moduli. The type of Calabi-Yau manifolds that we consider are of the ‘Swiss

cheese’ type. In the simplest such manifold consistent with our requirements the volume

may be written as1

V = τ
3/2
b − τ3/2

s − τ3/2
a . (2.6)

In the above the tau’s are Kaehler moduli which control the volume of the four cycles with

τb effectively determining the overall size of the CY. While in explicit calculations in the

the rest of the paper, we will use (2.6) for the sake of simplicity it should be clear from the

discussion that the results would hold even in a more general CY manifold of this type.

It turns out that in order to realize the Large Volume Scenario (LVS) with the MSSM

located either on a D3 brane at a singularity or a seven-brane wrapping a four cycle on a

CY orientifold, the total number of 2/4 cycles h11 ≥ 3. At least one of these cycles (τs in the

above) must either be wrapped by a Euclidean D3 instanton or by a stack of seven branes

with a condensing gauge group that will generate non-perturbative effects. As pointed out

in [7] the MSSM cannot be located on this cycle - hence the need for (at least) one more

cycle (τa). It has been argued in [8, 9] that this cycle shrinks to zero unless stabilized at

the string scale by non-perturbative string effects. In any case the F/D term associated

with the corresponding Kaehler modulus is zero. Let us briefly review this argument.

The potential for the moduli is (assuming that the minimum would be at large V and

expanding in it)

V = VF + VD. (2.7)

VF =
4

3
gs(a|A|)2

√
τse

−2aτs

V − 2gsa|AW0|
τse

−aτs

V +
3

8

ξ|W0|2

g
1/2
s V3

+ . . . , (2.8)

VD =
f

2
D2, D = f−1kiKi. (2.9)

In the above we’ve used the absence of a non-perturbative superpotential for the modulus

of the MSSM cycle and the fact that the effective axionic partner of τs is stabilized at an

odd multiple of π (giving the sign flip of the second term of VF ). The phases of A and W0

(the flux superpotential) can then be set to zero without loss of generality [5]. The D-term

comes from the anomalous U(1) (with Killing vector field k) living on the MSSM cycle

under which the standard model fields and the modulus τa are charged and we have set the

matter fields which are charged under this U(1) to zero following the arguments of [7] [8, 9].

The U(1) gauge coupling function is linear in τa and S. Also one has Ka ∼ τα
a /V, α > 0,

1In order to simplify the notation we have rescaled the moduli by replacing those used in [9] by τi → η−1

i τi

. Correspondingly we have also replaced ai → ηiai.
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and D ∝ 1/V. The F-term potential is minimized at

e−aτs ≃ 3

4

W0

aAV
√

τs

(

1 − 3

4aτs

)

, (2.10)

τ3/2
s ≃ ξ̂

2
(1 +

1

2aτs
), (2.11)

where we’ve written ξ̂ = (S+S̄
2 )3/2ξ. Note that extremizing with respect to τs gives us an

exponentially large volume and the three displayed terms in VF are all of order V−3. This

would mean that that at the classical (negative) minimum found in [5], the contribution

to the F-term potential from the dilaton and complex-structure moduli2 are zero. Also

VD = 0 since it is positive definite and of order 1/V2. This would mean that, at least based

on classical considerations, τa → 0, so that the standard model cycle shrinks to zero or at

least shrinks below the string scale. Of course one might need to include all α′ corrections

in such a case, but even so the important point here is that both the D term and hence also

the F-term of the MSSM cycle modulus τa become negligible at this classical minimum [9].

We also note for future use that (2.10) implies that

aτs = | ln m3/2| + O(1), (2.12)

and for m3/2 ∼ 10 − 100TeV this is a number of O(10).

The minimum found in [5] is at a negative value of the (classical) cosmological constant

V0 = − 3ξ̂

16aτs

m2
3/2

V . (2.13)

Note that here and in the rest of the paper we will be using the formula for the gravitino

mass

m2
3/2 = eK |W |2 ∼ |W |2

V2
. (2.14)

3 Classical soft terms

Let us first compute the classical soft mass term in this model. The general expression for

the squared soft mass in SUGRA is [13][14]

m2
αβ̄ = Vclass|0K̃αβ̄ + m2

3/2K̃αβ̄ − FAF B̄RAB̄αβ̄ (3.1)

= Vclass|0K̃αβ̄ + m2
3/2K̃αβ̄ − F bF b̄Rbb̄αβ̄

−2ReF bF s̄Rbs̄αβ̄ − F sF s̄Rss̄αβ̄ . (3.2)

In the second equality we’ve used the fact that in the classical vacuum before uplifting

the only source of SUSY breaking are the F-terms of T b and T s. Also we will set τa → 0

(and hence also set the corresponding F-term to zero) following the arguments of [8, 9]. To

2At this point we ignore uplifting issues.
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calculate (3.2) explicitly we need these F-terms as well as the matter metric Kαβ̄ . We find

(see appendix A for details)

F b = −τ b

(

2 +
3

8

ξ̂

aτ s

1

V + O

(

1

(aτ s)2V

)

)

m3/2, (3.3)

F s = −3

2

τ s

aτ s
m3/2(1 + O(V−1)). (3.4)

For the MSSM on D3 branes the matter metric can be calculated (see appendix A) from

the formulae for the Kaehler coordinates given in [15] (assuming that the formulae given

in that reference remain valid for D3 branes at a singularity). Since we expect D7 branes

on a collapsed cycle to act like D3 branes, these formulae should be valid in that case too.

We have

Kαβ̄ =
c

V + ξ̂/2
(
√

τ bωb
αβ̄ −

√
τ sωs

αβ̄), (3.5)

where ωb(s) is the harmonic (1, 1) form associated with the big(small) modulus evaluated

at the position of the D3 brane or the collapsed cycle wrapped by the D7 brane, and c is

an O(1) constant.

Let us pause here for a moment to discuss the validity of (3.5), beyond the context of

smooth CY orientifolds within which it was derived (see appendix A) following the formula

for the embedding of D3 branes given in [15]. The basic argument in appendix A depended

essentially on the field redefinition that is necessary to obtain the correct holomorphic

coordinates on moduli space, given in the above reference. This is schematically of the

form (see equation (3.13) of [15])

T i + T ī = 2τ i + 2µl2iωi
αβ̄CαC β̄ + (CUC + C̄ŪC̄)term + . . . (3.6)

This formula was obtained by comparing the effective action of IIB string theory with D3

branes located at some (generic smooth) point on the CY orientifold with the standard

supergravity formula for the kinetic terms of the effective action which are written in terms

of a Kaehler potential. Now unfortunately a similar derivation has not been given when the

branes are located at a singularity. In so far as one still expects a supergravity description

of the low energy physics, the question is to what extent a formula such as (3.6) remains

valid. For us the essential feature of this formula is the dependence on the matter fields

to quadratic order. In particular for the above calculation of the dependence of the metric

on the Kaehler moduli, what is relevant is the second term. So our assumption here is

that this structure, i.e. the proportionality to the 1, 1 form ωi (of the cycles which are

stabilized) is preserved beyond the original calculation at a generic smooth point. It is

hard to imagine that (apart from the possible modification of the coefficient) that this

structure can be qualitatively modified when the D3 brane location is at some singularity.

Indeed what we are using for our calculations are just very generic features of the formula

for the metric (3.5). The numerical value of the normalized diagonal mass term (see

equation (3.10) will certainly not change since it depends only on the part of the curvture

on moduli space that is proportional to the matter metric Kαβ̄ and is independent on

– 6 –



J
H
E
P
0
3
(
2
0
1
0
)
0
7
8

details of the dependence on the two ω’s . Furthermore the relative numerical coefficients

in (3.5) (provided they are not changed by more than O(1) numbers) is not going to affect

the qualitative features pertaining to the FCNC issue discussed below either. In fact what

is relevant for the latter is the different dependence on the two moduli that is a feature of

the two terms in the metric, and this is unlikely to change for the metric extracted from

D3 branes at a singularity or D7 branes wrapping a collapsing cycle.

The dependence on ωs tends to give FCNC effects and we’ll postpone that discussion

to the next section. Dropping that term the metric is of the form Kαβ̄ = f(τ b, τ s)ωb
αβ̄

and

the Riemann tensor can be calculated from the formula Rij̄αβ̄ = (∂i∂j̄ ln f)Kαβ̄. This gives

(after using (2.11) and neglecting O(1/(aτ s)2V) terms3)

Rbb̄αβ̄ =
1

4(τ b)2
(1 +

15

16

ξ̂

aτ sV )Kαβ̄ , (3.7)

Rbs̄αβ̄ = − 9

16

(τ s)1/2

(τ b)5/2
Kαβ̄ , (3.8)

Rss̄αβ̄ =
3

16

(τ s)−1/2

(τ b)3/2
Kαβ̄ . (3.9)

Using the above and equations (3.3)(3.4) in (3.2) we find4 to leading order in 1/aτsV (see

appendix A for details),

m2
αβ̄ = V0Kαβ̄ +

3

8

ξ̂

aτ s

m2
3/2

V Kαβ̄ = +
3

16

ξ̂

aτ s

m2
3/2

V Kαβ̄. (3.10)

Note that the second term differs in sign from the result quoted in [9]. The reason is that we

have here included the contribution of the F s terms (and also the sub leading corrections

to Rbb̄αβ̄). Thus the classical squared masses (even after including the contribution of the

negative CC) is actually positive.

3.1 Uplift issues

So far we have worked with the LVS minimum, which breaks supersymmetry, but has a

negative cosmological constant. It was argued in [5] that at this minimum one expects the

positive definite contributions to the potential coming from the dilaton and the complex-

structure moduli to be actually zero since they scaled as V−2 whereas the negative minimum

scaled as V−3 . However this minimum needs to be uplifted and one way that could happen

is if the dilaton (S) and the complex structure moduli (Um) acquired F-terms. Generically

3Typically ξ̂ is a number of O(1) and aτ s is a number around 30 so these corrections can be safely

ignored. For instance even if ξ̂ ∼ 5 the ratio is expected to be of around 15-20% and that is the order of

corrections that we would expect to these formulae. This is certainly does not affect the qualitative features

of the calculations of the classical soft masses.
4To leading order in the matter fields Kαβ̄ is the same as K̃αβ̄ so we will not distinguish between them

in the rest of the paper.
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one would expect at the new uplifted minimum (given that V0 ∼ −m2
3/2/(V ln m3/2))

FSF̄ S̄KSS̄ .
m2

3/2

ln m3/2V
, (3.11)

FmF̄ n̄Kmn̄ .
m2

3/2

ln m3/2V
. (3.12)

Since much of the rest of the discussion focuses on the large modulus we will often replace

T b → T and τ b → τ . We have used above the argument that the seven brane when

wrapping a shrinking 4-cycle should behave like a D3 brane. For the same reason we

expect the leading classical contribution to the gauge coupling function for both the D3

and D7 cases to be

fa = S + κT a, (3.13)

(with κ = 0 in the D3 case). Since as argued in [8, 9] the F-term of the modulus T a

corresponding to the shrinking cycle is vanishingly small, we see that without the uplift

contribution from the dilaton, there would be no (classical) contribution to the gaugino

mass in both the D3 and the D7 brane cases.

After uplift (assuming that FS , FU take generic values consistent with (3.11)(3.12)) we

have the following expressions for the gaugino mass M , the scalar mass m, the A term, the

effective µ term5 and B terms (see for example [13] for definitions and general formulae

and appendix A):

Ma =
F i∂ifa

2fa
=

FS

2S
. O

(

m3/2
√

ln m3/2V

)

, (3.14)

m2
αβ̄ = (m2

3/2Kαβ̄ − F iF j̄Rij̄αβ̄) =

(

O

(

m2
3/2

ln m3/2V

))

Kαβ̄ + . . . , (3.15)

Aαβγ = eK/2F iDiyαβγ . O
(m3/2

V
)

yαβγ , (3.16)

µ ∼ Bµ/µ . O

(

√

h21

m3/2
√

ln m3/2V

)

. (3.17)

Note that in the last equation h21 is the number of complex structure moduli.

3.2 Classical FCNC effects

In computing the soft mass using (3.5) we ignored the second term inside the parenthesis.

Let us now compute its contribution (for details see appendix A). To do so we must

evaluate the Riemann tensor. The leading contribution comes from the sectional curvature

RT T̄αβ̄ = ∂T ∂T̄ Kαβ̄ − Kγδ̄∂T Kαδ̄∂T̄ Kγβ̄ + O(C)

=
1

3
KT T̄ c[

ωb

τb
− 7

4

ωs

τb

√

τs

τb
]αβ̄ + O(C). (3.18)

5Assuming that the supersymmetric one is zero as is the case for the D3 branes [15].
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The problem is that this is not proportional to Kαβ̄ - see (3.5). The ωs dependence in (3.18)

gives (from the third term on the r.h.s. of (3.2)) an additional term to the expression

in (3.10), i.e.

m2
αβ̄ = m2

3/2Kαβ̄ − F T F T̄ RT T̄αβ̄ + . . .

=
3

16
ξ̂

m2
3/2

ln m3/2V
Kαβ̄ + m2

3/2

3

4

√

τs

τb
K ′

αβ̄ , (3.19)

≡ (m2δγ
α + ∆m2γ

α )Kγβ̄ . (3.20)

Here K ′
αβ̄

≡ cωs
αβ̄

/τb and is not proportional to Kαβ̄ so ∆m2γ
α = m2

3/2
3
4

√

τs
τb

(K ′K−1)γα is

not a diagonal matrix. Also m2 = 3
16 ξ̂

m2

3/2

lnm3/2V
. If the two harmonic one-one forms ωb

and ωs evaluated at the position of the D3 branes (or the collapsed cycle wrapped by the

D7 branes) are of the same order of magnitude then the dominant contribution is a flavor

violating one.

Clearly this would be a phenomenological disaster since at least for the first two gen-

erations the flavor violating non-diagonal contributions to the squared soft masses should

be suppressed relative to the flavor conserving ones. The relevant bound may be expressed

by the following relation (see for example [16])

∆m2

m2
. 10−3 m

500GeV
. (3.21)

So if we want soft masses m . 1TeV in order to address the hierarchy problem the FCNC

effect must be suppressed by at least a factor 10−3. Then the following alternatives may

be pursued.

• To be consistent with (3.21) we need ωs . 10−3 1
ln m3/2τb ω

b at the MSSM point. We

can get this as follows. The small cycle may be regarded as a blow up (by a P 2) of

a singularity. Then (at least in a non-compact Calabi-Yau) it has been shown in [17]

that the corresponding harmonic 1,1 form falls off as R−6 where R is the distance to

the singularity.6 It is quite plausible that this behavior applies to the small cycle of

a compact Calabi-Yau. Then indeed the desired suppression can be obtained if the

distance R is identified with the location of the D3 brane (or the MSSM collapsed

cycle) and is of the order of V1/6 ∼ τ1/4. The FCNC suppression is then obtained

provided V & 1012. This would imply a string scale that is well below the Planck

scale since Mstring ∼ MP /
√
V . 1012GeV . Any hope of getting a GUT scenario

within LVS is then eliminated, but we would still have a viable intermediate scale

phenomenology. This of course is consistent with the usual LVS scenario as discussed

in [18] and references therein. Nevertheless it should be stressed that this conclusion

holds only if we ignore quantum - in particular Weyl anomaly and gaugino mediation

- contributions to scalar masses (see next section).

6We thank Joe Conlon for suggesting this and bringing reference [17] to our attention.
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• The alternative within LVS is to have a very heavy soft mass scale & 103TeV . In

this case the SUSY solution to the hierarchy problem is much more fine-tuned than

in the previous one. Nevertheless it is interesting to note that the constraint on the

volume is now much weaker and reads V & 103. Note that in this case one might

hope that the gaugino masses are still at the TeV scale (this could have been the

case according to (3.14) if the dilaton F-term is not responsible for the uplift and

the gaugino mass arises from loop corrections to the gauge coupling function). This

scenario is essentially that of split supersymmetry. However again the Weyl anomaly

and gaugino mediation effects will modify this.

• The third possibility is to consider compactifications with just one Kaehler modulus.

In this case an LVS solution is not possible. But one could by including the α′

corrections and race track terms find an intermediate volume (V ∼ 103−4) solution.

Of course in this case W0 the flux superpotential would have to be fine tuned to

extremely low values in order to get TeV scale soft masses. This scenario has been

discussed in [19].

In the following we will pursue only the first of these alternatives.

4 Quantum Effects

4.1 String loop effects

String loop contributions to the classical contributions considered in the previous section

can be estimated. This can be done either from an effective field theory calculation as

in [19, 20] or from arguments based on calculations in toy models in string theory [9]. They

agree if certain cancellations take place. This is essential if the original LVS minimum is

not to be destabilized. In this case these do not give a significant correction to the classical

soft terms discussed above.

4.2 Weyl anomaly and gaugino masses

Significant corrections to the soft terms can arise from Weyl anomaly contributions [10,

21–25]. These are independent of the size of the compactification once the value of the

gravitino mass is chosen. In particular the gaugino masses are given by the expressions

(see appendix B for a discussion)

Ma = −ba

(αa

4π

)

m3/2. (4.1)

Here a = 1, 2, 3 index the three standard model gauge groups - respectively

U(1), SU(2), SU(3), with couplings αa = g2
a/4π. These expressions when evaluated at

the UV scale (assumed to be at or close to the unification scale so that αa ∼ αGUT ∼ 1/25)

give

M1 =
33

5

αGUT

4π
m3/2, M2 =

αGUT

4π
m3/2, M3 = −3

αGUT

4π
m3/2. (4.2)

These should be treated as initial values for the RG evolution down to the MSSM scale - and

numerically have values O(10−2−10−3)m3/2. The important point here is that these values
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are larger than the classical contribution which gave gaugino masses . O(m3/2/ ln m3/2

√
V)

(see (3.14)), unless V . 102 which is far too small a volume for an LVS scenario because

of the FCNC problem.

4.3 Gaugino mediation

Now using the above values as boundary conditions for the RG evolution down to the

MSSM scale scalar masses are generated by the gaugino mediation mechanism [11, 12]. As

shown in appendix B we get,

m2
1 ∼ m2

2 ∼ 10−6m2
3/2, m2

3 ∼ 10−4m2
3/2. (4.3)

This is to be compared to the (diagonal) classical contribution (3.19) m2 ∼
m2

3/21/(ln m3/2V) which would dominate over (4.3) only if V . 103. But in that case

the flavor non-diagonal contribution (see (3.19)) would be far too large (even assuming

the suppression by a factor V of the 1,1 form ωs that we argued for in the discussion

after (3.19)).

Thus we require that (4.3) dominates the FCNC contribution in (3.19) which is ∆m2 ∼
K ′K−1m2

3/2/
√

τ b ∼ m2
3/2/(τ

b)2 (see (3.19)(3.21)) , by at least a factor of 103. i.e. we need

to have
∆m2

m2
3

∼ 104

(τ b)2
. 10−3. (4.4)

This gives

V ∼ (τ b)3/2 & 105.

This would yield an effective string scale of Mstring . 1/
√
V ∼ 10−2.5MP ∼ 1015.5GeV

which may just accommodate a GUT scenario.

Be that as it may, to have a SUSY solution to the hierarchy problem in a GUT scenario

clearly needs fine tuning of the flux superpotential. From (4.3) we see that to get TeV

scale squark masses m3 ∼ 1TeV , the gravitino mass must be m3/2 ∼ |W |
V ∼ 102TeV . For

W ∼ O(1) this gives V ∼ 1013 (well above our lower limit) and a string scale Mstring ∼
MP /

√
V ∼ 1012 which is certainly well below the GUT scale. To get a scale close to the

GUT scale would need a highly fine-tuned W ∼ 10−8.

5 Conclusions

In this paper we have discussed type IIB compactifications on “Swiss Cheese” type man-

ifolds with the MSSM either on a D3 brane(s) at a singularity or on a stack of D7

branes which wrap a 4-cycle. The conflict between chirality and the generation of a non-

perturbative superpotential leads to the conclusion that the latter (MSSM) cycle actually

collapses below the string scale (or to a singularity) and its modulus does not contribute

to SUSY breaking, so that effectively one can ignore it. The following results were derived

in this set up.
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1. The (classical) diagonal soft mass is given by msoft =

√

3ξ̂
16 ln m3/2V

m3/2. However

there is also a flavor violating contribution to the mass matrix which needs to be

suppressed. Assuming that the 1,1 form associated with the small cycle falls off with

distance, as in the non-compact case studied in [17], we get a lower bound V & 1012

in order that there is sufficient suppression of FCNC effects relative to the classical

soft mass.

2. However the Weyl anomaly contribution to the gaugino mass actually dominates the

classical contribution. Furthermore this generates, through the mechanism of gaugino

mediation, a quantum contribution at the MSSM scale to the scalar soft masses, that

is also larger than the classical contribution. Hence the scenario of item 1. above

gets modified. These LVS models appear to give a string theoretic construction of

a sequestered situation as envisaged in [21],7. The suppression of FCNC effects now

only gives the weaker constraint V & 105 (see discussion after (4.4)).

3. The gravitino mass in this scenario is m3/2 ∼ 102TeV if we wish to have TeV scale

SUSY breaking MSSM soft terms. The gravitino gives no cosmological problems

but the sGoldstino (light modulus) mass would be mmod ∼ m3/2/
√
V < 1TeV so

this scenario appears to suffer from the cosmological modulus problem. Again the

lower bound on V is compatible with this estimate of the gravitino mass only if W0

is highly fine-tuned to values around 10−7. If W0 ∼ O(1) then V ∼ 1013 , we have

an intermediate string scale, no possibility of Grand Unification, and a very light

modulus ∼ 100MeV ! Furthermore there would be a serious µ problem since as we

see from (3.17) µ is highly suppressed for large volumes.

4. The resolution of the cosmological modulus problem necessitates raising the gravitino

mass to m3/2 ∼ 103TeV . However the Weyl anomaly generated gaugino mass is now

∼ 10TeV with gaugino mediated soft masses which are at least a few TeV. We may

take the volume V close to its minimum possible value 103, consistent with the now

somewhat less stringent FCNC constraint (3.21) (since the squark mass is higher).

Then we have a somewhat less fine-tuned W0 ∼ 10−6 and a light modulus ∼ 10TeV .

But of course addressing the hierarchy problem would require somewhat more fine-

tuning. If the cosmological modulus problem is taken seriously then this should be

considered the preferred solution within this class of models.

The LVS compactification of type IIB string theory thus gives us an appealing class of

models of supersymmetry breaking and transmission. It is consistent with all theoretical

7To truly establish sequestering one would of course need to demonstrate that the couplings of the

bulk and brane fields are suppressed at the quantum level as well. This would require a calculation of

string loop effects beyond that considered in the literature. For some conjectures regarding this see [8] and

references therein. It should also be noted that these assumptions are in agreement with the effective field

theory estimates given in [19]. Essentially the point is that the quantum corrections are also expected to

be suppressed by large volume factors, so that it seems unlikely that these corrections could significantly

change the classical results. However it would be nice if this could be supported by a detailed calculation.
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constraints and satisfies phenomenological constraints (and in the case of 4 above cosmo-

logical ones as well) . It is predictive and is expected to be ultra-violet complete. As

argued in the introduction a bottom up approach ignores the necessary embedding of the

low energy (or intermediate scale) hidden sector dynamics in the larger framework of a

string theory. The essential point here is that one cannot ignore the dynamics of the string

theory moduli and focus on some additional sector (as is usually done in GMSB) since in

SUGRA, both open string fields and closed string moduli are coupled together in a highly

non-linear fashion. This class of models, with LVS compactifications, generically break

supersymmetry and provide, within a string theory context, a very compelling and phe-

nomenologically viable scenario in which to discuss MSSM SUSY breaking. The detailed

phenomenology of these models will be discussed elsewhere [26].

Acknowledgments

I’m very grateful to Fernando Quevedo for collaboration in the early stages of this work

and for extensive discussions on LVS models. Special thanks are also due to Joe Conlon for

discussions and for drawing my attention to [17]. I also wish to acknowledge discussions

with Cliff Burgess, Oliver DeWolfe and Matthew Headrick . This research is supported in

part by the United States Department of Energy under grant DE-FG02-91-ER-40672.

A Soft scalar mass calculation

We give here some details of the calculation of the F-terms of the two Kaehler moduli

τ b, τ s. Useful formulae for calculating the metrics inverse metrics and Riemann tensors for

Kaehler potentials of the form K = −n lnY are given in appendix A of [27]. In our case

n = 2 and Y = V + ξ̂
2 where V = (τ b)3/2 − (τ s)3/2 where τ i = 1

2 (T i + T̄ ī) with T i being the

holomorphic Kaehler moduli. As usual Ki ≡ ∂T iK, etc. We find

Kij̄Kj̄ ∼ −2τ i − 3

2
ξ̂
τ i

V , (A.1)

and

Kss̄ = −2

(

V +
ξ̂

2

)

(

−4

3
(τ s)1/2 + 4(τ s)2 + O(V−1)

)

, (A.2)

Kbs̄ = 4τ bτ s(1 + O(V−1)). (A.3)

Also note that the stabilization of the axion corresponding to the small modulus results in

a sign flip (i.e. the axion takes a value that is an odd multiple of π after choosing without

loss of generality the phases of W0, A to be zero) so that effectively the superpotential is

W = W0+Ae−aT s
= W0−Ae−aτs

[5]. Then we find (note that F i ≡ eK/2Kij̄(∂j̄W̄ +Kj̄W̄ ))

using the solution (2.10) (2.11),

F b = −τ b

(

2 +
3

2
.

ξ̂

4aτ s

1

V

)

m3/2, (A.4)
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F s = − 3τ s

2aτ s
m3/2(1 + O(V−1)). (A.5)

(F b was also calculated in [9]).

Here we compute the matter metric for the matter located on a D3 brane which sits

at a point in the internal Calabi-Yau space. We expect that a similar formula will be valid

for matter on a stack of D7 branes wrapping a collapsing four cycle.

The holomorphic Kaehler moduli T i are related to the moduli τ i (in terms of which

the volume is given by (2.6)) by (see equation (3.13) of [15])

T i + T ī = 2τ i + 2µl2iωi
αβ̄CαC β̄ + (CUC + C̄ŪC̄)term + . . . (A.6)

to linear order in the complex structure moduli U . Here ωi are the harmonic 1,1 forms on

the CY orientifold evaluated at the position of the D3 brane, Cα are the matter fields on

the D3 brane, l is the axionic partner of the dilaton (S ≡ e−φ − il), and µ is the tension of

the D3 brane. Writing Vi ≡ ∂V/∂τ i,

Kα ≡ ∂K

∂Cα
|T,U,S = −2

Vi

Y

∂τ i

∂Cα
|T,U,S

Differentiating (A.6) with respect to C keeping the moduli T,U, S fixed we have

0 = 2
∂τ i

∂Cα
+ 2µ(iωi

αβ̄)C β̄ + O(UC)

0 = 2
∂2τ i

∂Cα∂C β̄
+ 2µ(iωi

αβ̄)

Hence we have

Kαβ̄ = 2µiωi
αβ̄

Vi

Y
+ O(C2) =

3µ

Y
(iωb

αβ̄

√
τ b − iωs

αβ̄

√
τ s) + O(C2), (A.7)

where in the last step we specialized to the Swiss cheese CY manifold (2.6) (with τa → 0).

Note also for future reference that

Z = KH1H2
∼ Vi

Y

∂2τ i

∂H1∂H2
. (A.8)

To compute the soft masses (and other soft terms) we need the sectional curvatures.

First let us ignore the second term in parenthesis in (A.7). In this case the matter

metric is conformal to the 1,1 harmonic form of the large modulus Kαβ̄ = f(τ b, τ s)iωb
αβ̄

, f ≡
3µ

√
τ b/Y and the relevant components of the Riemann tensor are easily computed using

the formula Rij̄αβ̄ = ∂i∂j̄ ln fKαβ̄. This gives

Rbb̄αβ̄ =
1

4(τ b)2

(

1 +
15

16

ξ̂

aτ sV

)

Kαβ̄ , (A.9)

Rbs̄αβ̄ = − 9

16

(τ s)1/2

(τ b)5/2
Kαβ̄ , (A.10)

Rss̄αβ̄ =
3

16

(τ s)−1/2

(τ b)3/2
Kαβ̄. (A.11)
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For future use we will recalculate Rbb̄αβ̄ keeping both terms in the parenthesis in (A.7) (but

ignoring the ξ̂ dependence for simplicity), and using the general formula for the Riemann

tensor in Kaehler geometry

Rbb̄αβ̄ = ∂b∂b̄Kαβ̄ − Kγδ̄∂b̄Kαδ̄∂bKγβ̄,

=
3µ

4(τ b)3

(

iωb
αβ̄ − 7

4

√

τ s

τ b
iωs

αβ̄

)

, (A.12)

=
1

3
Kbb̄

(

Kαβ̄ − K ′
αβ̄

√

τ s

τ b

)

. (A.13)

Here we have defined

K ′
αβ̄ ≡ 9µ

4

iωs
αβ̄

τ b
,

to be compared with Kαβ̄ ∼ 3µ
τb iωb

αβ̄
.

Let us use the above results to calculate soft masses. These are given by

m2
αβ̄ = Vclass|0K̃αβ̄ + m2

3/2K̃αβ̄ − F bF b̄Rbb̄αβ̄

−2ReF bF s̄Rbs̄αβ̄ − F sF s̄Rss̄αβ̄ .

First let us compute the flavor diagonal part - i.e. we will ignore the contribution to the

matter metric from the harmonic form ωs. We have

F bF̄ b̄Rbb̄αβ̄ = m2
3/2

(

1 +
21

16

ξ̂

aτ sV

)

Kαβ̄

2F bF̄ s̄Rbs̄αβ̄ = −27

8

ξ̂

2aτ sVm2
3/2Kαβ̄

F sF̄ s̄Rss̄αβ̄ =
27

64

ξ̂

2(aτ s)2Vm2
3/2Kαβ̄

So we have

m2
αβ̄ = (Vclass|0 +

3

8

ξ̂

aτ sVm2
3/2)K̃αβ̄ + flavor non − diagonal

Now let us compute the flavor non-diagonal piece. The leading contribution comes from

the extra contribution to F bF̄ b̄Rbb̄αβ̄ coming from the term proportional to K ′
αβ̄

in the

expression for the Riemann tensor (A.13). Using F bF̄ b̄Kbb̄ ∼ 3m2
3/2 we find this to be

∆m2
αβ̄ =

3

4

√

τ s

τ b
m2

3/2K
′
αβ̄ .

So unless K ′
αβ̄

is strongly suppressed relative to K̃αβ̄ (which means in effect the suppres-

sion at the position of the D3brane(s) of ωs compared to ωb) there would be a serious

FCNC problem.

There is also an issue with the µ term (see (3.17)) that needs to be discussed. If the

uplift comes mainly from giving F-terms to the complex structure moduli then from (3.12)
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it follows that the |Fm| . m3/2/(
√

h21
√

lnm3/2V) since in a basis in which the relevant

metric is diagonal there are effectively h21 terms in the sum. Now the expression for the

effective µ term has a contribution Fm∂mZ. From (A.8) we see that this gives the factor√
h21 in the upper bound (3.17).

B Gaugino masses

The physical gauge coupling (at the cutoff scale/GUT scale Λ) can be written in the

following form [10][28][25]

Hi = fi −
3ci

8π2
τ −

∑

r

Ti(r)

4π2
τr −

T (Gi)

4π2
τi. (B.1)

Here Gi is the gauge group and ci = T (Gi)−
∑

r Ti(r)
8 where T (Gi), Ti(r) are respectively

the trace of a squared generator in the adjoint and the matter representations of the group.

The first term is the classical gauge coupling (say at the scale Λ). The second arises from

the Weyl anomaly which arises when one does a chiral rotation from the supergravity frame

to the Kaehler-Einstein frame. The third term comes from an anomaly associated with the

field redefinition Cα → eτZ Cα needed to get canonical normalization of the MSSM fields and

the last term arises from the redefinition of the gauge field pre-potential Vi → e(τi+τ̄i)/2Vi.

The chiral fields τ, τr, τi are fixed by the relations

τ + τ̄ =
1

3
K|harm, (B.2)

τr + τ̄r = ln det K̃
(r)

αβ̄
, (B.3)

exp[−(τi + τ̄i)]|harm =
1

2
(Hi + H̄i), (B.4)

It should be emphasized that (as observed by Kaplunovsky and Louis) the first relation

is precisely the one which accomplishes the transformations and field redefinitions that

are needed to get to the Einstein-Kaehler frame. These are the same transformations

that are done in for example Wess and Bagger [29] in component form to get to the

final SUGRA action displayed in appendix G of that work. The last relation comes from

supersymmetrizing the lowest component relation exp[−(τi + τ̄i)]|0 = 1/g
(i)2
phys ≡ ℜHi|0. To

get the physical coupling function at a low scale µ (≪ Λ) we need to evaluate the right

hand sides of (B.2)(B.3)(B.4) at the scale µ and make the replacement

fi → fi −
bi

16π2
ln

Λ

µ
. (B.5)

Here bi = 3T (Gi)−
∑

r Ti(r) and we used the fact that fi is only renormalized at one-loop.

Projecting the lowest component of (B.1) (with the replacement(B.5)) and using the

relations (B.2)(B.3)(B.4) gives us (the integrated form of) the NSVZ relation (with SUGRA

8Note that this is the negative of the coefficient defined in [10].
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and Weyl anomaly corrections)

1

g
(i)2
phys

= ℜfi −
bi

16π2
ln

Λ

µ
− ci

16π2
K|0

−
∑

r

Ti(r)

8π2
ln det K̃

(r)

αβ̄
|0 +

T (Gi)

8π2
ln

1

g
(i)2
phys

. (B.6)

On the other hand projecting the F-term of (B.1) gives (after solving for Mi/g
(i)2
phys)

Mi

g
(i)2
phys

=
1

2
(FA∂Afi −

ci

8π2
FAKA −

∑

r

Ti(r)

4π2
FA∂A ln det K̃

(r)

αβ̄
)

×(1 − T (Gi)

8π2
g
(i)2
phys)

−1. (B.7)

Let us evaluate this for the theory described in this paper. Since the gauge coupling

function fa = S whose F-term is highly suppressed, the classical contribution can be ignored

compared to the AMSB one coming from the last two terms in the first parenthesis. To one-

loop (keeping only the large modulus (T b ≡ T ) contribution since the other contributions

are highly suppressed) we have

Mi = −bi
g(i)2

16π2
m3/2 = −bi

αi

4π
m3/2 (B.8)

To get this we used F T = −(T + T̄ )m3/2, KT = −3/(T + T̄ ) and K̃αβ̄ = kαβ/(T + T̄ ).

Also note that there is no direct AMSB contribution to the scalar masses since the Weyl

anomaly just affects the gauge coupling function - at least at the two derivative level9.

Nevertheless there is a contribution to the scalar masses coming from ‘gaugino medi-

ation’ (see [16] for a review). This comes about because of the contribution of gauginos to

the running of the scalar masses. The relevant equation is (see section 11 of [16]) assuming

GUT unification of coupling constants (t ≡ lnµ/Λ and c(r) is the quadratic Casimir in r)

dm2
scalar

dt
= −c(r)

2π2
g2
i M

2
i , (B.9)

Integrating this using the beta function equations and the RG invariance of Mi/g
2
i ,

m2
scalar =

2c(r)

bi
[
g4
i (µ)

g4
i (Λ)

− 1]M2
i ≃ 2c(r)αGUT ln

Λ

µ
M2

i . (B.10)

Note that in (B.9)we have only kept the dominant terms. Also we note that the squared

scalar masses generated by this mechanism are always positive. Furthermore for µ at the

TeV scale and Λ at the GUT scale and αGUT ∼ 1/25, the scalar mass is of the order of the

gaugino mass which in turn has a magnitude m3 ∼ 10−2m3/2, m2 ∼ m1 ∼ 10−3m3/2. Thus

with m3/2 ∼ 100TeV we have TeV scale gluino and squark masses. These clearly dominate

the classical masses that we obtained even in the most favorable case with V ∼ 106.

These numbers would be somewhat different in the intermediate string scale case, but the

above mechanism i.e. RG running from this intermediate scale, will still be the dominant

mechanism for generating the scalar masses and the A-term. A detailed acount of the

phenomenology in both cases will be presented in [26].

9At the four derivative level of course there are curvature squared contributions.

– 17 –



J
H
E
P
0
3
(
2
0
1
0
)
0
7
8

References

[1] M. Graña, Flux compactifications in string theory: a comprehensive review,

Phys. Rept. 423 (2006) 91 [hep-th/0509003] [SPIRES].

[2] M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733

[hep-th/0610102] [SPIRES].

[3] S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string

compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [SPIRES].

[4] S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory,

Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [SPIRES].

[5] V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli

stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058]

[SPIRES].

[6] P. Berglund and P. Mayr, Non-perturbative superpotentials in F-theory and string duality,

hep-th/0504058 [SPIRES].

[7] R. Blumenhagen, S. Moster and E. Plauschinn, Moduli stabilisation versus Chirality for

MSSM like type IIB orientifolds, JHEP 01 (2008) 058 [arXiv:0711.3389] [SPIRES].

[8] J.P. Conlon, A. Maharana and F. Quevedo, Towards realistic string vacua,

JHEP 05 (2009) 109 [arXiv:0810.5660] [SPIRES].

[9] R. Blumenhagen, J.P. Conlon, S. Krippendorf, S. Moster and F. Quevedo, SUSY Breaking in

Local String/F-Theory Models, JHEP 09 (2009) 007 [arXiv:0906.3297] [SPIRES].

[10] V. Kaplunovsky and J. Louis, Field dependent gauge couplings in locally supersymmetric

effective quantum field theories, Nucl. Phys. B 422 (1994) 57 [hep-th/9402005] [SPIRES].

[11] D.E. Kaplan, G.D. Kribs and M. Schmaltz, Supersymmetry breaking through transparent

extra dimensions, Phys. Rev. D 62 (2000) 035010 [hep-ph/9911293] [SPIRES].

[12] Z. Chacko, M.A. Luty, A.E. Nelson and E. Ponton, Gaugino mediated supersymmetry

breaking, JHEP 01 (2000) 003 [hep-ph/9911323] [SPIRES].

[13] V.S. Kaplunovsky and J. Louis, Model independent analysis of soft terms in effective

supergravity and in string theory, Phys. Lett. B 306 (1993) 269 [hep-th/9303040] [SPIRES].
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