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2.3 Constraints in cases of BR(µ → ēee) = 0 8
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1 Introduction

In the standard model of the particle physics (SM), neutrinos are massless particles due

to the absence of right-handed neutrinos νR. The simplest way to give masses to three

neutrinos is to add three νR similarly to other fermions, which corresponds to six additional

degrees of freedom (three νR and three νR) to the SM. In the Higgs triplet model (HTM) [1–

3] which we deal with in this article, a complex SU(2)L triplet scalar with the hypercharge

Y = 2 is introduced to the SM in order to have neutrino masses. This model can be

regarded as one of the simplest extension of the SM because the number of new degrees of

freedom is six in this model also.

The triplet Higgs boson field with hypercharge Y = 2 can be parameterized by

∆ ≡
(

∆+/
√

2 ∆++

∆0 −∆+/
√

2

)

, (1.1)

where the neutral component has a vacuum expectation value (VEV) v∆ =
√

2 〈∆0〉. The

constraint on the rho parameter, ρ0 = 1.0004+0.0027
−0.0007 at 2σ CL (page 137 of [4]), gives an

upper limit v∆/v . 0.01 where v = 246GeV is the VEV of the doublet Higgs field, which

corresponds to v∆ . 3GeV. There is no stringent bound from quark sector on triplet Higgs

bosons because they do not couple to quarks. The interaction of the Higgs triplet with

lepton doublets Lℓ ≡ (νℓL, ℓL)T (ℓ = e, µ, τ) is given by

Ltriplet-Yukawa = hℓℓ′ L
c
ℓ iτ2∆Lℓ′ + H. c. (1.2)

The symmetric matrix hℓℓ′ is coupling strength, τi(i = 1–3) denote the Pauli matrices, and

the superscript c is used for fields with the charge conjugation.
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The coupling hℓℓ′ has a direct relation to the neutrino mass matrix mℓℓ′ in the flavor

basis through v∆ as

hℓℓ′ =
1√
2v∆

(

U∗
MNS diag(m1,m2e

−iϕ1 ,m3e
−iϕ2)U †

MNS

)

ℓℓ′
≡ 1√

2v∆

mℓℓ′ . (1.3)

The mass eigenvalues mi are taken to be real positive values. We define ∆m2
ij ≡ m2

i − m2
j

and refer to the case of ∆m2
31 > 0 (∆m2

31 < 0) as the normal (inverted) mass ordering.

Here neutrinos are required to be Majorana particles,1 and ϕ1 and ϕ2 are the Majorana

phases [3, 5, 6] defined in an interval of [0, 2π). The Maki-Nakagawa-Sakata matrix [7] of

the neutrino mixing2 is parameterized as

UMNS ≡







c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13






, (1.4)

where sij ≡ sin θij and cij ≡ cos θij, and δ is the Dirac phase. The ranges are chosen as

0 ≤ θij ≤ π/2 and 0 ≤ δ < 2π. According to current constraints from neutrino oscillation

experiments [9–19], we use the following values in this article

∆m2
21 = 7.6 × 10−5 eV2, |∆m2

31| = 2.4 × 10−3 eV2, (1.5)

sin2 2θ12 = 0.87, sin2 2θ23 = 1, (1.6)

sin2 2θ13 < 0.14 . (1.7)

The absolute scale of the neutrino mass is constrained by tritium beta decay measure-

ments as mν ≤ 2.3 eV (95% CL) [20] and by cosmological observations as
∑

mi <

0.61 eV (95% CL) or
∑

mi < 1.3 eV (WMAP only, 95% CL) [21, 22].

The HTM has seven physical Higgs bosons which are two CP-even neutral bosons

h0 (lighter) and H0 (heavier), a CP-odd neutral one A0, a pair of singly charged bosons

H±, and a pair of doubly charged bosons H±±. A characteristic particle of the HTM

is H±± and it has been searched at the collider experiment. The limit on the mass of

H±±, mH±± ≥ 112 → 150GeV, has been given by searches for H±± → ℓℓ′ at Tevatron

Run II [23–26]. If H±± → ℓℓ′ is observed in the future at the Tevatron and/or the Large

Hadron Collider at CERN, the decay branching ratio will give some important information

on the model (e.g., on the neutrino mass matrix) [27–32].

These Higgs bosons contribute to many lepton flavor violating (LFV) processes. Exper-

imental searches for µ → ēee etc. put upper bounds on |hµe||hee|/m2
H±± etc. (See e.g. [33]),

where mH±± is the mass of H±±. The couplings hℓℓ′ are, however, not free in the HTM

because they relate directly to the neutrino mass matrix mℓℓ′ as shown in (1.3). Pre-

vious works for dependences of LFV processes on the parameters in mℓℓ′ can be found

1In general, even if the Higgs triplet exists, neutrinos can be Dirac particles by adding νR also and

requiring lepton number conservation which results in v∆ = 0. In the HTM we use, neutrino masses are

assumed to be given solely by v∆ and neutrinos are Majorana particles by definition.
2We took the definition of the mixing νℓ =

P

i
Uℓiνi according to page 517 of [4] although another

definition νℓ =
P

i
U∗

ℓiνi is used for example, in [8] and on page 163 of [4]. In latter definition, we need to

take complex conjugate in the middle equation of (1.3).
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in [8, 34, 35]. In this article, we consider in detail the correlation of upper bounds on

|h∗
ijhkl|/m2

H±± from new physics searches and deal with them as lower bounds on v∆mH±± .

2 Lower bound on v∆mH±±

2.1 Constraint from the muon anomalous magnetic dipole moment

Let us consider first the anomalous magnetic dipole moment (MDM) of muon, aµ ≡ (g −
2)/2. The muon anomalous MDM has been measured very precisely [36] as

aexp
µ = 11659208.0(6.3) × 10−10, (2.1)

where the number in parentheses shows 1σ uncertainty. On the other hand, the SM predicts

aSM
µ [τ ] = 11659193.2(5.2) × 10−10, (2.2)

aSM
µ [e+e−] = 11659183.4(4.9) × 10−10, (2.3)

where the hadronic contributions to aSM
µ [τ ] and aSM

µ [e+e−] were calculated [37, 38] by

using data of hadronic τ decay and e+e− annihilation to hadrons, respectively (See also [39–

41, 44, 45]). The deviations of the SM predictions from the experimental result are given by

∆aµ[τ ] ≡ aexp
µ − aSM

µ [τ ] = 14.8(8.2) × 10−10, (2.4)

∆aµ[e+e−] ≡ aexp
µ − aSM

µ [e+e−] = 24.6(8.0) × 10−10. (2.5)

These values of ∆aµ[τ ] and ∆aµ[e+e−] correspond to 1.8σ and 3.1σ deviations from SM

predictions, respectively.

New contributions to aµ at the 1-loop level in the HTM come mainly from H±± and

H±. The Yukawa interactions of H±, which are mixtures of doublet and triplet Higgs

bosons, and of H±± (= ∆±±) are written by

LH±,H±±

triplet-Yukawa = −
√

2
v

√

v2 + 2v2
∆

(UT
MNSh)iℓ νc

i PLℓH+ − hℓℓ′ℓcPLℓ′H++ + H.c., (2.6)

where PL ≡ (1 − γ5)/2 and νi represent mass eigenstates of Majorana neutrinos which

satisfy conditions νi = νc
i . The 1-loop contribution of H± through the triplet Yukawa

interaction3 is calculated as

aH±

µ =
m2

µ

8π2m2
H±

v2

v2+2v2
∆

∑

i

(h†U∗
MNS)µi(U

T
MNSh)iµ

∫ 1

0

dt
−t2(1− t)

Rµ

H±t2+(1−Rµ

H±−Ri
H±)t+Ri

H±

(2.7)

≃ −〈m2〉µµ

96π2

m2
µ

v2
∆m2

H±

, (2.8)

3The contribution through mµ/v is ignored because it is suppressed by v2

∆/v2.
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and the H±± contribution is given by

aH±±

µ =
m2

µ

8π2m2
H±±

∑

ℓ

(h†)µℓhℓµ

∫ 1

0

dt

[

−4t2(1 − t)

Rµ

H±±t2 + (1 − Rµ

H±± − Rℓ
H±±)t + Rℓ

H±±

+
−2t2(1 − t)

Rµ

H±±t2 + (Rℓ
H±± − Rµ

H±± − 1)t + 1

]

(2.9)

≃ −〈m2〉µµ

12π2

m2
µ

v2
∆m2

H±±

. (2.10)

Here we have defined

Ra
b ≡ m2

a

m2
b

, (2.11)

〈m2〉ℓℓ′ ≡
(

UMNS diag(m2
1,m

2
2,m

2
3)U †

MNS

)

ℓℓ′
= 2v2

∆(h†h)ℓℓ′ . (2.12)

Note that 〈m2〉ℓℓ′ does not depend on Majorana phases and 〈m2〉ℓℓ is positive definite.

Thus aHTM
µ ≡ aH±

µ + aH±±

µ is negative definite though ∆aµ is positive. The minus sign

of the contributions from Higgs triplets has been known [33, 46–50] but it does not seem

to be dealt with appropriately in the translation to a constraint on coupling hℓℓ′ . There

seems to be confusions also about the combination (h†h)µµ. Sometimes the combination

was written as (hµµ)2 or (h2)µµ, for which sign of aHTM
µ can be flipped, and then it seemed

as if it were possible to obtain a (finite) constraint on hℓℓ′ . Actually, any value of hℓℓ′ can

not fit ∆aµ[e+e−] (∆aµ[τ ]) at 3.1σ (1.8σ) because of the wrong sign of aHTM
µ .

Concerning only on the sign, the 1-loop contribution from H0 can have the right sign

to explain ∆aµ (See [51] for the case in the type II two Higgs doublet model (2HDM-II)).

However, the contribution has a suppression with v2
∆/v2 in the HTM because ∆0 does not

couple with charged leptons at the tree level.4 Although in the Barr-Zee type [52, 53]

2-loop diagrams the right-sign contribution of A0 can be important in some models like

the 2HDM-II [54] and the minimal supersymmetric standard model (MSSM) [55], such a

situation does not happen in the HTM because couplings of A0(≃ Im(∆0)) with quarks

and charged leptons are also suppressed by v∆/v.

The definite sign of aHTM
µ is a feature of the simpleness and the predictability of the

HTM. In the MSSM in contrast, the contributions from supersymmetric particles to aµ can

have the right sign easily by the appropriate choice of the sign of the Higgs mass parameter

µH [56, 57]. As the result, the HTM is somehow disfavored by the muon anomalous MDM

and it results in a strong constraint on the model. This is also the case for other models

(e.g. the Zee-Babu model [58, 59]) which do not have extra neutral Higgs bosons with

sizable couplings to charged leptons similarly to the HTM. Of course, the positive ∆aµ

does not seem conclusive yet and it does not mean exclusion of the HTM. The difference

between ∆aµ[e+e−] and ∆aµ[τ ] may indicate existence of new physics in the quark sector

which is not modified in the HTM.

4The modification of the contribution to aSM
µ from h0 is also suppressed by v2

∆/v2.
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Hereafter we take mH±± = mH± for simplicity. The large splitting of their masses is

disfavored by the constraint on the ρ parameter. Once we fix the neutrino mass matrix,

muon anomalous MDM and LFV processes are interpreted as lower bounds on v∆mH±± .

Figure 1 shows the lower bounds with respect to the confidence level in a unit of the

standard deviation σ and they are given by constraints on the muon anomalous MDM

with e+e− data (bold solid red line), the MDM with τ data (solid red line), µ → ēee (bold

dashed green line), µ → eγ (dashed green line), τ → µ̄µµ (bold dash-dotted blue line),

τ → µ̄ee (dash-dotted blue line), and the muonium (µ+e−) conversion to the anti-muonium

(bold dash-dot-dotted magenta line). Bounds from τ → µ̄µµ and τ → µ̄ee are important

in our analysis among six possible τ → ℓ̄ℓ′ℓ′′. Formulae of branching ratios of these LFV

decays in the HTM and their current bounds at 90% CL are

BR(µ → ēee) =
|mµe|2|mee|2

16G2
F v4

∆m4
H±±

< 1.0 × 10−12 [60], (2.13)

BR(µ → eγ) =
27α|〈m2〉eµ|2

256πG2
F v4

∆m4
H±±

< 1.2 × 10−11 [61], (2.14)

BR(τ → µ̄µµ) =
|mτµ|2|mµµ|2
16G2

F v4
∆m4

H±±

BR(τ → µν̄µντ ) < 3.2 × 10−8 [62], (2.15)

BR(τ → µ̄ee) =
|mτµ|2|mee|2

16G2
F v4

∆m4
H±±

BR(τ → µν̄µντ ) < 2.0 × 10−8 [62], (2.16)

where BR(τ → µν̄µντ ) = 17%, α = 1/137 stands for the fine structure constant, and

GF = 1.17 × 10−5 GeV−2 denotes the Fermi coupling constant. The effective Lagrangian

for the muonium conversion is

LMM = 2
√

2GMM (µγρPLe) (µγρPLe) = 4
√

2GMM (µPRµc) (ecPLe) . (2.17)

The formula of the coupling GMM in the HTM and current constraint at 90% CL for

that are

( |GMM̄ |
GF

)2

=
|mee|2|mµµ|2

128G2
F v4

∆m4
H±±

< (3.0 × 10−3)2 [63]. (2.18)

In figure 1, parameters of the neutrino mass matrix are fixed by (1.5), (1.6), and

the following values as an example: m1 = 0, sin2 2θ13 = 0, ϕ1 = ϕ2 = 0. With these

values of parameters, we have 〈m2〉µµ = 1.2 × 10−3 eV2, |mµe|2|mee|2 = 6.4 × 10−11 eV4,

|〈m2〉eµ|2 = 6.3×10−10 eV4, |mτµ|2|mµµ|2 = 3.5×10−7 eV4, |mτµ|2|mee|2 = 3.6×10−9 eV4,

and |mee|2|mµµ|2 = 5.9× 10−9 eV4. Bounds (2.13)–(2.16) and (2.18) at 90% CL are trans-

lated naively into xσ CL bounds by multiplying x/1.64 because 90% CL corresponds to

1.64σ. Below around 1.8σ (3.1σ), the muon anomalous MDM ∆aµ[τ ] (∆aµ[e+e−]) gives

the strongest constraint on the HTM but it becomes weaker rapidly than other constraints

at higher confidence levels. Hereafter, we take ∆aµ[τ ] and concentrate ourselves on 2σ CL

in order to avoid qualitative disagreement with ∆aµ[τ ] in the HTM.
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τ → µµµ
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Figure 1. Lower bounds on v∆mH±± given by constraints on muon anomalous MDM and LFV

processes as functions of the confidence level. All parameters in the neutrino mass matrix are fixed

as an example (See the text for the values) for the normal mass ordering. We take mH±± = mH±

for simplicity.
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103
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Figure 2. Contours of the lower bounds on v∆mH±± [eV·GeV] given by µ → ēee. (a) for the normal

mass ordering. (b) for the inverted mass ordering.

2.2 Constraints in the case of BR(µ → ēee) 6= 0

In most of parameter space, the strongest lower bound on v∆mH±± is given by µ → ēee

as expected naively from the strong constraint on its branching ratio (2.13). Figures 2(a)

and (b) show contours of the bounds with θ13 = 0 for the normal and inverted mass

ordering, respectively. Note that BR(µ → ēee) does not depend on δ and ϕ2 for θ13 = 0.

Although the bound on v∆mH±± from µ → ēee is relatively weak for small m1 in figure 2(a),

bounds from other LFV processes are weaker than that. It is shown also that ϕ1 ≃ 0

makes the bound from µ → ēee weak for both of mass orderings. We focus on the case

of ϕ1 = 0 in the next paragraph. In figure 2(a) there is a special point at ϕ1 = π and

m1 = s2
12

√

∆m2
21/

√
cos 2θ12 ≃ 4.6×10−3 eV where the bound vanishes because of mee = 0.

Such cases of BR(µ → ēee) = 0 are discussed in the next subsection.

In figure 3, m1-dependences of bounds from ∆aµ[τ ] and LFV processes are presented

for the normal mass ordering at ϕ1 = 0 where the bound from µ → ēee is relatively weak.
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Figure 3. Lower bounds on v∆mH±± for ϕ1 = 0 in the normal mass ordering. (a) for ϕ2 = 0. (b)

for ϕ2 = π.

Figures 3(a) and (b) are obtained for ϕ2 = 0 and π, respectively. Other parameters are the

same values as ones in figure 1. It is seen in figure 3(a) that µ → ēee still gives the most

stringent bound for ϕ1 = ϕ2 = 0 and m1 . 0.3 eV although the bound from the muonium

conversion gets close to that for large m1. If we accept m1 & 0.3 eV, the bound from the

muonium conversion can be stronger than the bound from µ → ēee. On the other hand,

figure 3(b) shows that the bound from τ → µ̄ee can be more stringent than the one from

µ → ēee for m1 & 0.06 eV. This is because a parameter set (θ13, ϕ1, ϕ2) = (0, 0, π) in the

region of ∆m2
ij/m

2
1 ≪ 1 gives

|mµe|2|mee|2 ≃ 1

32
(∆m2

21)
2 sin2 2θ12 ≃ 1.6 × 10−10 eV4, (2.19)

|mτµ|2|mee|2 ≃ m4
1, (2.20)

and the large difference between experimental constraints (2.13) and (2.16) can be compen-

sated for m1 & O(0.1) eV. In figure 4 the shaded region shows values of Majorana phases

for which the bound from τ → µ̄ee becomes more stringent than the one from µ → ēee at

m1 = 0.2 eV for the normal mass ordering. The region is symmetric under a transformation

of (ϕ1, ϕ2 − π) → (−ϕ1,−ϕ2 + π) because of |mℓℓ′ | = |m∗
ℓℓ′ |. Although the bound from

µ → ēee is relatively weak for ϕ1 ≃ 0, the bound is still the most stringent one at around

ϕ2 = 0 because τ → µ̄ee is also suppressed. If we take nonzero θ13 and ignore ∆m2
21 for

(ϕ1, ϕ2) = (0, π), eq. (2.19) is rewritten as

|mµe|2|mee|2 ≃ 2s2
13m

4
1 , (2.21)

while eq. (2.20) remains valid. Therefore, the shaded region in figure 4 at around (ϕ1, ϕ2) =

(0, π) exists for sin2 2θ13 . 10−5. For the inverted mass ordering, the region where τ → µ̄ee

becomes remarkable is almost same as the one in figures 3 and 4 because neutrino masses

are almost degenerated in the region. In such a region, we can also expect a signal of

τ → µ̄ee in future experiments [64–70] with satisfying the current constraint on µ → ēee.
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from µ → ēee. We used m1 = 0.2 eV for the normal mass ordering. The shaded region is symmetric

under a transformation of (ϕ1, ϕ2 − π) → (−ϕ1,−ϕ2 + π).

2.3 Constraints in cases of BR(µ → ēee) = 0

It has been known that the strong constraint from µ → ēee can be evaded in the cases

of meµ = 0 [34] and mee = 0 [8]. While it is impossible to have meµ = 0 with θ13 = 0,

the case of mee = 0 is possible also for θ13 = 0 as we mentioned for figure 2(a). Such

cancellations in the HTM are desired also for experiments [64–71] to discover some LFV

decays (µ → eγ etc.) [8, 34] in the future. Figures 5(a)–(d) show results for the case of

meµ = 0 in the normal mass ordering. Four CP conserving sets of Majorana phases are

taken for the figures as examples. We use appropriate values of θ13 and δ for meµ = 0,

which we call as “magic values” θmgc
13 and δmgc, and explicit formulae of them are shown in

appendix. For each cases in figure 5, the magic value δmgc is 0 or π independently of m1.

Although 〈m2〉eµ is independent of m1 and Majorana phases, the bounds from µ → eγ in

figure 5 are not constant with respect to these parameters because θmgc
13 depends on them.

We see in figures 5(a)-(d) that the bound from µ → eγ is the strongest one for m1 ≃ 0, and

this is also the case with any values of ϕ1 and ϕ2. For the case of figure 5(a), τ decays give

the most stringent bound for 0.01 eV . m1 . 0.12 eV, and the bound from the muonium

conversion becomes the strongest one for m1 & 0.12 eV. In figure 5(b), the bound from

τ → µ̄ee is prominent. The magic θ13 in figure 5(b) gives sin2 2θmgc
13 ≃ 10−7 for m1 = 0.2 eV,

and then the remarkable behavior of the bound from τ → µ̄ee can be understood also as

a part of the case shown in figure 4 whose shaded region appears for sin2 2θ13 . 10−5.

In figures 5(c) and (d), the most stringent bound is obtained from µ → eγ. Note that

sin2 2θmgc
13 in figures 5(c) and (d) become larger than 0.14 of the CHOOZ bound [19] for

m1 & 0.008 eV, and then we can not have meµ = 0 for the case.

Figure 6 shows which process gives the most stringent lower bound on v∆mH±± in a

space of Majorana phases by keeping meµ = 0 for the normal mass ordering. Green circles,

blue crosses, and magenta triangles show regions where the strongest bound comes from

µ → eγ, τ → µ̄ee, and the muonium conversion, respectively. It is impossible to achieve

meµ = 0 outside of the regions because of unacceptably large θmgc
13 , and then it becomes
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Figure 5. Lower bounds on v∆mH±± for cases of meµ = 0 in the normal mass ordering. The

value of θmgc
13 varies to keep meµ = 0 (See appendix). (a) for (ϕ1, ϕ2) = (0, 0), δmgc = π. (b) for

(ϕ1, ϕ2) = (0, π), δmgc = 0. (c) for (ϕ1, ϕ2) = (π, 0), δmgc = 0. (d) for (ϕ1, ϕ2) = (π, π), δmgc = π.
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(a) m1 = 0.05eV, normal, mH++/mH+ = 1, meµ=0

µ → eγ
τ → µee
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(b) m1 = 0.2eV, normal, mH++/mH+ = 1, meµ=0

µ → eγ
τ → µee

µe → µe
ϕ2 = 0.68 ϕ1

Figure 6. Green circles, blue crosses, and magenta triangles show regions where the strongest

lower bound on v∆mH±± for the case of meµ = 0 in the normal mass ordering comes from µ → eγ,

τ → µ̄ee, and the muonium conversion, respectively. The values of θmgc
13 and δmgc are functions of

Majorana phases (See appendix). We can not have meµ = 0 outside of these regions. The regions

are symmetric under a transformation (ϕ1, ϕ2) → (−ϕ1,−ϕ2). (a) with m1 = 0.05 eV. (b) with

m1 = 0.2 eV. With m1 = 0, the most stringent bound is given by µ → eγ for all values of ϕ1 and ϕ2.
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Figure 7. Lower bounds on v∆mH±± for cases of meµ = 0 in the inverted mass ordering. The

value of θmgc
13 varies to keep meµ = 0 (See appendix). (a) for (ϕ1, ϕ2) = (0, 0), δmgc = 0. (b) for

(ϕ1, ϕ2) = (0, π), δmgc = 0.

the situations discussed in the previous subsection for BR(µ → ēee) 6= 0. Figure 6(a) is for

m1 = 0.05 eV and (b) is for m1 = 0.2 eV. For m1 = 0, it is possible to have meµ = 0 for

any values of Majorana phases, and the most stringent bound is always given by µ → eγ as

v∆mH±± & 200 eV·GeV. Values of lower bounds on v∆mH±± for figure 6(a) from µ → eγ

and τ → µ̄ee vary in 150 → 350 eV·GeV and 150 → 400 eV·GeV, respectively. We have

v∆mH±± & 300 eV·GeV, & 300 → 1500 eV·GeV, and & 300 eV·GeV in figure 6(b) from

µ → eγ, τ → µ̄ee, and the muonium conversion, respectively. The regions are symmetric

under a transformation (ϕ1, ϕ2) → (−ϕ1,−ϕ2) because of |mℓℓ′ | = |m∗
ℓℓ′ |. We see that

ϕ1 ≃ 0 is preferred to keep smgc
13 small for m1 6= 0 and we can confirm smgc

13 ∝ ∆m2
21 for

ϕ1 = 0 with eq. (A.3) in appendix. It can be found also with eq. (A.3) for ϕ1, ϕ2 ≪ 1 and

∆m2
ij = 0 that

ϕ2 ≃ 1 + cos 2θ12

2
ϕ1 = 0.68ϕ1 (red dotted line in figure 6(b)) (2.22)

is preferred to have a small smgc
13 . Bounds from τ → µ̄ee and the muonium conversion can

be the most stringent one only for ϕ1 . 0.1π. Majorana phases are almost restricted as

ϕ2 ≃ 0.68ϕ1 for the case of a strong constraint from the muonium conversion. It is shown

that µ → eγ can be the most stringent bound even for m1 & 0.008 eV (cf. figure 5) because

of large smgc
13 . At the border to the white region in figure 6, we have sin2 2θmgc

13 = 0.14.

Similarly to figure 5, lower bounds on v∆mH±± are shown in figure 7 for the inverted

mass ordering. Note that ϕ1 = π can not give meµ = 0 for the mass ordering because smgc
13

becomes too large. Very roughly speaking, the results in figures 7(a) and (b) are the same

as those in figures 5(a) and (b), respectively. A difference is that τ → µ̄ee can be the most

stringent bound at m3 = 0 while it is not the case for m1 = 0 in the normal mass ordering.

Figure 8 shows the ϕ1-dependence for meµ = 0 with m3 = 0 where the ϕ2-dependence

vanishes. For ϕ1 & 0.1π, sin2 2θmgc
13 becomes larger than 0.14. We see that µ → eγ can give

the most stringent bound even for the inverted mass ordering. For m3 = 0.2 eV, figure 6(b)

is almost applicable to see which process gives the most stringent bound.
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Figure 8. The ϕ1-dependence of lower bounds on v∆mH±± for cases of meµ = 0 with m3 = 0 in

the inverted mass ordering. θmgc
13 and δmgc for meµ = 0 are functions of ϕ1 (See appendix).
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Figure 9. Lower bounds on v∆mH±± for cases of mee = 0 with δ = ϕ2 = 0 in the normal

mass ordering. Values of mmgc
1 and ϕmgc

1 are given by the condition mee = 0 depending on θ13

(See appendix).

Figure 9 is the result for the case of mee = 0 which is possible only in the normal mass

ordering. Formulae of the magic values mmgc
1 and ϕmgc

1 for mee = 0 are shown in appendix.

The bound from µ → eγ is the most stringent one except for sin2 2θ13 . 0.004 where the

bound from τ → µ̄µµ becomes stronger than that. This is also the case for different values

of δ and ϕ2.

3 Conclusion

If we deal with 2σ bounds to avoid the disagreement with ∆aµ[τ ], v∆mH±± must be

greater than 103 eV·GeV in most of parameter space of the HTM in order to satisfy a

strong constraint on BR(µ → ēee). We found that the bound on v∆mH±± from τ → µ̄ee

becomes more stringent than that from µ → ēee in a region of m1 & 0.06 eV, ϕ1 . 0.002π,

0.5π . ϕ2 . 1.5π, and sin2 2θ13 . 10−5. The bound from µ → ēee can be evaded in cases

of meµ = 0 [34] and mee = 0 [8]. We have considered not only CP-conserving sets of
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phases but also arbitrary values. In the case of meµ = 0 in the normal mass ordering,

the strongest bound is given by µ → eγ for m1 . 0.01 eV or ϕ1 & 0.1π and by τ decays

(mainly τ → µ̄ee) for m1 & 0.01 eV with ϕ1 . 0.1π. On the other hand, τ → µ̄ee gives

the strongest bound in the normal mass ordering except for m3 ≃ 0 with ϕ1 ≃ 0.1π where

µ → eγ gives the bound. For both of the mass orderings with meµ = 0, the muonium

conversion gives the most stringent bound if Majorana phases satisfy ϕ2 ≃ 0.68ϕ1 for

ϕ1, ϕ2 ≪ 1 and m1 & 0.1 eV. In the case of mee = 0, the strongest bound is obtained from

µ → eγ except for the case of sin2 2θ13 . 0.004 where the bound is given by τ → µ̄µµ. By

looking over all cases, we see that v∆mH±± & 150 eV·GeV should be satisfied in the HTM.

If mH±± is measured, the bound can be the lower bound on v∆ though there remains a

possibility of v∆ = 0 for which we can not use the correlation of hℓℓ′ with
√

2v∆hℓℓ′ = mℓℓ′ .
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A Solutions for meµ = 0 and mee = 0

We obtained formulae of the magic values of θ13 and δ, which give meµ = 0, as

cos δmgc = − c12s12c23C

s23s
mgc
13

{

m2
3 − s4

12m
2
2 sin2 ϕ1 − (s2

12m2 cos ϕ1 + c2
12m1)2

} , (A.1)

sin δmgc =
c12s12c23D

s23s
mgc
13

{

m2
3 − s4

12m
2
2 sin2 ϕ1 − (s2

12m2 cos ϕ1 + c2
12m1)2

} , (A.2)

smgc
13 =

c12s12c23

√
C2 + D2

s23

∣

∣m2
3 − s4

12m
2
2 sin2 ϕ1 − (s2

12m2 cos ϕ1 + c2
12m1)2

∣

∣

, (A.3)

C ≡−c2
12m

2
1+s2

12m
2
2+m1m2 cos 2θ12 cos ϕ1−m1m3 cos ϕ2+m2m3 cos(ϕ1−ϕ2),

(A.4)

D ≡ −m1m2 sin ϕ1 + m1m3 sinϕ2 + m2m3 sin(ϕ1 − ϕ2), (A.5)

where we define smgc
13 ≡ sin θmgc

13 . Note that smgc
13 6= 0 because it requires m2 = m1.

Note also that smgc
13 is not always acceptable; For example, ϕ1 = π in the inverted mass

ordering gives smgc
13 > 1. These results are consistent with smgc

13 and δmgc used in [8, 34]

for ϕ1, ϕ2 = 0 or π. Although mixing matrix in [8] is defined as νℓ =
∑

i U
∗
ℓiνi in stead of

νℓ =
∑

i Uℓiνi used in this article, there is no change in formulae of magic values because

the difference appears just as the simultaneous flip of signs of all phases.

On the other hand, mee = 0 can be achieved only in the normal mass ordering. The
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magic values of ϕ1 and m1 for mee = 0 are given as functions of s13 and ϕ2 − 2δ [8] by

sin ϕmgc
1 ≡−

√

(mmgc
1 )2+∆m2

31

s2
12

√

(mmgc
1 )2+∆m2

21

t213 sin(ϕ2−2δ), cos ϕmgc
1 ≤ 0, (A.6)

(mmgc
1 )2 ≡ 1

cos2 2θ12−2
(

s4
12+c4

12 cos 2(ϕ2−2δ)
)

t413+t813

×
[

s4
12 cos 2θ12∆m2

21+
{

s4
12∆m2

21+
(

s4
12+c4

12 cos 2(ϕ2−2δ)
)

∆m2
31

}

t413

−∆m2
31t

8
13−2c2

12t
2
13 cos(ϕ2−2δ)

√

A+B t413

]

, (A.7)

A≡
(

s4
12∆m2

21+cos 2θ12∆m2
31

)

s4
12∆m2

21, (A.8)

B ≡
{

(s4
12−c4

12 sin2(ϕ2−2δ))∆m2
31−s4

12∆m2
21

}

∆m2
31, (A.9)

where we define t13 ≡ s13/c13.
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