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ABSTRACT: Constraints from lepton flavor violating processes are translated into lower
bounds on vampg++ in the Higgs Triplet Model by considering correlations through the
neutrino mass matrix. It is shown that u — ey, rare 7 decays (especially, 7 — fiee), and
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but also for arbitrary values.
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1 Introduction

In the standard model of the particle physics (SM), neutrinos are massless particles due
to the absence of right-handed neutrinos vg. The simplest way to give masses to three
neutrinos is to add three vg similarly to other fermions, which corresponds to six additional
degrees of freedom (three vy and three vg) to the SM. In the Higgs triplet model (HTM) [1-
3] which we deal with in this article, a complex SU(2), triplet scalar with the hypercharge
Y = 2 is introduced to the SM in order to have neutrino masses. This model can be
regarded as one of the simplest extension of the SM because the number of new degrees of
freedom is six in this model also.
The triplet Higgs boson field with hypercharge Y = 2 can be parameterized by

A+ A++
A;( A/0\/2 _A+/\/2>’ (1.1)

where the neutral component has a vacuum expectation value (VEV) va = v/2 (A%). The
constraint on the rho parameter, pg = 1.0004705027 at 20 CL (page 137 of [4]), gives an
upper limit va /v < 0.01 where v = 246 GeV is the VEV of the doublet Higgs field, which
corresponds to v, < 3GeV. There is no stringent bound from quark sector on triplet Higgs
bosons because they do not couple to quarks. The interaction of the Higgs triplet with
lepton doublets Ly = (vor,, £1)" (£ = e, i, ) is given by

Etriplet—Yukawa = h%’ LE ’L'7—2ALZ’ + H. c. (12)

The symmetric matrix hyp is coupling strength, 7;(i = 1-3) denote the Pauli matrices, and
the superscript ¢ is used for fields with the charge conjugation.



The coupling hye has a direct relation to the neutrino mass matrix myy in the flavor
basis through va as

1 , , 1
hop = <U* diag(mi, mee~ ", mae~"2) U ) = —_— 1.3
o V20A nins diag(ma, mo 3 ) Unins w " 2ua e (1.3)

The mass eigenvalues m; are taken to be real positive values. We define Am?j = m? — m?
and refer to the case of Am3, > 0 (Am%; < 0) as the normal (inverted) mass ordering.
Here neutrinos are required to be Majorana particles,! and ¢; and (9 are the Majorana
phases [3, 5, 6] defined in an interval of [0,27). The Maki-Nakagawa-Sakata matrix [7] of
the neutrino mixing? is parameterized as

C12€13 $12€13 sige” "
Umns = | —s12¢23 — 6125238136“S C12€23 — (912r92?y91?,6i(S 523€13 ) (1.4)

i i
512523 — €12€23513€"°  —C12823 — S12C23513€" €23C13

where s;; = sin6;; and ¢;; = cosf;;, and 0 is the Dirac phase. The ranges are chosen as
0<6;; < /2 and 0 < 0 < 27. According to current constraints from neutrino oscillation
experiments [9-19], we use the following values in this article

Am, = 7.6 x 107°eV?, |AmZ | = 2.4 x 1073 eV?, (1.5)
sin? 2615 = 0.87, sin? 26,3 = 1, (1.6)
sin? 2613 < 0.14. (1.7)

The absolute scale of the neutrino mass is constrained by tritium beta decay measure-
ments as m, < 2.3eV (95% CL) [20] and by cosmological observations as » m; <
0.61eV (95% CL) or > m; < 1.3eV (WMAP only, 95% CL) [21, 22].

The HTM has seven physical Higgs bosons which are two CP-even neutral bosons
hY (lighter) and H? (heavier), a CP-odd neutral one A°, a pair of singly charged bosons
H?*, and a pair of doubly charged bosons H**. A characteristic particle of the HTM
is H** and it has been searched at the collider experiment. The limit on the mass of
H** mpyzs > 112 — 150 GeV, has been given by searches for H¥* — (¢ at Tevatron
Run IT [23-26]. If H** — ¢¢' is observed in the future at the Tevatron and/or the Large
Hadron Collider at CERN, the decay branching ratio will give some important information
on the model (e.g., on the neutrino mass matrix) [27-32].

These Higgs bosons contribute to many lepton flavor violating (LFV) processes. Exper-
imental searches for p — éee etc. put upper bounds on ||| hee|/m3 s ete. (See e.g. [33]),
where m++ is the mass of H¥*. The couplings hye are, however, not free in the HTM
because they relate directly to the neutrino mass matrix mypy as shown in (1.3). Pre-
vious works for dependences of LF'V processes on the parameters in myy can be found

'In general, even if the Higgs triplet exists, neutrinos can be Dirac particles by adding vr also and
requiring lepton number conservation which results in va = 0. In the HTM we use, neutrino masses are
assumed to be given solely by va and neutrinos are Majorana particles by definition.

2We took the definition of the mixing v, = >, Univi according to page 517 of [4] although another
definition vy = Y=, Uj;v; is used for example, in [8] and on page 163 of [4]. In latter definition, we need to
take complex conjugate in the middle equation of (1.3).



n (8, 34, 35] In this article, we consider in detail the correlation of upper bounds on
|h hirl/ m2 4r++ from new physics searches and deal with them as lower bounds on vam =

2 Lower bound on vaom g+

2.1 Constraint from the muon anomalous magnetic dipole moment

Let us consider first the anomalous magnetic dipole moment (MDM) of muon, a, = (g —
2)/2. The muon anomalous MDM has been measured very precisely [36] as

aS® = 11659208.0(6.3) x 1077, (2.1)

where the number in parentheses shows 1o uncertainty. On the other hand, the SM predicts

a;M[r] = 11659193.2(5.2) x 1077,

aMeTe ] = 11659183.4(4.9) x 10717,
where the hadronic contributions to aiM [7] and aEM [eTe™] were calculated [37, 38] by
using data of hadronic 7 decay and e*Te™ annihilation to hadrons, respectively (See also [39—
41, 44, 45]). The deviations of the SM predictions from the experimental result are given by

Aay[t] = aP —a

exp _
“w

[

] = 14.8(8.2) x 10710,
[efe™] =

SM
N
M 24.6(8.0) x 10710,

Aaylete ] =a

These values of Aa,[r] and Aa,leTe™| correspond to 1.80 and 3.1¢ deviations from SM
predictions, respectively.

New contributions to a, at the 1-loop level in the HTM come mainly from H ++ and

H*. The Yukawa interactions of H*, which are mixtures of doublet and triplet Higgs
bosons, and of H** (= A**) are written by

Hi,Hii v
L viplet-Yukawa = —V2 \/ 2+ oy (Utinsh)ie vEPLCH ™ — hypte PO HY + He.,  (2.6)
Ve + 203

where P, = (1 —~°)/2 and v; represent mass eigenstates of Majorana neutrinos which
satisfy conditions v; = v{. The 1-loop contribution of H + through the triplet Yukawa
interaction? is calculated as

2 2 1 2
H* my v Frre T —t*(1-1)
all™ = hu (Uinsh)in [ dt . A
mT8m2m2 s v+ 2] Z@,:( s st (Uninsh)in o RYL24+(1-RE,—RL)t+RL
(2.7)
2
~ _ <m2>ﬂﬂ mﬂ , (2.8)

2 2,2
967° vAM L

3The contribution through m,, /v is ignored because it is suppressed by v /v?.



and the H** contribution is given by

2 1 2
HE+ my, t / —4t*(1 —t)
a = h ghg dt
a 87T2m?{¢¢ ZZ:( )u : 0 RZiiﬂ + (1 — RZii - quii)t + R%ii
—2t2(1 —t
+ R 2 RY ( RM) 1 1 (2'9)
Hiit +( g+ T Al T )t+
2
_ (M My (2.10)
1272 vim2,. . ’
ATV
Here we have defined
2
m
Re =" 2.11
b mg ( )
(m?) e = <UMNS diag(mi, m3, m3) Ul:r/INS)M, = 203 (h'h)epr. (2.12)

Note that (m?)s does not depend on Majorana phases and (m?),, is positive definite.
Thus aETM = aﬁ[ e aff s negative definite though Aa, is positive. The minus sign
of the contributions from Higgs triplets has been known [33, 46-50] but it does not seem
to be dealt with appropriately in the translation to a constraint on coupling hgy. There

seems to be confusions also about the combination (h'h) up- Sometimes the combination

HTM
1

as if it were possible to obtain a (finite) constraint on hypy. Actually, any value of hyy can
HTM
PP

was written as (hy,,)? or (h?),,, for which sign of a can be flipped, and then it seemed
not fit Aay,leTe™] (Aa,[7]) at 3.10 (1.80) because of the wrong sign of a

Concerning only on the sign, the 1-loop contribution from H° can have the right sign
to explain Aa, (See [51] for the case in the type II two Higgs doublet model (2HDM-II)).
However, the contribution has a suppression with UQA /v? in the HTM because A" does not
couple with charged leptons at the tree level.* Although in the Barr-Zee type [52, 53]
2-loop diagrams the right-sign contribution of A% can be important in some models like
the 2HDM-II [54] and the minimal supersymmetric standard model (MSSM) [55], such a
situation does not happen in the HTM because couplings of A°(~ Im(A?)) with quarks
and charged leptons are also suppressed by va /v.

The definite sign of aETM

is a feature of the simpleness and the predictability of the
HTM. In the MSSM in contrast, the contributions from supersymmetric particles to a, can
have the right sign easily by the appropriate choice of the sign of the Higgs mass parameter
wr [56, 57]. As the result, the HTM is somehow disfavored by the muon anomalous MDM
and it results in a strong constraint on the model. This is also the case for other models
(e.g. the Zee-Babu model [58, 59]) which do not have extra neutral Higgs bosons with
sizable couplings to charged leptons similarly to the HTM. Of course, the positive Aa,,
does not seem conclusive yet and it does not mean exclusion of the HT'M. The difference
between Aa,lete| and Aq,[r] may indicate existence of new physics in the quark sector

which is not modified in the HTM.

4The modification of the contribution to aﬁM from h° is also suppressed by v /v?.



Hereafter we take my++x = mpy+ for simplicity. The large splitting of their masses is
disfavored by the constraint on the p parameter. Once we fix the neutrino mass matrix,
muon anomalous MDM and LFV processes are interpreted as lower bounds on vam pg+=+.
Figure 1 shows the lower bounds with respect to the confidence level in a unit of the
standard deviation ¢ and they are given by constraints on the muon anomalous MDM
with ete™ data (bold solid red line), the MDM with 7 data (solid red line), u — eee (bold
dashed green line), u — ey (dashed green line), 7 — fup (bold dash-dotted blue line),
7 — jiee (dash-dotted blue line), and the muonium (u*e™) conversion to the anti-muonium
(bold dash-dot-dotted magenta line). Bounds from 7 — ppup and 7 — fiee are important
in our analysis among six possible 7 — £¢'¢”. Formulae of branching ratios of these LFV
decays in the HTM and their current bounds at 90% CL are

’mue‘Q‘meeP

BR cee) = < 1.0 x 1072 [60], 2.13
(u — eee) 16G%Uimz}{ii [60] ( )
27a|<m2>eu|2 —11
BR = <1.2x10 61], 2.14
(n—ev) 256%G%v2m‘}{ii 61] ( )
BR(T — i) = ey BR(r — puiv,) < 32x 1078 [62],  (2.15)
16G%vim‘}{ii K
- _ |mw|2|mee|2 _ -8
BR(T — fiee) BR(1 — puv,vy) < 2.0 x 107° [62], (2.16)

= 2,44
16GLUAM Y 4

where BR(7 — pv,v;) = 17%, o = 1/137 stands for the fine structure constant, and
Gr = 1.17 x 107° GeV~2 denotes the Fermi coupling constant. The effective Lagrangian
for the muonium conversion is

Loy = 2V2G, 0 (i Pre) (py,Pre) = 4vV2G .y, (WPRrpc) (e¢Pre) . (2.17)

The formula of the coupling G,,,, in the HTM and current constraint at 90% CL for
that are

2
Car1\™ _ ImeePIml® (3.0 x 107%)2 [63]. (2.18)
Gr 128GHuAMY s

In figure 1, parameters of the neutrino mass matrix are fixed by (1.5), (1.6), and
the following values as an example: m; = 0, sin® 2015 = 0, o1 = g = 0. With these
values of parameters, we have (m?),, = 1.2 x 1073 eV?, |[mye|?|mee? = 6.4 x 1071 eV?,
[(m2)eul? = 6.3x 10710 eV, |mry 2 my,l? = 3.5 x 1077 eV4, [mr, 2 [mee|? = 3.6 x 1072 eV,
and |[mee|?|myul? = 5.9 x 1079 eV*. Bounds (2.13)-(2.16) and (2.18) at 90% CL are trans-
lated naively into xo CL bounds by multiplying x/1.64 because 90% CL corresponds to
1.640. Below around 1.80 (3.1c), the muon anomalous MDM Aaq,[7] (Aa,lete™]) gives
the strongest constraint on the HT'M but it becomes weaker rapidly than other constraints
at higher confidence levels. Hereafter, we take Aa,[7] and concentrate ourselves on 20 CL
in order to avoid qualitative disagreement with Aa,[7] in the HTM.
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Figure 1. Lower bounds on vampg++ given by constraints on muon anomalous MDM and LFV
processes as functions of the confidence level. All parameters in the neutrino mass matrix are fixed
as an example (See the text for the values) for the normal mass ordering. We take mpy++s = mpy+
for simplicity.
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Figure 2. Contours of the lower bounds on vam g+« [eV-GeV] given by p — eee. (a) for the normal
mass ordering. (b) for the inverted mass ordering.

2.2 Constraints in the case of BR(u — éee) # 0

In most of parameter space, the strongest lower bound on vampg++ is given by p — éee
as expected naively from the strong constraint on its branching ratio (2.13). Figures 2(a)
and (b) show contours of the bounds with #;3 = 0 for the normal and inverted mass
ordering, respectively. Note that BR(u — eee) does not depend on § and 9 for 615 = 0.
Although the bound on vamp++ from p — éee is relatively weak for small m; in figure 2(a),
bounds from other LFV processes are weaker than that. It is shown also that ¢ ~ 0
makes the bound from p — éee weak for both of mass orderings. We focus on the case
of ¢1 = 0 in the next paragraph. In figure 2(a) there is a special point at ¢ = 7 and
mi = 8%2 \/Amgl/\/cos 2019 ~ 4.6 x 1073 eV where the bound vanishes because of me. = 0.
Such cases of BR(y — éee) = 0 are discussed in the next subsection.

In figure 3, mi-dependences of bounds from Aa,[7] and LFV processes are presented
for the normal mass ordering at ¢; = 0 where the bound from pu — eee is relatively weak.
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Figure 3. Lower bounds on vampg++ for ¢1 = 0 in the normal mass ordering. (a) for @2 = 0. (b)
for pgo = .

Figures 3(a) and (b) are obtained for @9 = 0 and =, respectively. Other parameters are the
same values as ones in figure 1. It is seen in figure 3(a) that u — eee still gives the most
stringent bound for ¢1 = @9 = 0 and m; < 0.3eV although the bound from the muonium
conversion gets close to that for large mq. If we accept m; 2 0.3eV, the bound from the
muonium conversion can be stronger than the bound from g — éee. On the other hand,
figure 3(b) shows that the bound from 7 — fiee can be more stringent than the one from
u — eee for my 2 0.06eV. This is because a parameter set (613, ¢1,92) = (0,0,7) in the
region of Amgj /m? < 1 gives

1
32
\mm!2\mee\2 ~ mi (2.20)

12

M Mee® (Am3,)%sin? 26015 ~ 1.6 x 10710eV?, (2.19)

and the large difference between experimental constraints (2.13) and (2.16) can be compen-
sated for my 2 O(0.1)eV. In figure 4 the shaded region shows values of Majorana phases
for which the bound from 7 — fiee becomes more stringent than the one from u — éee at
m1 = 0.2eV for the normal mass ordering. The region is symmetric under a transformation
of (¢1,92 —m) — (=1, —p2 + m) because of |myy| = |mj,|. Although the bound from
1 — eéee is relatively weak for ¢ ~ 0, the bound is still the most stringent one at around
@2 = 0 because T — fiee is also suppressed. If we take nonzero 613 and ignore Am3, for
(p1,2) = (0,7), eq. (2.19) is rewritten as

M| Mee|® ~ 2sT3mi, (2.21)

while eq. (2.20) remains valid. Therefore, the shaded region in figure 4 at around (¢1, p2) =
(0, 7) exists for sin? 2013 < 107°. For the inverted mass ordering, the region where 7 — fiee
becomes remarkable is almost same as the one in figures 3 and 4 because neutrino masses
are almost degenerated in the region. In such a region, we can also expect a signal of
T — fiee in future experiments [64-70] with satisfying the current constraint on p — éee.
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Figure 4. In the shaded region, the bound on vampg++ from 7 — fiee is stronger than the one
from p — éee. We used m; = 0.2eV for the normal mass ordering. The shaded region is symmetric
under a transformation of (1, p2 — m) — (—@1, —2 + 7).

2.3 Constraints in cases of BR(u — éee) =0

It has been known that the strong constraint from g — éee can be evaded in the cases
of me;, = 0 [34] and me. = 0 [8]. While it is impossible to have me, = 0 with 613 = 0,
the case of me. = 0 is possible also for ;3 = 0 as we mentioned for figure 2(a). Such
cancellations in the HTM are desired also for experiments [64-71] to discover some LFV
decays (i — ey etc.) [8, 34] in the future. Figures 5(a)—(d) show results for the case of
me, = 0 in the normal mass ordering. Four CP conserving sets of Majorana phases are
taken for the figures as examples. We use appropriate values of 13 and ¢ for m,, = 0,
which we call as “magic values” 675 and 0™&°, and explicit formulae of them are shown in
appendix. For each cases in figure 5, the magic value §™&° is 0 or 7 independently of m;.
Although (m2>eu is independent of m; and Majorana phases, the bounds from y — ey in
figure 5 are not constant with respect to these parameters because 673 depends on them.
We see in figures 5(a)-(d) that the bound from p — ey is the strongest one for m; ~ 0, and
this is also the case with any values of ¢; and ¢5. For the case of figure 5(a), 7 decays give
the most stringent bound for 0.01eV < my < 0.12eV, and the bound from the muonium
conversion becomes the strongest one for m; 2 0.12¢V. In figure 5(b), the bound from
T — [iee is prominent. The magic 63 in figure 5(b) gives sin? 20755 ~ 1077 for my = 0.2eV,
and then the remarkable behavior of the bound from 7 — fiee can be understood also as
a part of the case shown in figure 4 whose shaded region appears for sin®260;3 < 107°.
In figures 5(c) and (d), the most stringent bound is obtained from p — ey. Note that
sin? 2073% in figures 5(c) and (d) become larger than 0.14 of the CHOOZ bound [19] for
m1 2, 0.008eV, and then we can not have m,, = 0 for the case.

Figure 6 shows which process gives the most stringent lower bound on vampy++ in a
space of Majorana phases by keeping m,, = 0 for the normal mass ordering. Green circles,
blue crosses, and magenta triangles show regions where the strongest bound comes from
w— ey, T — fiee, and the muonium conversion, respectively. It is impossible to achieve

me, = 0 outside of the regions because of unacceptably large 675, and then it becomes
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Figure 6. Green circles, blue crosses,
lower bound on vamy+=+ for the case of m,, = 0 in the normal mass ordering comes from p — e,
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and magenta triangles show regions where the strongest
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Figure 7. Lower bounds on vampg++ for cases of m,, = 0 in the inverted mass ordering. The
value of 03 varies to keep me, = 0 (See appendix). (a) for (¢1,92) = (0,0),6™¢ = 0. (b) for
(‘Pl; (102) = (Oa 7T)a omec = 0.

the situations discussed in the previous subsection for BR(u — eee) # 0. Figure 6(a) is for
my = 0.05eV and (b) is for m; = 0.2eV. For m; = 0, it is possible to have m,, = 0 for
any values of Majorana phases, and the most stringent bound is always given by y — ey as
vampg++ 2, 200eV-GeV. Values of lower bounds on vamp++ for figure 6(a) from p — ey
and 7 — fiee vary in 150 — 350eV-GeV and 150 — 400eV-GeV, respectively. We have
vampg++ 2 300eV-GeV, 2 300 — 1500eV-GeV, and 2 300eV-GeV in figure 6(b) from
w — ey, T — fiee, and the muonium conversion, respectively. The regions are symmetric
under a transformation (¢1,¢2) — (—¢1, —p2) because of |myy| = |mj,|. We see that
¢1 ~ 0 is preferred to keep s5° small for m; # 0 and we can confirm s}5 oc Am3, for
1 = 0 with eq. (A.3) in appendix. It can be found also with eq. (A.3) for ¢1, 2 < 1 and
Am?j = 0 that

N 1 + cos 2619

Yo ~ ) ©1 =0.68¢; (red dotted line in figure 6(b)) (2.22)

is preferred to have a small s]5>. Bounds from 7 — jiee and the muonium conversion can

be the most stringent one only for @1 < 0.17. Majorana phases are almost restricted as

o ~ 0.68 ¢ for the case of a strong constraint from the muonium conversion. It is shown
that u — ey can be the most stringent bound even for m; = 0.008 eV (cf. figure 5) because
of large s|5°. At the border to the white region in figure 6, we have sin® 20]3*° = 0.14.
Similarly to figure 5, lower bounds on vam =+ are shown in figure 7 for the inverted
mass ordering. Note that ¢1 = 7 can not give me, = 0 for the mass ordering because Eh
becomes too large. Very roughly speaking, the results in figures 7(a) and (b) are the same
as those in figures 5(a) and (b), respectively. A difference is that 7 — fiee can be the most
stringent bound at ms = 0 while it is not the case for m; = 0 in the normal mass ordering.
Figure 8 shows the ¢i-dependence for mg, = 0 with m3 = 0 where the y-dependence
vanishes. For ¢; > 0.17, sin? 26015%° becomes larger than 0.14. We see that y — ey can give
the most stringent bound even for the inverted mass ordering. For mg = 0.2eV, figure 6(b)

is almost applicable to see which process gives the most stringent bound.
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Figure 8. The ¢;-dependence of lower bounds on vampg=++ for cases of me, = 0 with m3z = 0 in
the inverted mass ordering. 075*° and 6™&¢ for m,,, = 0 are functions of ¢ (See appendix).
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Figure 9. Lower bounds on vampg=+ for cases of mee = 0 with 6 = o = 0 in the normal
mass ordering. Values of mj"® and ]'®¢ are given by the condition m.. = 0 depending on 6,3

(See appendix).

Figure 9 is the result for the case of m.. = 0 which is possible only in the normal mass
ordering. Formulae of the magic values m1"® and ¢7"¢ for me. = 0 are shown in appendix.
The bound from p — ey is the most stringent one except for sin?260;3 < 0.004 where the

bound from 7 — fpp becomes stronger than that. This is also the case for different values
of 9 and s.

3 Conclusion

If we deal with 20 bounds to avoid the disagreement with Aa,[r], vamg++ must be
greater than 10%eV-GeV in most of parameter space of the HTM in order to satisfy a
strong constraint on BR(u — eee). We found that the bound on vampy++ from 7 — fiee
becomes more stringent than that from p — éee in a region of my = 0.06eV, ¢1 < 0.0027,
0.57 < o < 1.57, and sin? 2013 < 107°. The bound from p — éee can be evaded in cases

of me, = 0 [34] and me. = 0 [8]. We have considered not only CP-conserving sets of

— 11 —



phases but also arbitrary values. In the case of m, = 0 in the normal mass ordering,

2 0.17 and by 7 decays

~

the strongest bound is given by p — ey for m; < 0.01eV or ¢

(mainly 7 — fiee) for my 2 0.01eV with ¢1 < 0.17. On the other hand, 7 — fiee gives
the strongest bound in the normal mass ordering except for mg ~ 0 with ¢; ~ 0.17 where
i — ey gives the bound. For both of the mass orderings with mg, = 0, the muonium
conversion gives the most stringent bound if Majorana phases satisfy @ ~ 0.68¢; for
v1,p2 < 1 and m; 2 0.1eV. In the case of me. = 0, the strongest bound is obtained from
i — ey except for the case of sin? 2613 < 0.004 where the bound is given by 7 — fiuu. By
looking over all cases, we see that vampg++ = 150eV-GeV should be satisfied in the HTM.
If mpg4+ is measured, the bound can be the lower bound on va though there remains a

possibility of va = 0 for which we can not use the correlation of hyy with v/2uahyy = mep.
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A Solutions for m., = 0 and m.. =0

We obtained formulae of the magic values of 613 and ¢, which give m,, = 0, as

c12812¢23C
cos o™8¢ — _ mgc 2 4 02 2 2 2 217 (Al)
523573 {m3 — §1om5 sin® o1 — (s75m2 €Os 1 + c1om1) }
. c12812¢23 D
SIO™Y = mgey o 4 oo 2 ; 2,0 217 (A-2)
593575 {m3 — S1om5sin® 1 — (s73ma cos p1 + cjymy) }
mge c12812023V/ C? + D2 (A.3)
13 T |m3 — si,m3sin? o1 — (s3;ma cos 1 + cfymi)?|’ '
23 |3 1273 ©1 127102 COS 1 1271
_ 22,2 2
C' = —ciymi+87ym5+mymsa cos 2615 cos 1 —mqms cos Yo +mamsg cos(p1 —p2),
(A4)
D = —mymgsin ¢y + myms sin g + moms sin(¢ — p2), (A.5)

where we define s]5° = sinf]3°. Note that s]3° # 0 because it requires mg = my.

Note also that srfggc is not always acceptable; For example, ¢; = 7 in the inverted mass
ordering gives s]5° > 1. These results are consistent with s and 6™ used in [8, 34]
for 1,92 = 0 or m. Although mixing matrix in [8] is defined as vy =, Ujv; in stead of
ve = Y, Uyv; used in this article, there is no change in formulae of magic values because

the difference appears just as the simultaneous flip of signs of all phases.

On the other hand, me¢. = 0 can be achieved only in the normal mass ordering. The

- 12 —



magic values of p; and my for me. = 0 are given as functions of s13 and p9 — 20 [8] by

mgey2 | A2
sin " =— 2\/(m1 mg)c_; M2 sin(pa—20),  cos ' <0, (A.6)
5351/ (mY"%) 2+ Am3,
i) = 1

cos? 2015 —2 (8‘112—}—0‘112 cos 2(¢p2 —25)) tl+15,

X [8%2 cos 2912Am§1 + {5‘112Am§1 + (54112 —i—c‘llz cos 2(pa — 25)) Amgl} t‘ll?)

— Am3 55 —2c3 525 cos (2 —20) \/A—}—B tls ], (A7)
A= (silQAmgl +cos 2012Am§1) SToAm3,, (A.8)
B= {(5‘112 — g sin® (o —28)) Am3, — 51y Ami, }Amgl, (A.9)

where we define t13 = s13/c13.
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