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Abstract: Tree level gauge mediation (TGM) may be considered as the simplest way to

communicate supersymmetry breaking: through the tree level renormalizable exchange of

heavy gauge messengers. We study its general structure, in particular the general form of

tree level sfermion masses and of one loop, but enhanced, gaugino masses. This allows us

to set up general guidelines for model building and to identify the hypotheses underlying

the phenomenological predictions. In the context of models based on the “minimal” gauge

group SO(10), we show that only two “pure” embeddings of the MSSM fields are possible

using d < 120 representations, each of them leading to specific predictions for the ratios

of family universal sfermion masses at the GUT scale, m2
5

= 2m2
10 or m2

5
= (3/4)m2

10 (in

SU(5) notation). These ratios are determined by group factors and are peculiar enough to

make this scheme testable at the LHC. We also discuss three possible approaches to the

µ-problem, one of them distinctive of TGM.
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1 Introduction

In the long theoretical preparation for the LHC, a wide spectrum of options for the new

physics at the TeV scale has been considered. A major role has been played by supersym-

metric models. Several schemes have been investigated in which supersymmetry is broken

in a hidden sector with no renormalizable interactions with the observable sector and is

communicated to the latter by a variety of mechanisms [1–14]. Below the scale M at which

supersymmetry breaking is communicated, sfermion masses are typically described by the

model-independent effective lagrangian operator
∫

dθ2dθ
2 Z†ZQ†Q

M2
, (1.1)
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where Z is a Standard Model (SM) singlet hidden chiral superfield whose F -term vev

breaks supersymmetry, 〈Z〉 = Fθ2, and Q is a generic light, observable chiral superfield,

for example an MSSM one. Such an effective, supersymmetric description holds if F ≪M2.

Different models are characterized by different origins for the above operator.

Surprisingly enough, a simple and attractive possibility has been neglected in the al-

most three decades of phenomenological studies of supersymmetry: the possibility that the

operator in eq. (1.1) arises from the renormalizable, tree level exchange of heavy vector su-

perfields, as in figure 1. This is the communication mechanism that we call tree level gauge

mediation (TGM) [15]. Besides its simplicity (compare for example with the cumbersome

set of two loop diagrams generating the operator in eq. (1.1) in ordinary, loop gauge me-

diation), this framework is also motivated by the necessary presence of superheavy vector

fields in Grand Unified Theories (GUTs). On the verge of the LHC era, we believe it is

worth filling this lacuna and spell out the consequences of TGM, also in the light of its

peculiar predictions.

One may wonder how such a simple possibility could have been missed. The reason

might be that well known arguments seem to prevent it. The main obstacle is represented

by the supertrace formula [16] and its consequences. In the context of the tree level, renor-

malizable spontaneously broken supersymmetric theory underlying figure 1, we must have

StrM2 = gDa Tr(Ta), (1.2)

for the supertrace of the squared masses of the fields in the model. Eq. (1.2) holds separately

for each set of conserved quantum numbers [17]. If the action of the gauge generators on

the full set of chiral superfields, Ta, is traceless, as in the case we are going to consider, the

supertrace vanishes. This represents a potential phenomenological problem. Still, TGM

leads to a viable spectrum, as we will see. While the explicit construction in the next

sections is all we need to get to our results, we find useful, in this introduction, to review

what the potential problem is and illustrate how tree level gauge mediation solves it.

We can see the potential problem at two different levels. First, eq. (1.2) holds in

particular when applied to all fields with the quantum numbers of the SM fermions. Let us

consider then the case of the MSSM. In this case the fields with the quantum numbers of

the SM fermions are the SM fermions themselves, f , and their supersymmetric partners,

the sfermions f̃ . From StrM2
f, f̃

= 0 we then conclude that the sum of the squared

masses of fermions and sfermions should coincide. This is in clear contradiction with

the experimental bounds on the sfermion masses, giving StrM2
f, f̃

> 0. This is however

far from being the end of the story, as any realistic complete theory of supersymmetry

breaking is likely to involve additional fields on top of the MSSM ones. This is the case of

our TGM framework, where the positive contribution to the supertrace from the MSSM

fermions and sfermions is compensated by an opposite contribution from extra fields with

quantum numbers within the ones of the SM fermions, StrM2
extra < 0, so that StrM2

f, f̃
+

StrM2
extra = 0, in agreement with the supertrace formula. The extra chiral superfields

will get heavy supersymmetric mass terms. Their negative contribution to the supertrace

is due to the fact that their scalar components get negative O (TeV) soft masses, which
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however represent only negligible corrections to their much larger, positive supersymmetric

mass term. As we will see, this can be obtained without ad hoc model building efforts.

The supertrace formula has stronger implications than the ones outlined above, which

should also be addressed. Let us consider the fields with the SU(3)c × U(1)em quantum

numbers of the d quarks only. The latter set will contain at least the three down-type SM

quarks and their scalar partners and possibly the extra fields we need to compensate the

supertrace formula. Let us project the supertrace formula in the flavor space of down-type

fields along the direction corresponding to the lightest d-quark mass eigenstate, the down

quark. Note that when restricted to a given set of quantum numbers, the trace on the

right-hand side of eq. (1.2) can be non-vanishing. Assume now that the only U(1) factor

in the gauge group is the SM hypercharge, U(1)Y . We then obtain [17, 18]

m2
d̃
≤ m2

d −
1

3
g′DY , (1.3)

where d̃ is the lightest d-sfermion mass eigenstate, md is the down quark mass, md ∼ 5MeV,

g′ is the hypercharge gauge coupling and DY the hypercharge D-term. Eq. (1.3) represents

a serious phenomenological problem, even in the presence of the extra fields invoked above.

If DY = 0, in fact, eq. (1.3) would force a down sfermion mass to be smaller than about

5MeV, in contrast with the lowest experimental limits of a few hundreds GeV. If DY > 0,

the constraint would be even stronger. If DY < 0, the constraint would be loosened, but

one could repeat the argument for the up quarks and squarks. For which the DY contri-

bution to the relation analogous to eq. (1.3) would have opposite sign, leading to an even

stronger bound for the lightest up squark. In order to bypass this problem, an extra U(1)

factor, giving the same sign on both down and up fields, is needed. Such an extra U(1)

factor is present “by definition” in the TGM scheme. It is the U(1) factor associated to

the heavy vector exchange in figure 1 (as Z is a SM singlet, the heavy vector must also

be a SM singlet).1 We therefore have all the ingredients needed to overcome the potential

problem set by the supertrace formula. As we will see, those ingredients naturally combine

in phenomenologically viable schemes.

Another potential problem is represented by the fact that gaugino masses arise at the

loop level and are therefore potentially suppressed with respect to the sfermion masses by

a large loop factor, thus pushing the sfermions out of the reach of the LHC and introducing

a significant fine-tuning in the determination of the Higgs mass. We will list in section 3.2

a number of gaugino mass enhancement factors that can compensate fully or partially that

loop factor.

A minimal model of tree-level gauge mediation has been presented in [15], solving the

supersymmetric flavor problem and predicting the ratio of different sfermion masses to be

different from mSugra and other schemes. In this paper we would like to take a broader

1The first attempts to construct models with an extra U(1) were made in [19–21], where the extra U(1)

is broken at the electroweak scale. This option had several phenomenological problems related to the low

energy breaking of the U(1). In particular the anomaly constraint forces to include extra colored multiplets

whose vevs may either do not break supersymmetry or do break SU(3)
c
⊗ U(1)

em
. Such constraints are

evaded in our model, as we will see, because the colored particles needed to cancel the anomaly are made

superheavy. See also [22] for a model with anomalous U(1)’s.
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point of view and study the general implementation of TGM. This will allow to establish

the general properties of TGM, to set up the guidelines for model building and to iden-

tify what are the hypotheses under which the peculiar predictions on soft masses of the

minimal model hold. Moreover, we would like to present a few new approaches to the µ-

problem, both in the context of well known (Giudice-Masiero, NMSSM) and new solutions.

In particular, in section 2 we will discuss what are the conditions under which heavy vector

superfields can act as tree-level messengers of supersymmetry breaking and obtain a gen-

eral expression for the tree level contribution to the supersymmetry breaking lagrangian, in

particular to the sfermion soft masses. In section 3, we will consider the one-loop contribu-

tions to soft masses, concentrating mostly on gaugino masses and the enhancement factors

compensating their loop suppression. In section 4 we consider the possibility to obtain a

phenomenologically viable model from the general formalism previously introduced. We

will see that clear model building guidelines emerge, leading to peculiar predictions for the

pattern of MSSM sfermion masses and we will identify the assumptions underlying such

predictions. In section 5, we will discuss a few new approaches to the µ-problem, before

summarizing in section 6. The paper also contains two appendixes. In appendix A, we

outline the procedure to integrate out vector superelds in the non-abelian case and address

the role of gauge invariance in a consistent supersymmetric generalization of the expansion

in the number of derivatives. In appendix B, we provide an example of a superpotential

achieving supersymmetry breaking, SO(10) breaking to the SM, ensuring that only the

MSSM fields survive at lower energy (in particular providing doublet-triplet splitting) and

solving the µ-problem. Such a superpotential is not aimed at being simple or realistic, but

it represents a useful existence proof.

2 Tree level soft terms

In this section we discuss the conditions under which heavy vector superfields can act as

tree-level messengers of supersymmetry breaking in the context of a generic, renormaliz-

able, N = 1 globally supersymmetric gauge theory in four dimensions. Then we recover the

general expression for the tree level contribution to the sfermion soft masses. We discuss

their origin both in the context of the full, renormalizable theory, and in an effective theory

approach.

We start from a lagrangian described by a canonical Kähler K = Φ†e2gV Φ and gauge

kinetic function and by a generic superpotential W (Φ) function of the chiral superfields

Φ ≡ (Φ1 . . .Φn), with no Fayet-Iliopoulos term. We follow the conventions in [23]. We

will denote by φi, ψi, Fi the scalar, spinor, and auxiliary component of Φi and by vµa , λa,

Da the vector, spinor, and auxiliary component of Va. The gauge group G (assumed for

simplicity to be simple with a single gauge coupling g) is broken by the scalar component

vev φ0 = 〈φ〉 to the subgroup H at a scale MV ∼ g|φ0| ≫ MZ , at which the theory is

approximately supersymmetric. In the phenomenological applications we have in mind,

H contains the SM gauge group GSM, G is a grand-unified group (for example SO(10) or

E6), and the breaking scale is of the order of the GUT scale. Correspondingly, the vector
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superfields split into light and heavy ones, associated to the orthonormalized generators T la
and T hb respectively: V = V l

aT
l
a + V h

b T
h
b , a = 1 . . . Nl, b = 1 . . . Nh.

The heavy vector superfields acquire a squared mass matrix given by

(M2
V 0)ab = g2φ†0{T ha , T hb }φ0. (2.1)

We choose the basis of heavy generators T ha in such a way that the above mass matrix is

diagonal,

(M2
V 0)ab = M2

Va
δab. (2.2)

The heavy vector superfields become massive by eating up a corresponding number of

Goldstone chiral superfields. It is then convenient to split the chiral superfields as follows

Φ = φ0 + Φ′ + ΦG, ΦG =
√

2 g
ΦG
a

MVa

T ha φ0, Φ′ = Φ′
ibi, (2.3)

where ΦG
a , a = 1 . . . Nh are the Goldstone superfields associated to the generators T ha and

bi = (bi1 . . . b
i
n), i = 1 . . . n − Nh is an orthonormal basis in the space of the “physical”

chiral fields Φ′, b†iTaφ0 = 0. In the supersymmetric limit, φ0 is orthogonal to ΦG and ΦG

does not mix with the physical superfields. The physical components of the massive vector

superfield Va are vµa , λa, ψ
G
a , Re(φGa )/

√
2, all with mass MVa . The imaginary part of φGa ,

the Goldstone boson, becomes as usual the longitudinal component of the massive gauge

boson vµa and the spinors ψGa and λa pair up in a Dirac mass term. This spectrum can be

split by supersymmetry breaking corrections, as we will see in section 3.1.

As for the physical chiral superfields Φ′
i, their supersymmetric mass matrix is given by

M0
ij =

∂2W

∂Φ′
i∂Φ′

j

(φ0). (2.4)

Again, we choose the basis bi in such a way that the above mass matrix is diagonal and

positive,

M0
ij = Miδij , Mi ≥ 0. (2.5)

The scalar and fermion components of Φ′ can be split by supersymmetry breaking correc-

tions, which can also induce a mixing with the scalar and fermion components of the heavy

vector superfields.

Supersymmetry is supposed to be broken at a much lower scale than MV , where some

of the fields Φ′ get an F -term, 〈Φ′〉 = F0θ
2, M2

Z ≪ |F0| ≪ M2
V . As a consequence, φ0

satisfies with good approximation the F -term and D-term conditions at the scale MV ,

∂iW (φ0) = 0 + O (|F0|) and φ†0Taφ0 = 0 + O
(

|F0/MV |2
)

(see eq. (2.6)) for each i, a.

The F -terms induce a non vanishing vev for the D-terms Dh
a of the heavy vector

superfields. The stationary condition for the scalar potential V , ∂V/∂φi = 0, together

with the gauge invariance of the superpotential give

〈

Dh
a

〉

= −2g
F †

0T
h
a F0

M2
Va

, (2.6)
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with the light D-terms still vanishing. Clearly, only generators T ha that are singlets under

the unbroken group H can contribute to such D-term vevs. Note also the condition

F †
0Taφ0 = 0, (2.7)

which implies that the Goldstone superfields ΦG do not get F -term vevs (the D-term con-

dition implies that in the supersymmetric limit they do not get scalar vev either). The

latter relation also follows from the gauge invariance of the superpotential. In turn, the

D-terms above give rise to tree level soft masses for the scalar components φ′i of the chiral

superfields Φ′
i

V ⊃ 1

2
D2 ⊃ −g φ′†T ha φ′

〈

Dh
a

〉

= (m̃2
ij)Dφ

′†
i φ

′
j (2.8)

(m̃2
ij)D = 2g2(T ha )ij

F †
0T

h
a F0

M2
Va

, (2.9)

provided that both F0 and the scalars φ′ are charged under the (broken) gauge interaction

associated to T ha and provided that T ha is a singlet under H.

The complete list of tree level soft terms obtained from the gauge dynamics can be more

conveniently recovered in the effective theory below MV . Before discussing it, let us observe

that this theory must necessarily satisfy the supertrace formula Str(M2) = 0. In the case

of the soft terms in eq. (2.9), this simply follows here from TrT ha = 0. In particular, the

tracelessness condition implies that positive soft masses are accompanied by negative ones

in eq. (2.8). This is a potential phenomenological problem, which has long been considered

as an obstacle to models in which supersymmetry breaking terms are generated, as here,

at the tree, renormalizable level. However, it has recently been shown [15] that such a

potential problem can be easily solved by adding a large positive supersymmetric mass

term to the chiral superfields whose tachyonic nature would be problematic.

As mentioned, the generation of the sfermion masses can be conveniently seen in the

effective theory below MV , where the heavy vector and the Goldstone chiral superfields

have been integrated out (similar methods were used in [24] for different goals). In this

theory, the chiral degrees of freedom are the Φ′. The gauge group is H and it is unbroken

(we neglect electroweak symmetry breaking). As a consequence, there is no D-term contri-

bution to supersymmetry breaking. The scalar masses arise in this context from F -terms

vevs through an effective Kähler operator, as we will see in a moment.

The vector superfields can be integrated out by solving the equations of motion

∂K/∂V h
a = 0 [24–29]. In appendix A we illustrate the details of such a procedure in a

general case, we explicitly write the resulting effective theory at the leading order, and we

make a few general remarks on the approximations involved in using ∂K/∂V h
a = 0 and on

the role of gauge invariance in a consistent supersymmetric generalization of the expansion

in the number of derivatives [29]. For the present purposes, we are only interested in the

terms in the effective lagrangian relevant to (sizable) soft supersymmetry breaking. Those

are the ones following from the effective tree level contribution to the Kähler potential in

eq. (A.8a):

δK0
eff = − g2

M2
Va

(Φ′†T ha Φ′)(Φ′†T ha Φ′), (2.10)

– 6 –



J
H
E
P
0
3
(
2
0
1
0
)
0
2
4

Φ′ Φ′†

V

Φ′† Φ′

−→

Z

Z†

V

Q†

Q

+

Z

Z†

V

Q†

Q

Figure 1. Tree level gauge mediation supergraph generating the operator in eq. (2.10) when

integrating out the heavy vector superfield messengers.

where we remind that Φ′ has no vev in its scalar component. The operator in eq. (2.10)

can be seen to arise from the diagram on the left-hand side in figure 1.

As mentioned, the only possible source of supersymmetry breaking in the effective

theory are the F -term vevs of the chiral superfields Φ′. We remind that such F -term vevs

must belong to non-trivial representations of the full group G, in order to play a role in

TGM. The only terms in the lagrangian containing such F -term vevs, at the tree level

and up to second order in F0, F
†
0 , and 1/MVa , arise from the superpotential and from the

operator in eq. (2.10):

− Ltree
soft = −F0i

∂Ŵ

∂Φi
− 2g2 (F †

0T
h
a ψ

′)(φ′†T ha ψ
′)

M2
Va

+ h.c.

+ 2g2 (F †
0T

h
a F0 )(φ′†T ha φ

′)

M2
Va

+ 2g2 (φ†T ha F0 )(F †
0T

h
a φ

′)

M2
Va

− F †
0F0 , (2.11)

where Ŵ is the superpotential in the effective theory,

Ŵ (Φ′) = W (φ0 + Φ′) (ΦG = 0). (2.12)

Let us consider the different terms in eq. (2.11) in turn. The first term in the second line

reproduces the contribution to the soft scalar masses in eq. (2.9). The second term gives

rise to an additional contribution, only relevant to superfields that are gauge partners of

the Goldstino superfield (and have the same quantum numbers under H as some of the

generators of G).2 All in all, we have

m̃2
ij = 2g2

[

(T ha )ij
F †

0T
h
a F0

M2
Va

+
(T ha F0)

∗
i (T

h
a F0)j

M2
Va

]

. (2.13)

Note that the soft terms do not actually depend on the gauge coupling or on the normaliza-

tion of the generators T , as M2
Va

is also proportional to g2T 2. The second term in the first

2The latter contribution can be obtained in the context of the full theory by using the unitary gauge or

in Wess-Zumino gauge from the F -term contribution to the scalar potential using eq. (3.4) below.
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line of eq. (2.11) is a gauge-generated Yukawa interaction with coupling λ = O
(

|F0|/M2
V

)

,

usually absent in models of supersymmetry breaking. From a phenomenological point of

view, such tiny Yukawa couplings might play a role in neutrino physics, where they could

represent naturally small Dirac neutrino Yukawa couplings [32, 33].

Finally, the first term in eq. (2.11), has to do with the existence of a hidden sector in the

effective theory. In the phenomenological applications we have in mind, the light spectrum

will contain the MSSM chiral superfields, as part of a light, “observable” sector. The latter

will be charged under the residual gauge group H ⊇ GSM. On the other hand, the super-

symmetry breaking superfields do not feel the residual gauge interactions. In the effective

theory, therefore, the supersymmetry breaking sector is hidden from the observable sector

from the point of view of gauge interactions. In order for the supersymmetry breaking sec-

tor to be hidden also from the point of view of superpotential interactions, it is sufficient to

make sure that the first term in eq. (2.11) does not induce a direct coupling between the two

sectors. To be more precise, we can write the chiral superfields of the effective theory, Φ′, as

Φ′ = (Z,Q,Φh). (2.14)

The superfield Z is the only one getting an F -term vev, 〈Z〉 = |F0|θ2. Its fermion

component is the Goldstino and therefore Z is a massless eigenstate of the mass matrix

M0 in eq. (2.4). The remaining mass eigenstates are divided in two groups, the heavy

ones, Φh
i with masses Mh

i ≫ |F0|, and the light, or observable, ones Qi, with masses

MQ
i . |F0|. In order to hide supersymmetry breaking from the observable sector also from

the point of view of superpotential interactions, we require that

∂2Ŵ

∂Z∂Qj
(Z,Q,Φh = 0) = 0 (2.15)

(at least for the renormalizable part of the superpotential).

We can then see supersymmetry breaking as arising in a hidden sector and then com-

municated from the to the observable sector by the diagrams on the right-hand side of

figure 1. This can perhaps be considered as the simplest way to communicate supersym-

metry breaking: through the tree level renormalizable exchange of a heavy gauge messenger.

Since heavy gauge messengers at a scale not far from the Planck scale are automatically

provided by grand-unified theories, this possibility is not only simple but also well moti-

vated. The reason why it has not been pursued in the past is an apparent obstacle arising

from the supertrace theorem that, as mentioned, can be easily evaded by providing heavy,

supersymmetric masses to some of the superfields. Such mass terms can naturally arise in

the context of grand-unified theories, as we will see.

We end this section with some comments on integrating out heavy chiral superfields and

on the corresponding possible tree level contributions to A-terms and soft scalar masses.

The heavy vector superfields may not be the only fields living at the scale MV , as chiral

superfields could have mass terms of similar size or get it after gauge symmetry breaking.

Such chiral fields should also be integrated out in order to get the effective theory below

the scale MV . In general, we want to integrate out all the heavy chiral superfields Φh.

– 8 –
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Since their masses Mh
i are assumed to be much larger than the supersymmetry breaking

scale, it will still be possible to write the effective theory in a manifestly supersymmetric

way. In order to integrate them out, let us write the superpotential as

Ŵ = −|F0|Z +
MQ
i

2
Q2
i +

Mh
i

2
(Φh

i )
2 +W3(Z,Q,Φ

h), (2.16)

where W3 is at least trilinear in its argument. The equations of motion (∂Ŵ )/(∂Φh
i ) = 0

give

Φh
i = − 1

Mh
i

∂W3

∂Φh
i

(Z,Q) + O
(

1

M2
h

)

. (2.17)

The effective superpotential for the light fields Z and Q is therefore

Weff(Z,Q) = Ŵ (Z,Q) − 1

2Mh
i

∑

i

(

∂W3

∂Φh
i

(Z,Q)

)2

+ O
(

1

M2
h

)

. (2.18)

A contribution to the effective Kähler is also induced

δKΦ =
1

(Mh
i )2

∑

i

∣

∣

∣

∣

∂W3

∂Φh
i

(Z,Q)

∣

∣

∣

∣

2

+ O
(

1

M3
h

)

. (2.19)

The effective contributions to the superpotential and to the Kähler in eqs. (2.18)

and (2.19) may give rise to “chiral-mediated” tree-level A-terms and (negative) additional

contributions to soft scalar masses respectively. The latter should be subleading with

respect to the (positive) vector mediated contributions in eq. (2.13), at least in the case

of the MSSM sfermions. Such tree level contributions could only arise in the presence of

trilinear superpotential couplings in the form ZQΦh. In the following we will consider the

case in which such a coupling is absent,

∂3Ŵ

∂Z∂Q∂Φh
(0) = 0, (2.20)

so that the chiral-mediated tree tree level contributions also vanish. This is often the case,

as illustrated by the model in [15].

3 One loop soft terms and gaugino masses

In this section we consider the one loop contributions to soft masses, focusing mostly on

gaugino masses and the enhancement factors compensating their loop suppression.

Gaugino masses do not arise at the tree level. They are however generated at the

one-loop level, as in standard, “loop” gauge mediation models. The suppression of gaugino

masses by a loop factor with respect to scalar masses represents a potential phenomenolog-

ical problem. Given the present experimental limits on gaugino masses, a loop factor en-

hancement would make the sfermions heavier than O (10TeV), beyond the reach of the LHC

and heavy enough to introduce a serious fine-tuning problem, thus approaching the split su-

persymmetry regime [34, 35]. However, it turns out that the loop hierarchy between gaugino

and scalar soft masses is typically reduced or eliminated, as we will see in this section.
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λla λlb

vµ

λh λh

ψh ψh
m∗
cd

(a)

λla λla

φ

ψh ψh

m∗
cd

(a)

λla λla

ψh ψh

φh φhFij

(b)

Figure 2. One loop contributions to light gaugino masses from the exchange of heavy vector (a)

and chiral (b) degrees of freedom.

We calculate gaugino masses in the full theory above MV . There are two types of one

loop diagrams contributing to gaugino masses, depending on whether the degrees of freedom

running in the loop are components of the heavy vector superfields (including the Goldstone

superfields), as in figure 2a, or physical chiral superfields, as in figure 2b. Correspondingly,

we will distinguish a “vector” and a “chiral” contribution to the light gaugino masses,

Mg
ab = (Mg

ab)V + (Mg
ab)Φ. (3.1)

The latter may easily dominate on the former, as we will see. The source of supersymmetry

breaking entering the diagrams of figure 2a and 2b is a tree level splitting among the

components of the heavy vector and chiral superfields respectively. We now examine

the two contributions in eq. (3.1) in turn and write the known results [36] in a form

general enough to be suitable for the following discussion of their quantitative importance

compared to the tree level scalar soft terms.

3.1 Vector contribution to gaugino masses

In the supersymmetric limit, the fields vµa , λa, ψ
G
a , Re(φGa )/

√
2 form a massive vector mul-

tiplet with mass MVa . Once supersymmetry is broken, this spectrum is split by corrections

to the fermion and scalar masses, which may also mix them with the components of the

physical chiral superfields. Here, we are interested to the supersymmetry breaking fermion

mass term in the form −mabψ
G
a ψ

G
b /2, which is the source of the vector contribution to

gaugino masses through the diagrams in figure 2a.

The mass term

mab =
∂2W

∂ΦG
a ∂ΦG

b

(φ0) (3.2)
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vanishes in the supersymmetric limit because of the gauge invariance of W . The situation is

different in the presence of supersymmetry breaking, when the gauge invariance of W gives

mab = g2F
†
0{T ha , T hb }φ0

MVaMVb

. (3.3)

Note also the more general expression for the mixed supersymmetry breaking terms

∂2W

∂Φi∂ΦG
a

(φ0) =
√

2g
F †

0j(T
h
a )ji

MVa

. (3.4)

Before showing the expression for the gaugino masses induced by mab, let us remind

that the heavy vector representation is in general reducible, under the unbroken gauge

group H, to a set of irreducible components, each with a single value of the mass. Let us

call M̂Vr the value of the mass in the representation r and denote

g2φ†0{T ha , T hb }F0 = m∗
abM̂

2
Vr

≡
∂M̂2

Vr

∂Z
|F0|δab, (3.5)

if T ha , T hb belong to the representation r. In the limit |F0| ≪ M2
V , the supersymmetry

breaking source mab can be treated as a perturbation in the one loop computation of gaug-

ino masses. At the leading order in mab, the diagram in figure 2a generates a contribution

to light gaugino masses given by

(Mg
ab)V = −2

g2

(4π)2

∑

r

Sab(r)
|F0|
M̂2
Vr

∂M̂2
Vr

∂Z
, (3.6)

where Sab(r) = Tr(r(T la)r(T
l
b)) is the Dynkin index of the representation r : T → r(T ) of

the generator T . The above contribution to gaugino masses arises at the scale MV where

the heavy vectors live.

Let us now discuss the relevance of the above contribution to gaugino masses. First, let

us note that in order for (Mg
ab)V to be non-vanishing we need the following two conditions

to be verified at the same time

φ†0{T ha , T hb }F0 6= 0 (for some a, b), φ†0T
h
a F0 = 0 (for all a), (3.7)

as it can be seen from eqs. (3.5) and (2.7). In particular, we need at least one irreducible

(under the full group G) chiral superfield multiplet to get vev in both its scalar and F

components. At the same time, we need

F †
0T

h
a F0 6= 0 (for some a) (3.8)

in order for the tree level contribution to scalar masses to be generated. The conditions

in eqs. (3.7), (3.8) may force the vector contribution to gaugino masses to vanish. On top

of that, (Mg
ab)V is always suppressed by a loop factor g2/(4π)2 compared to the typical

scalar mass in eq. (2.13). If (Mg
ab)V was the only contribution to gaugino masses, this

would lead to an hierarchy between gaugino and scalar soft masses. Moreover, the present
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experimental lower limits on gaugino masses, Mg & 100GeV, would force the sfermion

masses to be heavier than O (10TeV). However, as we will see in a moment, the chiral

contribution to gaugino masses can be significantly larger than the vector contribution, thus

reducing or even eliminating the loop suppression with respect to soft scalar masses. In

this case, the vector contribution to gaugino masses typically ends up to be subdominant.

3.2 Chiral contribution to gaugino masses

The chiral contribution to gaugino masses arises from the one loop diagram in figure 2b,

as in ordinary loop gauge mediation. The scalar and fermion components of the chi-

ral superfields entering the loop are split by a supersymmetry breaking scalar mass term

−(Fijφ
h
i φ

h
j +h.c.)/2. As a consequence of eqs. (2.15) and (2.20), the supersymmetry break-

ing couples directly only to the heavy chiral fields and Fij can be treated as a perturbation

in the calculation of gaugino masses. The mass term Fij is then given by

Fij = − ∂3Ŵ

∂Φh
i ∂Φh

j ∂Z
(0)|F0|, (3.9)

which adds to the supersymmetric scalar mass term −M2
i |φ′i|2 (in the notation of eq. (2.5)).

The physical chiral superfield representation under the unbroken gauge group H

is in general reducible to a set of irreducible components, each with its own mass M̂r.

Let us denote
∂3Ŵ

∂Φh
i ∂Φh

j ∂Z
(0)|F0| = −Fij ≡

∂M̂h
r

∂Z
|F0|δij . (3.10)

At the leading order in Fij , the diagram in figure 2b generates a contribution to light

gaugino masses given by

(Mg
ab)Φ =

g2

(4π)2

∑

r

Sab(r)
|F0|
M̂r

∂M̂r

∂Z
. (3.11)

Each of the contributions in the sum in the r.h.s. of eq. (3.11) arises at at the scale M̂r at

which the corresponding chiral superfield lives. If the heavy chiral superfields split in two

conjugated representations Φh = Ψ + Ψ with a mass term in the form −ΨµΨ, eq. (3.11)

still holds with M → µ and a factor 2 multiplying the r.h.s. .

Let us now discuss the size of the typical chiral contribution to gaugino masses Mg and

compare it with the typical size of the tree level scalar soft masses m̃2 in eq. (2.13). Let us

consider for simplicity the case in which the scalar masses are due to the exchange of a single

heavy vector and the irreducible (under H) components of the physical chiral superfields

have definite charges Qr under the corresponding generators. As for the dynamics giving

rise to gaugino masses, let us assume that there are no bare mass terms in the superpoten-

tial, i.e. (∂2W )/(∂Φi∂Φj)(φ = 0) = 0. Then both M̂r = λrsφ0s and (∂M̂r)/(∂φ0s) = λrs
arise from the same trilinear term in W (Φ). Under the above assumptions, we have

m̃2 =

∑

r(Qr/Q)|F0r |2
∑

r(Qr/Q)2|φ0r|2
Mg =

g2

(4π)2

∑

r

S(r)

∑

s λrsF0s
∑

s λrsφ0s
, (3.12)
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where Q is the charge of the scalar acquiring the mass m̃. While the loop factor g2/(4π)2

suppresses Mg compared to m̃ by a O (100) factor, the expressions in eqs. (3.12) may give

rise to several enhancements of m̃/Mg reducing or even eliminating the loop hierarchy:

• In the context of grand unified theories the heavy vectors contributing to the soft

scalar masses are either one (as in the case of the minimal possibility SO(10), see

section 4) or a few, unless the unified group is very large. On the other hand, the

gaugino masses may always get contribution from several chiral messengers.

• Sfermion and gaugino masses depend on different group factors. Sfermions can get

a mild suppression if Qr/Q > 1. This is indeed what turns out to happen in simple

models, as we will see in section 4.

• The heavy vector masses whose exchange generates m̃ collect all the vevs breaking

the corresponding charge Q. The scalar mass m̃ is therefore suppressed by all such

vevs. On the other hand, gaugino masses are only suppressed by the vevs related to

supersymmetry breaking by superpotential interactions λrs. Unless some of then have

Q = 0, the vevs suppressing gaugino masses will be a subset of the vevs suppressing

scalar masses, thus leading to an enhancement of gaugino masses. In the presence of

an hierarchy between the vevs related to supersymmetry breaking and some of the

other, Q-breaking vevs, this enhancement can be quite large.

• Different couplings λrs can appear in the numerator and denominator of the expres-

sion (
∑

s λrsF0s)/(
∑

s λrsφ0s). This is likely to be the case as a consequence of the

relation
∑

sQs(F
∗
0sφ0s) = F †

0T
hφ0 = 0, which can be satisfied without the need of

cancellations only in the case in which the fields charged under Q do not have vevs

in both the F and scalar components. If the couplings appearing in the numerator

and the denominator are hierarchical, gaugino masses can be sizably enhanced (or,

in this case, further suppressed).

The study of simple models shows that indeed the enhancement factors above can

naturally arise (see section 4.1 below and [15]). In particular, the first two factors reduce

the hierarchy m̃/Mg by factors 3 and
√

5 respectively. The third factor gives at least a

factor
√

2 enhancement. The O (100) hierarchy arising from the loop factor is thus reduced

by a factor 10, which is enough to bring the sfermions within the reach of the LHC. Such

a milder hierarchy may even be necessary in the light of the bounds on the Higgs mass,

which require the stops not to be too light. Still, the residual O (10) hierarchy can then be

easily fully eliminated by the remaining two factors in the above list.

3.3 Other one-loop contributions to soft masses

Besides gaugino masses, which can be seen to arise from one loop corrections to the gauge

kinetic function, a number of soft terms can be generated or get a contribution from the

one-loop corrections to the Kähler. The latter can be computed by using the general results
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in [37–41], which give

δ1-loopK = − 1

32π2

[

Tr

[

M †
ΦMΦ

(

log
M †

ΦMΦ

Λ2
− 1

)]

− 2Tr

[

M2
V

(

log
M2
V

Λ2
− 1

)]

]

,

(3.13)

where

(MΦ)ij =
∂2W

∂Φi∂Φj
(Φ), (M2

V )ab =
∂2K

∂Va∂Vb
(Φ, V = 0) (3.14)

are functions of the chiral superfields, K is our canonical Kähler K = Φ†e2gV Φ and the

indexes run on the heavy vector and chiral superfields. As in the case of gaugino masses,

the soft terms might get a contribution from both heavy vector and chiral superfields

running in the loop.

As the contribution to one loop soft terms are highly model dependent, we just remind

and collect their general expression in terms of δ1-loopK. Let us expand δ1-loopK in terms

of powers of Q and Z around φ0. The relevant terms are

δ1-loopK =

(

α
(1)
ij ZQ

†
iQj +

β
(1)
ij

2
Z†QiQj + h.c.

)

+α
(2)
ij Z

†ZQi
†Qj +

(

β
(2)
ij

2
Z†ZQiQj + h.c.

)

+ · · · , (3.15)

where α(1), α(2), are hermitian, β(1), β(2) symmetric and all are dimensionful. We have

omitted Z†Qi terms, which are well-known to destabilize the hierarchy [42]. Their absence

can be ensured for example by requiring that there are no light chiral fields with the same

quantum numbers as Z.

The first term α(1) gives rise to the following “A-terms”

LA1-loop = −Aijqi
∂Ŵ

∂Qj
(q), with Aij = |F0|α(1) (3.16)

(and to a two loop contribution to scalar soft masses), where q is the scalar component of

Q. The second term β(1) generates a contribution to the “µ-term” in the superpotential

W µ
1-loop =

µij
2
QiQj, with µij = |F0|β(1), (3.17)

and the fourth term β(2) a contribution to the “Bµ-term”

LBµ

1-loop = −(Bµ)ij
2

qiqj, with (Bµ)ij = −|F0|2β(2). (3.18)

A more comprehensive discussion of the µ-term and the µ problem can be found in section 5.

Finally, α(2) gives 1-loop contributions to soft scalar masses

δm̃2
ij = −|F0|2α(2)

ij (3.19)

that add to the tree level contributions in eq. (2.13).
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Additional one-loop contributions to soft scalar masses can come from an induced 1-

loop Fayet-Iliopoulos term [43] associated for example to the heavy H-singlet generators,

in particular to those involved in the mediation of supersymmetry breaking at the tree

level. Such terms vanish if the heavy chiral mass matrix and the matrix of their couplings

to the spurion Z are diagonal in the same basis (in which case the condition in eq. (2.20)

is also automatically satisfied) or if the latter matrix of couplings is hermitian in one basis

in which the mass matrix is diagonal [44].

This completes the list of the soft terms arising at one loop. Two loop corrections to

the scalar soft masses can also arise, of course, as in standard loop gauge mediation, and

be sizable in the presence of an enhancement of one-loop gaugino masses [15].

4 Guidelines for model building

We now consider the possibility to obtain a phenomenologically viable model from the

general formalism discussed so far. We will see that clear model building guidelines emerge

from this analysis, leading, in economical schemes, to peculiar predictions for the pattern

of MSSM sfermion masses. In particular, we will identify the assumptions underlying such

predictions.

In a phenomenologically viable model, the unbroken gauge group H should contain the

SM group, GSM ⊆ H, and the light superfield content should contain the MSSM spectrum,

(qi, u
c
i , d

c
i , li, e

c
i ) ⊆ Q, in standard notations, where i = 1, 2, 3 is the family index. We

assume that the full gauge group G is a simple, grand-unified group, motivated by the well

known successful predictions of the SM fermion gauge quantum numbers, of the strong

coupling in the MSSM, and of the unification scale in the phenomenologically allowed

region. The candidates for the unified group G in a four-dimensional theory are SU(N),

N ≥ 5, SO(4n+2), n ≥ 2, and the exceptional group E6 [45]. In the following we will focus

on the smallest (or unique) representatives of each class, SU(5), SO(10), and E6.

We want the MSSM sfermions to get a positive, O (TeV) mass through tree level gauge

mediation. The general form of such mass terms is given in eq. (2.13). The latter contains

two contributions, corresponding to the two diagrams on the right-hande side in figure 1.

In order for the second contribution to play a role for sfermion masses, the corresponding

chiral superfields should live in the same unified multiplet as the supersymmetry breaking

source Z. This will not be the case in the models we consider (as a consequence, for

example, of a matter parity telling the supersymmetry breaking multiplet from the matter

ones). On the other hand, the second contribution might contribute to the Higgs masses,

if some of the gauge generators have the same quantum numbers (which is not the case in

SO(10), the unified group we will consider in greater detail).

The MSSM sfermions then get their tree level soft masses from the first term in

eq. (2.13) only. In order for F †
0T

h
a F0 to be non-vanishing, the heavy generator T ha must be

a SM singlet, since F0 is. We therefore need a group G with rank 5 at least. This means

that SU(5) cannot give rise to tree level gauge mediation, while SO(10) and E6 are in

principle suitable.
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SO(10) 16 16 10 45 54

SU(5) 1 10 5 1 10 5 5 5 1 10 10 24 24 15 15

X 5 1 −3 −5 −1 3 −2 2 0 −4 4 0 0 −4 4

Table 1. Quantum numbers of the non-trivial SO(10) representations with dimension d < 120

under the SO(10) generator X .

Let us first consider the “minimal” option, SO(10), which has also the well known

virtue to be able to accommodate a whole MSSM family in a single irreducible spinorial

representation. We will make a few considerations on the E6 option at the end of this

section. In SO(10) there is exactly one (up to a sign) ortho-normalized heavy SM-singlet

generator, Th = 1/
√

40X, where X = 5(B − L) − 4Y is the SU(5) invariant SO(10)

generator. The quantum numbers of the SO(10) representations with dimension d < 120

underX are given in table 1. The values of the X quantum numbers are crucial because the

soft terms turn out to be proportional to those charges. From eq. (2.13) we obtain in fact

m̃2
f =

Xf (F
†
0XF0 )

φ†0X
2φ0

at the scale MV =
g2

20
φ†0X

2φ0, (4.1)

where Xf is the X-charge of the sfermion f̃ and MV is the mass if the vector superfield

associated to the generator X (note that the gauge coupling and the normalization of the

generator Th cancel in eq. (4.1)). In order to predict the pattern of the tree level sfermion

masses, we then just need to specify the embedding of the three MSSM families into

SO(10), which we will do through their SU(5) embedding into three light 5̄li+10li, i = 1, 2, 3.

We use two constraints to determine the embedding of the 5
l
i + 10li into SO(10) repre-

sentations. The first one is related to quite a nice feature eq. (4.1): the soft terms turn out

to be family-universal, thus neatly solving the supersymmetric flavor problem. Provided,

of course, that the three families of each of the MSSM matter multiplets are embedded

in the same type of SO(10) representation, which we will assume in order to ensure that

family-universality indeed holds. On top of that, we want the MSSM sfermion soft masses

in eq. (4.1) to be positive in order to avoid spontaneous symmetry breaking of color, elec-

tric charge, or lepton number at the scale m̃. Clearly, the standard embedding of a whole

family into a 16 of SO(10) would not work, as it would lead to negative masses for the

sfermions in either the 5̄ or the 10 of SU(5). This is in turn related to the tracelessness of

the SO(10) generators, and in particular of X. As a consequence, whatever is the SO(10)

representation in which we choose to embed a given MSSM matter multiplet with posi-

tive soft mass, that representation will necessarily contain extra fields with negative soft

masses. This apparent obstacle can be easily overcome by splitting the SO(10) representa-

tion containing the MSSM multiplet through SO(10) breaking, in such a way that the extra

fields with negative soft masses acquire a large supersymmetric mass term. The negative

soft mass will then represent a negligible supersymmetry breaking correction to that large

(positive) mass. It turns out that such a splitting is actually expected to arise, as will see,
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a fact that reinforces the logical consistency of tree level gauge mediation.

We are now ready to discuss the embeddings of the three 5
l
i and 10li of SU(5) containing

the light MSSM families in SO(10). As φ†0X
2φ0 is positive, the possible choices depend on

the sign of F †
0XF0 . We limit ourselves to the SO(10) representations with d < 120, as in

table 1. There are then only two possibilities:

• F †
0XF0 > 0. In this case we need to embed the 5

l
i’s and 10li’s into SO(10) rep-

resentations containing 5 and 10 of SU(5) with positive charges under X. From

table 1 we see that the only possibility is to use three 16i = (116
i , 10

16
i , 5

16
i ) and three

10i = (510
i , 5

10
i ), i = 1, 2, 3, where we have explicitly indicated the SU(5) decompo-

sition, and to embed the 10li’s into the 16i’s, 10li ≡ 1016
i , and the 5

l
i’s into the 10i’s,

5
l
i ≡ 5

10
i . The spare components 5

16
i , 510

i get negative soft masses and need to acquire

a large supersymmetric mass term.

• F †
0XF0 < 0. In this case we need the 5

l
i’s and 10li’s to have negative charges

under X. The only possibility is then to use three 16i’s as before and three

45i = (145
i , 10

45
i , 10

45
i , 24

45
i ), i = 1, 2, 3, with 5

l
i ≡ 5

16
i and 10li ≡ 1045

i . The spare

components 1016
i , 10

45
i , get negative or vanishing soft masses and need to acquire a

large supersymmetric mass term.

In both cases the chiral content of the theory is still given by three 16 of SO(10). We

have implicitly neglected the possibility of mixed embeddings in which, for example, the

5̄i’s of SU(5) are a superposition of the 5̄i’s in the 10i’s and 16i’s of SO(10). While this

possibility is in principle not excluded, it would in general introduce a dependence of

the sfermion soft masses on mixing parameters that are in general flavor violating, thus

possibly spoiling the flavor universality result.

The two possibilities above give rise to two definite predictions for the patter of sfermion

soft masses at the scale MV :

(m̃2
l )ij = (m̃2

dc)ij = m2
5
δij , (m̃2

q)ij = (m̃2
uc)ij = (m̃2

dc)ij = m2
10δij , with

m2
5

= 2m2
10 if F †

0XF0 > 0 (4.2)

m2
5

=
3

4
m2

10 if F †
0XF0 < 0.

To summarize, the latter predictions are based on the following hypotheses: “minimal”

unified gauge group SO(10), embedding of the MSSM families in the SO(10) represen-

tations with dimension d < 120 not containing the Goldstino, and absence of mixed

embeddings to automatically preserve flavor-universality. The predictions on the ratios

m5/m10 in eq. (4.2) are peculiar enough to make a possible experimental test at the LHC

a strong hint for tree level gauge mediation.

As for the source of supersymmetry breaking, 〈Z〉 = |F0|θ2, we need Z to have a non-

vanishing charge under X. If we limit ourselves again to representations with d < 120, the

only possibility is that Z has a component in the “right-handed neutrino” direction of a

16 or a 16. With the sign conventions we adopted, a component in a 16 gives a positive

contribution to F †
0XF0 , while a component in a 16 gives a negative contribution.
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We now want to show that the two embeddings of the light MSSM families described

above can be obtained in a natural way. We have to show that it is possible to split

the SO(10) representations in which the MSSM fields are embedded in such a way that

the extra fields (with negative soft masses) get a heavy supersymmetric mass term from

SO(10) breaking. It will turn out that the SO(10) breaking vevs of a 16 + 16, essential

to break SO(10) to the SM (unless representations with d ≥ 126 are used to reduce the

rank) just provide the needed splitting. The fact that such vevs make heavy precisely the

components of the SO(10) representations that get a negative soft supersymmetry breaking

mass reinforces the logical consistency of this framework. In the following, we first discuss

the 16i + 10i embedding in a general, top-bottom perspective, obtaining a generalization

of the model in [15], and discuss the conditions for a pure (non mixed) embedding. We

then discuss the possibility of a 16i + 45i embedding.

4.1 The embedding into 16i + 10i, i = 1, 2, 3

Let us consider the embedding associated to the case F †
0XF0 > 0. We assume the existence

of a matter parity symmetry that tells matter superfields from Higgs superfields. Let 16,

16 be the SO(10) multiplets breaking SO(10) to SU(5) (we can always choose the basis in

the space of the 16 (16) representations in which a single 16 (16) gets a vev in its scalar

component). The most general renormalizable superpotential involving 16, 16, 16i, 10i,

i = 1, 2, 3, and invariant under a matter parity under which the SO(10) Higgs fields 16, 16

are even and the the matter fields are odd is

W = hij16i10j16 +
µij
2

10i10j +Wvev, (4.3)

where Wvev takes care of providing a vev to the 16, 16 in the SM-singlet direction and

does not depend on the matter fields (but can involve additional even fields3). The term

hij16i10j16 is just what needed to split the SU(5) components of the 16i = (116
i , 10

16
i , 5

16
i )

and of the 10i = (510
i , 5

10
i ) and make heavy the unwanted components 5

16
i and 510

j . Once

16 acquires a vev V in its singlet neutrino component, in fact, a mass term is generated

for those components,

Mij5
16
i 510

j , Mij = hijV. (4.4)

The singlet neutrinos 116
i remain light at the renormalizable level but can get a mass at

the non-renormalizable level through the operator (1616i)(1616j)/Λ.

It is remarkable that the components acquiring a large mass are precisely those that

get a negative soft mass term. On the other hand, this is only true in the limit in which

the µij mass term in eq. (4.3) can be neglected. In the presence of a non negligible µij, in

fact, the full mass term would be

(5
16
i Mij + 5

10
i µij)5

10
j , (4.5)

which would give rise to a mixed embedding of the light 5
l
i’s in the 16i’s and 10i’s. In

order to abide to our assumptions, which exclude the possibility of mixed embeddings,

3The simplest possibility is Wvev = X(1616 − V
2), where X is an SO(10) singlet.
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such a µij term should be absent. This can be easily forced by means of an appropriate

symmetry. Let us however relax for a moment that assumption in order to quantify the

deviation from universality associated to a small, but non-negligible µij. The MSSM

sfermions in the 5 of SU(5) receive in this case two contributions to their soft mass, a

positive one associated to the components in the 10i’s, proportional to X(5
10

) = 2, and a

negative one associated to the components in the 16i’s, proportional to X(5
16

) = −3. The

soft mass matrix for the light sfermions in the 5 of SU(5) can be easily calculated in the

limit in which the µij mass term can be treated as a perturbation. In this limit, the light

MSSM fields in the 5 of SU(5) are in fact

5
l
i ≈ 5

10
i − (µM−1)∗ij5

16
j (4.6)

and their soft scalar mass matrix at the scale MV is

(m̃2
5
)ij ≈

2

5
m̃2

(

δij −
5

2

(

µ∗M∗−1MT−1µT
)

ij

)

, (4.7)

where m̃2 is defined below. The mixed embedding induced by the mass term µij leads to

flavor-violating soft-terms. Setting µij = 0 allows to preserve the flavor blindness of the

soft terms and to satisfy the FCNC constraints without the need of assumptions on the

structure of the flavor matrices hij and µij. We therefore assume that µij is vanishing

or negligible. We then have 5
l
i = 5

10
i , 10li = 1016

i , with the extra components 5
16
i and 510

i

obtaining a large supersymmetric mass term Mij5
16
i 510

i , as desired. The soft masses for

the light sfermions are

(m̃2
l )ij = (m̃2

dc)ij =
2

5
m̃2δij , (m̃2

q)ij = (m̃2
uc)ij = (m̃2

dc)ij =
1

5
m̃2δij , (4.8a)

with m̃2 = 5
(F †

0XF0 )

φ†0X
2φ0

> 0, (4.8b)

as anticipated in eq. (4.2). The reason for the factor 5 = X(116) will become clear in a

moment.

We now need to identify the embedding of the MSSM Higgs superfields and obtain the

MSSM superpotential for them, in particular the MSSM Yukawa interactions. It is useful

to discuss the Yukawa interaction in SU(5) language. The up quark Yukawa interactions

arise from the SU(5) operator

λ
(1)
ij

2
10li10

l
j5H , (4.9)

where 5H contains the MSSM up Higgs. As 10li = 1016
i , the operator in eq. (4.9) can arise

at the renormalizable level from a SO(10) invariant operator only if 5H has a component

into a 10H of SO(10), 10H = (510
H , 5

10
H ), with

510
H = cos θu5H + · · · , 0 ≤ θu ≤ π/2, (4.10)

where cos2 θu measures the size of the 5H component from 10 representations of SO(10) (a

basis in the space of the 10 representations can always be chosen such that 5H is contained
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in a single one, the 10H). The operator in eq. (4.9) will then originate as

yHij
2

16i16j10H =
λ

(1)
ij

2
10li10

l
j5H + · · · , with λ

(1)
ij = cos θuy

H
ij . (4.11)

The down quark and charged lepton Yukawa interactions arise at the renormalizable

level4 from the SU(5) operator

λ
(2)
ij 10li5

l
j5H , (4.12)

where 5H contains the MSSM down Higgs. As 10li = 1016
i and 5

l
i = 5

10
i , the operator in

eq. (4.12) can arise at the renormalizable level from a SO(10) invariant operator only if 5H
has a component into a 16H of SO(10), 16H = (116

H , 10
16
H , 5

16
H ), with

5
16
H = sin θd5H + · · · , 0 ≤ θd ≤ π/2, (4.13)

where sin2 θd measures the size of the 5H component from 16 representations of SO(10).

The operator in eq. (4.12) will then originate as

hHij 16i10j16H = λ
(2)
ij 10li5

l
j5H + · · · , with λ

(2)
ij = sin θdh

H
ij . (4.14)

It is tempting (and economical) to identify the 16H with 16, the field whose vev breaks

SO(10) to SU(5), in which case hH = h and the mass of the heavy extra components 5
16
i

and 510
i in eq. (4.4) turns out to be proportional to the corresponding light fermion masses

(up to non-renormalizable corrections needed to fix the light fermion mass ratios).5

Having introduced the MSSM Higgs fields, let us now discuss their soft mass terms.

To summarize the previous discussion, with our d < 120 representation content, the up

(down) Higgs superfield hu (hd) can be embedded in either 10’s or 16’s (16’s) of SO(10), in

both cases through the embedding into a 5H (5H) of SU(5). We have denoted by cos2 θu
(cos2 θd) the overall size of the hu (hd) component in the 10’s. The overall size of the

component in the 16’s (16’s) is then measured by sin2 θu (sin2 θd). Correspondingly, the

Higgs soft masses get two contributions from the first term in eq. (4.1) proportional to

two different X charges:

m2
hu

=
−2c2u + 3s2u

5
m̃2, m2

hd
=

2c2d − 3s2d
5

m̃2, so that (4.15a)

−2

5
m̃2 ≤ m2

hu
≤ 3

5
m̃2, −3

5
m̃2 ≤ m2

hd
≤ 2

5
m̃2. (4.15b)

Let us now consider gaugino masses. A general discussion of all possible contributions

to gaugino masses in the embedding we are considering and in the presence of an arbitrary

number of SO(10) representation with d < 120 would be too involved. We then consider a

4SU(5)-invariant renormalizable Yukawa interactions lead to wrong mass relations for the two lighter

families of down quarks and charged leptons. This may indicate that the light family Yukawas arise at the

non-renormalizable level, as also suggested by their smallness. We ignore this issue in the following and

only consider the renormalizable part of the superpotential.
5This property can give rise to a predictive model of leptogenesis in the context of type-II see-saw

models [46, 47].
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few examples meant to generalize the case considered in [15] and to illustrate the general

properties discussed in section 3.

Let us begin by illustrating in more detail the structure of supersymmetry breaking.

With the representation content of table 1, supersymmetry breaking can be associated to

the F -term vevs of superfields in 16, 16, 45, 54 representations (the ones containing SM

singlets). However, only the 16, 16, whose singlets have non-vanishing X-charges, can

contribute to tree level soft masses. Let us call 16Hα , 16
H
α the matter parity even superfields

in the 16 and 16 representations of SO(10). In a generic basis, we can parametrize the vevs

of their singlet components as

〈

116H
α

〉

= Vα + Fαθ
2

〈

116H
α

〉

= V α + Fαθ
2. (4.16)

The D-term condition for the X generator requires

∑

α

|Vα|2 ≈
∑

α

|V α|2, (4.17)

while gauge invariance gives
∑

α

V ∗
αFα =

∑

α

V
∗
αFα. (4.18)

Sfermion masses are proportional to

m̃2 =

∑

α(|Fα|2 − |Fα|2)
∑

α(|Vα|2 + |V α|2)
(4.19)

(due to the factor 5 in the definition of m̃2), where
∑

α |Fα|2 >
∑

α |Fα|2 by definition in the

case we are considering. Note that m̃2 is suppressed by all vevs contributing to X breaking.

Let us now comment on the vector contribution to gaugino masses. Let us assume

to begin with that the 16’s do not break supersymmetry. Without loss of generality we

can then assume that supersymmetry breaking is only associated to 16′ ≡ 16H1 . The

gauge invariance condition then gives V1 = 0, i.e. a vev for both the F -term and scalar

components is not allowed. Since the F -term and scalar components belong to different

irreducible representations, no vector contribution to gaugino masses is generated by the

16’s. A vector contribution can still be generated by the F -term vev of a 45, for example,

for which the gauge invariance condition does now prevent a vev in both the scalar and

F -term component. Or, it can be generated by the F -terms of the 16’s if some of the 16

also breaks supersymmetry and cancels the contribution of the 16 to eq. (4.18).

Let us next consider the chiral contribution to gaugino masses. The massive compo-

nents 5
16
i and 510

j of the matter superfields will act as chiral messengers if they are coupled

to supersymmetry breaking. Let us then consider as before the case in which the 16’s do

not break supersymmetry, supersymmetry breaking is provided by the F -term vev F of the

singlet component of the 16′ and is felt by the chiral messengers through the h′ij16i10j16
′

interaction. Let 16 ≡ 16H2 be the field whose vev gives mass to the 5
16
i , 510

j through the

hij16i10j16 interaction, as in eq. (4.3). And let us assume that additional 16Hα ’s and

16
H
α ’s get vevs in their scalar components. The chiral messengers 5

16
i , 510

j have therefore
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a supersymmetric mass Mij = hijV and their scalar components get a supersymmetry

breaking term mass term Fij = h′ijF . The induced one loop chiral contribution to gaugino

masses is then

Mg =
g2

(4π)2
Tr(h′h−1)

F

V
. (4.20)

The tree level soft mass of the stop (belonging to the 10 of SU(5)) is

m̃2
t =

1

5

|F |2
|V |2 +

∑

α |Vα|2 + |V |2 +
∑

α |V α|2
. (4.21)

We can then compare stop and gaugino masses (before radiative corrections). Their

ratio is particularly interesting, as the gaugino mass Mg is at present bounded to be

heavier than about 100GeV, while m̃t enters the radiative corrections to the Higgs mass.

Therefore, the ratio m̃t/Mg should not be too large in order not to increase the fine-tuning

and not to push the stops and the other sfermions out of the LHC reach. From the

previous equations we find

Mg

m̃t
=

3
√

5k

(4π)2
λ, λ =

g2 Tr(h′h−1)

3
, k =

|V |2 +
∑

α |Vα|2 + |V |2 +
∑

α |V α|2
|V |2 ≥ 2.

(4.22)

Eq. (4.22) illustrates all the enhancement factors discussed in section 3 that can compen-

sate the loop suppression of gaugino masses. The factor 3 corresponds to the number of

chiral messenger families (Tr(h′h−1) = 3 for h = h′) contributing to gaugino masses, to be

compared to the single vector messenger generating sfermion masses at the tree level. The

factor
√

5 comes from the ratio of charges X(116)/X(1016) = 5 suppressing the stop mass

in eq. (3.12). The factor k ≥ 2 is the ratio of the vev suppressing gaugino masses (the

one related to supersymmetry breaking though superpotential interactions, |V |2), and the

combination of vevs suppressing sfermion masses (all of them). Note that in the presence

of hierarchies of vevs, the factor k can be large. Finally λ represents a combination of

couplings that can further enhance (or suppress, in this case) gaugino masses. All in all, we

see that the loop factor separating m̃t and Mg is partially compensated by a combination

of numerical factors: (4π)2 ∼ 100 (leading to m̃t & 10TeV for λ = 1) becomes at least

(4π)2/(3
√

10) ∼ 10 (leading to m̃t & 1TeV for λ = 1). A largish value of the factors k or

λ can then further reduce the hierarchy and even make Mg ∼ m̃t, if needed.

4.2 The embedding into 16i + 45i, i = 1, 2, 3

Let us now consider the second type of embedding identified above, corresponding to

F †
0XF0 < 0. The most general renormalizable superpotential involving 16, 16 and 16i,

45i, i = 1, 2, 3 and invariant under matter parity is

W = hij16i45j16 +
µij
2

45i45j +Wvev. (4.23)

The term hij16i45j16 is just what needed to split the SU(5) components of the

16i = (116
i , 10

16
i , 5

16
i ) and of the 45i = (145

i , 10
45
i , 10

45
i , 24

45
i ) and make heavy the unwanted
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components 1016
i and 10

45
j . Once 16 acquires a vev V , in fact, a mass term is generated for

those components,

Mij10
16
i 10

45
j , Mij = hijV. (4.24)

It is remarkable that also in this case the components acquiring a large mass are

precisely those that get a negative soft mass term. On the other hand, this is only true in

the limit in which the µij mass term in eq. (4.23) can be neglected. In order to abide to

our pure embedding assumption, we will neglect such a term. Let us note, however, that

such a term should arise at some level in order to make the 2445
i ’s components heavy. Note

that the 24i’s do not affect gauge coupling unification at one loop and can therefore be

considerably lighter than the GUT scale, consistently with the required smallness of µij.

The soft masses for the light sfermions are now

(m̃2
l )ij = (m̃2

dc)ij =
3

5
m̃2δij , (m̃2

q)ij = (m̃2
uc)ij = (m̃2

dc)ij =
4

5
m̃2δij , (4.25)

with m̃2 = −5
(F †

0XF0 )

φ†0X
2φ0

> 0. (4.26)

Unfortunately, the embedding we are discussing cannot be implemented with renormal-

izable interactions and d < 120 representations only. The problem is obtaining the Yukawa

interactions. Let us consider the up quark Yukawas, arising as we saw from the SU(5)

operator in eq. (4.9). Given its size, we expect at least the top Yukawa coupling to arise

at the renormalizable level. As in the present case 10li = 1045
i , the operator in eq. (4.9) can

arise at the renormalizable level from a SO(10) invariant operator only if 5H has a compo-

nent in a SO(10) representation coupling to 45i45j . And the lowest dimensional possibility

containing the 5 of SU(5) is the 210. For this reason, we do not pursue this possibility

further here, although models with large representations are not a priori excluded.

4.3 E6

We close this section with a few considerations about the possibility to identify the unified

group with E6. Such a possibility looks particularly appealing in the light of what above.

We have seen in fact that the most straightforward possibility to realize tree level gauge

mediation in SO(10) requires the matter superfield content to include three 16i + 10i, i =

1, 2, 3. This is precisely what E6 predicts. The fundamental of E6, in fact, a representation

of dimension 27, decomposes as

27 = 16 + 10 + 1 under SO(10). (4.27)

The matter content needed by the 16i + 10i embedding can therefore be provided in the

context of E6 by three matter 27i, i = 1, 2, 3, and the 16H and 10H needed to accommodate

the Higgs fields can also be provided by a single Higgs 27H . All Yukawas can then in

principle follow from the single E6 interaction

λij27i27j27H . (4.28)

We postpone the analysis of this promising possibility to further study.
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5 Some solutions to the µ-problem

In this section, we discuss a few approaches to the µ-problem in the context of tree level

gauge mediation. Let us remind what the µ-problem is. Any supersymmetric extension of

the SM must contain two Higgs doublet chiral superfields ĥu, ĥd, with hypercharges ±1/2,

within the light spectrum Q. Moreover, the lagrangian must contain a mass term for their

Higgsino (fermion) components, µ h̃uh̃d. It should also contain a corresponding term for

the scalar components, Bµhuhd, where Bµ is a dimension two parameter. The Higgsino

mass µ is constrained to be in the window 100GeV . µ . TeV by the present bounds

on chargino masses and by naturalness considerations. This coincides with the window for

the supersymmetry breaking scale in the observable sector, 100GeV . m̃ . TeV. It is

then tempting try to establish a connection between these two a priori independent scales,

in such a way that µ→ 0 when m̃→ 0, thus making the coincidence of the two scales not

accidental. This is the µ-problem. In the absence of such a connection, there would be

no reason why µ should not be of the order of a much larger, supersymmetry conserving

scale such as the GUT or the Planck scale. Or, if a symmetry or some other independent

principle suppressed µ, there would be no reason why µ should not be much smaller.

Fermion mass terms such as µ h̃uh̃d belong to the list of possible soft supersymmetry

breaking mass terms [48]. The reason why they are usually omitted from the MSSM

effective soft supersymmetry breaking lagrangian is that they can be always reabsorbed in

the superpotential (through appropriate additions to the scalar soft lagrangian). Moreover,

most models of supersymmetry breaking, including the ones we are considering, do not

generate such supersymmetry breaking fermion mass terms. We can then assume that the

Higgsino mass term arises from a corresponding term in the superpotential. The problem

is then to relate the coefficient of that (supersymmetric) superpotential term, µ ĥuĥd, to

the supersymmetry breaking scale in the observable sector, which in our case is given by

m̃ ∼ |F0|/MV . We discuss in the following three possible connections. One is peculiar of

tree level gauge mediation, the other two have been considered in other contexts, but have

specific implementations in tree level gauge mediation. We classify them according to the

dimension D of the SO(10) operator from which the µ term arises. Note that we are not

addressing the origin of the smallness of m̃ and µ compared to the Plank scale, just their

connection. The three options we consider are:

D = 3: µ comes from the operator µ ĥuĥd ⊂ W . It is the supersymmetry breaking scale

to be derived from µ, and not viceversa: F0 ∼ µM , where M = O (MV ), and

m̃ ∼ F0/M ∼ µ.

D = 4: µ comes from the operator λSĥuĥd ⊂ W . The light SM singlet S gets a vev from

a potential whose only scale is m̃, so that µ ∼ λ 〈S〉 ∼ m̃.

D = 5: µ comes from the operator a(Z†/M)ĥuĥd ⊂ K, so that µ = aF0/M .

Let us discuss each of those possibilities in turn.
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5.1 D = 3

Such a possibility was anticipated in [15], where however no concrete implementation was

given. Let us consider the 16i + 10i embedding. As discussed in section 4.1, ĥu is a

superposition of the “up Higgs-type” components in the 16’s and 10’s (with RP = 1) in

the model. Analogously, ĥd will be a superposition of the “down Higgs-type” components

in the (RP = 1) 16’s and 10’s. The only possible D = 3 origin of the µ-term in the context

of the full SO(10) theory are then O (TeV) mass terms for the above 16’s, 16’s, and 10’s.

As said, we do not address the origin of such a small parameter in the superpotential, as

we do not address here the smallness of the supersymmetry breaking scale. The latter can

for example be explained by a dynamical mechanism. We want however to relate such

mass parameters, in particular the coefficient of a 1616 mass term, to the supersymmetry

breaking scale. This is actually pretty easy, as the tree level gauge mediation embedding we

are considering provides all the necessary ingredients and the result arises from their simple

combination. We have seen in fact that the model needs a 16, 16 pair to get a vev in the SM

singlet direction of the scalar component, in order to break SO(10) to the SM. Moreover,

we have seen that an independent 16′, 16
′
pair is required to break supersymmetry trough

the F -term vev of the SM singlet component in the 16′. The simplest way to achieve such

a pattern is through a superpotential like

W1 = λ1Z(1616 −M2) +m16′16 + λ2X1616
′
, (5.1)

where X, Z are SO(10) singlets and M ∼ MGUT. This is a generalization of an example

in [49]. Finally, we have just reminded that the light Higgses may have a component in 16,

16′, 16, 16
′
. Let α′ be the coefficient of the hd component in the 16′ and α the coefficient

of the hu component in the 16. Then a µ parameter is generated in the form

µ = α′αm (5.2)

from the m16′16 term in eq. (5.1). The parameter m is therefore required to be in

the window 100GeV/(α′α) . m . TeV/(α′α). In the limit µ = 0, supersymmetry is

unbroken and 16, 16 acquire a vev that can be rotated in the SM singlet component
〈

116
〉

=
〈

116
〉

= M . A non-vanishing µ, on the other hand, triggers supersymmetry

breaking and induces an F -term vev for the singlet component of the 16′,
〈

116′
〉

= Fθ2,

with F = mM . We therefore have

m̃ ∼ F

M
= m =

µ

α′α
, (5.3)

providing the desired connection between µ and the supersymmetry breaking scale. Tree

level gauge mediation plays a crucial role not only in providing the ingredients (and

no need to stir) but also because it is the very SO(10) structure providing the heavy

vector messengers to relate in a single irreducible representation (the 16’) supersymmetry

breaking (the F -term vev of its SM singlet component) and the down Higgs entering the

µ-term (the lepton doublet-type component of the 16’). In the appendix B we provide

an existence proof of a (perturbative) superpotential that i) implements the mechanism
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above, thus breaking supersymmetry and SO(10) to SU(5), ii) further breaks SU(5) to the

SM, iii) makes all the fields that are not part of the MSSM spectrum heavy, in particular

achieves doublet-triplet splitting.

5.2 D = 4

This is an implementation of the NMSSM solution of the µ-problem (see e.g. [50, 51] and

references therein). As we will see, the implementation of such a solution in the context of

tree level gauge mediation avoids some of the problems met in ordinary gauge mediation.

In order to implement the NMSSM solution of the µ-problem, an explicit term µ ĥuĥd
should be forbidden, for example by a symmetry; the light fields Q should include a SM

singlet S, coupling to the Higgses through the superpotential interaction λŜĥuĥd; and S

should develop a non-zero vev. A µ parameter will then be generated, µ = λ 〈S〉. In the

absence of terms linear or quadratic in Ŝ in the superpotential, the scale of a vev for S can

only be provided by the supersymmetry breaking terms in the soft lagrangian, 〈S〉 ∼ m̃,

in which case µ = λ 〈S〉 ∼ λm̃, as desired.

In order to generate a non-zero vev for S, one would like to have a negative soft mass

for S at the weak scale, along with a stabilization mechanism for large values of the fields.

In ordinary gauge mediation this is not easy to achieve. While the stabilization can be

simply provided by a S3 term inW , as in the NMSSM (or by a quartic term in Z ′ extensions

of the MSSM [52]), the soft mass term of S vanishes at the messenger scale because S is

typically a complete gauge singlet. A non-vanishing negative mass term is generated by the

RGE running but it is typically too small. Another problem is that the Higgs spectrum can

turn out to be non-viable [53]. A sizable soft mass can still be generated by coupling S to

additional heavy fields. Such possibilities can be implemented in our setup by promoting S

to an SO(10) singlet and coupling it to the Higgses through a S 16 16 or a S 10 10 coupling

to the SO(10) representations containing (a component of) the Higgs fields.

Tree level gauge mediation offers a different avenue. A sizable, negative soft mass term

for S can in fact be generated by embedding S in a 16 of SO(10) (this is the only choice

within the fields in table 1). On the other hand, the stabilization of the potential for S

is not straightforward. A sizable S3 term is not expected to arise, as it should involve a

SO(10) operator with three 16. However, the S3 term can be replaced by a term involving

a second light singlet N ,

W = λŜĥuĥd + κŜ2N̂ . (5.4)

The latter can come from a 16
2
126 coupling, ifN is in the 126 singlet, or from a 16

2
161162/Λ

coupling, where N is the 161 singlet and 162 gets a vev.

The scalar potential for V (hu, hd, S,N) can be written as

V = VMSSM + |κS2|2 +m2
S|S|2 + |λhuhd + 2κSN |2 +M2

N |N |2, (5.5)

where VMSSM is the MSSM scalar potential with µ → λS, m2
S = −m̃2, and m2

N = 2m̃2 or

m̃2 depending on whether N comes from a 126 or a 16. We have neglected the A-terms,

which play a role in explicitly breaking R-symmetries that could lead to massless states.

The potential above has a minimum with a sizable 〈S〉, and a µ parameter whose size is

controlled by λ.
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5.3 D = 5

Finally, let us consider the possibility to generate the µ parameter through a D = 5 correc-

tion to the Kähler in the form a(Z†/M)ĥuĥd, as in the Giudice Masiero mechanism [54].

The F -term vev |F0| of Z would give in this case µ = a|F0|/M .

We show first that the operator above cannot arise at the tree level from integrating out

heavy vector or chiral superfields. The corrections to the Kähler obtained by integrating

out heavy vector superfields are given in eqs. (A.8). All terms are at least of second order in

1/MV and no trilinear term is present. Moreover, no sizable trilinear term can be obtained

through the vev of Φ′, as by definition the scalar components of Φ′ do not get a vev (and

an F -term vev would give an additional F0/MV suppression). A similar conclusion can be

obtained for the corrections one obtains by integrating out chiral superfields Φh
i with mass

M ≫
√

|F0|. We have seen in section 2 that the equations of motion allow to express Φh
i

in terms of the light fields as in eq. (2.17). Since W3 contains terms at least trilinear in

the fields, the expression for Φh
i is at least quadratic in the light fields. When plugging

eq. (2.17) in the canonical Kähler for Φh
i one gets again terms that contain at least four light

fields, with none of them getting a vev in the scalar component. Therefore, no operator

Z†ĥuĥd can be generated at the tree level by integrating out heavy fields.

Let us now consider the possibility that theD = 5 operator above is obtained at the one

loop level. This possibility raises two issues. First, µ would be suppressed compared to, say,

the stop mass m̃t by a loop factor O
(

10−2
)

. As for the case of gaugino masses vs sfermion

masses, such a large hierarchy would lead to sfermions beyond the reach of the LHC and a

significant fine-tuning. However, as we will see, this problem can be overcome in the same

way as for the gaugino masses. We will see in fact in an explicit model that µ and M1/2

get a similar enhancement factor. The second issue is the well known µ-Bµ problem. Bµ
is a dimension two parameter generated, as µ, at the one loop level. Therefore, we expect

an order of magnitude separation between
√

Bµ and µ:
√

Bµ/µ ∼ 4π. This is however

tolerable in a scheme in which m̃t ∼
√

Bµ ∼ 4πµ ∼ 4πM1/2, with m̃t ∼
√

Bµ ∼ TeV

and µ ∼ M1/2 ∼ 100GeV. The explicit model will show that the above pattern can be

achieved in the large tan β regime. In turn, the large tanβ regime raises a new issue. The

minimization of the MSSM potential shows in fact that large tan β corresponds to small

Bµ/(m
2
hu

+ m2
hd

+ 2|µ|2), while in the situation we want to reproduce, m̃t ∼
√

Bµ, we

expect Bµ/(m
2
hu

+ m2
hd

+ 2|µ|2) ∼ 1. In order to make tan β large we therefore need to

cancel the contribution to Bµ we get at one loop with an additional contribution, at least

in the specific example we consider. Such a cancellation may not be required in different

implementations of the one-loop D = 5 origin of the µ parameter. That is why we believe

it is worth illustrating the example below despite the cancellation that needs to be invoked.

Let us consider as before a model involving the following RP = 1 fields: 16, 16, 16′,

16
′
, 10, with

〈

116
〉

=
〈

116
〉

= M ,
〈

116′
〉

= Fθ2,
〈

116
′〉

= 0. Let us denote the coefficients

of the hu and hd components in the above SO(10) representations as follows: 16 ⊃ sdαdhd,

16′ ⊃ sdα
′
dhd, 10 ⊃ cdhd, 16 ⊃ suαuhu, 16

′ ⊃ suα
′
uhu, 10 ⊃ cuhu, where |αd|2 + |α′

d|2 = 1,

|αu|2 + |α′
u|2 = 1, cd = cos θd, sd = sin θd, etc. The notation is in agreement with the

definition of θu, θd in section 4.1. The µ and Bµ parameters, as the gaugino masses, get a
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vector and a chiral one-loop contribution, see eqs. (3.13), (3.15), (3.17), (3.18). The vector

contribution turns out to be

|(µ)V | =
3

2

g2

(4π)2
susd|α′

dαu|
∣

∣

∣

∣

F

M

∣

∣

∣

∣

(5.6a)

(Bµ)V =
3

4

g2

(4π)2
susd|α′

dαu|
∣

∣

∣

∣

F

M

∣

∣

∣

∣

2

. (5.6b)

As in the case of gaugino masses, the vector contribution to µ is suppressed with respect to

the sfermion masses by a full loop factor. We therefore need a larger chiral contribution in

order to reduce the hierarchy between µ and m̃t. Let us then consider the one-loop chiral

contribution associated to the superpotential

hij16i10j16 + h′ij16i10j16
′. (5.7)

That is easily found to be vanishing because of a PQ symmetry of the superpotential. Such

a PQ symmetry can however be broken by adding a term

M1
ij

2
116
i 116

j (5.8)

to the above superpotential, coming for example from the non-renormalizable SO(10) oper-

ator (αij/Λ)(1616i)(1616j) after 16 gets its vev (note that Λ ≫M would give M1
ij ≪M).

En passant, the singlet mass term in eq. (5.8) is nothing but the right-handed neutrino

Majorana mass term entering the see-saw formula for light neutrino masses. Note how-

ever that no light neutrino mass is generated here, as the light lepton doublets do not

have Yukawa interactions with the “right-handed neutrinos”, 116
i . Once the PQ symmetry

is broken by the mass term in eq. (5.8), the µ and Bµ parameters get a chiral one-loop

contribution given by

|(µ)Φ| =
λtλb
(4π)2

f

(

√

(M1M1∗)33
|h33M |

)

|M1
33|

√

(M1M1∗)33

∣

∣

∣

∣

h′33F

h33M

∣

∣

∣

∣

(5.9a)

(Bµ)Φ =
λtλb
(4π)2

g

(

√

(M1M1∗)33
|h33M |

)

|M1
33|

√

(M1M1∗)33

∣

∣

∣

∣

h′33F

h33M

∣

∣

∣

∣

2

, (5.9b)

where λt, λb are the top and bottom Yukawa couplings respectively and the functions f , g

are given by

f(x) =
1 − x2 + x2 log x2

(x2 − 1)2
x, g(x) =

x4 − 2x2 log x2 − 1

(x2 − 1)3
x. (5.10)

We have assumed the Yukawa couplings hij , h
′
ij to be hierarchical in the basis in which the

down Yukawa matrix is diagonal.

We can see from eq. (5.9) that the one loop chiral contribution to µ is comparable to

the corresponding contribution to M1/2 if i) λb ∼ 1, which corresponds to the large tan β

regime (remember that the bottom mass is given bymb = λb cos βv, where v = 174GeV); ii)

|h′33/h3| & |h′ii/hi|, i = 1, 2; iii) |M33| & |M3i|; iv) |h33M | ∼ |M33|. If the above conditions
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are satisfied, µ ∼ M1/2 and both parameters can easily be enhanced, as explained in

section 3.2, for example because |h′33/h33| ≫ 1. The only non-trivial condition is the large

tan β one. Remember in fact that tan β is determined by Bµ through the minimization of

the MSSM potential, which gives

sin 2β =
2Bµ

m2
hu

+m2
hd

+ 2|µ|2

∣

∣

∣

∣

∣

MZ

. (5.11)

Therefore large tanβ, i.e. small sin 2β, requires a small Bµ. This is in contrast with the

situation we want to reproduce, m̃t ∼
√

Bµ. The RGE evolution of Bµ from the scale at

which it is generated (|h33M |) down to the electroweak scale can reduce the value of Bµ
but not enough to make it as small as we need. A significant RGE contribution would in

fact require M1/2 & m̃t, in contrast with the m̃t ∼ 4πM1/2 we are trying to reproduce.

We are then forced to invoke a cancellation between the one-loop contribution to Bµ in

eq. (5.9b) and an additional contribution. For example, a tree level contribution to Bµ can

be obtained as in appendix B or in [49].

6 Conclusions

In this paper we have considered what may be regarded as one of the simplest ways to

communicate supersymmetry breaking from a hidden to the observable sector, through the

tree level, renormalizable exchange of superheavy gauge (GUT) messengers, and we have

studied the general properties of such a tree level gauge mediation (TGM) scheme.

We have first of all obtained the general structure of the tree-level soft terms arising

from a supersymmetry breaking source that is part of a non-trivial gauge (GUT) multi-

plet. This is most conveniently done in the effective theory in which the heavy vector

superfields associated to the broken generators are integrated out at the tree level (en

passant, in appendix A, we summarized the procedure to integrate out vector superfields

in the non-abelian case and addressed the role of gauge invariance in a consistent super-

symmetric generalization of the expansion in the number of derivatives). The scalar soft

terms then obtain the two contributions in eq. (2.13), corresponding to the two diagrams

on the right-hand side of figure 1. Only the first contribution is relevant for scalars that

are not in the same gauge multiplet as the scalar partner of the Goldstino (or have not the

same SM quantum numbers as some of the GUT generators). Because of the tracelessness

condition, such a contribution gives both positive and negative soft masses. This potential

phenomenological problem, which has long been considered as an obstacle to tree level su-

persymmetry breaking, is automatically solved in the models we consider because the fields

getting a O (TeV) negative soft mass also get an O (MGUT) positive, supersymmetric mass.

Gaugino masses do not arise at the tree level, but can be generated at the one-loop level,

as in ordinary gauge mediation. They receive two contributions, from loops involving heavy

vector or chiral superfields. The loop factor suppression of gaugino compared to sfermion

masses must be at least partially compensated if the sfermions are to be within the LHC

reach and the split-supersymmetry regime is to be avoided. We calculated in full generality

the vector and chiral contributions to gaugino masses corresponding to the diagrams in
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figure 2. We have seen that the vector contribution is always suppressed by a full loop

factor and is typically subdominant (often vanishing). On the other hand, the chiral

contribution is typically larger. We listed four potential enhancement factors that can (do)

compensate, at least partially, the loop suppression: a larger number of (chiral) messengers

contributing to gaugino masses than (vector) messengers contributing to sfermion masses;

group theoretical factors that in practice turn out to enhance gaugino masses; the fact that

sfermion masses are suppressed by all the vevs with non-vanishing gauge coupling to the

vector messengers, while gaugino masses are suppressed only by the vevs that are related to

supersymmetry breaking through superpotential interactions; ratios of Yukawa couplings

appearing in the expression for the gaugino masses. In minimal models the first two factors

partially compensate the O
(

10−2
)

loop factor, reducing it to the level of a tolerable (and

possibly necessary) one order of magnitude hierarchy between gauginos and sfermions. The

last two factors are more model-dependent but can give rise to larger enhancements.

The general analysis of the TGM scheme allowed us to define the guidelines to

obtain phenomenologically viable models from the general formalism and to identify

the assumptions underlying the peculiar predictions one obtains. Clear model building

guidelines emerge, identifying SO(10) and E6 as the “minimal” grand-unified groups,

while SU(5) is found not to have the necessary structure (rank ≥ 5) to realize the TGM

scheme. The SO(10) possibility turns out to be quite appealing. It turns out in fact that

the SO(10) breaking vevs of a 16 + 16, important to break SO(10) to the SM, typically

make heavy precisely the components of the SO(10) representations that need to be made

heavy because of their negative soft supersymmetry breaking masses. This reinforces the

logical consistency of the TGM framework.

In SO(10), the tree level sfermion soft masses turn out to be proportional to their

charges under the SU(5)-invariant SO(10) generator X. We find two possible embeddings

of the MSSM superfields into SO(10) representations, depending on whether F †
0XF0 is

positive or negative. In the first case, F †
0XF0 > 0, the three MSSM families are embedded

in three 16i and three 10i, i = 1, 2, 3. The quark doublets, the up quark singlets, and the

lepton singlets, unified in 10’s of SU(5), are embedded in the 16i’s, while the lepton doublet

and down quark singlets, unified in 5’s of SU(5), are embedded in the 10i’s. They all get

positive soft masses. The spare components in the 16i’s and 10i’s get superheavy, positive,

supersymmetric mass terms (and TeV scale negative soft masses). In the second case,

F †
0XF0 < 0, the three MSSM families are embedded in three 16i and three 45i, i = 1, 2, 3.

The MSSM fields in 10’s of SU(5) are embedded in the 45i’s, while the ones unified in

5’s of SU(5), are embedded in the 16i’s. As before, they all get positive soft masses.

In both cases the chiral content of the theory is still given by three 16 of SO(10). An

important property of the TGM soft terms is that they turn out to be family universal, thus

solving the supersymmetric flavor problem. This property only depends on the hypothesis

that the three MSSM families are embedded in the same SO(10) representations. Mixed

embeddings, in which the MSSM fields are superpositions of fields in inequivalent SO(10)

representations, are also possible, but can spoil the flavor universality property. Each of

the two possible flavor-universal embeddings leads to specific and peculiar predictions for

the soft masses at the GUT scale: m2
5

= 2m2
10 in the F †

0XF0 > 0 case and m2
5

= (3/4)m2
10
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in the F †
0XF0 < 0 case, where m2

5
and m2

10 are common and family-independent soft

masses for the fields in the 5 and 10 of SU(5) respectively. The latter predictions are only

based on i) the use of the “minimal” unified gauge group SO(10), ii) the embedding of

the MSSM families in the SO(10) representations with dimension d < 120 not containing

the Goldstino, and iii) the absence of mixed embeddings to automatically preserve flavor-

universality. The predictions on the ratios m5/m10 in eq. (4.2) are determined by group

theory factors and are peculiar enough to make a possible experimental test at the LHC a

strong hint for tree level gauge mediation. The embedding into three 16i + 10i’s has the

advantage that the large top Yukawa coupling can be accounted for by a renormalizable

superpotential interaction involving only low-dimensional (d ≤ 16) representations for the

chiral superfields. In the 16i + 45i case, a d = 210 representation of SO(10) must be used

to reproduce the top Yukawa coupling at the renormalizable level.

The E6 option is also quite appealing, as the matter superfield content of the 16i+10i
embedding is precisely the one obtained from three fundamentals 27i of E6. The latter

decompose in fact as 27i = 16i+10i+1i under SO(10). We have postponed the investigation

of this promising possibility to further study.

Finally, we have illustrated three possible approaches to the µ-problem in TGM, which

we classify according to the dimension D of the SO(10) operator from which the µ-term

arises. The D = 3 option provides a new approach to the µ-problem, peculiar of TGM. The

idea is that the supersymmetry breaking scale turns out to coincide with the µ scale because

supersymmetry is triggered by the same D = 3 SO(10) operator from which the µ-term

arises. We have provided an explicit realization of such a possibility in appendix B. The

superpotential shown there also achieves supersymmetry breaking, SO(10) breaking to the

SM, and ensures that only the MSSM fields survive below the breaking scale (in particular

it provides doublet-triplet splitting). While it is not meant to be simple or realistic, that

superpotential represents a useful existence proof. The D = 4 option is nothing but the

NMSSM solution of the µ problem, in which the µ-term is obtained from the vev of a SM

singlet superfield stabilized at the supersymmetry breaking scale. We pointed out that

the above singlet can easily get a sizable, predictable, negative soft mass term in TGM.

This makes giving a vev to the singlet easier than in ordinary gauge mediation (where its

soft mass usually vanishes before RGE running), provided that the singlet potential can be

made stable. The D = 5 option is nothing but the Giudice-Masiero mechanism realized at

the loop level, as in gauge mediation. The consequent loop hierarchy between the µ-term

and the sfermion masses can be reduced exactly as for the gaugino masses. We provided

an explicit example, which however needs an extra contribution to the Bµ parameter in

order to give rise to the necessary large tan β.
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A Integrating out vector superfields

In this appendix, after a few general comments, we write the effective theory one obtains

by integrating heavy vector superfields at the tree level and in unitary gauge in a generic,

non-abelian, N = 1 globally supersymmetric theory with renormalizable Kähler K and

gauge-kinetic function (the superpotential W is allowed to be non-renormalizable). The

general prescription has been studied in [24–31]. In particular, it has been shown in [29]

that the usual expansion in the number of derivatives n∂ can be made consistent with

supersymmetry by generalizing n∂ to the parameter

n = n∂ +
1

2
nψ + nF , (A.1)

where nψ/2 is the number of fermion bilinears and nF the number of auxiliary fields

from chiral superfields. With such a definition, a chiral superfield Φ has n = 0 and dθ

integrations and supercovariant derivatives have n = 1/2. Such an expansion makes sense

when supersymmetry breaking takes place at a scale much smaller than the heavy superfield

mass M and in particular when the F -terms and fermion bilinears from heavy superfields

being integrated out are much smaller than M .

In the presence of vector superfields one should further assume that the D-terms and

gaugino bilinears are small and should generalize eq. (A.1) to account for the number

nλ of gauginos and the number nD of vector auxiliary fields. We claim that the correct

generalization is

n = n∂ +
1

2
nψ + nF +

3

2
nλ + 2nD, (A.2)

according to which a vector superfield V has n = 0. Note that the double weight of

D-terms compared to F -terms is consistent with eq. (2.6). With such a definition,

the initial lagrangian has n = 2, except for the gauge kinetic term, which has n = 4.

Chiral and vector superfields can then be integrated out at the tree level by using the

supersymmetric equations of motion

∂W

∂Φ
= 0 and

∂K

∂V
= 0 (A.3)

up to terms with n ≥ 3 when integrating out chiral superfields and n ≥ 4 when integrating

vector superfields (with the missing terms originating from the gauge-kinetic term

having n ≥ 6).

From a physical point of view, we are interested not only in the expansion in n but

also, and especially, in the expansion in the power m of 1/M . It is therefore important then

to remark that using eqs. (A.3) amounts to neglecting terms with m ≥ 3 when integrating

chiral superfields and m ≥ 6 when integrating out vector superfields.

We are now ready to present out results on the effective theory obtained integrating

out the heavy vector superfields in a generic supersymmetric gauge theory as above. We

are interested in operators with dimension up to 6 (m ≤ 2) in the effective theory. We

can then use the equation ∂K/∂V . Neglecting higher orders in m, the latter equation can

be rewritten as

V h
a (M2

V )ab = −1

2

∂K2

∂V h
b

(Φ′, V l), (A.4)
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where Φ′ is defined in eq. (2.3), K2(Φ
′, V ) = Φ′†e2gV Φ′, the indices run over the broken

generators, and M2
V is a function of the light vector superfields:

(M2
V )ab =

1

2

∂2

∂V h
a ∂V

h
b

(

φ†0e
2gV φ0

)∣

∣

∣

V h=0
= (M2

V 0)ab + (M2
V 2)ab

(M2
V 0)ab = g2φ∗0{T ha , T hb }φ0

(M2
V 2)ab =

g4

3
φ∗0T

h
a V

lV lT hb φ0 + (a↔ b).

(A.5)

In order to solve eq. (A.4) for V h
a , we need to invert the field-dependent matrix M2

V .

In the Wess-Zumino gauge for the light vector superfields, we get

(M2
V )−1

ab = (M2
V 0)

−1
ab − (M2

V 0)
−1
ac (M2

V 2)cd(M
2
V 0)

−1
db . (A.6)

The effective contribution to the Kähler potential is

Keff = −(M2
V )abV

h
a V

h
b = K0 +K1 +K2, (A.7)

where

δK0
eff = − g2(M2

V 0)
−1
ab (Φ′†T ha Φ′)(Φ′†T hb Φ′) (A.8a)

δK1
eff = − 2g3(M2

V 0)
−1
ab (Φ′†T ha Φ′)(Φ′†{V l, T hb }Φ′) (A.8b)

δK2
eff = − 4

3
g4(M2

V 0)
−1
ab (Φ′†T ha Φ′)Φ′†(T hb V

lV l + V lT hb V
l + V lV lT hb )Φ′ (A.8c)

− g4(M2
V 0)

−1
ab

(

(Φ′†{T ha , V l}Φ′)(Φ′†{T hb , V l}Φ′)+
1

3
(Φ′†[T ha , V

l]Φ′)(Φ′†[T hb , V
l]Φ′)

)

.

In recovering eq. (A.8c) we have used the identity

fαab(M
2
V 0)bc = −fαcb(M2

V 0)ba, (A.9)

where fabc are the structure constants of the gauge group, the latin indices refer to broken

generators and the greek one refers to an unbroken one.

We are interested to soft supersymmetry breaking terms arising from eqs. (A.8) when

some of the auxiliary fields get a vev. The relevant terms should contain up to two F -terms

and one D-term (eq. (2.6)). The only relevant terms are therefore those in (A.8a).

B Supersymmetry breaking, SO(10) breaking, µ, and doublet-triplet

splitting

In this appendix we provide an example of a superpotential achieving supersymmetry

breaking, SO(10) breaking to the SM, ensuring that below the scale of this breaking only

the MSSM fields survive (in particular providing doublet-triplet splitting) and solving of

the µ-problem. We do not aim at being simple or realistic, we just aim at providing an

existence proof. We include in this example representations with dimension d > 120. It

would be interesting to obtain a dynamical supersymmetry breaking, in particular the

F -term vev of a 16 of SO(10).
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SO(10) will broken to the SM at a scale M ∼MGUT. Below this scale only the MSSM

fields survive, in particular the Higgs triplets are made heavy via a generalization of the

Dimopoulos-Wilczek mechanism [47, 55]. The µ-term is present in the theory in the form

of a D = 3 operator present at the GUT scale and triggers supersymmetry breaking. Bµ is

generated at the tree-level and turns out to be of the same order as the sfermion masses.

B.1 The superpotential

The superpotential we use is

W = WY +W1 +W2 +W3 +W4, (B.1)

where

WY = yij16i16j10 + hij16i10j16 + h′ij16i10j16
′

W1 = λ1 Z(1616 −M2) +m 1616′ + λ2X 16
′
16

W2 = 16
′′
(λ3 45 + λ4 U)16 + 16(λ5 45 + λ6 U

′)16′′ +M45 45 45 + λ7 54 45 45 +M54 54 54

W3 = λ8 1616′120 + λ9 16 16
′
120 +M120 120 120

W4 = λ10 10′ 45 10 + λ11 16 16
′′
10 +M1010

′10′ + λ12 16 16
′
10 + λ13 1616′′10 + λ14 Z 10 10.

(B.2)

Here we denote the fields according to their SO(10) representation, except the SO(10)

singlet fields Z,X,U,U ′. The mass parameter m is of the order of the TeV scale (we do

not discuss the origin of such a small parameter here), while all other mass parameters are

near the GUT scale

TeV ∼ m≪M ∼M45 ∼M54 ∼M10 ∼M120 ∼MGUT.

Let us discuss the role of the different contributions to the superpotential and

anticipate the vacuum structure and the spectrum. W1 is responsible for supersymmetry

breaking and the breaking of SO(10) to SU(5): as we are going to show below, this part

of the superpotential generates O (MGUT) vevs for the scalar components of 16 and 16

along the SU(5) singlet direction 〈S〉 ∼ M + O(m2/M) and 〈S〉 ∼ M + O(m2/M) and

a supersymmetry breaking vev for the F -term component of 16′ along the SU(5) singlet

direction 〈FS′〉 ∼ mM . It also provides small supersymmetry breaking vevs for the F -term

component of X 〈FX〉 ∼ m2 and for the D-term of the vector superfield corresponding

to the U(1)X generator of SO(10) 〈DX〉 ∼ M(〈S〉 − 〈S〉) ∼ m2. This D-term vev will

generate sfermion masses along the lines of section 4.1. This superpotential appears in

eq. (5.1) and is a generalization of an example in [49].

WY contains the MSSM Yukawa couplings and provides supersymmetry breaking

masses for heavy chiral superfields that will generate gaugino masses at 1-loop as in or-

dinary gauge mediation. The MSSM matter is embedded in both the 16i and the 10i, as

explained in section 4.1. The MSSM Higgs fields are linear combinations of different fields

and have components in different representations,

hu ⊂ 10, 16 hd ⊂ 10, 16, 16′ , 120.
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Therefore the first term in WY contains the up-type Yukawas, while the second and third

terms provide down-type and charged lepton Yukawas. The second term also gives a large

mass to the additional fields 510
i ⊂ 10i and 5

16
i ⊂ 16i. The latter are also the only fields

that couple to the F -term vev in the 16′ and act as one-loop messengers of supersymmetry

breaking. While this gives a subleading contribution to sfermion masses, it is the only

source of gaugino masses in this model.

The role of W2 is the breaking of SU(5) to the standard model gauge group. It

provides a large vev for the 45 along the B − L direction 〈45B−L〉 ∼ M as needed for

the Dimopoulos-Wilzcek mechanism. Also U,U ′ and the SM singlet in the 54 take large

vevs. W3 merely gives large masses to components in the 16′ and 16
′
. Note that since

the 120 does not contain SU(5) singlets, the neutrino component in the 16′ stays massless

as it should, being the dominant component of the Goldstino superfield. W4 takes care

of the Higgs sector: it keeps the MSSM Higgs doublets light and gives a large mass to

the corresponding triplets. Its last term provides the Bµ term because Z gets a small

supersymmetry breaking vev and both Hu and Hd have components in the 10. The µ term

is contained in W1, because Hd has a component also in the 16′.

B.2 The vacuum structure

We are interested in a vacuum that does not break the SM gauge group. Thus only that

part of the superpotential which involve SU(5) singlets is relevant for the determination of

the ground state. We denote the singlets in (16, 16, 16′, 16
′
, 16′′, 16

′′
) by (S, S, S′, S

′
, S′′, S

′′
)

(which is different than the notation used in the main text) and the singlets in the 45, 54

by B,T, V , where B,T are the properly normalized fields corresponding to the B −L and

T3R generators in SO(10). The relevant part of the superpotential is

W =λ1 Z(SS −M2) +mSS′ + λ2X S
′
S

+ S
′′

(

−λ3

2
T +

λ3

2

√

3

2
B + λ4 U

)

S + S

(

−λ5

2
T +

λ5

2

√

3

2
B + λ6 U

)

S′′ (B.3)

+M45(B
2 + T 2) +M54V

2 + λ7 V

(

1

2

√

3

5
T 2 − 1√

15
B2

)

.

The F -term and DX -term equations show that SUSY is broken (FS′ 6= 0) and that all

vevs are determined except V,B, T , for which there exist three solutions, all yielding FT =

FV = FB = 0. This tree-level degeneracy is lifted by one-loop corrections which select the

solution with T = 0, B 6= 0, V 6= 0. One can check that the vevs are given by

S′ =S
′
=S′′=S

′′
=X=Z=T =0

S = M − m2

4M

(

1

λ2
1

− 1

50g2

)

S = M − m2

4M

(

1

λ2
1

+
1

50g2

)

U = −3
√

5

2

λ5

λ6 λ7

√

M45M54 U ′ = −3
√

5

2

λ3

λ4 λ7

√

M45M54 (B.4)
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V =

√
15M45

λ7
B =

√
30

λ7

√

M45M54

FS′ = −mM FZ =
m2

2λ1
DX = −m2

10g
.

B.3 Spectrum and soft terms

In order to identify the light (with respect to MGUT) we can set m = 0 and consider

the supersymmetric limit. Most fields are at the GUT scale, with the light ones being

the MSSM ones, the Goldstino superfield S′, and the right-handed neutrinos in the 16i,

which can easily be made heavy through a non-renormalizable superpotential operator

(1616i)(1616j). The MSSM matter fields are embedded in the 1016
i and in the 5

10
i , as

desired. The Higgs doublets are embedded into the 16, 10 and 10, 120, 16′ , 16 according to

hu =
1

Nu

(

L16 + 3
√

5
λ5

λ7 λ13

√
M45M54

M
L10

)

hd =
1

Nd

(

L10 −
λ12

λ9
L120 + 2

λ12

λ8 λ9

M120

M
L16′ +

1

3
√

5

λ7 λ11

λ3

M√
M45M54

L16

) (B.5)

with normalization factors Nu and Nd, where Lx, Lx denote the SM component with the

quantum numbers of hd, hd in the SO(10) representation x.

After switching onm the soft supersymmetry breaking terms and µ-term are generated.

The µ-term is already present in the high energy Lagrangian and is of order m, the vev of

DX generates sfermion and Higgs masses of order m2 and the vev of FX gives rise to a Bµ
term of order m2. The heavy fields 510

i and 5
16
i act as messengers of SUSY breaking to the

gauginos who get masses of order m2/(16π2). The Goldstino will be mainly the fermion in

S′ but gets also small contributions from the gaugino corresponding to the U(1)X generator

and the fermion in Z. The corresponding scalar will get a mass of order m2.
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