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1 Introduction

Since their discovery, nonlinear sigma models (NLσMs) have been studied extensively in diverse
subjects, including high energy physics and condensed matter physics. In high energy physics,
NLσMs in two dimensions share many non-perturbative properties with gauge theories in four
dimensions, such as asymptotic freedom, dynamical mass gap, confinement and instantons [1–
3], and thus they are investigated as toy models of gauge theories in four dimensions. NLσMs
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are defined by a map from spacetime to target spaces. Among possible target spaces, the
CPN−1 model with the complex projective space CPN−1 ≃ SU(N)/[SU(N − 1) × U(1)]
as the target space has been most considered [1, 2, 4–6] together with the O(N) model
with SN−1 ≃ O(N)/O(N − 1) target space. In particular, the CPN−1 model has instanton
solutions, which play a central role in the non-perturbative dynamics of the model. The
CPN−1 model appears as the effective theory of a single non-Abelian vortex in supersymmetric
U(N) gauge theories [7–14], dense QCD at high density [15–20], and two-Higgs doublets
models [21–23]. In the recent development of the resurgence theory, the CPN−1 model on
R1 × S1 with a twisted boundary condition along S1 has been extensively discussed, where a
single CPN−1 instanton is decomposed into N fractional instantons with induced domain
wall charges that sum to zero [24, 25]. Then, a pair of fractional instanton and anti-instanton
called a bion may play an essential role in the resurgence theory [26–34]. Self-consistent
non-homogeneous solutions of the CPN−1 model were discussed in the large-N limit in infinite
space [35] and a finite interval [36–40]. In condensed matter physics, the CPN−1 model
appears in spin chains [41, 42], deconfined criticality [43–45], SU(N) Heisenberg models [46]
and ultracold atomic gases [47, 48].

Recently, yet another class of target spaces, flag manifolds, have attracted great attention
from both high energy and condensed matter physics [49]. The flag manifold sigma models
are NLσMs whose target space is the generalized flag manifold Fn1n2···nL+1 , which is a
homogeneous space G/H of the form

Fn1n2···nL+1 ≡G/H ∼=
U(n1+n2+· · ·+nL+1)

U(n1)×U(n2)×·· ·×U(nL+1)
∼=

SU(n1+n2+· · ·+nL+1)
S[U(n1)×U(n2)×·· ·×U(nL+1)] .

(1.1)
The flag manifold sigma models appear in various fields of physics as low-energy effective
theories [50–61]: spin chains [50, 60], flag manifold sigma model on R× S1 [54], anomaly and
topological θ term [55, 61], world-sheet theories of composite non-Abelian vortices [62, 63],
and a non-Abelian vortex lattice [64]. As in other sigma models, the flag manifold sigma
models admit topologically non-trivial configurations [57–59]. In particular, there exist sigma
model lumps (also called sigma model instantons in two dimensions) characterized by the
second homotopy class π2(G/H) of the flag manifolds

π2(G/H) = π1(H) = π1 (S[U(n1) × U(n2) × · · · × U(nL+1)]) = ZL. (1.2)

In the case of L = 1, the target space is a Grassmaniann for which lumps have been studied
in refs. [65, 66]. For L > 1, various properties of lumps have been elucidated in [57, 58].
In the previous works, many authors have focused on the symmetric points in the space
of sigma model coupling constants (decay constants), such as the Z3 symmetric point in
the SU(3)/U(1)2 sigma model [57, 58].

There is another special subspace in the parameter space related to supersymmetric
versions of the flag manifold sigma models [67–72]. When the coupling constants satisfy a
certain relation, the target space becomes a Kähler manifold [70, 71] for which the model
can be made supersymmetric [73]. In such Kähler sigma models, sigma model lumps are
Bogomol’nyi-Prasad-Sommerfield (BPS) objects, whose moduli spaces, in general, have rich
structures due to the property that no static force is exerted among BPS objects. In this
paper, we study the moduli space of BPS lumps in the flag manifold sigma models.
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A convenient way to describe NLσMs, particularly Kähler sigma models, is to use gauged
linear sigma models (GLσMs) whose moduli space of vacua gives the target space [74]. When
the gauge coupling constants are finite, the GLσMs admit semi-local vortex solutions [65,
66, 75, 76] characterized by the fundamental group π1 of the spontaneously broken gauge
group. Since they reduce to the sigma model lumps in the large gauge coupling limit (or
low-energy limit), the moduli space of BPS vortices is equivalent to that of BPS lumps except
for the small lump singularities which are resolved by the finite gauge coupling constants.
In the case of L = 1 (and the case of local vortices), the moduli space of BPS vortices is
conjectured in terms of a D-brane configuration in string theory [7], which is described by
half of the Atiyah-Drinfeld-Hitchin-Mannin(ADHM) construction for Yang-Mills instantons.
This half-ADHM formalism was shown to coincide [9, 10] with one obtained in a purely
field-theoretic way called the moduli matrix approach [9, 10, 12, 77] and has been used to
analyze the structure of the vortex moduli spaces [10, 62, 66, 78].

In this paper, we consider GLσMs that realize the Kählercoset manifolds with arbitrary
complex structures as its target manifolds: we formulate the flag manifold sigma models by
quiver gauge theories [74]. We then construct BPS vortices (lumps, instantons), obtain their
moduli space through the moduli matrix approach, and reformulate it from the viewpoint of
the ADHM-like construction. As applications of the half ADHM moduli space, we compute
vortex partition functions and use them to check the Seiberg-like duality in two dimensions.

This paper is organized as follows. In section 2, we formulate the flag manifold sigma
models by quiver GLσMs. In section 3, we construct BPS vortices and NLσM instantons in
the flag manifold sigma models. In section 4, the half-ADHM quotient construction of the
moduli space of BPS vortices is formulated in the quiver GLσMs and the flag manifold NLσMs,
and in section 5, the moduli space of sigma model instantons is discussed. In section 6,
we calculate the vortex partition functions and check the Seiberg-like duality. Section 7 is
devoted to summary and discussion. In appendix A, we clarify the relation between Kählerand
Riemannian flag manifolds. In appendix B, we give comments on the proposition on the
existence of the BPS solutions addressed in the main text and on the non-existence of other
solutions. Appendix C summarizes coordinate patches of half-ADHM data. In appendix D,
we give a condition of non-singular instantons. Appendices C and D focus on the case of
L = 1, which forms the foundation of general cases with L > 1. We give explicit proofs of
the theorems related to the equivalence of the moduli spaces of the moduli matrix and the
half-ADHM data, discussed previously in [9, 12, 66], in a more comprehensive manner for the
sake of self-containment. In appendix E, we give embeddings of the moduli matrix and the
half-ADHM data in the case of L = 1 to those in the general cases. Appendix F describes a
D-brane configuration in string theory that provides a quotient construction of the moduli
space of BPS vortices and flag manifold sigma model instantons. In appendix G, a Lagrange
multiplier and its vanishing theorem are described. In appendix H, we summarize the torus
action on the Kählerquotient corresponding to the vortex moduli space. In appendix I, we
derive the integration formula for the vortex partition function.

2 Quiver gauge theories and flag manifold sigma models

In this section, we present the gauged linear sigma model (GLσM) description of the flag
manifold sigma model.
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2.1 Flag manifolds

Before describing the GLσM for flag manifolds, we first recapitulate the basics of flag manifolds.
Let V be an N -dimensional complex linear space and (V0,V1, · · · ,VL,VL+1) be a flag, i.e.
a sequence of vector spaces such that

{0} = V0 ⊂ V1 ⊂ · · · ⊂ VL ⊂ VL+1 = V, (2.1)

where Vi (i = 0, 1, · · · , L + 1) are linear subspaces with dimC Vi = Ni satisfying

0 = N0 < N1 < · · · < NL < NL+1 = N. (2.2)

A flag manifold is the space of possible configurations of the flag

Fn1n2···nL+1 ≡
{

(V0,V1, · · · ,VL+1)
∣∣∣Vi : vector space, {0} = V0 ⊂ V1 ⊂ ·· · ⊂ VL ⊂ VL+1 = V

}
.

(2.3)
In this paper, we label flag manifolds by a sequence of integers (n1, n2, · · · , nL) defined by

ni ≡ dimC Wi = Ni −Ni−1,

(
Ni = dimC Vi =

i∑
j=1

nj

)
, (2.4)

where Wi is the orthogonal complements of Vi−1 in Vi (Vi = Vi−1 ⊕ Wi). A point in the
flag manifold Fn1n2···nL+1 can be specified by a set of matrices (ξ1, ξ2, · · · , ξL), where ξi is
an Ni-by-N matrix whose rows form a basis of Vi

ξi =
(
v

(1)
i , v

(2)
i , · · · , v

(Ni)
i

)T {
v

(a)
i

}
: basis of Vi. (2.5)

Since Vi is a linear subspace of Vi+1, the basis vectors of Vi can be expressed as linear
combinations of those of Vi+1. Hence, there exist a Ni-by-Ni+1 matrix qi such that

ξi = qiξi+1, (∃ qi : full rank Ni-by-Ni+1 matrix), ξL+1 = 1L+1. (2.6)

Note that this condition implies that ξi can be written as ξi = qiqi+1 · · · qL. Two different sets
of matrices (ξ1, ξ2, · · · , ξL) and (ξ′

1, ξ
′
2, · · · , ξ′

L) corresponds to the same flag if they are related
by a change of basis of (V1,V2, · · · ,VL), i.e. by a GL(N1,C) × GL(N2,C) × · · · × GL(NL,C)
transformation

ξ′
i = Viξi ⇐⇒ (ξ1, ξ2, · · · , ξL) ∼ (ξ′

1, ξ
′
2, · · · , ξ′

L), (2.7)

where Vi ∈ GL(Ni,C) (i = 1, 2, · · · , L). Therefore, the flag manifold (2.3) can be identified
with the space of the equivalence class (2.7) satisfying the condition (2.6)

Fn1n2···nL+1 =
{

(ξ1, ξ2, · · · , ξL)
∣∣∣∣ ξi : full rank Ni-by-N matrix
ξi = qiξi+1, ∃ qi : full rank Ni-by-Ni+1 matrix

}
/ ∼ .

(2.8)
Since ξi = qiqi+1 · · · qL, the flag manifold (2.3) can also be regarded as the space of the
equivalence classes of the matrices (q1, q2, · · · , qL)

Fn1n2···nL+1 =
{

(q1, q2, · · · , qL)
∣∣∣ qi : full rank Ni-by-Ni+1 matrix

}
/ ∼ , (2.9)
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where the equivalence relation for (q1, q2, · · · , qL) is given by

q′
i = ViqiV

−1
i+1 ⇐⇒ (q1, q2, · · · , qL) ∼ (q′

1, q
′
2, · · · , q′

L), (2.10)

with Vi ∈ GL(Ni,C) (i = 1, 2, · · · , L) and VL+1 = 1N .
We can show that the flag manifold is a homogeneous space given by the coset space

Fn1n2···nL+1
∼=

U(N)
U(n1) × U(n2) × · · · × U(nL+1) . (2.11)

To show this, let us note that any set of full rank matrices (q1, q2, · · · , qL) can be rewritten
by using the equivalence relation (2.10) as

qi =
{
qoi for 1 ≤ i ≤ L− 1
qoL U for i = L

with qoi ≡ (1Ni ,0Ni×ni+1), (2.12)

where U is an element of U(N) and qoi are matrices corresponding to the standard flag
(Vo0 ,Vo1 , · · · ,VoL+1), i.e. the flag consisting of the vector space Voi spanned by the first i
fundamental unit vectors. This indicates that any flag is related to the standard flag by a
U(N) transformation. For a given flag, the corresponding unitary matrix U is not unique
since the flag is invariant under U(n1) × · · · × U(nL+1) transformations, i.e.

(qo1, · · · , qoL−1, q
o
LU) ∼ (qo1, · · · , qoL−1, q

o
LU

′U), with U ′ =


U1

. . .

UL

, Ui ∈ U(ni).

(2.13)
The unitary matrices U and U ′U give the same flag, and hence the flag manifold is given
by the coset space (2.11).

The denominator of the coset space (2.11) implies that if (n′
1, n

′
2, · · · , n′

L+1) is a permu-
tation of (n1, n2, · · · , nL+1), the flag manifolds Fn1n2···nL+1 and Fn′

1n
′
2···n′

L+1
are identical as a

homogeneous space.1 However, in general, they have different complex structures and hence
they are distinct as complex manifolds. To make the complex structure manifest, let us rewrite
an arbitrary set of full rank matrices (q1, · · · , qL) by using the equivalence relation (2.10) as

qi =
{
qoi for 1 ≤ i ≤ L− 1
qoL G for i = L

, G ∈ GL(N,C). (2.14)

In this case, the isotropy group of (qo1, · · · , qoL) is the parabolic subgroup Ĥ(n1, · · · , nL+1) ⊂
GL(N,C), i.e. the subgroup whose elements are matrices of the form

ĥ =


h1 0 · · · 0

⋆ h2
. . .

...
...
. . .

. . . 0
⋆ · · · ⋆ hL+1

, with hi : element of GL(ni,C)
⋆ : complex block matrix . (2.15)

1For a permutation σ : (n1, · · · , nL+1) 7→ (n′
1, · · · , n′

L+1) = (nσ(1), · · · , nσ(L+1)), one can define a diffeo-
morphism Fn1···nL+1 → Fn′

1···n′
L+1

as (V0, V1, · · · , VL+1) 7→ (V ′
0, V ′

1, · · · , V ′
L+1) with Vi = W1 ⊕ · · · ⊕ Wi and

V ′
i = Wσ(1) ⊕ · · · ⊕ Wσ(i).
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Since the matrices G and ĥG give the same flag

(qo1, · · · , qoL−1, q
o
LG) ∼ (qo1, · · · , qoL−1, q

o
LĥG), (2.16)

the flag manifold can also be written as the coset space

Fn1,··· ,nL+1
∼= GL(N,C)/Ĥ(n1, · · · , nL+1). (2.17)

In general, for different ordering of the integers (n1, · · · , nL) and (n′
1, · · · , n′

L), the parabolic
subgroups are not isomorphic to each other and hence give different complex manifolds.
The only exception is the case with (n′

1, n
′
2, · · · , n′

L+1) = (nL+1, · · · , n2, n1), for which the
map between flags (V0,V1, · · · ,VL+1) 7→ (V ′

0,V ′
1, · · · ,V ′

L+1) = (V⊥
L+1, · · · ,V⊥

1 ,V⊥
0 ) defines a

biholomorphic map between Fn1n2···nL+1 and FnL+1···n2n1(see section 2.3). Correspondingly,
there exists a duality between the GLσMs for Fn1n2···nL+1 and FnL+1···n2n1 .

The holomorphic coordinates of Fn1,··· ,nL+1 are the coordinates parameterizing the coset
defined by G ∼ ĥG with ĥ ∈ Ĥ(n1, · · · , nL+1). For example, in the neighborhood of G = 1,
which corresponds to the standard flag (qo1, · · · , qoL), we can decompose the matrix G as

G = L U , U =


1n1 φ12 · · · φ1,L+1

0 1n2

. . .
...

...
. . .

. . . φL,L+1
0 · · · 0 1nL+1

, (2.18)

where L is an element of the parabolic subgroup Ĥ(n1, · · · , nL+1) (lower-triangular block
matrix) and U is an upper-unitriangular block matrix whose blocks φij (1 ≤ i < j ≤ L+ 1)
are ni-by-nj complex matrices. The entries of φij parameterizes the coset space and hence
they can be regarded as the holomorphic coordinates in this coordinate patch. For this
matrix G, the set of matrices (q1, · · · , qL) = (qo1, · · · , qoLG) can be rewritten by using the
equivalence relation (2.10) as

(qo1, · · · , qoLG) ∼ (U−1
1 qo1 U2, · · · ,U−1

L qoL U) with U−1
i qoi Ui+1 =

 1n1 φ′
1,i+1

. . .
...

1ni φ′
i,i+1

 ,
(2.19)

where Ui are the first Ni-by-Ni submatrices of U and the ni-by-nj block φ′
ij = φij +O(φ2) are

certain polynomials of φ’s. In general, we can find a representative in each class [q1, · · · , qL]
such that the matrices (q1, · · · , qL) are holomorphic in φ’s in each coordinate patch.

Although the decomposition (2.18) is not always possible, there exists at least one element
of the symmetric group σ : (1, · · · , N) 7→ (σ(1), · · · , σ(N)) such that

G = Lσ Uσ Pσ, Pσ ∈ SN , (2.20)

where Lσ ∈ H(n1, · · · , nL+1), Uσ is an upper-triangular block matrix and Pσ is the permuta-
tion matrix corresponding to the element of the symmetric group σ. For a generic G, the
element σ is not unique and hence there are several ways to decompose G

G = Lσ Uσ Pσ = Lσ′ Uσ′ Pσ′ = · · · . (2.21)
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The relation between Uσ(φσ) and Uσ′(φσ′) gives the coordinate transformation φσ ↔ φσ′

between the patches specified by σ and σ′. The “origin”of each patch Uσ = 1N (φ = 0) corre-
sponds to the flag obtained by the permuting the basis of the standard flag (Vo0 ,Vo1 , · · · ,VoL,V)
by σ. Since the permutations of the basis within Wo

i (the orthogonal complements of Vi−1 in
Vi) do not change the standard flag, it is invariant under the subgroup Sn1 ×· · ·×SnL+1 ⊂ SN .
Hence the number of the “origins”, which is also the number of coordinate patches requiered
to cover the whole manifold, is N !/(n1!n2! · · ·nL+1!).2

Let us see the simplest example of L = 1. In this case, the flag manifold is identified
with the set of planes in a vector space, i.e. the Grassmaniann

Fn1n2 =
{

V : vector space in CN | dimC V = M
}

= G(M,N), (2.22)

with M = n1, N = n1 + n2. In particular, Fn1=1,n2=1 = CP 1 for n1 = n2 = 1. To see how q1
is parametrized by the holomorphic coordinate ϕ, let us consider the decomposition (2.18)
for GL(2,C). Any matrix G ∈ GL(2,C) can be decomposed into at least one of the forms

• G =
(
A B

C D

)
= LU , L =

(
a 0
c d

)
, U =

(
1 ϕ
0 1

)
, (2.23)

• G =
(
A B

C D

)
= L′ U ′P, L′ =

(
a′ 0
c′ d′

)
, U ′ =

(
1 ϕ′

0 1

)
, P =

(
0 1

−1 0

)
,

(2.24)

where

a=A, c=C, d= AD−BC
A

, a′ =B, c′ =D, d′ = AD−BC
B

, (2.25)

and ϕ and ϕ′ are inhomogeneous coordinates of CP 1

ϕ = B

A
, ϕ′ = −A

B
. (2.26)

The decomposed forms (2.23) and (2.24) exist except for the matrices with A = 0 and
B = 0, respectively. Multiplying these decomposed forms of G and qo1 = (1, 0), we find
two different forms of q1, each of which is parametrized by the holomorphic coordinate on
the respective coordinate patch

q1 = qo1 G ∼ (1, 0) U = (1, ϕ) or q1 = qo1 G ∼ (1, 0) U ′P = (−ϕ′, 1). (2.27)

Similarly, using the decomposition of the matrix G, we can obtain holomorphic parametriza-
tions of qi also for general L.

2.2 GLσM for flag manifolds

In this subsection, we review the gauged linear sigma models (GLσMs) corresponding to
the flag manifold sigma models.

2The “origins” correspond to the fixed points of a torus action U(1)N ⊂ U(N) and their number is given
by Euler characteristic of the flag manifold N !/(n1!n2! · · · nL+1!).
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As shown in appendix A, the flag manifold Fn1n2···nL+1 becomes a Kähler manifold in an
L dimensional subspace of the L(L+ 1)/2 dimensional parameter space of Riemann metric
on Fn1n2···nL+1 . In such a subspace, the flag manifold sigma model can be described by
U(N1) × U(N2) × · · · × U(NL) GLσM specified by the quiver diagram [74]

N1
⃝ q1 //

N2
⃝ q2 //⃝ · · · · · · ⃝ //

NL

⃝ qL //
NL+1

(N1 < N2 < · · · < NL < NL+1 = N),
(2.28)

where the i-th node corresponds to the U(Ni) gauge group, the i-th arrow denotes a bifun-
damental field of U(Ni) × U(Ni+1) and the last box stands for the U(NL+1) = U(N) global
(flavor) symmetry.3 The Lagrangian is written in terms of L bifundamental scalar fields
Qi (Ni-by-Ni+1 matrix, i = 1, · · · , L), auxiliary U(Ni) gauge fields Aiµ (i = 1, · · · , L) and
Lagrange multipliers Di (Ni-by-Ni matrix, i = 1, · · · , L) in the adjoint representation of U(Ni)

L0 =
L∑
i=1

Tr
[
(DµQi)(DµQi)† +Di

(
QiQ

†
i −Q†

i−1Qi−1 − ri1Ni

) ]
, (2.29)

where Q0 = 0 and ri (i = 1, · · · , L) are positive constants parametrizing the Kähler metric.
The gauge group acts on the bifundamental field Qi as

Qi → UiQiU
†
i+1, Ui ∈ U(Ni), Ui+1 ∈ U(Ni+1). (2.30)

The covariant derivatives are defined as

DµQi = ∂µQi + i(AiµQi −QiA
i+1
µ ), DµQL = ∂µQL + iALµQL. (2.31)

To see that this GLσM describes the flag manifold sigma model, we need to eliminate
(Aiµ, Di) by solving their equations of motion. The variations of the action with respect to
the Lagrange multipliers Di give the constraints

QiQ
†
i −Q†

i−1Qi−1 = ri1Ni . (2.32)

To solve these constraints, it is convenient to write Qi as

Qi = S−1
i qiSi+1, (SL+1 = 1N ), (2.33)

where qi (i = 1, · · · , L) are Ni-by-Ni+1 matrices of complex scalar fields and Si (i = 1, · · · , L)
are elements of the complexified gauge group GL(Ni,C).4 Then, the constraints (2.32) can
be rewritten as

qiΩi+1q
†
iΩ−1

i − Ωiq
†
i−1Ω−1

i−1qi−1 = ri1Ni , with Ωi = SiS
†
i . (2.34)

3The overall U(1) of the global symmetry is unphysical since it can be absorbed into the gauge group
U(N1) × · · · × U(NL).

4The matrices Si can be regarded as (the lowest components of) the auxiliary vector superfields Si = e−Vi

in the supersymmetric version of our system,

S =
∫

d4x

∫
d4θ

L∑
i=1

Tr
[
e−2Vi qie

2Vi+1 q†
i + 2riVi

]
.

where qi are chiral superfields, ri are called Fayet-Iliopoulos parameters in this context.

– 8 –



J
H
E
P
0
2
(
2
0
2
4
)
2
3
0

These equation can be uniquely solved for Ωi ∈ GL(NiC) as long as the qi are full rank matrices.
Once we obtain the solution Ωi for a given set of matrices (q1, · · · , qL), we can determine Si up
to gauge transformations. Note that the expression (2.33) in terms of qi and Si is redundant
since the scalar fields Qi do not change under the complexified gauge transformation

qi → ViqiV
−1
i+1, Si → ViSi, (Ωi → ViΩiV

†
i ), (2.35)

where Vi are arbitrary elements of GL(Ni,C) and VL+1 = 1. Since Si are unique (up to gauge
transformation) for a given set of matrices (q1, · · · , qL), the moduli space of vacua (the set
of solutions of (2.34) modulo gauge transformations) is given by

Mvac =
{

(q1, q2, · · · , qL)
∣∣∣ qi : full rank Ni-by-Ni+1 matrix

}
/ ∼ , (2.36)

where ∼ denotes the equivalence relation qi ∼ ViqiV
−1
i+1 (i = 1, · · · , L). This is nothing but

one of the representations of the flag manifold (2.9) and hence the moduli space of vacua
is isomorphic to Fn1n2···nL+1

Mvac = Fn1n2···nL+1 . (2.37)

The general solution of eq. (2.34) can be obtained as follows. As we have mentioned
in eq. (2.12), any set of full rank matrices (q1, · · · , qL) can be rewritten, by using the
equivalence relation (2.35), into a unitary transform of the standard flag (qo1, · · · , qoL−1, q

o
LU)

with U ∈ U(N). Since eq. (2.34) is invariant under the U(N) global symmetry, the solution
Ωi to eq. (2.34) for (q1, · · · , qL) = (qo1, · · · , qoL−1, q

o
LU) is given by the solution Ωo

i for the
standard flag (qo1, · · · , qoL−1, q

o
L)

Ωi = Ωo
i ≡ diag

( 1
a1i

1n1 ,
1
a2i

1n2 , · · · , 1
aii

1ni

)
with aij =

L∏
l=j

(
l∑

m=i
rm

)
> 0. (2.38)

From these solution Ωo
i = Soi (Soi )†, we obtain solution to eq. (2.32) through eq. (2.33) as

Qi =
{ (

Qo
i ,0Ni×ni+1

)
for i<L(

Qo
L,0NL×nL+1

)
U for i=L

, Qo
i = diag(b1i1n1 , b2i1n2 , · · · , bii1ni

), bij =
( j∑

m=i

rm

) 1
2
,

(2.39)

up to U(N1) × U(N2) × · · · × U(NL) gauge transformations. Although this is the general
solution of the constraint (2.34), the complex structure of Fn1,··· ,nL+1 is not manifest in
this form of the general solution. To describe the Kähler flag manifold sigma model, it is
convenient to make the complex structure manifest by parametrizing the matrices (q1, · · · , qL)
with holomorphic coordinates. To this end, let us rewrite (q1, · · · , qL) by using the equivalence
relation (2.35) into the form (qo1, · · · , qoL−1, q

o
LG) given in (2.14). For G ∈ GL(N,C), we can

find a pair of matrices (ĥ, U) such that5

G = ĥ U with ĥ ∈ Ĥ(n1, · · · , nL+1) and U ∈ U(N), (2.40)
5For a given G ∈ GL(N,C), the pair (ĥ, U) is unique up to U(n1) × · · · × U(nL+1) transformations

(ĥ, U) → (ĥU ′†
, U ′U) with U ′ ∈ U(n1) × · · · × U(nL+1).
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where Ĥ(n1, · · · , nL+1) ⊂ GL(N,C) is the parabolic subgroup given in (2.15). Noting that

ĥ−1
L qoL G = qoLU, ĥ−1

i qoi ĥi+1 = qoi with ĥi =


h1 0 · · · 0

⋆ h2
. . .

...
...
. . .

. . . 0
⋆ · · · ⋆ hi

 ∈ Ĥ(n1, · · · , ni),

(2.41)
we can rewrite the general solution of the constraint (2.34) by using the equivalence re-
lation (2.35) as

(q1, · · · , qL) = (qo1, · · · , qoLU), Ωi = Ωo
i (2.42)

↓ ↓

(q1, · · · , qL) = (qo1, · · · , qoLG), Ωi = ĥiΩo
i ĥ

†
i , (2.43)

where two forms of the solution are related by (2.35) with Vi = ĥi. In this form of the
solution, the matrices {qi} are parametrized by the holomorphic coordinates ϕα (α =
1, · · · , dimC Fn1,··· ,nL+1), which are entries of the block matrices φij (1 ≤ i < j ≤ L + 1)
given in eq. (2.18).

Next, let us write down the Lagrangian of the NLσM in terms of the complex coordinates
(ϕα, ϕ̄β̄) by regarding them as scalar fields depending on the spacetime coordinates. The
auxiliary gauge fields Aiµ can be eliminated by solving their equations of motion

i
[
Qi(DµQi)† − DµQiQ

†
i +Q†

i−1DµQi−1 − (DµQi−1)†Qi−1
]

= 0. (2.44)

These equations can be solved as

Aiµ = −iS−1
i

(
∂µ − ∂µϕ

α ∂

∂ϕα
ΩiΩ−1

i

)
Si = −i∂µϕ̄ᾱS−1

i

∂Si

∂ϕ̄ᾱ
+ i∂µϕ

α ∂S
†
i

∂ϕα
S†
i

−1
. (2.45)

Substituting into the original action (2.29), we obtain the NLσM in terms of the complex
coordinates (ϕα, ϕ̄β̄)

L0 = −gαβ̄ ∂µϕ
α∂µϕβ , (2.46)

where the Kähler metric gαβ̄ is given by the formula

gαβ̄ =
L∑
i=1

ri
∂

∂ϕ̄β
Tr
(

Ω−1
i

∂qi
∂ϕα

Ωi+1q
†
i

)
= ∂2

∂ϕα∂ϕ̄β̄

L∑
i=1

ri log det Ωi = ∂2K

∂ϕα∂ϕ̄β̄
. (2.47)

This form of the Kähler metric implies that the Kähler potential K takes the form

K =
L∑
i=1

ri log det Ωi. (2.48)

Using the solution of the constraint (2.43), we find that

log det Ωi = log | det ĥi |2 + log det Ωo
i . (2.49)
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Although this is the general formula for the Kähler potential for Fn1,··· ,nL+1 , it is more
convenient to express | det ĥi|2 in terms of holomorphic quantities. Let us consider

ξi ≡ qiqi+1 · · · qL−1qL, (2.50)

which takes the form ξi = qoi · · · qoLG for the set of matrices (q1, · · · , qL) = (qo1, · · · , qoLG). As
we have seen in eq. (2.19), the matrices (q1, · · · , qL) are holomorphically parametrized by
the coordinates and hence ξi are also holomorphic. By using the decomposition (2.40), the
relations qoj ĥj+1 = ĥjq

o
j and qoi q

o
i

† = 1Ni , we can show that

ξiξ
†
i = ĥiĥ

†
i . (2.51)

Thus, we find that the Kähler potential is given by

K =
L∑
i=1

ri log det(ξiξ†
i ), (2.52)

where we have neglected the unphysical constant term log det Ωo
i . This expression coincides

with the Kähler potential constructed in refs. [67–70]. Note that this formula is applicable
for any gauge choice other than eq. (2.43) since this Kähler potential is invariant under the
complexified gauge transformations (2.35) up to a Kählertransformation.6

Example of Kähler potential. Let us see an explicit example of the Kähler potential in
the case of L = 2, n1 = n2 = n3 = 1. Let us introduce inhomogeneous complex coordinates
(ϕ12, ϕ13, ϕ23) of the target manifold GC/Ĥ = F1,1,1. They are contained in the matrix
G in eq. (2.18) as

G = L

 1 ϕ12 ϕ13
0 1 ϕ23
0 0 1

 ∈ GL(3,C), (2.53)

where L ∈ Ĥ is a lower-triangular matrix. Using ξi = qoi · · · qoLG, we obtain the holomorphic
parametrization of ξi as

ξ1 = (1, 0, 0) G ∼ (1, ϕ12, ϕ13), ξ2 =
(

1 0 0
0 1 0

)
G ∼

(
1 0 ϕ13 − ϕ12ϕ23
0 1 ϕ23

)
, (2.54)

where we have used the equivalence relation ξi ∼ Vi ξi with V1 ∈ GL(1,C) and V2 ∈ GL(2,C).
Inserting these expressions into (2.52), we obtain

K = r1 log(1 + |ϕ12|2 + |ϕ13|2) + r2 log(1 + |ϕ23|2 + |ϕ13 − ϕ12ϕ23|2). (2.55)

In this way, we can obtain the explicit forms of the Kähler potentials for the flag manifolds.
6For any gauge choice, we can confirm that log det Ωi = log det(ξiξ

†
i ) + const by using the explicit form of

the solution of (2.34)

Ωi = 1
aii

ξiξ
†
i +

i−1∑
j=1

(
1

aji
− 1

aj+1,i

)
ξiξ

†
j (ξjξ†

j )−1ξjξ†
i .
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Coefficients of the beta functions. In two dimensions, the target space metric flows
under the renormalization group flow

µ
∂

∂µ
gαβ̄ = 1

2πRαβ̄ + O(1/ri), (2.56)

where µ is the renormalization scale and Rαβ̄ is the Ricci curvature. For a Kähler flag
manifold, this renormalization group equation for the metric can be rewritten into that
for the parameters ri

µ
∂

∂µ
ri = Ni+1 −Ni−1

2π + O(1/ri). (2.57)

At the one-loop order, the solutions can be written as

ri = βi
2π log µ

Λi
+ · · · , βi ≡ Ni+1 −Ni−1, (2.58)

where Λi are dynamically generated scale parameters. Since βi > 0, the sigma model coupling
constants 1/ri become small for µ → ∞ and hence the system is asymptotically free. As we will
see below, the coefficients βi are also related to the dimension of the moduli space of vortices.

2.3 Duality at classical level

In general, a flag manifold Fnσ(1),··· ,nσ(L+1) obtained by permuting the integers (n1, · · · ,nL+1) →
(nσ(1), · · · ,nσ(L+1)) has a different complex structure from that of Fn1,··· ,nL+1 . However, when
(nσ(1), · · · , nσ(L+1)) = (nL+1, . . . , n2, n1) the two manifold have an identical complex structure,
i.e. Fn1,n2,...,nL+1 and FnL+1,...,n2,n1 are identical as a complex manifold

Fn1,n2,...,nL+1 = FnL+1,...,n2,n1 . (2.59)

This equivalence is explicitly given by the biholomorphic map given in terms of the matrix G

G ∈ GL(N,C) 7→ Gdual = R (GT)−1R† ∈ GL(N,C) (2.60)

where the matrix R is defined as

R =


0 · · · 0 1nL+1
... . .

.
. .
.

0

0 1n2 . .
. ...

1n1 0 · · · 0

 ∈ U(N). (2.61)

This transformation reduces to the map between the equivalence class G ∼ ĥG with ĥ ∈
Ĥ(n1, n2, · · · , nL+1) and Gdual ∼ ĥ′Gdual with ĥ′ = R (ĥT)−1R†. We can show that matrices
of the form R (ĥT)−1R† are elements of Ĥ(nL+1, . . . , n2, n1)

ĥ′ ∈ RĤ(n1, n2, . . . , nL+1)T−1R† ∼= Ĥ(nL+1, . . . , n2, n1). (2.62)

Therefore, the transformation (2.60) gives a one to one map between the flag manifolds
GL(N,C)/Ĥ(n1, · · · , nL+1) and GL(N,C)/Ĥ(nL+1, · · · , n1). Suppose G can be decomposed
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into L and U as given in eq. (2.18) (G = L U). Then, Gdual can be decomposed into
Ldual ∈ Ĥ(nL+1, . . . , n2, n1) and an upper block-triangular matrix Udual as

Gdual = Ldual Udual (2.63)

where Ldual and Udual are related to L and U as

Ldual ≡ R (LT)−1R†, Udual ≡ R (UT)−1R†. (2.64)

Since the complex coordinates are contained in the matrices U and Udual (see eq. (2.18)),
the relation between U and Udual gives an explicit holomorphic coordinate transformation
between the complex coordinates of Fn1,...,nL+1 and FnL+1,··· ,n1 .

Correspondingly, by replacing the ranks of gauge groups and the FI parameters as

Ni → Ndual
i = N −NL+1−i, ri → rdual

i = rL+1−i, (2.65)

we obtain a dual GLσM and an effective NLσM whose Kähler potential is identical to the
original one up to a Kähler transformation

L∑
i

rdual
i ln det ξdual

i (ξdual
i )† =

L∑
i

ri ln det ξiξ†
i + Kähler trf., (2.66)

with ξdual
i = (1Ndual

i
,0) Gdual.7 This shows that two GLσMs are equivalent at the classical

level. In section 6, we will check this duality at the quantum level by comparing the vortex
partition functions.

As an example, let us consider the L = 1 case. In the case of U(M) gauge theory with
N fundamentals, the moduli space of vacua Mvac is the Grassmaniann

Fn1n2 =
{

V : vector space in CN | dimC V = M
}

= G(M,N), (2.67)

with M = n1, N = n1 +n2. The dual theory is U(N−M) gauge theory with N fundamentals
and its Mvac is given by

Fn2n1 =
{

W : vector space in CN | dimC W = N −M
}

= G(N −M,N). (2.68)

These spaces are identical since any plane V ∈ CN can also be specified by its orthogonal
complement W = V⊥. Let us see the explicit coordinate transformation between these spaces.
Let φ and φ̃ be M -by-N −M and N −M -by-M matrices whose entries are inhomogeneous

7Here we have used the following identities for the determinants of ξiξ
†
i and det ξdual

i (ξdual
i )†

det ξiξ
†
i = det ĥiĥ

†
i =

i∏
j=1

| det hj |2, det ξdual
i (ξdual

i )† =
L+1∏

j=L−i+2

| det hT−1
j |2,

where hi are the matrices given in eq. (2.40). Taking determinants of the both sides of eq. (2.40), we find that

L+1∑
i=1

ln det hi = ln det(G)

which is holomorphic and thus, can be removed using a Kähler transformation.
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coordinates of the Grassmaniann G(M,N) and G(N − M,M), respectively. They are
contained in the matrices

U =
(

1n1 φ

0 1n2

)
, Udual =

(
1n2 φ̃

0 1n1

)
. (2.69)

From the duality relation Udual = R (UT)−1R†, we can read off the coordinate transformation
between φ and φ̃ as

φ̃ = −φT. (2.70)

This is the simplest example of the duality of the flag manifold sigma models and the
corresponding GLσMs.

2.4 Sigma model instantons

For any Kähler manifold M, the non-linear sigma model with target space M admits BPS
instanton solutions. They are given by holomorphic maps ∂z̄ϕi = 0, which saturates the
lower bound of the action∫

d2xL =
∫
d2x gij̄∂Mϕ

i∂M ϕ̄j = 4
∫
d2x ||∂z̄ϕi||2 +

∫
R2
igij̄dϕ

i ∧ dϕ̄j ≥
∫
R2
igij̄dϕ

i ∧ dϕ̄j ,

(2.71)
where z = x1 + ix2 and ||∂z̄ϕi||2 = gij̄∂zϕ

i∂z̄ϕ̄
j is the norm of ∂z̄ϕi with respect to the Kähler

metric gij̄ . The lower bound is given by the topological charge obtained by integrating the
pullback of the Kähler form ϕ∗(ω) = i

2gij̄dϕ
i∧dϕ̄j . Once we fix the configuration at the spatial

infinity to a point on the target space, ϕ can be viewed as a map ϕ : R2 ∪ {∞} = S2 → M
and hence the instanton configurations are classified by π2(M).

In the case of the flag manifold, the topological charge is given by∫
R2
igij̄dϕ

i∧dϕ̄j = i
L∑

i=1
ri

∫
R2
∂∂̄ logdetξi(z)ξi(z)† = − i

2

L∑
i=1

ri

∮
S1

∞

(dz∂z −dz̄∂z̄) logdetξi(z)ξi(z)†,

(2.72)
where we have used the explicit form of the Kähler form obtained from the Kähler poten-
tial (2.52). Assuming that the asymptotic form of det ξi(z)ξi(z)† for large |z| is given by

det ξi(z)ξi(z)† = |z|2ki + · · · , (|z| → ∞), (2.73)

we can determine the topological charge as∫
R2
igij̄dϕ

i ∧ dϕ̄j = 2π
L∑
i=1

riki, (2.74)

where (k1, · · · , kL) ∈ ZL = π2(Fn1,...,nL+1) are topological numbers. The space of instanton
solutions satisfying the boundary condition with fixed topological numbers is called the moduli
space of sigma model instantons. As is well known, there exist small instanton singularities in
the moduli space of sigma model instantons. Such singularities can be resolved by introducing
the kinetic terms for the gauge fields in the GLσM. In the next section, we discuss vortex
solutions which can be viewed as resolved the sigma model instantons in the GLσM.
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3 BPS vortices in GLσM

3.1 BPS equations and moduli matrices

In this section, we discuss BPS vortices in the framework of the GLσM with finite gauge
coupling constants gi

L =
L∑
i=1

Tr
[

1
2g2
i

F iµνF
iµν+DµQiDµQ†

i−
1
g2
i

D2
i +Di

(
QiQ

†
i−Q

†
i−1Qi−1−ri1Ni

)]
, (3.1)

where F iµν = ∂µA
i
ν − ∂νA

i
µ + i[Aiµ, Aiν ] are the field strength for the i-th gauge field and gi

are gauge coupling constants. One can go back to the original GLσM (2.29) by taking the
gi → ∞ limit. In the vacua of this system, the gauge symmetry U(N1) × · · · × U(NL) is
spontaneously broken and hence this model admits BPS vortex configurations, satisfying
the boundary conditions

lim
|z|→∞

Qi = Ui(θ)† (Qo
i ,0)Ui+1(θ), lim

|z|→∞
Aiµdx

µ = −iUi(θ)†dUi(θ), (3.2)

where Qo
i is the constant square matrices defined in eq. (2.39) and Ui(θ) ∈ U(Ni) are nontrivial

elements of the gauge group depending on θ = arg z. Each Ui(θ) carries the topological
charges of π1(U(Ni)) = Z, which is related to the magnetic flux of i-th overall U(1) factor

ki ≡ − 1
2π

∫
d2xTrF i12 = i

2π

∫ 2π

0
dθTr

[
Ui(θ)†∂θU(θ)

]
∈ Z for 1 ≤ i ≤ L. (3.3)

In the large gauge coupling limit gi → ∞, these vortex solutions reduce to the sigma model
instantons (or singular configurations). Eliminating the auxiliary field Di by solving their
equations of motion

Di = g2
i

2
(
QiQ

†
i −Q†

i−1Qi−1 − ri1Ni

)
, (3.4)

we can rewrite the Lagrangian as∫
d2xL =

L∑
i=1

∫
d2xTr

[
g2
i

4 E2
i + 4ẼiẼ†

i − riF
i
12

]
≥ 2π

L∑
i=1

riki (3.5)

where we have defined

Ẽi ≡ Dz̄Q
i, (3.6)

Ei ≡ QiQ
†
i −Q†

i−1Qi−1 − ri1Ni − 2
g2
i

F i12 (3.7)

with Dz̄Q
i ≡ 1

2(D1 + iD2)Qi. For a fixed set of topological charges (k1, · · · , kL), the action is
minimized when Ei = Ẽi = 0, i.e. the following equations are satisfied

0 = Dz̄Q
i, (3.8)

0 = QiQ
†
i −Q†

i−1Qi−1 − ri1Ni − 2
g2
i

F i12. (3.9)

These equations are called the BPS equations for vortices.
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Solutions to these equations describe configurations of vortices, that is, squeezed magnetic
fluxes in the Higgs phase. The vortices in this system are classified as local vortices or semi-
local vortices depending on their asymptotic behaviors at the spatial infinity. The local vortex
exhibits an exponentially dumping behavior and is obtained by, roughly speaking, embedding
well-known Abrikosov-Nielsen-Olesen vortex into the matrix elements. The semi-local vortex
has a (decreasing) power-law behavior due to the tails of the massless Nambu-Goldstone
fields parameterizing the moduli space of vacua Fn1,...,nL+1 . The size of a semi-local vortex
is one of moduli parameters of vortices and hence it can become arbitrarily large without
changing the energy. However, it has a minimum size of order O(1/g

√
r). In the small size

limit, the semi-local vortex reduces to the local type.

The master equation and the boundary condition. Let us rewrite the BPS equations
into a convenient form. The first set of BPS equations (3.8) can be solved as

Qi = S−1
i qi(z)Si+1, Az̄ ≡ 1

2(Ai1 + iAi2) = −iS−1
i ∂z̄Si, (3.10)

where Si are elements of GL(Ni,C) (SL+1 = 1) and qi(z) are Ni-by-Ni+1 matrices whose
entries are arbitrary polynomials of z = x1 + ix2.8 Note that the description in terms
of qi and Si is redundant since the following transformation does not change the original
fields Qi and Ai:

qi(z) → Vi(z)qi(z)V −1
i+1(z), Si(z, z̄) → Vi(z)Si(z, z̄), with Vi(z) ∈ GL(Ni,C).

(3.11)
This is a complexified gauge transformation depending on the holomorphic coodinate z =
x1 + ix2. We call this transformation the V-transformation. To study the moduli space of
vortices, it is convenient to define Ni-by-N matrices ξi(z) as

ξi(z) ≡ qi(z)qi+1(z) · · · qL(z), for 1 ≤ i ≤ L. (3.12)

For a given set of matrices (q1(z), · · · , qL(z)), the matrices Si(z, z̄) are determined (up to
gauge transformations) by solving the second BPS equation (3.9), which can be rewritten
in terms of Ωi = SiS

†
i ∈ GL(Ni,C) as

qiΩi+1q
†
iΩ−1

i − Ωiq
†
i−1Ω−1

i−1qi−1 = ri1Ni − 4
g2
i

∂z̄
(
∂zΩiΩ−1

i

)
, (q0 = 0). (3.13)

We call this set of equations the master equation for vortices. Once we determine Ωi by
solving the master equation, we can obtain the original fields Qi and Aµ satisfying the BPS
equation for vorties. The boundary conditions for Ωi can be determined as follows. Without
loss of generality, we can fix the vacuum at the spatial infinity to the point on Fn1,...,nL+1

corresponding to the standard flag Vo0 ⊂ Vo1 ⊂ · · · ⊂ VoN ⊂ V as

ξi(z) “ → ” ξoi = qoi q
o
i+1 · · · qoL = (1Ni ,0Ni,N−Ni), for |z| → ∞, (3.14)

up to the redundancy of the V -transformation (3.11). To precisely describe what the limit
“→” means, let us decompose the Ni-by-N matrix ξi(z) into a Ni-by-Ni matrix D(z) and

8Although these entries are arbitrary entire functions in general, we can assume that they are polynomials
without loss of generality as shown in appendix C.1.
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a Ni-by-(N − Ni) matrix D̃(z) as ξi(z) = (Di(z), D̃i(z)). This decomposition corresponds
to the orthogonal decomposition of the vector space V = Voi ⊕ Vo⊥i

ξi(z) = (Di(z), D̃i(z)) ↔ Di(z) ≡ ξi(z) ξoi †, D̃i(z) ≡ ξi(z) ξo⊥i
†
, (3.15)

where ξo⊥i = (0N−Ni,Ni ,1N−Ni). Using the Ni-by-Ni matrix Di(z), we set the boundary
conditions for ξi(z) as

lim
|z|→∞

{Di(z)−1ξi(z)} = ξoi . (3.16)

Correspondingly, the boundary coniditions for {qi, Si} are given by

lim
|z|→∞

{
Di(z)−1qi(z)Di+1(z)

}
= qo

i , lim
|z|→∞

{
Di(z)−1Si(z, z̄)

}
= So

i Ui(θ), (3.17)

where DL+1(z) = 1N , Ui(θ) ∈ U(Ni) and Soi is a matrix such that Ωo
i = Soi (Soi )† is the

diagonal matrix defined in eq. (2.38). These boundary conditions correspond to those for the
original quantities eq. (3.2). Note that the transformations with Di(z) in eq. (3.17) can be
regraded as local V -transformations analogous to singular gauge transformations, which are
regular in the asymptotic region |z| → ∞. Substituting these settings to the master equation,
we find that the asymptotic behavior of Ωi is given by

Di(z)−1 Ωi(z z̄)Di(z)†−1 = Ωo
i + O(|z|−2) for |z| → ∞. (3.18)

These are the boundary conditions for the master equations (3.13).
In terms of these matrices satisfying the boundary conditions given above, the vortex

numbers ki defined in (3.3) are given by

ki = 1
4πi

∮
(dz∂z − dz̄∂z̄) log | detDi(z)|2, (3.19)

where we have used the following formula for the magnetic flux and its asymptotic behavior

TrF i12 = −2∂z̄∂z log det Ωi, log det Ωi = log | detD(z)|2+const.+O(|z|−2) for |z| → ∞.

(3.20)
Eq. (3.19) implies that the matrices (q1(z), · · · , qL(z)) must be chosen such that detDi(z) has
ki zeros in the topological sector with vortex numbers (k1, · · · , kL).9 The zeros of detDi(z)
can be regarded as the positions of vortices. To see this, let us consider the p-th moment
of the i-th magnetic fluxes. If all vortices are well separated from each other, the magnetic
flux F i12 is symmetrically localized around ki distinct points {z(i,α)|α = 1, 2, . . . , ki}. In such
a case, the p-th moment is given by

⟨zp⟩i ≡ − 1
2π

∫
d2x zp Tr[F i12] =

ki∑
α=1

(z(i,α))p. (3.21)

On the other hand, using (3.20), we can calculate ⟨zp⟩i as

⟨zp⟩i = 1
2πi lim

R→∞

∮
|z|=R

dz zp∂z log detDi(z) =
ki∑
α=1

(w(i,α))p, (3.22)

9Using the V -transformation, detDi(z) can be set to be a monic polynomial of degree ki.
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where {w(i,α)|α = 1, 2, . . . , ki} are zeros of detDi(z). From (3.21) and (3.22), the vortex
positions {zi,α} can be identified with the zeros {wi,α} of detDi(z).10 Extending this
identification, we adopt {w(i,α)} as the definition of the vortex positions even if several
vortices are in close proximity and their flux profiles are overlapping.

Uniqueness and existence of solution. Under the boundary conditions given above, one
can prove the uniqueness of the solution {Ωi} to the set of the master equations (3.13) with
a given set of {qi(z)} (see appendix B for the proof). In the following, we only assume that

there exists a solution for the set of the master equations (3.13) with a given set of
qi = qi(z) such that Ωi = Ωi(z, z̄) is an element of GL(Ni,C) everywhere and all entries
of Ωi are smooth functions of z and z̄.

At least, this assumptions is true in the large coupling limit g2
i → ∞ as will be explained

later. The set of the master equations is a generalization of the so-called Taubes equation,
where this assumption has been shown to be true [79].

The moduli matrices and the moduli space of vortices. If the above assumption for
the existence of the solution is true, there is a one-to-one correspondence between the moduli
space of vortices and the set of the equivalence classes defined by the V -transformation

qi(z) ∼ Vi(z) qi(z)V −1
i+1(z). (3.23)

Hence the matrices qi(z) are called the moduli matrices. As shown in appendix C, all the
entries of the matrices qi(z) and Vi(z) can be assumeed to be polynomials. From eqs. (3.16)
and (3.19), we find that the boundary conditions for vortex configurations carrying the
topological charges {ki} are expressed in terms of ξi(z) = (Di(z), D̃i(z)) as

detDi(z) = O(zki), Di(z)−1D̃i(z) = O(z−1). (3.24)

Roughly speaking, the first and second conditions in (3.24) specify the vortex numbers {ki}
and the vacuum at the spacial infinity, respectively. For fixed vortex numbers and boundary
conditions, we define the moduli space of vortices as the space of equivalence classes of the
matrices (q1(z), . . . , qL(z)) satisfying the condition (3.24)

Mvtx
n1,n2,...,nL+1
k1,k2,··· ,kL

=
{

(q1(z), q2(z), . . . , qL(z))
∣∣∣ qi(z) : conditions (3.24)

}
/ ∼, (3.25)

where ∼ denotes the equivalence relation (3.23). We can determine the dimension of the
moduli space by counting the number of zero modes satisfying the linearized BPS equations
around a BPS configuration. As discussed in [7] and [80], the number of zero modes can
be determined by the index theorem as

dimC Mvtx
n1,n2,...,nL+1
k1,k2,··· ,kL

= −
L∑
i=1

Ni+1 −Ni−1
2π

∫
d2xTrF i12 =

L∑
i=1

(Ni+1 −Ni−1)ki =
L∑
i=1

βiki,

(3.26)

where βi = Ni+1 − Ni−1 is the first coefficient of the beta function (2.58).
10Since Di(z) can be reconstructed as detDi(z) = zki exp(−

∑∞
p=1⟨zp⟩i/(pzp)), each zero w(i,α) can always

be uniquely read from any configuration of the magnetic flux.
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The moduli space of BPS vortices is endowed with a natural complex structure such
that the variables ϕA (A = 1, · · · ,

∑L
i=1 βiki) holomorphically parametrizing the equivalence

class of the V -transformation (3.23) are the complex coordinates of the vortex moduli space.
Furthermore, the vortex moduli space is equipped with a Kähler metric that determines
classical dynamics of the vortices. As shown in appendix B.4, the Kähler metric on the
vortex moduli space is given by the formula

gAB̄ =
∫
d2x

∂

∂ϕ̄B̄

L∑
i=1

Tr
[
Ω−1
i

∂qi
∂ϕA

Ωi+1q
†
i

]
Ω=Ωsol

. (3.27)

Local and semi-local vortices. The first condition in (3.24) implies that ξi(z) are full rank
matrices at a generic point z ∈ C. Such a set of full rank matrices (ξ1(z), · · · , ξL(z)) at a point
z specifies a flag V0 ⊂ V1 ⊂ · · · ⊂ VL ⊂ V and hence a point in the flag manifold Fn1,··· ,nL+1 .
Therefore, if ξi(z) are full rank matrices (rank(ξi(z)) = Ni) everywhere on C, that is,

det ξi(z)ξi(z)† ̸= 0, ∀z ∈ C, (i = 1, · · · , L), (3.28)

the set of matrices (ξ1(z), · · · , ξL(z)) gives a holomorphic map C → Fn1,··· ,nL+1 . In such a
case, we can solve the equation (3.13) in the large gauge coupling limit gi → ∞ by promoting
the vacuum solution satisfying (2.34) into a z-dependent configuration

Ωi = 1
aii
ξi(z)ξi(z)† +

i−1∑
j=1

(
1
aji

− 1
aj+1,i

)
ξi(z)ξj(z)†(ξj(z)ξj(z)†)−1ξj(z)ξi(z)†. (3.29)

Comparing physical quantities such as energy density, we can confirm that the vortex config-
uration reduces to the instanton solution specified by the same set of matrices (ξ1, · · · , ξL).11

Therefore, the moduli space of sigma model instantons is given by restricting the vortex
moduli space (3.25) with the additional condition (3.28)

Minst
n1,n2,...,nL+1
k1,k2,··· ,kL

=
{

(q1(z), q2(z), . . . , qL(z))
∣∣∣qi(z) : eq.(3.24), eq. (3.28)

}
/∼ . (3.30)

The points removed by the condition (3.28) are configurations with matrices ξi(z) whose
rank becomes smaller (rank(ξi(z)) < Ni) at some points on C. Such configuration cannot be
viewed as a holomprphic map since ξi must be full rank matrices on the flag manifold. As we
approach the removed points on the instanton moduli space, the sizes of some insntantons
become infinitesimally small and hence such points are called the small instanton singularities.
Although instanton configurations are singular at such points, the corresponding vortex
solutions are regular as long as the gauge coupling constants gi are finite. Instead of the
singular instantons, regular vortices with size O(1/g

√
r) are located at the points where

rank(ξi) < Ni when the gauge coupling constants are finite. Such vortices are the so-called
11From these matrices ξi(z), we can always construct an instanton solution in terms of the inhomogeneous

coordinates by comparing ξi(z) and U = U(z) in eq. (2.18) at each z as

ξi(z) = Li(z) ξo
i U(z)

where Li(z) is an appropriate element of the parabolic subgroup Ĥ(n1, · · · , ni) except for some singular points
corresponding to the zeros of det Li(z) = detDi(z) = O(zki ).
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local vortices whereas vortices corresponding to regular instantons are called the semi-local
vortices. A set of matrices {ξi} with D̃i = 0 corresponds to a configuration in which all
the vortices are of local type. The corresponding modui subspace is called the local vortex
moduli space while we call the subspace with no local vortex the semi-local vortex moduli
space. As shown in appendix D.3, there is a one-to-one correspondence between the moduli
spaces of semi-local vortices and sigma model instantons

Msemi
n1,n2,...,nL+1
k1,k2,··· ,kL

= Minst
n1,n2,...,nL+1
k1,k2,··· ,kL

. (3.31)

The semi-local vortex moduli space can be obtained from the local one by turning on D̃i, which
corresponds to the fibration on the local vortex moduli space. In the large gauge coupling
limit gi → ∞, the local vortex moduli space shrinks to the small instanton singularity.

For a dual pair of GLσMs, the moduli space of sigma model instantons are identical
since the corresponding NLσMs agree in the gi → ∞ limit. On the other hand, as we
will see below, the votex moduli spaces can be viewed as different regularizations of the
instanton moduli space

Minst
n1,n2,...,nL+1
k1,k2,··· ,kL

= Minst
nL+1,...,n2,n1
kL,··· ,k2,k1

∩ ∩
Mvtx

n1,n2,...,nL+1
k1,k2,··· ,kL

̸= Mvtx
nL+1,...,n2,n1
kL,··· ,k2,k1

.

(3.32)

In section 5, we will check the duality of instanton solutions by presenting explicit biholo-
morphic map on the moduli parameters. The small-instanton singularities are regularized in
different ways in the dual pair of GLσMs, i.e. both models have distinct local vortex moduli
spaces. Nevertheless, as we will check in section 6, the vortex partition functions computed
using the information on the local vortex moduli spaces are in perfect agreement.

3.2 Example 1: review of L = 1 case

As the simplest example, let us review the case with L = 1 [9] where the target manifold of
the NLσM is the complex Grassmaniann G(N,n) (n1 = n, n2 = N − n). Here we omit the
index i (i = 1, · · · , L) since there is only one gauge group factor U(n) in this case.

For a k-vortex configuration, the matrices D(z) and D̃(z) are n-by-n and n-by-(N − n)
matrices satisfying

detD(z) = O(zk), D(z)−1D̃(z) = O(z−1). (3.33)

Two pairs of matrices (D(z), D̃(z)) and (D(z)′, D̃(z)′) are equivalent if there is a matrix
V (z) ∈ GL(N,C) such that

(D(z), D̃(z)) = (V (z)D(z)′, V (z)D̃(z)′) ⇐⇒ (D(z), D̃(z)) ∼ (D(z)′, D̃(z)′). (3.34)

Therefore, the moduli space of k-vortex configurations is given by

Mvtx
n,N−n
k

∼=
{

(D(z),D̃(z))
∣∣∣detD(z) = O(zk) ,D(z)−1D̃(z) = O(z−1)

}
/∼ . (3.35)

This moduli space can be parametrized in the following way (see appendix C.1 for more
details). Let λ = (l1, l2, · · · , ln) be a set of non-negative integers such that k = ∑n

b=1 lb.
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By using the V -transformation (3.34), a generic matrix D(z) with detD(z) = O(zk) can
be transformed into the following form

D(z) = Dλ(z) ≡

 zl1

. . .

zln

+

 P 11 · · · P 1n

...
. . .

...
Pn1 · · · Pnn

, P ab(z) =
lb∑

m=1
T abm zm−1.

(3.36)
For each “gauge choice”, i.e. the choice of (l1, · · · , ln), all the degrees of freedom of the
V -transformation (3.34) is fixed. Therefore, the coefficients T abm can be regarded as part of the
complex coordinates of the moduli space of vortices in this coordinate patch, which we call the
(l1, l2, · · · , ln)-patch. The other coordinates parameterize the degrees of freedom contained in
the matrix D̃(z) obeying the condition D(z)−1D̃(z) = O(z−1). To extract such degrees of
freedom, let us consider n-component column vectors ji(z) with polynomial entries satisfying

D(z)−1ji(z) = O(z−1) (z → ∞). (3.37)

We can show that there exist k linearly independent solutions ji(z) (i = 1, · · · , k) satisfying
this condition. Let J(z) be an n-by-k matrix whose columns form a basis of the solutions
to (3.37), that is, J(z) = (j1(z), · · · , jk(z)). For instance, in the (l1, l2, · · · , ln)-patch (3.36),
J(z) can be chosen as

Jλ =
(
J1J2 · · ·Jn

)
, (Jα)ap = Da

α

zp

∣∣∣
reg

= δaα z
lα−p +

lα−p∑
m=1

T aαm zm−1, (3.38)

where Jα are n-by-lα block matrices and |reg stands for the regular part. Since D̃(z) satisfies
the condition D(z)−1D̃(z) = O(z−1), it can be written as linear combinations of ji(z), that
is, the matrix D̃(z) in the (l1, l2, · · · , ln)-patch can be written as

D̃(z) = D̃λ(z) ≡ JλΨ̃λ, (3.39)

where Ψ̃ is a k-by-(N −n) matrix. The components of Ψ̃ parameterize the degrees of freedom
of D̃ and hence can be regarded as the remaining coordinates of the moduli space of vortices.

One can check that the number of the coordinates T abm (a, b = 1, · · · , n, m = 1, · · · , lb)
and Ψ̃ic (i = 1, · · · , k, c = 1, · · · , N − n) agrees with the dimension of the moduli space
dimC Mvtx

n,N−n
k = kN obtained through the analysis of the index theorem [7] (see eq. (3.26)).

There are (k + n− 1)!/(k!(n− 1)!) patches and the transition functions can be read off from
the V -transformation between two different fixed forms (Dλ′ , D̃λ′) = (V Dλ, V D̃λ) (see the
example below).

Next, let us read off the sigma model instanton solutions in the large coupling limit
from ξ = (D(z), D̃(z)). Let φ is the n-by-(N − n) matrix which appears in the matrix
G in eq. (2.18) as

G = L
(

1n φ

0 1N−n

)
∈ GL(N,C), (3.40)

where L is a lower-triangular block matrix. The components of φ can be regarded as the
inhomogeneous coordinates of Grassmannian G(N,n). From the relation (D(z), D̃(z)) ∼
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(1n,0) G, the matrix φ(z) can be read off as

φ(z) = D(z)−1D̃(z). (3.41)

This implies that the inhomogeneous coordinate are rational functions of z. Note that only
semilocal vortices can be observed as sigma model instantons. To see this, let us assume that
if l vortices in (D(z), D̃(z)) are of local type. Then, as shown in appendix D.1, the matrices
D(z) and D̃(z) have a common factor Dlc(z) representing local vortices

(D(z), D̃(z)) = Dlc(z)(Dsm(z), D̃sm(z)), detDlc(z) = O(zl), (3.42)

where ξsm(z) = (Dsm(z), D̃sm(z)) satisfies the condition (3.28). From this factorized form,
we find that the local vortices do not appear in the sigma model instantons in the large
coupling limit:

φ(z) = D(z)−1D̃(z) = Dsm(z)−1D̃sm(z). (3.43)

Abelian case. For n = 1, the gauge group is U(1) and D(z) is a monic polynomial of z

D(z) =
∏
α

(z − zα)dα ,
∑
α

dα = k, (3.44)

where dα denotes the multiplicity of the vortex sitting at z = zα. The condition D(z)−1D̃(z) =
O(z−1) for D̃(z) = (D̃2(z), D̃3(z), · · · , D̃N (z)) can be solved by setting D̃a(z) to be polyno-
mials of degree k − 1. Then the sigma model instanton solution takes the form

D̃a(z)
D(z) =

∑
α

dα∑
p=1

ca,α,p
(z − zα)p , for 2 ≤ a ≤ N. (3.45)

Since the number of the coefficients is k for each flavor a, this solution has kN moduli
parameters. For separated vortex configuration (dα = 1 for all α), each vortex has N − 1
parameters in addition to its position modulus. For example, for N = 2 and dα = 1,
the absolute values of the coefficient c2,α,1 determines the size of the vortex at z = zα,
and hence c2,α,1 (α = 1, · · · , k) are called size moduli. The phase of c2,α,1 corresponds to
the Nambu-Goldstone mode of the H = U(1) global symmetry that is preserved by the
vacuum but broken by the vortex. The configurations with ca,α,p=dα = 0 correspond to a
small-instanton singularities.

Non-Abelian case. In the case of n > 1, vortices possesses another type of moduli
parameters that the Abelian vortices do not have. Since D(z) has a smaller rank at the
center of each vortex (z = zα, detD(zα) = 0), there exists an n-column vector ψ satisfying12

D(zα)ψα = 0. (3.46)

Each vector ψα, defined up to a normalization factor, specifies a point on CPn−1 =
U(n)/[U(n − 1) × U(1)]. These degrees of freedom correspond to the Nambu-Goldstone

12A set of this type of relations for all vortices will be summarized in the equation (4.8) in the next section.
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zero mode of the U(n) color-flavor locked symmetry broken due to existence of a vortex.
Even when a vortex has a vanishing size modulus, this type of orientational moduli survives
and thus describes internal degrees of freedom of the local vortex.

Next, let us demonstrate how to describe the moduli space of vortices with the simplest
example of non-Abelian vortices in the case of N = 3, n = 2, k = 1 (n1 = 2, n2 = 1). There
are two coordinate patches (l1, l2) = (1, 0) and (0, 1) for which the “gauge-fixed forms” of
the matrix D in eq. (3.36) are respectively given by

D(1,0)(z) =
(
z − a 0
−b 1

)
, D(0,1)(z) =

(
1 −b̃
0 z − ã

)
. (3.47)

The conditions for J(1,0)(z) = (J1, J2)T and J(0,1)(z) = (J ′
1, J

′
2)T are given by

D−1
(1,0) J(1,0) = J1(z)

z − a

(
1
b

)
+ J2(z)

(
0
1

)
= O(z−1). (3.48)

D−1
(0,1) J(0,1) = J ′

2(z)
z − a

(
b̃

1

)
+ J ′

1(z)
(

1
0

)
= O(z−1). (3.49)

By using the solutions to these conditions J(1,0) = (1, 0)T and J(0,1) = (0, 1)T , the matrices
D̃(1,0) and D̃(0,1) can be written as

D̃(1,0) = c J(1,0) =
(
c

0

)
, D̃(0,1) = c̃ J(0,1) =

(
0
c̃

)
, (3.50)

where c and c̃ are constants. The parameters (a, b, c) and (ã, b̃, c̃) are the coordinates of the
moduli space in the (l1, l2)-patches with (l1, l2) = (1, 0) and (l1, l2) = (0, 1), respectively.
They are related by the coordinate transformation

(ã, b̃, c̃) = (a, b−1, cb), (3.51)

which can be determined from the regularity condition for the V -transformation between
the two gauge-fixed forms of D

V D(1,0) = D(0,1) =⇒ V (z) = D(0,1)(D(1,0))−1 =
(

1−bb̃
z−a −b̃
b z−ã
z−a z − ã

)
, (3.52)

and the relation V D̃(1,0) = D̃(0,1). The parameter a and c are the position and size moduli of
the vortex, respectively. The parameter b is the inhomogeneous coordinate of the orientational
moduli CP 1. The sigma model solution φ12(z) = D−1D̃ in the (1, 0)- and (0, 1)-patches
take the forms

φ
(1,0)
12 (z) = c

z − a

(
1
b

)
, φ

(0,1)
12 (z) = c̃

z − a

(
b̃

1

)
. (3.53)

By using the coordinate transformation (3.51), one can confirm that these are identical
φ

(1,0)
12 (z) = φ

(0,1)
12 (z) on the overlap of the coordinate patches.
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Duality and moduli spaces. In the case of N = 3, n = 2, k = 1 (n1 = 2, n2 = 1) discussed
above, the total vortex moduli space is given by

Mvtx
n1=2,n2=1
k=1 = C × OCP 1(−1), (3.54)

where the first factor corresponds to the vortex position a ∈ C and the second factor is the
total space of the line bundle OCP 1(−1) over CP 1

OCP 1(−1) =
{
(b1, b2, c)

∣∣(b1, b2) ∈C2\{(0,0)}, c∈C
}
/∼ with (b1, b2, c) ∼ (λb1,λb2,λ

−1c).
(3.55)

By removing the subspace c = 0 corresponding to the small-instanton singularity, this space
reduces to the moduli space of sigma model instanton

Minst
n1=2,n2=1
k=1 =C×

{
(b1, b2, c)

∣∣(b1, b2) ∈C2\{(0,0)}, c∈C\{0}
}
/∼=C×

(
C2\{(0,0)}

)
.

(3.56)

In the dual theory, which is an Abelian theory with N = 3, n = 1 (n1 = 1, n2 = 2), the
vortex and instanton moduli spaces are respectively given by

Mvtx
n1=1,n2=2
k=1 = C × C2, Minst

n1=1,n2=2
k=1 = C ×

(
C2\{(0, 0)}

)
. (3.57)

We can confirm that even though the instanton moduli spaces are identical, the vortex moduli
spaces are different in the dual theories

Minst
n1=2,n2=1
k=1 = Minst

n1=1,n2=2
k=1

∩ ∩
Mvtx

n1=2,n2=1
k=1 ̸= Mvtx

n1=1,n2=2
k=1 .

(3.58)

In each theory, the small-instanton singularity is regularized by replacing it with the local
vortex moduli space in each theory

Mvtx
n1=2,n2=1
k=1 \Minst

n1=2,n2=1
k=1 = C × CP 1, Mvtx

n1=1,n2=2
k=1 \Minst

n1=1,n2=2
k=1 = C.

(3.59)

In other words, the singularity is blown up in the case of n1 = 1, n2 = 2 whereas C × {(0, 0)}
is added along the singularity in the case of n1 = 2, n2 = 1.

3.3 Example 2: L = 2 case

Next, we consider the case with L = 2. As we have seen in the previous example with L = 1,
all the information on the moduli space of vortices is contained in the matrix ξ = (D, D̃)
obeying the constraints detD(z) = O(zk) and D(z)−1D̃(z) = O(z−1). For L > 1, the
matrices ξi = (Di, D̃i) must satisfy additional constraints since they are composite quantities
obtained from qi (L = 1, · · · , N). For example, in the case of L = 2, ξ1 and ξ2 are related
as ξ1(z) = q1(z)ξ2(z) and hence they are not independent. To read off the information on
the vortex moduli space, we need to clarify the constraints for ξi(z).
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For simplicity, let us focus on the case of vortex numbers (k1, k2) = (1, 1) in the model
with n1 = n2 = n3 = 1 as the simplest nontrivial example.13 It follows from the conditions
detDi = O(zki) and D−1

i D̃i = O(z−1) that the matrices ξ1(z) and ξ2(z) for (k1, k2) = (1, 1)
take the forms

ξ1(z) = (z − a′, c′, c′′), ξ2(z) = (D(1,0)(z), D̃(1,0)(z)) =
(
z − a 0 c

−b 1 0

)
, (3.60)

where we have fixed ξ2(z) = (D2, D̃2) so that it takes the (l1, l2) = (1, 0) form given in
eq. (3.47) and eq. (3.50). These matrices must be related as ξ1(z) = q1(z)ξ2(z) with a
certain non-singular 1-by-2 matrix q1(z). The regularity of q1(z) requires that the parameters
are related as

a′ = a+ bc′ c′′ = c. (3.61)

In the (0, 1)-patch, ξ1(z) and ξ2(z) = (D(0,1)(z), D̃(0,1)(z)) take the forms

ξ1(z) = (z − a′, c′, c′′), ξ2(z) = (D(0,1)(z), D̃(0,1)(z)) =
(

1 −b̃ 0
0 z − ã c̃

)
, (3.62)

where the parameters (ã, b̃, c̃) are related to (a, b, c) in the same way as the case of L = 1 (3.51).
The regularity of q1(z) requires that

c′ = b̃ (a′ − ã), c′′ = b̃ c̃. (3.63)

This relation is consistent with (3.61) and (3.51). The constraints on (3.60) and (3.62)
with (3.51) implies that the moduli space is given by

Mvtx
n1=1,n2=1,n3=1
k1=1,k2=1 = C × (OCP 1(−1) ⊕ OCP 1(−1)), (3.64)

where C is the center of mass position parametrized by a + a′ and OCP 1(−1) ⊕ OCP 1(−1)
is the space given by

OCP 1(−1)⊕OCP 1(−1) =
{

(b1, b2, c1, c2)
∣∣(b1, b2) ∈C2\{(0,0)}, (c1, c2) ∈C2

}
/∼, (3.65)

where the equivalence relation ∼ is defined as

(b1, b2, c1, c2) ∼ (λb1, λb2, λ
−1c1, λ

−1c2) with λ ∈ C∗. (3.66)

The coordinates in the (1, 0) and (0, 1) patches are related to the C∗ invariants as

b = b1
b2
, c = b2c2, c′ = b2c1, (3.67)

b̃ = b2
b1
, c̃ = b1c2, a′ − a = b1c1. (3.68)

Here, a complex parameter b(b̃) parametrizing CP 1 appears like in the non-Abelian case
given in eq. (3.47). Its argument, arg(b), is again the Nambu-Goldstone zero mode due to
a broken U(1)-symmetry, but unlike in the non-Abelian case, its absolute value, |b| is no
longer a Nambu-Goldstone mode. We can observe that the configurations of the magnetic
fluxes depend on |b|, as seen in figure 1.

13Another simple example is the case where the matrices ξi can be obtained by embedding that of the L = 1
case. A general discussion on the embedding of the L = 1 case is given in appendix E.
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Figure 1. Profiles of the magnetic fields, Bi=1,2 ≡ −Tr[F i=1,2
12 ] for local vortices in the L = 2

model with setting r1 = r2 = g1 = g2 = 1. Here we use the moduli matrix in eq. (3.60) with setting
a = c = c′ = 0 and varying values of b as b = 0, 0.2, 0.5, 1, 2, 5,∞.

Next, let us consider the corresponding sigma model instanton solution. Let us introduce
inhomogeneous complex coordinates (ϕ12, ϕ13, ϕ23) of the target manifold GC/Ĥ = F1,1,1.
They are contained in the matrix G in eq. (2.18) as

G = L

 1 ϕ12 ϕ13
0 1 ϕ23
0 0 1

 ∈ GC, (3.69)

where L is a lower-triangular matrix. In this parametrization, D−1
i D̃i are given by

D−1
1 D̃1 = (ϕ12, ϕ13), D−1

2 D̃2 =
(
ϕ′

13
ϕ23

)
, (3.70)

where ϕ′
13 is related to ϕ13 as14

ϕ′
13 = ϕ13 − ϕ12ϕ23. (3.71)

If we ignore the constraints ξi = qiξi+1, each ξi can be regarded as a flag for the Grasmannian
G(Ni, N). In this case, ξ1 and ξ2 specify points on G(1, 3) = CP 2 and G(2, 3) = CP 2,
respectively. In this case, both (ϕ12, ϕ13) and (ϕ23, ϕ

′
13) are the inhomogenrous coordinates

of CP 2, and hence the sigma model instanton solutions with k1 = 1 and k2 = 1 are generally
takes the forms (see (3.53))

(ϕ12, ϕ13) = 1
z − a′ (B,A

′), (ϕ23, ϕ
′
13) = 1

z − a
(C,A). (3.72)

The additional condition (3.71) gives rise to the following constaraint on the moduli parameters
a′, A′, B, a,A,C

AD = BC, A = A′, with D ≡ a′ − a. (3.73)
14The flag manifold Fn1,n2,n3 can be realized as two orthogonal flags, ξ1 ∈ G(n1, N) and ξ̃ ∈ G(n3, N).

Eq. (3.71) can be regard as the orthogonality condition ξ1ξ̃T = 0 with identifying ξ1 = (1, ϕ12, ϕ13) and
ξ̃ = (−ϕ′

13
T

, −ϕT
23, 1).
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The space given by the condition AD = BC has singularities but they are covered by
the small-instanton singularities located at (B,A′) = (0, 0) and (C,A) = (0, 0).,15 These
singularities can be simultaneously removed by requiring A ̸= 0, and hence the moduli
space of instantons is given by

Minst
n1=1,n2=1,n3=1
k1=1,k2=1 = C × C2 × (C\{0}). (3.74)

The vortex configuration given in (3.60) and (3.62) is mapped to (ϕ12, ϕ23, ϕ13, ϕ
′
13) through

relation (3.70), from which the parameters in (3.72) can be read as,

(B,A′) = b2(c1, c2), (C,A) = c2(b1, b2) and a′ − a = b1c1, (3.75)

with [b1 : b2 : c1 : c2] ∈ OCP 1(−1) ⊕ OCP 1(−1). The above mapping can be regarded as a
blowup of the space AD = BC along the center A = C = 0. Therefore, this resolution of
the singularity defines an inclusion map between them as

Minst
n1=1,n2=1,n3=1
k1=1,k2=1 =C×C2×(C\{(0)}) ↪→ Mvtx

n1=1,n2=1,n3=1
k1=1,k2=1 =C×(OCP 1(−1)⊕OCP 1(−1)).

(3.76)

Removing the small instanton singularities at b2 = 0 and c2 = 0, we obtain the condition
for the moduli space of the instanton

Mvtx
n1=1,n2=1,n3=1
k1=1,k2=1 −→

b2 ̸=0, c2 ̸=0
Minst

n1=1,n2=1,n3=1
k1=1,k2=1 = C × C2 × (C\{0}). (3.77)

Next, let us see how the moduli spaces are related under the duality map. In the
n1 = n2 = n3 = 1 case, the duality theory is identical but the inhomogeneous coordinates
(ϕ12, ϕ23, ϕ13) and ϕ′

13 = ϕ13 − ϕ12ϕ23 are swapped as (see eq. (2.64))

(ϕ12, ϕ23, ϕ13, ϕ
′
13)dual = −(ϕ23, ϕ12, ϕ

′
13, ϕ13). (3.78)

From this relation, we can read off the duality transformation for the moduli parameters as

(b1, b2, c1, c2)dual = (c1, c2,−b1,−b2). (3.79)

This map is well-defined on Minst
n1=1,n2=1,n3=1
k1=1,k2=1 but ill-defined on Mvtx

n1=1,n2=1,n3=1
k1=1,k2=1 since

the point (c1, c2)dual = (0, 0) of the vortex moduli space is mapped to the forbidden point
(b1, b2) = (0, 0) in the original theory. This indicates that there are vortex configurations
that do not have corresponding configuration in the dual theory.

This asymmetry of the vortex moduli space becomes manifest if we focus on its subspaces
containing local vortices. The vortex described by ξ1 (ξ2) becomes a local vortex in the limit
of b2 → 0 (c2 → 0) Interestingly, there exist two subspaces (C2 and C × CP 1 shown in the
bottom row of figure 2) where both of the two vortices becomes local ones.

15There are two type of singularity: the former is algebraic singularity where the tangent space is ill-defined,
and the latter is “physical” singularity where the NLσM breaks down.
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Figure 2. The structure of moduli space of vortices with n1 = n2 = n3 = 1, k1 = k2 = 1.

Fixed points of torus action. The two subspaces C2 and C × CP 1 shown in the bottom
row of figure 2 contain two fixed points of a torus action which will be discussed in appendix H.
They are also viewed as the origins of the It is convenient to characterize these fixed points
by Young tableaux as

(
,1
)

: q1 = (1, 0), q2 =
(
z 0 0
0 1 0

)
∈ C2, (3.80)

(
,

)
: q1 = (z, 0), q2 =

(
1 0 0
0 z 0

)
∈ C1 ∩ C2. (3.81)

The height d of each young diagram indicates a composite state of d different types of
vortices. For n1 = n2 = n3 = 1, the general fixed point and the corresponding set of Young
diagrams is given by

(
1 ··· l

1 ··· m
, 1 ··· n

)
: q1 = (zm, 0), q2 =

(
zl 0 0
0 zn 0

)
, (3.82)

with (k1, k2) = (l + m, l + n). In section 4.3.1, we will see the way to classify the fixed
points in terms Young tableaux.

4 Quotient construction of vortex moduli space

In this section, we discuss a quotient construction of the vortex moduli space. We show
that the vortex moduli space (3.25) can be identified with a quotient of a vector space of
matrices by a complex Lie group.
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4.1 L = 1 case and half-ADHM mapping relation

Let us first review the quotient construction in the L = 1 case [9, 10]. We show that the vortex
moduli space (3.35) is given by the GL(N,C) quotient of the vector space of matrices {Z,Ψ, Ψ̃}

Mvtx
n,N−n
k

∼=
{

(Z,Ψ, Ψ̃)
∣∣∣ {Z,Ψ} on which GL(k,C) action is free

}
/GL(k,C), (4.1)

where Z k-by-k matrix, Ψ is a n-by-k matrix and Ψ̃ is a k-by-(N − n) matrix on which
GL(k,C) acts

Z → g−1Zg, Ψ → Ψg, Ψ̃ → g−1Ψ̃. (4.2)

They are related to the moduli matrix ξ(z) = q(z) = (D, D̃) through the relations, which
we call the half-ADHM mapping relation

D(z)Ψ = J(z)(z1k − Z), D̃(z) = J(z)Ψ̃, (4.3)

where J(z) = (j1(z), · · · , jk(z)) is the n-by-k matrix defined in section 3.2, which is char-
acterized by the property

D(z)−1J(z) = O(z−1) (z → ∞). (4.4)

The GL(k,C) transformation acts on J(z) as

J(z) → J(z) g (g ∈ GL(k,C)), (4.5)

and can be regarded as the change of basis {j1(z), · · · , jk(z)} of the solutions of (4.4).
From the matrices D and J, the matrices (Z,Ψ) can be obtained through the first

equation in (4.3). The existence of such constant matrices (Z,Ψ) can be shown by using
the following decomposition algorithm. By using D and J, any column vector f⃗(z) with
arbitrary polynomial entries can be decomposed as

f⃗(z) = D(z)g⃗(z) + J(z)v, (4.6)

with a column vector g⃗(z) with polynomial entries and a constant vector v ∈ Ck. Note
that for a given f⃗(z), the column vectors g⃗(z) and v are unique since the columns of D(z)
and J(z) are independent in the sense that

0⃗ = D(z)g⃗(z) + J(z)v ⇔ g⃗(z) = 0⃗, v = 0. (4.7)

Applying the decomposition (4.6) to each column of zJ(z), we can show that there exist
a n-by-k matrix Ψ and a k-by-k matrix Z such that

zJ(z) = D(z)Ψ + J(z)Z, or equivalently D(z)Ψ = J(z)(z1k − Z). (4.8)

Note that Ψ = D(z)−1J(z)(z1k −Z) must be a constant matrix since it is regular everywhere
and D(z)−1(zJ(z)) = O(1) in the limit z → ∞. Similarly, by applying the decomposition (4.6)
to each column of D̃(z), we obtain the k by (N − n) matrix Ψ̃ as

D̃(z) = J(z)Ψ̃. (4.9)
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Note that D̃(z) has no term proportional to D(z) since D̃(z) satisfies the condition
D(z)−1D̃(z) = O(z−1) .

As we have seen, the set of matrices {Z,Ψ, Ψ̃} can be extracted from the moduli matrix
ξ(z) = (D(z), D̃(z)). However, {Z,Ψ, Ψ̃} is not unique for a given ξ(z) = (D(z), D̃(z)) due to
the degrees of freedom of the change of the basis {⃗ja(z)}. Thus, for a given ξ(z) = (D(z), D̃(z)),
we obtain a unique equivalence class of matrices defined by

{Z,Ψ, Ψ̃} ∼ {g−1Zg , Ψg , g−1Ψ̃} with g ∈ GL(k,C). (4.10)

We can show that this GL(k,C) action is free on the part of the data {Z,Ψ} obtained
from D(z); that is, for any infinitesimal GL(k,C) action δXZ = [Z,X], δXΨ = ΨX with
X ∈ gl(k,C),

δXZ = 0, δXΨ = 0 ⇒ X = 0. (4.11)

As shown in appendix C.2, this condition on the data is equivalent to the following statement
for a vector v⃗:

∀z ∈ C, Ψ(z1 − Z)−1v⃗ = 0 ⇒ v⃗ = 0. (4.12)

Since the relation (4.8) is rewritten as

Ψ(z1 − Z)−1 = D(z)−1J(z), (4.13)

the above GL(k,C)-free condition is satisfied when the k columns of J(z) are linearly indepen-
dent. Since this is true by construction, the infinitesimal action of GL(k,C) on {Z,Ψ} is free.

Through the half-ADHM mapping relations (4.3), we can show that there exists a one-
to-one map (see appendix C) between the moduli matrix (D(z), D̃(z)) and the half-ADHM
data {Z,Ψ, Ψ̃} in each coordinate patch given in eq. (3.24).16 Thus, we find that the moduli
space of BPS vortices turnes out to be given by

Mvtx
n,N−n
k

∼=
{

(D(z),D̃(z))
∣∣∣detD(z) = O(zk) ,D(z)−1D̃(z) = O(z−1))

}
/{V -transf. in eq. (3.34)} (4.14)

∼=
{

(Z,Ψ,Ψ̃)
∣∣∣{Z,Ψ} on which GL(k,C) action is free

}
/GL(k,C). (4.15)

Indeed, we can show that the matrices {Z,Ψ} have all the V (z) invariant information
contained in D(z) from the fact that all the invariants under the V -transformation consisting
of D(z) and J(z) can be expressed in terms of {Z,Ψ} as17

detD(z) = det(z1k − Z), and D(z)−1J(z) = Ψ(z1k − Z)−1. (4.16)

Note that the second relation obeys from (4.3) and the first one can be derived as follows.
By applying the decomposition (4.6) to each column of the unit matrix, we obtain

1n = D(z)PD + J(z)P J, (4.17)
16We can confirm that the number of the degrees of freedom of the equivalence class (4.10) coincides with

that of the moduli matrices #T a
b,m = #Z + #Ψ − #g = kn. See appendix C for more details.

17Although any minor determinants of the matrix (D(z), J(z)) are invariants, they are related to detD(z)
and D(z)−1J(z) through the Plücker relations.
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where PD and P J are n-by-n and k-by-n constant matrices, respectively. Since this equation is
not invariant under the V -transformation, P J and PD depend on the choice of the coordinate
patch.18 Using the half-ADHM mapping relation (4.3) and (4.17), one can show that(

D(z) J(z)
0 1k

)
=
(

1n 0
P J z1 − Z

)
N −1, with N ≡

(
PD −Ψ
P J z1 − Z

)
. (4.18)

By taking the determinant of the both sides and counting their degrees, we conclude this
polynomial det N is O(1), that is, det N = 1 when detD(z) is chosen to be a monic
polynomial. Thus we find that detD(z) = det(z1 − Z).

4.2 Quotient construction for general L

For the case of general L, we can define L copies of the matrices (and relations) defined
in the previous subsection by attaching an index i = 1, · · · , L. For example, we can define
Ni-by-ki matrix Ji(z) with polynomial entries by solving the condition

Di(z)−1Ji(z) = O(z−1). (4.19)

Then, we can obtain matrices {Zi,Ψi, Ψ̃i} from the Ni-by-N matrix ξi(z) = (Di(z), D̃i(z))
thought the realtions

Di(z)Ψi = Ji(z)(z1ki
− Zi), D̃i(z) = Ji(z)Ψ̃i, (4.20)

where {Zi,Ψi, Ψ̃i} are ki-by-ki, Ni-by-ki and ki-by-(N−Ni) matrices, respectively. Conversely,
from a given set of constant matrices {Zi,Ψi, Ψ̃i|1 ≤ i ≤ L}, we can obtain the matrices
{ξi(z)|1 ≤ i ≤ L} up to V -transformations. However, such matrices {ξi(z)} do not necessarily
satisfy the constraint that there must be everywhere non-singular Ni-by-Ni+1 matrices qi(z)
such that

qi(z)ξi+1(z) = ξi(z). (4.21)

To guarantee that these constraints are satisfied, the matrices {Zi,Ψi, Ψ̃i} must satisfy some
constraints. To write down the constraints, let us decompose the matrices Ψi and Ψ̃i as

Ψi+1 =
(

Υ′
i+1

Υi+1

)
, Ψ̃i = (Υ̃i, Υ̃′

i), (4.22)

where Υ′
i+1 is an Ni-by-ki+1 matrix, Υi+1 is an ni+1-by-ki+1 matrix, Υ̃i is a ki-by-(Ni+1 −Ni)

matrix and Υ̃′
i is a ki-by-(N −Ni+1) matrix. Then, the relation (4.21) can be rewritten as

Υ̃′
i = Wi Ψ̃i+1, (4.23)

Υ′
i+1 = ΨiWi, (4.24)

Υ̃iΥi+1 = ZiWi −WiZi+1, (4.25)
18For the (l1, l2, · · · , ln) patch in eq. (3.36) and eq. (3.38), these matrices can be easily obtained as

(PD)a
b = δa

b δla
0 , (P J)(a,p)

b = δa
b (1 − δla

0 )δp
la

,

which are independent of any moduli parameters in D(z).
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where Wi is a ki-by-ki+1 matrix such that

qi(z)Ji+1(z) = Ji(z)Wi. (4.26)

The constraints (4.23)–(4.25) can be derived as follows.

Constraints on half-ADHM data. Let us first show the half-ADHM data {Zi,Ψi, Ψ̃i} ob-
tained through (4.20) satisfy (4.23)–(4.25). Then, we show that the matrices {ξi(z)} obtained
from the half-ADHM data obeying the constraints (4.23)–(4.25) satisfy the relation (4.21)
with suitable matrices qi(z).

(4.21) to (4.23)–(4.25). We can rewrite the relation (4.21) for the matrices ξi(z) =
(Di(z), D̃i(z)) = (Di(z), Ji(z)Ψ̃i) as

qi(z)Di+1(z) =
(
Di(z), Ji(z)Υ̃i

)
, (4.27)

qi(z)Ji+1(z)Ψ̃i+1 = Ji(z)Υ̃′
i. (4.28)

It follows from the first equation that Di(z)−1 [qi(z)Ji+1(z)] = O(z−1) and hence there exist
a ki-by-ki+1 matrix Wi such that19

qi(z)Ji+1(z) = Ji(z)Wi. (4.29)

Then, by substituting this relation into (4.28) we find that (4.23) is satsified

Ji(z)Wi Ψ̃i+1 = Ji(z)Υ̃′
i ⇐⇒ Υ̃′

i = Wi Ψ̃i+1, (4.30)

where we have used the fact that the columns of Ji(z) are linearly independent. We can see
that (4.24) and (4.25) are satisfied as follows. By multiplying the both sides of eq. (4.27)
by Ψi+1 = (Υ′

i+1,Υi+1)T from the right, we obtain

qi(z)Di+1(z)Ψi+1 = Di(z)Υ′
i+1 + Ji(z)Υ̃iΥi+1. (4.31)

The left hand side can be rewritten by using the half-ADHM mapping relation and (4.29) as

qiDi+1Ψi+1 = qiJi+1(z1ki+1 −Zi+1) = JiWi(z1ki+1 −Zi+1) = DiΨiWi + Ji(ZiWi −WiZi+1).
(4.32)

Comparing this with the right hand side of (4.31) and using the linear independence of
(Di(z), Ji(z)), we find that (4.24) and (4.25) are satisfied.

19Since

D−1
i (qiJi+1) = D−1

i (qiDi+1)
(
D−1

i+1Ji+1
)

=
(

1Ni , D−1
i JiΥ̃i

)(
D−1

i+1Ji+1
)

= O(z−1),

the columns of the matrix qi(z)Ji+1(z) can be written as linear combinations of the columns of Ji(z), and
hence there exist a matrix Wi such that qi(z)Ji+1(z) = Ji(z)Wi.
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(4.23)–(4.25) to (4.21). Next, let us show that if the half-ADHM data satisfies the con-
straints (4.23)–(4.25), the corresponding ξi(z) related through (4.20) satisfy the relation (4.21)
(or equivalently (4.27) and (4.28)), with suitable matrices qi(z). Although formally the
condition (4.27) is always satisfied by adopting qi(z) = (Di(z), Ji(z)Υ̃′

i)Di+1(z)−1, such
matrices qi(z) may not be suitable since they can have some poles. We can show that
qi(z) = (Di(z), Ji(z)Υ̃′

i)Di+1(z)−1 do not have any pole if (4.23)–(4.25) are satisfied. To
show this, let us rewrite D−1

i+1 as

D−1
i+1 = PD

i+1 + D−1
i+1Ji+1P

J
i+1 = PD

i+1 + Ψi+1(z1ki+1 − Zi+1)−1P J
i+1, (4.33)

where PD
i+1 and P J

i+1 are matrices defined by 1Ni+1 = Di+1(z)PD
i+1 + Ji+1(z)P J

i+1. Then,
qi = (Di, JiΥ̃′

i)D−1
i+1 can be rewritten as

qi(z) = (Di, JiΥ̃i)D−1
i+1 = (Di, JiΥ̃i)PD

i+1+(Di, JiΥ̃i)Ψi+1(z1ki+1 −Zi+1)−1P J
i+1. (4.34)

Obviously the first term has no pole and the regularity of the second term can be shown
by rewriting

(Di, JiΥ̃i)Ψi+1(z1ki+1 −Zi+1)−1 = (DiΥ′
i+1+JiΥ̃iΥi+1)(z1ki+1 −Zi+1)−1

= (DiΨiWi+Ji(ZiWi−WiZi+1))(z1ki+1 −Zi+1)−1 = JiWi.

(4.35)

Since this has no pole, qi(z) = (Di, JiΥ̃i)PD
i+1 + JiWiP

J
i+1 is regular and hence (4.27) is

satisfied. Then we can show that (4.28) is also satisfied as

qiJi+1Ψ̃i+1 = qiDi+1D
−1
i+1Ji+1Ψ̃i+1 = (Di,JiΥ̃i)Ψi+1(z1ki+1 −Zi+1)−1Ψ̃i+1 = JiWiΨ̃i+1 = JiΥ̃′

i.

(4.36)
Thus, we find that no further constraints other than (4.23)–(4.25) is needed on a data
set {Zi, Υi, Υ̃i, Wi} to guarantee that qi(z) obtained through the half-ADHM mapping
relation (4.20) satisfy the relation (4.21).

The constraints (4.23) and (4.24) imply that Υ′
i and Υ̃′

i are not independent but can
be rewritten in terms of {Wi,Υi, Υ̃i} as

Ψi =
(
Ψi−1Wi−1 , Υi

)T
=
(
Υ1W1W2 · · ·Wi−1 , Υ2W2 · · ·Wi−1 , · · · , Υi−1Wi−1 , Υi

)T
,

(4.37)

Ψ̃i =
(
Υ̃i , WiΨ̃i+1

)
=
(
Υ̃i , WiΥ̃i+1 , WiWi+1Υ̃i+2 , · · · , WiWi+1 · · ·WL−1Υ̃L

)
,

(4.38)

with Υ1 ≡ Ψ1 and Υ̃L ≡ Ψ̃L. Therefore, all information describing vortex moduli are contained
in the set of matrices {Zi,Υi, Υ̃i|1 ≤ i ≤ L} and {Wi|1 ≤ i ≤ L− 1} obeying the constraints

ZiWi −WiZi+1 = Υ̃iΥi+1 for 1 ≤ i ≤ L− 1. (4.39)

Since qi(z) related to {Zi, Υi, Υ̃i, Wi} though the half-ADHM mapping relation do not
change under the GL(k1,C) × · · · × GL(kL,C) transformation

{Zi, Υi, Υ̃i, Wi} ≃ {U−1
i ZiUi, ΥiUi, U−1

i Υ̃i, U−1
i WiUi+1} with ∀ Ui ∈ GL(ki,C), (4.40)
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n1

Υ1 Υ2Υ̃1 Υ̃2
W1

W̃1

Z1 Z2

nL−1

ΥL−1 ΥLΥ̃L−1 Υ̃L
WL−1

W̃L−1

ZL−1 ZL

n2 n3

k1 k2 kLkL−1⋯

nL nL+1

Figure 3. Quiver diagram for vortex moduli. Here W̃i represent Lagrange multipliers for the
constraint (4.39), which will be explained in the next section.

the quotient space of the data {Zi, Υi, Υ̃i, Wi} by GL(k1,C) × · · · × GL(kL,C) can be
identified with the vortex moduli space. Note that the action of GL(k1,C) × · · · × GL(kL,C)
must be free on Ψi, Zi, that is,

∃ki-column vector v⃗i : ΥjWjWj+1 · · ·Wi−1(z1ki
−Zi)−1v⃗i = 0 for 1 ≤ ∀j≤ i, ∀z ∈C ⇒ v⃗i = 0.

(4.41)
Note that this set of conditions is a generalization of the condition (4.12) for L = 1.

In summary, the moduli space of vortices turns out to be given by the quotient

Mvtx
n1,n2,...,nL+1
k1,k2,··· ,kL

={
Zi,Υi, Υ̃i, Wj

∣∣∣constraints(4.39), condition(4.41)
}
/GL(k1,C)×·· ·×GL(kL,C).

(4.42)

The contents of this quotient are summarized in the quiver diagram figure 3 and the corre-
sponding gauged linear sigma model can also be obtained from the D-brane configuration
for BPS vortices (see appendix F).

In appendix G, we prove that all possible singularities due to the constraints (4.39) is
removed by the condition (4.41) and the moduli space defined above is smooth everywhere.

4.2.1 An example of L = 2: SU(3)/U(1)2 sigma model

Here, we illustrate the moduli space of vortices in the gauged linear sigma model corresponding
to the SU(3)/U(1)2 sigma model (L = 2, N1 = 1, N2 = 2, N3 = 3, n1 = n2 = n3 = 1). The
model is the U(1) × U(2) gauge theory with an SU(3)F flavor symmetry. The matter content
consists of two scalar fields Q1 and Q2 in the (1, 2̄,0) and (0,2, 3̄) of the U(1) × U(2) ×
SU(3)F symmetry, respectively. The topological sectors are labeled by two integers (k1, k2)
corresponding to the vortex numbers of U(1) × U(2) gauge group.

Two coordinate patches in (k1, k2) = (1, 1) case. First, let us consider the case of
(k1, k2) = (1, 1). As we have seen in subsection 3.3, there are two coordinate patches:

• (1, 0)-patch : ξ1(z) = (z − a′, c′, c), ξ2(z) =
(
z − a 0 c

−b 1 0

)
, (4.43)

• (0, 1)-patch : ξ1(z) = (z − a′, c′, c), ξ2(z) =
(

1 −b̃ 0
0 z − a c̃

)
, (4.44)
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where the parameters are realted as

b = b̃−1, c′ = b̃(a′ − a), c = b̃c̃. (4.45)

We can move from the (1, 0)-patch to the (0, 1)-patch by using the V -transformation ξi →
Viξi with

V1 = 1, V2 =
(

0 −b̃
b z − a

)
. (4.46)

• (1, 0)-patch. From the definition ξi = (Di, D̃i) and (4.43), we find that the matrices
Di and D̃i are givenby

D1 = z − a′, D̃1 = (c′, c), D2 =
(
z − a 0
−b 1

)
, D̃2 =

(
c

0

)
. (4.47)

From these matrices, the corresponding half-ADHM data can be read off as

D−1
i Ji = O(z−1) → J1 = 1, J2 = (1, 0)T (4.48)

DiΨi = Ji(z − Zi) → Z1 = a′, Z2 = a, Ψ1 = 1, Ψ2 = (1, b)T ,
(4.49)

D̃i = JiΨ̃i → Ψ̃1 = (c′, c), Ψ̃2 = c, (4.50)
Ψi = (Υ′

i,Υi)T → Υ1 = 1, Υ2 = b, (4.51)
Ψ̃i = (Υ̃i, Υ̃′

i) → Υ̃1 = c′, Υ̃2 = c, (4.52)
Υ̃1Υ2 = Z1W1 −W1Z2 → W1 = 1. (4.53)

• (0, 1)-patch. From the definition ξi = (Di, D̃i) and (4.44), we find that the matrices
Di and D̃i are given by

D1 = z − a′, D̃1 = (c′, c), D2 =
(

1 −b̃
0 z − ã

)
, D̃2 =

(
0
c̃

)
. (4.54)

From these matrices, the corresponding half-ADHM data can be read off as

D−1
i Ji = O(z−1) → J1 = 1, J2 = (0, 1)T (4.55)

DiΨi = Ji(z − Zi) → Z1 = a′, Z2 = a, Ψ1 = 1, Ψ2 = (b̃, 1)T ,
(4.56)

D̃i = JiΨ̃i → Ψ̃1 = (c′, c), Ψ̃2 = c̃, (4.57)
Ψi = (Υ′

i,Υi)T → Υ1 = 1, Υ2 = 1, (4.58)
Ψ̃i = (Υ̃i, Υ̃′

i) → Υ̃1 = c′, Υ̃2 = c̃, (4.59)
Υ̃1Υ2 = Z1W1 −W1Z2 → W1 = b̃. (4.60)

The coordinate transformation from the (1, 0)-patch to (0, 1)-patch is given by a group
element (g1, g2) ∈ GL(1,C) × GL(1,C)

Υi → Υigi, Υ̃i → g−1
i Υ̃i, with g1 = 1, g2 = b̃. (4.61)

In appendix E, the half-ADHM data obtained by embedding from the L = 1 case is
discussed as another example.
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4.3 Coordinate patches on moduli space

In this section, we discuss the coordinate patches of the moduli space of the half-ADHM data.
To define an analogue of the (l1, · · · , lk)-patch for the L = 1 case, we first discuss the fixed
point of a torus action that plays the role of the “origin” in each coordinate patch.

4.3.1 Torus action and fixed points on vortex moduli space

The torus action we discuss here is a combination of an Abelian subgroup of the flavor
symmetry and the spatial rotation (see appendix H for the details of the torus action). Its
fixed point configurations can be viewed as the BPS vortex solutions in the presence of the
omega background and the mass deformation. Such configurations must satisfy the following
conditions in addition to the vortex equations (3.8) and (3.9)

iϵ(zDz − z̄Dz̄)Qi + ΣiQi −QiΣi+1 = 0, with ΣL+1 = −M, (4.62)

where Σi (i = 1, · · · , L) are SU(Ni) adjoint scalar fields,20 ϵ is the omega deformation
parameter and M = diag(m1, · · · ,mN ) is the mass matrix. A configuration satisfying (4.62)
is invariant under the infinitesimal spatial rotation and flavor rotation up to an infinitesimal
gauge transformation Σi. For such a fixed point configuration, the magnetic fluxes take
the diagonal forms

1
2π

∫
Fi = block-diag(l(i,1), · · · , l(i,i)) =

 l(i,1)

. . .

l(i,i)

 with l(i,j) =

l(i,j,1)

. . .

l(i,j,nj)

,
(4.63)

where l(i,j) denotes the nj-by-nj diagonal block of the SU(Ni) magnetic flux of the i-th gauge
group. The labels (i, j) and (i, j, α) (i = 1, · · · , L, j = 1, · · · , i, α = 1, · · · , nj) specify the
following subgroup of the gauge group:

• (i, j) : j-th U(nj) subgroup of i-th gauge group U(Ni) ⊃ U(n1) × · · · × U(ni).

• (i, j, α) : α-th Cartan subgroup U(1) of j-th U(nj) subgroup of i-th gauge group U(Ni).

The magnetic fluxes l(i,j,α) are also related to winding numbers of the scalar fields

qi =


zν(i,1) 0 · · · 0

. . .
...
. . .

...

zν(i,i) 0 · · · 0

 with ν(i,j) ≡ l(i,j) − l(i+1,j), (4.64)

where ν(i,j) are diagonal matrices of winding numbers. We can confirm that qi(z) is invariant
under the torus action (the Cartan part of the spatial rotation and the flavor rotation)
up to V -transformations

qi(z) = Vi qi(eiϵz)V −1
i+1, Vi = exp(iΣi), VL+1(z) = exp(−iM). (4.65)

20In 2d N = (2, 2) supersymmetric models, Σi can be interpreted as the adjoint scalar fileds in the vector
multiplets and become auxiliary fields in the nonlinear sigma model limit.

– 36 –



J
H
E
P
0
2
(
2
0
2
4
)
2
3
0

l(2,α)2 = 5
l(2,α)3 = 4
l(2,α)4 = 2
l(2,α)5 = 2

Y(2,α) =

Figure 4. An example of Young tabuleax.

The element of the V -transformations are specified by the fixed point values of the adjoint
scalar Σi, which take the forms

Σi = block-diag(σ(i,1), · · · ,σ(i,i)), σ(i,j) = diag(σ(i,j,1), · · · , σ(i,j,nj)), (4.66)

with the eigenvalues

σ(i,j,α) = −m(j,α) − l(i,j,α)ϵ, (4.67)

where we have labeled the eigenvalues of the mass matrix as

ΣL+1 =M = block-diag(m1, · · · ,mL+1), mj = diag(m(j,1), · · · ,m(j,ni)). (4.68)

Since the winding numbers ν(i,j) ≡ l(i,j) − l(i+1,j) of the scalar fields qi must be non-negative
integers, the magnetic fluxes must satisfy l(i,j,α) ≥ l(i+1,j,α). Therefore, the fixed points are
classified by a set of N Young tableaux Y (j,α) where α = 1, · · · , nj for each j = 1, · · · , L.
The height of Y (j,α) is L− j + 1 and we denote the length of i-th row as l(i+j−1,j,α), i.e.

Y (j,α) =
(
l(j,j,α), l(j+1,j,α), · · · , l(L,j,α)

)
, l(j,j,α) ≥ l(j+1,j,α) ≥ ·· · ≥ l(L,j,α) ≥ 0. (4.69)

See figure 4 for an example.

Half-ADHM data at fixed points. We can show that the invariant vortex data corre-
sponding to the Young tableaux Y (j,α) take the form

Di = block-diag(D(i,1), · · · ,D(i,i)) with D(i,j) = diag(zl(i,j,1)
, · · · ,zl

(i,j,nj )
), and D̃i = 0.

(4.70)
This implies that each diagonal component of D(i,j) represents axially symmetric Abelian
vortices with flux l

(j,α)
i and hence all the half-ADHM data can be obtained by embedding
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those of Abelian vortices. For an axially symmetric Abelian vortex configuration D = zl, the
vortex data satisfying DΨ = J(z1l − Z) are given by (see section C.1)

J(l) = (zl−1 , zl−2 , · · · , 1), Ψ(l) = (1 , 0 , · · · , 0), Z(l) =


0 1
...

. . .
0 1
0 0 · · · 0


 l.
(4.71)

By embedding these matrices, we can construct the matrices satisfying DiΨi = Ji(z1ki
−Zi) as

Ji = block-diag(J(i,1), · · · ,J(i,i)), Ψi = block-diag(Ψ(i,1), · · · ,Ψ(i,i)), Zi = block-diag(Z(i,1), · · · ,Z(i,i)),
(4.72)

with

J(i,j) = block-diag
(
J(l(i,j,1)), · · · ,J(l(i,j,nj))

)
, Ψ(i,j) = block-diag

(
Ψ(l(i,j,1)), · · · ,Ψ(l(i,j,nj))

)
, (4.73)

Z(i,j) = block-diag
(
Z(l(i,j,1)), · · · ,Z(l(i,j,nj))

)
. (4.74)

Note that Ψ̃i = 0 since D̃i = 0 for the fixed point configurations. The matrices Υi and Υ̃i

defined in (4.22) can be extracted from Ψi and Ψ̃i as

Υi =
(

0ni,ki−1Ψ(i,i)
)
, Υ̃i = 0. (4.75)

The matrix Wi can be determined by solving the constraint ZiWi −WiZi+1 = Υ̃iΥi+1 as

Wi =

W (i,1) 0 · · · 0
. . .

...
. . .

...

W (i,i) 0 · · · 0

, W (i,j) =

W
(
l(i,j,1), l(i+1,j,1))

. . .

W
(
l(i,j,nj), l(i+1,j,nj))

,
(4.76)

where W (l, l′) is the matrix satisfying Z(l)W (l, l′) −W (l, l′)Z(l′) = 0, which takes the form

W (l, l′) =
(

1l′
0l−l′,l′

)
. (4.77)

Note that these half-ADHM data for the fixed points can also be obtained by solving the
fixed point condition for the half-ADHM data. We can check these matrices are invariant
under the torus action on the half-ADHM data (see appendix H.2).

4.3.2 Coordinates around fixed points

The coordinate patches around the fixed points discussed above can be obtained by considering
fluctuations around the fixed point, eliminating the GL(k1,C)×· · ·×GL(kL,C) gauge degrees
of freedom and imposing the constraints (4.39). After fixing the GL(ki,C) transformations,
we find the following non-zero components of the fluctuations

(δΥi)α(i,j,β,p) for α ∈ {α | l(i,i,α) = 0} (δΥ̃i)(i,j,α,p)
(i+1,β) (4.78)

(δZi)(i,j,α,p)
(i,k,β,q) with p = l(i,j,α), (δWi)(i,j,α,p)

(i+1,k,β,q) for 2 ≤ p ≤ l(i,j,α).

(4.79)
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Not all of these fluctuations independent since they are subject to the constraints (4.39).
The total number of the components of (4.39) is given by

dc =
L−1∑
i=1

kiki+1. (4.80)

In appendix G we show that all components of the constraints (4.39) are linearly independent
of each other for all points satisfying the condition (4.41). Fixing dc degrees of freedom by
solving the constraints (4.39), we can obtain the coordinates of the moduli space around this
fixed point. We can show that in the vicinity of the fixed point the linearized constraint can
be solved without any singularity and hence a smooth coordinate patch can be constructed
around each fixed point. We can check that the complex dimension of the moduli space
of vortices is given by

dimC Mvtx
n1,n2,...,nL+1
k1,k2,··· ,kL

=
L∑
i=1

(#Υi + #Υ̃i + #Zi − #GL(ki,C)) +
L−1∑
i=1

(#Wi − #W̃i)

=
L∑
i=1

(niki + kini+1 + k2
i − k2

i ) +
L−1∑
i=1

(kiki+1 − ki+1ki)

=
L∑
i=1

ki(ni + ni+1), (4.81)

which agrees with a result given by the index theorem (3.26).

Solutions of the constraints for separated vortices
Here we discuss solutions of the constraints (4.39). For a generic point on the moduli

space, we can easily construct a solution in the following way. Let us consider the case
of separated vortices given by

zi,α ̸= zi,β for α ̸=β with det(z1ki
−Zi) =

ki∏
α=1

(z−zi,α) for 1 ≤ i≤L. (4.82)

In this case, the square matrices {Zi | 1 ≤ i ≤ L} can be diagonalized as (Zi)αβ = δαβ zi,α.
In addition, if we assume that

zi,α ̸= zi+1,β for 1 ≤ α ≤ ki, 1 ≤ β ≤ ki+1 and 1 ≤ i ≤ L− 1, (4.83)

we find the constraints are solved with respect to {Wi} as

(Wi)αβ = (Υ̃iΥi+1)αβ
zi,α − zi+1,β

. (4.84)

This result implies that all the components of the constraints (4.39) are independent and
each of them has a solution.
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4.4 Metric on the moduli space and Kähler quotient

As we have seen that the vortex modui space is given by the GL(k1,C) × · · · × GL(kL,C)
quotient (4.42) of the matrices (Zi,Υi, Υ̃i,Wi) as a complex manifold. One may think that
it is also possible to consider the corresponding U(k1) × · · · × U(kL) Kähler quotient by
introducing an appropriate Kähler potential on the space of the matrices (Zi,Υi, Υ̃i,Wi).
A natural choice of the Kähler potential would be

K =
L∑
i=1

Tr
[
ZiZ

†
i + Υ†

iΥi + Υ̃iΥ̃†
i +WiW

†
i

]
, (4.85)

which gives a flat metric on the linear space of the matrices. In addition, we need to
impose the constraint (4.39). Following the standard procedure of the Kähler quotient
construction, one can obtain a Kähler potential and metric on the moduli space. However,
the Käher metric obtained in this way does not agree with the correct metric, shown in
appendix B.4, that describes the classical dynamics of the vortices. Nonetheless, the 2d
N = (2, 2) U(k1) × · · · × U(kL) gauge theory constructed based on the above Kähler potential
K and the constraint (4.39) captures some quantum aspects of the original U(N1)×· · ·×U(NL)
quiver gauge theory. In section 6, we compute the vortex partition function from the viewpoint
of the quotient construction as an example of the quantities that do not depend on the
detail of the Kähler potential.

5 Sigma model instantons and duality

In this section, we discuss the sigma model solutions in the flag manifold sigma model. We
check that the duality of the sigma model (2.65) defined by the relation (2.60) holds even on
the moduli space of sigma model instantons, except for the instanton singularities.

5.1 Grassmannian case: L = 1

In the Grassmannian case (L = 1), the inhomogeneous coordinates ϕ is an n-by-(N − n)
matrix related to ξ = (D, D̃) as φ = D−1D̃. Using the half-ADHM mapping relation eq. (4.3),
we can show that the sigma model instanon solution φ(z) corresponding to the half-ADHM
data {Z,Ψ, Ψ̃} can be written as

φ(z) = Ψ(z1k − Z)−1Ψ̃. (5.1)

For separated vortices, the marix Z can be diagonalized as (Z)αβ = δαβ zα with zα ̸= zβ (α ̸=
β) and hence the instanton solution takes the form

(φ(z))ab =
k∑

α=1

(Ψ)aα(Ψ̃)αb
z − zα

. (5.2)

The column vectors (Ψ)aα and row vectors (Ψ̃)αb for each α are respectively called the
orientational moduli and size moduli of the vortex sitting at z = zα. Here we have partially
fixed the GL(k,C) redundancy by diagonalizing the k-by-k matrix Z. The remnant group
which does not change the form of Z is (U(1)C)k ⊂ GL(k,C) and each U(1)C ∼= C∗ acts on the
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orientational moduli Ψa
α. Due to the condition that the GL(k,C) action is free, Ψa

α cannot
be a zero column vector for each α and hence the orientational moduli space of each vortex
described by Ψa

α is a CPn−1 = (Cn\{0})/ ∼. On the contrary, the “size” moduli Ψ̃a
α can be

a zero vector, which corresponds to a local vortex when the gauge coupling constant is finite.
As shown in eq. (3.28) in appendix D.2, the condition that all vortices are of semi-local

type can be rewritten in terms of the half-ADHM data as

∃ v⃗ ∈ Ck (row vector) s.t. v⃗ (z1k − Z)−1Ψ̃ = 0 for ∀z ∈ C ⇒ v⃗ = 0. (5.3)

This condition requires that the GL(k,C) acts freely not only on {Z,Ψ}, but also on
{Z, Ψ̃}. On the other hand, we can uniquely determine the half-ADHM data satisfying (5.3)
corresponding to any given sigma model instanton solution (See appendix D.3). Therefore
the moduli space of instanton solutions Minst are written in terms of the half-ADHM data as

Minst ≡
{

(Z,Ψ, Ψ̃)
∣∣ GL(k,C) actions on {Z,Ψ}, {Z, Ψ̃} are free

}
/GL(k,C). (5.4)

This is a subspace of the total vortex moduli space Mvortex, for which the GL(k,C) free
condition is imposed only {Z,Ψ}

Mvortex ≡
{

(Z,Ψ, Ψ̃)
∣∣ GL(k,C) action on {Z,Ψ} is free

}
/GL(k,C). (5.5)

Note that, as we have discussed, there is a correspondence between sigma model instanton
solutions in the dual pair of theories. The half-ADHM data {Zdual,Ψdual, Ψ̃dual} describing
the dual sigma model instanton is given by

{Zdual,Ψdual, Ψ̃dual} = {ZT, Ψ̃T,−ΨT}, (5.6)

up to GL(k,C) transformations. We can read off this relation from the duality transformation
Udual = RUT−1R† (see eq. (2.64)), which maps a solution φ(z) to a dual solution φdual(z) as

φdual(z) = −φ(z)T = −Ψ̃T(z1k − ZT)−1ΨT. (5.7)

The total moduli space of the dual vorties are given by

Mdual
vortex =

{
(Zdual,Ψdual, Ψ̃dual)

∣∣ GL(k,C) action on {Zdual,Ψdual} is free
}
/GL(k,C).

(5.8)
Here the GL(k,C)-free condition on {Zdual,Ψdual} is nothing but the condition (5.3) through
the relation (5.6). Therefore Minst is given as an intersection of the original vortex moduli
space and the dual one as

Minst = Mvortex ∩ Mdual
vortex. (5.9)

5.2 General L

For general L, a well-defined sigma model instanton solution is given if and only if

∀z : det ξi(z)ξi(z)† ̸= 0, i = 1, 2, · · · , L. (5.10)

Repeating the discussion in the case of L = 1, we can show that the above condition for
each i is equivalent to the following two conditions on {Zi,Ψi, Ψ̃i}
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1. GL(ki,C) action is free on {Zi,Ψi},

2. GL(ki,C) action is free on {Zi, Ψ̃i}.

From the viewpoint of the original gauge theory, the first condition comes from the definition
of the vortex moduli space and the second condition is imposed to avoid small-instanton
singularities. On the other hand, from the viewpoint of the dual gauge theory characterized
by (2.65), the roles of the above two conditions are interchanged.

For general L, a solution is written in terms of ni-by-nj matrices φij(z) (1 ≤ i < j ≤ L+1)
whose entries are inhomogeneous coordinates (2.18) of GC/Ĥ

G = G(φij) ≡



1n1 φ12 φ13 · · · φ1,L+1
0 1n2 φ23

0 0
. . .

. . .
...

...
. . . 1nL φL,L+1

0 · · · 0 1nL+1


. (5.11)

For a given half-ADHM data {Zi,Υi, Υ̃i, Wj}, the corresponding φij(z) are given by

φij(z) = Υi (z1 − Zi)−1WiWi+1 · · ·Wj−2Υ̃j−1 for i < j. (5.12)

This can be shown as follows. The matrices φij(z) (i = i + 1, · · · , L + 1) are contained
in ξi = ξpi G

ξi =
(

1Ni−1 Ai Ãi

0 1ni Bi

)
∼
(

1Nl
0 Ãi − AiBi

0 1ni+1 Bi

)
with Bi = (φi,i+1, φi,i+2, · · · , φi,L+1).

(5.13)
It follows from ξi ∼ (1Ni+1 ,D

−1
i Di) = (1Ni+1 ,Ψi(z1 − Zi)−1Ψ̃i) that(

Ãi − AiBi
Bi

)
=
(

Ψi−1Wi−1(z1 − Zi)−1Ψ̃i

Υi(z1 − Zi)−1Ψ̃i

)
. (5.14)

From the lower blocks of the both hand sides, we find that

Bi = Υi(z1 − Zi)−1Ψ̃i =
(
Υi(z1 − Zi)−1Υ̃i , · · · , Υi(z1 − Zi)−1WiWi+1 · · ·WL−1Υ̃L

)
.

(5.15)
This indicates the relation (5.12).21

21One can check the equation for the upper blocks is also satisfied. Since ξi−1 = pi−1ξi ∼ (1Ni−1 , Ai, Ãi) =
(1Ni−1 ,D−1

i−1D̃i−1) = (1Ni−1 , Ψi−1(z1 − Zi−1)−1Ψ̃i−1), one finds that

Ai = Ψi−1(z1 − Zi−1)−1Υ̃i−1, Ãi = Ψi−1(z1 − Zi−1)−1Wi−1Ψ̃i.

Then, one can show that

Ãi − AiBi = Ãi − Ψi−1(z1 − Zi−1)−1Υ̃i−1Υi(z1 − Zi)−1Ψ̃i

= Ãi − Ψi−1(z1 − Zi−1)−1(Zi−1Wi−1 − Wi−1Zi)(z1 − Zi)−1Ψ̃i = Ψi−1Wi−1(z1 − Zi)−1Ψ̃i.
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Next, let us discuss how the half-ADHM data transform under the duality transformation.
For given half-ADHM data {Zi,Υi, Υ̃i,Wi} which give a non-singular lump solution, there
exist data {Zdual

i ,Υdual
i , Υ̃dual

i ,W dual
i } in the dual theory which give the same lump solution.

They are related as

{Zdual
i , Υdual

i , Υ̃dual
i , W dual

j } = {ZT
L+1−i, Υ̃T

L+1−i, −ΥT
L+1−i, W

T
L−j}. (5.16)

This relation can be shown as follows. As shown in (2.60), for the matrix G ∈ GC in (5.11),
the corresponding matrix Gdual in the dual theory is given by

Gdual = R(G−1)TR† ∈ GC with R =


0 · · · 0 1nL+1
... . .

.
. .
.

0

0 1n2 . .
. ...

1n1 0 · · · 0

 ∈ U(N). (5.17)

One can check that the inverse of G = G(φij(z)) takes the form G(φinv
ij (z)) with

φinv
ij (z) = −ΥiWiWi+1 · · ·Wj−2 (z1 − Zj−1)−1 Υ̃j−1 for i < j. (5.18)

Here, one can confirm G(φij(z))G(φinv
ij (z)) = 1 by using the following identity

j−1∑
k=i+1

φik(z)φinv
kj (z)

= −
j−1∑
k=i+1

Υi (z1−Zi)−1Wi · · ·Wk−2Υ̃k−1ΥkWk · · ·Wj−2 (z1−Zj−1)−1 Υ̃j−1

= −
j−1∑
k=i+1

Υi (z1−Zi)−1Wi · · ·Wk−1 (z1−Zk)Wk · · ·Wj−2 (z1−Zj−1)−1 Υ̃j−1

+
j−1∑
k=i+1

Υi (z1−Zi)−1Wi · · ·Wk−2 (z1−Zk−1)Wk−1 · · ·Wj−2 (z1−Zj−1)−1 Υ̃j−1

= −Υi (z1−Zi)−1Wi · · ·Wj−2Υ̃j−1+ΥiWi · · ·Wj−2 (z1−Zj−1)−1 Υ̃j−1

= −φij(z)−φinv
ij (z). (5.19)

By substituting the inverse G(φinv
ij (z)) into eq. (5.17), we find that Gdual takes the form

G(φdual
ij (z)) with

φdual
ij (z) = −Υ̃T

L+1−i(z1 − ZT
L+1−i)−1WT

L−i · · ·WT
L+1−jΥT

L+2−j , (5.20)

from which we can read the duality transformation

{Zi, Υi, Υ̃i, Wj} 7→ {Zdual
i , Υdual

i , Υ̃dual
i , W dual

j }. (5.21)

Note that the GL(ki,C) free condition on Zi, Ψ̃i for each i

∃ki-column vector v⃗ : Υ̃T
j W

T
j−1W

T
j−2 · · ·WT

i (z1ki
−ZT

i )−1v⃗= 0 for i≤ ∀j≤L, ∀z ∈C ⇒ v⃗= 0,
(5.22)
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is equivalent to the GL(ki,C) free condition on Zdual
L+1−i,Ψdual

L+1−i. By denoting the condi-
tions (4.41) and (5.22) by Ci and C̃i, respectively, the condition for lump configuration without
any small-lump singularity can be written as∧

i

(
Ci ∧ C̃i

)
=
(∧

i

Ci

)
∧
(∧

i

C̃i

)
(5.23)

and thus the moduli space for lump configurations is obtained as

Mlump
n1,n2,...,nL+1
k1,k2,··· ,kL

= Mvtx
n1,n2,...,nL+1
k1,k2,··· ,kL

∩ Mvtx
nL+1,...,n2,n1
kL,··· ,k2,k1

. (5.24)

6 Vortex partition function from Kähler quotient

6.1 Vortex effective action

In this section, we consider the vortex partition functions in the quiver GLσMs. In the
L = 1 case, the vortex partition functions have been calculated from the viewpoint of the
half-ADHM formalism in [81, 82]. As an application of the half-ADHM formalism for general
L, we compute the vortex partition function and check the duality between GLσMs [83]
as was done in [84] for the L = 1 case.

In three dimensions, the dynamics of vortices can be described by the quantum mechanical
GLσM specified by the quiver diagram (2.28). Let us introduce chemical potentials for the
conserved charges in the vortex effective theory

ZhADHM-QM(ma, ϵ, µf ) = Tr
[
e−β(H+imaqa+iϵJ+iµfF )

]
, (6.1)

where qa (a = 1, · · · , N) are the Cartan part of the flavor charge, J is the angular momentum
operator, F is the Fermion number operator and (ma, ϵ, µf ) are the (imaginary) chemical
potentials for the corresponding charges. It is well known that Z at µf = π/β, which we
consider in the floowing, is exactly calculable through the supersymmetric localization method.
Although it is possible to calculate Z in three dimensions, for simplicity, we focus on the
2d limit β → 0 in the following.

The vortex effective theory in the 2d quiver GLσM is described by the 0d half-ADHM
GLσM specified by the quiver diagram figure 3. Using its action Seff , we can write down
the integral expression for the 2d limit of the partition function (6.1)

Zn1,n2,··· ,nL+1
k1,k2,··· ,kL

= e−
∑L

i=1 2πriki

∫
dµ exp (−Seff) , (6.2)

where dµ stands for the measure for all the degrees of freedom of the 0d half-ADHM GLσM.
Let us focus on the case in which the original model has 2d N = (2, 2) supersymmetry.

Since the vortices preserve the half of supersymmetry, the effective theory possesses two (real)
supercharges. The supermultiplets in the vortex effective theory are chiral multiplets (φI , ψI)
whose scalar components are φI ∈ (Zi,Υi, Υ̃i,Wi), U(ki) × U(ki+1) anti-bifundamental Fermi
multiplets (ψ̃i, W̃i) and U(ki) adjoint gauge multiplets (Φi, λi, Di). Their supersymmetry
transformations are given by

δφI = εψI , δψ̃i = εW̃i, δΦi = δDi = 0, δλi = εDi (6.3)
δψI = ε̄∆φI , δW̃i = ε̄∆ψ̃i, δΦ̄i = i(ε̄λi − ελ̄i), δλ̄i = ε̄Di, (6.4)
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where ∆φI deenote the infinitesimal transformation of the U(k1) × · · · × U(kL) gauge, spatial
and flavor rotations

∆Zi = [Φi,Zi]+ϵZi, ∆Υi =MiΥi−ΥiΦi, ∆Υ̃i = ΦiΥ̃i−Υ̃iMi+1+ϵΥ̃i, (6.5)

∆Wi = ΦiWi−WiΦi+1, ∆W̃i = Φi+1W̃i−W̃iΦi−ϵW̃i, (6.6)

where Mi = diag(m(i,1), · · · ,m(i,ni)) and ϵ are the parameters corresponding to the twisted
masses and the omega deformation parameter in the original 2d N = (2, 2) model. If we
adopt the naive Kähler potential (4.85), the explicit form effective action is given by

Seff =
L∑

i=1
Tr
[∣∣∣∣∆Zi

∣∣∣∣2+
∣∣∣∣∆Υi

∣∣∣∣2+
∣∣∣∣∆Υ̃i

∣∣∣∣2+
∣∣∣∣δWi

∣∣∣∣2+W̃iW̃
†
i +
{
W̃i(ZiWi−WiZi+1−Υ̃iΥi+1)+(c.c)

}]

+
L∑

i=1
Tr
[
Di

(
[Zi,Z

†
i ]−Υ†

i Υi+Υ̃iΥ̃†
i +WiW

†
i −W †

i−1Wi−1+ 4π
g2

i

)]
+(fermionic terms), (6.7)

where Tr
∣∣∣∣∆AI ∣∣∣∣2 stands for the norms of the infinitesimal transformations

Tr
∣∣∣∣∆Zi∣∣∣∣2 = Tr

[
∆Zi(∆ZI)† + ∆Z†

i (∆Z
†
i )†)

]
, etc. (6.8)

The FI parameters 4π
g2 are chosen so that the areas of the two cycles in the vortex moduli

space agree with that calculated from the 2d perspective. Eliminating the auxiliary fields W̃i,
we obtain a potential whose minimization condition gives the constraints (4.39)

W̃i = ZiWi −WiZi+1 − Υ̃iΥi+1 = 0. (6.9)

The variations with respect to Di give the D-term constraints, whose set of solution modulo
gauge transformations agrees with the vortex moduli space (4.42). In the presence of the
twisted masses and the omega deformation parameters, the conditions

∣∣∣∣δAI ∣∣∣∣2 = 0 are satisfied
only at the fixed points of the torus action discussed in subsection 4.3.1. When we apply the
supersymmetric localization method, the integral (6.2) localizes to those fixed points.

6.2 Contour integral for vortex partition function

Although this explicit effective action (6.7) does not give a correct moduli space metric, it
gives the correct vortex partition function since the deformation of the Kähler potential is
a Q-exact deformation, which do not change the vortex partition function thanks to the
supersymmetric localization.

It is well known that the integral (6.2) can be evaluated by using the localization formula,
which relates the partition function to the weights of the torus action at the fixed points

Zn1,n2,··· ,nL+1
k1,k2,··· ,kL

=
(

L∏
i=1

Λβiki
i

)∑
s∈S

1
det Ms

, (6.10)

where S is the set of the fixed points and Ms is the generator of the torus action at the
fixed point s discussed in subsection 4.3.1. Explicitly, it can be read off from the contour
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C−1
C−2
C−3

C−1
C−2
C−3

ϕ = m(2,α) − ϵ

ϕ = m(3,α) − ϵ

ϕ = m(4,α) − ϵ

C+
3

C+
2

C+
1

C+
1

C+
2

C+
3

ϕ = m(1,α)

ϕ = m(2,α)

ϕ = m(3,α)

Figure 5. Integration contours. For all r = 1, · · · , Ni, the integration contours for ϕr
i are identical

path C+
i (right panel) on the complex ϕ plane. Each path C+

i can be freely deformed as long as it
does not cross over the other paths and the poles at ϕ = m(i,α) and ϕ = m(i+1,α) − ϵ. Following this
rule, one can deform the paths C+

i to C−
i (left panel) if there is no pole at the infinity.

integral (see appendix I)

Zn1,n2,··· ,nL+1
k1,k2,··· ,kL

=
L∏
i=1

 1
ki!

Λβ0iki
i

ki∏
r=1

∮
C+

i

dϕri
2πiϵ

[ L∏
i=1

ZΥΥ̃
i ZZΦ

i

L−1∏
i=1

ZWW̃
i

]
, (6.11)

where ZΥΥ̃
i , ZZΦ

i and ZWW̃
i are given by

ZΥΥ̃
i ≡

ki∏
r=1

 ni∏
α=1

1
ϕri −m(i,α)

ni+1∏
β=1

1
m(i+1,β) − ϕri − ϵ

 , (6.12)

ZZΦ
i ≡

ki∏
r=1

ki∏
s=1

′ ϕri − ϕsi
ϕri − ϕsi − ϵ

, (6.13)

ZWW̃
i ≡

ki∏
r=1

ki+1∏
s=1

ϕsi+1 − ϕri − ϵ

ϕsi+1 − ϕri
, (6.14)

where ∏′ indicates that the factors with s = r are omitted from the product. The integration
contours C+

i are paths which are determined from the Jeffrey-Kirwan residue formula to
pick up the poles corresponding to the fixed points. Explicitly, C+

i are contours on the
complex ϕ plane starting at a point ϕ = +∞, surrounding ϕ = m(j,α) (j = 1, · · · , i) and
C+
j (j = 1, · · · , i− 1), and ending at another point ϕ = +∞ (see the right panel of figure 5).

As shown in appendix I, The contour integral (6.11) is given by the sum of residues at the
poles classified by sets of Young tableaux. For set of a Young tableaux

Y =
{
Y (j,α) =

(
l
(j,α)
j , l

(j,α)
j+1 , · · · , l(j,α)

L

)}
, (6.15)

the corresponding pole is located at

ϕ
(j,α,p)
i = m(j,α) +(p−1)ϵ, (i = 1, · · · , L, j = 1, · · · , i, α = 1, · · · , nj , p = 1, · · · , l(j,α)

i ),
(6.16)
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where we have relabeled ϕri as ϕ(j,α,p)
i . Performing the contour integral and evaluating the

residues, we obtain the partition function of the form

Zn1,n2,...,nL+1
k1,k2,··· ,kL

=
(

L∏
i=1

Λβiki
i

)∑
Y
ZY

ΥZ
Y
Υ̃Z

Y
ZΦZ

Y
WW̃

, (6.17)

where ZY
Υ , ZY

Υ̃
, ZY

ZΦ and ZY
WW̃

are contributions from Υ, Υ̃, (Z,Φ) and (W, W̃ ), which
are respectively given by

ZY
Υ =

L∏
i=1

ni∏
α=1

i∏
k=1

nk∏
β=1

l
(k,β)
i∏
q=1

′ 1
m(k,β) −m(i,α) + (q − 1)ϵ

, (6.18)

ZY
Υ̃ =

L∏
i=1

i∏
j=1

nj∏
α=1

l
(j,α)
i∏
p=1

ni+1∏
β=1

′ 1
m(i+1,β) −m(j,α) − pϵ

, (6.19)

ZY
ZΦ =

L∏
i=1

i∏
j=1

nj∏
α=1

l
(j,α)
i∏
p=1

i∏
k=1

nk∏
β=1

l
(k,β)
i∏
q=1

′ m(k,β) −m(j,α) − (p− q)ϵ
m(k,β) −m(j,α) − (p− q + 1)ϵ

, (6.20)

ZY
WW̃

=
L−1∏
i=1

i∏
j=1

nj∏
α=1

l
(j,α)
i∏
p=1

i+1∏
k=1

nk∏
β=1

l
(k,β)
i+1∏
q=1

′m(k,β) −m(j,α) − (p− q + 1)ϵ
m(k,β) −m(j,α) − (p− q)ϵ

, (6.21)

where ∏′ indicates that the vanishing factors in the denominator and numerator are omitted.
We can show that the partition function (6.17) can be rewritten as

Zn1,n2,...,nL+1
k1,k2,··· ,kL

=
(

L∏
i=1

Λβiki
i

)∑
Y

AY

BY , (6.22)

with

AY =
L∏
i=1

i∏
j=1

nj∏
α=1

i∏
k=1

nk∏
β=1

(−ϵ)l
(j,α)
i −l(k,β)

i

(
m(j,α) −m(k,β)

ϵ
+ 1

)
l
(j,α)
i −l(k,β)

i

, (6.23)

BY =
L∏
i=1

i∏
j=1

nj∏
α=1

i+1∏
k=1

nk∏
β=1

(−ϵ)l
(j,α)
i −l(k,β)

i

(
m(j,α) −m(k,β)

ϵ
+ 1

)
l
(j,α)
i −l(k,β)

i+1

, (6.24)

where (a)b denotes the Pochhammer symbol

(a)b = Γ(a+ b)
Γ(a) . (6.25)

We can confirm that the result (6.22) of the contour integral for Zn1,n2,...,nL+1
k1,k2,··· ,kL

is proportional to
the residue of the integrand for the total vortex partition function in the 2d N = (2, 2) theory

Z =
∫ L∏

i=1

Ni∏
a=1

 dσai
2πiϵ exp

(
−2πiσai τi

ϵ

) Ni∏
b=1

′
Γ
(
σai −σbi
ϵ

)−1Ni+1∏
c=1

Γ
(
σai −σci+1

ϵ

) , (6.26)

at the pole

σ
(j,α)
i = −m(j,α) − l

(j,α)
i ϵ. (6.27)
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This is consistent with the fact that the total vortex partition function Z can be written
as a sum of the contributions from each topological sectors

Z = Zn1,n2,...,nL+1
1−loop

∞∑
k1=0

· · ·
∞∑

kL=0

(
L∏
i=1

Λβiki
i

)
Zn1,n2,...,nL+1

k1,k2,··· ,kL
. (6.28)

Thus, we can confirm that the Kähler quotient construction gives the correct information on
the vortex moduli space and the non-perturbative effects in the parent 2d N = (2, 2) theory.

6.3 Duality and partition function

One of the advantages of using the Kähler quotient construction is that it makes the duality
manifest in the contour integral expression (6.11). We can show that the partition function
agrees with that of the dual theory as follows. In the dual theory, the effective vortex action
is described by the same action as (6.7) with the duality map of the degrees of freedom (5.21)
and the sign flip of the FI parameters

4π
g2
i

→ −4π
g2
i

. (6.29)

As the Jeffrey-Kirwan residue formula implies, the relevant poles become those enclosed
by the contour C−

i in the left panel of figure 5 due to the sign flip of the FI parameters.
We can see from (6.12) that if ni ̸= 0 (Ni ̸= Ni+1) for all i, the integrand in (6.11) has no
pole at the infinity, and hence we can change the contour of integration from C+

i to C−
i

without changing the result of the integration (see the left panel of figure 5). The residues
for the contours C+

i and C−
i give the vortex partition functions in the original and dual

theory, respectively, and hence they are equivalent. More precisely, it is easy to check by
changing the variables as ϕri → −ϕ̃rL+1−i that

Zn1,n2,...,nL+1
k1,k2,...,kL

(M1,M2, . . . ,ML+1, ϵ,Λi) = ZnL+1,nL...,n2,n1
kL,kL−1,...,k1

(ϵ−ML+1, . . . , ϵ−M2, ϵ−M1, ϵ,ΛL+1−i),
(6.30)

and thus the duality of the NLσM holds also for the vortex partition functions.

7 Summary and discussion

In this paper, we analyzed the moduli spaces of the following topological solitons:

1. BPS vortices in the U(N1)×· · ·×U(NL) GLσMs characterized by the linear quiver (2.28).

2. sigma model instantons (lumps) in the Kähler flag manifold sigma models, which can
be obtained in the large gauge coupling limit of the GLσMs.

In these theories, vortices and sigma model instantons carrying multiple topological charges
{ki} ∈ ZL appear. We analyzed BPS equations for vortices, extracted the data set of the
vortex moduli through the moduli matrix method, and exactly determined the moduli spaces
of 1/2 BPS vortices in the GLσMs as shown in eq. (3.25). We also discussed how to obtain
general exact instanton solutions in the Kähler flag manifold sigma models.
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We showed that the moduli matrix method in the L = 1 case can be recast into the
ADHM-like quotient construction (the half-ADHM construction) of the moduli space, which
has been originally derived from the view point of the D-brane construction in the string
theory [7]. Generalizing this technique to the case of general L, we constructed a quotient
construction for the vortex moduli space eq. (4.42) specified by the quiver diagram shown in
figure 3. In this half-ADHM formalism, various features of the moduli space are manifest. In
particular, we have observed that the duality relations are expressed in the simple form (5.16),
which is realized by reversing all the arrows in figure 3.

As an application, we have used the quotient construction of the vortex moduli space to
calculate the vortex partition functions in 2d N = (2, 2) GLσMs. Applying the localization
formula to the half-ADHM system, we have computed the vortex partition from the data of
the fixed points of the torus action acting on the vortex moduli space. From the viewpoint
of the vortex partition functions, we have confirmed dualities between pairs of quiver gauge
theories whose vacuum moduli spaces are identical flag manifolds. We have found that the
partition functions agree even though the structures of the vortex moduli spaces, in particular,
the fixed point structures, are different between the dual pairs of GLσMs. The half-ADHM
formalism has turned out to make the duality manifest even at the quantum level.

One of the future directions is to study the low energy dynamics of vortices and lumps,
which are described by geodesic motions on the moduli space equipped with a metric. In
the case of L = 1 (Grassmannian sigma models) and local non-Abelian vortices, the moduli
space metrics have been determined for well-separated vortices [85] and low energy dynamics
have been studied [86]. Extending these analyses to the quiver gauge theories and the flag
manifold NLσMs discussed in this paper would be interesting.

In this paper, we have extended the half-ADHM formalism for the moduli space of
vortices to the gauged linear sigma models characterized by the linear quiver (2.28). One
of the future problems is to investigate to what extent the half-ADHM formalism can be
generalized to the vortices in arbitrary gauge theories. We have studied flag manifold NLσMs
G/H with G = U(N). Extending our work to other groups G such as SO(N), USp(2N) and
exceptional groups is an important future work. For L = 1, such isometry G can be realized
by imposing holomorphic constraints (superpotentials in supersymmetric cases) [87].

Replacing the base space with a space of different geometry and topology would broaden
the application of the half-ADHM formalism. However, such a replacement in the base
space could drastically change the half-ADHM formalism. In particular, all the proofs in
appendices C and D must be reconstructed from scratch. Although research in this direction
is challenging, it would deepen our understanding of vortices.

In both theories of the dual pairs discussed in this paper, the quiver diagrams consist of
linear chains with all arrows pointing in the same direction. According to [88], the cluster
algebra on quiver diagrams produces more dual pairs of theories. That is, the present theory
should be dual to various theories characterized by complicated quiver diagrams, such as one
involving chain loops or arrows in the opposite direction. It would be interesting to extract
the half-ADHM data from the moduli matrices for such models and see how those dualities
are expressed at both the classical and quantum levels.

Another important future direction is to study sigma model lumps (instantons) in non-
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Kählerflag NLσMs. In this paper, we have studied only BPS lumps (instantons) in Kählerflag
NLσMs, where there are no forces among lumps, thus admitting the moduli space. On the
other hand, lumps in non-Kählerflag NLσMs are non-BPS; hence there are forces among
them. Interaction between non-BPS sigma model instantons would be important when we
discuss the non-perturbative aspects of the sigma models from the viewpoint of instantons.
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A Riemannian manifolds and Kähler manifolds

A.1 General Riemannian metric for flag manifolds

The homogeneous Riemannian metric of the generalized flag manifolds G/H = U(N)/[U(n1)×
· · ·×U(nL+1)] has L(L+1)/2 parameters (decay constants) and it becomes a Kählermetric on
a L dimensional subspace parameterized by the FI parameters. Here we explain the relations
between various expressions for the flag manifold sigma models. Using ni-by-N matrix valued
fields vi (i = 1, · · · , L, L+1), the flag manifold sigma model can be given in the following form

L = 1
2

L+1∑
i,j=1

fijTr
[
(Dµviv

†
j)(Dµviv

†
j)†
]

+
L+1∑
i,j=1

Tr
[
λij(viv†

i − δij1ni)
]
, (A.1)

where fij = fji > 0 are coupling constants and the covariant derivative on vi is defined as
Dµvi = ∂µvi + iaiµvi with U(ni) gauge fields aiµ. The ni-by-nj matrices λij are Lagrange
multipliers which gives the constraints

viv
†
i = δij1ni ⇔ U † = (v†

1, v
†
2, · · · , v†

L+1) ∈ U(N) with N =
L+1∑
i=1

ni, (A.2)

and thus the target manifold becomes the generalized flag manifold when the auxiliary
gauge fields are eliminated

aiµ = i∂µviv
†
i . (A.3)

Substituting these into the Lagrangian, we obtain

L = −1
2

L∑
i=1

L+1∑
j=i+1

fijTr[∂µPi∂µPj ], (A.4)

where Pi are projection operators

Pi ≡ v†
i vi, (PiPj = δijPi). (A.5)
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Note that the terms proportional to diagonal elements of fij are introduced only for stability
of the auxiliary fields and disappear in the above Lagrangian since Dµviv

†
i = 0.

For some purposes, it might be convenient to express the sigma model with quadratic
kinetic terms, which reduces to certain special cases of the above model∑
i

fiTr
[
(Dµvi)(Dµvi)†

]
=
∑
i,j

fiTr
[
(Dµviv

†
j)(vjDµv†

i )
]

= 1
2
∑
i,j

(fi+fj)Tr
[
(Dµviv

†
j)(Dµviv

†
j)†
]
,

(A.6)
where the completeness condition ∑j vjv

†
j = 1N is used. For L > 2, this model does not cover

whole space of the homogeneous Riemannian metric, whereas for L = 1, 2, it reproduces the
Riemannian metric with arbitrary decay constants since #fi = L+ 1 ≥ L(L+ 1)/2 = #fij .

Each field configuration can be viewed as a map form R2 ∪ {∞} = S2 to the target
space M = G/H and defines the topological charges

π2(G/H) = π1(H) = π1 (S[U(n1) × U(n2) × · · · × U(nL+1)]) = ZL. (A.7)

Explicitly, the topological numbers mi (i = 1, · · · , L + 1) are given by

mi ≡ − 1
2π

∫
R2
dx2 Tr[f i12] = i

2π

∫
R2

Tr[dvi ∧ dv†
i ] = 1

2πi

∮
S1

Tr[dviv†
i ] ∈ Z, (A.8)

where f iµν = ∂µa
i
ν − ∂νa

i
µ + i[aiµ, ajν ]. Note that there are only L independent charges since

the total charge vanishes as
L+1∑
i=1

mi = i

2π

∫
R2

L+1∑
i=1

Tr[dvi ∧ dv†
i ] = − i

2π

∫
R2

Tr[dUU † ∧ dUU †] = 0. (A.9)

A.2 Kähler condition on decay constants

Let us discuss the relation between the model with a Rieamannian metric introduced above
and the nonlinear sigma model discussed in the main text. As we have seen in (2.52), the
Kählerpotential for the Kählermetric is given by

K =
L∑
i=1

ri ln det(ξiξ†
i ). (A.10)

Note that the set of matrices {ξi} and {vi} are related as(
v†

1, v
†
2, · · · , v†

i

)†
= ξoiU = ξoi ĥ

−1G = ĥ−1
i ξoi G = ĥ−1

i ξi, (A.11)

where G = ĥ U (ĥ ∈ Ĥ), ĥi = ξoi ĥ(ξoi )† ∈ GL(Ni,C). Using the Kählermetric gAB̄(X) =
∂A∂̄BK, we find that the Lagrangian for the Kählerflag manifold sigma model is given by

L = −1
2

L∑
i=1

ri

j≤i<l∑
j,l

Tr[∂µPj∂µPl]. (A.12)

Comparing with (A.4), we find that the Riemaniann model reduces to the Kählermodel
when the decay constants fij are given by

fij =
j−1∑
k=i

rk or equivalently fi,i+1 = ri, fij = fik + fkj for i < k < j. (A.13)
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The vortex numbers {ki} defined in eq. (3.19) are related to topological charges defined
in eq. (A.8) as

ki ≡ 1
2πi

∫
R2
∂̄ ∧ ∂ ln det(ξiξ†

i ) =
i∑

j=1
mj . (A.14)

B Comments on the master equations

In this appendix, we discuss the existence and the uniqueness of the solution of the set
of the master equations (3.13)

Êi ≡ qiΩi+1q
†
iΩ−1

i − Ωiq
†
i−1Ω−1

i−1qi−1 + 4
g2
i

∂z̄
(
∂zΩiΩ−1

i

)
− ri1Ni = 0. (B.1)

These are equations for the positive definite Hermitian matrices Ωi ∈ GL(Ni,C) determined
by a given set of the moduli matrices (q1, · · · , qL). The master equations Êi = 0 are related
to the original BPS equations Ei = 0 for the magnetic flux as

Ei = S−1
i ÊiSi with Ei ≡ QiQ

†
i −Q†

i−1Qi−1 − 2
g2
i

F i12 − ri1Ni , (B.2)

where Si ∈ GL(Ni,C) are the matrices that can be obtained from Ωi by the Cholesky
decomposition Ωi = SiS

†
i . The matrices qi and Si are related to Qi and Dµ = ∂µ + iAiµ as

Qi = S−1
i qi(z)Si+1, Az̄ = 1

2(Ai1 + iAi2) = −iS−1
i ∂z̄Si. (B.3)

The boundary condition for Ωi is

lim
|z|→∞

{
Di(z)−1Ωi(z, z̄)Di(z)†−1

}
= Ωo

i ∈ GL(Ni,C), (B.4)

where Di(z) is the Ni-by-Ni matrix defined through the relation (see eq. (3.1))

ξi(z) ≡ qi(z) qi+1(z) · · · qL(z) = (Di(z), D̃i(z)) (B.5)

and Ωo
i is the constant positive-definite matrix corresponding to the vacuum configuration

(see eq. (2.38)). By examining the master equation for large z, we find that the deviation
of Ωi from the large coupling limit Ω∞

i (see eq. (3.29)) is given by,

Di(z)−1(Ωi − Ω∞
i )Di(z)†−1 = ∂z∂z̄

g2
i

O(|z|−2) = O
(
|z|−4

)
. (B.6)

Here, let FΩ(R2) denote the space of configurations Ω = {Ω1,Ω2, . . . ,ΩL} where Ωi are
smooth maps from R2 to the space of positive definite Ni-by-Ni Hermitian matrices satisfying
the boundary condition (B.4) and the asymptotic behavior (B.6) with a given set of moduli
matrices {qi(z) | i = 1, 2, . . . , L}. Let us take a reference point Ωref in FΩ(R2) and denote
its components as Ωref

i = Sref
i Sref†

i . Since Ωi is a positive definite Hermitian matrix, we can
define an Ni-by-Ni Hermitian matrix ωi depending on the reference point as

ωi = log
[
(Sref
i )−1Ωi(Sref†

i )−1
]

⇔ Ωi = Sref
i eωiSref†

i . (B.7)
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This relation defines a one-to-one map between FΩ and the functional space Fω: the space
of ω = (ω1, ω2, · · · , ωL) whose components ωi are smooth bounded functions from R2 to
the space of Hermitian matrices of order Ni satisfying the boundary condition and the
asymptotic behavior

lim
|z|→∞

ωi = 0, ωi = O(|z|−4). (B.8)

It is worth noting that the asymptotic behaviors in eqs. (B.6) and (B.8) implies that the
following square-integrable conditions are satisfied

⟨E2⟩ < ∞ for ∀Ω ∈ FΩ, ⟨ω2⟩ < ∞ for ∀ω ∈ Fω, (B.9)

where we have used the following bracket notation

⟨O⟩ ≡
∫
d2x

L∑
i=1

Tr[Oi]. (B.10)

B.1 H: linearization of master equations

First, let us define a linear operator H = H(q, S) by

(Hv)i ≡ − 4
g2
i

Dz̄Dzvi +Qi
(
Q†
ivi − vi+1Q

†
i

)
+
(
viQ

†
i−1 −Q†

i−1vi−1
)
Qi−1, (B.11)

where v = (v1, v2, · · · , vL) is an element of FC
ω ≡ {u + iw

∣∣u,w ∈ Fω}. This operator H,
which depends on qi, Si, appears in the linearized master equations and plays a central
role in the subsequent subsections. Explicitly, one can show that the variation δÊi of Êi
under the infinitesimal shift δΩi ≡ SiωiS

†
i of Ωi = SiS

†
i ∈ FΩ with ωi = ωi(z, z̄) ∈ Fω

is given in terms of H as

S−1
i δÊiSi = −(H ω)i. (B.12)

This operator H is Hermitian and positive semi-definite

⟨vHv†⟩ =
∫
d2x

L∑
i=1

Tr
[

4
g2

i

Dz̄viDzv
†
i +(viQi−Qivi+1)(viQi−Qivi+1)†

]
≥ 0 for arbitrary v ∈ FC

ω .

(B.13)
Furthermore, we can show that there exists a gap in the spectrum of the linear operator H
as follows. Suppose that Hv† = 0. Then, the above inner product vanishes and hence

0 = Dzv
†
i = Dz̄vi, viQi = Qivi+1 (vL+1 = 0) for i = 1, 2, . . . , L. (B.14)

It follows from the second equation that

viQiQi+1 · · ·QL = Qivi+1Qi+1 · · ·QL = · · · = QiQi+1 · · ·QLvL+1 = 0. (B.15)

This equation implies that vi must vanish since QiQi+1 · · ·QL has the maximal rank except
for a finite number of points.22 Therefore, we find that H has no zero mode

ker H(q, S) = {0} for ∀(qi, Si). (B.16)

From this property, we can immediately conclude that Ω has no additional moduli parameter
and all the moduli parameters of vortex solutions are contained in {qi(z)}.

22The matrix ξi = qiqi+1 · · · qL has the maximal rank except for a finite number of points. The matrix
QiQi+1 · · · QL = S−1

i ξi has the same property since Si(z, z̄) ∈ GL(Ni,C).
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B.2 Vortex action and proof of the uniqueness

For a given set of moduli matrices {qi(z)} (with an appropriate gauge fixing of the V -
transformations), we can show that there exists a functional Svtx of Ω such that the variation
of Svtx with respect to Ωi is given by

δSvtx = −
∫
d2x

L∑
i=1

Tr
[
δΩiΩ−1

i Êi
]

= −
∫
d2x

L∑
i=1

Tr [ωiEi] = −⟨ωE⟩. (B.17)

That is, Svtx is the action which gives the full set of the master equations {Êi = 0}.

Existence of Svtx. Although such an Svtx may not be unique due to constant and
total derivative terms, we can show that the following functional gives the full set of the
master equations

Svtx[Ω,Ωref ] ≡
∫
d2x

{
L(Ω) − L(Ωref)

}
, L(Ω) =

L∑
i=1

{
LDi + 1

g2
i

LKi

}
. (B.18)

Here LDi and LKi ,23 are given by

LDi = Tr
[
Ω−1
i qiΩi+1q

†
i + ri log Ωi

]
, (B.19)

LKi = Tr
[
4|∂zψi|2 + 2e−2ψi(L−1

i ∂z̄Li) e2ψi (L−1
i ∂z̄Li)†

]
, (B.20)

where ψi is a Ni-by-Ni diagonal matrix and Li is a lower unitriangular matrix obtained
by the Cholesky decomposition

Ωi = Li e
2ψiL†

i . (B.21)

Note that although Svtx is not invariant under the V -transformations, the shift is independent
of Ω. Hence, the variation of Svtx with respect to Ωi reproduce the master equations, which
are covariant under the V -transformations. The term L(Ωref) in the integrand is added
to make the integral finite.

To confirm that surface terms vanish in the r.h.s. of (B.17), we need to discuss the
boundary conditions for {ψi, Li}. Note that, as discussed in appendix C.1, an arbitrary given
matrix Di(z) can always be transformed into a lower triangular form by a V -transformation as

Di(z) =


pi,1(z) 0 · · · 0

⋆ pi,2(z) . . .
...

...
. . .

. . . 0
⋆ · · · ⋆ pi,Ni(z)

 =
(
1Ni + O(z−1)

)
pi(z) (B.22)

where “⋆” stand for polynomials and pi(z) is a diagonal matrix

pi(z) = diag (pi,1(z), pi,2(z), · · · , pi,Ni(z)) (B.23)
23These terms are equivarent to the normal kinetic terms plus the Wess-Zumino-Witten terms up to total

derivative terms.
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such that the a-th diagonal entry pi,a(z) is a monic polynomial of degree li,a and deg(detpi(z)) =∑
a li,a = ki. Under this gauge choice, the boundary condition (3.18) for Ωi can be rewritten

in terms of {ψi, Li} as

ψi → 1
2 logΩo

i + 1
2 log |pi(z)|2+O(|z|−2), Li →Di(z)(1Ni +O(|z|−2))pi(z)−1 for |z| → ∞.

(B.24)

From these behaviors, we conclude that the contributions from the surface terms of δSvtx

vanishes as

lim
R→∞

Im
∮

|z|=R
dz
∑
i

Tr
[
2δψi∂zψi + e−2ψi(L−1

i δLi) e2ψi∂zL
†
iL

†−1
i

]
= lim

R→∞
Im
∮

|z|=R
dz
∑
i

Tr
[
δψi

∂zpi(z)
pi(z)

]
= 0 (B.25)

where we have used lim|z|→∞ δψi = 0. From this property, we conclude that eq. (B.17) holds.
Furthermore, this property implies that terms in L(Ω) that could diverge when integrated
are independent of Ωi and thus the counter term L(Ωref) in the action cancels such terms.
This cancellation makes Svtx finite and hence its convexity, discussed in the next paragraph,
is well-defined. Although Svtx depends on the choice of the coordinate patch of the moduli
space (the choice of the label λi = (li,1, li,2, . . . , li,Ni)), there is no problem with the arguments
for existence and uniqueness of the solution with fixed moduli parameters.

Convexity of Svtx. The action Svtx constructed above is always a convex functional. To
see this, let us take a pair of configurations Ω(a)

i = S
(a)
i (S(a)

i )†(a = 1, 2) which satisfy the
same boundary conditions with a given {qi = qi(z)}. For such a pair of configurations, let
us define an Hermitian matrix ωi ∈ u(Ni) by

eωi ≡ (S(1)
i )−1Ω(2)

i (S(1)
i )†−1, (B.26)

which satisfies the boundary condition (B.4). Using these quantities {ωi}, we obtain a set
of functions of a parameter τ

Ωi(τω) = Si(τω)Si(τω)† ≡ S
(1)
i eτ ωi(S(1)

i )† (B.27)

which continuously interpolates two given configurations:

Ωi(0) = Ω(1)
i and Ωi(ω) = Ω(2)

i . (B.28)

Then, substituting Ωi(τω) to the action and using

dΩi(τω)
dτ

= Si(τω)ωiSi(τω)†,
d

dτ

{
dΩi(τω)
dτ

Ωi(τω)−1
}

= 0, (B.29)

we find that Svtx is always a convex functions of τ :

∀τ ∈ R : d2Svtx[Ω(τω),Ωref ]
dτ2 = ⟨ωHω⟩

∣∣∣
Si→Si(τω)

> 0. (B.30)

– 55 –



J
H
E
P
0
2
(
2
0
2
4
)
2
3
0

Therefore, if {Ω(1)
i } is the solution of the master equations, then the action takes the minimum

at τ = 0 and can never have other extrema since the derivative ∂τSvtx is monotonically
increasing function for any choice of {Ω(2)

i }. Therefore, the solution of the master equations
must be unique if it exists.

B.3 Comments on existence of solutions

In the main text, it is assumed that a solution to the master equations exists for an arbitrarily
given set of moduli matrices {qi(z)}. While the existence of the Abelian vortex solutions has
been proven in [79], for non-Abelian vortices, however, it is generally difficult to prove the
existence of solutions except for some limited cases [89–91]. To the best of our knowledge,
the proof of existence of vortex solutions in the general systems is not known. Let us try
to give a circumstantial evidence that the solution exists, using a rough argument that is
not necessarily mathematically rigorous.

First, let || · || be a norm defined in the functional space Fω. Let us write an arbitrary
element ω ∈ Fω as ω = τ ω̂ by using its norm τ ≡ ||ω|| and the normalized element ω̂ ∈ Fω

satisfying ||ω̂|| = 1. Then an arbitrary Ω ∈ FΩ can be expressed using eq. (B.7) as

Ωi = Ωi(τ ω̂) = Si(τ ω̂)(Si(τ ω̂))† ≡ Sref
i eτω̂i(Sref

i )†, Ωi(0) = Ωref
i , (B.31)

and the vortex action Svtx defined in eq. (B.18) can be regarded as a function of τ ,

Sω̂(τ) ≡ Svtx[Ω(τ ω̂),Ωref ]. (B.32)

Note that this function is convex everywhere as discussed in the previous subsection. In the
following, we show that for each choice of ω̂, the function Sω̂(τ) has a minimum at some
point with τ = τω̂ < ∞. Then, tracking the decreasing sequence of the function Sω̂(τω̂) in
the space of normalized ω̂, we can find the solution of the master equation. Thus, roughly
speaking, showing the existence of a solution to the master equations is equivalent to showing
that Sω̂(τ) has a minimum for an arbitrary normalized configuration ω̂ ∈ Fω and the space
of normalized ω̂ is a complete metric space.

Coerciveness of Svtx. Here, we show that for an arbitrary nonzero element ω̂ ∈ Fω

lim
τ→∞

dSω̂(τ)
dτ

= ∞ and d2Sω̂(τ)
dτ2 > 0 for arbitrary τ , (B.33)

i.e. Sω̂(τ) is a coercive and convex function of τ for an arbitrary ω̂ ∈ Fω\{0}.
The derivative of Sω̂(τ) with respect to τ is given by24

dSω̂(τ)
dτ

= −⟨ω̂E⟩
∣∣∣
Si=Si(τ ω̂)

= −⟨ω̂E⟩
∣∣∣
Si=Sref

i

+
∫ τ

0
ds⟨ω̂Hω̂⟩

∣∣∣
Si=Si(sω̂)

, Sω̂(0) = 0.

(B.34)

24The above property can be viewed as the definition of the function Sω̂(τ), which is independent of the
details of the original defining equation (B.18). We can confirm that Sω̂(τ) is finite for an arbitrary τ ∈ R
since ⟨ω̂E⟩2 ≤ ⟨ω̂2⟩⟨E2⟩ < ∞.
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Note that ⟨ω̂Hω̂⟩ implicitly depends on τ , since H depends on Si = Si(τ ω̂). Let us show
that ⟨ω̂Hω̂⟩ cannot vanish even in the limit τ → ∞, whereas it must be positive definite
for a finite τ as discussed in section B.1. First, we show that

lim
τ→∞

⟨ω̂Hω̂⟩
∣∣∣
Si=Si(τ ω̂)

= 0 =⇒ ω̂i(z, z̄) = 0. (B.35)

From the assumption given in left-hand side of the above statement, we obtain

lim
τ→∞

Dzω̂i
∣∣∣
Si=Si(τ ω̂)

= lim
τ→∞

Dz̄ω̂
∣∣∣
Si=Si(τ ω̂)

= 0. (B.36)

Since entries of ω̂ ∈ Fω are continuous functions, it follows that

∂zTrω̂pi = p lim
τ→∞

Tr[ω̂p−1
i Dzω̂i] = 0 and hence eigenvalues of ω̂i = constant. (B.37)

Combining the above result with the boundary condition lim|z|→∞ ω̂i = 0, we find all ω̂i
must vanish everywhere

∀i, ∀z, ω̂i = ω̂i(z, z̄) = 0. (B.38)

This implies eq. (B.35) and its contraposition

∀ω̂ ∈ Fω\{0} : lim
τ→∞

⟨ω̂Hω̂⟩
∣∣∣
Si=Si(τ ω̂)

> 0, (B.39)

where we have used the fact that H is a positive semi-definite operator. Applying this
statement and the convexity of Sω̂ to eq. (B.34), we conclude that

∀ω̂ ∈ Fω\{0} : lim
τ→∞

dSω̂(τ)
dτ

= ∞, ∀τ : d
2Sω̂(τ)
dτ2 > 0 (B.40)

and thus Sω̂(τ) is a coercive and convex function of τ for arbitrary ω̂i ∈ Fω\{0}. This result
implies that Sω̂(τ) has a minimum, Sω̂(τω̂)(≤ 0), with a certain τ = τω̂ for each ω̂. Thus, by
collecting these minimum, we can define a map from a hypersurface F̂ω ≡ {ω̂ ∈ Fω| ||ω̂|| = 1}
to Fω as, ω̂ ∈ F̂ω 7→ τω̂ω̂ ∈ Fω. Since

inf
Ω∈FΩ

Svtx[Ω,Ωref ] = inf
ω̂∈F̂ω

Sω̂(τω̂), (B.41)

assuming Fω is a complete metric space, the coereciveness and convexity of Sω̂(τ) implies
that Svtx has a minimum with a certain ω = ωmin, which gives a solution Ωsol ≡ Ω(ωmin)
to the master equations. This “proof” for the existence of the solution is, however, not
mathematically rigorous, since in this argument the “solution” obtained using a decreasing
Cauchy sequence ω(1),ω(2), · · · ∈ Fω, the limit ωmin = lima→∞ ω(a) is not guaranteed to
consists of bounded, smooth functions, ωmin ∈ Fω. For a complete proof, therefore, we
need to give more mathematically precise arguments. Nevertheless, the above arguments,
especially Eq (B.39), are expected to be useful for an intuitive understanding of the existence
of a solution, and can actually distinguish our system from those where the master equations
do not have solutions (see the example below).
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Compact cases and Bradlow bound. Most of the above discussion and results can
be applied to the models defined on a compact base space Σ with a finite area A as long
as ker H = ∅. It is, however, well known that there is a lower bound ABb, the so-called
Bradlow bound, on the area for the existence of solutions. In our case, the lower bound
is given by the following set of inequalities

0 ≤
∫

Σ
dvol TrQiQ†

i =
i∑

j=1

(
rjNjA− 4πkj

g2
j

)
, A =

∫
Σ
dvol, for i = 1, 2, · · · , L,

(B.42)

where dvol is the volume form on Σ. In the Bradlow limit saturating the above bound, at least
one of Qi must vanish everywhere and thus the operator H has a non-trivial kernel (ker H ̸= ∅),
which implies the argument above is no longer applicable. The most significant difference
between the compact and non-compact cases is that in the compact case, a (covariantly)
non-zero constant ω, for which ⟨ωHω⟩ may vanish in the limit of τ → ∞, is allowed since
the area is finite and the condition (B.8) is absent. The following ω̂c

(i) ∈ Fω is the simplest
example of such a ω̂

ω̂c
(i) = ωc

(i)/||ω
c
(i)||, ωc

(i) ≡ (1N1 ,1N2 , · · · ,1Ni ,0,0, · · · ), i ∈ {1, 2, · · · , L}.
(B.43)

For this configuration, the i-th gauge group is restored in the limit τ → ∞

lim
τ→∞

Qi(τ ω̂c
(i)) = lim

τ→∞
e

−τ/||ωc
(i)||
Qref
i = 0, lim

τ→∞
⟨ω̂Hω̂⟩

∣∣
ω̂=ω̂c

(i)
= 0, (B.44)

whereas the other quantities, Qj(j ̸= i), Ajz̄ remain invariant. Thus, we obtain

lim
τ→∞

dSω̂(τ)
dτ

= 1
||ωc

(i)||

i∑
j=1

(
rjNjA− 4πkj

g2
j

)
, for ω̂ = ω̂c

(i), i = 1, 2, · · · , L, (B.45)

which shows that Sω̂(τ) is no longer coercive for a sufficiently small area A. Note that for
Svtx[Ω,Ωref ] to be coercive, it is necessary that Sω̂(τ) for ω̂ = ω̂c

(i) must be coercive for all
i = 1, · · · , L. Therefore, Svtx[Ω,Ωref ] is coercive only when the area A is larger than the
Bradlow bound A > ABb. In this way, we can show that the discussion on the existence of
solutions based on the coerciveness of Svtx[Ω,Ωref ] is consistent with the Bradlow bound.

The Bradlow bound, A ≥ ABb is only a necessary condition on the area A for the
existence of solutions and a necessary and sufficient condition, A ≥ Atb might be stronger
than this condition, Atb ≥ ABb and Atb might depend on a point of the moduli space. For a
generic moduli point, the condition A ≥ Atb would be found indirectly from the non-vanishing
requirement for the vortex moduli space volume, which has been computed by the localization
method [92–95]. By refining the above argument on coerciveness of the functional Svtx, we
expect that it is possible to prove the condition A ≥ Atb directly.

Relaxation method. It is important and useful to provide an explicit procedure for
obtaining a numerical solution that minimizing Svtx by discretizing the system. To find the
minimum of Svtx, let us consider the following recurcive relation

S
(n+1)
i = S

(n)
i eδω

(n)
i , S

(0)
i = Sref

i . (B.46)
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If we choose δω(n)
i = H−1Ei|S→S(n) , this procedure can be regarded as Newton’s method,

which is, however, impractical since the calculation of H−1 is known to be very costly. One
simple and effective method is the relaxation method, where δωi in each step is given by
δω

(n)
i = αEi|Si→S

(n)
i

with an appropriate step size α ∈ R>0. The parameter α must be a
sufficiently small to satisfy the Courant-Friedrichs-Lewy condition, α/a2

lat < O(1), where alat
is the spatial lattice spacing. With such small α, the convexity and coerciveness of Svtx

guarantee that this sequence converges without being trapped by meta-stable points. To
see that Svtx decreases at each step with a sufficiently small step size α, let us take the
continuous limit of α → 0 and rewrite the recursive relation into a differential equation
by introducing a fictitious time t. Suppose that Si(or Ωi) is a function of t and define its
time evolution as follows

∂Si(t)
∂t

= Si(t)Ei(t)
(
= Êi(t)Si(t)

)
with qi(z) fixed (B.47)

where Ei(t) is the quantity obtained by substituting Si = Si(t) into Ei. Under this time
evolution, Svtx monotonically decrease as

d

dt
Svtx[Ω(t),Ωref ] = −2⟨E(t)2⟩, (B.48)

and this gradient flow stops only when Svtx takes the minimum value with Ei = 0. The
relaxation time needed to obtain a numerical solution with a given accuracy can be estimated
as follows. From eq. (B.47), we can derive the time evolution of Ei(t) as

∂Ei(t)
∂t

= −2HEi(t) with Dz̄Qi = 0. (B.49)

The operator H hss positive definite eigenvalues, and hence if Ei is expanded in terms
of the eigenmodes of H, each eigenmode decays exponentially. After a sufficient time of
relaxation, the deviation from the true solution is dominated by the lowest eigenmode E⋆i
and decreases exponentially as

Ei(t) ≈ E⋆i exp(−2∆⋆t) with HE⋆i = ∆⋆E⋆i , (B.50)

where ∆⋆ ∈ R>0 is the lowest eigenvalue. Thus, we can estimate the accuracy of the numerical
solution using the relaxation time t, as long as calculation errors can be ignored. In the
limit t → ∞, Si(t) converges to the solution Ssol

i

lim
t→∞

Ei(t) = 0 with lim
t→∞

Si(t) = Ssol
i . (B.51)

B.4 Kähler metric and potential for the vortex moduli space

By using the vortex action Svtx, the Kähler potential Kvtx giving the metric for the vortex
moduli space can be naturally introduced. Note that since the counter term L(Ωref) introduced
in eq. (B.18) has moduli-dependence, for the definition of Kvtx, it is more natural to regularize
the integral by introducing a spatial cut-off R ∈ R>0. The Kähler potential on the moduli
space Kvtx can be obtained by substituting the solution Ω = Ωsol of the master equations
to the vortex action with such a regularization

Kvtx = Kvtx(ϕA, ϕ̄Ā) ≡
∫
DR

d2xL(Ωsol), DR ≡
{
z = x1 + ix2 ∈ C

∣∣ |z| ≤ R
}
. (B.52)
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Here, ϕA ∈ C are moduli parameters, which linearly appear in the moduli matrices qi(z) =
qi(z, ϕA) when the V -transformations are properly fixed. There is a convenient formula for
the Kähler metric which is calculable without going back to the definition of Kvtx. If the
solution Ωi = Ωsol

i is given, the Kähler metric can be calculated by using the formula

gAB̄ ≡ ∂2Kvtx

∂ϕ̄B̄∂ϕA
=
∫
d2x

∂

∂ϕ̄B̄

L∑
i=1

Tr
[
Ω−1
i

∂qi
∂ϕA

Ωi+1q
†
i

]
Ω=Ωsol

. (B.53)

In this formula, we can chenck the invariance under the V -transformations, which were fixed
to define Kvtx. Since the V -transformations naturally induce coordinate transitions on the
vortex moduli space as explaind in appendix C, the invariance under the V -transformations
allows us to choose an arbitrary coordinate patch to describe the moduli space metric. This
metric gAB̄ turns out to be positive definite and thus invertible, as will be shown in the
next paragraph. Furthermore, we can show the regularity of the Riemann curvature tensor,
RABCD̄, using the fact that RABCD̄ can be expressed in terms of the higher derivatives
of Ωi such as ∂ϕA

∂ϕB
∂ϕ̄C

Ωi, which can be determined through the differentiated forms of
the master equations. Thanks to the existence of H−1, those equations are algebraically
solvable. Therefore, the above formula implies that the Kähler manifold defined by this
metric is regular everywhere.

Moduli space approximation. The Kähler metric gAB̄ defined above is equivalent to
that describing the dynamics of vortices. In the moduli space approximation [96], moduli
parameters are promoted to slowly varying functions of time t

ϕA → ϕA(t) (B.54)

The physical fields Qi and Aiz̄ depend on t only through the moduli parameters

Qi = Qsol
i (z, z̄, ϕA(t), ϕ̄A(t)), Aiz̄ = Ai,sol

z̄ (z, z̄, ϕA(t), ϕ̄A(t)). (B.55)

The gauge potentials Ait are given by eq. (2.45), for which the linearized equations of motion
are satisfied. By substituting these approximations to the original action, we obtain the
fowlloing terms form the kinetic term:

∫
d2x

L∑
i=1

Tr
[
DtQiDtQ

†
i + 4

g2
i

F itzF
i
tz̄

]
= gAB̄

dϕA

dt

dϕ̄B̄

dt
, (B.56)

where gAB̄ is the Kähler metric defined in eq. (B.53). Note that this equation show that
the metric defined in eq. (B.53) is positive definite. The coincidence of the two different
definitions of the metric gAB̄ is not accidental, but is due to the supersymmetry behind
the system as shown in [97].

Large coupling limit. In the large coupling limit gi → ∞ for all i, the Kähler potential
becomes

lim
gi→∞

Kvtx =
∫
DR

d2x
L∑
i=1

ri log det(ξi(z)ξi(z)†) + const., (B.57)
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since det Ωi ∼ log det(ξi(z)ξi(z)†) in this limit. This result is consistent with the moduli
space approximation for instantons in the sigma models. Note that the above quantity
diverges and thus a divergent constants must be subtracted to obtain a finite quantity by
introducing IR cut-off R and using Kähler transformation. It is convenient to decompose
the integrand into the two parts as

log det(ξi(z)ξi(z)†) = log | detDi(z)|2 + log det
(
1Ni + φi(z)φi(z)†

)
, (B.58)

where we have used Di(z)−1ξi(z) = (1Ni , φi(z)), and φi(z) is an instanton solution. These
two terms are calculated separately in the subsequent paragraphs.

Position moduli for vortices. At first glance, the contribution from the first term may
seem to disappear since it can be cancelled by a Kähler transformation. However, after the
regularization, careful calculations lead to the following important term

∫
DR

d2x ri log | detDi(z)|2 = kiπriR
2 log R

2

e
+ πri

ki∑
α=1

|z(i,α)|2 (B.59)

where {z(i,α)} are zeros of detDi(z). Here, the translational invariance is broken due to the
regularization. Note that since 2πri is the tension (mass) of a vortex, the second term in
the r.h.s. of the above equation gives the (dominant parts of) kinetic terms of the position
moduli {z(i,α)}, whereas the first term is divergent in the limit of R → ∞ and eliminated
by the Kähler transformation. It should be noted that this contribution cannot be ignored
even in the sigma model.

Non-normalizable moduli. The contribution from the second term gives the following
divergent term in the limit of R = ∞∫

DR

d2x ri log det
(
1Ni + φi(z)φi(z)†

)
= πriTr[Φnon

i (Φnon
i )†] logR+ O

(
(R)0

)
, (B.60)

where an Ni-by-(N − Ni) matrix Φnon
i ≡ ΨiΨ̃i appears in the dominant term of φi(z) for

large |z| as

φi(z) = Di(z)−1D̃i(z) = Ψi(z1ki
− Zi)−1Ψ̃i = 1

z
ΨiΨ̃i + O

( 1
z2

)
, (B.61)

where we used the half ADHM data {Zi,Ψi, Ψ̃i} discussed in section 4. The above divergent
term can not be eliminated by a Kähler transformation and gives a divergent kinetic terms
for Φnon

i . Thus, the entries of Φnon
i are non-normalizable moduli. Intuitively, this divergence

is due to the fact that there is no mass gap in the bulk and any fluctuations of Φnon
i excite

zero modes in the bulk where the moduli approximation is invalid. To describe the dynamics
of these moduli, we need to go back to the full field equation.

C Coordinate patches of moduli space for local votices

In this appendix, we present more details of the vortex moduli space. We show the equivalence
of the two expressions of the vortex moduli space: one is written in terms of the moduli
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matrix (3.25) and the other is written in terms of the half ADHM data (4.42). In particular,
we focus on the L = 1, N = n case where the two expressions of the vortex moduli space
take the forms (see below for more precise definitions)

M ≡ {D(z)| detD(z) = O(zk)}/V -trf. (C.1)
M̃ ≡ {(Z,Ψ)|{Z,Ψ} on which GL(k,C) action is free }/GL(k,C). (C.2)

We will show that both of these two spaces correspond to the vortex moduli space Mvtx
n,0
k

in the U(n) gauge theory with n flavors. The space Mvtx
n,0
k can also be viewed as the local

vortex moduli subspace in the total moduli space Mvtx
n,N−n
k for a general flavor number

N ≥ n. Once the equivalence of the local vortex moduli subspace is shown, the equivalence
of the total moduli space immediately follows.25 Hence, we focus on the local vortex moduli
subspace. The equivalence the two spaces above play a fundamental and important role also
in the general case with L ≥ 1, where the moduli space can be viewed as a set of L copies
of the L = 1 moduli space subject to the additional conditions.

C.1 Moduli space M of moduli matrix D(z)

Let Cn,k[z] denote the set of n-by-n matrices with polynomial entries whose determinants
are degree k polynomials. The definition of the moduli space (3.35) can be rephrased as

M ≡ Cn,k[z]/Cn,0[z] = Cn,k[z]/ ∼, (C.3)

where the equivalence relation “∼” for D(z), D′(z) ∈ Cn,k[z] is defined as

D(z) ∼ D′(z) ⇐⇒ ∃V (z) ∈ Cn,0[z] such that D′(z) = V (z)D(z). (C.4)

In this subsection, we provide some details on the coordinates of the moduli space.

C.1.1 Atlas {(ϕλ, Mλ)} of M

For a given set of non-negative integers λ = (l1, l2, · · · , ln) such that l1 + · · · + ln = k, let
Mλ be the space of matrices of the form

Dλ(z) ≡


zl1

. . .

zln

−


P 11 · · · P 1n

...
. . .

...

Pn1 · · · Pnn

, P ab =
lb∑

m=1
T abm z

m−1. (C.5)

Note that if two matrices of the form (C.5) are V -equivalent Dλ(z) ∼ D′
λ(z), it follows that

they are actually identical matrices Dλ(z) = D′
λ(z). This is because if a V -equivalent pair

D(z) and D′(z) have the same leading order behavior as (C.5), the V -transformation relating
the pair V (z) = D′(z)D(z)−1 behaves as V (z) = 1n + O(z−1) for large |z| and hence its
regularity implies that V (z) = D′(z)D(z)−1 = 1n. Therefore, each element of Mλ specifies a

25The total moduli space Mvtx
n,N−n
k has additional directions described by D̃(z) and Ψ̃, which are fibered

over the local vortex moduli subspace. The equivalence such fiber directions in (3.25) and (4.42) follows from
the one-to-one relation D̃(z) = J(z)Ψ̃.
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distinct V -equivalence class and hence Mλ can be viewed as a subspace of M. The local
coordinate system on the coordinate patch (chart) Mλ with λ = (l1, · · · , ln) is given by

ϕλ(Mλ) ≃
{
T abm

∣∣ 1 ≤ a, b ≤ n, 1 ≤ m ≤ lb
}

≃ Ckn, (C.6)

where T abm are coefficients of the polynomials P ab(z). Two coordinate patches Mλ and Mλ′

with λ ̸= λ′ are glued by the coordinate transformation τλ′,λ = ϕλ′ ◦ ϕ−1
λ which can be read

off from the V -transformation relating Dλ(z) ∈ Mλ and Dλ′(z) ∈ Mλ′ :

Dλ′(z) = Vλ′,λ(z)Dλ(z), Vλ′,λ(z) ∈ Cn,0[z], (C.7)

the explicit form of the coordinate transformation can be determined by requiring that all
the entries of Vλ′,λ(z) = Dλ′(z)Dλ(z)−1 are regular. Gluing all the coordinate patches Mλ,
we obtain a complex manifold

M′ =
⋃
λ∈Λ

Mλ with Λ =
{

(l1, l2, · · · , ln)
∣∣∣∣ la ∈ Z≥0,

n∑
a=1

la = k

}
. (C.8)

This is a submanifold of M (M′ ⊆ M), since Mλ ⊂ M for all λ ∈ Λ. In subsection C.1.2,
we show that M can be decomposed into a disjoint union of subspaces Mtri

λ such that
Mtri

λ ⊂ Mλ. This fact implies that M is a subspace of M′:

M =
⊔
λ∈Λ

Mtri
λ ⊆

⋃
λ∈Λ

Mλ = M′. (C.9)

Since M′ ⊆ M and M′ ⊇ M, we conclude that M = M′ and {(ϕλ,Mλ)} gives an atlas of M.

C.1.2 Decomposition into disjoint union

Here we show the decomposition of the moduli space M into a disjoint union of subspaces
Mtri

λ such that Mtri
λ ⊂ Mλ, which we have used to show that M′ ⊇ M. The moduli space M

is the space of the V -equivalence classes of the matrix D(z). We can pick up a representative
in each V -equivalence class by fixing the “gauge redundancy” of the V -transformation (C.4)
in the following way. Here we focus on the case of n = 2 for simplicity. Let D(z) be a
generic element in C2,k[z]

D(z) =
(
f(z) h(z)
g(z) i(z)

)
∈ C2,k[z], (C.10)

where f(z), g(z), h(z) and i(z) are polynomials. Using the Euclidean algorithm (Bézout’s
identity), we can show that there exist polynomials f̃(z) and g̃(z) such that

f(z)f̃(z) + g(z)g̃(z) = p(z), (C.11)

where p(z) is the polynomial greatest common divisor of f(z) and g(z). Using f̃(z), g̃(z)
and p(z), we can construct V(z) ∈ C2,0[z] with which D(z) is transformed into an upper
triangular form

D(z) → V(z)D(z) =
(

f̃(z) g̃(z)
−qg(z) qf (z)

)(
f(z) h(z)
g(z) i(z)

)
=
(
p(z) h′(z)

0 i′(z)

)
, (C.12)
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where qf (z) and qg(z) are the polynomials defined by f(z) = qf (z)p(z) and g(z) = qg(z)p(z).
Note that f̃(z) and g̃(z) are not unique, that is, we can further multiply another V -
transformation without changing the upper-triangular form

V(z)D(z) → V ′(z)V(z)D(z) =
(
a1 j(z)
0 a2

)(
p(z) h′(z)

0 i′(z)

)
, (C.13)

where a1 and a2 are constants and j(z) is a polynomial. This redundancy can be fixed
by requiring that the diagonal entries are monic polynomials and minimizing the degree
of the upper-right element

V ′(z)V(z)D(z) =
(
zl1 0
0 zl2

)
+
(
P11(z) P12(z)

0 P22(z)

)
, (C.14)

where li (i = 1, 2) are the degrees of the diagonal engries (l1 = deg p(z), l2 = deg i′(z))
and Pab (1 ≤ a ≤ b ≤ 2) are polynomials of degree less than lb. In each V-equivalence
class, the form (C.14) is unique and hence the gauge redundancy is completely fixed. This
procedure can be generalized to the case of general n; for any D(z) ∈ Cn,k[z], we can find
V(z) ∈ Cn,0[z] such that

D(z) → V(z)D(z) = Dtri
λ (z) =


zl1

zl2

. . .

zln

−


P11 P12 · · · P1n

0 P22
. . .

...
...

. . .
. . . Pn−1,n

0 · · · 0 Pnn

, (C.15)

where λ = (l1, l2, · · · , ln) is a set of non-negative integers such that l1 + · · · + ln = k and
Pab(z) (1 ≤ a ≤ b ≤ n) are polynomials of degree less than lb. Since any V-equivalence class
has a unique representative of the form (C.15), the moduli space (C.19) can be decomposed
into the disjoint union of the subspaces

M =
⊔
λ∈Λ

Mtri
λ , (C.16)

where Mtri
λ are the sets of matrices Dtri

λ (z) of the form (C.15) specified by the set of
non-negative integers λ = (l1, · · · , ln). Note that there is no overlap between them, i.e.
Mtri

λ ∩ Mtri
λ′ = ∅ for λ ̸= λ′. Since the form of the matrix (C.15) is a special case of (C.5), it

follows that Mtri
λ is a subspace of Mλ. Therefore, we conclude that M is a subspace of M′

M =
⊔
λ∈Λ

Mtri
λ ⊆

⋃
λ∈Λ

Mλ = M′. (C.17)

C.1.3 Matrices with non-polynomial entries

So far, entries of the matrices D(z) and V(z) are assumed to be polynomials for simplicity.
Strictly speaking, the most general solution can have arbitrary entire functions of z ∈ C as
their entries. That is, D(z) and V(z) are not necessarily elements of Cn,k[z] and Cn,0[z] but
they can be elements of larger spaces Gn,k[z] and Gn,0[z]:

D(z) ∈ Gn,k[z], V(z) ∈ Gn,0[z], (C.18)

where Gn,k[z] are the space of maps from the complex z-plane C to the space of n-by-n square
matrices that have the following properties
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• If X(z) ∈ Gn,k[z], all the entries of X(z) are entire functions of z ∈ C (∂z̄X(z) = 0),

• If X(z) ∈ Gn,k[z], detX(z) has k zeros on C and rankX(z) = n except at the zeros of
detX(z).

It worth noting that Gn,0[z] forms a group under matrix multiplication.26

Definition of MG. We define the space MG as

MG ≡ Gn,k[z]/Gn,0[z] = Gn,k[z]/ ∼, (C.19)

where the equivalence relation “∼” for elements D(z) and D′(z) in Gn,k[z] is defined by

D(z) ∼ D′(z) ⇐⇒ ∃V (z) ∈ Gn,0[z] such that D′(z) = V (z)D(z). (C.20)

Replacing Gn,k[z] with the subspace Cn,k[z] ⊂ Gn,k[z] consisting of matrices with polynomial
entries, we can go back to the definition of the moduli space M given in (C.3). Although (C.19)
is the most general definition of the moduli space, it actually gives the same space as (C.3),
that is, MG = M. Therefore, we can use the simpler definition of the moduli space M based
on the space of matrices with polynomial entries Cn,k[z].

To see that MG = M, let us show that any matrix D(z) ∈ Gn,k[z] can be fixed
into the upper-triangular form (C.15) with polynomial entries by an element of the V -
transformation V(z) ∈ Gn,0[z]. We will use the following two theorems, which will be proven
in subsections C.1.4 and C.1.5:

Theorem C.1. Let (f(z), g(z)) an arbitrary pair of entire functions. If g(z) has m zeros,
then, there is a pair of a polynomial p(z) of degree less than m and an entire function h(z)
such that,

f(z) = p(z) + h(z)g(z). (C.21)

Theorem C.2. For a pair of entire functions (f(z), g(z)), there is an element V (z) of G2,0[z]
such that

∃V (z) ∈ G2,0[z], ∃p(z), V (z)
(
f(z)
g(z)

)
=
(
p(z)

0

)
, (C.22)

where p(z) is a certain entire function whose a set of zeros is the intersection of those of
f(z) and g(z) including their multiplicities. In particular, the first row of the above equation
indicates that their is a pair of entire functions, (f̃(z), g̃(z)) such that

f(z)f̃(z) + g(z)g̃(z) = p(z). (C.23)
26For general integers p ≥ 0 and q ≥ 0, multiplication of elements of Gn,p[z] and Gn,q[z] defines a map

Gn,p[z] × Gn,q[z] → Gn,p+q[z]

(X(z), Y (z)) ∈ Gn,p[z] × Gn,q[z] 7→ X(z) Y (z) ∈ Gn,p+q[z].
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Decomposition into disjoint union. Replacing the polynomials in subsubsection C.1.2
with entire functions and using Theorems C.1 and C.2, we can show that MG can be
decomposed into the disjoint union of Mtri

λ . We again focus on the case of n = 2 for simplicity.
Let D(z) be a generic element in G2,k[z]

D(z) =
(
f(z) h(z)
g(z) i(z)

)
∈ G2,k[z], (C.24)

where f(z), g(z), h(z) and i(z) are entire functions. Using Theorem C.2, we can find f̃(z), g̃(z)
and p(z) satisfying eq. (C.23). Using such f̃(z), g̃(z) and p(z) we can construct V(z) ∈ G2,0[z]
with which D(z) is transformed into an upper triangular form

D(z) → V(z)D(z) =
(

f̃(z) g̃(z)
−qg(z) qf (z)

)(
f(z) h(z)
g(z) i(z)

)
=
(
p(z) h′(z)

0 i′(z)

)
, (C.25)

where qf (z) and qg(z) are the entire functions defined by f(z) = qf (z)p(z) and g(z) =
qg(z)p(z). Note that p(z) and i′(z) have finite number of zeros since D(z) ∈ Gn,k[z] with
finite k. The functions f̃(z) and g̃(z) are not unique, that is, we can further multiply another
V -transformation without changing the upper-triangular form

V(z)D(z) → V ′(z)V(z)D(z) =
(
a1(z) j(z)

0 a2(z)

)(
p(z) h′(z)

0 i′(z)

)
, (C.26)

where j(z) is an arbitrary entire functions and a1(z), a2(z) are entire functions without zero.
This redundancy can be fixed by requiring that the diagonal entries are monic polynomials
and fixing the upper-right element to be the minimum degree polynomial using Theorem C.1

V ′(z)V(z)D(z) =
(
zl1 0
0 zl2

)
+
(
P11(z) P12(z)

0 P22(z)

)
, (C.27)

where li (i = 1, 2) are the numbers of zeros of the diagonal engries and Pab (1 ≤ a ≤ b ≤ 2)
are polynomials of degree less than lb. In each V-equivalence class, the form (C.27) is unique
and hence the gauge redundancy is completely fixed. This procedure can be generalized
to the case of general n

D(z) → V(z)D(z) = Dtri
λ (z) =


zl1

zl2

. . .

zln

−


P11 P12 · · · P1n

0 P22
. . .

...
...

. . .
. . . Pn−1,n

0 · · · 0 Pnn

, (C.28)

where λ = (l1, l2, · · · , ln) is a set of non-negative integers such that l1 + · · · + ln = k and
Pab(z) (1 ≤ a ≤ b ≤ n) are polynomials of degree less than lb. Since any V-equivalence class
has a unique representative of the form (C.28), the moduli space (C.19) can be decomposed
into the disjoint union in a similar way as M

MG =
⊔
λ∈Λ

Mtri
λ , (C.29)

where Mtri
λ are the sets of matrices Dtri

λ (z) of the form (C.15) specified by the set of non-
negative integers λ = (l1, · · · , ln).
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The decomposition implies that MG is a subspace of M′ defined in eq. (C.8)

MG =
⊔
λ∈Λ

Mtri
λ ⊆

⋃
λ∈Λ

Mλ = M′. (C.30)

On the other hand, M′ is obviously a submanifold of MG . Therefore, MG = M′ and hence
definition of the moduli space M = M′ defined in terms of polynomials and MG defined
in terms of entire functions are equivalent.

C.1.4 Proof of Theorem C.1

In the previous subsection we have used Theorem C.1 to show that D(z) can always be fixed
as (C.15). Here we give the proof of the theorem.

Theorem C.1. Let (f(z), g(z)) an arbitrary pair of entire functions on C. If g(z) has
m zeros, then, there is a pair of a polynomial p(z) of degree less than m and an entire
function h(z) such that,

f(z) = p(z) + h(z)g(z). (C.31)

Proof. We first assume that g(z) is a polynomial of degree m. Suppose z = a is a zero of g(z)
with multiplicity la. Let pa(z) be the polynomial related to the principal part of the Laurent
series of f(z)/g(z) at z = a as

f(z)
g(z) = 1

(z − a)la pa(z) + regular term. (C.32)

Using pa(z) defined for the all zeros of g(z), we can define an entire function h(z) as

h(z) ≡ f(z)
g(z) −

∑
a∈Z(g)

pa(z)
(z − a)la , (C.33)

where Z(g) denotes the set of zeros of g(z). Multiplying g(z) to the both sides of the above,
we find that

f(z) = h(z)g(z) + p(z), (C.34)

where p(z) is given by

p(z) =
∑

a∈Z(g)
pa(z)

g(z)
(z − a)la . (C.35)

Note that p(z) is the polynomial of degree less than m

p(z) =
∑
a

la∑
n=1

f (n−1)(a)
(n− 1)! ea,n(z) (C.36)

where {ea,n} is the basis of polynomials of degree less than m defined by

ea,n(z) =
la−n∑
q=0

1
q!∂

q
z

[
(z − a)la
g(z)

]
z=a

× (z − a)q+n−1−lag(z), n = 1, · · · , la. (C.37)
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If g(z) is not a polynomial but a generic entire function with m zeros, there exists a
polynomial g̃(z) of degree m and a entire function X(z) such that g(z) = eX(z)g̃(z). As shown
above, there exist a polynomial p(z) of degree less than m and a entire function h̃(z) such
that f(z) = h̃(z)g̃(z) + p(z). Writing h(z) = h̃(z)e−X(z), we find that

f(z) = h(z)g(z) + p(z). (C.38)

C.1.5 Proof of Theorem C.2

To prove Theorem C.2, let us first show the following lemma

Lemma C.1. If (f(z), g(z)) is a pair of entire functions of z which have no common zero,
then there is a pair of entire functions, (f̃(z), g̃(z)) such that

f(z)f̃(z) + g(z)g̃(z) = 1. (C.39)

Proof. Let Af = {an|n ∈ N} and Ag = {bn|n ∈ N} be the ordered sets of zeros of f(z) and
g(z), respectively. According to Mittag-Leffler’s theorem, we can construct a function hf (z)
such that the set of poles of hf (z) is in one-to-one correspondence with the set of zeros of
f(z), and the principal part at z = an ∈ Af is Pan(z)

hf (z) = Pan(z) + { terms regular at z = an }, ∀an ∈ Af , (C.40)

where Pa(z) is the principal part of the function h(z) = (f(z)g(z))−1 at z = a ∈ Af ∪Ag

h(z) = 1
f(z)g(z) = Pa(z) + { terms regular at z = a }. (C.41)

Similarly, we can construct a function hg(z). The, the function r(z) defined by

r(z) ≡ h(z) − hf (z) − hg(z) (C.42)

is an entire function since the set of poles of h(z) is Af ∪ Ag and all the poles in the r.h.s.
are exactly cancelled. In addition, the following two functions are also entire functions:

f̃(z) ≡ g(z)(hg(z) + r(z)), g̃(z) ≡ f(z)hf (z) (C.43)

where all poles of hf (z) and hg(z) are cancelled with the corresponding zeros of f(z) and
g(z), respectively. By multiplying h(z)−1 = f(z)g(z) to the both side of eq. (C.42), we find
that

1 = f(z)f̃(z) + g(z)g̃(z). (C.44)

Here the pair (f̃(z), g̃(z)) constructed above is not the general solution but a special solution.
Different point sequences A′

f and A′
g obtained by switching the order infinitely many times

can give a different solution.
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As an example, let us consider (f(z), g(z)) = (sin3(z), cos(z)), hf (z). The functions
hf (z), hg(z) and r(z) are given by

hf (z) = 1
z3 + 1

z
+

∞∑
n=1

(
1

(z−nπ)3 + 1
z−nπ

+ 1
(z+nπ)3 + 1

z+nπ

)
= 1

tanz

(
1+ 1

sin2 z

)
,

hg(z) = −
∞∑
n=1

(
1

z−
(
n− 1

2

)
π

+ 1
z+
(
n− 1

2

)
π

)
= tanz, r(z) = 1

sin3(z)cos(z) −hf (z)−hg(z) = 0,

(C.45)

and thus a special solution of (f̃(z), g̃(z)) is given as

f̃(z) = cos(z)hg(z) = sin(z), g̃(z) = sin3(z)hf (z) = cos(z)(1 + sin2(z)). (C.46)

Theorem C.2. For a pair of entire functions (f(z), g(z)), there is an element V (z) of
G2,0[z] such that

∃V (z) ∈ G2,0[z], ∃p(z), V (z)
(
f(z)
g(z)

)
=
(
p(z)

0

)
, (C.47)

where p(z) is a certain entire function whose set of zeros is the intersection of those of f(z)
and g(z) including their multiplicities. In particular, the first row of the above equation
indicates that their is a pair of entire functions, (f̃(z), g̃(z)) such that

f(z)f̃(z) + g(z)g̃(z) = p(z). (C.48)

Proof. Let A(f, g) be an intersection of sets of zeros of f(z) and g(z) including their multi-
plicities. According to Weierstrass factorization theorem, there exists an entire function p(z)
whose set of zeros is A(f, g). Then, functions f0(z) and g0(z) defined by

f0(z) ≡ f(z)
p(z) , g0(z) ≡ g(z)

p(z) , (C.49)

are entire functions without common zero, and hence we can apply the above lemma to find
a pair of entire functions (f̃(z), g̃(z)) satisfying

f0(z)f̃(z) + g0(z)g̃(z) = 1 ⇒ f(z)f̃(z) + g(z)g̃(z) = p(z). (C.50)

Then, we can construct the matrix V (z) ∈ G2,0[z] satisfying (C.47) as

V (z) =
(
f̃(z) g̃(z)

−g0(z) f0(z)

)
. (C.51)

C.2 Moduli space M̃ of the half-ADHM data

In this subsection, we discuss the moduli space of the half-ADHM data, which is given by
the GL(N,C) quotient of the vector space of matrices {Z,Ψ}

M̃ ∼=
{

(Z,Ψ)
∣∣∣ {Z,Ψ} on which GL(k,C) action is free

}
/GL(k,C), (C.52)
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where Z k-by-k matrix and Ψ is a n-by-k matrix on which GL(k,C) acts

Z → g−1Zg, Ψ → Ψg. (C.53)

The condition that the GL(k,C) action is free means that there is no non-trivial g ∈ GL(k,C)
that fixes (Z,Ψ). To examine the moduli space M̃, it is convenient to rewrite the GL(k,C)
free condition as we show below.

C.2.1 Two expressions of GL(k,C) free condition

The moduli space of the half-ADHM data is the GL(k,C) quotient of the space of matrices
{Ψ, Z} on which the GL(k,C) action is free. There are two equivalent conditions for (Ψ, Z)
to be a pair of matrices on which GL(k,C) action is free:27

C1(Ψ, Z) : for X ∈ gl(k,C), ΨX = 0, [Z,X] = 0 ⇒ X = 0, (C.54)
C2(Ψ, Z) : for v⃗ ∈ Ck, ΨZav⃗ = 0 for a = 0, 1, . . . k − 1 ⇒ v⃗ = 0. (C.55)

To show the equivalence of these conditions, let us consider the inclusion relation between
the following two sets

F1 ≡
{
(Ψ, Z)

∣∣ C1(Ψ, Z)
}
, F2 ≡

{
(Ψ, Z)

∣∣ C2(Ψ, Z)
}
. (C.56)

Proof of F2 ⊆ F1. If ΨX = 0 and [Z,X] = 0 for X ∈ gl(k,C), it follows that ΨZaX = 0 for
a = 1, 2, · · · . For an element (Ψ, Z) ∈ F2, ΨZaX = 0 implies that X = 0 and hence

ΨX = 0, [Z,X] = 0 ⇒ ΨZaX = 0 for a = 1, 2, . . . ⇒ X = 0. (C.57)

This shows that (Ψ, Z) ∈ F2 ⇒ (Ψ, Z) ∈ F1, or equivalently F2 ⊆ F1.

Proof of F2 ⊇ F1. Here we prove that F2 ⊇ F1 by showing that F2 ⊆ F1, where F1 and
F2 are the complements of F1 and F2, respectively. To show F2 ⊆ F1, we show that
there exists a nontrivial X ∈ gl(k,C) satisfying ΨX = 0 and [Z,X] = 0 for any element
(Ψ, Z) ∈ F2 = {(Ψ, Z)}\F2. If (Ψ, Z) ∈ F2, there exist a set of l linearly independent column
vectors {v⃗p|p = 1, . . . , l ≤ k} satisfying ΨZav⃗p = 0 for all a ∈ Z≥0. After an appropriate
GL(k,C) transformation, therefore, ΨZa take the following form

ΨZa =
(
⋆
∣∣∣0k-by-l

)
for a = 0, 1, . . . , k − 1. (C.58)

Under this gauge choice, Z takes the following form

Z =
(
Z+ 0
W Z−

)
(C.59)

27It is convenient to rewrite the second condition, C2(Ψ, Z), as

∃v⃗ : a column vector , ∀z ∈ C, Ψ(z1n − Z)−1v⃗ = 0 ⇒ v⃗ = 0.
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where Z+ ∈ Mk−l,k−l, Z− ∈ Ml,l and W ∈ Ml,k−l (Mn,m: space of n-by-m matrices). Let h
be the endomorphism on Ml,k−l given by

h : B 7→ h(B) = Z−B −BZ+. (C.60)

If dim(Ker(h)) ̸= 0, then a non-trivial X ∈ gl(k,C) can be constructed as

X =
(

0 0
B0 0

)
with B0 ∈ Ker(h)\{0}. (C.61)

This non-trivial element X ∈ gl(k,C) satisfies

ΨX = 0, [Z,X] =
(

0 0
h(B0) 0

)
= 0. (C.62)

If dim(Ker(h)) = 0, a squared matrix X can be constructed by using the inverse map h−1.
For example,

X =
(

0 0
h−1(W ) 1

)
̸= 0 (C.63)

satisfies

ΨX = 0, [Z,X] =
(

0 0
Z−h

−1(W ) − h−1(W )Z+ −W 0

)
= 0. (C.64)

Therefore, we can always construct a nontrivial X ∈ gl(k,C) satisfying ΨX = 0 and [Z,X] = 0
for any element (Ψ, Z) ∈ F2. Thus we conclude that F2 ⊆ F1, that is, F2 ⊇ F1.

Combining these two facts, F1 ⊇ F2 and F2 ⊇ F1, we conclude that F1 = F2.

C.2.2 Atlas {(ϕ̃λ, M̃λ)} of M̃ from {Z, Ψ}

Using the spaces F1 or F2 given in eq. (C.56), we can rewrite the definition of the manifold M̃ as

M̃ ≡ F1/GL(k,C) = F2/GL(k,C). (C.65)

The atlas of this manifold is given as follows. Let Λ be the same index set Λ as that
given in eq. (C.8)

Λ =
{

(l1, l2, · · · , ln)
∣∣∣ la ∈ Z≥0,

n∑
a=1

la = k

}
. (C.66)

For λ ∈ Λ, let M̃λ be the subspace of M̃ given by the equivalence classes of the data
(Ψ, Z) of the form

Ψλ =

 ψ1
. . .

ψn

+

 Ψ11 · · · Ψ1n
...

. . .
...

Ψn1 · · · Ψnn

 , Zλ =

 Z1
. . .

Zn

+

 Z11 · · · Z1n
...

. . .
...

Zn1 · · · Znn

 ,
(C.67)
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where ψa are la-component row vectors, Ψab are lb-component row vectors, Za are la-by-la
matrices and Zab are la-by-lb matrices such that

(
ψa
Za

)
=

la
1
. . .

1
0 · · · 0

la+1,

(
Ψab

Zab

)
=

lb
0 · · · 0
...

. . .
...

0 · · · 0
Tab,1 · · · Tab,lb

la+1. (C.68)

To check that GL(k,C) action is free on (Ψ, Z) given above, it is convenient to map (Ψ, Z)
into the infinite dimensional Grassmannian G(k,∞) given by the set of an infinite number
of k-component row vectors constructed from the rows of ΨZp−1 with p ∈ N. As shown in
section C.2.1, the GL(k, C) action is free on (Ψ, Z) if and only if the image of the mapping
to G(k,∞) contains a bases of the k-dimensional vector space. Let us define k-component
row vectors {ea,p} as

ea,p ≡ the a-th row of ΨZp−1, a = 1, · · · , n, p = 1, · · · , k. (C.69)

From (Ψ, Z) given in eq. (C.68), we can construct the following (la+1)-by-k matrix for each a,
ea,1
...

ea,la
ea,la+1

 =

 0 · · · 0 1la 0 · · · 0

T⃗a,1 · · · T⃗a,a−1 T⃗a,a T⃗a,a+1 · · · T⃗a,n

 , (C.70)

with a lb-component row vector T⃗ab = (Tab,1, · · · , Tab,lb). By correcting the first la rows for
all a, we find the identity matrix

Eλ = 1k with Eλ ≡


ê1(l1)
ê2(l2)
...

ên(ln)

 and êa(m) ≡


ea,1
ea,2
...

ea,m

 (C.71)

which immediately indicate that the GL(k,C) action is free. All the moduli parameters in
(Ψ, Z) are contained in {ea,la+1 | a = 1, . . . , n} ≃ Ckn as ea,la+1 = (T⃗a,1 · · · T⃗a,n) and all the
entries are independent. Therefore, the local coordinate system on the coordinate patch
(chart) M̃λ with λ = (l1, · · · , ln) is given by

ϕ̃λ(M̃λ) ≃
{
T abm

∣∣ 1 ≤ a, b ≤ n, 1 ≤ m ≤ lb
}

≃ Ckn. (C.72)

The coordinate transformation to another patch M̃λ′ can be constructed by using the matrix
g ∈ GL(k,C) defined by

g = Eλ′ with λ′ = (l′1, l′2, · · · , l′n). (C.73)

Using the matrix g, we can read off the coordinate transformation f̃λ′λ = ϕ̃λ′ ◦ ϕ̃−1
λ from

the relation

(Ψ′, Z ′) = (Ψg−1, gZg−1) ∈ M̃λ ∩ M̃λ′ . (C.74)
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Gluing all the coordinate patches M̃λ, we obtain a complex manifold

M̃′ =
⋃
λ∈Λ

M̃λ, with Λ =
{

(l1, l2, · · · , ln)
∣∣∣ la ∈ Z≥0,

n∑
a=1

la = k

}
. (C.75)

This is a submanifold of M̃ since M̃λ ⊂ M̃ for all λ ∈ Λ. In subsection C.2.3, we show
that M̃ can be decomposed into a disjoint union of subspaces M̃tri

λ such that M̃tri
λ ⊂ M̃λ.

This fact implies that M̃ is a subspace of M̃′:

M̃ =
⊔
λ∈Λ

M̃tri
λ ⊆

⋃
λ∈Λ

M̃λ = M̃′. (C.76)

Since M̃′ ⊆ M̃ and M̃′ ⊇ M̃, we conclude that M̃ = M̃′ and {(ϕ̃λ,M̃λ)} gives an atlas of M̃.

C.2.3 Decomposition into disjoint union

Here, we show that M̃ can be decomposed into a disjoint union of subspaces M̃tri
λ such

that M̃tri
λ ⊂ M̃λ.

The manifold M̃ is the space of equivalent classes of the matrices [(Ψ, Z)] satisfying
the GL(k,C)-free condition (C.55). For each equivalence class, we can associate a set of
integers λ = (l1, l2, · · · , ln) as follows. Let (Ψ, Z) is an representative of a equivalence class
and ea,p be the k component row vectors defined by

ea,p ≡ the a-th row of ΨZp−1. (C.77)

Let Ṽa (a = 1, · · · , N) be the vector spaces spanned by eb,p with b = 1, · · · , a

Ṽa = span {eb,p | p ∈ N, b = 1, · · · , a} . (C.78)

These vector spaces form a flag

{0} = Ṽ0 ⊆ Ṽ1 ⊆ Ṽ2 ⊆ · · · ⊆ Ṽn. (C.79)

Then, we define la as

la = dimC Ṽa − dimC Ṽa−1. (C.80)

Since (Ψ, Z) satisfies the GL(k,C)-free condition (C.55), it follows that

dimC Ṽn = l1 + · · · ln = k. (C.81)

Since the set of integers λ = (l1, · · · , ln) is invariant under the GL(k,C) transformation, each
equivalent class [(Ψ, Z)] has unique λ. Therefore, M̃ can be decomposed into the disjoint
union of the spaces of equivalence classes M̃tri

λ classified by λ = (l1, · · · , ln)

M̃ =
⊔
λ∈Λ

M̃tri
λ . (C.82)

We can determine dimC Ṽa by constructing the basis of Ṽa. It can be obtained inductively
from the basis of Ṽa−1 by adding the vectors ea,1, · · · , ea,la . Here, la is the maximum number
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such that ea,la is linearly independent of {ea,1, · · · , ea,la−1} and any element of Ṽa−1, or
equivalently, la is the minimum number such that

ea,la+q ∈ Ṽa−1 ∪ span({ea,p | p = 1, · · · , la}) for q = 1, 2, · · · . (C.83)

Next, let us show that M̃tri
λ is a subspace of M̃λ. Let Eλ be the k-by-k matrix whose

row vectors are ea,p

Eλ ≡


ê1(l1)
ê2(l2)
...

ên(ln)

 with êa(m) ≡


ea,1
ea,2
...

ea,m

 (C.84)

Since Eλ is the basis of Ṽn ∼= Ck, there is an element of GL(k,C) such that

Eλ → Eλ g = 1k, g ∈ GL(k,C). (C.85)

After fixing the GL(k,C) redundancy as Eλ = 1k, ea,p take the form
ea,1
...

ea,la
ea,la+1

 =

 0 · · · 0 1la 0 · · · 0

T⃗a,1 · · · T⃗a,a−1 T⃗a,a 0 · · · 0

 , (C.86)

where “0”s in ea,la+1 are due to the property in eq. (C.83). From the above set of row vectors
{ea,p | a = 1, . . . , n; p = 1, . . . , la + 1}, the two matrices Ψ, Z can be reconstructed as

Ψ =


e1,1
e2,1
...

en,1

 , Z = EλZ =


ê1(l1)Z
ê2(l2)Z

...

ên(ln)Z

 with êa(la)Z =


ea,2
...

ea,la
ea,la+1

 . (C.87)

From these expression, we find that Ψ and Z take the block lower triangular form Ψ = Ψtri
λ

and Z = Ztri
λ with

Ψtri
λ =

 ψ1
. . .

ψn

+


Ψ11 0 · · · 0

Ψ21 Ψ22
. . .

...
...

. . . 0
Ψn1 · · · · · · Ψnn

 , Ztri
λ =

 Z1
. . .

Zn

+


Z11 0 · · · 0

Z21 Z22
. . .

...
...

. . . 0
Zn1 · · · · · · Znn

 ,
(C.88)

with ψa,Ψab, Za, Zab given in eq. (C.68). Since M̃tri
λ is the space of (Ψ, Z) of these forms, it

is a subspace of M̃λ, the space of matrices of the form (C.67)

M̃tri
λ ⊆ M̃λ. (C.89)

This fact implies that M̃ is a subspace of M̃′:

M̃ =
⊔
λ∈Λ

M̃tri
λ ⊆

⋃
λ∈Λ

M̃λ = M̃′. (C.90)

Since M̃′ ⊆ M̃ and M̃′ ⊇ M̃, we conclude that M̃ = M̃′ and {(ϕ̃λ,M̃λ)} gives an atlas of M̃.
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C.3 Equivalence of M and M̃

C.3.1 Mapping from Mλ to M̃λ through the half-ADHM mapping relation

Let us recapitulate how to extract the data (Ψ, Z) from D(z), J(z) through the half-ADHM
mapping relation. The half-ADHM mapping relation is given by

D(z)Ψ = J(z)(z1k − Z), (C.91)

which is covariant under both of the V transformation and GL(k,C) transformation. Therefore,
this relation defines a mapping between the equivalence classes [D(z)] ∈ M 7→ [(Ψ, Z)] ∈ M̃.
For a point in the λ = (l1, l2, · · · , ln)-patch of M, where D(z) takes the form (C.5), the
corresponding matrix J(z) is given by

Jλ(z) =


j1

. . .

jn

+


J11 · · · J1n
...

. . .
...

Jn1 · · · Jnn

 , (C.92)

where ja and Jab are the following block matrices (row vectors with la and lb components,
respectively)

ja =
(
zla−1,zla−2, · · · ,1

)
, Jab = −

(
lb−1∑
m=1

Tab,m+1z
m−1 ,

lb−2∑
m=1

Tab,m+2z
m−1 , · · · , Tab,lb

, 0
)
.

(C.93)
Since J(z) also depends on the gauge choice of GL(k,C), taking J(z) in this form implicitly
means that we have chosen a certain coordinate patch for M̃. Noting that Jab satisfies
the relation

zJab = −Pab(1, 0, · · · , 0) + (Tab,1, Tab,2, · · · , Tab,lb) + Jab


0 1
...

. . .
0 1
0 · · · · · · 0

 , (C.94)

we can read off (Ψ, Z) from the half-ADHM mapping relation (C.91) and the resulting
(Ψ, Z) turns out to be exactly equal to those of ϕ̃λ(M̃λ) given in eq. (C.67). Therefore the
half-ADHM mapping relation defines a one-to-one map between the coordinate patches

iλ : ϕλ(Mλ) 7→ ϕ̃λ(M̃λ), (C.95)
ϕ̃−1
λ ◦ iλ ◦ ϕλ : Mλ → M̃λ (C.96)

for all λ ∈ Λ. Furthermore, since the half-ADHM mapping relation is covariant under the V -
transformation D′(z) = V (z)D(z) and the GL(k,C) transformation, (Ψ′, Z ′) = (Ψg, g−1Zg)
as

D(z)Ψ = J(z)(z1−Z) ⇒ D′(z)Ψ′ = J′(z)(z1−Z ′), with J′(z) =V (z)J(z)g, (C.97)

we find that the following diagram commutes: for λ, λ′ ∈ Λ, λ ̸= λ′,

D(z) ∈ ϕλ(Mλ ∩ Mλ′) iλ→ (Ψ, Z) ∈ ϕ̃λ(M̃λ ∩ M̃λ′)
fλ′λ = ϕλ′ ◦ ϕ−1

λ ↓ ↓ f̃λ′λ = ϕ̃λ′ ◦ ϕ̃−1
λ

D′(z) ∈ ϕλ(Mλ ∩ Mλ′) iλ′→ (Ψ′, Z ′) ∈ ϕ̃λ′(M̃λ ∩ M̃λ′) (C.98)
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This fact indicates that two different maps iλ, iλ′ with the domain Mλ ∩ Mλ′ are consistent

ϕ̃−1
λ ◦ iλ ◦ ϕλ = ϕ̃−1

λ′ ◦ iλ′ ◦ ϕλ′ : Mλ ∩ Mλ′ → M̃λ ∩ M̃λ′ (C.99)

and the transition function f̃λ′λ on the manifold M̃ induced by the GL(k,C) transformation
is consistent with fλ′λ on the manifold M induced by the V -transformation,

f̃λ′λ = iλ′ ◦ fλ′λ ◦ i−1
λ : ϕ̃λ(M̃λ ∩ M̃λ′) → ϕ̃λ′(M̃λ ∩ M̃λ′). (C.100)

Therefore, we conclude that the two complex manifolds M and M̃ are biholomorphically
equivalent

M ≃ M̃, (C.101)

and the ADHM relation defines the unique one-to-one map between them.

C.3.2 Examples

Let us see an example in the case of k = 2 and n = 2. In the (2, 0) patch (λ = (2, 0)), the
matrix D(z) and the corresponding matrix J(z) are given by (see eqs. (C.5) and (C.92))

D(2,0)(z) =
(
z2 − a2z − a1 0

−b2z − b1 1

)
, J(2,0)(z) =

(
z − a2 1
−b2 0

)
. (C.102)

From the half-ADHM mapping relation, the data (Z,Ψ) can be read off as

Ψ(2,0) =
(

1 0
b1 b2

)
, Z(2,0) =

(
0 1
a1 a2

)
. (C.103)

These matrices correspond to those in eq. (C.67) with

ψ1 =
(

1 0
)
, Ψ11 =

(
0 0

)
, Ψ21 =

(
b1 b2

)
, Z1 =

(
0 1
0 0

)
, Z11 =

(
0 0
a1 a2

)
.

(C.104)
One can move to the (1, 1) patch (λ = (1, 1)) by performing the transformation

D(1,1)(z) = V (z)D(2,0)(z), J(1,1)(z) = V (z)J(2,0)(z)g, V (z) =
(

0 −v
b2 z − ũ

)
,

(C.105)
as

D(1,1)(z) =
(
z − u −v
−ṽ z − ũ

)
, J(1,1)(z) =

(
1 0
0 1

)
, (C.106)

where

u = −b1
b2
, ũ = a2 + b1

b2
, v = 1

b2
, ṽ = a1b2 − b1

(
a2 + b1

b2

)
. (C.107)

The corresponding half-ADHM data are given by

Ψ(1,1) =
(

1 0
0 1

)
, Z(1,1) =

(
u v

ṽ ũ

)
. (C.108)
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These matrices correspond to those in eq. (C.67) with

ψ1 = ψ2 = 1, Ψij = 0, Zi = 0 (i = 1, 2), Z11 = u, Z12 = v, Z21 = ṽ, Z22 = ũ.

(C.109)
These data in the (1, 1) patch is related to that (2, 0) patch by a GL(2,C) transformation

Ψ(1,1) = Ψ(2,0)g, Z(1,1) = g−1Z(2,0)g, g =
(

1 0
u v

)
∈ GL(2,C). (C.110)

Similarly, we can show that the data (0, 2) patch is also related to (Z(2,0),Ψ(2,0)) and
(Z(1,1),Ψ(1,1)) by GL(2,C) transformation.

D Condition of non-singular instanton solution

In this appendix, we discuss the condition for ξ(z) and (Z,Ψ, Ψ̃) to be the data for non-singular
sigma model instanton solutions. Throughout this section, we focus on the L = 1 case.

D.1 Local-semilocal decomposition

Let us define the moduli space of semi-local vortices Msemi
n,m
k as the following subspace

of the moduli space of vortices Mvtx
n,m
k

Msemi
n,m
k ≡

{
[ξ(z)] ∈ Mvtx

n,m
k

∣∣ rank(ξ(z)) = n for ∀z ∈ C
}

⊂ Mvtx
n,m
k . (D.1)

In this subsection, we prove four lemmas D.1–D.4 which will be used in the later subsections.

Lemma D.1. Any matrix ξ(z) such that [ξ(z)] ∈ Mvtx
n,m
k can be decomposed as

ξ(z) = Dlc(z) ξsm(z) with Dlc(z) ∈ Gn,k−l[z] and [ξsm(z)] ∈ Msemi
n,m
l (D.2)

where l is an integer such that 0 ≤ l ≤ k.

Proof of Lemma D.1. Applying the method used in section C.1 to the rows of ξ(z) =
(D(z), D̃(z)) instead of columns, we can find matrices V (z) ∈ Gn+m,0[z] and Dlc(z) ∈
Gn,l[z] (0 ≤ l ≤ k) such that

ξ(z) = (Dlc(z),0)V (z). (D.3)

Then, this matrix ξ(z) can be rewritten as

ξ(z) = Dlc(z) ξsm(z) with ξsm(z) = (1n,0)V (z). (D.4)

Since detV (z) ̸= 0 for all z ∈ C, it follows that rank(ξsm(z)) = n for all z ∈ C and hence
[ξsm(z)] ∈ Msemi

n,m
k−l .

Note that the decomposition is not unique since the following transformation does not
change the matrix ξ(z)

Dlc(z) → Dlc(z)V ′(z)−1, ξsm(z) → V ′(z)ξsm(z) with V ′(z) ∈ Gn,0[z]. (D.5)

We can show the equivalence class [ξsm(z)] is unique.
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Lemma D.2. The decomposition in Lemma D.1 is unique up to V -equivalence relations (D.5).

Proof of Lemma D.2. Let us assume that [ξ(z)] ∈ Msemi
n,m
k is rewritten in the two different

ways as

ξ(z) = Dlc
1 (z)ξsm

1 (z) = Dlc
2 (z)ξsm

2 (z) with ξsm
i (z) = (1n,0)Vi(z) (i = 1, 2). (D.6)

The above equation can be rewritten as

(Dlc
1 (z),0) = (Dlc

2 (z),0)V2(z)V1(z)−1,
(
V2(z)V1(z)−1 ∈ Gn+m,0[z]

)
. (D.7)

This implies that V2(z)V1(z)−1 takes the form

V2(z)V1(z)−1 =
(
V12(z) 0

∗ ∗

)
, (D.8)

where V12(z) ∈ Gn,0[z] and ∗’s are undetermined entries. From this equation, we find that
Dlc

1 (z) = D2(z)lc V12(z) and hence ξsm
1 (z) and ξsm

2 (z) are related as

ξsm
1 (z) = V12(z)−1ξsm

2 (z). (D.9)

Therefore, the decomposition ξ(z) = Dlc(z)ξsm(z) defines an unique equivalent class
[ξsm(z)] ∈ Msemi

n,m
k .

Lemma D.3. Any element [ξsm(z)] ∈ Msemi
n,m
k can be written as

ξsm(z) = (1n,0)V (z) with V (z) ∈ Gn+m,0[z]. (D.10)

Proof of Lemma D.3. If detDlc(z) has a zero, then rank of ξ(z) decreases at that point. Equiv-
alently, if ξ(z) has the maximal rank everywhere ([ξ(z)] ∈ Msemi

n,m
k ), then detDlc(z) must

have no zero (Dlc(z) ∈ Gn,0[z]) and hence Dlc(z) can be absorbed by the V -transformation
V (z) ∈ Gn,0[z]. Therefore, for any [ξ(z)] ∈ Msemi

n,m
k , there is a representative ξ(z) of the form

ξ(z) = (1n,0)V (z). (D.11)

Lemma D.4. If two equivalent classes [ξi(z)] = [(Di(z), D̃i(z)] ∈ Msemi
n,m
ki

(i = 1, 2) satisfy

D−1
1 (z) D̃1(z) = D−1

2 (z) D̃2(z) or equivalently D−1
1 (z) ξ1(z) = D−1

2 (z) ξ2(z), (D.12)

then, they are equivalent

k1 = k2, [ξ1(z)] = [ξ2(z)]. (D.13)

Proof of Lemma D.4. By applying Lemma D.3 to [ξi(z)] ∈ Msemi
n,m
ki

, the assumption (D.12)
can be further rewritten as

D1(z)−1(1n,0)V1(z) = D2(z)−1(1n,0)V2(z). (D.14)

This equation can be rewritten as

D2(z)D1(z)−1(1n,0) = (1n,0)V2(z)V1(z)−1,
(
V2(z)V1(z)−1 ∈ Gn+m,0[z]

)
. (D.15)

Applying the same argument as Lemma D.2, we conclude that D2(z) = V12(z)D1(z) with
V12(z) ∈ Gn,0[z], and hence ξ2(z) = V (z)ξ1(z), which means that they belong to the same
equivalent class.
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D.2 Condition of semilocal vortices

For [ξ(z)] ∈ Mvtx
n,m
k , the condition that [ξ(z)] belongs to the semilocal vortex moduli

space Msemi
n,m
k is given by

Csemi(ξ(z)) : det ξ(z)ξ(z)† ̸= 0 for ∀z ∈ C. (D.16)

This condition on ξ(z) can be translated into the following condition on the corresponding
half-ADHM data (Z,Ψ, Ψ̃)

Cfree(Z, Ψ̃) : If ∃ v⃗ ∈ Ck (row vector) s.t. v⃗Zp−1Ψ̃ = 0 for ∀p ∈ N ⇒ v⃗ = 0. (D.17)

In this subsection, we prove the equivalence of the two conditions Csemi(ξ(z)) and Cfree(Z, Ψ̃).28

Theorem D.1. The conditions Csemi(ξ(z)) and Cfree(Z, Ψ̃) are equivalent.

Proof of Cfree(Z,Ψ̃) → Csemi(ξ(z)). Let us prove the contrapositive¬Csemi(ξ(z)) → ¬Cfree(Z,Ψ̃).
If [ξ(z)] ∈ Mvtx

n,m
k does not satisfy the condition Csemi(ξ(z)), then Lemma D.1 in appendix D.1

implies that the matrix ξ(z) can be decomposed as

ξ(z) = (D(z), D̃(z)) = Dlc(z)(Dsm(z), D̃sm(z)) = Dlc(z)ξsm(z), (D.18)

where the n-by-n matrices D(z),Dlc(z),Dsm(z) and the n-by-m matrices D̃(z), D̃sm(z) satisfy

detD(z) = O(zk), detDlc(z) = O(zl), detDsm(z) = O(zk′),
detD(z)−1D̃(z) = O(z−1), detDsm(z)−1D̃sm(z) = O(z−1), (D.19)

with a certain nonzero positive integer l > 0 and k′ = k − l ≥ 0. For these matrices, we can
obtain (Z,Ψ, Ψ̃), (Zlc,Ψlc) and (Zsm,Ψsm, Ψ̃sm) through the half-ADHM mapping relations

zJ(z) = D(z)Ψ + J(z)Z, D̃(z) = J(z)Ψ̃, (D.20)
zJlc(z) = Dlc(z)Ψlc + Jlc(z)Zlc, (D.21)
zJsm(z) = Dsm(z)Ψsm + Jsm(z)Zsm, D̃sm(z) = Jsm(z)Ψ̃sm, (D.22)

where J(z), Jlc(z) and Jsm(z) are matrices satisfying

D(z)−1J(z) = O(z−1), Dlc(z)−1Jlc(z) = O(z−1), Dsm(z)−1Jsm(z) = O(z−1). (D.23)

Note that the matrices are related as

D(z) = Dlc(z)Dsm(z), D̃(z) = Dlc(z)D̃sm(z). (D.24)

The matrix J(z) can always be chosen as

J(z) = (Jlc(z),Dlc(z)Jsm(z)). (D.25)

28The proof here is a more concise version of the one given in appendix C of [66].
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We can check the condition D(z)−1J(z) = O(z−1) as

D(z)−1Jlc(z) =Dsm(z)−1O(z−1) = O(z−1), D(z)−1Dlc(z)Jsm(z) =Dsm(z)−1Jsm(z) = O(z−1),
(D.26)

where we have used the transformation (D.5) to fix Dsm(z) to the form (C.5) so that it
satisfies Dsm(z)−1 = O(1). From the half-ADHM mapping relations eqs. (D.20)–(D.22) we
find that

zJ(z) = (zJlc(z),Dlc(z)(zJsm(z))) = (Dlc(z)Ψlc+Jlc(z)Zlc,Dlc(z)Dsm(z)Ψsm+Dlc(z)Jsm(z)Zsm).
(D.27)

Using the constant matrices PD
sm, P

J
sm defined by

1n = Dsm(z)PD
sm + Jsm(z)P J

sm. (D.28)

Eq. (D.27) can be further rewritten as

zJ(z) = Dlc(z)Dsm(z)(PD
smΨlc, Ψsm) + (Jlc(z),Dlc(z)Jsm(z))

(
Zlc 0

P J
smΨlc Zsm

)
. (D.29)

In addition, we find the following relation for D̃(z)

J(z)Ψ̃ = D̃(z) =Dlc(z)D̃sm(z) =Dlc(z)Jsm(z)Ψ̃sm = (Jlc(z),Dlc(z)Jsm(z))
(

0
Ψ̃sm

)
.

(D.30)

From eqs. (D.29) and (D.30), the half-ADHM data (Z,Ψ, Ψ̃) can be read off as

Ψ = (PD
smΨlc, Ψsm), Z =

(
Zlc 0

P J
smΨlc Zsm

)
, Ψ̃ =

(
0

Ψ̃sm

)
. (D.31)

Using these data, we find that

Zp−1Ψ̃ =
(

0
Zp−1

sm Ψ̃sm

)
, with p = 1, 2, · · · . (D.32)

From this expression, we find that there are nonzero row vectors such that v⃗Zp−1Ψ̃ = 0.
Therefore, we find that the contrapositive “¬ Csemi(ξ(z)) → ¬ Cfree(Z, Ψ̃)” is true and hence
the lemma “Cfree(Z, Ψ̃) → Csemi(ξ(z))” is also true.

Proof of Csemi(ξ(z)) → Cfree(Z,Ψ̃). Let us prove the contrapositive ¬Cfree(Z,Ψ̃) → ¬Csemi(ξ(z)).
If GL(k,C) does not freely act on (Z, Ψ̃), that is, there exists a certain non-zero row vector v⃗
satisfying

v⃗Zp−1Ψ̃ = 0 for ∀p ∈ N (¬ Cfree(Z, Ψ̃) is true), (D.33)

(Z,Ψ, Ψ̃) can be transformed by a GL(k,C) transf into the form

Ψ = (Ψlc,Ψsm), Z =
(
Zlc 0
Wls Zsm

)
, Ψ̃ =

(
0

Ψ̃sm

)
, (D.34)
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where Zsm,Ψsm and Ψ̃sm are k′-by-k′ (k′ < k), n-by-k′ and k′-by-m matrices, respectively.
The set of matrices (Zsm,Ψsm, Ψ̃sm) can be regarded as the half-ADHM data satisfying
Cfree(Zsm, Ψ̃sm) with a smaller vortex number k′(< k) since there is no k′-component column
vector v⃗ such that ΨsmZ

p−1
sm v⃗ = 0

ΨsmZ
p−1
sm v⃗ = 0 → ΨZp−1

(
0
v⃗

)
=
(

0
ΨsmZ

p−1
sm v⃗

)
= 0 → v⃗ = 0. (D.35)

According to the lemma “Cfree(Z, Ψ̃) → Csemi(ξ(z))” shown above, the condition Cfree(Zsm, Ψ̃sm)
immediately indicates that the equivalence class of the corresponding matrix [ξsm(z)] is an
element of Msemi

n,m
k′ . Furthermore, we can show that for ξsm(z) = (Dsm(z), D̃sm(z)) and

ξ = (D(z), D̃(z)) corresponding to (Z,Ψ, Ψ̃),

Dsm(z)−1D̃sm(z) = Ψsm(z1k′ − Zsm)−1Ψ̃sm = Ψ(z1k − Z)−1Ψ̃ = D(z)−1D̃(z), (D.36)

where we have used eqs. (D.20), (D.21) and the relation ΨZp−1Ψ̃ = ΨsmZ
p−1
sm Ψ̃sm which follows

from eq. (D.34). The relation Dsm(z)−1D̃sm(z) = D(z)−1D̃(z) implies that [ξ(z)] ̸∈ Msemi
n,m
k .

This is because if the opposite is true ([ξ(z)] ∈ Msemi
n,m
k ), Lemma D.4 implies that the

relation (D.36) leads to [ξ(z)] = [ξsm(z)] and k = k′, which is inconsistent with k′ < k. Thus,
we find that “¬ Cfree(Z, Ψ̃) → ¬ Csemi(ξ(z))”, and hence the lemma “Csemi(ξ(z)) → Cfree(Z, Ψ̃)”
is shown.

D.3 Instanton solutions in the Grassmannian sigma model

Any semilocal vortex solution becomes a instanton solution in the sigma model limit g → ∞.
In this subsection, we show that there is actually a one-to-one correspondence between the
semilocal vortex and instanton solutions.

Theorem D.2. Let φ = φ(z, z̄) be an n-by-m matrix valued field (inhomogeneous coordinates
of G(n, n+m)) on the base space C. If φ satisfies the BPS instanton equation

∂z̄φ(z, z̄) = 0, lim
|z|→∞

φ(z, z̄) = 0, (D.37)

and each matrix entry of φ(z) has a finite number of poles, one can uniquely determine the
corresponding equivalent class [ξ(z)] = [(D(z), D̃(z))] ∈ Msemi

n,m
k and the half-ADHM data

[(Z,Ψ, Ψ̃)]. Explicitly, the instanton solution φ(z) can be always written as

φ(z) = D(z)−1D̃(z) = Ψ(z1k − Z)−1Ψ̃. (D.38)

Proof. The solution of eq. (D.37) can always be written in the following form

φ(z) =
∑
α

kα∑
p=1

Cα,p
(z − zα)p (D.39)

with n-by-m constant matrices Cα,p. For this solution, let us consider an n-by-(n+m) matrix
ξ′(z) given by

ξ′(z) = (p(z)1n, p(z)φ(z)) with p(z) =
∏
α

(z − zα)kα , k′ =
∑
α

kα. (D.40)
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Note that all the entries of a matrix p(z)φ(z) are polynomials since all the poles in φ(z) are
cancelled with zeros of p(z). The equivalence class [ξ′(z)] is an element of Mvtx

n,m
nk′ and hence,

according to Lemma D.1, there exists a unique equivalence class [ξ(z)] = [(D(z), D̃(z))] ∈
Msemi

n,m
k with an integer k ∈ Z≥0 such that

ξ′(z) = Dlc(z)ξ(z) = Dlc(z)(D(z), D̃(z)), 0 ≤ k ≤ nk′, (D.41)

with Dlc(z) ∈ Gn,nk′−k[z] and D(z) ∈ Gn,k[z]. These matrices are related as

p(z)1n = Dlc(z)D(z), p(z)φ(z) = Dlc(z)D̃(z). (D.42)

In terms of the matrices (D(z), D̃(z)), the instanton solution φ(z) can always be rewritten as

φ(z) = 1
p(z)(p(z)φ(z)) = (Dlc(z)D(z))−1Dlc(z)D̃(z) = D(z)−1D̃(z). (D.43)

Furthermore, using the half-ADHM mapping relation, we can rewrite φ(z) in terms of the
corresponding half-ADHM data (Z,Ψ, Ψ̃) as,

φ(z) = D(z)−1D̃(z) = D(z)−1J(z)Ψ̃ = Ψ(z1k − Z)−1Ψ̃. (D.44)

According to Lemma D.4, for a given φ(z), the equivalent class [(D(z), D̃(z))] ∈ Msemi
n,m
k

satisfying the above is unique, and the equivalent class of the half-ADHM data [(Z,Ψ, Ψ̃)]
satisfying Cfree(Z, Ψ̃) is also unique.

E Embedding of Grassmannian case

In this appendix, we discuss vortices obtained by embedding from the L = 1 case.

E.1 Embedding of vortices from L = 1 to L = 2

Let us consider first consider the embedding of the matrix ξ from L = 1 to L = 2. For
example, in the case with (k1, k2) = (k, 0), ξi are given by,

ξ1(z) = (D(z), D̃(z),0), ξ2(z) =
(

1n1 0 0
0 1n2 0

)
, (E.1)

where ξ = (D(z), D̃(z)) is the matrix for the L = 1 case with n = N1 = n1 and N = N2 = n1 +
n2. For the case with (k1, k2) = (0, k), one can find that the general solution turns out to be

ξ1(z) = (1n1 ,0,0), ξ2(z) =
(

1n1 0 0
0 D(z) D̃(z)

)
, (E.2)

where D(z) and D̃(z) are those for the L = 1 case with n = n2 and N = n2 + n3. Thus,
we find that the moduli spaces of vortices for (k1, k2) = (k1, 0) and (k1, k2) = (0, k2) are
identical with those of the L = 1 case

Mvtx
n1,n2,n3
k1,k2=0 ≃ Mvtx

n1,n2
k1

, Mvtx
n1,n2,n3
k1=0,k2

≃ Mvtx
n2,n3
k2

. (E.3)
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For (k1, k2) = (k, k), there exist a subspace in the moduli space where ξ of the L = 1 case
can be embedded as

ξ1(z) = (D(z),0, D̃(z)), ξ2(z) =
(
D(z) 0 D̃(z)

0 1n2 0

)
, (E.4)

where D(z) and D̃(z) are those for the L = 1 case with taking n = n1 and N = n1 + n3.
This means that the moduli space of vortices with (k1, k2) = (k, k) contains the L = 1,
k-vortex moduli space

Mvtx
n1,n2,n3
k1=k,k2=k ⊃ Mvtx

n1,n3
k . (E.5)

Embedding of half-ADHM data. The half-ADHM data can also be obatained by
embedding that of the L = 1 case.

• (k1, k2) = (k, 0). If (k1, k2) = (k, 0), we can determine D1 and D2 from the condition
deg(detDi) = ki

D1 = zk +
k−1∑
n=0

anz
n, D2 =

(
1 0
0 1

)
, (up to V -transformations). (E.6)

From the relations

ξ1 = (D1, D̃1) = q1q2, ξ2 = (D2, D̃2) = q2, D−1
i D̃i = O(z−1), (E.7)

the matrices q1, q2, D̃1 and D̃2 can be determined as

q1 = (P (z), Q(z)), q2 =
(

1 0 0
0 1 0

)
, D̃1 = (Q(z), 0), D̃2 =

(
0
0

)
, (E.8)

where P (z) and Q(z) are polynomials of the forms

P (z) = zk +
k∑

n=0
anz

n, Q(z) =
k−1∑
n=0

bnz
n. (E.9)

The k-component row vector J1(z) can be determined from the condition D−1
1 J1 = O(z−1) as

J1 = (P̃k−1, P̃k−2, · · · , P̃0), with P̃l =
l∑

n=0
an+k−lz

n. (E.10)

Note that the N2-by-k2 matrix J2 does not exist since k2 = 0 in this case. From D1, D̃1
and J1, the matrices Z1, Υ1 and Υ2 can be determined as

Z1 =


0 1
...

. . .

0 1
a0 a1 · · · ak−1

 , Υ1 =
(

1 0 · · · 0
)
, Υ̃1 =


b̃1
b̃2
...

b̃k

 , (E.11)
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where b̃l (l = 1, · · · , k) are constants such that

Q(z) =
k∑
l=1

b̃lP̃l. (E.12)

Note that (Z2,Υ2, Υ̃2) and (W1W̃1) do not exist since k2 = 0 in this case. All these moduli
data are identical to those of U(1) semi-local vortex (L = 1, N1 = 1, NF = 2) with
q1 = (P (z), Q(z)).

• (k1, k2) = (0, k). For (k1, k2) = (0, k), the matrices q1 and q2 are given by

q1 = (1, 0) q2 =
(

1 0 0
0 P (z) Q(z)

)
, (E.13)

where P (z) and Q(z) are polynomials of the same form as the previous case (E.9). The
matrices ξi = (Di, D̃i) take the forms

ξ1 = (1,0,0), ξ2 =
(

1 0 0
0 P (z) Q(z)

)
,

(
D1 = 1, D̃1 = (0,0), D2 =

(
1 0
0 P (z)

)
, D̃2 =

(
0

Q(z)

))
.

(E.14)
The matrix J1(z) does not exist and J2 can be determined as

J2 =
(

0 0 · · · 0
P̃k−1 P̃k−2 · · · P̃0

)
, (E.15)

where P̃l (l = 0, · · · , k − 1) are the same polynomials as (E.10). Since k1 = 0, the matrices
(Z1,Υ1, Υ̃1) and (W1, W̃1) do not exist and (Z2,Υ2, Υ̃2) are given by

Z2 =


0 1
...

. . .

0 1
a0 a1 · · · ak−1

, Υ2 =
(

0 0 · · · 0
1 0 · · · 0

)
, Υ̃2 =


b̃1
b̃2
...

b̃k

 , (E.16)

where b̃l (l = 1, · · · , k) are constants defined in (E.12). Again, the moduli data are identical
to those of U(1) semi-local vortex (L = 1, N1 = 1, NF = 2) with q1 = (P (z), Q(z)).

E.2 Embedding of vortices from L = 1 to general L

Let I, J be integers such that 1 ≤ I < J ≤ L+ 1 and prepare a nI -by-nI matrix D(z) and
a nI -by-nJ matrix D̃(z) satisfying detD(z) = O(zk) and D(z)−1D̃(z) = O(z−1). Next, let
us embed these matrices into qJ−1 as

qJ−1(z) =

 1NI−1 0 0 0
0 D(z) 0 D̃(z)
0 0 1NJ−1−NI

0

 , (E.17)

– 84 –



J
H
E
P
0
2
(
2
0
2
4
)
2
3
0

and set the other qi to be trivial qi = (1Ni ,0) for i ̸= J − 1. This setting gives

NJ−1−Ni︷︸︸︷ N−NJ︷︸︸︷
ξi(z) =

 1NI−1 0 0 0 0 0
0 D(z) 0 0 D̃(z) 0
0 0 1Ni−NI

0 0 0

 for i ∈ [I, J − 1], (E.18)

and ξi(z) = (1Ni ,0) for i ̸∈ [I, J − 1]. The vortex numbers are given by

(k1, k2, · · · , kL) = (0, · · · , 0︸ ︷︷ ︸
I−1

, k, k, · · · , k︸ ︷︷ ︸
J−I

, 0, · · · , 0). (E.19)

In the case of d = 1, this construction gives general configurations with k elementary vortices.
In cases with d ≥ 2, however, the above construction gives special configurations where each
of k objects can be regarded as a composite state of J − I types of elementary vortices. This
construction also gives the following sigma model instanton solution

φij = δIi δ
J
j D(z)−1D̃(z), (E.20)

where φij are inhomogeneous coordinates of the flag manifold defined in eq. (2.18).
The corresponding half-ADHM data takes the form

Υi = 0 for i ̸= I, Υ̃i = 0 for i ̸= J − 1, (E.21)
ZI = ZI+1 = · · · = ZJ−1, (E.22)
WI = WI+1 = · · · = WJ−2 = 1k (E.23)

Here d = J − I implies a level of compression of vortices and turns out to corresponds to
height of the Young tableaux.

F Brane construction of vortices

In this appendix, we discuss the D-brane construction of BPS vortices. By embedding
our system into a 4d N = 2 supersymmetric gauge theory, we can identify the D-brane
configuration corresponding to the BPS vortex configurations. For L = 1, the D-brane
construction of the vortex moduli space has been mentioned in [7] and for L > 1 with
N1 = · · · = NL = N , the D-brane configuration for the local vortices has been discussed
in [98]. The left figure in figure 6 shows the brane configuration for the Coulomb branch of
the model. The 4d N = 2 quiver gauge theory corresponding to our system can be realized
as the worldvolume effective theory on D4-branes attached to NS5-branes. There are Ni

D4-branes between neighboring NS5 branes and they correspond to the U(Ni) subgroup
of the gauge group. The gauge coupling constants 1/g2

i (i = 1, · · · , L) are proportional to
the separations of the NS5 branes ∆x6

NS5,i = x6
NS5,i+1 − x6

NS5,i. The bi-fundamental fields
Qi (i = 1, · · · , L) (hypermultiplets) corresponds to the fundamental strings stretched between
D4-branes in the i-th and i + 1 intervals. In the presence of the FI parameters, which
correspond to ∆x7,8,9

NS5,i = x7,8,9
NS5,i+1 − x7,8,9

NS5,i (i = 1, · · · , L), the vacuum is in the Higgs phase

– 85 –



J
H
E
P
0
2
(
2
0
2
4
)
2
3
0

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D4 × × × × ×
D6 × × × × × × ×
NS5 × × × × × ×
D2 × × ×

Table 1. Brane configuration (×’s indicate the directions in which the branes extend).

as shown in the right figure of figure 6. There are ni = Ni − Ni−1 D4-branes attached
to the i-th NS5-brane. Figure 7 shows an example of the D-brane configurations for BPS
vortices. The vortices with i-th magnetic flux correspond to D2-branes stretched between
the i-th and (i+ 1)-th D4-branes. The vortex worldsheet theory is a 2d N = (2, 2) quiver
gauge theory on the (x0, x1) plane in table 1. The matrices (Zi,Υi, Υ̃i,W, W̃ ) are identified
with the component fields of the chiral multiplets which are identified with the degrees of
freedom in the brane configuration as follows

• Zi : positions of i-th D2-branes on (x2, x3) plane.

• Υi : F1 strings between i-th D4-branes and i-th D2-branes.

• Υ̃i : F1 strings between (i+ 1)-th D4-branes and i-th D2-branes.

• W, W̃ : F1 strings between i-th and (i+ 1)-th D2-branes.

The moduli space of BPS vortices are identified with that of vacua of this quiver gauge
theory determined by solving the D-term condition and the F -term constraint coming from
the cubic superpotential

W =
L−1∑
i=1

Tr
[
W̃i

(
Υ̃iΥi+1 − ZiWi +WiZi+1

)]
. (F.1)

If we turn on hypermultiplets masses, which correspond to the positions of D6-branes on
the (x4, x5) plane, only the fixed points of the SU(N) flavor symmetry are left as stable
BPS configurations. Figure 8 shows an example of the D-brane configurations for such
fixed point configurations. In the presence of the Ω-deformation on the (x0, x1) plane, all
D2-branes are localized at the origin and they form clusters which are characterized by Young
tableaux. Such configurations are the fixed points of the torus action, which are relevant
to the supersymemtric localization.

G Smoothness of the moduli space

The moduli space of vortices for L > 1 is constructed from the space of matrices satisfying
the constaraitns (4.39). In this appendix, we show that those constraints do not cause any
singularities on the moduli space.
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x7,8,9

x6

x4,5

NS5

NS5

NS5

NS5

 D
6

N

 D4n4

 D4n2

 D4n1

 D4n3

Figure 6. D-brane configurations for the Coulomb branch (left) and the Higgs phase in the presence
of FI parameters (right).

x7,8,9

x6

x4,5

NS5

NS5

NS5

NS5

 D
6

N

 D4n4

 D4n2

 D4n1

 D2
k 1

 D4n3

 D2
k 2

 D2
k 3

Figure 7. D-brane configuration for BPS vortices. This example shows (k1, k2, k3) vortices in 4d
N = 2 U(n1)×U(n1 +n2)×U(n1 +n2 +n3) gauge theory with NF = n1 +n2 +n3 +n4 hypermultiplets.

G.1 Singular points on algebraic varieties

Let us first recall that a singularity on an algebraic variety is a point where a tangent space is
ill-defined. For example, for a subspace M0 in CK = {ϕ1, · · · , ϕK} defined as the intersection
of the zero loci of polynomials FI(ϕ1, · · · , ϕK) (I = 1, 2, · · · , n′), a singularity on M0 is
defined as a point where the rank of the matrix (JF )I i ≡ ∂FI/∂ϕi decreases. Let Hij be
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x7,8,9

x6

x4,5

Figure 8. D-brane configuration for BPS vortices in the massive theory. The positions of D6-branes
in the x4 and x5 directions correspond to hypermultiplet masses. In the presence of the Ω-background,
each cluster of D2-branes (pink line) corresponds to a composite of vortices characterized by a
Young tableau.

the hessian of the function V defined as

V =
∑
I

|FI |2, Hij = ∂2V

∂ϕi∂ϕ̄j
=
∑
I

(JF )iI(J∗
F )jI . (G.1)

Then, at the singular point, an extra flat directions (zero eigenvectors) appears since Hij

has a lower rank. If there is a symmetry group G that preserves V , the equation F = 0
reduces to a constraint equation F̃ = 0 that defines a subspace M in the quotient space
(CK − {0})/G. Since rank JF̃ = rank JF for any smooth quotient space, singularities of M
can be determined by looking at the rank of JF on M0. In particular, M is smooth if the
rank of JF is constant everywhere. If JF has the maximal rank n′ everywhere, that is,

0 = ΛI(JF )I i = ∂ΛIFI
∂ϕi

implies ΛI = 0 for all points on M0, (G.2)

all the constraints FI = 0 are linearly independent and hence M is a (K − dimG − n′)-
dimensional smooth manifold.

G.2 Constraints and smoothness of vortex moduli space

The constraints in eq. (4.39) implies that the vortex moduli space for L > 1 is the intersection
of the zero loci of FI = Υ̃iΥi+1 − ZiWi + WiZi+1. These constraints can be introduced
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by turning on the potential

V =
L−1∑
i=1

Tr
[
|W̃i|2 + iW̃i

(
Υ̃iΥi+1 − ZiWi +WiZi+1

)
+ (c.c.)

]
, (G.3)

where the ki+1-by-ki matrix W̃i are an auxiliary fields which give the on-shell potential

V =
L−1∑
i=1

Tr
∣∣∣W̃i

∣∣∣2 =
L−1∑
i=1

Tr
∣∣∣Υ̃iΥi+1 − ZiWi +WiZi+1

∣∣∣2 . (G.4)

The variations with respect to the other degrees of freedom give

0 = ∂V
∂Υi+1

=W̃iΥ̃i, (G.5)

0 = ∂V
∂Υ̃i

=Υi+1W̃i, (G.6)

0 = ∂V
∂Wi

=Zi+1W̃i − W̃iZi, (G.7)

for 1 ≤ i ≤ L − 1 and

0 = ∂V
∂Zi

= W̃i−1Wi−1 −WiW̃i with W0,L = W̃0,L = 0, (G.8)

for 1 ≤ i ≤ L. As we have seen in eq. (G.2), the moduli space has no singularity if and only
if W̃i always vanishes when eqs. (G.5)–(G.8) are satisfied. For any solution, we can show

(
ΥjWjWj+1 · · ·WiZ

p−1
i+1

)
W̃i

eq.(G.7)= ΥjWjWj+1 · · ·WiW̃iZ
p−1
i

eq.(G.8)= ΥjW̃j−1Wj−1Wj · · ·Wi−1Z
p−1
i

eq.(G.6)= 0, (G.9)

for 1 ≤ j ≤ i and 1 ≤ p ≤ k. Under the ∏L
i=1 GL(ki,C) free condition (4.41), this equation

implies that W̃i = 0 for all i. Therefore, the vortex moduli space is smooth and all the
elements of the constraint (4.39) are independent, that is, the number of degrees of freedom
suppressed by the constraints is the same as that of the components of {W̃i}.

H The torus action on the moduli spaces and on the Kähler quotient

In this appendix, we summarize the BPS vortex solutions in the presence of the omega
background and the mass deformation. In such a case, BPS configurations have to minimize
the deformation terms induced by the omega background ϵ and mass parameters M =
diag(m1, · · · ,mN )

δL =
L∑
i=1

|iϵ(zDz − z̄Dz̄)qi + Σiqi − qiΣi+1|2 with ΣL+1 = −M, (H.1)
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where Σi (i = 1, · · · , L) are SU(Ni) adjoint scalar fields.29 Since δL is positive semi-definite,
it is minimized when δL = 0, that is

iϵ(zDz − z̄Dz̄)qi + Σiqi − qiΣi+1 = 0, (i = 1, · · · , L, ΣL+1 = −M). (H.2)

This condition implies that the vortex configuration must be invariant under the (infinitesimal)
spatial rotation and the flavor rotation up to gauge transformations Σi. Such fixed points
are classified by a set of N Young tableaux Y (j,α) where α = 1, · · · , ni for each j = 1, · · · , L.
The height of Y (j,α) is L− j + 1 and we denote the length of i-th row as l(j,α)

i+j−1, i.e.

Y (j,α) =
(
l
(j,α)
j , l

(j,α)
j+1 , · · · , l(j,α)

L

)
, l

(j,α)
j > l

(j,α)
j+1 > · · · > l

(j,α)
L > 0. (H.3)

The integers l(j,α)
i are related to the magnetic flux at the fixed point

1
2π

∫
Fi = block-diag(l1

i , · · · , lii) with lji = diag
(
l
(j,1)
i , · · · , l(j,nj)

i

)
, (H.4)

where lji is the nj-by-nj diagonal block of the SU(Ni) magnetic flux of the i-th gauge group.
They are also related to the winding numbers of the scalar fields

qi =


q1
i 0 · · · 0
. . .

...
. . .

...

qii 0 · · · 0

, with qji = f ji (r) exp
(
iνjiθ

)
, νji ≡ lji − lji+1,

(H.5)
where f ji (r) and νji are diagonal matrices of profile functions and winding numbers, respec-
tively. We can confirm that qi(z) is invariant under the torus action (the combination of the
spatial rotation and the Cartan part of the flavor rotation) up to V -transformations

qi(z) = Vi qi(eiϵz)V −1
i+1, Vi = exp(iΣi), VL+1(z) = exp(−iM). (H.6)

Note that the left hand side of the fixed point condition (H.2) is the infinitesimal version of
this transformation. The element of the V -transformations are specified by the fixed point
values of the adjoint scalar Σi, which take the forms

Σi = block-diag (σ1
i , · · · ,σi

i) σj
i = diag (σ(j,1)

i , · · · , σ(j,nj)
i ), (H.7)

with the eigenvalues

σ
(j,α)
i = −m(j,α) − l

(j,α)
i ϵ, (H.8)

where we have labeled the eigenvalues of the mass matrix as

M = block-diag (m1, · · · ,mL+1), mj = diag (m(j,1), · · ·m(j,ni)). (H.9)
29In 2d N = (2, 2) models, Σi can be interpreted as the adjoint scalar fileds in the vector multiplets and

become auxiliary fields in the nonlinear sigma model limit.
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H.1 Half-ADHM data at fixed points

We can show that the vortex data corresponding to the fixed point specified by the Young
tableaux Y (j,α) take the form

Di = block-diag(D1
i , · · · ,Di

i) with Dj
i = diag(zl

(j,1)
i , · · · ,zl

(j,nj )
i ) and D̃i = 0.

(H.10)
This implies that each diagonal component represents axially symmetric Abelian vortices
with flux l(j,α)

i and hence all the matrix data can be obtained by embedding those of Abelian
vortices. For an axially symmetric Abelian vortex configuration D = zl, the vortex data
satisfying DΨ = J(z1l − Z) are given by (see section C.1)

J(l) = (zl−1 , zl−2 , · · · , 1), Ψ(l) = (1 , 0 , · · · , 0), Z(l) =


0 1
...

. . .
0 1
0 0 · · · 0


 l.
(H.11)

By embedding these matrices, we can construct the matrices satisfying DiΨi = Ji(z1ki
−Zi) as

Ji = block-diag(J1
i , · · · ,J

i
i), Ψi = block-diag(Ψ1

i , · · · ,Ψi
i), Zi = block-diag(Z1

i , · · · ,Z
i
i), (H.12)

with

Jj
i = diag(J(l(j,1)

i ), · · · ,J(l(j,nj)
i )), Ψj

i = diag(Ψ(l(j,1)
i ), · · · ,Ψ(l(j,nj)

i )), Zj
i = diag(Z(l(j,1)

i ), · · · ,Z(l(j,nj)
i )).

(H.13)
Note that Ψ̃i = 0 since D̃i = 0 for the fixed point configurations. The matrices Υi and Υ̃i

defined in (4.22) can be extracted from Ψi and Ψ̃i as

Υi =
(

0ni,ki−1Ψi
i

)
, Υ̃i = 0. (H.14)

The matrix Wi can be determined by solving the constraint ZiWi −WiZi+1 = Υ̃iΥi+1 as

Wi =

W 1
i 0 · · · 0
. . .

...
. . .

...
W i

i 0 · · · 0

, W j
i =


W (l(j,1)

i , l
(j,1)
i+1 )

. . .

W (l(j,nj)
i , l

(j,nj)
i+1 )


(H.15)

where W (l, l′) is the matrix satisfying Z(l)W (l, l′) −W (l, l′)Z(l′) = 0, which takes the form

W (l, l′) =
(

1l′
0l−l′,l′

)
. (H.16)

Note that W̃i = 0 as shown above.

H.2 Torus action on half-ADHM data

The above set of matrices {Zi,Υi, Υ̃i,Wi, W̃i} corresponds to the BPS configuration in the
presence of the deformations. This satisfies the fixed point condition of the torus action

{Zi,Υi,Υ̃i,Wi,W̃i} → {e−iΦi−iϵZie
iΦi ,e−iYiΥie

iΦi ,e−iΦi−iϵΥ̃ie
iYi+1 ,e−iΦiWie

iΦi+1 ,e−iΦi+1W̃ie
iΦi+iϵ},
(H.17)
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where Φi are the elements of gl(ki) given by

Φi = block-diag(Φ1
i , · · · ,Φi

i), Φj
i = block-diag(Φ(j,1)

i , · · · ,Φ(j,nj)
i ), Φ(j,α)

i = diag(ϕ(j,α,1)
i , · · · ,ϕ(j,α,p)

i ),
(H.18)

with the eigenvalues30

ϕ
(j,α,p)
i = m(j,α) + (p− 1)ϵ. (H.19)

These eigenvalues at the fixed point correspond to the poles of the integrand for the vortex
partition function (6.11), whose residue give the contribution of the fixed point configuration.
The fixed point condition can also be rewritten by using the infinitesimal form of the torus
action as

[Φi, Zi] − ϵZi = 0, MiΥi − ΥiΦi = 0, ΦiΥ̃i − Υ̃iMi+1 + ϵΥ̃i = 0, (H.20)
ΦiWi −WiΦi+1 = 0, Φi+1W̃i − W̃iΦi + ϵW̃i = 0. (H.21)

One can explicitly check that the torus action on the half-ADHM data is consistent with
that on (Di(z), D̃i(z)) as follows. With M̂j and M̃j defined by

M̂j = diag(m1,m2, · · · ,mj), M̃j = diag(mj+1, · · · ,mL,mL+1), (H.22)

the torus action on (Dj(z), D̃j(z)) can be read off from that on qi as

(Dj(z), D̃j(z)) → (D′
j(z), D̃′

j(z)) = Vj(z)
(
Dj(eiϵz)eiM̂j , D̃j(eiϵz)eiM̃j

)
. (H.23)

Since J′
j(z) must satsify

O(z−1) = D′
j(z)−1J′

j(z) = e−iM̂jDj(eiϵz)−1(Vj(z)−1J′
j(z)), (H.24)

we find that J′
j(z) is given by

J′
j(z) = Vj(z)Jj(eiϵz)eiΦ

′
j ,

(
∵ Dj(z)−1Jj(z) = O(z−1)

)
, (H.25)

where Φ′
j ∈ gl(kj ,C) is a certain constant square matrix. Since the torus action on

(Zj ,Ψj , Ψ̃j) → (Z ′
j ,Ψ′

j , Ψ̃′
j) must be consistent with the half-ADHM mapping relation

D′
j(z)Ψ′

j = J′
j(z)(z1 − Z ′

j), D̃′
j(z) = J′

j(z)Ψ̃′
j , (H.26)

it follows that

Dj(eiϵz)eiM̂j Ψ′
je

−iΦ′
j = Jj(eiϵz)(z1 − eiΦ

′
jZ ′

je
−iΦ′

j ), D̃j(eiϵz) = Jj(eiϵz)eiΦ
′
j Ψ̃′

je
−iM̃j .

(H.27)
30The matrices Φ(j,α)

i can be determined by solving the equations

[Φ(j,α)
i , Z

(j,α)
i ] + ϵZ

(j,α)
i = 0, m(i,α)Ψ(i,α)

i − Ψ(i,α)
i Φ(i,α)

i = 0, Φ(j,α)
i − Φ(j,α)

i+1 = 0 (for j = 1, · · · , i).
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Comparing with the original half-ADHM mapping relation Dj(z)Ψj = Jj(z)(z1 − Zj) and
D̃j(z) = Jj(z)Ψ̃j , we obtain the torus action on {Zj , Ψj , Ψ̃j} as

(Zj , Ψj , Ψ̃j) → (Z ′
j , Ψ′

j , Ψ̃′
j) = {e−iΦj−iϵZeiΦj , e−iM̂j Ψje

iΦj , e−iΦj−iϵΨ̃je
iM̃j }, (H.28)

where we have defined Φj = Φ′
j − ϵ1. The torus action on (Υi, Υ̃i) can be read off from

that on (Ψj , Ψ̃j)

(Υi, Υ̃i) → (Z ′
i, Υ′

i, Υ̃′
i) = (e−iΦi−iϵZie

iΦi , e−iMiΥie
iΦi , e−iΦi−iϵΥ̃ie

iMi+1). (H.29)

The torus action on (Wi, W̃i) can be obtained from q′
i(z)J′

i+1(z) = J′
i(z)W ′

i , which can be
rewritten as

qi(eiϵz)Ji+1(eiϵz)eiΦi+1+iϵ = Ji(eiϵz)eiΦi+iϵW ′
i . (H.30)

Comparing with qi(z)Ji+1(z) = Ji(z)Wi, we find that

(Wi, W̃i) → (W ′
i , W̃

′
i ) = (e−iΦiWie

iΦi+1 , e−iΦi+1W̃ie
iΦi+iϵ), (H.31)

where we have determined the torus action on W̃i so that W in eq. (G.3) is invariant.

H.3 Fluctuation around the fixed points

Next, let us consider the fluctuation around the fixed point configuration discussed in the
previous subsection. Let us label the fluctuations of qi around the fixed point as

δqi =


δq11

i · · · δq1j
i δq1,i+1

i
...

. . .
...

...

δqi1i · · · δqiii δqi,i+1
i

 with δqjki =


δq

(j,1),(k,1)
i · · · δq(j,1),(k,nk)

i
...

. . .
...

δq
(j,nj),(k,1)
i · · · δq(j,nj),(k,nk)

i

 ,
(H.32)

where δq(j,α),(k,β)
i are polynomials of z. Similarly, we label the fluctuations of ξi as

δξi =


δξ11

i · · ·δξ1j
i δξ1,i+1

i · · ·δξ1,L+1
i

...
. . .

...
...

. . .
...

δξi1i · · ·δξiii δξi,i+1
i · · ·δξi,L+1

i

 with δξjki =


δξ

(j,1),(k,1)
i · · · δξ(j,1),(k,nk)

i
...

. . .
...

δξ
(j,nj),(k,1)
i · · ·δξ(j,nj),(k,nk)

i

 ,
(H.33)

where δξ(j,α),(k,β)
i are polynomials of z, which we denote

δξ
(j,α),(k,β)
i =

 δD
(j,α),(k,β)
i for k ≤ i

δD̃
(j,α),(k,β)
i for k ≥ i+ 1

. (H.34)

For a fixed point spacified by the Young tableaux Y (j,α) = (l(j,α)
j , l

(j,α)
j+1 , · · · , l(j,α)

L ), δD(j,α),(k,β)
i

and δ̃D
(j,α),(k,β)
i are polynomial of degree l(k,β)

i − 1 and l
(j,α)
i − 1, respectively.

Since ξi = qiξi+1, the fluctuations of ξi must satisfy the recursive relations

δξ
(j,α),(k,β)
i = zl

(j,α)
i −l(j,α)

i+1 δξ
(j,α),(k,β)
i+1 + δq

(j,α),(k,β)
i zl

(k,β)
i+1 . (H.35)
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This condition gives a constraint to the fluctuations δqi. To find such constraints, let us write

δξ
(j,α),(k,β)
i =

∑
n

c
(j,α),(k,β),n
i zn, (H.36)

δq
(j,α),(k,β)
i =

∑
n

a
(j,α),(k,β),n
i zn. (H.37)

Then the recursive relation (H.35) can be written as

c
(j,α),(k,β),n
i = c

(j,α),(k,β),n−l(j,α)
i +l(j,α)

i+1
i+1 + a

(j,α),(k,β),n−l(k,β)
i+1

i . (H.38)

Solving these equation, we find that

c
(j,α),(k,β),n
i = 0, (for k≤ i and n≥ l

(k,β)
i ) (H.39)

a
(j,α),(k,β),n
i = 0, (for k≥ i+2, and n≥ l

(j,α)
i −l(k,β)

i+1 ) (H.40)

a
(j,α),(k,β),n
l = −c

(j,α),(k,β),n+l
(k,β)
l+1 −l

(j,α)
l

+l
(j,α)
l+1

l+1 , (for l(j,α)
l −l(k,β)

l+1 ≤n< l
(k,β)
l −l(j,α)

l−1 +l(j,α)
l −l(k,β)

l+1 ).
(H.41)

The coefficients a(j,α),(k,β),p
i satisfying these conditions can be regarded as the coordinates

around the fixed point. We can check that the number of the degrees of freedom agrees with
the dimension of the moduli space. They transform under the torus action as

a
(j,α),(k,β),p
i → a

(j,α),(k,β),p
i exp i

[
σ

(j,α)
i − σ

(k,β)
i+1 + pϵ

]
= a

(j,α),(k,β),p
i exp i

[
m(j,α) −m(k,β) − (l(j,α)

i − l
(k,β)
i + p)ϵ

]
. (H.42)

It is worth noting that the vortex partition function (6.26) can be obtained from these
transformation properties. Having solved the constraints for the fluctuations of (D, D̃), we
can determine those of the half ADHM data satisfying the constraints through the linearized
version of the half-ADHM mapping relation.

I Vortex partition function

In this appendix, we derive the integration formula for the vortex partition function (6.11).
The vortex partition function is given by the determinant of the torus action on the moduli
space (6.10), which can also be obtained from the torus action on the fluctuation (H.42)
or that on the half-ADHM matrices.

Let us first consider the character of the torus action on the fluctuations around the
fixed point specified by each Young tableaux (H.3). The contributions of (Υi, Υ̃i, Zi,Wi) to
the character can be read off from the torus action (H.17) as

χ(δΥi) =
∑
α∈λi

i∑
j=1

nj∑
β=1

l
(j,β)
i∑
p=1

exp
[
im(j,β) + i(p− 1)ϵ− im(i,α)

]
,

χ(δΥ̃i) =
i∑

j=1

ni∑
α=1

l
(j,α)
i∑
p=1

ni+1∑
β=1

exp
[
im(i+1,β) − im(j,α) − ipϵ

]
,
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χ(δZi) =
i∑

j=1

∑
α∈λ̄i

i∑
k=1

nk∑
b=1

li(k,β)∑
q=1

exp
[
im(k,β) − im(j,α) + i(q − l

(j,α)
i − 1)ϵ

]
,

χ(δWi) =
i∑

j=1

nj∑
α=1

l
(j,α)
i∑
p=2

i+1∑
k=1

nk∑
β=1

l
(j,β)
i+1∑
q=1

exp
[
im(k,β) − im(j,α) + i(q − p)ϵ

]
, (I.1)

where λi = {α | 1 ≤ α ≤ ni, l
(i,α)
i = 0} and λ̄i = {α | 1 ≤ α ≤ ni, l

(i,α)
i ̸= 0}. Note that

contributions eliminated by the constraints (4.39) must be removed from these characters.
We can see from the “superpotential term” in eq. (G.3) that the contributions eliminated
by the constraints can be identified with that of W̃ †

i

χ(W̃ †
i ) =

i∑
j=1

nj∑
α=1

l
(j,α)
i∑
p=1

i+1∑
k=1

nk∑
β=1

l
(k,β)
i+1∑
q=1

exp
[
im(k,β) − im(j,α) + i(q − p− 1)ϵ

]
. (I.2)

In total, the character is given by

χfp =
[
L∑
i=1

(
χ(δΥi) + χ(δΥ̃i) + χ(δZi)

)
+
L−1∑
i=1

(χ(δWi))
]

constrained

=
L∑
i=1

(
χ(δΥi) + χ(δΥ̃i) + χ(δZi)

)
+
L−1∑
i=1

(
χ(δWi) − χ(W̃ †

i )
)

=
L∑
i=1

(
χ(Υi) + χ(Υ̃i) + χ(Zi) − χ(Ui)

)
+
L−1∑
i=1

(
χ(Wi) − χ(W̃ †

i )
)

=
L∑
i=1

(
Tr[eiΦi ]Tr[e−iMi ] + e−iϵTr[e−iΦi ]Tr[eiMi+1 ] + (e−iϵ − 1)Tr[eiΦi ]Tr[e−iΦi ]

)

+
L−1∑
i=1

(1 − e−iϵ)Tr[eiΦi+1 ]Tr[e−iΦi ], (I.3)

where we have rewritten the characters of the fluctuations (χ(δΥi), · · · ) into those of the
matrices (χ(Υi), · · · ) by subtracting the contributions eliminated by the gauge GL(ki,C)
action χ(Ui) = Tr[eiΦi ]Tr[e−iΦi ]. From the character, we can read off the determinant as

χσ =
d∑
a=1

eiωa =⇒ 1
det Mσ

=
d∏
a=1

1
ωa
, (I.4)

where d is the dimension of the moduli space. Furthermore, by using the relation

f(ϕσ) =
∮

dϕ

2πi
1

ϕ− ϕσ
f(ϕ), (I.5)

the determinant can be rewritten into a contour integral as

1
det Mσ

=
∮
Cσ

L∏
i=1

ki∏
r=1

dϕri
2πiϵ

[
L∏
i=1

ZΥΥ̃
i ZZΦ

i

L−1∏
i=1

ZWW̃
i

]
, (I.6)
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ϕ2,3 = m + ϵϕ2,3 = m − ϵ

ϕ2,3 = m

ϕ3 = m + 2ϵ

ϕ3 = m − ϵ ϕ3 = m + ϵ

∫C dϕ1

∫C dϕ2

C

C

C

Figure 9. Integration contours for the vortex partition function in the Abelian gauge theory with a
single charged scalar field (L = 1, N1 = 1, N2 = 0, k = 3).

ϕ11,2,3 = m

3
∏
p=1 ∫C dϕ

1
p

C

ϕ21,2 = m C′￼

ϕ21,2 = m − 3ϵ

Figure 10. Integration contours in the case of L = 2, N1 = 1, N2 = 1, k1 = 3, k2 = 2).

where ZΥΥ̃
i , ZZΦ

i and ZWW̃
i are given by

ZΥΥ̃
i ≡

ki∏
r=1

 ni∏
α=1

1
ϕri −m(i,α)

ni+1∏
β=1

1
m(i+1,β) − ϕri − ϵ

 , (I.7)

ZZΦ
i ≡

ki∏
r=1

ki∏
s=1

′ ϕri − ϕsi
ϕri − ϕsi − ϵ

, (I.8)

ZWW̃
i ≡

ki∏
r=1

ki+1∏
s=1

ϕsi+1 − ϕri − ϵ

ϕsi+1 − ϕri
, (I.9)

where ∏′ indicates that the factors with α = β are omitted. The integration contour Cσ
is the path surrounding the poles corresponding to the fixed point values of ϕ. Since the
integrand is common for all the fixed points, the vortex partition function can be obtained
by integrating the same integrand along the contour surrounding all the poles corresponding
to the fixed points. We can check that such contour is given by C±

i (figure 5) as follows.
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First, let us consider the case of L = 1, N1 = 1, N2 = 0, k = 3 (figure 9). In this case,
the contour C+

1 is the path surrounding the pole of ZΥΥ̃
i located at ϕ = m (= m(1,1)). If

we first integrate ϕ1, the residue at the pole ϕ = m gives the poles at ϕ = m ± ϵ and the
pole at ϕ = m is eliminated due to the factor ZZΦ

1 . Then, the integration of ϕ2 is given by
the residue at the pole ϕ = m+ ϵ. which has a pole at ϕ = m+ 2ϵ whose residue gives the
final result of the integration. In this way, we can show that C+

1 is the contour surrounding
all the poles corresponding to the fixed points.

We can generalize the discussion to the case of L > 1. the contour C+
1 can be decomposed

into the paths surrounding the poles at ϕ = m(1,α). Then, we can repeat the same discussion
as in the case of L = 1 to show that the integration of ϕ(1,α,p)

1 (α = 1, · · · , n1, p = 1, · · · , l(1,α)
1 )

is given by the residues at the poles ϕ(1,α,p)
1 = m(1,α) + (p − 1)ϵ. The only new ingredient

for L > 1 is the factors ZWW̃
i , which have zeros at ϕ = m(1,α) + l

(1,α)
1 ϵ (see figure 10). Due

to these zeros the integrations of ϕ(1,α,p)
i (i > 1), which are again given by the residues at

ϕ
(1,α,p)
i = m(1,α) + (p − 1)ϵ, vanish if l(1,α)

i > l
(1,α)
1 . Repeating this argument, we can show

that the contributions are nonzero only when l
(j,α)
i < l

(j,α)
i′ for i > i′. In other words, the

nonzero contributions can be classified by the same Young tableaux corresponding to the
fixed points. In this way, we can show that C+

i are the contours surrounding all the poles
corresponding to the fixed points.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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