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1 Introduction

The holographic interpretation of the entropy of 5d BPS Kerr-Newman black holes [1, 2]
from the dual field theory point of view has been an active field of research in the recent
past, thanks to the extremization principle of [3]. It has been indeed possible to find a
microscopic way to count the microstates [4, 5]. by extracting them from the superconformal
index (SCI) [6, 7]. Further generalizations of these results have then been obtained [8–34].
It was then realized that it is possible to furnish a field theoretical interpretation of the
result in terms of an effective field theory analysis that follows from the compactification of
4d SU(Nc) SYM on S1 [35, 36]. The analysis is performed by considering the most general
supersymmetric action in 3d and by fixing the coefficients by a one-loop calculation of the
Kaluza-Klein modes on the circle. The analysis generalizes the one done in [37] for the
ordinary Cardy-limit of the SCI and for the case of 4d SU(Nc) SYM it reproduces the results
expected from the matrix model [23]. The EFT corresponds to the SU(Nc)±Nc CS action of
an N = 2 vector multiplet with further contributions of global CS that can be associated
to the 4d global anomalies. On the other hand the EFT interpretation is less clear when
the analysis is performed in the regime of charges that dominates the behavior of the SCI
for rational values of the fugacity associated to the rotation parameter [36]. Anyway, from
the matrix model calculation, also in this case a 3d CS theory is expected. Indeed the 3d
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matrix model corresponds to the one obtained from an SU(Nc/C)×U(1)C−1 gauge group,
with (mixed) CS levels and further contributions that resemble the ones of the global CS
discussed in the EFT interpretation of the SCI in the BH regime.

It is natural to wonder how the EFT interpretation generalizes beyond the case of su(Nc)
SYM. A first attempt consists of considering the case of usp(2n) and so(m) gauge algebra,
where some results from the matrix model perspective have been obtained in [24]. In this
case for n = 2Nc and m = 2Nc + 1 a further question consists of understanding the fate of
the S-duality under the Cardy-like limit. The role of the size of the circle (i.e. the fact that
one sums over the whole KK tower) suggests that S-duality should be preserved in the 3d
EFT. This is indeed very similar to the idea pursued in [38] for the reduction of 4d dualities
to 3d. The finite size effects in the circle reduction there (on the first sheet in the language
of [35]) encrypted in the constraints imposed by the KK monopole, became crucial in order
to construct the 3d EFT preserving the 4d dualities. This expectation was confirmed from
the matrix model calculation in [24], restricting to the saddles at vanishing holonomies, the
ones that dominate the index in the BH regime.

Physically the matching of the index evaluated on the saddles at vanishing holonomies can
be understood from the EFT interpretation. First of all in this case the result can be expressed
in terms of the 4d trace anomalies, that naturally match across S-dual phases. Second, the
less trivial aspect of this matching consists of comparing the contributions from the CS
sectors. The agreement in this case can be reformulated as the fact that S-duality is preserved
because the topological sectors, identified by the saddle point holonomies, are equivalent.

However, a full understanding of S-duality in the Cardy-like limit requires to go beyond
the case at vanishing holonomies.

In [24] indeed further saddles of the SCI have been studied for the usp(2Nc) case. The
behavior of the SCI evaluated on these saddles is generically subleading in the region of
charges that reproduces the BH entropy.1 On the other hand for the orthogonal case the index
has been evaluated so far only for the saddle at vanishing holonomies. The questions is then if
the Cardy-like limit of the SCI of so(2Nc +1) SYM on these other saddles matches the results
obtained in [24] for the usp(2Nc) case. Indeed, despite the fact that such saddles are expected
to be subleading in the BH regime, they dominate the index in other regions of charges.

In this paper we provide an answer to this question, showing that S-duality relating
so(2Nc + 1) and usp(2Nc) is fully preserved in the Cardy-like limit of the SCI for small
collinear angular momenta. In order to provide the complete answer we first study the saddle
point equations for so(2Nc + 1) SYM, expanding the index at finite Nc in terms of the small
angular momenta. Then, we study the behaviour of the index focusing only on the leading
terms in the Cardy-like expansion, showing that in various “physical” regions of charges the
leading contributions to the index match across the S-dual phases. However, a large Nc limit
is required if we stick to a leading order Cardy-like expansion, to achieve a matching. For
this reason, we proceed then to go beyond the leading order and we observe that only after
including subleading terms in the expansions S-duality is properly recovered at finite Nc.
These last expansions provide also 3d CS partition functions for topological gauge theories

1With the exception of a saddle that contributes identically to the one obtained at vanishing holonomies.
Such a saddle accounts for the role of the one-form symmetry in the EFT interpretation [25, 35].
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and their evaluation is crucial for our scopes. Indeed by direct evaluation we show that such
CS partition functions vanish on the saddles that are subleading at large Nc for any choice
of charges. We refer to saddles of this type as perturbatively unstable, because even if they
are apparently giving a contribution to the index at leading order in the angular momenta,
they vanish once higher order terms in the expansion are considered.

Summarizing: we find that the SCI of so(2Nc + 1) and usp(2Nc) N = 4 SYM in the
Cardy like limit receives non-vanishing contributions only from a subset of solutions of the
saddle point equations. Furthermore, the index expanded in terms of the small collinear
angular momenta around such solutions matches among the S-dual theories.

2 The Cardy-like limit of the SCI of N = 4 usp(2Nc)

In this section we overview the results of [24] for the evaluation of the Cardy-like limit of the
superconformal index for N = 4 SYM with gauge algebra2 g = usp(2Nc). The field content
amounts to one vector and three adjoint matter fields in terms of N = 1 language. The index
corresponds to a matrix integral over the holonomies ui i = 1, . . . , Nc of the gauge group
and it can be written in terms of the elliptic Gamma functions as

Iusp(2Nc) = (p; p)Nc
∞ (q; q)Nc

∞
2NcNc!

3∏
a=1

Γ̃(∆a)Nc

∫ Nc∏
i=1

dui

∏3
a=1

∏
i<j Γ̃(±u

(±)
ij +∆a)∏

i<j Γ̃(±u
(±)
ij )

·

·
∏3

a=1
∏Nc

i=1 Γ̃(±2ui +∆a)∏Nc
i=1 Γ̃(±2ui)

.

(2.1)

where ∆1,2,3 encode the flavour and R-charges of the three adjoints and we used the compact
notation ±u

(±)
ij ≡ ±ui ± uj for the gauge holonomies. The fugacities p ≡ e2πiτ and q ≡ e2πiσ

are associated to the angular momenta J1, J2 on S3 with τ and σ conjugated chemical
potentials and to the R-charge through the combination (pq)R/2. We refer the reader to
appendix A for the general definition of the index and to appendix B for the definitions of
the elliptic functions and their asymptotic behavior. The index can be also written as an
integral of an effective action S

usp(2Nc)
eff , that in this case is written as

S
usp(2Nc)
eff =

3∑
a=1

∑
i<j

log Γ̃
(
±u

(±)
ij +∆a

)
+

Nc∑
i=1

log Γ̃ (±2ui +∆a) + Nc log Γ̃ (∆a)


+
∑
i<j

log θ0
(
±u

(±)
ij

)
+

Nc∑
i=1

log θ0 (±2ui) + 2Nc log(p; p)∞,

(2.2)

such that the matrix integral (2.1) becomes

Iusp(2Nc) = 1
2NcNc!

∫ Nc∏
i=1

dui e−S
usp(2Nc)
eff (2.3)

The next step consists of evaluating the index in the limit |τ | → 0 (at fixed arg τ ∈ (0, π))
restricting to the case τ = σ (see [39] for the generalization to σ ̸= τ). The evaluation of

2Observe that in the following we will always refer to the gauge algebra instead of the gauge group because
the superconformal index does not distinguish the global properties of the gauge group.
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the index in this limit corresponds to a series expansion in τ ; such expansion is obtained by
perturbations around the holonomies that solve the saddle point equations obtained from (2.2).
As |τ | → 0 the saddles will converge to the leading ones, capturing the full behaviour of the
index up to exponentially suppressed terms in |τ |. The saddle point equations are

3∑
a=1

[
Nc∑
j=1
j ̸=k

(
B2{u

(±)
ij +∆a}−B2{−u

(±)
ij +∆a}

)
+ B2{2ui +∆a}−B2{−2ui +∆a}

]
=0. (2.4)

The analysis of the solutions of these equations and the expansion of the index has been
performed in [24]. In the following we review the results. It has been observed that the
index receives contributions from two families of saddle points and that the final sum over
such saddles can be written as

Iusp(2Nc) =
⌊Nc−1

2 ⌋∑
L=0

2Iusp(2Nc)
L=0,Nc−L=1/2 + Iusp(2Nc)

L=0,L=1/2,Nc−2L=1/4 +
(
Iusp(2Nc)

Nc/2=0,Nc/2=1/2 if Nc even
)
.

(2.5)
Each of the families has a distinct leading saddle point which dominates in a specific region
of charges.

• The first family is constituted of saddles with L holonomies at ui = 0 and K ≡ Nc − L

holonomies at ui = 1/2. Such saddles are paired by the relation IL,Nc−L = INc−L,L.
For this reason it is convenient to count them starting from L = 0 up to ⌊Nc−1

2 ⌋ with a
degeneracy factor 2. Their contribution to the index has been studied in [24], here we
only report the result.

The saddle point and the effective action emerging near the saddle as |τ | → 0 are

û=

ūj = vjτ j =1, . . . ,L
1
2 + ūL+r ≡ 1

2 + w̄r = 1
2 +wrτ r=1, . . . ,Nc−L.

(2.6)

S
usp(2Nc)
L,K =

=−2πi

τ2 (η1(L+1−K)+Kη2)
L∑

i=1
ū2

i −
2πi

τ2 (η1(K+1−L)+Lη2)
K∑

r=1
w̄2

r

+
L∑

i<j

log

2sin
±πū

(±)
ij

τ

+ L∑
i=1

log
[
2sin

(
±2πūi

τ

)]

+
K∑

r<s

log
[
2sin

(
±πw̄

(±)
rs

τ

)]
+

K∑
r=1

log
[
2sin

(
±2πw̄r

τ

)]
(2.7)

− iπ

τ2

(
2(L−K)2+Nc

) 3∏
a=1

(
{∆a}τ−

1+η1
2

)
− iπ

τ2 LK
3∏

a=1

(
{2∆a}τ−

1+η2
2

)

+ iπ

(
(6−5η1)

(
2(L−K)2+Nc

)
12 +(12−5η2)LK

3 −N2
c

)
−Nc log(τ)+O(τ),
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where η1 = ±1 and η2 = ±1 define different chambers for the chemical potentials,
satisfying

3∑
a=1

{I∆a}τ = 2τ + 3 + ηI

2 (2.8)

These constraints arise as a consequence of the constraint

3∏
a=1

ya = pq =⇒ ∆1 +∆2 +∆3 − 2τ ∈ Z, (2.9)

together with the requirement that ∆a ̸→ 0, 2. The reduction over the thermal S1 with
length β in the Cardy-like limit τ ∼ β produces 3d pure CS partition functions on S3

after the integration of the massive KK modes on S1. The original usp(2Nc) gauge
algebra is broken down to usp(2L)k1 × usp(2K)k2 . This can be read off directly from
the effective action, as it is reflected in the logarithmic terms in (2.7), defining the
measure of the CS partition function, upon exploiting property (C.3) (with ω1 = ω2 = i)
for the hyperbolic gamma functions. The CS levels can be identified by recalling the
expression for a pure 3d CS partition function on S3 with usp(2m)k gauge algebra

Z
usp(2m)
S3 = eiπm2

|2mm!|

∫ m∏
i=1

dσie
−iπ2kσ2

i

∏
α∈∆+

4 sinh(±πα(σ))). (2.10)

Upon making the CS effective action apparent, through the change of variables ūj =
−iσjτ , the CS levels are k1,2 = −C1,2, with −2πi

τ2 C1,2 being the coefficients of the
quadratic terms in (2.7).

All in all, the contribution to the SCI coming from the (L, K) saddle point of this family
is, up to exponentially suppressed corrections ∼ O(e−

1
|τ | ) in the Cardy-like limit,

Iusp(2Nc)
L,K = τNce−

iπ(2(L−K)2+Nc)
2 e−2iπLKI0Z

usp(2L)k1
S3 Z

usp(2K)k2
S3 , (2.11)

where

log I0 ≡ − iπ

τ2

(
2(L − K)2 + Nc

) 3∏
a=1

(
{∆a}τ − 1 + η1

2

)
+

− iπ

τ2 LK
3∏

a=1

(
{2∆a}τ − 1 + η2

2

)
− Nc log(τ)+

+ iπ

(
(6− 5η1)

(
2(L − K)2 + Nc

)
12 + (6− 5η2)LK

3 − (L2 + K2)
)

.

(2.12)

and the CS levels for the 3d pure CS theories partition functions on S3 arek1 = −((L + 1− K)η1 + Kη2)
k2 = −((K + 1− L)η1 + Lη2).

(2.13)
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• The second family is described by saddles with L holonomies at ui = 0, L at ui = 1/2
and K = Nc − 2L at ui = 1/4 and L ranging between zero and ⌊Nc−1

2 ⌋. The original
gauge algebra is broken by these vacua, with breaking pattern usp(2Nc) → usp(2L)k1 ×
usp(2L)k2 × su(K)k3 × u(1)k4 and a pure 3d CS partition function emerges. The
contribution to the SCI coming from these saddles is

Iusp(2Nc)
L,L,K = τN e−

iπ(Nc+4L2+K(K−1))
2 I0Z

usp(2L)k1
S3 Z

usp(2L)k2
S3 Z

su(K)k3
S3 Z

u(1)k4
S3 (2.14)

with

logI0 =
iπ(2L−K)

τ2

3∏
a=1

(
{∆a}τ −

1+η1
2

)
− iπLK

4τ2

3∏
a=1

(
{4∆a}τ −

1+η4
2

)

− iπ((2L−K)2+K)
4τ2

3∏
a=1

(
{2∆a}τ −

1+η2
2

)
− iπ(4L2+K2)

+ iπ(6−5η1)(2L−K)
12 + iπ(12−5η2)(2L−K)2+K)

12 + iπ(12−5η4)LK

3 ,

(2.15)

the ηi defined similarly as before and

k1 = −1
2
(
2η1 + (2L − K)η2 + Kη4

)
k2 = −1

2
(
2η1 + (2L − K)η2 + Kη4

)
k3 = −

(
− 2η1 + (K − 2L + 2)η2 + 2Lη4

)
k4 = −2

(
− (K + 1)η1 + (K + 1− L)η2 + Lη4

)
.

(2.16)

• When Nc is even there is also a self-paired saddle with Nc/2 holonomies at 0 and 1/2;
such saddle represents a limiting case of the other two families discussed above.

Summarising, the index of N = 4 usp(2Nc) SYM receives contributions from Nc + 1
distinct saddle points, divided in two families. Employing the pairing degeneracy discussed
above, the saddles of the two families can be combined naturally into one, parameterised
by Ij , with j = 0, . . . , Nc − 1 and defined as follows:Ij ≡ Iusp(2Nc)

j,j,Nc−2j 0 ≤ j ≤ ⌊Nc
2 ⌋

Ij ≡ 2Iusp(2Nc)
j,Nc−j ⌈Nc

2 ⌉ ≤ j ≤ Nc.
(2.17)

The limiting case j = Nc
2 is common to both families and connects them, resulting in

a well ordered distribution of saddles shown in figure 1.

2.1 Explicit evaluation

In this section, we perform a complete analysis of the contributions to the SCI from each
saddle. At first, we will focus on the leading order Cardy-like limit, such to identify the
dominant saddle points in the regions of charges denoted as physical in [36]. In our language
these correspond to the choices η1 = −η2 = ±1 which reduce to the cases discussed in [36]
when {∆a} = 1/3, 2/3.

– 6 –
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We show that a leading order analysis in 1/|τ |2, while being enough to determine the
dominant saddle points in each region of charges, can miss physical properties of these vacua
such as S-duality and possible perturbartive instabilities that emerge in the calculation at
subleading orders in |τ | and that are encoded in the three-sphere CS partition functions. For
this reason, we claim that a complete expansion beyond the leading order in the Cardy-like
limit is necessary to achieve a physically reliable result.

The leading order 1/|τ |2 competition between the saddles in each family is determined
by a parabola. For the first family we have

−τ2

iπ
S

usp(2Nc)
L,Nc−L =

(
2(Nc − 2L)2 + Nc

)
α1 − L(Nc − L)α2, (2.18)

where we defined

αI ≡
3∏

a=1

(
{I∆a}τ − 1 + ηI

2

)
. (2.19)

We can determine the dominant saddle point in both chambers η1 = −η2 = ∓1. The net effect
of switching from the first to the second region is to change the concavity of the parabola,
switching from a M-shaped effective potential to a W-shaped one in the language of [9].

The vertex of (2.18) sits at

L = Nc

2 (2.20)

as expected due to the pairing between the L and the Nc − L saddles. Thus, the leading
saddle is either the one closer to Nc/2 or the saddle with Nc holonomies at zero, depending
on the chamber of the chemical potentials we are in.

Analogously, for the second family we find that the vertex of the corresponding parabola
sits at

L = Nc

4 − 8α1 − α2
2(8α2 − α4)

(2.21)

In the “physical” regions the relation 8α1−α2
2(8α2−α4) < 0 always holds and it allows us to

conclude that the leading saddle for this family is either the one with Nc holonomies at
ui = 1/4 or the saddle closer to the vertex (2.21) defined by some L (say L∗) by symmetry
reasons. However, we notice that the two parabolas describing the two families of saddles
have opposite concavities, thus depending on the region of the chemical potentials the leading
saddle is either the one where the Nc holonomies sitting at zero dominate on the L∗ saddle of
the second family, or the one with Nc holonomies at 1/4 (in the W winged shaped potential)
as shown in (figure 1). Borrowing again the terminology of [9], we refer to the choice where
the vanishing holonomies dominate as the M-wing, while the region where the non-vanishing
holonomies dominate is referred to the W-wing. The first case corresponds to the choice
η1 = −η2 = −1, while the second case corresponds to η1 = −η2 = 1.

– 7 –
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0.2 0.4 0.6 0.8 1.0
x

2

4

6

8

-
τ2

iπ
Sj
usp (2 Nc )

0.2 0.4 0.6 0.8 1.0
x

-8

-6

-4

-2

-
τ2

iπ
Sj
usp (2 Nc )

Figure 1. Behaviour of the saddle points for usp(2Nc) as x := j/Nc ranges from 0 to 1 and Nc = 10.
On the left: {∆a} = 1/3; on the right: {∆a} = 2/3.

3 The Cardy-like limit of so(2Nc + 1) for general holonomies

In this section we focus on the Cardy-like limit evaluation of the SCI for 4d N = 4 SYM
with so(2Nc + 1) gauge algebra, determining the general structure of the saddle points.
The index is given by

Iso(2Nc+1) = (p; p)Nc
∞ (q; q)Nc

∞
2NcNc!

3∏
a=1

Γ̃(∆a)Nc

∫ Nc∏
i=1

dui

∏3
a=1

∏
i<j Γ̃(±u

(±)
ij +∆a)∏

i<j Γ̃(±u
(±)
ij )

·

·
∏3

a=1
∏Nc

i=1 Γ̃(±ui +∆a)∏Nc
i=1 Γ̃(±ui)

.

(3.1)

We define the effective action

S
so(2Nc+1)
eff =

3∑
a=1

∑
i<j

log Γ̃
(
±u

(±)
ij +∆a

)
+

Nc∑
i=1

log Γ̃ (±ui +∆a) + Nc log Γ̃ (∆a)


+
∑
i<j

log θ0
(
±u

(±)
ij

)
+

Nc∑
i=1

log θ0 (±ui) + 2Nc log(p; p)∞,

(3.2)

such that the index is

Iso(2Nc+1) = 1
2NcNc!

∫
du exp

(
−S

so(2Nc+1)
eff (u, τ)

)
. (3.3)

General solutions to the saddle point equations beyond the leading order Cardy-like
limit can be found by first focusing on the leading term in the Cardy-like limit and then by
expanding around those solutions accordingly, following the strategy of [23]. As |τ | → 0 the
saddles will converge to the leading ones, capturing the full behaviour of the index up to
exponentially suppressed terms in |τ |.
The saddle point equations are

3∑
a=1

[
Nc∑
j=1
j ̸=k

(
B2{u

(±)
ij +∆a}−B2{−u

(±)
ij +∆a}

)
+ B2{ui +∆a}−B2{−ui +∆a}

]
=0. (3.4)

– 8 –
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usp(2Nc)

usp(2L)
u∗ = 0

u(Nc)

u∗ = 1/4

usp(2K)
u∗ = 1/2

u(Nc)

u∗ = 3/4

so(2Nc + 1)

so(2L + 1)
u∗ = 0

so(2K)
u∗ = 1/2

Figure 2. Vacua distribution together with the corresponding group of the effective CS theory.

The absence of a factor 2 in the ±ui roots of so(2Nc + 1) with respect to the ones of
usp(2Nc) plays a crucial role in the behaviour of the structure of the saddles, leading to
a rather different behaviour than the ones of the symplectic case, as showed in figure 2.3
We found that the solution with Nc holonomies at zero, already studied in [24], lies inside
a more general family of saddles parameterised by L = 0, Nc, which counts the number of
holonomies set to zero. The general saddle point is of the form (L, Nc−L), with L holonomies
at zero and Nc − L at 1/2. As opposed to the symplectic case, there is no pairing between
the L and L′ = Nc − L saddles.

The saddle point beyond the leading order in the Cardy-like limit and the corresponding
subleading contributions to the index are then obtained by expanding around the lead-
ing saddles.

3.1 L holonomies at ui = 0, K = Nc − L holonomies at ui = 1/2

We make the following ansatz for the general saddle point:

û =

ūj = vjτ j = 1, . . . , L
1
2 + ūL+r ≡ 1

2 + w̄r = 1
2 + wrτ r = 1, . . . , K.

(3.5)

Then, expanding the effective action near û for |τ | → 0 we obtain

S
so(2Nc+1)
L,K = − iπ

τ2 (2(L − K)− 1)η1 + 2Kη2)
L∑

i=1
ū2

i +
L∑

i<j

log

2 sin
±πū

(±)
ij

τ

+

+
L∑

i=1
log

(
2 sin

(±πūi

τ

))
− Nc log(τ) +

− iπ

τ2 ((2(K − L)− 3)η1 + (2L + 1)η2)
K∑

r=1
w̄2

r +
K∑

r<s

log
(
2 sin

(
±πw̄

(±)
rs

τ

))
+

− iπ

τ2

(
2(L − K)2 + L − 3K

) 3∏
a=1

(
{∆a}τ − 1 + η1

2

)

− iπ

2τ2 (K(1 + 2L))
3∏

a=1

(
{2∆a}τ − 1 + η2

2

)
+

+iπ

(
(6− 5η1)

(
2(L − K)2 + L − 3K

)
12 + (12− 5η2)K(1 + 2L)

6 − N2
c

)
, (3.6)

3Observe that the gauge symmetry breaking pattern is reminiscent of the one dictated by the split of an
orientifold O4 plane under T-duality along a compact direction. It would be interesting to investigate further
on this relation.
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where again η1 = ±1 and η2 = ±1. The action (3.6) is manifestly not invariant under
L ↔ K, differently to the symplectic case. Upon changing variables ūj = −iσjτ , we can
read off the three sphere partition function a 3d pure CS theory. Such CS theories arise by
expanding the holonomies around the ui = 0 and ui = 1/2 vacua, and they give rise to an
odd and even rank orthogonal gauge group respectively. We obtain the partition function
of an s(o(2L + 1)k1 × o(2K)k2) pure CS theory with CS levelsk1 = −(2(L − K)− 1)η1 − 2Kη2

k2 = −(2(K − L)− 3)η1 − (2L + 1)η2
(3.7)

The index is then

I =
Nc∑

L=0
IL,Nc−L, where IL,K = τNce−

iπ((2K−1)K+(2L+1)L)
2 I0Z

s(o(2L+1)k1×o(2K)k2 )
S3 (3.8)

and

log I0 = − iπ

τ2

(
2(L − K)2 + L − 3K

) 3∏
a=1

(
{∆a}τ − 1 + η1

2

)

− iπ

2τ2 (K(1 + 2L))
3∏

a=1

(
{2∆a}τ − 1 + η2

2

)
− Nc log(τ)+

+ iπ

(
(6− 5η1)

(
2(L − K)2 + L − 3K

)
12 + (12− 5η2)K(1 + 2L)

6 − N2
c

)
.

(3.9)

3.2 General behaviour of the saddles

Again, the dominant saddle point in the Cardy-like limit depends on the region of chemical
potentials we are in. To identify the leading saddle it is enough to focus on the leading order
term. The behaviour of the saddles is determined by a second degree polynomial in L ∈ [0, Nc].

−τ2

iπ
S

so(2Nc+1)
L,Nc−L =

(
2(Nc − 2L)2 + 4L − 3Nc

)
α1 +

1
2 ((Nc − L)(1 + 2L))α2. (3.10)

where α1,2 are defined in (2.19) The parabola has a vertex in

L = 2Nc − 1
4 (3.11)

independently of the chemical potentials.
Thus, it follows that the dominant saddle is either the one closer to the vertex with

L =
⌊

Nc
2

⌋
, since L must be integer, or the saddle with L = Nc at the extremum of the domain

of the parabola, depending on the region of chemical potentials we are considering. The
saddle with L = 0 is penalised, due to the vertex being closer to zero than to Nc; only in the
large Nc limit we expect to recover a pairing between the L and the L′ = Nc − L saddles
as the symmetry axis of the parabola goes to Nc/2. In the “physical” regions we are in the
M-wing or in the W-wing. In the first case the dominant saddle point is the one with Nc

holonomies at zero, while in the second case the dominant saddle is the one with L =
⌊

Nc
2

⌋
.

Summarizing, the M-wing is dominated by vanishing holonomies, while the saddle with
L =

⌊
Nc
2

⌋
holonomies at ui = 0 and the remaining at ui = 1/2 dominates the W-wing.
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0.2 0.4 0.6 0.8 1.0
x

-1

1

2

3

4

5

-
τ2

iπ
SL,K

so (2 Nc + 1)

0.2 0.4 0.6 0.8 1.0
x

-5

-4

-3

-2

-1

1

-
τ2

iπ
SL,K

so (2 Nc + 1)

Figure 3. The behaviour of (3.10) as x := L/Nc ranges from 0 to 1. The vertical line passes through
the vertex of the parabola. For presentation purposes we plotted the case with Nc = 8. On the left:
{∆a} = 1/3; on the right: {∆a} = 2/3.

4 S-duality

In this section we study the fate of 4d S-duality in the Cardy-like limit of the SCI. We start
by matching the 1/|τ |2 leading order contribution to the index when all the holonomies are
vanishing in both the symplectic and orthogonal case. This saddle dominates the index in the
M-wing of the potential and it reproduces the entropy function of the would be holographic
dual black hole. Then we match the leading contributions in the region of parameter where
the index is in the W-wing.

Then we consider the fate of S-duality also in presence of subleading contribution in |τ |.
As discussed above only few saddles survive for both usp(2Nc) and so(2Nc+1). These saddles
are exactly the ones that dominates the index in the M-wing and in the W-wing. In the case
of the M-wing the full matching was discussed in [24]. In the W-wing we show here that
S-duality is preserved because of a non-trivial identity among the pure CS partition functions.

4.1 S-duality at the leading order

We begin our analysis by focusing on the leading 1/|τ |2 order expansion of the index. The
dominant contributions to the index in each region η1 = −η2 = ∓1 have been identified
in the previous sections and read

• M-wing (η1 = −1): the dominant contribution in the orthogonal case is achieved for
vanishing holonomies. The symplectic theory is dominated by the same configuration
of holonomies but the contribution is doubled due to the pairing between the saddles
at Nc holonomies at ui = 0 and at Nc holonomies at ui = 1

2 . As discussed in [24], the
factor 2 degeneracy, understood as the presence of a Z2 global 1-form symmetry, is
not apparent in the orthogonal theory at this order, for any finite Nc, and only once
subleading corrections in |τ | are included such factor can be recovered.

• W-wing (η1 = 1): the symplectic theory is dominated by the saddle point with Nc

holonomies at ui = 1
4 , while for the orthogonal case the dominant contribution arise

when L = ⌊Nc
2 ⌋ holonomies sits at ui = 0 and the remaining ones at ui = 1

2 .
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At this level the expectation is that S-duality manifests as a matching between the
dominant saddles. A natural question regards the role of the regions of chemical potentials.
When an EFT interpretation of the underlying 3d pure CS theory is understood, the matching
between the saddles is actually constrained by S-duality independently of the specific region of
ηI we sits in, because the topological sectors identified by the holonomies are equivalent. This
is indeed the case for the saddle at vanishing holonomies for which an EFT interpretation
for the CS terms can be recovered.

To be more explicit, one can readily observe that

Iusp(2Nc)
Nc,0 = Iso(2Nc+1)

Nc,0 = exp
[
− iπNc(2Nc + 1)

τ2

3∏
a=1

(
{∆a} −

1 + η1
2

)]
(4.1)

which holds for any value of ηI and it thus persists independently of the specific wing we are in.
Notice however that by sticking at order 1/|τ |2 a proper matching can be achieved only

considering the large Nc limit, when the reflexive symmetry L ↔ K between the saddles is
recovered also in the orthogonal case. In fact, for Nc → ∞ we get

Iusp(2Nc)
Nc,0 + Iusp(2Nc)

0,Nc
= Iso(2Nc+1)

Nc,0 + Iso(2Nc+1)
0,Nc

=

= 2 exp
[
− iπNc(2Nc + 1)

τ2

3∏
a=1

(
{∆a} −

1 + η1
2

)] (4.2)

The same argument cannot be employed for the saddles dominating the W-wing as the
EFT interpretation is less clear. However, also for these saddles the matching extends to
any region of {∆a} at least for the leading order in |τ |.

Indeed,

Iusp(2Nc)
0,0,Nc

= Iso(2Nc+1)
⌊Nc

2 ⌋,⌈Nc
2 ⌉

=

= exp
[

iπNc

τ2

3∏
a=1

(
{∆a} −

1 + η1
2

)
− iπ(N2

c + Nc)
4τ2

3∏
a=1

(
{2∆a} −

1 + η2
2

)]
(4.3)

At this level of the discussion the fate of S-duality on the other saddles is unclear. Indeed
we did not find a matching among the indices expanded around such saddles at leading
order in 1/|τ |2. The situation is clarified by taking into account the complete expansion
in |τ |, as we will show in the next sub-section.

4.2 Beyond the leading order

The 3d CS partition function on S3 is

Zg =
1

|W |

∫ rkg∏
i=1

dσie
iπkσ2

i
ω1ω2

∏
α(σ)

Γ−1
h (α(σ)) (4.4)

The exact evaluation of this partition function is already known in literature for algebras
of type ABCD and it can be obtained by employing the Weyl character formula and its
generalisations. As discussed before, the possible symmetry breaking patterns of the original
gauge group for each holonomy configuration fall into an algebra of type ABCD. Therefore,
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we can get an explicit evaluation of the SCI on each saddle beyond the semiclassical expansion,
with the most significant contribution coming from CS partition functions.

The explicit expression of such partition function for each algebra is presented in ap-
pendix C. All of them exhibits similar features. The general structure is

ZABCD(m)k
= exp (iπf(m, k))

g(m, k)
∏

n∈Im

2 sin
(

π
n

k

)d(n)
, (4.5)

where Im is some subset of consecutive elements of (semi-)integers, typically depending on
the rank m of the group, k is the CS level of the theory, while f(m, k) and g(m, k) are two
functions depending on the details of g, with g(m, k) such that g(m, 0) = 0, while f(m, k)
real, so that exp(iπf(m, k)) is a phase. The function d(n) represents a possible degeneracy,
due to possible multiple occurrences of the same integer n.

A general consequence of (4.5) is that the level plays a crucial role in determining
the physical relevance of the saddle point. First, for k = 0 the TFT is not well defined.
Second, when k lies within Im the partition function is zero. The only case when (4.5) is
non-vanishing is when k > max(Im).

Since the CS level is determined by the holonomy configuration of a chosen saddle,
we can predict the stability and the contribution of such a saddle to the index only by
studying the CS level for the emerging pure CS theories, expanding the effective action for
the matrix model near such vacuum.

Focusing first on N = 4 usp(2Nc) SYM, the possible patterns of symmetry breaking found
can be divided in two categories usp(2Nc) → usp(2L)× usp(2K) and usp(2Nc) → usp(2L)×
usp(2L)× su(K)×u(1). For the first case, by inspecting (C.6) and remembering that the CS
levels for the two pure CS theories are defined as in (2.13), we find that Zusp(2(Nc−L))k2 = 0
when 0 < L ≤ ⌊Nc/2⌋. Moreover, under the reflexive symmetry L ↔ Nc − L the role of
Zusp(2L)k1 and Zusp(2(Nc−L)k2 ) is exchanged and we can conclude that Zusp(2L)k1 = 0 when
⌊Nc/2⌋ ≤ L < Nc. In addition, it can sporadically happen that the CS level is zero for some
saddles with L ̸= 0, 1/2. Thus, beyond the semiclassical approximation the only non-vanishing
saddle arising from the first family is the one with Nc holonomies at ui = 0 together with its
paired one with Nc holonomies at ui = 1/2. All the other saddles give a vanishing partition
functions and they are then perturbatively unstable.

The same argument can be applied to the second family of saddles leaving only one
non-vanishing saddle with holonomy configuration defined by Nc holonomies at ui = 1/4.

While the 1/|τ |2 leading order calculation identifies such two saddles as the dominant
contributions to the index, the analysis beyond the leading order shows that they are the
only contributions to the index.

In addition, S-duality cannot hold without the explicit evaluation of the CS partition
function obtained by a pertubation close to the saddle. This is because S-duality is expected
to manifest in the Cardy-like limit as a matching between saddles of the two theories. Then,
without an analysis of the subleading contributions in |τ | of each saddle to the index, not
only there is not a clear understanding of the role played by the subleading saddles within
the context of S-duality, but even a partial matching between the dominant ones cannot
be achieved as discussed in [24].
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The story proceeds in a similar way for the orthogonal so(2Nc + 1) case. In this case, we
have just one family of saddles with L holonomies at ui = 0 and Nc−L at ui = 1/2, as discussed
in section 3. The original so(2Nc + 1) gauge algebra breaks into s(o(2L + 1)× o(2(Nc − L)))
and a Zs(o(2L+1)k1×o(2K)k2 ) factor (with k1 and k2 defined in (3.7)) appears in the evaluation
of the subleading contributions in |τ | to the index in the Cardy-like limit.

Using the results presented in appendix C for the partition function of the CS gauge
theories with orthogonal gauge algebra, together with (3.7) for the CS levels we find that
the only non-vanishing saddles are the ones with either Nc holonomies at zero or L = ⌊Nc

2 ⌋
holonomies at ui = 0 and the remaining ones at ui = 1

2 . These have been already identified
as the dominant contributions to the index in the M-wing and W-wing respectively.

Summarising, S-duality predicts a matching between two pairs of saddles of the two
theories, which must hold independently of the regions of charges that we are considering.
In this sense also the distinction between the W and M shaped regions of the potential is
unnecessary, because we have matched the whole expansions in |τ | in both the wings.4 The
SCI for the two distinct 4d S-dual SYM theories reduces to

• usp(2Nc): Iusp(2Nc) = 2INc,0 + I0,0,Nc .

• so(2Nc + 1): Iso(2Nc+1) = INc,0 + I⌊Nc
2 ⌋,⌈Nc

2 ⌉.

The saddles with vanishing holonomies agree in the two theories, as already discussed in [24].
For both theories their contribution to the SCI is

log INc,0 ∼ − iπNc(2Nc + 1)
τ2

3∏
a=1

(
{∆a}τ − 1 + η1

2

)
+ log 2. (4.6)

This result holds thanks to the crucial role played by the evaluation of the CS partition
function, responsible in the orthogonal case for the appearance of a log 2, related to the
log |G| correction to the black hole entropy, discussed in [24] and understood as the presence
of a 1-form symmetry.

It remains to show that the saddle with Nc holonomies at ui = 1
4 of the usp(2Nc) theory

agrees with the corresponding saddle with L = ⌊Nc
2 ⌋ holonomies at ui = 0 and the remaining

ones at ui = 1
2 of the so(2Nc + 1) theory.

In the symplectic theory the contribution of the saddle to the index is

INc,0 = τN e−iπ
N2

c
2 I0Z

su(Nc)h1
S3 Z

u(1)h2
S3 , (4.7)

with

log I0 = − iπNc(Nc + 1)
4τ2

3∏
a=1

(
{2∆a}τ − 1 + η2

2

)
+ iπNc

τ2

3∏
a=1

(
{∆a}τ − 1 + η1

2

)
+ 5iπNc

12 (η1 − (Nc + 1)η2) +
iπNc

2 − Nc log(τ),
(4.8)

4Observe that even if we did not mention the contribution at order |τ | in our calculation that corresponds,
for vanishinbg holonomies, to the supersymmetric Casimir energy [35] and it always matches across dualities.
Similarly we have matched that terms across S-duality also in the cases without vanishing holonomies.
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For the orthogonal case the general expression (3.8) reduces to, when L = ⌊Nc
2 ⌋,

I⌊Nc
2 ⌋,⌈Nc

2 ⌉ = τNce−
iπN2

c
2 I0Z

s(o(2⌊Nc
2 ⌋+1)k1×o(2⌈Nc

2 ⌉)k2)
S3 , (4.9)

where

log I0 = iπNc

τ2

3∏
a=1

(
{∆a}τ − 1 + η1

2

)
− iπNc(Nc + 1)

4τ2

3∏
a=1

(
{2∆a}τ − 1 + η2

2

)
+ 5iπNc

12 (η1 − (Nc + 1)η2) +
iπNc

2 − Nc log(τ)
(4.10)

exactly matches the same term in the symplectic case.
Assuming S-duality is preserved, then a non-trivial integral identity between products of

CS partition functions is expected. Thus, focusing on the regions where η1 = −η2 = −1,5
it remains to show that

• Nc = 2m:
Z

s(o(2m+1)2m+1×o(2m)2m+4)
S3 = Z

su(2m)2m+4
S3 Z

u(1)4(2m+1)
S3 . (4.11)

• Nc = 2m + 1:

Z
s(o(2m+2)2m+2×o(2m+1)2m+5)
S3 = Z

su(2m+1)2m+5
S3 Z

u(1)4(2m+2)
S3 (4.12)

It turns out that these identities indeed hold. The complete proof is presented in appendix D.
At last, we achieved a matching between all the saddle points emerging in the Cardy-like
limit of the SCI for N = 4 SYM theory with usp(2Nc) and so(2Nc + 1), thus recovering
S-duality in the Cardy-like limit of the index for finite Nc.

To conclude the analysis we comment on the two special cases of Nc = 1 and Nc = 2,
when the algebras isomorphisms between classical Lie algebras extend the matching between
the saddle points to all the saddles of the two theories. We have

• When Nc = 1, the isomorphism is made explicit upon changing variables in the SCI as
uso = 2vusp, implying Iusp(2) = Iso(3). Accounting for the pairing degeneracy of the
saddles with v = 0 and v = 1

2 , we obtain the expected mapping between saddles:

usp(2) so(3)
0, 1/2 7−→ 0

1/4 7−→ 1/2.

(4.13)

• The case of Nc = 2 is physically more interesting, being the only case where a third
matching between saddles of the two theories appears.

Again, defining uso
1,2 = vusp

1 ± vusp
2 , one can easily show that the two indices (2.1)

and (3.1) can be mapped into each others. The corresponding mapping between the
5The same identities holds also for the case η1 = −η2 = 1, that it is related to the one discussed here by a

parity transformation.
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saddles in the two theories is the following:

usp(4) so(5)
(0, 0), (1/2, 1/2) 7−→ (0, 0)

(0, 1/2) 7−→ (1/2, 1/2)
(1/4, 1/4) 7−→ (0, 1/2).

(4.14)

Besides the two saddles, already discussed in full generality in the previous section, a
third matching appears between the (0,1/2) saddle of usp(4) and the (1/2,1/2) saddle
of so(5) as a consequence of the algebra isomorphism relating the two SCIs. However,
the matching survives only at order 1/|τ |2 in the Cardy-like expansion as, once the CS
partition function contributions are included, an instability emerges in the two saddle
points because the CS levels (2.13) and (3.7) vanish in this case.

5 Conclusions

In this paper we have studied the fate of S-duality in the Cardy like limit of the SCI of N = 4
SYM for the cases with gauge algebra so(2Nc + 1) and usp(2Nc). We have found that such
duality is preserved (at finite Nc) in a non-trivial way and only after a complete analysis
beyond the leading order 1/|τ |2 in the Cardy-like limit. The calculation of the subleading
corrections in |τ | requires a saddle point analysis, and, as we have shown here, there is a lower
amount of saddles in the so(2Nc +1) case with respect to the ones found in [24] for usp(2Nc).
While this is not a problem per se, because already at leading level in the W-wing, the index
evaluated from two degenerate usp(2Nc) saddles coincides with the one evaluated on a single
so(2Nc + 1), by evaluating only the leading contribution of each saddle in the Cardy-like
limit we have not been able to fully match the index of usp(2Nc) with the one of so(2Nc +1).
Nevertheless we have matched the indices evaluated on the saddles that dominate in the
M-wing and the indices evaluated on the saddles that dominate in the W-wing separately.
Even if the matchings between these saddles holds at finite Nc, there can be also other saddles
that contribute to the index. We have shown that in general these last never contribute to
the SCI because the CS partition function generated from the expansion in |τ | vanishes for
such saddles. We have eventually evaluated the CS partition functions and fully matched
the index of the S-dual models in the Cardy-like limit.

It is also desirable to compare our results with previous results on S-duality from the
superconformal index.6 Despite the high degree of supersymmetry at the moment no analytic
proof of the USp(2Nc) vs SO(2Nc +1) duality is available from the mathematical literature of
integral identities between elliptic hypergeometric integrals, i.e. there is no analytic matching
of the superconformal indices. A first observation about this fact appeared in [40], where some
hints toward a general formulation of S-duality from the SCI was discussed. However the most
important and deep checks of the duality have been performed in [41], where the identity
has been proved in various limits. Among such limits the more affine to our discussion is
the so called hyperbolic limit, corresponding to the limit that leads to the 3-sphere partition

6We are grateful to the referee for suggesting us this discussion.
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function. This limit corresponds to the one used in [38] in order to reduce 4d dualities to
3d, by considering an effective description on S1. Conventional 3d dualities can then be
found starting from this last effective picture by further real mass flows. Focusing on the
hyperbolic limit studied in [41] it corresponds in the physical language to a limit to a pure
3d description, and indeed a further real mass flow is engineered by sending one of the real
mass parameter associated to a global fugacity to infinity. Such double scaling prevents
the generation of flat directions in the Coulomb branch that usually spoil the finite size
duality in the prescription of [38]. The net effect is that the final models correspond to
USp(2Nc) with an adjoint and SO(2Nc + 1) with an adjoint. In such case the superpotential
vanishes. These two models are both dual to the same WZ model consisting of 2N chiral
superfields of the type TrXj , where X is an adjoint either of USp(2Nc) or SO(2Nc + 1), with
j = 1, . . . , 2Nc. The gauge holonomies in this limit are all set to zero and the reduction
is done on the first sheet in the language of [35]. Here we have discussed the reduction of
the 4d dualities on the second sheet, where we have observed that there are two relevant
choices for the gauge holonomies, one dominating in the W-wing and the other one in the
M-wing-. In both cases we have obtained pure CS 3d theories and the matching between
them corresponds to a further non trivial check of 4d S-duality.

Many open questions are leftover. First it should be interesting to study the fate of
S-duality for models with less supersymmetry and multiple gauge groups. In principle we
expect a that the behavior studied here applies to these cases as well and that similar
conclusions can be reached.

Motivated by the study of cases with lower supersymmetry, another analysis that we did
not perform here regards the study of the subleading corrections for N = 4 so(2Nc) SYM.
Even if this is a self dual theory, understanding its behavior may be relevant for extending
the analysis to models with N = 1, 2, where also so(2Nc) gauge nodes can appear.

A further generalization regards the fate of Seiberg duality in models with four super-
charges. In the toric case one can borrow the results of [23], where the matching is indeed
straightforward in the solutions denoted as “C-center”. Other solutions are nevertheless
possible, as discussed in [16], and it is relevant to understand if they are perturbatively stable,
i.e. if they are not vanishing once the subleading terms and the CS actions are considered.

Partially related to the last issue, another consequence of our analysis regards the relation
between the vacua of the N = 1∗ theory on the circle and the vacua extracted from the saddle
point analysis of the SCI in the Cardy like limit. We have seen here that such correspondence
does not seem to hold in the usp(2Nc) and so(2Nc + 1) cases, where the number of solutions
does not grow with Nc but it is fixed to 3 in the first case and 2 in the second case. As
observed in [35] this value is related to the presence of a 1-form global symmetry, and its
value reflects the number of inequivalent lattices of charges of Wilson and ’t Hooft lines
under the unbroken subgroup of the center of the gauge group. For example in the case of
the C-center solutions for SU(Nc)/ZC N = 4 SYM such number is Nc/C. Furthermore this
number corresponds to a logarithmic correction to the contribution of the degenerate saddle
to the index. As discussed in [24], despite the different degeneration of the saddles, there
is a matching of these logs in the index of usp(2Nc) and so(2Nc + 1) in the W-wing that
emerges only after evaluating the CS partition function. In general it would be interesting
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if this behavior holds true in general, i.e.if the number of lattices associated to the same
modding corresponds to the log corrections associated to the index.

To conclude, it is also tempting to associate, along the lines of [35, 36], the results
obtained here to a 3d effective action emerging from the integration over the massive KK
modes coming from the matter multiplets in the reduction on the thermal S1. While this
interpretation is expected for the saddles at vanishing holonomies, it is less clear how to
interpret our results for the other saddles along these lines. Indeed, even in absence of an EFT
interpretation, following the discussion in [36] (see also [29]), one can associate the saddles at
non-vanishing holonomies to the expansion of the index with e2πiτ approaches a root of unity.
In the su(Nc) case the CS partition function corresponds to an orbifold partition functions on
S3/ZC . Furthermore such solutions are related to the orbifolds of the Euclidean AdS5 BH [26].
In our case such orbifold interpretation is not straightforward and it deserves further analysis.
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A The superconformal index

In this appendix we survey the main definitions of the superconformal index that we have
used in the paper. The index is defined as

I ≡ Tr(−1)F e−βHpJ1+ R
2 qJ2+ R

2

rkF∏
f=1

v
qf

f (A.1)

In this trace formula we Ji are the angular momenta on the S3, R is the R-charge and qf are
the flavor charges of the rank F flavor symmetry group f. The fugacities of these symmetries
are denoted as p, q and vf respectively. Instead of the trace formula it is useful to define the
index for a gauge theory in terms of a matrix integral over the holonomies of the gauge algebra:

I = (p; p)rkg
∞ (q; q)rkg

∞
|Wg|

∮
T rkg

rkg∏
i=1

dzi

2πizi

∏nχ

a=1
∏

ρa
Γe((pq)Ra/2zρa

gvρa
f )∏

α Γe(zαg) (A.2)

where ρa
g,f represent the weights for the chiral multiplet gauge and the flavor.

In the Cardy-like limit it is more convenient to work explicitly with the chemical potentials
conjugated to the charges of the theory. Therefore we define

p ≡ e2πiτ , q ≡ e2πiσ, vj ≡ e2πiξj , zi ≡ e2πiui . (A.3)

From A.1 we can read off the chemical potential for the R-charge

νR ≡ 1
2(τ + σ). (A.4)
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In the literature it is pretty common to encode all the charges associated with the global
symmetries of the theory in a new set of fugacities ya together with the charges ∆a defined by

ya ≡ e2πi∆a ≡ ((pq)Ra/2vρa
f ), (A.5)

The charges ∆a = ρa
f (ξ) + νRRa encode all the information about the flavour and R charges

of the theory and are thus constrained as
3∏

a=1
ya = pq =⇒ ∆1 +∆2 +∆3 − 2τ ∈ Z, (A.6)

reflecting the flavour invariance and the R-charge 2 of the superpotential term.

B Asymptotic formulas

In this appendix we collect the main formulas for the hypergeometric functions and their
asymptotic expansions needed to perform a saddle-point evaluation of the SCI in the Cardy-
like limit.

Let τ, σ ∈ H and p = e2πiτ , q = e2πiσ. The elliptic gamma function is defined as the
infinite product

Γe(z; p, q) ≡ Γe(z) :=
∞∏

i,j=0

1− pj+1qk+1/z

1− zpjqk
. (B.1)

We also define the modified elliptic gamma function as

Γ̃e(u; τ, σ) ≡ Γ̃e(u) := Γe(e2πiu; e2πiτ , e2πiσ). (B.2)

The Pochhammer symbol is defined for complex z, q with |q| < 1 by

(z; q)∞ :=
∞∏

j=0

(
1− zqk

)
. (B.3)

We can then define the elliptic function θ0(u; τ, σ)

θ0(u; τ, σ) = (u; q)∞(q/u; q)∞ =
∞∏

j=0

(
1− e2πi((j+1)τ−u)

) (
1− e2πi(u+jτ)

)
(B.4)

and for our purposes it is enough to remember that it satisfies

N∑
i<j

log θ0(±u
(±)
ij ) = −

N∑
i<j

log Γ̃e(±u
(±)
ij ). (B.5)

This relation can be easily derived employing the quasi-double periodicity property and the
inversion formula of the elliptic gamma function.

In the Cardy-like limit the asymptotic behaviour of these functions can be written
introducing the τ−modded value of a complex number:

{u}τ ≡ u − ⌊Re(u)− cot(arg(τ)) Im(u)⌋, (B.6)
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For u ∈ R it reduces to the ordinary fractional part u − ⌊u⌋.
Writing u ∈ C as u = ũ + τ ǔ with z̃, ž ∈ R, the τ−modded value satisfies

{u}τ = {ũ}+ τ ǔ, (B.7)

Moreover from the definition it follows that

{−u}τ =

1− {u}τ ũ ̸∈ Z
−{u}τ ũ ∈ Z.

(B.8)

Then, as |τ | → 0 with Im{τ} > 0 fixed, we have the following asymptotic behaviours

log (q; q)∞ ∼ − iπ

12

(1
τ
+ τ

)
− 1

2 log(−iτ) +O
(

e
2π sin arg(τ)

|τ |

)
, (B.9)

log θ0(u; τ) ∼
iπ

τ
{u}τ (1− {u}τ ) + iπ{u}τ − iπ

6τ

(
1 + 3τ + τ2

)
+

+ log
[(
1− e−

2πi
τ

{u}τ

) (
1− e−

2πi
τ

(1−{u}τ )
)]

+O
(

e
2π sin arg(τ)

|τ |

)
, (B.10)

log Γ̃(u; τ) ∼ 2πiQ({u}τ ; τ) +O
(
|τ |−1e

2π sin arg(τ)
|τ | min({u}τ ,1−{u}τ )

)
, (B.11)

provided that ũ ̸∈ Z, with Q(u) defined as

Q(u; τ) = −B3(u)
6τ2 + B2(u)

2τ
− 5B1(u)

12 + τ

12 , (B.12)

where Bn(u) are the Bernoulli polynomials

B1(u) = u − 1
2 , B2(u) = u2 − u + 1

6 , B3(u) = u3 − 3
2u2 + u

2 . (B.13)

The Bernoulli polynomials (and their modded version B({x}τ )) satisfy the following identity,
known as Raabe’s formula

C−1∑
J=0

Bn

(
J

C
+ u

)
= 1

Cn−1 Bn (Cu) , (B.14)

through which we expressed the effective actions in terms of products of {C∆}τ terms,
with C = 1, 2, 4.

C ZS3 for pure 3d N = 2 CS theories with ABCD gauge algebra

In this appendix we collect some useful formulas on the exact evaluation of the 3d partition
function of the three sphere partition function 3d of pure CS gauge theories with gauge
algebra g of ABCD type. The integral formula corresponds to a matrix integral of the form

Zg =
1

|W |

∫ rkg∏
i=1

dσie
iπkσ2

i
ω1ω2

∏
α(σ)

Γ−1
h (α(σ)) (C.1)
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where α(σ) represent the simple roots of the algebra and Γh are hyperbolic gamma functions

Γh(z) ≡
∞∏

m,n=1

(n + 1)ω1 + (m + 1)ω2 − z

nω1 + mω2
(C.2)

Expression (C.1) can be rewritten in terms of hyperbolic sines, as in the main text, by
employing the following property of the hyperbolic gamma functions

1
Γh(x)Γh(−x) = −4 sin

(
πx

ω1

)
sin
(

πx

ω2

)
. (C.3)

We have observed in the body of the paper that the Cardy-like limit of the SCI gives rise
(for charges ∆a ̸= 0, 2) to a matrix integral of the type (C.1) for pure CS gauge algebras
of g of ABCD type.

Such partition functions can be exactly evaluated and the results have already been
obtained in the literature. Here we collect these results, because the exact evaluations of
Zg has allowed us to perform the precision checks on S-duality. Furthermore we restrict
to the case of S3, setting ω1 = ω2 because we have studied the case with collinear angular
momenta in the body of the paper.

Let us start surveying the various results. The evaluation of the partition function for
pure CS g = u(Nc) at level k was performed in [42]. The final formula is

Zu(Nc)k
= e

iπNc(3kNc−2N2
c −6k+2)

12k

k
Nc
2

Nc−1∏
m=1

(
2 sin

(
πm

k

))Nc−m

(C.4)

It is also possible to relate the u(Nc) case to the su(Nc) one, thanks to the formula

Zsu(Nc)k
=
√

k

iNc
Zu(Nc)k

(C.5)

Such distinction is important in our analysis, because we often deal with su(Nc)×U(1) gauge
theories, with different CS level for the abelian factor.

The partition function for 3d pure CS on S3 with g = usp(2Nc) at level k is [43]

Zusp(2Nc)k =
exp

(
− iπNc(2+6Nc+4N2

c +6k+3|k|)
12k

)
(2|k|)

Nc
2

·

·
∏

1≤j<ℓ≤Nc

4 sin
(

π(j + ℓ)
2k

)
sin
(

π(j − ℓ)
2k

) Nc∏
j=1

2 sin
(

πj

k

)
. (C.6)

To conclude.the survey we consider the orthogonal cases, studied in [24]. The case of
g = so(2Nc + 1) at level k gives

Zso(2Nc+1)k =
exp

(
iπNc(12kNc−8N2

c −9|k|+2)
12k

)
|k|

Nc
2

·

·
∏

1≤j<ℓ≤Nc

4 sin
(

π(j + ℓ − 1)
k

)
sin
(

π(j − ℓ)
k

) Nc∏
j=1

2 sin
(

π(2j − 1)
2k

)
(C.7)
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while for of g = so(2Nc) at level k we have

Z
so(2Nc)k

S3
b

=
exp

(
iπNc(12kNc−8N2

c −9|k|+2)
12k

)
|k|

Nc
2

·

·
∏

1≤j<ℓ<Nc

4 sin
(

π(j + ℓ − 2
|k|

)
sin
(

π(j − ℓ)
|k|

)
. (C.8)

D Proof of (4.11)

In this appendix we prove the relation (4.11) between the partition functions of pure CS
gauge theories that we have used in the body of the paper in order to show how S-duality is
preserved in the Cardy-like limit in the region where the index is dominated by the W -wing
shaped potential. As discussed in the paper we have identified two different possibilities for
the usp(2Nc)/so(2Nc + 1) duality, depending on the parity of Nc. For Nc = 2m the expected
relation is (4.11) that we reproduce here for the ease of the reader

ZS(O(2m+1)2m+1×O(2m)2m+4) = ZU(2m)2m+4,4(2m+1) (D.1)

while for Nc = 2m + 1 the expected relation is (4.12)

ZS(O(2m+2)2m+2×O(2m+1)2m+5) = ZU(2m+1)2m+5,4(2m+2) (D.2)

Two comments are in order. First the normalization of the U(1) factor follows the conventions
of appendix A of [44]. Second, the partition function for the orthogonal case has been denoted
here as schematically as S(O(n) × O(m)) but it coincides with the one of so(n) × O(m)
and O(n) × so(m).

The two identities (D.1). and (D.2) can be shown explicitly. In the following we give
a direct derivation of (D.1). An analogous derivation holds for (D.2).

We start observing that the partition function Zso(2m+1)2m+1 can be evaluated, inferring
the results from the evaluation of Zso(2n+1)2n−1 given in [24]. We have

Zso(2m+1)2m+1 = e
1

12 iπm(2m−1)
√
2m + 1

(D.3)

On the other hand we can estimate the relation between the products of trigonometric
functions that are inside the so(2m) and the U(2m) partition functions. They are

PSO ≡
m∏

p=1

m∏
q=p+1

4 sin
(

π(p − q)
2(m + 2)

)
sin
(

π(p + q − 2)
2(m + 2)

)
(D.4)

and

PSU ≡
2m−1∏
p=1

(
2 sin

(
πp

2m + 4

))2m−p

=
2m∏
p=1

2m∏
q=p+1

2 sin
(

π(p − q)
m + 4

)
(D.5)

respectively
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The ratio between such quantities can be simplified by using the partition functions
of the pure 3d N = 2 CS U(n)n and so(2n)2(n−1) theories. They first one can be read
from [24] and for Zso(2m+6)2(m+2) it gives

m+3∏
p=1

m+3∏
q=p+1

4 sin
(

π(p − q)
2(m + 2)

)
sin
(

π(p + q − 2)
2(m + 2)

)
= 2e

1
2 iπ(m2+m+2)(2m + 4)

m+3
2 (D.6)

while the second one, for ZU(m+4)m+4 , can be read from [42] and it gives

2m+4∏
p=1

2m+4∏
q=p+1

2 sin
(

π(p − q)
2m + 4

)
= (2m + 4)m+2 (D.7)

Using (D.6) we simplify (D.4) as

PSO = 2e
1
2 iπ(m2+m+2)(2m + 4)

m+3
2 ΘSO (D.8)

with

ΘSO = 1∏m
p=1

∏m+3
q=m+1 4 sin

(
π(p−q)
2(m+2)

)
sin
(

π(p+q−2)
2(m+2)

)
× 1∏m+2

p=m+1
∏m+3

q=p 4 sin
(

π(p−q)
2(m+2)

)
sin
(

π(p+q−2)
2(m+2)

) (D.9)

Using (D.7) we simplify (D.5) as

PSU = (2m + 4)m+2ΘSU (D.10)

with

ΘSU = 1∏2m
p=1

∏2m+4
q=2m+1 2 sin

(
π(p−q)
2m+4

)
·
∏2m+3

p=2m+1
∏2m+4

q=p+1 2 sin
(

π(p−q)
2m+4

) (D.11)

Next we want to show that

ΘSU

ΘSO
= (−1)m+1

m + 2 (D.12)

In order to evaluate this ratio we start observing that∏m+2
p=m+1

∏m+3
q=p 4 sin

(
π(p−q)
2(m+2)

)
sin
(

π(p+q−2)
2(m+2)

)
∏2m+3

p=2m+1
∏2m+4

q=p+1 2 sin
(

π(p−q)
2m+4

) = −1 (D.13)

We are then left then with

ΘSU

ΘSO
= −

∏m
p=1

∏m+3
q=m+1 4 sin

(
π(p−q)
2(m+2)

)
sin
(

π(p+q−2)
2(m+2)

)
∏2m

p=1
∏2m+4

q=2m+1 2 sin
(

π(p−q)
2m+4

)
= (−1)m+1

sin
(

4π
2m+4

)
·
∏m

p=1 2 sin
(

π(p+1)
2m+4

)
·
∏m−1

p=1 2 sin
(

πp
2m+4

) (D.14)
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In order to conclude the proof of (D.12) we need to estimate the denominator of (D.14).
This can be done by using the relations

sin
( 4π

2m + 4

)
= 4 sin

(
π(2m + 3)
2(m + 2)

)
sin
(

π(m + 3)
2(m + 2)

)
sin
(

π(m + 4)
2(m + 2)

)
(D.15)

and
m∏

p=1
sin
(

π(p + 1)
2(m + 2)

)
=

2m+2∏
p=m+3

sin
(

πp

2(m + 2)

)
(D.16)

Such that the denominator of (D.14) becomes

1
2

2m+3∏
p=1

2 sin
(

πp

2m + 4

)
= m + 2 (D.17)

Then by plugging this result in (D.14) we arrive at (D.12). Eventually we plug (D.3)
and (D.12) in (D.1) such to verify the latter.

To conclude we have not presented the explicit derivation of (D.2), because it can be
derived along the same lines of the analysis performed in this appendix.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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