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1 Introduction

General relativity (GR) by Einstein is a mathematically beautiful and physically successful
classical theory. It is constructed by two fundamental principles, general coordinate invariance
and equivalence principle, and is described in terms of Riemann geometry where the metric
tensor is regarded as fundamental dynamical variables. Since general relativity can account
for many astrophysical and cosmological phenomena without any conflict with observations
and experiments done so far, there is no need for modifying it at least at large distance scales.

On the other hand, it is a well-established fact that the physics must be described by
quantum field theory (QFT). Unfortunately, it seems to be difficult to construct a quantum
field theory of general relativity owing to its nonrenormalizability although the perturbative
non-renormalizability has nothing to do with the consistency of the theory. In the interest
of renormalizability, it is natural to alter the Einstein-Hilbert Lagrangian by adding to it
the most general quadratic Lagrangian L of dimension four at most:

1√
−g
L = 1

16πG(R− 2Λ) + αrR
2 − αcCµνρσC

µνρσ, (1.1)

which is known as a renormalizable gravitational theory [1]. However, a notorious problem
happens and it is associated with the last term involving conformal tensor Cµνρσ: as far as
this term exists in the Lagrangian, we have a spin-2 massive ghost which makes not only the
classical theory be unstable because of unbounded energy from below but also the quantum
theory be non-unitary owing to the ghost with negative norm.
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At extremely high energies, it is expected that the kinetic term dominates the mass
term and as a result all particles can be effectively regarded as massless particles. In such a
situation, a global or local scale symmetry naturally appears in addition to general coordinate
invariance. Since the global scale symmetry could be broken by the no-hair theorem of black
holes in a curved space-time [2], it is plausible to suppose that the local scale symmetry,
which we call Weyl symmetry, plays a role at high energies.1 Moreover, the standard model
of elementary particles has been accomplished by local gauge symmetries with the help of
their spontaneous symmetry breakdown, so it is desirable to include gravity in this framework
by promoting the global scale symmetry to the local Weyl symmetry. Finally, it is pointed
out that only a Weyl invariant gravity can account for black hole complementarity [3].

If we impose the Weyl symmetry on the Lagrangian (1.1) and assume that Einstein’s
general relativity is restored at low energies, we would have the following Lagrangian:

1√
−g
L = 1

12ϕ
2R+ 1

2g
µν∂µϕ∂νϕ− αcCµνρσC

µνρσ, (1.2)

where in the unitary gauge ϕ =
√

3
4πG the terms except for conformal gravity on the right-

hand side (r.h.s.) produce the Einstein-Hilbert term.
In this article, as the first step for understanding the problem of the massive ghost, we

wish to construct the manifestly covariant canonical operator formalism of the Weyl invariant
gravity as defined in the Lagrangian (1.2) on the basis of the Becchi-Rouet-Stora-Tyupin
(BRST) formalism [4]. We will see that this construction is very subtle since we have to
carefully pick up gauge fixing conditions in order to introduce as many independent BRST
transformations as possible.

The paper is organized as follows. In section 2, we review the classical theory where the
Lagrangian is constructed out of the well-known conformal gravity and the Weyl invariant
scalar-tensor gravity. In section 3, we shed light on quantum aspects of our theory. We will
find that the existence of the Stückelberg symmetry makes it impossible to construct three
independent BRST transformations and it allows us to make only two independent BRST
transformations. In section 4, we perform the canonical quantization. In section 5, on the
basis of the canonical formalism in section 4, we derive various equal-time (anti)commutation
relations. In section 6, we analyze asymptotic fields by expanding not only the metric
around a flat Minkowski metric but also the scalar field around a constant background. In
section 7, we derive the four-dimensional (anti)commutation relations from the equal-time
(anti)commutation relations and clarify that the physical modes of our theory are composed
of a massive ghost with indefinite norm and a massless graviton, and the other modes belong
to the BRST quartets which appear in the physical subspace only as zero norm states. The
final section is devoted to discussion.

Two appendices are put for technical details. In appendix A, a derivation of the equal-time
commutation relation between Ȧµ and bµ is given, and in appendix B we present various
equal-time (anti)commutation relations which are necessary in deriving the four-dimensional
(anti)commutation relations in section 7.

1There is one caveat: in a general quadratic gravity without the cosmological constant, there is a no-hair
theorem for spherical black holes, thereby rendering R = 0. However, it is not clear at present how the black
hole no-hair theorem gives rise to violation of the global scale symmetry.
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2 Classical theory

In this section, we consider a classical gravitational theory which is invariant under both
general coordinate transformation (GCT) and Weyl transformation (or equivalently, a local
scale transformation) in four dimensional Riemann geometry. Our classical Lagrangian
consists of Weyl invariant scalar-tensor gravity [5] and conformal gravity2

L0 = LW IST + LCG, (2.1)

where

LW IST =
√
−g

( 1
12ϕ

2R+ 1
2g

µν∂µϕ∂νϕ

)
,

LCG = −
√
−gαcCµνρσC

µνρσ. (2.2)

Here ϕ is a real scalar field with a ghost-like kinetic term, R the scalar curvature, αc a
dimensionless positive coupling constant (αc > 0) and Cµνρσ is conformal tensor defined as

Cµνρσ = Rµνρσ −
1
2(gµρRνσ − gµσRνρ − gνρRµσ + gνσRµρ)

+ 1
6(gµρgνσ − gµσgνρ)R. (2.3)

In order to perform the canonical quantization, it is more convenient to introduce an
auxiliary symmetric tensor Kµν = Kνµ and a Stückelberg-like vector field Aµ,3 and rewrite
LCG, which is the Lagrangian of conformal gravity, into a form [6–9]:

L(K)
CG ≡

√
−g

{
γGµνK

µν + α[(Kµν −∇µAν −∇νAµ)2 − (K − 2∇ρA
ρ)2]

}
, (2.4)

where Gµν ≡ Rµν − 1
2gµνR denotes the Einstein tensor, and γ and α are dimensionless

coupling constants which obey a relation

αc =
γ2

8α, (2.5)

where α > 0. It is easy to see that carrying out the path integral over Kµν in L(K)
CG produces

the Lagrangian of conformal gravity LCG. Actually, taking the variation of Kµν leads to
the equation

Kµν −∇µAν −∇νAµ − gµν(K − 2∇ρA
ρ) = − γ

2αGµν . (2.6)

Moreover, taking the trace of this equation yields

K − 2∇ρA
ρ = − γ

6αR. (2.7)

2We follow the notation and conventions of Misner-Thorne-Wheeler (MTW) textbook [2]. Lowercase Greek
letters µ, ν, . . . and Latin ones i, j, . . . are used for spacetime and spatial indices, respectively; for instance,
µ = 0, 1, 2, 3 and i = 1, 2, 3. The Riemann curvature tensor and the Ricci tensor are, respectively, defined by
Rρ

σµν = ∂µΓρ
σν − ∂νΓρ

σµ + Γρ
λµΓ

λ
σν − Γρ

λνΓ
λ
σµ and Rµν = Rρ

µρν . The Minkowski metric tensor is denoted by
ηµν ; η00 = −η11 = −η22 = −η33 = −1 and ηµν = 0 for µ ̸= ν.

3The Stückelberg-like vector field Aµ is introduced to avoid the second-class constraint.
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Inserting (2.7) to (2.6) gives us the expression of Kµν

Kµν = ∇µAν +∇νAµ −
γ

2α

(
Rµν −

1
6gµνR

)
. (2.8)

Finally, substituting eqs. (2.7) and (2.8) into the Lagrangian (2.4) and using the relation (2.5),
we can arrive at the Lagrangian of conformal gravity, LCG in (2.2) up to surface terms. This
can be achieved by use of the identity

C2
µνρσ = I + 2R2

µν −
2
3R

2, (2.9)

where I is defined as

I = R2
µνρσ − 4R2

µν +R2, (2.10)

which is locally a total derivative in four dimensions.
From now on, as a classical Lagrangian Lc we take a linear combination of LW IST and L(K)

CG

Lc ≡ LW IST + L(K)
CG

=
√
−g

{ 1
12ϕ

2R+ 1
2g

µν∂µϕ∂νϕ+ γGµνK
µν

+ α
[
(Kµν −∇µAν −∇νAµ)2 − (K − 2∇ρA

ρ)2
]}
. (2.11)

The classical Lagrangian Lc is invariant under three local transformations, those are, infinites-
imal general coordinate transformation (GCT) δ(1), Weyl transformation δ(2) and Stückelberg
transformation δ(3). Concretely, the GCT takes the form

δ(1)gµν = −(∇µξν +∇νξµ) = −(ξα∂αgµν + ∂µξ
αgαν + ∂νξ

αgαµ),

δ(1)ϕ = −ξα∂αϕ, δ(1)Kµν = −ξα∇αKµν −∇µξ
αKαν −∇νξ

αKµα,

δ(1)Aµ = −ξα∇αAµ −∇µξ
αAα. (2.12)

As for the Weyl transformation, we have

δ(2)gµν = 2Λgµν , δ(2)ϕ = −Λϕ,

δ(2)Kµν = γ

α
∇µ∇νΛ− 2(Aµ∂νΛ +Aν∂µΛ− gµνAα∂

αΛ),

δ(2)Aµ = 0. (2.13)

Note that δ(2)Kµν has been obtained via eq. (2.8). Finally, the Stückelberg transformation
is given by

δ(3)gµν = δ(3)ϕ = 0, δ(3)Kµν = ∇µεν +∇νεµ,

δ(3)Aµ = εµ. (2.14)

In the above, ξµ,Λ and εµ are infinitesimal transformation parameters.
To close this section, let us count the number of phyical degrees of freedom since it is known

that this counting is more subtle in higher derivative theories than in conventional second-
order derivative theories [10, 11]. In the formalism at hand, however, the introduction of the
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auxiliary field Kµν makes it possible to rewrite conformal gravity with fourth-order derivatives
to a second-order derivative theory, so we can apply the usual counting method. The fields
gµν , ϕ,Kµν and Aµ have 10, 1, 10 and 4 degrees of freedom, respectively. We have three kinds of
local symmetries, those are, the GCT, Weyl and Stückelberg symmetries with 4, 1 and 4 degrees
of freedom, respectively. Thus, we have totally (10+ 1+ 10+ 4)− (4+ 1+ 4)× 2 = 7 physical
degrees of freedom, which will turn out to be the massless graviton of 2 physical degrees with
positive-definite norm and the massive ghost of spin-2 of 5 degrees with indefinite norm.

3 Quantum theory

To fix three local symmetries and obtain a BRST invariant quantum Lagrangian, we have
to introduce three kinds of gauge fixing conditions and the corresponding Faddeev-Popov
(FP) ghost terms in the classical Lagrangian (2.11). In our previous papers [12–14], we have
constructed two independent BRST transformations corresponding to general coordinate
transformation (GCT) and Weyl transformation in the sense that the two nilpotent BRST
charges anticommute with each other. To do so, it has been emphasized that a gauge
condition for one local symmetry must respect the other symmetry [13]. Concretely speaking,
a gauge condition for the GCT must be invariant under the Weyl transformation while a
gauge condition for the Weyl transformation must be so under the GCT. We would like to
stress that the existence of independent BRST transformations makes it easy to derive many
equal-time (anti)commutation relations with the help of the canonical (anti)commutation
relations and field equations as can be seen in section 5.

However, it will turn out that we cannot find such suitable gauge fixing conditions in the
present formalism since the gauge fixing condition for the Stückelberg gauge transformation
necessarily breaks the Weyl symmetry. Thus, in this article, instead of making three
independent BRST charges we will construct only two independent BRST charges, by which
physical states and observables are defined consistently.

The suitable gauge condition for the GCT, which preserves the maximal global symmetry
as will be seen later, is given by “the extended de Donder gauge condition” [13]:4

∂µ(g̃µνϕ2) = 0, (3.1)

where we have defined g̃µν ≡
√
−ggµν . This gauge condition breaks the GCT (2.12) but is in-

variant under both the Weyl transformation (2.13) and the Stückelberg transformation (2.14).
As the gauge fixing condition for the Weyl transformation, we shall choose, what we

call, “the traceless gauge condition”:5

K − 2∇µA
µ = 0. (3.2)

4Let us note that this gauge condition breaks the general coordinate invariance, but it is invariant under
the general linear transformation GL(4). It is also straightforward to show that gauge conditions for the
other local symmetries, which will be discussed later, do not violate the GL(4) symmetry. Thus, the quantum
Lagrangian is also invariant under the GL(4).

5As seen in eq. (2.7), this gauge condition is equivalent to the condition of the vanishing scalar curvature,
R = 0 at the classical level [15–17].
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Let us note that the traceless gauge condition is invariant under the GCT (2.12) and the
Stückelberg transformation (2.14).

Incidentally, what is called, “the scalar gauge”:

∂µ(g̃µνϕ∂νϕ) = 0, (3.3)

which, together with the extended de Donder gauge condition (3.1), assures the masslessness
of the dilaton, turns out be inappropriate since it does not fix any dynamical degree of
freedom associated with the gauge field Aµ.

Finally, let us consider the gauge fixing condition for the Stückelberg transformation.
It is here that we cannot find the gauge fixing condition which breaks the Stückelberg
transformation but is invariant under both the GCT and the Weyl transformation. Let us
argue this issue in detail since this problem is interesting in its own right. For instance,
the gauge fixing condition for the Stückelberg transformation which is invariant under the
GCT and the Weyl transformation would be

∇µ(
√
−gFµν) = ∂µ(

√
−gFµν) = 0, (3.4)

where Fµν is the field strength of the Stückelberg vector field Aµ defined as

Fµν = ∇µAν −∇νAµ = ∂µAν − ∂νAµ. (3.5)

However, the existence of the identity ∂µ∂ν(
√
−gFµν) = 0 implies that the gauge condition

gives us only three independent equations. To supplement one more equation, we further
impose a gauge-fixing condition

∇µ(g̃µνϕ2Aν) = ∂µ(g̃µνϕ2Aν) = 0. (3.6)

At first sight, the gauge conditions (3.4) and (3.6) might be a suitable choice as the gauge
condition for the Stückelberg transformation but after integrating over the auxiliary symmetric
tensor Kµν , we can restore the term C2

µνρσ. This fact implies that since the Stückelberg vector
field Aµ plays no role in removing the second-class constraint, the gauge conditions (3.4)
and (3.6) do not do the job for quantizing conformal gravity properly, and we are therefore
led to imposing the gauge condition on Kµν . Then, a natural gauge fixing condition reads

∇µK
µν = 0. (3.7)

Since this gauge condition is manifestly invariant under the GCT but is not so under the Weyl
transformation, we cannot define three independent BRST charges, but only two independent
BRST charges. We will call this gauge condition (3.7) “the K-gauge”.

The BRST transformation corresponding to the GCT, which is called GCT BRST
transformation δ

(1)
B , can be obtained from (2.12) by replacing the transformation parameter

ξµ with the Faddeev-Popov (FP) ghost cµ

δ
(1)
B gµν = −(∇µcν +∇νcµ) = −(cα∂αgµν + ∂µc

αgαν + ∂νc
αgαµ),

δ
(1)
B ϕ = −cα∂αϕ, δ

(1)
B Kµν = −cα∇αKµν −∇µc

αKαν −∇νc
αKµα,

δ
(1)
B Aµ = −cα∇αAµ −∇µc

αAα, δ
(1)
B cµ = −cα∂αc

µ,

δ
(1)
B c̄µ = iBµ, δ

(1)
B Bµ = 0, δ

(1)
B bµ = −cα∂αbµ, (3.8)

– 6 –
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where c̄µ and Bµ are respectively an antighost and a Nakanishi-Lautrup (NL) field, and
a new NL field bµ is defined as

bµ = Bµ − icα∂αc̄µ, (3.9)

which will be used in place of Bµ in what follows.
On the other hand, because of the K-gauge condition (3.7), in order to construct another

BRST transformation which is independent of the GCT BRST transformation (3.8), we make
a BRST transformation in a such way that it involves both the Weyl and the Stückelberg
transformations simultaneously. This new BRST transformation δ

(2)
B , which we call “WS

BRST transformation”, can be made by replacing Λ and εµ with the FP ghosts c and ζµ,
respectively, as follows:

δ
(2)
B gµν = 2cgµν , δ

(2)
B ϕ = −cϕ,

δ
(2)
B Kµν = γ

α
∇µ∇νc− 2(Aµ∂νc+Aν∂µc− gµνAα∂

αc) +∇µζν +∇νζµ,

δ
(2)
B Aµ = ζµ, δ

(2)
B c̄ = iB, δ

(2)
B c = δ

(2)
B B = 0,

δ
(2)
B ζ̄µ = iβµ, δ

(2)
B ζµ = δ

(2)
B βµ = 0 (3.10)

where c̄ and ζ̄µ are antighosts, and B and βµ are NL fields. In place of ζµ, it is more convenient
to introduce a new FP ghost ζ̃µ, which is defined as

ζ̃µ = ζµ + γ

2α∂µc. (3.11)

In addition to it, we introduce a new NL field b which is defined as

b = B + 2ic̄c. (3.12)

Using the new FP ghost ζ̃µ and the new b field, the WS BRST transformation for Kµν , Aµ, ζ̃µ

and b can be written as

δ
(2)
B Kµν = ∇µζ̃ν +∇ν ζ̃µ − 2(Aµ∂νc+Aν∂µc− gµνAα∂

αc),

δ
(2)
B Aµ = ζ̃µ −

γ

2α∂µc, δ
(2)
B ζ̃µ = 0, δ

(2)
B b = −2bc. (3.13)

In order to make the two nilpotent BRST transformations be anticommutative, i.e.,
{δ(1)

B , δ
(2)
B } = 0, we must determine the remaining BRST transformations: as for the GCT

BRST transformation, the BRST transformations on fields, which do not appear in (3.8)
but appear in (3.10) are determined in such a way that they coincide with their tensor
structure, for instance,

δ
(1)
B c = −cα∂αc, δ

(1)
B ζ̃µ = −cα∇αζ̃µ −∇µc

αζ̃α. (3.14)

On the other hand, in cases of the WS BRST transformations, one simply defines the
vanishing BRST transformations, e.g.,

δ
(2)
B bµ = δ

(2)
B cµ = δ

(2)
B c̄µ = 0. (3.15)
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Now that we have chosen gauge fixing conditions and established BRST transformations,
we can construct a gauge fixed and BRST invariant quantum Lagrangian by following the
standard recipe:

Lq = Lc + iδ
(1)
B (g̃µνϕ2∂µc̄ν) + iδ

(2)
B {
√
−g[c̄(K − 2∇µA

µ) + ζ̄ν∇µK
µν ]}

=
√
−g

{ 1
12ϕ

2R+ 1
2g

µν∂µϕ∂νϕ+ γGµνK
µν + α[(Kµν −∇µAν

−∇νAµ)2 − (K − 2∇ρA
ρ)2]

}
− g̃µνϕ2(∂µbν + i∂µc̄λ∂νc

λ)

−
√
−g b (K − 2∇µA

µ) + i
γ

α
g̃µν∂µc̄∂νc−

√
−g∇µK

µνβν

+ i
√
−g∇µζ̄ν [∇µζ̃ν +∇ν ζ̃µ − 2(Aµ∂νc+Aν∂µc− gµνAα∂

αc)]

− i
√
−gζ̄µ(2Kµν∂

νc−K∂µc), (3.16)

where surface terms are dropped.
From the Lagrangian Lq, it is straightforward to derive the field equations by taking

the variation with respect to each fundamental field in order. All the field equations are
summarized as follows:

1
12ϕ

2Gµν −
1
12(∇µ∇ν − gµν□)ϕ2 − 1

2

(
Eµν −

1
2gµνE

)
− 1

2gµν [γGρσK
ρσ + α(K̂2

ρσ − K̂2)] + γ

[
2Gρ(µKν)

ρ −∇ρ∇(µKν)
ρ + 1

2□Kµν

+ 1
2gµν∇ρ∇σK

ρσ + 1
2KµνR−

1
2RµνK −

1
2(gµν□−∇µ∇ν)K

]
+ 2α[K̂ρ(µK̂ν)

ρ + 2∇ρ(A(µK̂ν)
ρ)−∇ρ(AρK̂µν)− K̂K̂µν − 2∇(µ(K̂Aν))

+ gµν∇ρ(K̂Aρ)] +Kρ
(µ∇ν)βρ +

1
2∇ρ(Kµνβ

ρ)−∇ρK
ρ

(µβν)

− gµν

(
∇ρK

ρσβσ + 1
2K

ρσ∇ρβσ

)
+ Lµν −

1
2gµνL+Nµν . (3.17)

1
6ϕ

2R− E − 1√
−g

∂µ(g̃µνϕ∂νϕ) = 0. (3.18)

K̂µν − gµνK̂ = − γ

2αGµν + 1
2αgµνb−

1
2α∇(µβν) + i

1
2α(2ζ̄(µ∂ν)c

− gµν ζ̄ρ∂
ρc). (3.19)

∇µ(K̂µν − gµνK̂) = 1
2α∂νb+ i

1
2α [(∇µζ̄ν +∇ν ζ̄µ)∂µc−∇ρζ̄

ρ∂νc]. (3.20)

∂µ(g̃µνϕ2) = 0. (3.21)

K − 2∇µA
µ = 0. (3.22)

∇µK
µν = 0. (3.23)

∂µ(g̃µνϕ2∂νc
ρ) = ∂µ(g̃µνϕ2∂ν c̄ρ) = 0. (3.24)
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∂µ(g̃µν∂νc) = 0. (3.25)

γ

α

1√
−g

∂µ(g̃µν∂ν c̄) + 2∇ν
[
(∇µζ̄ν +∇ν ζ̄µ)Aµ −∇µζ̄

µAν

+ ζ̄µKµν −
1
2 ζ̄νK

]
= 0. (3.26)

∇µ[∇µζ̃ν +∇ν ζ̃µ − 2(Aµ∂νc+Aν∂µc− gµνAα∂
αc)] + 2Kµν∂

µc

−K∂νc = 0. (3.27)

∇µ(∇µζ̄ν +∇ν ζ̄µ) = 0, (3.28)

where we have defined the following quantities:

□ = gµν∇µ∇ν ,

Eµν = −1
2∂µϕ∂νϕ+ ϕ2(∂µbν + i∂µc̄λ∂νc

λ) + (µ↔ ν),

E = gµνEµν ,

K̂µν = Kµν −∇µAν −∇νAµ, K̂ = gµνK̂µν = K − 2∇ρA
ρ,

Lµν = −b(Kµν − 2∇(µAν))− 2∇(µ(bAν)) + i
γ

α
∂(µc̄∂ν)c,

L = gµνLµν ,

Nµν = −i12gµν∇ρζ̄σ[∇ρζ̃σ +∇σ ζ̃ρ − 2(Aρ∂σc+Aσ∂ρc− gρσAγ∂
γc)]

+ i(∇(µζ̄
ρ +∇ρζ̄(µ)[∇|ρ|ζ̃ν) +∇ν)ζ̃ρ − 2(A|ρ|∂ν)c+Aν)∂ρc− gν)ρAγ∂

γc)]
− i∇ρ{ζ̄(µ[∇|ρ|ζ̃ν) +∇ν)ζ̃ρ − 2(A|ρ|∂ν)c+Aν)∂ρc− gν)ρAγ∂

γc)]}
+ i∇ρ{ζ̄ρ[∇µζ̃ν +∇ν ζ̃µ − 2(Aµ∂νc+Aν∂µc− gµνAγ∂

γc)]}

− i∇ρ

[
(∇(µζ̄

ρ +∇ρζ̄(µ)ζ̃ν) −
1
2(∇µζ̄ν +∇ν ζ̄µ)ζ̃ρ

]
+ i(∇(µζ̄ν)Aρ∂

ρc

−∇ρζ̄
ρA(µ∂ν)c)− iζ̄ρ

[
2Kρ(µ∂ν)c−Kµν∂ρc−

1
2gµν(2Kρσ∂

σc−K∂ρc)
]

− iζ̄(µ(2Kν)ρ∂
ρc−K∂ν)c). (3.29)

Moreover, we have introduced symmetrization with weight one by round brackets, e.g.,
A(µBν) ≡ 1

2(AµBν + AνBµ).
Based on these field equations, we can write down the simpler type of equations for

several fields. First of all, using eqs. (3.21) and (3.24), it is easy to see that

gµν∂µ∂νc
ρ = gµν∂µ∂ν c̄ρ = 0. (3.30)

Furthermore, taking the GCT BRST transformation of the field equation for c̄ρ in (3.30)
enables us to derive the field equation for bρ [14]:

gµν∂µ∂νbρ = 0. (3.31)

In other words, setting XM = {xµ, bµ, c
µ, c̄µ}, XM turns out to obey the very sim-

ple equation:

gµν∂µ∂νX
M = 0. (3.32)
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This equation, together with the gauge condition ∂µ(g̃µνϕ2) = 0, produces the two kinds
of conserved currents:

PµM ≡ g̃µνϕ2∂νX
M = g̃µνϕ2(1↔∂ νX

M)
MµMN ≡ g̃µνϕ2(XM

↔
∂ νY

N)
, (3.33)

where we have defined XM
↔
∂ µY

N ≡ XM∂µY
N − (∂µX

M )Y N . Using these currents, we can
show that there is a Poincaré-like IOSp(8|8) symmetry in the present theory as in Einstein’s
gravity [18, 19], which should be contrasted to the IOSp(10|10) symmetry in both Weyl
invariant scalar-tensor gravity in Riemann geometry [13] and Weyl conformal gravity in
Weyl geometry [14].

Here it is worth mentioning that this reduction of the global symmetry is relevant to
the fact that the Einstein’s gravity is in a sense similar to the quantum electrodynamics
(QED) while the quantum conformal gravity under consideration is similar to the quantum
chromodynamics (QCD). For instance, as a representative of the global symmetries, let
us consider the BRST charges. As is well known, in the QED, the BRST charge takes
the simple form

Q
(QED)
B =

∫
d3x(B∂0c− ∂0Bc) =

∫
d3xB

←→
∂0 c, (3.34)

where B and c are the NL field and antighost for the U(1) gauge symmetry, respectively.
On the other hand, in the QCD, the BRST charge has nonlinear and interacting terms
as well as quadratic ones

Q
(QCD)
B =

∫
d3x

(
BaD0c

a − ∂0B
aca + i

2gfabc∂0c̄
acbcc

)
, (3.35)

where Ba and ca are the NL field and antighost for the nonabelian gauge symmetry, respec-
tively, Dµ the covariant derivative, g the coupling constant, and fabc the structure constant.

Analogously, in the Weyl invariant scalar-tensor gravity, the Weyl BRST charge is of
the form [14]

Q
(Weyl)
B =

∫
d3xg̃0µϕ2B

←→
∂µ c, (3.36)

whereas in the quantum conformal gravity, it turns out that the WS BRST charge has a very
complicated nonlinear structure.6 In this sense, the quantum conformal gravity is similar to
QCD rather than the QED. Lastly, let us note that such nonlinear global symmetries cannot
be described by the generators of the Poincaré-like IOSp(8|8) symmetry.

4 Canonical commutation relations

In this section, we derive the concrete expressions of canonical conjugate momenta and set up
the canonical (anti)commutation relations (CCRs), which will be used in evaluating various

6Owing to its long expression, we omit to write down the charge. Even in the Weyl limit ζµ, ζ̄µ, βµ → 0,
the BRST charge has interacting terms such as g̃0µc̄c∂µc.

– 10 –



J
H
E
P
0
2
(
2
0
2
4
)
2
1
3

equal-time (anti)commutation relations (ETCRs) among fundamental variables in the next
section. To simplify various expressions, we obey the following abbreviations adopted in
the textbook of Nakanishi and Ojima [19]:

[A,B′] = [A(x), B(x′)]|x0=x′0 , δ3 = δ(x⃗− x⃗′),

f̃ = 1
g̃00 = 1√

−gg00 , (4.1)

where we assume that g̃00 is invertible.
To remove second order derivatives of the metric involved in R and Gµν , and regard

bµ as a non-canonical variable, we perform the integration by parts and rewrite the La-
grangian (3.16) as

Lq = − 1
12 g̃

µνϕ2(Γσ
µνΓα

σα − Γσ
µαΓα

σν)−
1
6ϕ∂µϕ(g̃αβΓµ

αβ − g̃
µνΓα

να)

+ 1
2 g̃

µν∂µϕ∂νϕ− γ
√
−g(Γα

µν∂α − Γα
µα∂ν + Γβ

µαΓα
βν − Γα

µαΓ
β
νβ)K̄

µν

+ α
√
−g[(Kµν −∇µAν −∇νAµ)2 − (K − 2∇µA

µ)2]

+ ∂µ(g̃µνϕ2)bν − ig̃µνϕ2∂µc̄ρ∂νc
ρ −
√
−g b (K − 2∇µA

µ) + i
γ

α
g̃µν∂µc̄∂νc

−
√
−g∇µK

µν · βν + i
√
−g∇µζ̄ν [∇µζ̃ν +∇ν ζ̃µ − 2(Aµ∂νc

+Aν∂µc− gµνAα∂
αc)]− i

√
−gζ̄µ(2Kµν∂

νc−K∂µc) + ∂µVµ, (4.2)

where K̄µν is defined as

K̄µν ≡ Kµν −
1
2gµνK, K̄ ≡ gµνK̄µν , (4.3)

and a surface term Vµ is given by

Vµ = 1
12ϕ

2(g̃αβΓµ
αβ − g̃

µνΓα
να) + γ

√
−g(Γµ

αβK̄
αβ − Γα

ανK̄
µν)

− g̃µνϕ2bν . (4.4)

Since the NL fields bµ, b and βµ have no derivatives in Lq, we can regard them as non-
canonical variables.

Using this Lagrangian (4.2), it is straightforward to derive the concrete expressions of
canonical conjugate momenta. The result is given by

πµν
g = ∂Lq

∂ġµν

= − 1
24
√
−gϕ2

[
−g0λgµνgστ − g0τgµλgνσ − g0σgµτgνλ + g0λgµτgνσ

+ g0τgµνgλσ + g0(µgν)λgστ
]
∂λgστ −

1
6
√
−g

[
g0(µgν)ρ − gµνg0ρ

]
ϕ∂ρϕ

− 1
2
√
−g(2g0(µgν)ρ − gµνg0ρ)(ϕ2bρ + 2bAρ)

− γ
√
−g

[
∇(µK̄ν)0 − 1

2∇
0K̄µν − 1

2g
µν∂αK̄

0α − gµνΓβ
αβK̄

0α
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− 2Γ0
ρσg

ρ(µK̄ν)σ + Γα
ρα(gρ(µK̄ν)0 + g0(µK̄ν)ρ)

]
+ 2α

√
−g

[
2K̂0(µAν) − K̂µνA0 − K̂(2g0(µAν) − gµνA0)

]
+ 1

2
√
−g(2g0(µKν)ρ + g0ρKµν − gµνK0ρ)βρ,

− i
√
−g(2g0αgβ(µζ̄ν) − ζ̄0gαµgβν)(∇(αζ̃β) − 2A(α∂β)c+ gαβAγ∂

γc)

− i
√
−g[(∇0ζ̄(µ +∇(µζ̄ |0|)ζ̃ν) −∇(µζ̄ν)ζ̃0],

πϕ = ∂Lq

∂ϕ̇
= g̃0µ∂µϕ+ 2g̃0µϕbµ + 1

6ϕ(−g̃
αβΓ0

αβ + g̃0αΓβ
αβ),

πµν
K = ∂Lq

∂K̇µν
= −γ

√
−g

[(
gµρgνσ − 1

2g
µνgρσ

)
Γ0

ρσ −
1
2(g

0µgνρ + g0νgµρ − gµνg0ρ)Γσ
ρσ

]

− 1
2
√
−g(g0µβν + g0νβµ),

πµ
A = ∂Lq

∂Ȧµ
= −4α

√
−g(K̂0µ − g0µK̂) + 2g̃0µb,

πcµ = ∂Lq

∂ċµ
= −ig̃0νϕ2∂ν c̄µ, πµ

c̄ = ∂Lq

∂ ˙̄cµ
= ig̃0νϕ2∂νc

µ,

πc =
∂Lq

∂ċ
= i

γ

α
g̃0µ∂µc̄− 2i

√
−g[(∇0ζ̄µ +∇µζ̄0)Aµ −∇ρζ̄

ρA0]− i
√
−g(2ζ̄µKµ

0 − ζ̄0K),

πc̄ =
∂Lq

∂ ˙̄c
= −i γ

α
g̃0µ∂µc,

πµ

ζ̃
= ∂Lq

∂ ˙̃ζµ

= i
√
−g(∇µζ̄0 +∇0ζ̄µ),

πµ

ζ̄
= ∂Lq

∂ ˙̄ζµ

= −i
√
−g[∇µζ̃0 +∇0ζ̃µ − 2(Aµ∂0c+A0∂µc− g0µAρ∂

ρc)], (4.5)

where we have defined the time derivative such as ġµν ≡ ∂gµν

∂t ≡
∂gµν

∂x0 ≡ ∂0gµν , and differ-
entiation of ghosts is taken from the right.

Next let us set up the canonical (anti)commutation relations:

[gµν , π
ρλ′
g ] = [Kµν , π

ρλ′
K ] = i

1
2(δ

ρ
µδ

λ
ν + δλ

µδ
ρ
ν)δ3,

[ϕ, π′ϕ] = iδ3, [Aµ, π
ν′
A ] = iδν

µδ
3,

{cµ, π′cν} = {c̄ν , π
µ′
c̄ } = iδµ

ν δ
3, {c, π′c} = {c̄, π′c̄} = iδ3,

{ζ̄µ, π
ν′
ζ̄
} = {ζ̃µ, π

ν′
ζ̃
} = iδν

µδ
3, (4.6)

where the other (anti)commutation relations vanish. In setting up these CCRs, it is valuable
to distinguish non-canonical variables from canonical ones. Recall again that in our formalism,
the NL fields bµ, b and βµ are not canonical variables.

5 Equal-time commutation relations

Since we have presented the canonical (anti)commutation relations (CCRs) in the previous
section, we would like to evaluate various nontrivial equal-time (anti)commutation relations
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(ETCRs) which are necessary for the algebra of symmetries and computations in later
sections. In what follows, we will derive various important equal-time (anti)commutation
relations (ETCRs) on the basis of the canonical (anti)commutation relations, field equations
and BRST transformations. In deriving ETCRs, we often use a useful identity for generic
variables Φ and Ψ

[Φ, Ψ̇′] = ∂0[Φ,Ψ′]− [Φ̇,Ψ′], (5.1)

which holds for the anticommutation relation as well.
To begin with, we wish to derive the ETCR between gµν and bµ, which is one of the

important ETCRs and plays a role in proving the algebra of symmetries. For this purpose,
let us first consider the antiCCR, {cµ, π′cν} = iδµ

ν δ
3, which gives us

{cµ, ˙̄c′ν} = −f̃ϕ−2δµ
ν δ

3. (5.2)

Next, we find that the CCR, [gµν , π
′
cρ] = 0 leads to

[ġµν , c̄
′
ρ] = 0, (5.3)

where we have used the CCR, [gµν , c̄
′
ρ] = 0 and the formula (5.1). It then turns out that

the GCT BRST transformation (3.8) of the CCR, [gµν , c̄
′
ρ] = 0 yields

[gµν , b
′
ρ] = −if̃ϕ−2(δ0

µgρν + δ0
νgρµ)δ3, (5.4)

where we have used eqs. (3.9), (5.2) and (5.3).
From this ETCR, we can easily derive ETCRs:7

[gµν , b′ρ] = if̃ϕ−2(gµ0δν
ρ + gν0δµ

ρ )δ3,

[g̃µν , b′ρ] = if̃ϕ−2(g̃µ0δν
ρ + g̃ν0δµ

ρ − g̃µνδ0
ρ)δ3. (5.5)

Here we have used the following fact; since a commutator works as a derivation, we can
have formulae:

[gµν ,Φ′] = −gµαgνβ [gαβ ,Φ′],

[g̃µν ,Φ′] = −
(
g̃µαgνβ − 1

2 g̃
µνgαβ

)
[gαβ ,Φ′], (5.6)

where Φ is a generic field.
Now we would like to derive another important ETCR, [ġρσ, g

′
µν ]. To this aim, let us

focus on the canonical conjugate momentum πµν
K , from which we can describe ġij as

ġij = 2
γ
f̃

[(
giµgjν −

1
2gijgµν

)
πµν

K −
1
2 g̃ijβ

0
]
+ f̃ [g̃0α(∂igjα + ∂jgiα)

− g̃0k∂kgij ]. (5.7)

7The latter ETCR gives us [ϕ2bµ, g̃0ν′] = −iδν
µδ3, which implies that ϕ2bµ corresponds to the canonical

conjugate momentum of g̃0µ.
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This expression immediately gives us the ETCR

[ġij , g
′
µν ] = 0. (5.8)

Here we have used the ETCR

[βρ, g
′
µν ] = 0, (5.9)

which can be easily shown by taking the WS BRST transformation (3.10) of the CCR,
[ζ̄ρ, g

′
µν ] = 0.
In order to calculate the remaining ETCR, [ġ0ρ, g

′
µν ], we utilize the extended de Donder

gauge condition (3.1), from which we can obtain the equation:

gρσΓµ
ρσ = 2ϕ−1gµν∂νϕ. (5.10)

This equation makes it possible to express ġ0ρ in terms of ġkl and ϕ̇ as follows:

ġ00 = 1
g00 g

ij ġij +
4
g00ϕ

−1ϕ̇+ . . . ,

ġ0i = −
1
g00 g

0j ġij + . . . , (5.11)

where the ellipsis denotes terms without time-derivatives. Then, using eq. (5.8), we find
that [ġ0i, g

′
µν ] = 0 and

[ġ00, g
′
µν ] =

4
g00ϕ

−1[ϕ̇, g′µν ]. (5.12)

To evaluate the right-hand side (r.h.s.), we need to use the canonical conjugate momentum
πϕ, from which we can express ϕ̇ in terms of πϕ, bρ and ġij as

ϕ̇ = f̃

{
πϕ − g̃0i∂iϕ− 2g̃0ρϕbρ −

1
6ϕ[(−g̃

0ig0j + g̃00gij)ġij

+ (−g̃0ρgiσ + g̃0igρσ)∂igρσ]
}
. (5.13)

Then, with the help of eqs. (5.4) and (5.8), eq. (5.13) enables us to evaluate the ETCR,
[ϕ̇, g′µν ] to be

[ϕ̇, g′µν ] = −4if̃2√−gϕ−1δ0
µδ

0
νδ

3. (5.14)

From eqs. (5.12) and (5.14), we have

[ġ00, g
′
µν ] = −16i

1
(g00)2 f̃ϕ

−2δ0
µδ

0
νδ

3. (5.15)

Hence, we can arrive at the result

[ġρσ, g
′
µν ] = −16i

1
(g00)2 f̃ϕ

−2δ0
ρδ

0
σδ

0
µδ

0
νδ

3. (5.16)
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Incidentally, we can also offer a different proof of eq. (5.16) on the basis of symmetry
of this ETCR. The ETCR, [ġρσ, g

′
µν ] has in general a symmetry under the simultaneous

exchange of (µν)↔ (ρσ) and primed ↔ unprimed in addition to the usual symmetry µ↔ ν

and ρ ↔ σ. We can therefore write down its general expression

[ġρσ, g
′
µν ] =

{
c1gρσgµν + c2(gρµgσν + gρνgσµ)

+
√
−gf̃

[
c3(δ0

ρδ
0
σgµν + δ0

µδ
0
νgρσ) + c4(δ0

ρδ
0
µgσν + δ0

ρδ
0
νgσµ

+ δ0
σδ

0
µgρν + δ0

σδ
0
νgρµ)

]
+ (
√
−gf̃)2c5δ

0
ρδ

0
σδ

0
µδ

0
ν

}
δ3, (5.17)

where ci(i = 1, · · · , 5) are some coefficients. To fix the coefficients ci, let us make use of the
extended de Donder gauge condition (3.1), which can be rewritten as

(g0λgρσ − 2gλρg0σ)ġρσ + 4ϕ−1gλρ∂ρϕ = (2gλρgσi − gρσgλi)∂igρσ. (5.18)

Using (5.14), eq. (5.18) yields

(g0λgρσ − 2gλρg0σ)[ġρσ, g
′
µν ] = 16i 1

g00 f̃ϕ
−2g0λδ0

µδ
0
νδ

3. (5.19)

It then turns out that this equation provides us with relations among the coefficients:

c3 = 2(c1 + c2), c4 = −c2, 2c3 − c5 = 16if̃ϕ−2. (5.20)

To fix the coefficients completely, we further take account of the CCR, [παβ
K , g′µν ] = 0, which

can be cast to the form

[g0α(gβσg0ρ − g0βgρσ) + gαρ(g0βg0σ − g00gβσ)][ġρσ, g
′
µν ] = 0, (5.21)

where eq. (5.9) was used. Substituting (5.17) into (5.21) leads to

c1 = c2 = c3 = 0. (5.22)

Together with eq. (5.20), eq. (5.22) gives us all the vanishing coefficients ci = 0 except for
c5 = −16if̃ϕ−2, so we have succeeded in proving the ETCR (5.16) again.

Next, we wish to calculate the ETCRs involving the bµ field. First of all, we will show that

[ϕ, b′ρ] = 0. (5.23)

This ETCR can be obtained by using the CCRs

[ϕ, c̄′ρ] = [ϕ, π′cρ] = 0, (5.24)

and the GCT BRST transformation. In fact, the two CCRs in (5.24) provide the ETCRs

[ϕ, ˙̄c′ρ] = [ϕ̇, c̄′ρ] = 0. (5.25)

It is easy to see that with the help of eq. (5.25), the GCT BRST transformation of the former
CCR in (5.24) leads to eq. (5.23). By means of the same method, we can also show that

[Φ, b′ρ] = 0, (5.26)

where Φ ≡ {cµ, c̄µ, c, c̄}.
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Similarly, we can calculate [Kµν , b
′
ρ] as follows: starting with the CCRs

[Kµν , c̄
′
ρ] = [Kµν , π

′
cρ] = 0, (5.27)

we can obtain that

[Kµν , ˙̄c′ρ] = [K̇µν , c̄
′
ρ] = 0. (5.28)

Taking the GCT BRST transformation of the former equation in (5.27), we have

−{cα∇αKµν +∇µc
αKαν +∇νc

αKµα, c̄
′
ρ}+ [Kµν , iB

′
ρ] = 0. (5.29)

Using eqs. (5.2), (5.28) and [ġµν , c̄
′
ρ] = 0, which is easily proved, we reach the ETCR between

Kµν and bρ:

[Kµν , b
′
ρ] = −if̃ϕ−2(δ0

µKρν + δ0
νKρµ)δ3. (5.30)

Along the same line of argument, we can prove that

[Aµ, b
′
ρ] = −if̃ϕ−2δ0

µAρδ
3, [b, b′ρ] = 0, [βµ, b

′
ρ] = −if̃ϕ−2δ0

µβρδ
3,

[ζµ, b
′
ρ] = −if̃ϕ−2δ0

µζρδ
3, [ζ̄µ, b

′
ρ] = −if̃ϕ−2δ0

µζ̄ρδ
3. (5.31)

Now that we have established the type of the ETCRs, [Φ, b′ρ] with Φ being several fields,
we wish to evaluate the ETCRs with the form of [Φ̇, b′ρ]. First of all, the ETCR, [ġµν , b

′
ρ]

has been already calculated by using the method developed in our previous article [12].
Only the result is written out as

[ġµν , b
′
ρ] = −i

{
f̃ϕ−2(∂ρgµν + δ0

µġρν + δ0
ν ġρµ)δ3

+ [(δk
µ − 2δ0

µf̃ g̃
0k)gρν + (µ↔ ν)]∂k(f̃ϕ−2δ3)

}
, (5.32)

or equivalently,

[gµν , ḃ
′
ρ] = i

{
[f̃ϕ−2∂ρgµν − ∂0(f̃ϕ−2)(δ0

µgρν + δ0
νgρµ)]δ3

+ [(δk
µ − 2δ0

µf̃ g̃
0k)gρν + (µ↔ ν)]∂k(f̃ϕ−2δ3)

}
. (5.33)

Next, let us evaluate [ϕ̇, b′ρ]. The CCR, [ϕ, π′cρ] = 0 leads to the ETCR

[ϕ, ˙̄c′ρ] = 0. (5.34)

Taking the GCT BRST transformation of this equation gives us

{−cα∂αϕ, ˙̄c′ρ}+ [ϕ, iḂ′
ρ] = 0. (5.35)

Here note that the second term on the l.h.s. can be simplified to

[ϕ, iḂ′
ρ] = [ϕ, iḃ′ρ]− [ϕ, d

dt
(cα′∂αc̄

′
ρ)]

= [ϕ, iḃ′ρ], (5.36)
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where we have used eq. (5.34) and the ETCRs

[ϕ, ċρ′] = [ϕ, ¨̄c′ρ] = 0. (5.37)

Note that the latter equation can be derived the field equation gµν∂µ∂ν c̄ρ = 0 and eq. (5.34).
Then, it is easy to derive the ETCR

[ϕ̇, b′ρ] = −if̃ϕ−2∂ρϕδ
3. (5.38)

Furthermore, following the derivation in appendix A, we find that

[Ȧµ, b
′
ρ] = i(2f̃ g̃0iδ0

µ − δi
µ)Aρ∂i(f̃ϕ−2δ3)− if̃ϕ−2(∂ρAµ + δ0

µ∂0Aρ)δ3. (5.39)

In a similar manner, we can also show that

[K̇µν , b
′
ρ] = [i(2f̃ g̃0iδ0

µ − δi
µ)Kρν + (µ↔ ν)]∂i(f̃ϕ−2δ3)

− if̃ϕ−2(∂ρKµν + δ0
µ∂0Kρν + δ0

ν∂0Kρµ)δ3,

[ḃ, b′ρ] = −if̃ϕ−2∂ρbδ
3, [ċµ, b′ρ] = −if̃ϕ−2∂ρc

µδ3, [ ˙̄cµ, b
′
ρ] = −if̃ϕ−2∂ρc̄µδ

3,

[ċ, b′ρ] = −if̃ϕ−2∂ρcδ
3, [ ˙̄c, b′ρ] = −if̃ϕ−2∂ρc̄δ

3,

[β̇µ, b
′
ρ] = i(2f̃ g̃0iδ0

µ − δi
µ)βρ∂i(f̃ϕ−2δ3)− if̃ϕ−2(∂ρβµ + δ0

µ∂0βρ)δ3,

[ζ̇µ, b
′
ρ] = i(2f̃ g̃0iδ0

µ − δi
µ)ζρ∂i(f̃ϕ−2δ3)− if̃ϕ−2(∂ρζµ + δ0

µ∂0ζρ)δ3,

[ ˙̄ζµ, b
′
ρ] = i(2f̃ g̃0iδ0

µ − δi
µ)ζ̄ρ∂i(f̃ϕ−2δ3)− if̃ϕ−2(∂ρζ̄µ + δ0

µ∂0ζ̄ρ)δ3. (5.40)

Following our previous calculation [12], we can prove

[bµ, b
′
ν ] = 0,

[bµ, ḃ
′
ν ] = if̃ϕ−2(∂µbν + ∂νbµ)δ3. (5.41)

Finally, let us evaluate [ġρσ,K
′
µν ], which is needed for later calculations. Let us start

with the CCR, [ζ̄ρ,K
′
µν ] = 0. The WS BRST transformation δ

(2)
B of this CCR reads

[βρ,K
′
µν ] = −i{ζ̄ρ,∇µζ̃

′
ν +∇ν ζ̃

′
µ}, (5.42)

where we have used the ETCR

{ζ̄ρ, ċ
′} = 0, (5.43)

which can be easily obtained from the CCR, {ζ̄ρ, π
′
c̄} = 0.

To calculate the right-hand side (r.h.s.) of eq. (5.42), let us first calculate the ETCR,
[gµν ,

˙̄ζ ′ρ]. The CCR, [gµν , π
ρ′
ζ̃
] = 0 leads to the equation

(g0ρ′g0β′ + g00′gρβ′)[gµν ,
˙̄ζ ′β ] = (gρα′g0β′ + g0α′gρβ′)[gµν ,Γγ′

αβ ]ζ̄
′
γ . (5.44)

Since from eq. (5.16) we can derive the ETCR

[gµν ,Γγ′
αβ ] = −8i

1
(g00)2 f̃ϕ

−2g0γδ0
µδ

0
νδ

0
αδ

0
βδ

3. (5.45)

– 17 –



J
H
E
P
0
2
(
2
0
2
4
)
2
1
3

Eq. (5.44) provides us with

[gµν ,
˙̄ζ ′ρ] = −8i

1
(g00)2 f̃ϕ

−2δ0
µδ

0
νδ

0
ρ ζ̄

0δ3. (5.46)

This ETCR enables us to evaluate the ETCR

[ζ̄µ,Γγ′
αβ ] = −4i

1
(g00)2 f̃ϕ

−2g0γδ0
µδ

0
αδ

0
β ζ̄

0δ3. (5.47)

Next, let us consider the CCR, {ζ̄µ, π
ν′
ζ̄
} = iδν

µδ
3, which can be cast to the form

√
−g′(gνα′g0β′ + g0α′gνβ′){ζ̄µ,∇αζ̃

′
β} = −δν

µδ
3. (5.48)

This equation, together with eq. (5.47), yields the ETCR

{ζ̄µ,
˙̃ζ ′ν} = −f̃

(
gµν −

1
2g00 δ

0
µδ

0
ν

)
δ3 − 4i 1

(g00)2 f̃ϕ
−2δ0

µδ
0
ν ζ̄

0ζ̃0δ3. (5.49)

Then, using eqs. (5.47) and (5.49), (5.42) is calculated to

[βρ,K
′
µν ] = if̃

(
δ0

µgρν + δ0
νgρµ −

1
g00 δ

0
µδ

0
νδ

0
ρ

)
δ3. (5.50)

With the help of eqs. (5.7), (5.11), (5.13) and (5.50), it turns out that

[ġρσ,K
′
µν ] = i

1
γ
f̃

[
gρσgµν − 2gρ(µgν)σ −

1
g00

(
gρσδ

0
µδ

0
ν + 2

3gµνδ
0
ρδ

0
σ

)
+ 2
g00 (gρ(µδ

0
ν)δ

0
σ + gσ(µδ

0
ν)δ

0
ρ)−

4
3(g00)2 δ

0
ρδ

0
σδ

0
µδ

0
ν

]
δ3

− 8i 1
(g00)2 f̃ϕ

−2δ0
ρδ

0
σ(δ0

µK
0

ν + δ0
νK

0
µ)δ3. (5.51)

To close this section, it is worthwhile to mention that any ETCRs can be in principle
calculated by using the CCRs, field equations, the BRST transformations and the ETCRs
presented thus far although we have not given all the ETCRs in this article.

6 Linearized field equations

In this section, we analyze asymptotic fields under the assumption that all fields have their
own asymptotic fields and there is no bound state. We also assume that all asymptotic
fields are governed by the quadratic part of the quantum Lagrangian apart from possible
renormalization.

We define the gravitational field φµν on a flat Minkowski metric ηµν and the scalar
fluctuation ϕ̃ on a nonzero fixed scalar field ϕ0:

gµν = ηµν + φµν , ϕ = ϕ0 + ϕ̃. (6.1)
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For sake of simplicity, we use the same notation for the other asymptotic fields as that
for the interacting fields. Then, up to surface terms the quadratic part of the quantum
Lagrangian (3.16) reads

Lq = 1
12ϕ

2
0

(1
4φµν□φ

µν − 1
4φ□φ−

1
2φ

µν∂µ∂ρφν
ρ + 1

2φ
µν∂µ∂νφ

)
+ 1

6ϕ0ϕ̃ (−□φ+ ∂µ∂νφ
µν) + 1

2∂µϕ̃∂
µϕ̃+ 1

2γ(2∂µ∂ρφν
ρ −□φµν

− ∂µ∂νφ)K̄µν + α[(Kµν − ∂µAν − ∂νAµ)2 − (K − 2∂µA
µ)2]

−
(
2ϕ0η

µν ϕ̃− ϕ2
0φ

µν + 1
2ϕ

2
0η

µνφ

)
∂µbν − iϕ2

0∂µc̄ρ∂
µcρ

− b(K − 2∂µA
µ) + i

γ

α
∂µc̄∂

µc− ∂µK
µνβν + i∂µζ̄ν(∂µζ̃ν + ∂ν ζ̃µ). (6.2)

In this and next sections, the spacetime indices µ, ν, . . . are raised or lowered by the Minkowski
metric ηµν = ηµν = diag(−1, 1, 1, 1), and we define □ ≡ ηµν∂µ∂ν , φ ≡ ηµνφµν and K̄µν ≡
Kµν − 1

2ηµνK.
Based on this Lagrangian, it is straightforward to derive the linearized field equations:

1
12ϕ

2
0

(1
2□φµν −

1
2ηµν□φ− ∂ρ∂(µφν)

ρ + 1
2∂µ∂νφ+ 1

2ηµν∂ρ∂σφ
ρσ
)

+ 1
6ϕ0 (−ηµν□+ ∂µ∂ν) ϕ̃+ γ

2
(
2∂ρ∂(µK̄ν)

ρ −□K̄µν − ηµν∂ρ∂σK̄
ρσ
)

+ ϕ2
0

(
∂(µbν) −

1
2ηµν∂ρb

ρ
)
= 0. (6.3)

1
6ϕ0(□φ− ∂µ∂νφ

µν) +□ϕ̃+ 2ϕ0∂µb
µ = 0. (6.4)

2∂ρ∂(µφν)
ρ −□φµν − ∂µ∂νφ− ηµν(∂ρ∂σφ

ρσ −□φ) + 4α
γ

[
Kµν

− ∂µAν − ∂νAµ − ηµν(K − 2∂ρA
ρ)
]
+ 2
γ
(−ηµνb+ ∂(µβν)) = 0. (6.5)

∂ν
[
Kµν − ∂µAν − ∂νAµ − ηµν(K − 2∂ρA

ρ)
]
− 1

2α∂µb = 0. (6.6)

∂µϕ̃−
1
2ϕ0

(
∂νφµν −

1
2∂µφ

)
= 0. (6.7)

K − 2∂µA
µ = 0. (6.8)

∂µK
µν = 0. (6.9)

□cµ = □c̄µ = □c = □c̄ = 0. (6.10)

□ζ̃µ + ∂µ∂ν ζ̃
ν = □ζ̄µ + ∂µ∂ν ζ̄

ν = 0. (6.11)

Now we are ready to simplify the field equations obtained above. Before doing so, it is
more convenient to make use of the linearized BRST transformations in order to seek for the
linearized field equations for the NL fields bµ, b and βµ. Taking the linearized GCT BRST
transformation δ

(1L)
B c̄µ = ibµ of □c̄µ = 0 in eq. (6.10) gives us

□bµ = 0, (6.12)
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which is a linearized analog of eq. (3.31). Similarly, the linearized WS BRST transformation
δ

(2L)
B c̄ = ib of □c̄ = 0 in eq. (6.10) produces

□b = 0. (6.13)

Finally, the linearized WS BRST transformation δ
(2L)
B ζ̄µ = iβµ of □ζ̄µ + ∂µ∂νζ

ν = 0 in
eq. (6.11) yields

□βµ + ∂µ∂νβ
ν = 0. (6.14)

Of course, eqs. (6.12), (6.13) and (6.14) can be also derived by solving the linearized field
equations directly.

Next, operating ∂µ on eq. (6.14) leads to

□∂µβ
µ = 0. (6.15)

Moreover, acting □ on eq. (6.14) and using eq. (6.15), we have

□2βµ = 0, (6.16)

which implies that βµ is a dipole field. In a perfectly similar manner, eq. (6.11) gives us

□∂µζ̃
µ = □2ζ̃µ = 0, □∂µζ̄

µ = □2ζ̄µ = 0. (6.17)

Now it is easy to see that with the help of eqs. (6.8) and (6.9), eq. (6.6) provides8

□Aµ + ∂µ∂νA
ν + 1

2α∂µb = 0. (6.18)

Given eq. (6.13), this equation shows that the gauge field Aµ is a dipole field obeying

□∂µA
µ = □2Aµ = 0. (6.19)

By use of eq. (6.8), this equation means that K is a simple field:

□K = 0. (6.20)

Next, to exhibit that the scalar field ϕ̃ is also a dipole field, let us take the trace of
eq. (6.5) whose result can be written as

□φ− ∂µ∂νφ
µν = 1

γ
(4b− ∂µβ

µ), (6.21)

where eq. (6.8) was utilized. Substituting this equation into eq. (6.4) yields

□ϕ̃ = −ϕ0
6γ (4b− ∂µβ

µ + 12γ∂µb
µ). (6.22)

Operating □ on this equation produces the desired result that ϕ̃ is a dipole field:

□2ϕ̃ = 0, (6.23)
8Note that as a consistency check, the WS BRST transformation of this equation gives rise to the field

equation for ζ̃µ in eq. (6.11) when we use the field equation □c = 0.
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where we used eqs. (6.12), (6.13) and (6.15). The divergence of eq. (6.7) takes the form

□ϕ̃ = 1
2ϕ0

(
∂µ∂νφ

µν − 1
2□φ

)
. (6.24)

Using three equations (6.21), (6.22) and (6.24), we can describe □φ and ∂µ∂νφ
µν as

□φ = 4
3γ (4b− ∂µβ

µ − 6γ∂µb
µ),

∂µ∂νφ
µν = 1

3γ (4b− ∂µβ
µ − 24γ∂µb

µ), (6.25)

which imply two equations:

□2φ = □∂µ∂νφ
µν = 0. (6.26)

Here it is useful to express Kµν in terms of the other fields by starting with eq. (6.5) and
utilizing some equations obtained thus far, whose result is described as

Kµν = ∂µAν + ∂νAµ + γ

4α□φµν −
γ

αϕ0
∂µ∂ν ϕ̃

− 1
2α

(
ηµνb+ ∂(µβν) −

1
2ηµν∂ρβ

ρ
)
. (6.27)

Finally, let us focus on the linearized Einstein equation (6.3). After some calculations
using several equations, it turns out eq. (6.3) can be rewritten into a more compact form:

□(□−m2)φµν + 1
3γm

2ηµν(4b− ∂ρβ
ρ)− 4

3γ ∂µ∂νb+
4
3γ ∂µ∂ν∂ρβ

ρ

+ 8∂µ∂ν∂ρb
ρ − 24m2

(
∂(µbν) −

1
6ηµν∂ρb

ρ
)
= 0, (6.28)

where we have defined mass squared, m2 ≡ ϕ2
0

24αc
= αϕ2

0
3γ2 , which demands us to take the

positive αc as assumed before. Furthermore, operating □ on (6.28), we can obtain the
gravitational equation for φµν :

□2
(
□−m2

)
φµν = 0. (6.29)

Eq. (6.29) implies that there are both massless and massive modes in φµν . In order to
disentangle these two modes, let us act □ on eq. (6.27):

□
(
Kµν − ∂µAν − ∂νAµ + γ

αϕ0
∂µ∂ν ϕ̃+ 1

2α∂(µβν)

)
= γ

4α□
2φµν . (6.30)

This r.h.s. can be further rewritten by using eqs. (6.27) and (6.28) as

□
(
Kµν − ∂µAν − ∂νAµ + γ

αϕ0
∂µ∂ν ϕ̃+ 1

2α∂(µβν)

)
= m2

[
Kµν − ∂µAν − ∂νAµ + γ

αϕ0
∂µ∂ν ϕ̃+ 1

2α∂(µβν) +
1
6αηµν(b− ∂ρβ

ρ)

+ 1
3αm2∂µ∂ν(b− ∂ρβ

ρ − 6γ∂ρb
ρ) + 6γ

α

(
∂(µbν) −

1
6ηµν∂ρb

ρ
)]
. (6.31)
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Provided that we take a linear combination of fields given as

ψµν = Kµν − ∂µAν − ∂νAµ + γ

αϕ0
∂µ∂ν ϕ̃+ 1

2α∂(µβν) +
1
6αηµν(b− ∂ρβ

ρ)

+ 1
3αm2∂µ∂ν(b− ∂ρβ

ρ − 6γ∂ρb
ρ) + 6γ

α

(
∂(µbν) −

1
6ηµν∂ρb

ρ
)
, (6.32)

we find that ψµν corresponds to an infamous massive ghost of spin-2 of 5 physical degrees
of freedom since it satisfies the equations of motion

(□−m2)ψµν = ψµ
µ = ∂νψµν = 0. (6.33)

On the other hand, if we choose the following linear combination

hµν = φµν −
12γ
ϕ2

0
ψµν + 2

ϕ0
ηµν ϕ̃, (6.34)

we find that hµν obeys the field equation

□hµν = − 4
3γm2∂µ∂ν(b− ∂ρβ

ρ − 6γ∂ρb
ρ)− 24∂(µbν),

∂µhµν −
1
2∂νh = 0. (6.35)

Then, eq. (6.35) implies that hµν is a dipole field satisfying

□2hµν = 0. (6.36)

Later we will show that two transverse components of hµν is nothing but a massless spin-2
graviton.

7 Analysis of physical states

Following the standard technique, we can calculate the four-dimensional (anti)commutation
relations (4D CRs) between asymptotic fields. The point is that the simple pole fields, for
instance, the Nakanishi-Lautrup field bµ(x) obeying □bµ = 0, can be expressed in terms
of the invariant delta function D(x) as

bµ(x) =
∫
d3zD(x− z)

←→
∂ z

0bµ(z). (7.1)

Here the invariant delta function D(x) for massless simple pole fields and its properties
are described as

D(x) = − i

(2π)3

∫
d4k ϵ(k0)δ(k2)eikx, □D(x) = 0,

D(−x) = −D(x), D(0, x⃗) = 0, ∂0D(0, x⃗) = δ3(x), (7.2)

where ϵ(k0) ≡ k0
|k0| . With these properties, it is easy to see that the right-hand side (r.h.s.)

of eq. (7.1) is independent of z0, and this fact will be used in evaluating 4D CRs via the
ETCRs shortly.
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To illustrate the detail of the calculation, let us evaluate a 4D CR, [hµν(x), bρ(y)]
explicitly. Using eq. (7.1), it can be described as

[hµν(x), bρ(y)]

=
∫
d3zD(y − z)

←→
∂ z

0[hµν(x), bρ(z)]

=
∫
d3z

(
D(y − z)[hµν(x), ḃρ(z)]− ∂z

0D(y − z)[hµν(x), bρ(z)]
)
. (7.3)

As mentioned above, since the r.h.s. of eq. (7.1) is independent of z0, we put z0 = x0 in (7.3)
and use relevant ETCRs to obtain

[hµν(x), bρ(z)] = iϕ−2
0 (δ0

µηρν + δ0
νηρµ)δ3(x− z),

[hµν(x), ḃρ(z)] = −iϕ−2
0 (δk

µηρν + δk
νηρµ)∂kδ

3(x− z). (7.4)

Substituting eq. (7.4) into eq. (7.3), we can obtain the 4D CR

[hµν(x), bρ(y)] = iϕ−2
0 (ηµρ∂ν + ηνρ∂µ)D(x− y). (7.5)

In a similar manner, we can calculate the four-dimensional (anti)commutation relations
among ψµν , hµν and bµ etc. To do that, let us note that since ψµν obeys a massive simple
pole equation (6.33), it can be expressed in terms of the invariant delta function ∆(x;m2)
for massive simple pole fields as

ψµν(x) =
∫
d3z∆(x− z;m2)

←→
∂ z

0ψµν(z), (7.6)

where ∆(x;m2) is defined as

∆(x;m2) = − i

(2π)3

∫
d4k ϵ(k0)δ(k2 +m2)eikx, (□−m2)∆(x;m2) = 0,

∆(−x;m2) = −∆(x;m2), ∆(0, x⃗;m2) = 0,

∂0∆(0, x⃗;m2) = δ3(x), ∆(x; 0) = D(x). (7.7)

As for hµν , since it is a massless dipole field as can be seen in eq. (6.36), it can be
described as

hµν(x) =
∫
d3z

[
D(x− z)

←→
∂ z

0hµν(z) + E(x− z)
←→
∂ z

0□hµν(z)
]
, (7.8)

where we have introduced the invariant delta function E(x) for massless dipole fields and
its properties are given by

E(x) = − i

(2π)3

∫
d4k ϵ(k0)δ′(k2)eikx, □E(x) = D(x),

E(−x) = −E(x), E(0, x⃗) = ∂0E(0, x⃗) = ∂2
0E(0, x⃗) = 0,

∂3
0E(0, x⃗) = −δ3(x). (7.9)

As in eq. (7.1), we can also show that the r.h.s. of both (7.6) and (7.8) is independent of z0.
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By using the ETCRs summarized in appendix B, after a lengthy but straightforward
calculation, we find the following 4D CRs among ψµν , hµν , ϕ̃, bµ, b, βµ, c

µ, c̄µ, c and c̄:

[ψµν(x), ψστ (y)] = −i
ϕ2

0
12γ2

[2
3ηµνηστ − ηµσηντ − ηµτηνσ

+ 1
m2

(
ηµσ∂ν∂τ + ηµτ∂ν∂σ + ηνσ∂µ∂τ + ηντ∂µ∂σ

− 2
3ηµν∂σ∂τ −

2
3ηστ∂µ∂ν

)
− 4

3m4∂µ∂ν∂σ∂τ

]
∆(x− y;m2). (7.10)

[hµν(x), hστ (y)] = i
12
ϕ2

0

[
ηµνηστ − ηµσηντ − ηµτηνσ

+ 1
m2

(
ηµσ∂ν∂τ + ηµτ∂ν∂σ + ηνσ∂µ∂τ + ηντ∂µ∂σ

− 2
3ηµν∂σ∂τ −

2
3ηστ∂µ∂ν

)
− 4

3m4∂µ∂ν∂σ∂τ

]
D(x− y)

+ i
12
ϕ2

0

(
ηµσ∂ν∂τ + ηµτ∂ν∂σ + ηνσ∂µ∂τ + ηντ∂µ∂σ

− 4
3m2∂µ∂ν∂σ∂τ

)
E(x− y). (7.11)

[hµν(x), ψστ (y)] = 0. (7.12)

[ψµν(x), bρ(y)] = [ψµν(x), b(y)] = [ψµν(x), βρ(y)] = 0. (7.13)

[hµν(x), bρ(y)] = iϕ−2
0 (ηµρ∂ν + ηνρ∂µ)D(x− y). (7.14)

[hµν(x), b(y)] = [hµν(x), βρ(y)] = 0. (7.15)

[ϕ̃(x), ϕ̃(y)] = −i[D(x− y)− 2m2E(x− y)]. (7.16)

[ϕ̃(x), ψστ (y)] = 0. (7.17)

[ϕ̃(x), hστ (y)] = 2iϕ−1
0 [ηστD(x− y) + 2∂σ∂τE(x− y)]. (7.18)

[ϕ̃(x), b(y)] = −iα
γ
ϕ0D(x− y). (7.19)

[ϕ̃(x), bρ(y)] = [ϕ̃(x), βρ(y)] = 0. (7.20)

{cµ(x), c̄ν(y)} = −ϕ−2
0 δµ

νD(x− y). (7.21)

{c(x), c̄(y)} = α

γ
D(x− y). (7.22)

In particular, note that the negative sign in front of the r.h.s. of eq. (7.10) implies that the
massive spin-2 field ψµν has indefinite norm so it is sometimes called “massive ghost”.

As usual, the physical Hilbert space |phys⟩ is defined by the Kugo-Ojima subsidiary
conditions [4]

Q(1)
B |phys⟩ = Q(2)

B |phys⟩ = 0, (7.23)
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where Q(1)
B and Q(2)

B are respectively BRST charges corresponding to the GCT and WS
BRST transformations.

The GCT BRST transformation for the asymptotic fields9 is given by

δ
(1)
B ψµν = 0, δ

(1)
B hµν = −(∂µcν + ∂νcµ), δ

(1)
B ϕ̃ = 0,

δ
(1)
B bµ = δ

(1)
B b = δ

(1)
B βµ = 0,

δ
(1)
B c̄µ = ibµ, δ

(1)
B cµ = δ

(1)
B c = δ

(1)
B c̄ = 0. (7.24)

And the WS transformation for the asymptotic fields takes the form

δ
(2)
B ψµν = δ

(2)
B hµν = 0, δ

(2)
B ϕ̃ = −ϕ0c,

δ
(2)
B bµ = δ

(2)
B b = δ

(2)
B βµ = 0,

δ
(2)
B c̄ = ib, δ

(2)
B cµ = δ

(2)
B c̄µ = δ

(2)
B c = 0. (7.25)

Given the physical state conditions (7.23) and the two BRST transformations (7.24)
and (7.25), it is easy to clarify the physical content of the theory under consideration: the
physical modes are composed of both a spin-2 massive ghost ψµν of mass m which has
five physical degrees of freedom, and a spin-2 massless graviton which corresponds to two
components of hµν (for instance, in the specific Lorentz frame pµ = (p, 0, 0, p), the graviton
corresponds to 1√

2(h11 − h22) and h12.). On the other hand, the remaining four components
of hµν , bµ, cµ and c̄µ belong to a GCT-BRST quartet while ϕ̃, b, c and c̄ does a WS-BRST
quartet. These quartets appear in the physical subspace only as zero norm states by the
Kugo-Ojima subsidiary conditions (7.23). It is worthwhile to stress that the massive ghost
with indefinite norm appears in the physical Hilbert space so the unitarity of the physical
S-matrix is explicitly violated in the present theory.

8 Conclusion

In this article, on the basis of the BRST formalism we have presented the manifestly covariant
canonical operator formalism of a Weyl invariant gravity where the classical Lagrangian is
constituted of the well-known conformal gravity and a Weyl invariant scalar-tensor gravity.
Once the unitary gauge, ϕ =

√
3

4πG for the Weyl symmetry is taken, the classical theory
becomes equivalent to general relativity plus conformal gravity, so at low energies our theory
properly reduces to Einstein’s general relativity while at high eneries it reduces to conformal
gravity where a local scale symmetry, or equivalently the Weyl symmetry, emerges in addition
to the general coordinate invariance. This fact would give us some distict phenomenological
consequences from those obtained through only Einstein’s general relativity for inflation and
the scale invariant spectrum of the Cosmic Microwave Background (CMB) radiation etc. One
of the important ingredients in the present formalism lies in the choice of gauge conditions
for three local symmetries, those are, the general coordinate invariance, the Weyl symmetry
and the Stückelberg symmetry. We have required that the proper gauge conditions should

9Recall that we use same fields for the interacting and the asymptotic fields. In this section, all the fields
describe the asymptotic ones.
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not only fix the gauge symmetries completely but also give us the maximal global symmetry.
As a result, we are led to selecting the extended de Donder gauge condition, the traceless
gauge condition and the K-gauge condition. We think that these gauge conditions are almost
unique up to terms involving the NL fields multiplied by the gauge parameters.

A question often asked in gravitational theories is that global symmetries such as the
Poincaré-like IOSp(8|8) symmetry are effective symmetries existing only at low energies or
exact symmetries holding even at high energies. To address this question, for instance, one
has to construct a renormalizable quantum gravity and show that such global symmetries still
exist in such a ultraviolet (UV) complete quantum gravity. Since quantum conformal gravity
under consideration is a renormalizable theory as long as the Weyl symmetry is free from
Weyl anomaly, the Poincaré-like IOSp(8|8) symmetry is not an effective but an exact global
symmetry. Moreover, this symmetry is closely related to purely quantum fields such as ghosts
and the Nakanishi-Lautrup fields, so it is not violated by black hole’s no-hair theorem [2].

As future’s works, we wish to comment on two important issues. One of them is of
course related to the issue of the massive ghost which violates the unitarity of the quantum
theory. Recently it has been clearly shown that the Lee-Wick’s prescription [20, 21] dealing
with the ghost fields does not work well at least within the standard framework of quantum
field theories [22]. Thus, if our theory makes sense as a quantum field theory, we cannot rely
on the Lee-Wick’s prescription any longer and should develop a new dynamical mechanism.
Regarding this problem, it might be useful to recall that as mentioned in section 3 the
quantum conformal gravity is in a sense similar to the QCD while the quantum Einstein’s
gravity is similar to the QED. It is known that in the QCD, gluons and quarks are confined
to the unphysical sector. Thus, we could conjecture that the global symmeties existing in
the quantum conformal gravity might play a role to make the massive ghost be confined
to the unphysical sector.

The other important issue is relevant to Weyl anomaly. More recently, this issue has
been considered in ref. [23] where it is mentioned that there is no Weyl anomaly in the
unbroken phase (⟨ϕ⟩ = 0) but Weyl anomaly appears in the broken phase (⟨ϕ⟩ ̸= 0) in Weyl
geometry which is a generalization of Riemann geometry. We wish to understand whether
the similar results hold even in our theory formulated in Riemann geometry. Actually, the
fact that the Weyl symmetry could be maintained and manifest even at the quantum level
in Riemann geometry has been already discussed in refs. [24–27]. We would like to return
these two issues in future.
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A Derivation of eq. (5.39)

In this appendix, we present a derivation of eq. (5.39).
First, we make use of the translational invariance of the theory under consideration. The

translational invariance requires the validity of the following equation for a generic field Φ(x):

[Φ(x), Pρ] = i∂ρΦ(x), (A.1)
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where Pρ is the generator of the translation defined as

Pρ =
∫
d3xg̃0λϕ2∂λbρ. (A.2)

Next, taking the specific case Φ(x) = Aµ(x), we have

[Aµ(x), Pρ] = [Aµ(x),
∫
d3x′g̃0λ′ϕ2′∂λb

′
ρ] = i∂ρAµ(x). (A.3)

Then, putting x0 = x0′ and using [Aµ(x), g̃0λ′ϕ2′] = 0 produces∫
d3x′g̃0λ′ϕ2′[Aµ, ∂λb

′
ρ] = i∂ρAµ(x). (A.4)

By means of the extended de Donder condition (3.1) and eq. (5.31), eq. (A.4) can be
rewritten as ∫

d3x′g̃00′ϕ2′[Aµ, ḃ
′
ρ] = i[∂ρAµ + ∂0(g̃00ϕ2)f̃ϕ−2δ0

µAρ]. (A.5)

This equation can be easily solved to be

[Aµ, ḃ
′
ρ] = if̃ϕ−2[∂ρAµ + ∂0(g̃00ϕ2)f̃ϕ−2δ0

µAρ]δ3 + F k
µρ∂k(f̃ϕ−2δ3), (A.6)

where F k
µρ is an arbitrary function.

To fix the function F k
µρ, let us impose the consistency condition

[gµν∂µAν , b
′
ρ] = 0. (A.7)

This consistency condition comes from the following argument: first, note that since
∇µ(gµνϕ2Aν) is a scalar, we have

[∇µ(gµνϕ2Aν), b′ρ] = 0. (A.8)

Then, the extended de Donder condition (3.1) allows us to rewrite ∇µ(gµνϕ2Aν) as

∇µ(gµνϕ2Aν) =
1√
−g

∂µ(g̃µνϕ2Aν) = gµνϕ2∂µAν . (A.9)

Thus, together with [ϕ, b′ρ] = 0 in eq. (5.23), we find that eq. (A.8) provides eq. (A.7).
After some calculations, eq. (A.7) turns out to lead to an equation for the arbitrary

function F k
µρ:

g0µF k
µρ = −ig0kAρ, (A.10)

which has the unique solution given by

F k
µρ = −i(2f̃ g̃0kδ0

µ − δk
µ)Aρ. (A.11)

Substituting eq. (A.11) into eq. (A.6), we can obtain

[Aµ, ḃ
′
ρ] = −i(2f̃ g̃0iδ0

µ − δi
µ)Aρ∂i(f̃ϕ−2δ3) + if̃ϕ−2[∂ρAµ

+ ∂0(g̃00ϕ2)f̃ϕ−2δ0
µ∂0Aρ]δ3. (A.12)

Finally, using eqs. (A.12) and (5.31), we arrive at the desired equation (5.39).
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B Various equal-time commutation relations in the linearized level

In this appendix, we simply write down various equal-time (anti)commutation relations
(ETCRs) which are useful in deriving the four-dimensional commutation relations (4D CRs)
in eqs. (7.10)–(7.22). These ETCRs can be derived by using the canonical (anti)commutation
relations (CRs), the BRST transformations and the linearized field equations. (The details
of the derivation are omitted in this article.)

[φ̇µν , φ
′
στ ] = 16iϕ−2

0 δ0
µδ

0
νδ

0
σδ

0
τδ

3,

[φµν ,
˙̃ϕ′] = 4iϕ−1

0 δ0
µδ

0
νδ

3, [φµν ,
¨̃ϕ′] = −4iϕ−1

0 (δ0
µδ

i
ν + δi

µδ
0
ν)∂iδ

3,

[φµν ,
...
ϕ̃

′
] = 4iϕ−1

0 (−m2ηµν + 2δ0
µδ

0
ν∆+ δi

µδ
j
ν∂i∂j)δ3,

[φµν , Ȧ
′
σ] = 0, [φµν , Ä

′
σ] = −i

1
2γ ηµνδ

0
σδ

3,

[φ̇µν ,K
′
στ ] = −i

1
γ

[
ηµνηστ − ηµσηντ − ηµτηνσ + ηµνδ

0
σδ

0
τ + 2

3ηστδ
0
µδ

0
ν

− (ηµσδ
0
τ + ηµτδ

0
σ)δ0

ν − (ηνσδ
0
τ + ηντδ

0
σ)δ0

µ −
4
3δ

0
µδ

0
νδ

0
σδ

0
τ

]
δ3,

[φµν , b
′
ρ] = iϕ−2

0 (δ0
µηρν + δ0

νηρµ)δ3, [φµν , ḃ
′
ρ] = −iϕ−2

0 (δi
µηρν + δi

νηρµ)∂iδ
3,

[φµν , b
′] = 0, [φµν , ḃ

′] = −2iα
γ
ηµνδ

3. (B.1)

[ ˙̃ϕ, ϕ̃′] = iδ3, [ ˙̃ϕ, ¨̃ϕ′] = i(∆− 2m2)δ3, [ ¨̃ϕ, ϕ̃′] = [ ¨̃ϕ, ¨̃ϕ′] = 0,

[
...
ϕ̃ , ¨̃ϕ′] = i∆(∆− 4m2)δ3,

[ ˙̃ϕ,K ′
στ ] = i

ϕ0
6γ (ηστ + δ0

σδ
0
τ )δ3, [ ¨̃ϕ,K ′

στ ] = i
ϕ0
6γ (δ

0
σδ

i
τ + δ0

τδ
i
σ)∂iδ

3,

[
...
ϕ̃ ,K ′

στ ] = i
ϕ0
6γ [(ηστ + 2δ0

σδ
0
τ )∆ + δi

σδ
j
τ∂i∂j ]δ3,

[ ˙̃ϕ,A′
σ] = 0, [ ¨̃ϕ,A′

σ] = [ϕ̃, Äσ
′] = i

ϕ0
4γ δ

0
σδ

3,

[
...
ϕ̃ , A′

σ] = −i
ϕ0
4γ δ

i
σ∂iδ

3, [ ¨̃ϕ, Ä′
σ] = i

ϕ0
2γ δ

0
σ∆δ3,

[ ˙̃ϕ, b′] = −iα
γ
ϕ0δ

3, [ ¨̃ϕ, ḃ′] = i
α

γ
ϕ0∆δ3. (B.2)

[K̇µν ,K
′
στ ] = i

ϕ2
0

12γ2

[
−2
3ηµνηστ + ηµσηντ + ηµτηνσ −

2
3(δ

0
µδ

0
νηστ + δ0

σδ
0
τηµν)

+ δ0
µδ

0
σηντ + δ0

µδ
0
τηνσ + δ0

νδ
0
σηµτ + δ0

νδ
0
τηµσ + 4

3δ
0
µδ

0
νδ

0
σδ

0
τ

]
δ3,

[Kµν , Ȧ
′
σ] = [Kµν , Ä

′
σ] = 0,

[Kµν , β
′
σ] = i(δ0

µησν + δ0
νησµ + δ0

µδ
0
νδ

0
σ)δ3,

[Kµν , β̇
′
σ] = i(δ0

µδ
0
νδ

i
σ + δ0

µδ
i
νδ

0
σ + δi

µδ
0
νδ

0
σ + ηµσδ

i
ν + ηνσδ

i
µ)∂iδ

3,

[Kµν , β̇
′
σ] = i(δ0

µδ
0
νδ

i
σ + δ0

µδ
i
νδ

0
σ + δi

µδ
0
νδ

0
σ + ηµσδ

i
ν + ηνσδ

i
µ)∂iδ

3,
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[Kµν , β̈
′
σ] = i[(δ0

µηνσ + δ0
νηµσ + 2δ0

µδ
0
νδ

0
σ)∆ + (δ0

µδ
i
νδ

j
σ + δi

µδ
0
νδ

j
σ

+ δi
µδ

j
νδ

0
σ)∂i∂j ]δ3,

[Kµν ,
...
β

′
σ] = i{[δi

µηνσ + δi
νηµσ + 2(δ0

µδ
0
νδ

i
σ + δ0

µδ
i
νδ

0
σ + δi

µδ
0
νδ

0
σ)]∆

+ δi
µδ

j
νδ

k
σ∂j∂k}∂iδ

3. (B.3)

[Ȧµ, A
′
σ] = i

1
4α(ηµσ + δ0

µδ
0
σ)δ3, [Äµ, A

′
σ] = i

1
4α(δ

0
µδ

i
σ + δi

µδ
0
σ)∂iδ

3,

[Äµ, Ȧ
′
σ] = −i

1
4α [(ηµσ + 2δ0

µδ
0
σ)∆ + δi

µδ
j
σ∂i∂j ]δ3,

[Aµ, b
′] = −i12δ

0
µδ

3, [Ȧµ, b
′] = −i12δ

i
µ∂iδ

3, [Ȧµ, ḃ
′] = i

1
2δ

0
µ∆δ3,

[Aµ, β̇
′
σ] = −i

(
ηµσ + 1

2δ
0
µδ

0
σ

)
δ3, [Aµ, β̈

′
σ] = i

1
2(δ

0
µδ

i
σ + δi

µδ
0
σ)∂iδ

3,

[Aµ,
...
β

′
σ] = −i

[
(ηµσ + δ0

µδ
0
σ)∆ + 1

2δ
i
µδ

j
σ∂i∂j

]
δ3,

[Ȧµ,
...
β

′
σ] = −i(δ0

µδ
i
σ + δi

µδ
0
σ)∂i∆δ3. (B.4)

{ ˙̄ζµ, ζ̃
′
σ} = −

(
ηµσ + 1

2δ
0
µδ

0
σ

)
δ3, { ¨̄ζµ, ζ̃

′
σ} = −

1
2(δ

0
µδ

i
σ + δi

µδ
0
σ)∂iδ

3,

{cµ, ˙̄c′σ} = ϕ−2
0 δµ

σδ
3, {c, ˙̄c′} = −α

γ
δ3. (B.5)
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