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1 Introduction

Recently, there was a discovery of novel class of anti-de Sitter solutions obtained from branes
wrapped on an orbifold, namely, a spindle, [2]. The spindle, Σ, is an orbifold, WCP1

[n−,n+],
with conical deficit angles at two poles. The spindle numbers, n−, n+, are arbitrary coprime
positive integers. Interestingly, these solutions realize the supersymmetry in different ways
from very well studied topological twist in field theory, [3], and in gravity, [4]. It was first
constructed from D3-branes, [2, 5, 6], and then generalized to other branes: M2-branes, [7–
10], M5-branes, [11], and D4-branes, [12, 13]. Furthermore, two possible ways of realizing
supersymmetry, topologically topological twist and anti-twist, were studied, [14, 15].

The spindle solutions were then generalized to an orbifold with a single conical deficit angle,
namely, a topological disk. These solutions were first constructed from M5-branes, [16, 17],
and proposed to be a gravity dual to a class of 4d N = 2 Argyres-Douglas theories, [18]. See
also [19] for further generalizations. Brane solutions wrapped on a topological disk were then
constructed from D3-branes, [20, 21], M2-branes, [10, 22], D4-branes, [23], and more from
M5-branes, [24]. See also [25] for defect solutions from different completion of global solutions.
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An interesting generalization would be to find AdS solutions from branes wrapped on an
orbifold of dimensions more than two. Four-dimensional orbifolds are natural place to look
for such constructions and some solutions were found. First, by uplifting AdS3 × Σ solutions,
where Σ is a spindle, [6], or a disk, [21], AdS3 × Σ × Σg × S4 solutions from M5-branes were
obtained where Σg is a Riemann surface of genus g. Also AdS2 × Σ × Σg solutions with
spindle, Σ, from D4-branes were obtained, [12, 13]. More recently, performing and using a
consistent truncation on a spindle, AdS3 × Σ1 ⋉ Σ2 solutions from M5-branes wrapped on
a spindle fibered over another spindle were found, [26]. Also AdS3 × Σ ⋉ Σg solutions on
a spindle fibered over Riemann surface were found, [26].

In this work, we fill in the gaps in the literature. First, we construct multi-charged
AdS3×Σ×Σg solutions from M5-branes. Employing the consistent truncation of [1], we obtain
the solutions by uplifting the multi-charged AdS3 × Σ solutions, [6], to seven-dimensional
gauged supergravity. When the solutions are uplifted to eleven-dimensional supergravity,
they precisely match the previously known AdS3 ×Σ×Σg×S4 solutions in [6] and [21], which
were obtained by uplifting the AdS3 × Σ solutions of five-dimensional gauged supergravity.
However, it is the first time to construct the AdS3 × Σ × Σg solutions in seven-dimensional
gauged supergravity.

Second, we construct multi-charged AdS2 ×Σ×Σg solutions from D4-branes. Inspired by
the consistent truncation in [27], we construct them by uplifting the multi-charged AdS2 × Σ
solutions, [14], to matter coupled F (4) gauged supergravity. Our solutions generalize the
minimal AdS2 × Σ × Σg solutions in [12] and also the solutions obtained in [13]. We then
uplift the solutions to massive type IIA supergravity to obtain AdS2 × Σ × Σg × S̃4.

Finally, we perform the gravitational block calculations and, for the AdS3 × Σ × Σg

solutions, the result precisely matches the holographic central charge obtained from the
supergravity solutions.

In section 2, we construct AdS3×Σ×Σg solutions from M5-branes. We uplift the solutions
to eleven-dimensional supergravity and calculate the holographic central charge. In section 3,
we construct AdS2 × Σ × Σg solutions from D4-branes. We uplift the solutions to massive
type IIA supergravity and calculate the Bekenstein-Hawking entropy. In section 4, we present
the gravitational block calculations. In section 5, we conclude. We present the equations of
motion in appendix A and briefly review the consistent truncations of [1] in appendix B.

2 M5-branes wrapped on Σ × Σg

2.1 U(1)2-gauged supergravity in seven dimensions

We review U(1)2-gauged supergravity in seven dimensions, [28], in the conventions of [26].
The bosonic field content is consist of the metric, two U(1) gauge fields, A12, A34, a three-form
field, S5, and two scalar fields, λ1, λ2. The Lagrangian is given by

L = (R− V ) vol7 − 6 ∗ dλ1 ∧ dλ1 − 6 ∗ dλ2 ∧ dλ2 − 8 ∗ dλ1 ∧ dλ2

− 1
2e

−4λ1 ∗ F 12 ∧ F 12 − 1
2e

−4λ2 ∗ F 34 ∧ F 34 − 1
2e

−4λ1−4λ2 ∗ S5 ∧ S5

+ 1
2gS

5 ∧ dS5 − 1
g
S5 ∧ F 12 ∧ F 34 + 1

2gA
12 ∧ F 12 ∧ F 34 ∧ F 34 , (2.1)
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where F 12 = dA12, F 34 = dA34 and the scalar potential is

V = g2
[1

2e
−8(λ1+λ2) − 4e2(λ1+λ2) − 2e−2(2λ1+λ2) − 2e−2(λ1+2λ2)

]
. (2.2)

The equations of motion are presented in appendix A.

2.2 Multi-charged AdS3 × Σ solutions

We review the AdS3 ×Σ solutions of U(1)3-gauged N = 2 supergravity in five dimensions, [6].
These solution are obtained from D3-branes wrapped on a spindle, Σ. The metric, gauge
fields and scalar fields read

ds2
5 = H1/3

[
ds2

AdS3 + 1
4P dy

2 + P

H
dz2

]
,

A(I) = y − α

y + 3KI
dz , X(I) = H1/3

y + 3KI
, (2.3)

where I = 1, . . . , 3 and the functions are defined to be

H = (y + 3K1) (y + 3K2) (y + 3K3) , P = H − (y − α)2 , (2.4)

where KI and α are constant and satisfy the constraint, K1 + K2 + K3 = 0.
In the case of three distinct roots, 0 < y1 < y2 < y3, of cubic polynomial, P (y), the

solution is positive and regular in y ∈ [y1, y2]. The spindle, Σ, is an orbifold, WCP1
[n−,n+],

with conical deficit angles at y = y1, y2, [6]. The spindle numbers, n−, n+, are arbitrary
coprime positive integers. The Euler number of the spindle is given by

χ(Σ) = 1
4π

∫
Σ
RΣvolΣ = n− + n+

n−n+
, (2.5)

where RΣ and volΣ are the Ricci scalar and the volume form on the spindle. The magnetic
flux through the spindle is given by

QI = 1
2π

∫
Σ
F (I) = (y2 − y1) (α+ 3KI)

(y1 + 3KI) (y2 + 3KI)
∆z
2π ≡ pI

n−n+
, (2.6)

and we demand pI ∈ Z. One can show that the R-symmetry flux is given by

Q1 +Q2 +Q3 = p1 + p2 + p3
n−n+

= η1n+ − η2n−
n−n+

, (2.7)

where the supersymmetry is realized by, [14],

Anti-twist : (η1, η2) = (+1,+1) ,
Twist : (η1, η2) = (−1,+1) . (2.8)

In minimal gauged supergravity, K1 = K2 = K3, only the anti-twist solutions are allowed.
Otherwise, both anti-twist and twist are allowed.

One can express ∆z, y1, y2, and the parameters, KI , α, in terms of the spindle numbers,
n−, n+, p1, and p2, [6]. The period of the coordinate, z, is given by

∆z
2π = (n− − n+) (p1 + p2) + n−n+ − p2

1 − p1p2 − p2
2

n−n+ (n− + n−) . (2.9)
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In the special case of

K1 = K2 , X(1) = X(2) , A(1) = A(2) , (2.10)

expressions of y1, y2, and K1 = K2 are simpler,

y1 =
q (n+ + q)

[
2n2

− − 2n− (n+ + 4q) + q (5n+ + 9q)
]

3 [n− (n+ + 2q) − q (2n+ + 3q)]2
,

y2 = −
q (n− − q)

[
2n2

+ − 2n+ (n− − 4q) − q (5n− − 9q)
]

3 [n− (n+ + 2q) − q (2n+ + 3q)]2
,

K1 = K2 = q (n− − n+ − 3q) (n+ + q) (n− − q)
9 [n− (n+ + 2p) − q (2n+ + 3q)]2

, (2.11)

where we define q ≡ p1 = p2. For the expression of α, we leave the readers to [6]. For
this special case, the AdS3 × Σ solutions are also solutions of SU(2) × U(1)-gauged N = 4
supergravity in five dimensions, [29]. The solutions can be uplifted to eleven-dimensional
supergravity, [30], as it was done for a spindle, [6], and for a disk, [21].

2.3 Multi-charged AdS3 × Σ × Σg solutions

A consistent reduction of seven-dimensional maximal gauged supergravity, [31], on a Riemann
surface was performed in [1]. Empolying the consistent truncation, we uplift the AdS3 × Σ
solutions in section 2.2 with

K1 = K2 ̸= K3 , (2.12)

to U(1)2-gauged supergravity in seven dimension. We briefly summarize the uplift by
consistent truncation in appendix B. As a result, we find the AdS3 × Σ × Σg solutions,

ds2
7 = e−4φH1/3

(
ds2

AdS3 + 1
4P dy

2 + P

H
dz2

)
+ 1
g2 e

6φdsΣg ,

e−
10
9 λ1 = 21/3X , e

5
3 λ2 = 21/3X , e10φ = 21/3X ,

S5 = 22/3 (3K + α) volAdS3 ,

F 12 = 1
g

d

dy

(
y − α

y + 3K3

)
dy ∧ dz + 1

g
volΣg ,

F 34 = 2
g

d

dy

(
y − α

y + 3K1

)
dy ∧ dz , (2.13)

where Σg is a Riemann surface and we define

H = (y + 3K1)2 (y + 3K3) , P = H − (y − α)2 , X = X(1) = X(2) = H1/3

y + 3K1
,

(2.14)
and g2L2

AdS5
= 24/3. The gauge coupling and the radius of asymptotic AdS5 are fixed to

be g = 22/3 and LAdS5 = 1, respectively.
The flux quantization through the Riemann surface is given by

s1 = g

2π

∫
Σg

F 12 = 2 (1 − g) ∈ Z ,

s2 = g

2π

∫
Σg

F 34 = 0 , (2.15)
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where we find s1 + s2 = 2 (1 − g). Fluxes through the spindle are quantized to be

n1 ≡ − g

2π

∫
Σ
F 12 = − (y2 − y1) (α+ 3K3)

(y1 + 3K3) (y2 + 3K3)
∆z
2π = − p3

n−n+
,

2n2 ≡ − g

2π

∫
Σ
F 34 = −2 (y2 − y1) (α+ 3K1)

(y1 + 3K1) (y2 + 3K1)
∆z
2π = −2 p1

n−n+
, (2.16)

where p1 and p3 are introduced in (2.6) and pi ∈ Z. The minus signs in the definition of
ni are introduced for later convenience in the gravitational block calculations. By (2.7) the
total flux is obtained to be

n1 + 2n2 = −2p1 + p3
n−n+

= η1n+ − η2n−
n−n+

, (2.17)

where η1 and η2 are given in (2.8) and, thus, both twist and anti-twist solutions are allowed.

2.4 Uplift to eleven-dimensional supergravity

We review the uplift formula, [32], of U(1)2-gauged supergravity in seven dimensions to
eleven-dimensional supergravity, [33], as presented in [26]. The metric is given by

L−2ds2
11 = ∆1/3ds2

7 + 1
g2 ∆−2/3

{
e4λ1+4λ2dw2

0 + e−2λ1

[
dw2

1 + w2
1

(
dχ1 − gA12

)2
]

+ e−2λ2

[
dw2

2 + w2
2

(
dχ2 − gA34

)2
]}

, (2.18)

where
∆ = e−4λ1−4λ2dw2

0 + e2λ1w2
1 + e2λ2w2

2 , (2.19)

and L is a length scale. We employ the parametrizations of coordinates of internal four-
sphere by

µ1 + iµ2 = cos ξ cos θ eiχ1 , µ3 + iµ4 = cos ξ sin θ eiχ2 , µ5 = sin ξ , (2.20)

with
w0 = sin ξ , w1 = cos ξ cos θ , w2 = cos ξ sin θ , (2.21)

where w2
0 + w2

1 + w2
2 = 1 and ξ ∈ [−π/2, π/2], θ ∈ [0, π/2], χ1, χ2 ∈ [0, 2π]. The four-form

flux is given by

L−3F(4) = w1w2
g3w0

U∆−2dw1 ∧ dw2 ∧
(
dχ1 − gA12

)
∧
(
dχ2 − gA34

)
+ 2w2

1w
2
2

g3 ∆−2e2λ1+2λ2 (dλ1 − dλ2) ∧
(
dχ1 − gA12

)
∧
(
dχ2 − gA34

)
∧ dw0

+ 2w0w1w2
g3 ∆−2

[
e−2λ1−4λ2 ∧ (3dλ1 + 2dλ2) − e−4λ1−2λ2w2dw1 ∧ (2dλ1 + 3λ2)

]
∧
(
dχ1 − gA12

)
∧
(
dχ2 − gA34

)
+ 1
g2 ∆−1F 12 ∧

[
w0w2e

−4λ1−4λ2dw2 − w2
2e

2λ2dw0
]
∧
(
dχ2 − gA34

)
+ 1
g2 ∆−1F 34 ∧

[
w0w1e

−4λ1−4λ2dw1 − w2
1e

2λ1dw0
]
∧
(
dχ1 − gA12

)
− w0e

−4λ1−4λ2 ∗7 S
5 + 1

g
S5 ∧ dw0 , (2.22)
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where

U =
(
e−8λ1−8λ2 − 2e−2λ1−4λ2 − 2e−4λ1−2λ2

)
w2

0

−
(
e−2λ1−4λ2 + 2e2λ1+2λ2

)
w2

1 −
(
e−4λ1−2λ2 + 2e2λ1+2λ2

)
w2

2 , (2.23)

and ∗7 is a Hodge dual in seven dimensions.
We find a quantization condition of four-form flux through the internal four-sphere,

1
(2πlp)3

∫
S4
F(4) = L3

(2πlp)3

∫
S4

w1w2
g3w0

U∆−2dw1 ∧ dw2 ∧ dχ1 ∧ dχ2

= L3

πg3l3p
≡ N ∈ Z , (2.24)

where lp is the Planck length and N is the number of M5-branes wrapping Σ × Σg.
For the metric of the form,

ds2
11 = e2A

(
ds2

AdS3 + ds2
M8

)
, (2.25)

the central charge of dual two-dimensional conformal field theory is given by [34, 35], and
we follow [6],

c = 3
2G(3)

N

= 3
2G(11)

N

∫
M8

e9AvolM8 , (2.26)

where the eleven-dimensional Newton’s gravitational constant is G(11)
N = (2π)8l9p

16π . For the
solutions, with (2.11), we find the holographic central charge to be

c = L9∆z
8π5g6l9p

(y2 − y1) volΣg = ∆z
2π2N

3 (y1 − y2) volΣg

= 4q2 (n− − n+ − 2q)
n−n+ [n− (n+ + 2q) − q (2n+ + 3q)] (g− 1)N3 , (2.27)

where volΣg = 4π (g− 1). This precisely matches the result obtained from the solutions by
uplifting AdS3 × Σ to eleven-dimensional supergravity, [6].

3 D4-branes wrapped on Σ × Σg

3.1 Matter coupled F (4) gauged supergravity

We review F (4) gauged supergravity, [36], coupled to a vector multiplet in six dimensions, [37,
38], in the conventions of [12]. The bosonic field content is consist of the metric, two U(1)
gauge fields, Ai, a two-form field, B, and two scalar fields, φi, where i = 1, 2. We introduce
a parametrization of the scalar fields,

Xi = e−
1
2 a⃗i·φ⃗ , a⃗1 =

(
21/2, 2−1/2

)
, a⃗2 =

(
−21/2, 2−1/2

)
, (3.1)

with
X0 = (X1X2)−3/2 . (3.2)
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The field strengths of the gauge fields and two-form field are, respectively,

Fi = dAi , H = dB . (3.3)

The action is given by

S = 1
16πG(6)

N

∫
d6x

√
−g

[
R− V − 1

2 |dφ⃗|
2 − 1

2

2∑
i=1

X−2
i |Fi|2 −

1
8 (X1X2)2 |H|2

−m
2

4 (X1X2)−1 |B|2 − 1
16
εµνρστλ

√
−g

Bµν

(
F1ρσF2τλ + m2

12 BρσBτλ

)]
, (3.4)

where the scalar potential is

V = m2X2
0 − 4g2X1X2 − 4gmX0 (X1 +X2) , (3.5)

and ε012345 = +1. The norm of form fields are defined by

|ω|2 = 1
p!ωµ1...µpω

µ1...µp . (3.6)

The equations of motion are presented in appendix A.

3.2 Multi-charged AdS2 × Σ solutions

We review the AdS2×Σ solutions of U(1)4-gauged N = 2 supergravity in four dimensions, [10,
14]. These solution are obtained from M2-branes wrapped on a spindle, Σ. The metric,
gauge fields and scalar fields read

ds2
4 = H1/2

[1
4ds

2
AdS2 + 1

P
dy2 + P

4Hdz2
]
,

A(I) = y

y + qI
dz , X(I) = H1/4

y + qI
, (3.7)

where I = 1, . . . , 4 and the functions are defined to be

H = (y + q1) (y + q2) (y + q3) (y + q4) , P = H − 4y2 . (3.8)

In the case of four distinct roots, y0 < y1 < y2 < y3, of quartic polynomial, P (y), the
solution is positive and regular in y ∈ [y1, y2]. The spindle, Σ, is an orbifold, WCP1

[n1,n2],
with conical deficit angles at y = y1, y2, [10, 14]. The spindle numbers, n1, n2, are arbitrary
coprime positive integers. The Euler number of the spindle is given by

χ(Σ) = 1
4π

∫
Σ
RΣvolΣ = n1 + n2

n1n2
, (3.9)

where RΣ and volΣ are the Ricci scalar and the volume form on the spindle. The magnetic
flux through the spindle is given by

QI = 1
2π

∫
Σ
F (I) =

(
y2

y2 + qI
− y1
y1 + qI

) ∆z
2π ≡ 2pI

n1n2
, (3.10)

– 7 –



J
H
E
P
0
2
(
2
0
2
4
)
2
0
5

and we demand pI ∈ Z. One can show that the R-symmetry flux is given by

QR = 1
2 (Q1 +Q2 +Q3 +Q4) = p1 + p2 + p2 + p4

n1n2
= η1n2 − η2n1

n1n2
, (3.11)

where the supersymmetry is realized by, [14, 15],

Anti-twist : (η1, η2) = (+1,+1) ,
Twist : (η1, η2) = (±1,∓1) . (3.12)

When parameters, qI , I = 1, . . . , 4, are all identical or identical in pairwise, only the anti-
twist solutions are allowed. Otherwise, for all distinct or three identical with one distinct
parameters, both the twist and anti-twist solutions are allowed.

Unlike five-dimensional U(1)3-gauged supergravity which has a unique U(1)2 subtrun-
cation, there are two distinct U(1)2 subtruncations from four-dimensional U(1)4-gauged
supergravity,

ST2 model : A(1) = A(2) ̸= A(3) = A(4) , X(1) = X(2) ̸= X(3) = X(4) ,

T3 model : A(1) = A(2) = A(3) ̸= A(4) , X(1) = X(2) = X(3) ̸= X(4) , (3.13)

and their permutations.

3.3 Multi-charged AdS2 × Σ × Σg solutions

A consistent reduction of matter coupled F (4) gauged supergravity on a Riemann surface was
performed in [27]. Inspired by the consistent truncation in [27], the AdS3 × Σ × Σg solutions
in (2.13), and the minimal AdS2 × Σ × Σg solutions in [12], we construct the AdS2 × Σ × Σg

solutions. However, only the T3 model is obtained from the truncation of F (4) gauged
supergravity and not the ST2 model. Thus, we only find solutions by uplifting multi-charged
AdS2 × Σ solutions in section 3.2 with

q1 = q2 = q3 ̸= q4 , (3.14)

to six dimensions. After some trial and error we find the solutions to be

ds2
6 = e−2CL2

AdS4H
1/2
[1

4ds
2
AdS2 + 1

P
dy2 + P

4Hdz2
]

+ e2Cds2
Σg
,

X1 = k
1/8
8 k

1/2
2

H1/4

y + q1
, X2 = k

1/8
8 k

−1/2
2

H1/4

y + q1
, e−2C = m2k

1/4
8 k4

H1/4

y + q1

B = q1
9k1/2

8
4g2 volAdS2 ,

F1 = 3k1/2
8 k

1/2
2

2g
q1

(y + q1)2dy ∧ dz + κ+ z
2g volΣg ,

F2 = 3k1/2
8 k

−1/2
2

2g
q4

(y + q4)2dy ∧ dz + κ− z
2g volΣg , (3.15)

where we define

H = (y + q1)3 (y + q4) , P = H − 4y2 , (3.16)
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and

g = 3m
2 , LAdS4 = k

1/4
8 k

−1/2
4

m2 . (3.17)

There are parameters, κ = 0,±1, for the curvature of Riemann surface, and, z, which define

k2 = 3z +
√
κ2 + 8z2

z − κ
, k8 = 16k2

9 (1 + k2)2 , k4 = 18
−3κ+

√
κ2 + 8z2

. (3.18)

If we set q1 = q2 = q3 = q4, it reduces to the minimal AdS2 × Σ × Σg solutions in [12]. For
our solutions, in order to satisfy the equations of motion, we find that we should choose

κ = −1 , z = 1 , (3.19)

and we find k2 = k4 = k−1
8 = 3. Then the solutions are given by

ds2
6 = e−2CL2

AdS4H
1/2
[1

4ds
2
AdS2 + 1

P
dy2 + P

4Hdz2
]

+ e2Cds2
Σg
,

X1 = 33/8 H
1/4

y + q1
, X2 = 3−5/8 H

1/4

y + q1
, e−2C = 4g2

35/4
H1/4

y + q1

B = q1
3
√

3
4g2 volAdS2 ,

F1 = 3
2g

q1

(y + q1)2dy ∧ dz ,

F2 = 1
2g

q4

(y + q4)2dy ∧ dz − 1
g

volΣg , (3.20)

where we have

g = 3m
2 , LAdS4 = 35/4

4g2 . (3.21)

Notice that the components of F1 on the Riemann surface is turned off by the choice of (3.19).
The flux quantization through the Riemann surface is given by

s1 = g

2π

∫
Σg

F1 = 0 ,

s2 = g

2π

∫
Σg

F2 = 2 (1 − g) ∈ Z , (3.22)

where we find s1 + s2 = 2 (1 − g). Fluxes through the spindle are quantized to be

3n1 ≡ g

2π

∫
Σ
F1 = 3

2

(
y2

y2 + q1
− y1
y1 + q1

) ∆z
2π = 3p1

n1n2
,

n2 ≡ g

2π

∫
Σ
F2 = 1

2

(
y2

y2 + q4
− y1
y1 + q4

) ∆z
2π = p4

n1n2
, (3.23)

where p1 and p4 are introduced in (3.10) and pi ∈ Z. By (3.11) the total flux is obtained to be

3n1 + n2 = 3p1 + p4
n1n2

= η1n2 − η2n1
n1n2

, (3.24)

and both the twist and anti-twist solutions are allowed.1
1We would like to thank Chris Couzens for discussion on this.
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3.4 Uplift to massive type IIA supergravity

We review the uplift formula, [39], of matter coupled F (4) gauged supergravity to massive
type IIA supergravity, [40], presented in [12]. Although the uplift formula is only given
for vanishing of two-form field, B, in F (4) gauged supergravity, it correctly reproduces the
metric, the dilaton and the internal four-sphere part of four-form flux. The metric in the
string frame and the dilaton field are

ds2
s.f. = λ2µ

−1/3
0 (X1X2)−1/4

{
∆1/2ds2

6

+g−2∆−1/2
[
X−1

0 dµ2
0 +X−1

1

(
dµ2

1 + µ2
1σ

2
1

)
+X−1

2

(
dµ2

2 + µ2
2σ

2
2

)]}
, (3.25)

eΦ = λ2µ
−5/6
0 ∆1/4 (X1X2)−5/8 , (3.26)

where the function, ∆, is defined by

∆ =
2∑

a=0
Xaµ

2
a , (3.27)

and the one-forms are σi = dϕi − gAi. The angular coordinates, ϕ1, ϕ2, have canonical
periodicities of 2π. We employ the parametrization of coordinates,

µ0 = sin ξ , µ1 = cos ξ sin η , µ2 = cos ξ cos η , (3.28)

where
∑2

a=0 µ
2
a = 1 and η ∈ [0, π/2], ξ ∈ (0, π/2]. The internal space is a squashed four-

hemisphere which has a singularity on the boundary, ξ → 0. The four-form flux is given by

λ−1∗F(4) = gUvol6−
1
g2

2∑
i=1

X−2
i µi (∗6Fi)∧dµi∧σi +

1
g

2∑
a=0

X−1
a µa (∗6dXa)∧dµa , (3.29)

where the function, U , is defined by

U = 2
2∑

a=0
X2

aµ
2
a −

[4
3X0 + 2 (X1 +X2)

]
∆ , (3.30)

and ∗6 is a Hodge dual in six dimensions. The Romans mass is given by

F(0) = 2g
3λ3 . (3.31)

The positive constant, λ, is introduced from the scaling symmetry of the theory. It plays
an important role to have regular solutions with proper flux quantizations, [12]. The uplift
formula implies m = 2g/3.

The relevant part of the four-form flux for flux quantization is the component on the
internal four-sphere,

F(4) = λµ
1/3
0

g3∆
U

∆
µ1µ2
µ0

dµ1 ∧ dµ2 ∧ σ1 ∧ σ2 + . . . . (3.32)

We impose quantization conditions on the fluxes,

(2πls)F(0) = n0 ∈ Z ,
1

(2πls)3

∫
S̃4
F(4) = N ∈ Z , (3.33)
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where ls is the string length. For the solutions, these imply that

g8 = 1
(2πls)8

18π6

N3n0
, λ8 = 8π2

9Nn3
0
, (3.34)

where we have n0 = 8 −Nf and Nf is the number of D8-branes. These results are identical
to the case of minimal AdS2 × Σ × Σg solutions in [12].

For the metric of the form in the string frame,

ds2
s.f. = e2A

(
ds2

AdS2 + ds2
M8

)
, (3.35)

the Bekenstein-Hawking entropy is by, [34, 35], and in [12],

SBH = 1
4G(2)

N

= 8π2

(2πls)8

∫
e8A−2ΦvolM8 . (3.36)

For the solutions, we obtain the Bekenstein-Hawking entropy to be

SBH = 1
(2πls)8

9 (3πλ)4 k
1/2
8

20g8k4
4πκ (1 − g)Ah = 1

(2πls)8

√
3 (3πλ)4

20g8 4πκ (1 − g)Ah , (3.37)

where the area of the horizon of black hole, multi-charged AdS2 × Σ, in (3.7) is

Ah = 1
2 (y2 − y1) ∆z , (3.38)

and y1 and y2 are two relevant roots of P (y). The free energy of 5d USp(2N) gauge theory
on S3 × Σg is given by, [12, 41, 42],

FS3×Σg
= 16π3

(2π ls)8

∫
e8A−2ΦvolM6

=
16πκ (1 − g)N5/2 (z2 − κ2)3/2 (√

κ2 + 8z2 − κ
)

5
√

8 −Nf

(
κ
√
κ2 + 8z2 − κ2 + 4z2

)3/2 . (3.39)

By comparing (3.39) with (3.36), we find the Bekenstein-Hawking entropy to be

SBH = 1
2πFS3×Σg

Ah

=
8κ (1 − g)N5/2 (z2 − κ2)3/2 (√

κ2 + 8z2 − κ
)

5
√

8 −Nf

(
κ
√
κ2 + 8z2 − κ2 + 4z2

)3/2 Ah , (3.40)

and, for κ = −1 and z = 1, (3.19), we obtain2

SBH =
(3

8

)3/2 32 (g− 1)N5/2

5
√

8 −Nf
Ah . (3.41)

Although formally the Bekenstein-Hawking entropy is in the identical expression of the one
for minimal AdS2 × Σ× Σg solutions in [12], note that the black holes that give the area, Ah,
are different: it was minimal AdS2 × Σ in [12], but now it is multi-charged AdS2 × Σ, [14].
We refer [15] for the explicit expression of Ah for the multi-charged solutions.

2We would like to thank Hyojoong Kim for comments on this limit.
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4 Gravitational blocks

In this section, we briefly review the off-shell quantities from gluing gravitational blocks, [43],
and show that extremization of off-shell quantity correctly reproduces the Bekenstein-Hawking
entropy, central charge, and free energy, depending on the dimensionality, [12]. Then apply
the gravitational block calculations to the solutions we constructed in the previous sections.

Depending on the dimensionality, the Bekenstein-Hawking entropy, central charge, and
free energy are obtained by extremizing the off-shell quantity, [12],

F±
d (∆i, ϵ; ni, n+, n−, σ) = 1

ϵ

(
Fd

(
∆+

i

)
±Fd

(
∆−

i

) )
, (4.1)

where Fd are the gravitational blocks, [43]. We also define quantities,

∆±
i ≡ φi ± niϵ , (4.2)

and
φi ≡ ∆i + ri

2
n+ − σn−
n+n−

ϵ , (4.3)

where σ = +1 and σ = −1 for twist and anti-twist solutions, respectively. The expressions
of gravitational blocks are

F3 = b3 (∆1∆2∆3∆4)1/2 , F4 = b4 (∆1∆2∆3) , F5 = b5 (∆1∆2)3/2 , F6 = b6 (∆1∆2)2 ,

(4.4)
and the constants, bd, will be given later. The relative sign for gluing gravitational blocks
in (4.1) is −σ for d = 3, 5 and − for d = 4, 6. The twist conditions on the magnetic flux
through the spindle, ni, is given by

d∑
i=1

ni = n+ + σn−
n+n−

, (4.5)

where n+ and n− are the orbifold numbers of spindle and d is the rank of global symmetry
group of dual field theory, i.e., d = 4 for d = 3, d = 3 for d = 4, and d = 2 for d = 5, 6.
The constants are constrained by

d∑
i=1

ri = 2 , (4.6)

and they parametrize the ambiguities of defining the flavor symmetries. The U(1) R-symmetry
flux gives

1
2π

∫
Σ
dAR = n+ + σn−

n+n−
, (4.7)

and the fugacities of dual field theories are normalized by

d∑
i=1

∆i = 2 . (4.8)

– 12 –



J
H
E
P
0
2
(
2
0
2
4
)
2
0
5

The off-shell quantity can be written by

F±
d (φi, ϵ; n) = 1

ϵ

(
Fd (φi + niϵ) ±Fd (φi − niϵ)

)
, (4.9)

where the variables satisfy the constraint,
d∑

i=1
φi −

n+ − σn−
n+n−

ϵ = 2 , (4.10)

which originates from (4.6) and (4.8).

4.1 M5-branes wrapped on Σ × Σg

For the AdS3 × Σ × Σg solutions, there is standard topological twist on Σg for the magnetic
charges, si, and anti-twist on Σ for ni. Then the off-shell central charge is given by

S(φi, ϵ1, ϵ2; ni, si) = − 1
4ϵ1ϵ2

[
F6(φi + niϵ1 + siϵ2) −F6(φi − niϵ1 + siϵ2)

−F6(φi + niϵ1 − siϵ2) + F6(φi − niϵ1 − siϵ2)
]
, (4.11)

with the constraints,

n1 + 2n2 = n+ − n−
n+n−

, s1 + s2 = 2(1 − g) , φ1 + 2φ2 −
n+ + n−
n+n−

ϵ1 = 2 . (4.12)

For the calculations, we employ

b4 = −3
2N

2 , b6 = −N3 . (4.13)

Extremizing it with respect to ϵ2 gives ϵ2 = 0 and renaming ϵ1 7→ ϵ, we find the off-shell
central charge expressed by

S(φi, ϵ; ni, si) = 2N3s1
(
n1φ2φ3 + φ1n2φ3 + φ1φ2n3 + n1n2n3ϵ

2
)
|3 7→2

+ 2N3s2
(
n1φ2φ3 + φ1n2φ3 + φ1φ2n3 + n1n2n3ϵ

2
)
|3 7→1

= 2N3s1

(
− 1

3N2F
−
4

)∣∣∣∣
3 7→2

+ 2N3s2

(
− 1

3N2F
−
4

)∣∣∣∣
3 7→1

. (4.14)

We have started with the d = 6 gravitational blocks, F6, and we observe the d = 4 structure,
F−

4 , naturally emerges. See section 5.2 of [12] for the calculations of d = 4 gravitational
blocks. From the d = 4 point of view, the s1 term of S(φi, ϵ; ni, si) in (4.14) is the off-shell
central charge for n1 ̸= n2 = n3 and the s2 terms is for n1 = n3 ̸= n2. Thus, extremization
gives disparate results for each term. However, for the solution, as we have

s1 = 2 (1 − g) , s2 = 0 , (4.15)

the solution chooses the s1 term in the off-shell central charge. Extremizing this we find
the values,

ϵ∗ =
n+−σn−

n+n−

2
(

σ
n+n−

− (n1n2 + n2n3 + n3n1)
)
∣∣∣∣∣∣
3 7→2

, φ∗
2 = n2 (n2 − n3 − n1)

2
(

σ
n+n−

− (n1n2 + n2n3 + n3n1)
)
∣∣∣∣∣∣
3 7→2

.

(4.16)
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Then the off-shell central charge gives

S(φ∗
i , ϵ

∗; ni) = 4N3 (g− 1) n1n2n3
σ

n+n−
− (n1n2 + n2n3 + n3n1)

∣∣∣∣∣
3 7→2

, (4.17)

which precisely matches the holographic central charge from the supergravity solutions, (2.27),
with σ = −1.

4.2 D4-branes wrapped on Σ × Σg

For the AdS2 × Σ × Σg solutions, there is standard topological twist on Σg for the magnetic
charges, si, and anti-twist on Σ for ni. Then the entropy function is given by

S(φi, ϵ1, ϵ2; ni, si) = − 1
4ϵ1ϵ2

[
F5(φi + niϵ1 + siϵ2) + F5(φi − niϵ1 + siϵ2)

−F5(φi + niϵ1 − siϵ2) −F5(φi − niϵ1 − siϵ2)
]
, (4.18)

with the constraints,

n1 + 3n2 = n+ − n−
n+n−

, s1 + s2 = 2(1 − g) , φ1 + 3φ2 −
n+ + n−
n+n−

ϵ1 = 2 . (4.19)

For the calculations, we employ

b3 = −
√

2π
3 N3/2 , b5 = −25/2π

15
N5/2√
8 −Nf

. (4.20)

Extremizing it with respect to ϵ2 gives ϵ2 = 0 and renaming ϵ1 7→ ϵ, we find the entropy
function expressed by

S(φi, ϵ; ni, si) = c

ϵ

[
s1

(√
(φ1 + n1ϵ) (φ2 + n2ϵ)3 +

√
(φ1 − n1ϵ) (φ2 − n2ϵ)3

)
+s2

(√
(φ1 + n1ϵ)3 (φ2 + n2ϵ) +

√
(φ1 − n1ϵ)3 (φ2 − n2ϵ)

)]
, (4.21)

where we have

c ≡
√

2π
5

N5/2√
8 −Nf

. (4.22)

We have started with the d = 5 gravitational blocks, F5, and we observe the d = 3 structure
naturally emerges. See section 5.1 of [12] for the calculations of d = 3 gravitational blocks.
From the d = 3 point of view, the s1 term of S(φi, ϵ; ni, si) in (4.21) is the entropy function
for n1 ̸= n2 = n3 = n4 and the s2 terms is for n1 = n2 = n3 ̸= n4. Thus, extremization gives
disparate results for each term. However, for the solution, as we have

s1 = 2 (1 − g) , s2 = 0 , (4.23)

the solution chooses the s1 term in the entropy function. However, in this case, the algebraic
equations appearing in the extremization procedure are quite complicated and we do not
pursue it further here.
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5 Conclusions

In this work, we have constructed multi-charged AdS3 ×Σ×Σg and AdS2 ×Σ×Σg solutions
from M5-branes and D4-branes. We have uplifted the solutions to eleven-dimensional and
massive type IIA supergravity, respectively. We have also studied their spindle properties and
calculated the holographic central charge and the Bekenstein-Hawking entropy, respectively.

Although we have only considered the AdS2,3 × Σ× Σg solutions for spindle, Σ, the local
form of our solutions naturally allows solutions for disk, Σ, by different global completion.
However, the AdS3 ×Σ×Σg solution for disk, Σ, was already constructed and studied in [21].
Thus, it would be interesting to analyze the AdS2 × Σ × Σg solutions for disk, Σ, from the
solutions we have constructed.

Unlike the minimal AdS2 × Σ × Σg solutions in [12] where z is a free parameter, only
z = 1 is allowed for our multi-charged AdS2 × Σ × Σg solutions, (3.19). We would like to
understand why it is required to fix the parameter for the solutions and if there are more
general multi-charged solutions with additional parameters.

The solutions we have obtained could be seen as generalizations of AdS3 × Σg1 × Σg2

solutions in [44] and AdS2 × Σg1 × Σg2 solutions in [45–47]. In particular, via the AdS/CFT
correspondence, [48], the Bekenstein-Hawking entropy of AdS2 × Σg1 × Σg2 solutions was
microscopically counted by the topologically twisted index of 5d USp(2N) gauge theories, [42,
49]. It would be most interesting to derive the Bekenstein-Hawking entropy of the AdS2×Σ×Σg

solutions from the field theory calculations.
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A The equations of motion

A.1 U(1)2-gauged supergravity in seven dimensions

We present the equations of motion derived from the Lagrangian in (2.1),

Rµν = 6∂µλ1∂νλ1 + 6∂µλ2∂νλ2 + 8∂(µλ1∂ν)λ2 + 1
5gµνV

+ 1
2e

−4λ1

(
F 12

µρF
12ρ
ν − 1

10gµνF
12
ρσF

12ρσ
)

+ 1
2e

−4λ2

(
F 34

µρF
34ρ
ν − 1

10gµνF
34
ρσF

34ρσ
)

+ 1
4e

−4λ1−4λ2

(
S5

µρσS
5ρσ
ν − 2

15gµνS
5
ρσδS

5ρσδ
)
, (A.1)

1√
−g

∂µ
(√

−ggµν∂ν (3λ1 + 2λ2)
)

+ 1
4e

−4λ1F 12
µνF

12µν + 1
12e

−4λ1−4λ2S5
µνρS

5µνρ − g2

4
∂V

∂λ1
= 0 ,

1√
−g

∂µ
(√

−ggµν∂ν (2λ1 + 3λ2)
)

+ 1
4e

−4λ2F 34
µνF

34µν + 1
12e

−4λ1−4λ2S5
µνρS

5µνρ − g2

4
∂V

∂λ2
= 0 ,

(A.2)
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d
(
e−4λ1 ∗ F 12

)
+ e−4λ1−4λ2 ∗ S5 ∧ F 34 = 0 ,

d
(
e−4λ2 ∗ F 34

)
+ e−4λ1−4λ2 ∗ S5 ∧ F 12 = 0 ,

dS5 − ge−4λ1−4λ2 ∗ S5 − F 12 ∧ F 34 = 0 . (A.3)

A.2 Matter coupled F (4) gauged supergravity

We present the equations of motion derived from the action in (3.4),

Rµν−
1
2

2∑
i=1

∂µφi∂νφi−
1
4V gµν−

1
2

2∑
i=1

X−2
i

(
FiµρFiν

ρ− 1
8gµνFiρσFi

ρσ
)

−m2

4 (X1X2)−1
(
BµρBν

ρ− 1
8gµνBρσB

ρσ
)
− 1

16 (X1X2)2
(
HµρσHν

ρσ− 1
6gµνHρσλH

ρσλ
)

= 0 ,

(A.4)

1√
−g

∂µ
(√

−ggµν∂νφ1
)
− ∂V

∂φ1
− 1

2
√

2
X−2

1 F1µνF1
µν + 1

2
√

2
X−2

2 F2µνF2
µν = 0 ,

1√
−g

∂µ
(√

−ggµν∂νφ2
)
− ∂V

∂φ2
− 1

4
√

2
X−2

1 F1µνF1
µν − 1

4
√

2
X−2

2 F2µνF2
µν

− m2

8
√

2
(X1X2)−1BµνB

µν + 1
24
√

2
(X1X2)2HµνρH

µνρ = 0 , (A.5)

Dν

(
X−2

1 F νµ
1

)
= 1

24
√
−gεµνρστλF2νρHστλ ,

Dν

(
X−2

2 F νµ
2

)
= 1

24
√
−gεµνρστλF1νρHστλ ,

Dν

(
(X1X2)−1Bνµ

)
= 1

24
√
−gεµνρστλBνρHστλ ,

Dρ

(
(X1X2)2Hρνµ

)
= −1

4
√
−gεµνρστλ

(
m2

2 BρσBτλ + FiρσFiτλ

)
− 2m2 (X1X2)−1Bµν .

(A.6)

B Consistent truncations of [1]

In this appendix, we briefly review the consistent truncation of seven-dimensional maximal
gauged supergravity, [31], on a Riemann surface in [1] and explain the setup to uplift our
solutions by employing the truncation ansatz.

The consistent truncation ansatz for the seven-dimensional metric on a Riemann surface,
Σg, is given by

ds2
7 = e−4φds2

5 + 1
g2 e

6φds2
Σg
, (B.1)

which introduces a scalar field, φ, in five dimensions. Also g2L2
AdS5

= 24/3 for the gauge
coupling, g, and the radius of asymptotic AdS5, LAdS5 . The SO(5) gauge fields are decomposed
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by SO(5) → SO(2) × SO(3),

Aab = ϵabA+ 1
g
ωab ,

Aaα = −Aαa = ψ1αea − ψ2αϵabeb ,

Aαβ = Aαβ , (B.2)

where a, b = 1, 2, α, β = 3, 4, 5, ds2
Σg

= eaea, and ωab is the spin connection on Σg. The
ansatz introduces an SO(2) one-form, A, SO(3) one-forms, Aαβ, transforming in the (1,3)
of SO(2) × SO(3), and six scalar fields, ψaα =

(
ψ1α, ψ2α

)
, transforming in the (2,3). The

scalar fields are given by

T ab = e−6λδab , T aα = 0 , Tαβ = e4λT αβ , (B.3)

which introduces a scalar field, λ, and five scalar fields in T αβ which live on the coset
manifold, SL(3)/SO(3). The three-form field is given by

Sa = K1
(2) ∧ ea − ϵabK2

(2) ∧ eb ,

Sα = hα
(3) + χα

(1) ∧ volΣg , (B.4)

which introduces an SO(2) doublet of two-forms, Ka
(2), three-forms, hα

(3), and one-forms, χα
(1).

To be particular, we consider a subtruncation of the general consistent truncations
which reduces to SU(2) × U(1)-gauged N = 4 supergravity in five dimensions, [29], which
is presented in section 5.1 of [1]. In this case, we have the scalar fields to be

λ = 3φ , Tαβ = δαβ , ψaα = 0 . (B.5)

From the three-form field, we have a complex two-form field,

C(2) = K1
(2) + iK2

(2) , (B.6)

and a three-form field,

∗hα
(3) = 1

2e
−20φϵαβγF

βγ , (B.7)

with χα
(1) = 0.

In order to match with the special case of U(1)2-gauged supergravity in seven dimen-
sions, (2.10), we further impose Aaα

(1) = 0 and C(2) = 0. In U(1)2-gauged supergravity in
seven dimensions, the scalar fields of are given by

Tij = diag
(
e2λ1 , e2λ1 , e2λ2 , e2λ2 , e−4λ1−4λ2

)
. (B.8)

By matching it with the consistent truncation ansatz,

Tij = diag
(
e−6λ , e−6λ , e4λ , e4λ , e4λ

)
, (B.9)

we identify the scalar fields to be

λ1 = −3λ , λ2 = 2λ . (B.10)

The non-trivial three-form field, S5, is given by hα
(3) in (B.7).
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Finally, we compare the actions of SU(2) × U(1)-gauged N = 4 supergravity in five
dimensions, [29], presented in (5.4) of [1] and in (2.1) with (3.1) of [6] to fix

X(1) = 2−1/3e10φ , X(2) = 2−1/3e10φ , X(3) = 22/3e−20φ . (B.11)

With X = X(1) = X(2), this determines the scalar fields to be

e−
10
9 λ1 = 21/3X , e

5
3 λ2 = 21/3X , e10φ = 21/3X . (B.12)
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