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1 Introduction

It has been long appreciated that systems of free scalars and free spin-1/2 particles at low
temperature and nonzero charge density have strikingly different properties. The former
give rise to the phenomenon of Bose-Einstein condensation and are characterized by the
spontaneous breaking of an internal symmetry. The latter fill out a Fermi sphere in momentum
space, and have unbroken internal symmetry. These properties can be traced back to the
statistical properties of the underlying fields, bosonic and fermionic respectively, as dictated
by the spin-statistics theorem in relativistic quantum field theory (QFT).

In the presence of interactions, the fate of the internal U(1) symmetry in a state of
finite charge density is less clear. For systems of interacting scalar fields, in [1] we have
provided evidence that the ground state at finite chemical potential cannot develop a charge
density unless it spontaneously breaks the U(1) symmetry (see also [2, 3] for previous related
discussions). We have proven this statement in perturbation theory at one loop for generic
non-derivative scalar’s self-interactions, and in a O(N) vector model at large N . A complete
proof is still missing, but these results are suggestive of the generality of the phenomenon.
This connection plays a crucial role also in the superfluid effective theory approach to the
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large charge sector of Conformal Field Theories [4–7] (see also [8] for a review). An important
alternative phase is represented by Fermi liquids [9–11] and one would like to understand
under what conditions this phase arises.

A difficulty that one encounters when trying to address this question in full generality is
that of properly accounting for the statistics of the fields [1]. This should enter non-trivially
to encode the different properties of bosons and fermions at nonzero charge density. In
order to make progress in this direction, it seems instructive to reconsider the question
about spontaneous symmetry breaking in fermionic QFTs at finite chemical potential and
analyze the differences with respect to bosonic systems. In this spirit, our goal in this
work is to revisit for fermionic fields some of the aspects that we addressed in [1] for scalar
theories. In particular, we will pose the following question: given a fermionic theory at finite
charge density, is the U(1)V symmetry realized linearly or spontaneously broken? To answer
the question, we will adopt a path-integral approach and show explicitly that, to correctly
compute physical quantities such as the free energy density of a relativistic Fermi gas, one
needs to carefully take into account the iε term in the path integral — which allows to project
on the correct ground state of the Hamiltonian at finite µ. As we will discuss, the iε term is
a key ingredient that is responsible for the different analytic structure in the path integral
and the resulting partition functions of fermions and bosons. Analyses of systems at finite
chemical potential (or density) and zero temperature are often formulated as the T → 0 limit
of finite temperature QFT calculations. The subtlelties associated to the zero-temperature
limit have been analyzed in an interesting recent work [12]. Motivations include the study of
the phase diagram of QCD at finite density [13–15]. In this article we take a complementary
approach, and discuss how to consistently perform finite density calculations in fermionic
QFTs directly at T = 0. With this understanding, we will compute the partition function of
a free Fermi gas in the presence of a source term in the path integral — which will play the
role of an order parameter for the U(1)V symmetry — and show that the vacuum expectation
value of the order parameter vanishes in the limit in which the source goes to zero, proving
that the U(1)V symmetry is unbroken for free fermions. We will then extend the simple
case of the free Fermi gas in two different directions.

First, we will include a non-trivial magnetic background for the Fermi gas and compute
explicitly the fermionic functional determinant in the presence of a magnetic field. Our
results can have applications in the study of QED in intense magnetic backgrounds and at
finite density. The dynamics of QED with strong external fields is an old subject [16–18], see
e.g. [19] for a recent review. Applications range from the astrophysics of strongly magnetized
pulsars [20–22] to laser and plasma physics [23, 24]. The quantum effective action of QED at
finite temperature and density has been computed in refs. [25–27]. Similar results have been
obtained in 2 + 1 dimensions [28]. These works considered systems at finite temperature and
express the results as thermal integrals. With our approach, working directly at T = 0, we
obtain closed form analytic results, non-perturbatively in the electromagnetic coupling and
magnetic field. As a warm up, at zero chemical potential, we provide a modern derivation of
the Euler-Heisenberg quantum effective action in its zeta function representation [29–31]. We
then obtain closed form analytic expressions for the finite density contributions, including
the de Haas-van Alphen effect.
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Second, we will include interactions among fermions. We will do so by considering
a 3 + 1 dimensional generalization of the Gross-Neveu model, for a system of N Dirac
fermions transforming in the fundamental representation of a vectorial U(N) global symmetry
group. In the limit of large N , the model is solvable analytically and allows one to compute
the fermionic path integral exactly. Although we will not prove in full generality that the
U(1)V symmetry is unbroken at finite density, we will provide evidence that the system
can support a finite density phase with unbroken symmetry. This should be contrasted
with the result discussed in [1] for the O(N) vector model, where we showed that, for a
system of N scalars, the breaking of the U(1) symmetry is instead inevitable at nonzero
charge density, in the large-N limit.

The work is organized as follows. In section 2 we start with some general considerations
about the spontaneous breaking of the U(1)V symmetry in fermionic theories at finite density
from a path-integral point of view. In section 3 we discuss the role of the iε term in the
fermionic path integral, showing the difference with respect to the bosonic case, and provide
a proof that the U(1)V symmetry is unbroken for free fermions. In section 4, we discuss
various aspects of a Fermi gas in a magnetic background, including a derivation of the QED
effective action and magnetic susceptibility at finite density. The (generalized) Gross-Neveu
model is then discussed in section 5. Some technical aspects and useful relations are collected
in the appendices.

Conventions. We adopt natural units ℏ = c = 1, and the mostly minus convention for
the Minkowski spacetime metric. We assume that the chemical potential µ is non-negative
(µ ≥ 0), for ease of notation. The free energy density as a function of µ, is defined as

f(µ) ≡ (−iVol4)−1
(
log Z [µ]

Z [0]

)
. (1.1)

To simplify the notation we will suppress factors of volume. When needed, they can be
reintroduced by dimensional analysis. Conventions on γ matrices are detailed in appendix A.
The symbol µ̄ is reserved for the MS renormalization scale, and its occurrence should be
clear by context.

2 Symmetry breaking at finite density?

In order to address the question of whether the U(1)V symmetry is linearly realized or
spontaneously broken in a fermionic theory at finite density, we look for an order parameter
for the symmetry, that is: an operator O which has a non-vanishing commutator with the
charge operator

δÔ =
[
Q̂, Ô

]
̸= 0. (2.1)

If such an operator has non-zero expectation value on the ground state, i.e. ⟨δO⟩ ̸= 0, the
symmetry is spontaneously broken (i.e. the ground state is not invariant under Q).

Let us start by considering a system of free massive Dirac fermions in 3 + 1 dimensions
at finite density. The underlying dynamics is controlled by the Lagrangian

L = Ψ̄
(
i/∂ − m

)
Ψ. (2.2)
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This theory has a continuous U(1) symmetry

U(1)V :

 Ψ −→ eiα Ψ ,

Ψ̄ −→ e−iα Ψ̄ .
(2.3)

The Noether current associated to the symmetry is

jµ
V = Ψ̄γµΨ, (2.4)

corresponding to the number of left-handed plus right-handed particles (the vectorial current).
We would like to show that all the (local) order parameters quadratic in the field

variables have zero expectation value, suggesting that the symmetry is linearly realized. The
argument we present here is naive, since it assumes that the partition function is differentiable
with respect to the Majorana sources j and j∗ around (j, j∗) = (0, 0). We will justify this
assumption later in explicit examples of fermionic theories.

A prototypical order parameter for the vectorial U(1)V symmetry is the Majorana term

δOMaj = Ψc Ψ = +iΨT (γ2)∗γ0 Ψ. (2.5)

In order to compute its vacuum expectation value we use the path integral formulation for
fermions at finite µ and include a source term. The finite µ action will be rederived later,
but for now let us consider directly the finite µ path integral with Majorana source

Z [j;µ] =
∫

DΨ̄DΨ exp
[
i

∫
d4xΨ̄

(
i/∂+γ0µ−m

)
Ψ+j

1
2 Ψ

T (γ2)∗γ0Ψ+h.c.
]

. (2.6)

The vacuum expectation value of the Majorana order parameter is given by

⟨δÔMaj⟩µ = 1
Zµ

δZµ

δj

∣∣∣∣∣
j=0

= δ logZµ

δj

∣∣∣∣∣
j=0

. (2.7)

Since the action is quadratic in the field variables, the path integral can be performed exactly
and expressed as a determinant. The finite µ Lagrangian, including source terms, can be
written as follows (up to boundary terms):

Lµ [j] = − i

2
(
Ψ Ψ̄

)( B A
−A B†

)(
Ψ
Ψ̄

)
, (2.8)

where A = [−i/∂x − γ0µ+m]αβ δ4(x− y) and B = −j [(γ2)∗γ0]αβ δ4(x− y). The path integral
can then be formally expressed as:

Z [j;µ] =
[
det

(
B A
−A B†

)] 1
2

. (2.9)

We can rewrite the determinant as follows:

det
(

B A
−A B†

)
= det

(
−A B†

B A

)
= expTr log

(
−A B†

B A

)

= expTr
∑

n

(−1)n+1

n

(
−A − 1 B†

B A − 1

)n

,

(2.10)
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where we used that the spin 1/2 Dirac representation is even dimensional. We arrive at
the formula:

logZ [j;µ] = 1
2Tr

∑
n

(−1)n+1

n

(
−A − 1 B†

B A − 1

)n

. (2.11)

By induction on n it is easy to show that the matrix Mn ≡
(
−A − 1 B†

B A − 1

)n

is of the form

Mn =
(

p1(B†B) B† p2(B†B, BB†)
B p3(B†B, BB†) p4(BB†)

)
, (2.12)

where pi are formal polynomials which can also depend on the differential operator A.
Therefore, evaluating the trace, the result is of the form

logZ [j;µ] = const +O (j∗j) . (2.13)

This implies that the vacuum expectation value in equation (2.7) is zero:

⟨δÔMaj⟩µ = δ logZµ

δj

∣∣∣∣∣
j=0

= 0. (2.14)

In this derivation we assumed that the expansion (2.13) is well defined, or in other words that
the function is differentiable in (j, j∗) = (0, 0). For the free fermion we will explicitly evaluate
the first two terms of this expansion in section (3.4), verifying the validity of this assumption.

The argument we presented relies on the fact that the Majorana source term has elements
only on the principal diagonal of the quadratic form in equation (2.8), whereas the kinetic term
and the term describing the chemical potential are off-diagonal. It can be easily generalized
to order parameters of the form δO = c1Ψc Ψ + c2Ψc γ5 Ψ + h.c. .

3 Free fermions at finite density

To gain better control of these formal manipulations we would like to explicitly compute
the partition function of a system of free fermions at finite µ and zero temperature in the
path integral approach. In the case of free bosons at finite µ, the path integral with the iε

prescription is convergent only for µ < m [1]. It is convenient to define Dµ to be a formal
µ-dependent covariant derivative. In the scalar case the computation reduces to the evaluation
of the (inverse) determinant of the operator −DµDµ − m2, which can be easily seen to be
independent of µ for µ < m. On the other hand, for µ > m the gaussian path integral is
divergent and one is forced to include interactions in order to stabilize the system for values
of µ > m. The situation is however different in the case of fermions: the quadratic fermionic
path integral is always equal (by definition) to a functional determinant, and for a (constant
and homogeneous) chemical potential one obtains again the operator −DµDµ − m2, both for
µ < m and for µ > m. This determinant should be independent of µ for µ < m, essentially
for the same reasons as in the scalar case, but should depend explicitly on µ in the regime
µ > m, corresponding to the free Fermi gas phase. How can these two conditions be mutually
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consistent? How does the µ dependence in the determinant arise? In order to answer these
questions we shall carefully analyze the iε term that selects the finite density ground state,
and compute the relativistic Fermi gas free energy in the path integral approach.

We start from the theory of a free Dirac fermion of mass m, as in eq. (2.2). We are
interested in studying this system at zero temperature, in the presence of a chemical potential
for the vectorial charge (i.e., at finite charge density). To describe this system we first
switch to the canonical formalism and include a term describing the system at finite chemical
potential. In canonical quantization the conjugate variables are

Ψ, Π = ∂L
∂Ψ̇

= Ψ̄iγ0 = iΨ†. (3.1)

The Legendre transform of the Lagrangian (2.2) gives the canonical Hamiltonian density
for a free Dirac fermion:

H =
∫ (

ΠΨ̇− L
)
=
∫ (

ΠΨ̇−ΠΨ̇− Ψ̄iγi∂iΨ+ mΨ̄Ψ
)

=
∫

−
(
Πγ0γ⃗ · ∇⃗Ψ+ imΠγ0Ψ

)
=
∫

Π γ0
(
−γ⃗ · ∇⃗ − im

)
Ψ.

(3.2)

The system at finite chemical potential can then be described by the effective Hamiltonian

Hµ = H − µQ, (3.3)

where Q =
∫
d3x Ψ̄γ0Ψ. Going back to the Lagrangian formalism we obtain

Lµ = Ψ̄
(
i/∂ + γ0µ − m

)
Ψ. (3.4)

3.1 iε term for the fermions

To describe a finite density phase we want to project on the ground state of the operator Hµ.
In order to do so we introduce an iε term in the Hamiltonian path integral for the fermions.
We add to the action functional a term iεHµ, and obtain:

Z [µ] =
∫

DΠDΨexp i

∫ t′

t
dt

∫
d3x

[
ΠΨ̇− (1− iε)Hµ

]
. (3.5)

This is equivalent to performing a Wick rotation t → (1 − iε)t, as evidenced by rewriting
the functional integral as

Z [µ] =
∫

DΠDΨexp i

∫ t′

t
dt(1− iε)

∫
d3x

[ 1
(1− iε)ΠΨ̇−Hµ

]
. (3.6)

The quadratic path integral for a complex fermion is equal to the determinant of the kinetic
operator. Up to an overall constant factor, we therefore obtain

Z [µ] = det
(

i
γ0∂0

(1− iε) − iγi∂i + γ0µ − m

)
, (3.7)

both for µ > m and for µ < m.
Defining for convenience a covariant derivative Dα = ∂α − iµ δα0, and working at linear

order in ε, we arrive at

Z [µ] = det
(
i /D − m − εγ0∂0

)
. (3.8)
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3.2 Quantum mechanical fermionic oscillator

As a warm-up, let us first consider the quantum mechanical fermionic oscillator, i.e. QFT in
0 + 1 dimensions.1 In this case there is no γ matrix and we simply need to compute

Z [µ] = det ((1 + iε)i∂0 + µ − m) . (3.9)

Let us consider the charge density operator Q̂. Taking a Fourier transform and working
at linear order in ε we have

⟨Q̂⟩ = −i
∂ logZ [µ]

∂µ
= −i

∫ dω

2π

1
ω + (µ − m)(1− iε)

= −i

∫ dω

2π

1
ω + (µ − m)− iε sign(µ − m) . (3.10)

Using the distributional identity
1

ω + (µ − m)− iε(µ − m) = PV
( 1

ω + µ − m

)
+ iπ sign(µ − m)δ(ω + µ − m), (3.11)

and integrating we obtain the charge density

⟨Q̂⟩ = −1
2 + θ(µ − m). (3.12)

The −1/2 term is an additive constant that can be renormalized away. In quantum mechanics
the charge operator is proportional to the Hamiltonian (but dimensionless), so that it
corresponds to nothing else but the zero point energy of a fermionic quantum oscillator:

Ĥ = 1
2ℏω[ĉ†, ĉ] = ℏω

(
N̂ − 1

2

)
. (3.13)

The eigenvalue of the number operator N̂ is 1 for µ > m, corresponding to the full “Fermi sea”
of a nonzero charge state, and 0 for µ < m, corresponding to the zero charge ground state.

3.3 The Fermi gas in 3+1 dimensions

In the case of a Dirac fermion in 3 + 1 dimensions we need to deal with the spinor structure.
Using charge conjugation and the transformation property of the γ matrices CγµC−1 =
−(γµ)T , we have the identity

Z [µ] = det
(
i /D − m − εγ0∂0

)
= det

(
C
(
i /D − m − εγ0∂0

)
C−1

)
= det

(
−i /D

T − m + ε(γ0)T ∂0
)
= det

(
−i /D − m + εγ0∂0

)
,

(3.14)

where we used (detC)(detC−1) = 1, and that the determinant is preserved by transposition.
Taking the geometric average, using the fact that the Dirac matrices are even dimensional,
and neglecting terms of order ε2 we obtain:

Z [µ] = det
((

i /D−m−εγ0∂0
)(

i /D+m−εγ0∂0
))1/2

=det
(
− /D /D−m2−iε( /Dγ0+γ0 /D)∂0

)1/2
=det

(
− /D /D−m2−2iεD0∂0

)1/2
.

(3.15)

1In this quantum mechanical example we simply consider a spin 0 fermionic particle, neglecting the
(internal) spin degrees of freedom.
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For a constant and homogeneous chemical potential we can use the identity /D /D = DµDµ.
Taking a Fourier transform and using (log det = Tr log), we arrive at

logZ [µ] = 4× 1
2

∫ d4p

(2π)4 log
(
P 2 − m2

)
, (3.16)

where
Pµ =

(
(1 + iε)p0 + µ, p⃗

)
P 2 = [(1 + iε)p0 + µ]2 − p⃗ 2, (3.17)

and the factor of 4 comes from the trace in Dirac space. Notice that in relating the determinant
of the Dirac operator to the determinant of an operator which is a multiple of the identity
in Dirac space we have already made use of charge conjugation. The resulting singularity
structure is asymmetric under µ → −µ, but the conjugate contribution is already accounted
for by the overall factor of 2.

Let us analyze in more detail the singularities of the integrand in the complex p0 plane,
for fixed spatial momentum p⃗: there is a branch cut joining the two endpoints defined by
the condition P 2 − m2 = 0,

p0,± =
(
−µ ±

√
p⃗ 2 + m2

)
(1− iε). (3.18)

It is technically convenient to slightly deform the iε term in such a way that the singularities
are all shifted by the same amount, with the direction of the shift determined by (3.18).
After this deformation, we have

p0,± = −µ ±
√

p⃗ 2 + m2 − iε sign
(
−µ ±

√
p⃗ 2 + m2

)
. (3.19)

It is straightforward to check that the integrand in eq. (3.16) is single-valued once this
branch cut is fixed.

For µ < m the branch cut endpoints p0,± lie in opposite quadrants (the second and the
fourth). Let us choose the cut so that p0,± are joined through the point at infinity, without
touching the first and third quadrants and the vertical strip comprised between p0,±. With
this choice we are free to deform the p0 integration contour as follows: first Wick rotate
from the real axis to the vertical ip0 axis and then translate to the left by µ. Doing this
we do not encounter any singularity and it is easy to check that the contributions from the
contours at infinity cancel each other. We are left with an integral on the vertical line, with
two singularities lying at a distance ±

√
p⃗ 2 + m2, on the left and the right. This can be

recognized as the Euclidean path integral of the µ = 0 theory. Therefore we have

f(µ) = 0 for µ < m. (3.20)

This is reminiscent of the so-called “Silver Blaze” property of QCD at (small) nonzero isospin
chemical potential [32]. Notice, however, that our chemical potential is associated to the U(1)
vectorial symmetry and is thus more similar to a baryon chemical potential.

For µ > m, the location of the endpoints depends on the relative size of |p⃗| and the
Fermi momentum pF :

pF ≡
√

µ2 − m2. (3.21)
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p0,− p0,+

−µ
Re(p0)

Im(p0)

(a)

p0,− p0,+

Re(p0)

Im(p0)

(b)

Figure 1. Analytic structure and contour deformation for µ > m and |p⃗| < pF . In the first step, we
deform the integration contour from the real axis (blue) to the imaginary axis (red), see panel a). The
deformation is smooth and the integrals along the two arcs in the first and third quadrants cancel
each other. In the second step, we deform the contour with a shift by −µ. The integral along the
vertical green line reproduces the µ = 0 path integral, while the contributions from the discontinuity
across the branch cut and the segments at infinity reproduce the finite µ free energy density of the
relativistic Fermi gas, see eq. (3.25).

They lie in opposite quadrants (the second and the fourth) only when |p⃗| > pF . In this
case the previous analysis is unchanged. For |p⃗| < pF , instead, both endpoints lie in the
second quadrant and more care is needed. In this case we choose the cut to be the horizontal
segment joining the two points, see figure 1. Trying to follow the same contour deformation
procedure as before we obtain some additional contributions due to the singularities. The
Wick rotation goes smoothly and one can easily check that also in this case the contributions
from the large arcs cancel each other (left panel of figure 1). The translation to the left by µ

gives instead two contributions: one (I1) from the discontinuity along the branch cut of the
log; the other (I2) from the integrals along the segments (Re(p0), Im(p0)) = ([−µ, 0],±iΛ),
see the right panel of figure 1. We have:

log Z [µ]
Z [0] = 2

∫
|p⃗|<pF

d3p⃗

(2π)3 (I1 + I2) , (3.22)

where

I1 =
∫ −µ+

√
p⃗2+m2

−µ

dp0
2π

(−2πi)=−i
√

p⃗2+m2,

I2 = lim
Λ→∞

[∫ −µ−iΛ

0−iΛ

dp0
2π

log
(
e−iπΛ2

)
+
∫ 0+iΛ

−µ+iΛ

dp0
2π

log
(
eiπΛ2

)
+O

( 1
Λ

)]
=+iµ.

(3.23)

In the second equation we paid particular attention to the definition of the phase with respect
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to the cut. We thus arrive at:

f(µ) = 2
∫
|p⃗|<pF

d3p⃗

(2π)3

(√
p⃗ 2 + m2 − µ

)
for µ > m, (3.24)

which can be recognized as the zero temperature limit of the free energy density of a relativistic
Fermi gas. The integral can be computed explicitly and we obtain:

f(µ)=Θ
(
µ2−m2

) 1
24π2

(
µ(5m2−2µ2)

√
µ2−m2−3m4arctanh

(√
µ2−m2

µ

))
. (3.25)

The charge density is simply given by

⟨Ĵ0⟩ = −∂f(µ)
∂µ

= p3
F

3π2 , pF =
√

µ2 − m2. (3.26)

The same result for the charge density can be obtained by first performing the derivative
and then carrying out the contour integration (in which case only a pole is present, instead
of a branch cut). These equations match the well-known results for the relativistic Fermi
gas, usually derived in the canonical formalism.

3.4 Absence of symmetry breaking for free fermions

In this section we try to compute explicitly the partition function in presence of a Majorana
source term, using equations (2.9) and (2.10) as a starting point:

Z [j;µ] =
[
det

(
B A
−A B†

)] 1
2

=
[
det

(
−A B†

B A

)] 1
2

, (3.27)

where
A = [−i /Dx + m]αβ δ4(x − y), B = j [γ2γ0]αβ δ4(x − y), (3.28)

are 4 × 4 matrix operators.2

The operator A is invertible, therefore we can consider the decomposition:(
−A B†

B A

)
=
(
−A 0
B 1

)(
1 −A−1B†

0 A + BA−1B†

)
, (3.29)

from which it follows that

det
(
−A B†

B A

)
= det(−A) det(A + BA−1B†) = det(A2 + ABA−1B†)

= det(A2) det(1 + A−1BA−1B†).
(3.30)

The first factor corresponds to the usual j = 0 fermionic determinant (see e.g. the previous
section), and we can thus focus on the second term that will give rise to the finite j corrections.
Since the operator A is independent of j, j∗ and the operator B is proportional to j, we see
that the partition function can depend on j and j∗ only through the combination jj∗, in
agreement with the argument of section 2.

2Here we have used (γ2)∗ = −γ2, valid in the chiral basis discussed in appendix A.
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The operators B, B† can be rewritten as

B = j (−i C) δ4(x − y), B† = j∗
(
i C†

)
δ4(x − y),

allowing to express the second determinant as

det(1 + A−1BA−1B†) = det(1 + jj∗A−1(Ac)−1). (3.31)

In order to show that no subtlelties arise in equation (2.14) we want to show that the first
order term in the jj∗ expansion of the logarithm of the partition function, logZµ [j, j∗], is
regular up to the usual UV renormalization. In other words, defining

δjj∗ [µ] ≡ d
d(jj∗) logZ [j;µ]

∣∣∣∣∣
j=0

= 1
2

d
d(jj∗) log det(1 + jj∗A−1(Ac)−1)

∣∣∣∣∣
j=0

(3.32)

we would like to show that δjj∗ [µ] − δjj∗ [0] is finite. After straightforward manipulation
we obtain

δjj∗ [µ] = 1
2 Tr

(
A−1(Ac)−1

)
= 1

2

∫ d4p

(2π)4 tr
(
− 1
(/P )T + m

)( 1
/P − m

)
. (3.33)

Carrying out the trace in Dirac space and using the transpose of the γ matrices (see
appendix A) we arrive at

δjj∗ [µ] = −1
2

∫ d4p

(2π)4 tr
(
(/P )T − m

P 2 − m2

)(
/P + m

P 2 − m2

)
= −4× 1

2

∫ d4p

(2π)4

(
P 2 − m2 + 2p2

2
(P 2 − m2)2

)
.

(3.34)
We can now compute δjj∗ [µ] − δjj∗ [0] using the contour integration approach previously
described, obtaining

δjj∗ [µ]− δjj∗ [0] = +2i

∫
|p⃗|<pF

d3p⃗

(2π)3 Res p0,+

(
1

P 2 − m2 + 2p2
2

(P 2 − m2)2

)
. (3.35)

The second term in parenthesis has a double pole in p0,+ and has therefore vanishing residue.
Evaluating the residue of the first term, we arrive at

δjj∗ [µ]− δjj∗ [0] = i

∫
|p⃗|<pF

d3p⃗

(2π)3
1√

p⃗ 2 + m2

= i
1
4π

pF

√
p2

F + m2 − m2 arctanh

 pF√
p2

F + m2

 ,

(3.36)

which is manifestly finite and regular.
We can thus conclude that

logZ [j;µ]− logZ [j; 0] = −i f(µ) +
(
δjj∗ [µ]− δjj∗ [0]

)
jj∗ +O

(
(jj∗)2

)
, (3.37)

where the first two coefficients are finite. We can thus conclude that the finite density phase
does not induce an expectation value for the Majorana operator, and therefore that the
U(1)V global symmetry is unbroken. This explicit computation puts on firmer grounds the
naive argument of section 2 in the case of free fermions.

– 11 –



J
H
E
P
0
2
(
2
0
2
4
)
1
8
2

4 The Fermi gas in a magnetic background

Having understood how to deal with free fermions at finite density in the path integral
approach, we would like now to consider the dynamics of electrons in a magnetic background,
i.e. finite density QED with an external magnetic field.

4.1 The functional determinant

Turning on gauge interactions, we consider the fermionic path integral in a magnetic back-
ground. The covariant derivative is now given by

Dα = ∂α − ieAα − iµδα0, (4.1)

where e is the QED coupling constant and A is a background gauge field associated to a
homogeneous and constant magnetic background. Following the same steps as in the previous
case, the fermion one-loop contribution to the partition function is given by:

Z(1)[A;µ] = det
(
− /D /D − m2 − 2iεD0∂0

)1/2
, (4.2)

where now /D /D = DµDµ − e
2σµνF µν . The differential operator DµDµ acts on a test function

f(x) as:

DµDµf =2f−2ieAµ∂µf−4µeA0f−2iµ∂0f−e2A2
µf−µ2f−ie(∂µAµ)f. (4.3)

For a homogeneous and constant external field we can choose a gauge in which A0 = 0 and
∂µAµ = 0, so that this expression is simplified. Let us consider the case of a magnetic field
B⃗ = Bẑ along the z-axis and choose A⃗ = Bx ŷ. Using the explicit expression and reorganizing
the terms, the partition function (4.2) is given by the determinant of the differential operator

L≡ (i(1+iε)∂0−µ)2−(i∂x)2−(i∂z)2−(i∂y+eBx)2−m2+ e

2σµνF µν . (4.4)

In order to find its eigenvalues we use the method of separation of variables and look for
eigenfunctions of the form

f(x, y, z, t) = e−ip0teipyyeipzzg(x). (4.5)

This is an eigenfunction of L provided that g(x) satisfies:(
∂2

x − (py + eBx)2
)

g(x) = λgg(x). (4.6)

Changing variable to ξ =
√

eBx + 1√
eB

py, the equation becomes

eB
(
∂2

ξ − ξ2
)

g(ξ) = λgg(ξ), (4.7)

with regular solutions

gn(ξ) = Hn(ξ)e−ξ2/2,

λn = −eB(2n + 1),
(4.8)
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where Hn(ξ) are the Hermite polynomials. We assumed implicitly eB > 0 for notational
simplicity, otherwise eB should be replaced by |eB|. We have thus found the eigenvalues
of L. Denoting the spin with σ = ±1/2:

λ(L)
n,p0,py ,pz

= ((1 + iε)p0 + µ)2 − (pz)2 − eB(2n + 1)− m2 + 2σeB. (4.9)

Taking into account the multiplicities and the normalization of the eigenfunctions gn, the
partition function is given by

logZ(1)[A;µ] = eB

2π

∫ dp0
2π

dpz

2π∑
σ=± 1

2

∞∑
n=0

log
(
((1 + iε)p0 + µ)2 − (pz)2 − eB(2n + 1)− m2 + 2σeB

)
.

(4.10)

4.2 A modern derivation of the nonperturbative Euler-Heisenberg effective
action

Before discussing the finite µ case, let us first rederive the one-loop QED effective action in
a background homogeneous magnetic field. We start from the expression of the partition
function (4.10), evaluated at µ = 0. In this case we can safely perform a Wick rotation to
Euclidean momenta and use the identity log(p2 + k) = −∂α(p2 + k)−α

∣∣
α=0. The resulting

expression involves an integral in d2p which we evaluate in dimensional regularization to obtain

logZ(1)[A;0] =− ∂

∂α

∣∣∣∣∣
0

eB

2π

∑
σ=± 1

2

∞∑
n=0

∫ ddp

(2π)d

( 1
p2−eB(2n+1−2σ)−m2

)α

=−i
eB

2π

1
(4π)d/2

∑
σ=± 1

2

∂

∂α

∣∣∣∣∣
0

Γ
(
α− d

2

)
Γ(α)

∞∑
n=0

1
(2eB)2n+(1−2σ)eB+m2



=−i
eB

2π

1
(4π)d/2

∑
σ=± 1

2

∂

∂α

∣∣∣∣∣
0

Γ
(
α− d

2

)
Γ(α) (2eB)−α+ d

2 ζ

(
α− d

2 ,
m2

2eB
+1
2−σ

) ,

(4.11)

where ζ(s, q) is the Hurwitz zeta function defined by

ζ(s, q) =
∞∑

n=0

1
(n + q)s

. (4.12)

Evaluating the derivative at α = 0, we arrive at

logZ(1)[A; 0] = −i
eB

2π

(2eB

4π

) d
2
Γ
(
−d

2

)[
ζ

(
−d

2 ,
m2

2eB

)
+ ζ

(
−d

2 ,
m2

2eB
+ 1

)]
. (4.13)

From the definition of the Hurwitz zeta function we have the identity:

ζ(s, q + 1) = ζ(s, q)− 1
qs

, (4.14)
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which lets us rewrite the effective action as

logZ(1)[A; 0] = −i
eB

2π

(2eB

4π

) d
2
Γ
(
−d

2

)2ζ

(
−d

2 ,
m2

2eB

)
−
(

m2

2eB

) d
2
 . (4.15)

For d = 2 − 2ε, in the limit ε → 0:

logZ(1)[A;0] = i
e2B2

4π2

(1
ε
−γE+log(4π)

)[
2ζ

(
−1,

m2

2eB

)
− m2

2eB

]
+

+i
e2B2

4π2

[
2ζ ′

(
−1,

m2

2eB

)
+
(
1−log

(2eB

µ̄2

))
2ζ

(
−1,

m2

2eB

)
− m2

2eB

(
1−log

(
m2

µ̄2

))]
,

(4.16)

where we denoted the (arbitrary) renormalization scale as µ̄, not to be confused with the
chemical potential µ, and ζ ′(s, q) = dζ(s, q)/ds. Using the identity

ζ (−n, x) = −Bn+1(x)
n + 1 =⇒ ζ (−1, x) = −B2(x)

2 = − 1
12 + x

2 − x2

2 , (4.17)

where Bn(x) are Bernoulli polynomials, the first (divergent) term can be rewritten as

i

(1
ε
− γE + log (4π)

)(
− m4

16π2 − e2B2

24π2

)
, (4.18)

showing explicitly that all the divergencies can be removed by a cosmological constant
counter-term and a wave-function renormalization for the magnetic field B or, equivalently,
the field strength Fµν , which for vanishing electric field satisfies the relation B2 = −FµνF µν/2.
We choose to work in the MS renormalization scheme and remove all the terms in (4.18).
For simplicity we also chose the renormalization scale to be µ̄ = m. We have obtained
the full partition function in closed form, non-perturbatively in the coupling e and in the
non-dynamical external magnetic field B. It is convenient to express the result in terms
of β = 2eB/m2:

logZ(1)[A; 0] = i
m4

16π2 β2
[
2 ζ ′

(
−1,

1
β

)
+ 2

(
1− log β

)
ζ

(
−1,

1
β

)
− 1

β

]
, (4.19)

to be compared with the well-known result of Euler and Heisenberg [16–18]

logZ(1)[A; 0] = i

8π2

∫ ∞

0

ds

s2

[
eB cot(eBs)− 1

s
+ 1

3e2B2s

]
e−im2s. (4.20)

An equivalent result has been obtained long ago through zeta function regularization methods,
see for instance chapter 6 of ref. [29], and refs. [30, 31] for a detailed discussion. We can
check explicitly that the zeta function representation agrees with the Euler-Heisenberg
representation in the weak field limit, where β = 2eB/m2 → 0. Using the asymptotic
expansion (see section 25.11 of [33]):

ζ ′
(
−1,

1
β

)
−−−→
β→0

1
12 − 1

4β2 −
( 1
2β2 − 1

2β
+ 1

12

)
log β −

∞∑
k=1

B2k+2(0)
(2k + 2)(2k + 1)2k

β2k,

(4.21)
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together with equation (4.17), we recover the expansion

−i logZ(1)[A; 0]
∣∣∣∣∣
β→0

= −3 m4

32π2 − m4

8π2

∞∑
k=1

B2k+2(0)
(2k + 2)(2k + 1)2k

β2k+2

= −3 m4

32π2 + α2

90m4F
4 − 4πα3

315m8F
6 + 16π2α4

315m12F
8 +O(α5),

(4.22)

where F2 = FµνF µν = −2B2 and α = e2/4π, which reproduces the FµνF µν terms of the
Euler-Heisenberg Lagrangian with the correct numerical coefficients.

The zeta function representation we derived in equation (4.19), allows to easily obtain
the strong field limit β = 2eB/m2 → ∞:

−i logZ(1)[A; 0]
∣∣∣∣∣
β→∞

= e2B2

24π2

(
log

(2eB

m2

)
− 1 + 12 ζ ′(−1)

)
, (4.23)

where we chose again µ̄ = m. We see that in the strong field limit the only dependence
on the fermion mass appears in the logarithmic running term, where m plays the role of
an IR regulator.

The purely electric case is obtained from the substitution B → iE. The (non-perturbative)
Schwinger effect [18] is encoded in the imaginary part of the full result (4.19) and is not
captured by the asymptotic expansion, which is real.

Adding the tree-level contribution, the free energy for a constant and homogeneous
magnetic field minimally coupled to a charged Dirac fermion is given by

f(B, 0) = −B2

2 + i logZ(1)[A; 0], (4.24)

which (for µ̄ = m) is

f(B, 0) = −B2

2 − m4

16π2 β2
[
2 ζ ′

(
−1,

1
β

)
+ 2

(
1− log β

)
ζ

(
−1,

1
β

)
− 1

β

]
, (4.25)

with β = 2eB/m2.

4.3 Finite density QED in a magnetic background

Reintroducing the chemical potential we consider equation (4.10):

logZ(1)[A;µ] = eB

2π

∫ dp0
2π

dpz

2π
(4.26)

∑
σ=± 1

2

∞∑
n=0

log
(
((1 + iε)p0 + µ)2 − (pz)2 − eB(2n + 1)− m2 + 2σeB

)
.

The log in the integral has branching points at

p0,± =
(
−µ ±

√
p2

z + eB(2n + 1− 2σ) + m2
)
(1− iε). (4.27)
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The two points p0,± lie in the same (second) quadrant when

n ≤ nmax =
⌊

µ2 − m2 + eB(2σ − 1)
2eB

⌋
,

p2
z ≤ p2

max = µ2 − m2 − eB(2n + 1− 2σ).
(4.28)

We can now perform the integral by deforming the contour as detailed in the free Fermi
gas and write the partition function as the sum of a term given by the partition function
at µ = 0 and a term that we know analytically:

logZ(1)[A;µ] = logZ(1)[A; 0]+

− i
eB

2π

∑
σ=± 1

2

nmax∑
n=0

∫ pmax

0

dpz

2π

(√
(pz)2 − p2

max + µ2 − µ

)
.

(4.29)

Shifting the index n by a unit for σ = −1
2 we can rewrite the result as

logZ(1)[A;µ] = logZ(1)[A; 0]− i
eB

4π2

∫ √
µ2−m2

0
dpz

(√
(pz)2 + m2 − µ

)

− i
eB

2π2

ℓmax∑
ℓ=1

∫ √
µ2−m2−2eBℓ

0
dpz

(√
(pz)2 + m2 + 2eBℓ − µ

)
,

(4.30)

where
ℓmax =

⌊
µ2 − m2

2eB

⌋
, (4.31)

and the sum over ℓ gives a sum over Landau levels. It is convenient to express the result
in terms of the free energy density

f(B, µ) = −B2

2 + i logZ(1)[A;µ]. (4.32)

The integrals can be computed in closed form

f(B, µ)
∣∣∣
full

= f(B, 0) + 1
2F0 +

ℓmax∑
ℓ=1

Fℓ , (4.33)

where we defined

Fℓ ≡
eB

4π2

(
(m2 + 2eBℓ) arctanh

(√
µ2 − (m2 + 2eBℓ)

µ

)
− µ

√
µ2 − (m2 + 2eBℓ)

)
.

(4.34)
It is possible to rewrite this result in terms of logarithms using the identity

arctanh
(√

µ2 − m2

µ

)
= log

(
µ +

√
µ2 − m2

m

)
. (4.35)

In the strong field case, when 2eB > (µ2 − m2) and lmax = 0, only the first term contributes
and the full result takes a simple form

f(B, µ)
∣∣∣
strong

= − B2

2 + e2B2

24π2

(
log

(2eB

µ̄2

)
− 1 + 12 ζ ′(−1)

)
+ eB

8π2

(
m2 arctanh

(√
µ2 − m2

µ

)
− µ

√
µ2 − m2

)
,

(4.36)
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where in the first line we assumed also 2eB ≫ m2. On the other hand, in the weak field limit
2eB ≪ (µ2 − m2) the sum can be recognized as a Riemann sum in the variable

q2
ℓ = 2eBℓ, ∆q2

ℓ = 2eB. (4.37)

It is convenient to add and subtract the ℓ = 0 term, so that in the limit 2eB → 0 the sum
from ℓ = 0 to ℓmax converges to the definite integral in dq2 with extrema

q2
min = 0, q2

max = 2eB

⌊
µ2 − m2

2eB

⌋
−−−−→
2eB→0

(µ2 − m2). (4.38)

The leading order result becomes more transparent by taking a step back and writing the
terms of the sum as integrals in dpz, as in equation (4.30),

f(0, µ) = 1
4π2

∫ µ2−m2

0
dq2

∫ √
µ2−m2−q2

0
dpz

(√
(pz)2 + q2 + m2 − µ

)
+ const +O (eB) .

(4.39)

One can now recognize the integral as an integral in cylindrical coordinates over a domain
which is a ball Bµ of radius pF =

√
µ2 − m2 (the Fermi momentum). We thus recover

the B = 0 result of equation (3.24), up to a µ-independent cosmological constant term
coming from f(B = 0, 0) that we neglect (see eq. (4.22)). The lowest order correction can
be computed explicitly analytically, see appendix B for its derivation:

f(B, µ)
∣∣∣
weak

= −B2

2 + f(0, µ)− e2B2

24π2 arctanh
(√

µ2 − m2

µ

)
+ const +O

(
(eB)5/2

)
.

(4.40)

4.4 Magnetic susceptibility and the de Haas-van Alphen effect

The free energy of the system is not a directly observable quantity. More interesting quantities
are the magnetization of the system, or the magnetic susceptibility, describing the response
of the system to changes in the background magnetic field. The latter is defined as

χB(B, µ) ≡ −d2f(B, µ)
dB2 − 1, (4.41)

and describes the induced magnetization response.3 Using eq. (4.25) we can obtain the
magnetic susceptibility of the QED vacuum in the presence of a magnetic background, and
an analytic derivation of the de Haas-van Alphen effect. Since χB is a dimensionless quantity,
the result takes a particularly nice form once written in terms of dimensionless variables. The
natural variables are β, measuring the magnetic field strength, and the chemical potential
relative to the fermion mass µ̃ = µ/m. Using

µ̃ ≡ µ

m
, β ≡ 2eB

m2 , − ∂2

∂B2 = −4e2

m4
∂2

∂β2 , (4.42)

3Sometimes an alternative definition is used in the literature, in which the classical background contribution
“1” is not subtracted.
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the magnetic susceptibility at finite µ can be expressed as

χB(B, µ) = α

π

∂2

∂β2 g(β, µ̃), (4.43)

where α is the fine structure constant α = e2/4π. The function g(β, µ̃) is a rescaled version
of the quantum contribution to the free energy density (4.33), given by4

g(β, µ̃) = g(β, 0) + 1
2G0 +

ℓmax∑
ℓ=1

Gℓ, (4.44)

where

g(β, 0) = β2
(
2 ζ ′

(
−1,

1
β

)
+ 2

(
1− log β

)
ζ

(
−1,

1
β

)
− 1

β

)
,

Gℓ(β, µ̃) = −2β

(
(1 + βℓ) arctanh

(√
µ̃2 − βℓ − 1

µ̃

)
− µ̃

√
µ̃2 − βℓ − 1

)
,

ℓmax =
⌊

µ̃2 − 1
β

⌋
.

(4.45)

The last term can be rewritten using the Heaviside theta function as
∞∑

ℓ=1
Gℓ Θ(ℓmax − ℓ) , (4.46)

and one might worry of picking up δ (ℓmax − ℓ) (and δ′) contributions from the derivatives in
eq. (4.43). These contributions, however, vanish identically up to second derivatives in β, since
Gℓ and ∂βGℓ vanish identically when ℓmax crosses an integer value and ℓ = ℓmax. Noticing
also that G0 depends linearly on β, we arrive at

χB(B, µ) = α

π

∂2
β g(β, 0) +

ℓmax∑
ℓ=1

∂2
βGℓ(β, µ̃)

 . (4.47)

The first term describes the magnetic response of the QED vacuum at finite density, for
arbitrary values of the external magnetic field. We display the zero density contribution in
figure 2, in units of α/π. The weak field regime is governed by the asymptotic expansion
of the magnetic Euler-Heisenberg Lagrangian (4.22). This provides a good approximation
only for β < 1. Notice that, being an asymptotic expansion, the region of β for which the
approximation works well shrinks to zero as we increase the number of terms. In particular,
the expansion can never work well beyond β ∼ 1. In the opposite limit of strong field,
from eq. (4.23) we obtain instead

χB

∣∣∣
strong

= α

π
∂2

β g(β, 0)
∣∣∣∣∣
β→∞

≃ α

π

(1
6 + 4 ζ ′(−1) + 1

3 log β

)
. (4.48)

The strong field limit provides an estimate accurate at the 10% level for β ≳ 20, and at the
1% level for β ≳ 100. We see, therefore, that in order to describe the magnetic response of
zero density QED in the range 1 ≲ β ≲ 20 the full non-perturbative result is needed.

4For simplicity of notation we assume here that µ̃ ≥ 1. Notice that G0 → 0 and for µ̃ → 1+, so that the
finite density contribution vanishes in this limit.
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Figure 2. Magnetic susceptibility of the zero density QED vacuum in an external magnetic field,
in units of α/π and as a function of β ≡ 2eB/m2. The dashed red (N = 1) and green (N = 2) lines
provide truncations of the small β asymptotic expansion with N terms. Increasing N improves the
accuracy for small β, but reduces the region in which the approximation is valid. The strong field
approximation (shown as an orange dot-dashed line) provides an accurate result only for β ≳ 100.
The intermediate region is described by the full non-perturbative result.

Consider now the second term in eq. (4.47), describing the finite density contribution to
χB. In the limit of very strong magnetic field limit one has ℓmax = 0, so that the magnetic
response at finite density is (exactly) the same as that at zero density. For a strong field, but
weak enough that at least one Landau level is filled, the finite density contribution dominates.
From the expression in eq. (4.45) we have

∂2
βGℓ(β, µ̃) = βℓ2µ̃

(βℓ + 1)
√
−βℓ + µ̃2 − 1

− 4ℓ tanh−1
(√

−βℓ + µ̃2 − 1
µ̃

)
, (4.49)

so that the susceptibility diverges whenever µ̃2 − 1 is an integer multiple of β, and ℓmax jumps
by one unit. This oscillatory feature, displayed in figure 3, occurs every time a Landau level
achieves integer filling. This periodic property of the magnetic susceptibility χB as a function
of β is known as the de Haas-van Alphen effect [34, 35]. The period is given by

∆
( 1

β

)
= 1

µ̃2 − 1 =⇒ ∆
( 1

B

)
= 2e

µ2 − m2 = 8πe

AF
, (4.50)

where AF = 4πp2
F = 4π(µ2 − m2) is the area of the Fermi surface.

In the weak field limit, on the other hand, using eq. (4.40) we obtain the continuous
approximation for the susceptibility

χB

∣∣∣
weak

= α

3π
arctanh

(√
µ̃2 − 1

µ̃

)
+O

(√
B
)

. (4.51)

As we show in figure 4, the weak field approximation is obtained only as an average.
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Figure 3. Magnetic susceptibility of the finite density QED vacuum in a strong external magnetic
field, for different values of µ̃ = µ/m. We use variables that make manifest the filling of the first five
Landau levels. The magnetic susceptibility has a periodic spike feature as a function of 1/β, occurring
for integer filling, known as the de Haas-van Alphen effect. Continuous lines: analytic form of the
finite µ contribution (second term in eq. (4.47)). Dots: full result, evaluated at equidistant points.
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Figure 4. Same as figure 3 but for a larger range of 1/β and for µ̃2 = µ2/m2 = 3/2. In the weak
field limit (small β), the magnetic susceptibility χB oscillates more and more wildly. The smooth
result (4.51) is obtained only as an average.

5 The four dimensional Gross-Neveu model at finite density

Having understood the case of free fermions in the path integral approach, we would like to
include interaction terms among the fermions and see if our conclusions are modified by the
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presence of interactions. To this end, we shall consider a generalization of the Gross-Neveu
model [36] to d = 3 + 1 dimensions, and work in the 1/N expansion.5

In our analysis we make the assumption that spatial translational invariance is unbroken
by the ground state (i.e., that the system is in a homogeneous phase). Spatially inhomogeneous
phases are known to occur in the Gross-Neveu model in 1+1 dimensions [38] and in its chiral
version [39], however there is some evidence [40] that homogeneous phases are stable in 2 + 1
dimensions. We shall assume this to be the case also in 3 + 1 dimensions.

In 3+1 dimensions, the Gross-Neveu model can be defined for a system of N Dirac fermions
transforming in the fundamental representation of a (vectorial) U(N) global symmetry group.
We consider the massless case for simplicity, but our discussion can be extended to include a
mass term. The interaction term is a four-fermion interaction:

L = Ψ̄a
(
i/∂
)
Ψa − λ

2N

(
Ψ̄aΨa

)2
, (5.1)

where the sum over the flavor index a is implicit. This action has a U(N) symmetry of which
U(1)V is a subgroup. The axial symmetry U(1)A is explicitly broken by the interaction term,
however a discrete axial ZA

2 survives, acting on the fermions as:

Ψa −→ γ5Ψa. (5.2)

This symmetry forbids the mass term, and prevents its appearance under renormalization
group flow.

5.1 Zero density

We can rewrite the Lagrangian as a quadratic fermionic Lagrangian by introducing a scalar
auxiliary field [36]. To do so we simply add a Gaussian term to the Lagrangian:

δL = N

2λ

(
σ − λ

N
Ψ̄aΨa

)2
, (5.3)

which has the only effect of changing the normalization of the path integral by a constant factor.
The four-fermion interaction terms are canceled by the auxiliary term, and we are left with

L = Ψ̄a
(
i/∂ − σ

)
Ψa + N

2λ
σ2. (5.4)

The discrete axial symmetry ZA
2 acts on σ as

σ −→ −σ. (5.5)

In the large N limit, N → ∞ with λ fixed, the auxiliary field σ becomes infinitely heavy, and
the σ propagator is suppressed by a factor 1/N . At leading order in the 1/N expansion we
can therefore treat the scalar field σ at tree level, and consider fermionic loops only.

The Gross-Neveu model is renormalizable in two dimensions, and no additional countert-
erms are needed beyond the four-fermion interaction, or equivalently the quadratic term for

5The dynamics of the Gross-Neveu model in 2 + 1 dimensions has received renewed attention in connection
to lattice investigations. Its behavior at finite density and in the presence of a magnetic background has been
studied in [37].
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the auxiliary field σ. In four dimensions, on the other hand, the theory is non-renormalizable,
and an infinite number of counterterms would be needed to renormalize the theory to all
orders. The situation simplifies however at leading order in large N : a single counterterm
gσ4 is needed to renormalize the theory, to all orders in the coupling λ.

To see this, consider now Z[σ; 0], which can be computed by standard methods, analyti-
cally continuing the momenta to Euclidean space. Up to an additive constant, we have:

Veff(σ) = i logZ[σ; 0] = −4N

2

∫ ddp

(2π)d
log

(
p2 + σ2

)
− N

2λ
σ2, (5.6)

where p is in Euclidean space, i.e. we replaced p0 7→ ip0. We regulate the theory adopting
dimensional regularization. The divergent contribution for d → 4 is

Veff(σ)
∣∣∣
div

= − N

8π2

( 1
d − 4

)
σ4. (5.7)

We can renormalize the theory by including of a local g4σ4 counterterm in the action. In
the MS scheme, neglecting the cosmological constant term, we obtain

Veff(σ) =
N

32π2

(
3− 2 log

(
σ2

µ̄2

))
σ4 − N

2λ
σ2 + ḡ4 σ4, (5.8)

where µ̄ denotes the renormalization scale and ḡ4 is the MS running coupling. The effective
potential, as it stands, has an unstable direction for large values of σ, due to the negative
logarithmic contribution enhanced by the large N factor. We are therefore forced to take into
account higher dimensional operators, that stabilize the theory. For this purpose we include
higher order terms in the auxiliary scalar field formulation, taking the Lagrangian

L = Ψ̄a
(
i/∂ − σ

)
Ψa + N

2λ
σ2 + g4 σ4 + g6 σ6 + . . . , (5.9)

as the definition of the fermionic model. Only even powers of σ appear, to preserve the
discrete axial symmetry ZA

2 . For the purpose of illustration, we consider the case g6 > 0 and
g2n = 0 for n > 3, but the results we discuss can be generalized straightforwardly. In the
purely fermionic formulation this corresponds to adding an infinite series of local interactions
of the form (Ψ̄aΨa)n, with coefficients determined by λ, g4, g6 and N .

At leading order in 1/N , the coupling λ does not run and the large N theory can be
defined by specifying the (arbitrary) value of λ. We can then express the running quartic
coupling ḡ4(µ̄) in terms of a dimensionless physical coupling κ4, evaluated at the scale

M ≡ 1√
|λ|

. (5.10)

Computing the beta function of ḡ4(µ̄), and solving its RG evolution, we find

µ̄
d
dµ̄

ḡ4 = − N

8π2 =⇒ ḡ4 = κ4 −
N

16π2 log
(

µ̄2

M2

)
. (5.11)

Similarly, the coupling g6 can be expressed in terms of a dimensionless coupling κ6 by defining

g6 = κ6
M2 . (5.12)
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We shall assume that M is the only dimensionful scale in the problem, so that κ4, κ6 are of
order one. It is convenient to adopt units M = 1 (factors of M can always be reintroduced
by dimensional analysis), and set κ2 ≡ sign(λ).

Expressing the effective potential in terms of physical couplings we arrive at

Veff(σ) =
N

32π2

(
3− 2 log σ2

)
σ4 − N

2 κ2 σ2 + κ4 σ4 + κ6 σ6. (5.13)

In taking the large N limit we keep the couplings κ4, κ6 fixed. Loops involving κ4 and κ6
vertices, and σ as an internal line, are therefore subleading in the 1/N expansion. We notice
that the µ̄ dependence of the effective potential drops out once we express the result in terms
of physical couplings. This property is consistent with the fact that the minimum of the
effective potential is related to observable quantities.

The effective potential (5.13) at large N has a global minimum σ0 at

σ2
0 = N

24π2κ6

(
log

(
N

24π2κ6

)
+O (log logN)

)
. (5.14)

A more accurate estimate can be obtained in terms of the negative branch of the Lambert W

function (neglecting κ2, κ4, which are suppressed at large values of σ0)

σ2
0 = W−1(x)

x
e, x = 24π2 eκ6

N
. (5.15)

This minimum always exists for λ > 0 (κ2 = +1) and κ4, κ6 ≈ 1, whereas it requires large
enough N for λ < 0 (κ2 = −1). The large N scaling of σ0 would be modified by the
presence of higher order interactions, e.g. κ8 ≈ 1, however the qualitative features of the
model would be unchanged.

The expectation value of σ breaks spontaneously the discrete ZA
2 symmetry, generating

an effective mass term meff = σ0 for the fermions, similar to the mass generation mechanism
for quarks and leptons by the Higgs field in the Standard Model. The vectorial symmetry
U(N), and in particular U(1)V , is instead unbroken.

5.2 Finite density

We can introduce a chemical potential for the U(1)V ⊂ U(N) symmetry, in such a way
that the SU(N) subgroup is preserved:

Lµ = Ψ̄a

(
i/∂ + γ0µ − σ

)
Ψa + N

2λ
σ2 + g4 σ4 + g6 σ6. (5.16)

We would like to show that this theory can support a finite density phase with unbroken
U(1)V symmetry. A necessary condition for this is that the ground state energy density
of the system has a non-trivial µ dependence, for µ larger than some critical value µcrit.
We will show that in the large N fermionic model under consideration this expectation can
be met without the need for U(1)V breaking order parameters. This behavior should be
contrasted with that observed in the case of interacting scalar fields, and in particular in the
O(N) model with quartic interactions, analyzed in [1], where it is shown that the system
can support a finite density phase only in the presence of a non-zero expectation value for
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an U(1)V breaking order parameter. We shall find that the critical value µcrit to support
finite density coincides with σ0, the effective (pole) mass of the lowest lying charged states,
as expected on physical grounds and argued also in the scalar case [1].

In the background of σ, the fermionic part of the action at finite µ is simply given by

Lµ

∣∣∣
Ψ
= Ψ̄a

(
i/∂ + γ0µ − σ

)
Ψa. (5.17)

This amounts to N copies of the free fermion (3.4), with m → σ. The finite µ fermionic path
integral can therefore be computed exactly using the contour integration method previously
described. We are interested in computing

Veff(σ;µ) ≡ i

(
log Z[σ;µ]

Z[0, 0]

)
. (5.18)

From this we will compute the free energy density of the system by setting the auxiliary
field at its background value:

f(µ) = Veff(σmin(µ);µ),
dVeff
dσ

(σmin(µ);µ) = 0. (5.19)

We already computed µ effective potential Veff(σ; 0) in eq. (5.13). All we need to compute
is, therefore, the difference Veff(σ;µ) − Veff(σ; 0). Given the fermionic action (5.17), the
contribution Veff(σ;µ) − Veff(σ; 0) can be computed following the same complex contour
integration technique we used for free fermions in the path integral formalism, as in section 3.3.
The result is simply given by N times (3.25), after the substitution m → σ:

Vµ(σ)≡Veff(σ;µ)−Veff(σ;0)

=Θ
(
µ2−σ2

) N

24π2

(
µ(5σ2−2µ2)

√
µ2−σ2−3σ4arctanh

(√
µ2−σ2

µ

))
.

(5.20)

It follows immediately that as long as µ < σ0 the effective potential is not modified in a
neighborhood of σ0, the expectation value of σ at µ = 0. One can easily check that for
µ < σ0 the global minimum of the potential Veff(σ;µ) is still given by σ0. The fermions
have zero charge density, since

Q(µ) ≡ ⟨Ĵ0⟩µ = −i
d
dµ

logZ(µ) = −dVeff(σmin(µ);µ)
dµ

, (5.21)

and
Q(µ) = −dVeff(σ0;µ)

dµ
= 0, for µ < σ0. (5.22)

For µ ≥ σ0 the situation changes, and the value σ0(µ) at which the potential Veff(σ;µ) is
minimized acquires a non-trivial µ dependence. Therefore µcrit = σ0, the pole mass of the
fermionic excitations in the zero-density theory. The value of the effective potential at the
minimum acquires itself a µ dependence, so that the system supports a finite charge density.
Let us start analyzing the small density limit. For µ > σ0 and δµ ≡ µ − σ0 ≪ σ0 we find
that the effective potential in a neighborhood of σ0 is given by

Veff(σ;µ) = − N

96π2 (−5 + 4 log σ0)σ4
0 + N

√
8

3π2 (δµ · σ0)3/2 (σ − σ0)

+
(
6κ6 σ2

0 + 3N

4
√
2π2 (δµ3 · σ0)1/2 − N√

2π2 (δµ · σ3
0)1/2

)
(σ − σ0)2 + . . .

(5.23)
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Figure 5. Finite µ contribution to the effective potential of σ in the (generalized) Gross-Neveu model
in 3 + 1 dimensions, eq. (5.20). The result is normalized in units of Nµ4 and expressed as a function
of σ/µ.

The potential is now minimized at

σmin(µ) = σ0 −
N

9
√
2π2κ6

(
δµ

σ0

)3/2
σ0 −

N2

108π4κ6

(
δµ

σ0

)2
σ0 + . . . , (5.24)

so that the free energy density is given by

f(µ) = − N

96π2 (−5 + 4 log σ0)σ4
0 − N2

27π4 κ6
δµ3 σ0 −

N3

162
√
2π6 κ2

6
δµ7/2 √σ0 . . . (5.25)

Correspondingly, the charge density of fermions is given by

Q(µ) = −dVeff(σmin(µ);µ)
dµ

= N2

9π4 κ6
δµ2 σ0 +

7N3

324
√
2π6 κ2

6
δµ5/2 √σ0 + . . . (5.26)

For small charge densities, we see that the discrete axial symmetry ZA
2 is in the broken

phase. The symmetry breaking scale σmin(µ) decreases with increasing chemical potential
and, correspondingly, charge density. This behavior can be understood by noticing that the
finite µ contribution to Veff is a monotonic increasing function of σ, for positive σ, starting
from a value of − N

12π2 µ4 for σ = 0 and increasing up to zero for σ ≥ µ (see figure 5). As a
consequence, in the limit of large µ the ZA

2 symmetry will be restored, since the minimum
of the effective potential Veff(σ;µ) will be in zero. This phase transition is in fact of first
order and has an associated latent charge density, as can be readily verified by studying the
full closed form effective potential we derived. A system with a charge density falling in
between these two values is in a mixed phase and has chemical potential µA. We provide a
representative plot of the symmetry restoration phase transition in figure 6.

An analytic estimate for the critical value of chemical potential µA corresponding to
the ZA

2 symmetry restoration phase transition can be derived by comparing the value of the
effective potential at the σ = 0 minimum, with the value of the µ = 0 effective potential at
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Figure 6. In blue: effective potential for a (generalized) Gross-Neveu model, in units M = 1, for
κ2 = 1, κ4 = 2, κ6 = 0.5 and N = 106, see eq. (5.13). For our choice of parameters, the µ = 0 minimum
is located at σ0 ≈ 296, and we normalized the potential in such a way that its value at σ0 is −1. In red:
finite µ effective potential Veff(σ;µ), for increasing values of µ = 330, µ = 370 and µ = 400 (shown
with growing intensity). There is a ZA

2 symmetry restoring first order phase transition at a critical
value of µ, approximately given by µA ≈ 370. For our choice of parameters, at the phase transition
the charge density jumps from Q−(µA) ≈ 0.25 to Q+(µA) = 1 in units of N

3π2 µ3
A, see eq. (5.30).

the minimum σ = σ0. Since the finite µ contribution is always non-positive, this estimate
provides a lower bound on µA. We find

Veff(0;µ) = − N

12π2 µ4, Veff(σ0; 0) ≃ − N

96π2 (−5 + 4 log σ0)σ4
0, (5.27)

so that

µA ≳
(
−5
8 + 1

2 log σ0

)1/4
σ0, (5.28)

where in our estimate we have assumed σ0, and therefore N , to be large enough. The
symmetry restoration chemical potential µA is parametrically close to the critical chemical
potential necessary to have a non-zero charge density, µcrit = σ0, with their ratio growing
with σ0 in a very mild way.

For µ > µA, the symmetry ZA
2 is restored, so that the fermionic excitations become

effectively massless, and the properties of the system become equivalent to those of a system
of N free massless Dirac fermions. Perhaps counterintuitively, the effect of the interactions
induced by λ, g4, g6 is overcome by the finite density contribution, driving the system to
an effectively free finite density phase:

f(µ) = Veff(σmin(µ);µ) = − N

12π2 µ4, for µ > µA. (5.29)

The charge density, in particular, is simply given by

Q(µ) = −dVeff(σmin(µ);µ)
dµ

= N

3π2 µ3, for µ > µA. (5.30)
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We stress that this conclusion has general validity in this class of large N models, and holds
even with the inclusion of higher order polynomial interactions for σ.

Before concluding this section, let us comment on the question we started from: the
possibility of U(1)V symmetry breaking at finite density. Our analysis of the Gross-Neveu
model does not formally exclude this possibility, however it provides partial evidence for the
hypothesis that the U(1)V symmetry remains unbroken. Indeed, the finite µ free energy has
a non-trivial µ dependence and the system can support a finite charge density with unbroken
U(1)V , differently from the scalar case analyzed in [1], where the breaking of U(1)V was
shown to be necessary to support finite density in an O(N) model. Moreover, the value of
µcrit that we found coincides with the fermion pole mass, as expected on physical grounds,
further hinting at the consistency of the scenario. Note that the argument discussed in
section 3.4 for Majorana order parameter can not be directly extended to the large N model,
due to the U(N) vectorial symmetry. Indeed, every Majorana-like fermion bilinear would
transform in a non-trivial representation of the SU(N) subgroup of U(N), and cannot be
regarded as an order parameter for U(1)V only. The simplest U(1)V scalar order parameter
can be constructed, for N even, contracting the indices of N fermions with a completely
antisymmetric tensor, and is never a fermion bilinear for N > 2.

6 Discussion and outlook

The dynamics of interacting systems of fermions at finite density and low temperature is far
from being fully understood. A common belief is that, barring the case of free fermions (which
form a Fermi gas), interacting fermions at low temperatures flow to a superfluid phase, or
possibly to a non-Fermi liquid phase. The argument for this expected behavior relies on the
existence of relevant deformations in the EFT of Fermi liquids [41–43],6 that can generically
lead to the formation of Cooper pairs, or more exotic strong coupling behavior. To the best
of our knowledge, however, a complete understanding of the IR phases of interacting fermions
is still missing, especially in the relativistic case, and the question of whether an interacting
Fermi liquid can exist as a stable zero-temperature phase appears to be an open question.

In this work we described an approach to treat fermionic QFTs at finite chemical potential
and zero temperature using path integral techniques. The method relies on an accurate
treatment of the iε term needed to project on the ground state, and allows to compute finite µ

quantities such as the free energy of a Fermi gas. We leveraged this technical tool to compute
analytically the free energy of finite density QED in a homogeneous magnetic background,
generalizing the Euler-Heisenberg effective action to finite density and reproducing the de
Haas-van Alphen effect. These findings can be of interest in astrophysical contexts, such
as strongly magnetized pulsars and relativistic plasmas.

As an application, we studied a generalization of the Gross-Neveu model to 3+1 spacetime
dimensions, and showed that in the large N limit it can support a finite density phase with
unbroken U(1)V internal symmetry. This is to be contrasted with the case of the scalar O(N)
vector model, where a finite density phase can only exist along with the spontaneous breaking
of the U(1) charge associated to µ [1], leading to a superfluid behavior. This suggests that

6See also the interesting recent work [44] for an alternative approach.
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there might exist theories of interacting fermions, in physical spacetime dimensions, with a
zero-temperature Fermi liquid phase. A definite answer requires a stability analysis, together
with a study of 1/N corrections and the dynamics of excitations. We hope to address these
questions in the future, and make further progress towards the goal of a general understanding
of the infrared phases of relativistic quantum fields at finite density.
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A Conventions on gamma matrices

We adopt the chiral basis for the γ matrices

γ0 =
(
0 1
1 0

)
, γi =

(
0 σi

−σi 0

)
. (A.1)

Weinberg’s convention amounts to the replacement

ηµν → −ηµν =


−1 0 0 0
0 +1 0 0
0 0 +1 0
0 0 0 +1

 , γµ → iγµ. (A.2)

Charge conjugation is given by:

Ψc = −iγ2Ψ⋆. (A.3)

The charge conjugation matrix is defined by the condition

CγµC−1 = −(γµ)T , (A.4)

and satisfies the properties

C2 = −1, C−1 = CT = C† = −C, C = −iγ0γ2 =
(

iσ2 0
0 −iσ2

)
. (A.5)

B Fermi gas in a magnetic field: weak field expansion

To include O(eB) corrections in the weak field limit we need an accurate approximation of
the sum as an integral. To do this we use the Euler-MacLaurin formula

n∑
ℓ=m

F (ℓ)−
∫ n

m
F (ℓ)dℓ = F (m) + F (n)

2 + F ′(n)− F ′(m)
12 +

∫ n

m
F ′′′(ℓ)B3(ℓ − ⌊ℓ⌋)

3! dℓ,

(B.1)

– 28 –



J
H
E
P
0
2
(
2
0
2
4
)
1
8
2

to approximate equation (4.33), considering the sum from m = 0 to n = ℓmax − 1. We obtain

f(B, µ)
∣∣∣
weak

= f(B, 0) + 1
4π2

∫ q2
max

0
dq2

∫ √
µ2−m2−q2

0
dpz

(√
(pz)2 + q2 + m2 − µ

)
− e2B2

24π2 arctanh
(√

µ2 − m2

µ

)
+O

(
(eB)5/2

)
, (B.2)

where q2
max = 2eB(ℓmax−1), and we used the fact the F (ℓmax) ∼ O

(
(eB)5/2

)
and F (p)(ℓmax−

1) ∼ O
(
(eB)5/2

)
for p = 0, 1, 2. One can now recognize the integral as an integral in

cylindrical coordinates over a domain Ω which is the intersection of a ball Bµ of radius√
µ2 − m2 and a concentric cylinder CB of infinite length and radius qmax. The boundary

of Ω is the Fermi surface ∂Ω. We can write the free energy as

f(B, µ)
∣∣∣
weak

= f(B, 0)− e2B2

24π2 arctanh
(√

µ2 − m2

µ

)

+ 2
∫

Ω

d3p⃗

(2π)3

(√
p⃗ 2 + m2 − µ

)
+O

(
(eB)5/2

)
.

(B.3)

In the limit 2eB → 0 the radius of the cylinder tends to qmax =
√

µ2 − m2 and Ω tends to
the ball Bµ. We thus recover the B = 0 result of equation (3.24), up to a µ-independent
cosmological constant term coming from f(B = 0, 0) that we drop. For small non-zero
magnetic field we approximate the sum as an integral and write the result as a correction
to the B = 0 case

f(B, µ)
∣∣∣
weak

= f(B, 0) + f(0, µ)− e2B2

24π2 arctanh
(√

µ2 − m2

µ

)

− 2
∫

Bµ\Ω

d3p⃗

(2π)3

(√
p⃗ 2 + m2 − µ

)
+O

(
(eB)5/2

)
.

(B.4)

The last integral can be computed in closed form∫
Bµ\Ω

d3p⃗

(2π)3

(√
p⃗ 2 + m2 − µ

)
= 1

96π2

(
3
(
∆2 − µ2

)2
arctanh

(∆
µ

)
+ 5∆3µ − 3∆µ3

)
,

(B.5)
where ∆ =

√
µ2 − m2 − q2

max is a small parameter in the limit 2eB → 0, of order
∆ ∼ O(

√
eB). We can expand this result in powers of ∆ obtaining

1
30π2

(
∆5

µ
+ ∆7

7µ3 + . . .

)
. (B.6)

Combining this information with eqs. (B.4), (4.25) we obtain the weak field approximation

f(B, µ)
∣∣∣
weak

= −B2

2 +f(0, µ)−e2B2

24π2 arctanh
(√

µ2 − m2

µ

)
+const+O

(
(eB)5/2

)
. (B.7)
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