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1 Introduction

A fundamental observation of nature is that electroweak interactions act on chiral fermions
and treat left- and right-handed fermions differently. Setting up a consistent regularisation
and renormalisation of the relevant chiral gauge theories, however, proves to be difficult.
In particular, dimensional regularisation (DReg) of chiral gauge theories inevitably leads
to the so-called γ5-problem emerging from the challenge of accommodating the manifestly
4-dimensional nature of γ5 in D dimensions, as already discussed early on e.g. in refs. [1–9].
Still, DReg is the most commonly used scheme for practical calculations, because it allows
efficient practical computations and satisfies causality, Lorentz invariance and unitarity; for
a review of variants of DReg and alternatives we refer to ref. [10].

A rigorous and consistent way to embed γ5 into the framework of DReg is the Breitenlohner-
Maison/’t Hooft-Veltman (BMHV) scheme [1, 11–13], which abandons the anticommutativity
of γ5. Employing the BMHV scheme, however, violates gauge invariance in intermediate steps
of the regularisation and renormalisation procedure due to the modified algebra. This is a
spurious breaking, which can and needs to be restored using symmetry-restoring counterterms
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guaranteed to exist (in anomaly free theories) by the methods of algebraic renormalisation [14].
However, as these counterterms are gauge non-invariant, including evanescent operators,
they cannot be generated via a multiplicative renormalisation transformation, making the
traditional text book approach to renormalisation insufficient and leading to a more general
but also more complicated counterterm structure.

Here, we focus on the mathematically rigorous BMHV scheme in chiral gauge theories and
the required counterterm structure. Previous publications [15–17] covered non-abelian chiral
gauge theories with fermions and scalars at the one-loop level and an abelian chiral gauge
theory at the two-loop level and obtained all required counterterms and renormalisation-group
beta-functions. The theoretical basis and the methodology of these papers is reviewed in
detail in ref. [18]. Related analyses of the BMHV scheme covered Yang-Mills theories without
scalars at the one-loop level [19], also using the background-field gauge [20], the abelian Higgs
model at the one-loop level [21], the two-loop computation of beta-functions in non-gauge
theories [22], and recent applications to effective theories [23, 24].

In the present paper we present the first application of the BMHV scheme to a chiral
gauge theory at the three-loop level. The paper is a direct continuation of the previous
publication [16] and studies an abelian chiral gauge theory, which serves as a toy model for
the investigation of theoretical concepts. We obtain a consistently renormalised finite theory
with restored BRST invariance at the three-loop level. All required counterterms and Green
functions are explicitly provided. Ultimately, such a renormalisation procedure will be needed
for high-precision calculations of e.g. electroweak observables in the BMHV scheme.

We briefly comment on interesting alternative schemes for γ5. An important alternative
scheme for the treatment of γ5 is “Kreimer’s scheme” [25–27], promising a better behaviour
with respect to gauge invariance by abandoning the cyclicity of the trace. However, the
multi-loop properties of this scheme are not fully under control. Refs. [28–33] showed that
there are ambiguities in some of the β-function coefficients which had to be fixed by external
arguments using Weyl consistency conditions [30, 34–38] and ref. [39] showed that, in the
context of higher order QCD corrections with an external flavour-singlet axial-current, the
ABJ equation [40, 41] and the Adler-Bardeen theorem [42] do not automatically hold in the
bare form when treating γ5 in Kreimer’s scheme, but in fact and contrary to expectations,
additional counterterms were needed making the traditional multiplicative renormalisation
insufficient in this scheme as well. Finally, we mention ref. [43] which showed that even if
DReg is entirely abandoned and purely 4-dimensional regularisation schemes are considered,
an analog of the γ5 problem exists in a very broad class of potential regularisation schemes.

In section 2 of the present paper, we introduce the considered abelian model and briefly
sketch the methodology behind the computation of the aforementioned symmetry-restoring
counterterms via special Feynman diagrams with an insertion of the ∆̂-operator using the
regularised quantum action principle of DReg. In order to extract UV-divergences at the multi-
loop level an infrared rearrangement via the so called all massive tadpoles method [44, 45]
is utilised, where all occurring Feynman diagrams are mapped to fully massive single-scale
vacuum bubbles. We explain this method in section 3. Finally, we present and discuss the
new three-loop level results in section 4, before we conclude in the last section 5, showing
that the counterterm structure in the BMHV scheme may still be written in a rather compact
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form, suitable for computer implementations, even at high loop levels. In the appendix we
provide explicit results for the three-loop coefficients, introduced in section 4, and further
display the one- and two-loop results for completeness, already published in ref. [16], this
time, however, in full Rξ-gauge.

2 Abelian chiral gauge theory and dimensional regularisation with
non-anticommuting γ5

In this section we briefly introduce the BMHV algebra with non-anticommuting γ5, the
considered abelian chiral gauge theory and its definition in D dimensions and eventually
the methodology of the symmetry restoration procedure. The model is the same as the
one discussed at the two-loop level in ref. [16]. For a more detailed review of the basic
methodology including applications to the abelian chiral gauge theory we also refer to ref. [18],
particularly to section 3.3 and 7.2, as well as section 4 and 6.3 regarding the definition of
the regularisation, and the theory of symmetry restoration.

2.1 Breitenlohner-Maison/’t Hooft-Veltman algebra

As already mentioned in the introduction, anticommutativity of γ5 is abandoned in the
BMHV scheme in order to obtain a consistent dimensional regularisation of a chiral gauge
theory, which leads to modified algebraic relations, the so-called BMHV algebra

{γ5, γ
µ} = 0, {γ5, γ

µ} = {γ5, γ̂
µ} = 2 γ5 γ̂

µ,

[γ5, γ̂
µ] = 0, [γ5, γ

µ] = [γ5, γ
µ] = 2 γ5 γ

µ,
(2.1)

where the D-dimensional space as well as all Lorentz covariants are decomposed into a 4-
and a (−2ϵ)-dimensional component as

M = M4 ⊕ M−2ϵ, ηµν = ηµν + η̂µν , Xµ = X
µ + X̂µ, (2.2)

with overbars and hats denoting 4-dimensional and (−2ϵ)-dimensional components, respec-
tively. These modified algebraic relations (2.1) are the root of the spurious BRST symmetry-
breaking in intermediate steps. As an illustration we consider a generic kinetic term of
a fermion field ψ. Splitting the fermion field into its left-handed and right-handed parts
as ψ = ψL + ψR = PLψ + PRψ with the projectors PL,R = (1 ∓ γ5)/2, the D-dimensional
kinetic term decomposes as

ψ/∂ψ = ψL/∂ψL + ψR /∂ψR + ψL /̂∂ψR + ψR /̂∂ψL (2.3)

into four terms. The first two involve a 4-dimensional derivative and do not mix chiralities.
The last two, however, involve a (−2ϵ)-dimensional derivative and mix chiralities. In a chiral
gauge theory such terms violate gauge invariance.

2.2 Abelian chiral gauge theory and its extension to D dimensions

The considered abelian chiral gauge theory is the same as the one considered in refs. [16, 18]
and involves an abelian gauge field Aµ which interacts only with the right-handed fermions
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ψR. Details on the construction of the 4-dimensional formulation, symmetry identities and
the extension to D dimensions can be found in the literature. Its gauge covariant derivative
is written as1

Dµ
ij = ∂µδij + ieAµYRij (2.4)

with diagonal hypercharge matrix YRij which must satisfy the anomaly cancellation condition

Tr
(
Y3
R

)
= 0, (2.5)

to guarantee a consistent theory. The field strength tensor takes the usual abelian form

Fµν = ∂µAν − ∂νAµ. (2.6)

The BRST transformations of the gauge and matter fields, the Faddeev-Popov ghosts and
antighosts c, c̄ and the Nakanishi-Lautrup field B are given by

sAµ(x) = ∂µc(x),
sψi(x) = sψRi(x) = −iec(x)YRijψRj(x),
sψi(x) = sψRi(x) = −ieψRj(x)c(x)YRji = iec(x)ψRj(x)YRji,
sc(x) = 0,

sc̄(x) = B(x) = −1
ξ
∂µAµ(x),

sB(x) = 0,

(2.7)

with s being the BRST operator. We stress that only the right-handed component of the
fermions admits non-trivial BRST transformations.

All previous equations can readily be interpreted in D dimensions. In defining the D-
dimensional regularised action, however, one faces two major challenges. First, the fermionic
kinetic term must be fully D-dimensional as in eq. (2.3) in order to generate propagators with
D-dimensional denominators and correctly regularised loop Feynman diagrams. Thus, the
kinetic term necessarily mixes fermions of different chiralities. In the present case only the
right-handed fermion has non-vanishing gauge and BRST transformations and couples to the
gauge boson via its hypercharge, while the left-handed fermion is sterile, i.e. has no interactions
and vanishing BRST transformation. This left-handed fermion ψL is purely fictitious and
only introduced for the D-dimensional formulation and it only appears in the kinetic term.
Second, the extension to D dimensions is not unique due to the fact that the right-handed
chiral current ψRiγµψRj admits many inequivalent but equally correct extensions. Here, we
follow ref. [16] and use the most symmetric option ψPLγ

µPRψ = ψPLγ
µPRψ = ψRγ

µψR, as
it is the most natural and symmetric choice. This choice was also made in most BMHV
applications to chiral gauge theories in the literature [15, 16, 18–21, 24] and likely leads to
the simplest expressions particularly in applications to the electroweak SM [9].

1Note the change of the sign convention in the covariant derivative compared to ref. [16], affecting also
some of the results for the counterterms. Here, we use the same convention as in ref. [18].
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The D-dimensional tree-level action may then be written as

S0 =
∫
dDx

(
iψi/∂ψi − eYRijψRi /AψRj −

1
4F

µνFµν

− 1
2ξ (∂µA

µ)2 − c̄∂2c+ ρµsAµ + R̄isψRi +RisψRi

)
.

(2.8)

In this action, all derivatives are continued in the obvious way to D dimensions. However, we
emphasise that in the chosen fermion-gauge boson interaction only the purely 4-dimensional
gamma matrices appear due to the projection operators. The BRST transformations are
coupled to external sources ρµ, R̄i and Ri.

Preparing for the renormalisation and higher orders, the BRST transformations are
replaced by a Slavnov-Taylor operator SD, whose explicit definition can be found in
refs. [15, 16, 18]. Acting with this D-dimensional Slavnov-Taylor operator on the D-
dimensional tree-level action to check for BRST invariance, we obtain

SD(S0) = SD(S0,evan) = ∆̂, (2.9)

where in the second equality the purely evanescent kinetic term has been introduced as

S0,evan =
∫
dDx iψi /̂∂ψi (2.10)

and where the breaking operator ∆̂ has the explicit form

∆̂ = −
∫
dDx eYRij c

{
ψi

(←
/̂∂PR +

→
/̂∂PL

)
ψj

}
=

∫
dDx ∆̂(x). (2.11)

The non-vanishing result for the quantity ∆̂ corresponds to the announced breaking of BRST
invariance by the BMHV scheme. The breaking happens already at the level of the tree-level
action. The second equation in (2.9) shows that the breaking is caused only by the evanescent
part of the kinetic term given in eq. (2.10). This term is required in order to formulate a
D-dimensional fermion propagator, but as already illustrated in eq. (2.3) it mixes left- and
right-handed fields with different gauge transformation properties, which is the technical
reason for the breaking of BRST invariance in the BMHV scheme.

The BRST breaking can also be viewed as a composite operator. From the explicit
form in eq. (2.11) we can derive a Feynman rule for insertions of the ∆̂-operator, which
takes the following form

̂∆ c

p2
ψjβ

p1

= −eYRij
(
/̂p1PR + /̂p2PL

)
αβ
. (2.12)

To conclude this subsection, we note that, in contrast to the non-abelian case, in abelian
gauge theories none of the BRST transformations and none of the terms in the second line of
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the action (2.8) above obtain quantum corrections, i.e. none of them renormalise. This is due
to the fact that all these terms are bilinear in the quantum fields. This non-renormalisation
can be formulated as a local Ward identity or as an antighost equation. In the following we
can assume the corresponding relations to be valid without further discussion as long as it
is made sure not to violate the relations by an inappropriate choice of symmetry-restoring
counterterms. Hence, we do not have to consider Green functions with external sources,
which would be necessary in the non-abelian case. For more details regarding these issues
we refer the reader to section 2.6 of ref. [18] and references therein.

2.3 Procedure of symmetry restoration

At the quantum level, the theory is regularised and renormalised using DReg and the BMHV
scheme. In this procedure, a counterterm action Sct is added to the tree-level action S0
which cancels UV-divergences and spurious breakings of BRST invariance. The renormalised
theory is described by the effective quantum action in D dimensions ΓDRen, which is also
the generating functional of one-particle irreducible (1PI) Green functions. The final 4-
dimensional renormalised effective action is then obtained as Γ = LIMD→ 4 ΓDRen, where
the operation LIMD→ 4 means taking the D = 4 limit and neglecting algebraic terms which
are evanescent, i.e. which vanish in 4 dimensions. The ultimate symmetry requirement is
the Slavnov-Taylor identity, which needs to be satisfied by our theory after renormalisation
and in 4 dimensions, i.e.

LIM
D→ 4

(SD(ΓDRen)) = 0. (2.13)

The ∆̂-operator becomes of particular importance for the symmetry restoration. In the
present case where the classical symmetry is broken by the regularisation, we employ the
regularised quantum action principle of DReg (see ref. [13] and also the review [18])

SD(ΓDRen) = (∆̂ + ∆ct) · ΓDRen, (2.14)

in order to rewrite a possible symmetry-breaking as a composite operator insertion into the
effective quantum action. The operator ∆̂ has been defined above, and the operator ∆ct
is obtained similarly by the violation of the Slavnov-Taylor identity of the action including
counterterms as

∆̂ + ∆ct = SD(S0 + Sct). (2.15)

Practically, we can plug eq. (2.14) into eq. (2.13) to obtain the following perturbative
requirement from the Slavnov-Taylor identity

LIM
D→ 4

(
∆̂ · ΓnDRen +

n−1∑
k=1

∆k
ct · Γn−kDRen +∆n

ct

)
= 0, ∀n ≥ 1, (2.16)

with n being the loop order of the respective quantities. This equation can be used as the
starting point of the iterative symmetry restoration procedure. Supposing that the theory
has been renormalised up to some loop order n− 1, the counterterm action Sn−1

ct and the
corresponding breaking operator ∆n−1

ct are known up to order n − 1. The first two terms
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in eq. (2.16) can then be unambiguously computed at the next order n. At this order n,
the counterterm action Snct then needs to be determined such that the third term cancels
the first two and eq. (2.16) is fulfilled.

The symmetry restoration thus requires the computation of subrenormalised 1PI Green
functions with one insertion of the operator ∆ = ∆̂+∆ct, whose lowest-order part is evanescent.
The main advantage of this method is its efficiency, as only power-counting divergent Green
functions need to be considered and only their UV-divergent part needs to be calculated,
which is a crucial feature at higher loop orders. The method has been applied at lower orders
in refs. [15, 16, 19, 20] (for a three-loop application in the context of supersymmetry see
ref. [46]), and a detailed comparison with alternative methods have been given in refs. [15, 18].

3 Extracting UV-divergences at the multi-loop level

We need to calculate not only the symmetric and non-symmetric (i.e. symmetry-breaking)
UV-divergences, but also the finite symmetry-breaking contributions. The latter are local
contributions obtained from the UV-divergences of 1PI Green functions with the insertion
of an evanescent operator, as already mentioned at the end of the previous section. Thus,
utilising the quantum action principle, only the UV-divergent part of power-counting divergent
1PI Green functions needs to be computed. For the present work we did this up to the
three-loop level; the results will be displayed below in section 4.

The computations are mainly performed in Mathematica [47], but partly also in C++ for
the integral reduction. In particular, the Mathematica package FeynArts [48] has been used
to generate all Feynman diagrams, including diagrams with insertions of the operator ∆ and/or
the (≤ 2)-loop counterterms given in the appendix. Most symbolic manipulations, especially
those related to the Dirac algebra, have been performed with the help of FeynCalc [49–52].
Further, the package FeynHelpers [53] has been used to interface the Mathematica setup
with the C++ version of the software FIRE [54], which uses integration by parts (IBP) identities
to reduce all Feynman integrals to master integrals.

Note that renormalising chiral gauge theories with non-anticommuting γ5 in the BMHV
scheme means that we cannot use Ward or Slavnov-Taylor identities to circumvent the
calculation of multi-leg 1PI Green functions as it is usually done (see e.g. [31–33, 55, 56]),
because gauge invariance is broken in intermediate steps by the regularisation. In other words,
we also have to calculate all divergent three- and four-point Green functions.

Hence, we aim for a method to reduce all integrals to fully massive single-scale ones,
not only to drastically reduce the computational complexity, or to even be able to find
solutions for the master integrals at all, but also to avoid possible IR-divergences. Noting that
counterterms are local polynomials in external momenta and (for mass-independent schemes)
internal masses, we can extract the UV-divergences utilizing an infrared rearrangement
to achieve this task. In particular, we are using the all massive tadpoles method, first
introduced in refs. [44, 45], where the infrared rearrangement is realised via the following
exact decomposition

1
(k + p)2 = 1

k2 −M2 − p2 + 2 k · p+M2

k2 −M2
1

(k + p)2 , (3.1)
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where k is a loop momentum or any linear combination of loop momenta. This decomposition
can be applied recursively up to a sufficient order, given by the corresponding degree of
divergence. Power-counting finite terms may then be dropped, which does not affect the
UV-divergences after proper subtraction of subdivergences. In this way, having introduced
the auxiliary mass scale M2, which is the only scale remaining in the denominators, all
occurring Feynman diagrams are mapped to fully massive single-scale vacuum bubbles.

However, as discussed in ref. [57], we also found that there are some subtleties w.r.t.
the tadpole expansion in eq. (3.1) when applied to two and higher loop orders due to subdi-
vergences. The application of this tadpole expansion requires a one-to-one correspondence
between the expansions of the integrals of the genuine L-loop diagrams and the integrals of
their corresponding counterterm-inserted diagrams with lower loop level. The reason for this
is that separately, they are not momentum routing independent anymore after truncating the
tadpole expansion (3.1); only their combination is momentum routing independent.

As this is not convenient for computer implementations, we decided to use an improved
tadpole expansion, as already implied in refs. [44, 45] and explained in ref. [57]. Here,
the auxiliary mass scale M2 is introduced in every propagator and subsequently a Taylor-
expansion in external momenta (and in internal/physical masses if they were present) is
performed. Exemplarily, for one massless propagator, we obtain

1
(k + p)2 −→ 1

(k + p)2 −M2 = 1
k2 −M2 − p2 + 2 k · p

(k2 −M2)2 + (p2 + 2 k · p)2

(k2 −M2)3 + . . . , (3.2)

where it can be seen that the same result as with the exact decomposition is obtained
when neglecting numerator terms ∝ M2 in eq. (3.1). However, neglecting such numerator
terms ∝M2 needs to be compensated, in particular at the multi-loop level with occurring
subdivergences. This is done by constructing and including all possible auxiliary counterterms
which are ∝ M2 at a given order. In the present case such auxiliary counterterms can
correspond to mass terms of the 4-dimensional gauge field or the evanescent gauge field Âµ, or
to counterterms appearing in the renormalisation of the insertion operator ∆̂, see section 2.2
and section 4.2. Both the auxiliary mass M2 and the auxiliary mass counterterms are only
present at the level of the Feynman integral evaluation and are not part of the theory; hence,
they may be viewed as a mathematical trick. In particular, an auxiliary gauge boson mass
counterterm, cf. refs. [44, 45], does not represent a problem.

After all Feynman integrals have been mapped to these fully massive single-scale vacuum
bubbles, they are reduced to a finite set of master integrals via IBP-relations using FIRE.
The required solutions for the two two-loop and the five three-loop master integrals have
been taken from refs. [58, 59].

4 Three-loop renormalisation: evaluation of the singular and finite
counterterm action

In this section we present the complete three-loop renormalisation of the considered abelian
chiral gauge theory, regularised in DReg and using the BMHV scheme. We first compute
the results of all required 1PI Green functions, including Green functions with ∆ insertions
describing the breaking of the Slavnov-Taylor identity. From the UV-divergences of the
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Green functions we derive the corresponding UV-divergent counterterm action; and from the
breaking of the Slavnov-Taylor identity we derive the symmetry-restoring counterterms.

In order to highlight the structure of the three-loop results, they are presented in terms
of abbreviations which are defined in appendix A. The corresponding one- and two-loop
results are listed for completeness in appendix B and appendix C, respectively. For those
results we go beyond the literature and provide them for general gauge parameter ξ. The
three-loop results are provided in Feynman gauge ξ = 1.

All results have been obtained using the computational setup described in section 3,
which has successfully been tested using standard vector-like quantum electrodynamics by
performing a complete three-loop renormalisation. Further, the one- and two-loop results for
the chiral model considered here, published in ref. [16], have successfully been reproduced.
For the three-loop results, the UV-divergent BRST breaking contributions can be obtained
on the one hand from standard 1PI Green functions, see section 4.1, and on the other hand
from the ∆-inserted 1PI Green functions, cf. section 4.2. The results agree, serving as a
strong consistency check. Moreover, all obtained counterterms, including the finite symmetry-
restoring ones, are local polynomials in the external momenta, as expected. The observed
cancellation of logarithmic terms depends critically on all details of the implementation of
lower-order counterterms such as the dimensionality (i.e. either D-, 4- or (−2ϵ)-dimensional)
of all appearing Lorentz structures, and thus gives us further confidence in the correctness
of the results.

4.1 Divergent three-loop Green functions

We begin with all standard, i.e. non-operator inserted, 1PI Green functions, which can
possibly lead to UV-divergences. From these we will later derive all singular counterterms to
ultimately render the theory finite. The complete list of relevant Green functions is as follows.

(i) Gauge boson self energy. The divergent part of the three-loop gauge boson self
energy (after subrenormalization using one- and two-loop counterterms from the literature
and reproduced in the appendix) is given by

iΓ̃νµAA(p)
∣∣3
div =− i

(16π2)3 e
6
[
B3,inv
AA

1
ϵ2

+A3,inv
AA

1
ϵ

](
pµpν − p2ηµν

)
− i

(16π2)3 e
6
[
Ĉ3,break
AA

1
ϵ3

+ B̂3,break
AA

1
ϵ2

+ Â3,break
AA

1
ϵ

]
p̂2 ηµν

+ i

(16π2)3 e
6 A3,break

AA

1
ϵ
p2 ηµν ,

(4.1)

with three-loop coefficients provided in eqs. (A.1) to (A.6) in appendix A. The first line
is the expected transverse part, here written with purely 4-dimensional covariants. The
second line breaks transversality by an evanescent operator, which already appears at the
one- and two-loop level, see eqs. (B.2), (C.2) and ref. [16]. In contrast, the third line contains
a non-evanescent but UV-divergent BRST breaking contribution, which for the first time
appears at the three-loop level.
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(ii) Fermion self energy. The UV-divergences of the fermion self energy at three loop
order are provided by

iΓ̃ji
ψψ

(p)
∣∣3
div = i

(16π2)3 e
6
{
C3, ji
ψψ

1
ϵ3

+ B3, ji
ψψ

1
ϵ2

+A3, ji
ψψ

1
ϵ

}
/pPR (4.2)

= i

(16π2)3 e
6
{
C3, inv
ψψ, ji

1
ϵ3

+
(
B3, inv
ψψ, ji

+ B3, break
ψψ, ji

) 1
ϵ2

+
(
A3, inv
ψψ, ji

+A3, break
ψψ, ji

) 1
ϵ

}
/pPR,

with three-loop coefficients to be found in eqs. (A.10) to (A.14) in appendix A. In the second
and third line, the result has been split into invariant contributions and contributions which
break BRST invariance. The split is related to the fermion-gauge boson three-point function
discussed next. The breaking terms in eq. (4.2) correspond to the violation of the well-known
Ward identity relating the fermion self energy and the fermion-gauge boson interaction in an
abelian gauge theory, and we follow the convention used already at lower orders in ref. [16]
to attribute the entire breaking of this Ward identity to the fermion self energy.

Whereas in the one-loop case there is no such UV divergent breaking contribution in
the fermion self energy, cf. eq. (B.2), and in the two-loop case there is only a breaking
contribution coming from the simple ϵ-pole, cf. eq. (C.2), here in the three-loop case there
is also a symmetry-violating contribution from the second order ϵ-pole. I.e. B3, break

ψψ, ji
starts

being non-zero at the three-loop level. Again, the complete BRST breaking contribution
from the fermion self energy is, as in the two-loop case, purely non-evanescent.

(iii) Fermion-gauge boson interaction. The three-loop vertex correction can be writ-
ten as

iΓ̃ji,µ
ψψA

∣∣3
div = − i

(16π2)3 e
7
{
C3, ji
ψψA

1
ϵ3

+ B3, ji
ψψA

1
ϵ2

+A3, ji
ψψA

1
ϵ

}
γµ PR

= − i

(16π2)3 e
7 (YR)jk

{
C3, inv
ψψ, ki

1
ϵ3

+ B3, inv
ψψ, ki

1
ϵ2

+A3, inv
ψψ, ki

1
ϵ

}
γµ PR,

(4.3)

with three-loop coefficients (A.19) to (A.21). In the second line the result is by definition
completely expressed in terms of the invariant coefficients already used for the fermion self
energy (4.2) given in eqs. (A.10), (A.11), (A.12). This reflects the convention explained above
to attribute the breaking of the relevant Ward identity entirely to the fermion self energy.

(iv) Triple gauge boson interaction. As expected, and as for the one- and two-loop
case, the triple gauge boson interaction does not provide a divergent contribution,

iΓ̃ρνµAAA

∣∣3
div = 0. (4.4)

(v) Quartic gauge boson interaction. Unlike in the one- and two-loop case, cf.
eqs. (B.2), (C.2), in the three-loop case there is a non-evanescent, symmetry-breaking,
divergent contribution from the quartic gauge boson interaction of the form

iΓ̃σρνµAAAA

∣∣3
div = i

(16π2)3 e
8 A3, break

AAAA

1
ϵ

(
ηµν ηρσ + ηµρ ηνσ + ηµσ ηνρ

)
, (4.5)

with three-loop coefficient (A.8). This contribution generates a new singular counterterm
which first appears at the three-loop level.
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4.2 Three-loop breaking of BRST symmetry

We continue with ∆-operator inserted, power-counting UV-divergent, 1PI Green functions,
from which we obtain the complete BRST breaking at a given loop order, i.e. not only the
divergent symmetry-breaking contributions, but also the finite ones. The latter is possible
due to the usage of the quantum action principle, allowing to rewrite the symmetry-breaking
as an operator insertion, as already explained above. In particular, we are following the
procedure illustrated in section 2.3, using eq. (2.16) as a starting point.

On the one hand, from the finite contributions, the important finite symmetry-restoring
counterterms can be derived. On the other hand, it can be seen that the divergent symmetry-
breaking contributions are indeed the same as the symmetry-violating contributions already
encountered in the last section, which serves as a consistency check.

As above, the results are provided in terms of coefficients. The coefficients A, B, C
for the divergences are the same as the ones used in section 4.1, whereas the coefficients
F are new and correspond to the finite symmetry breakings. Their values are given in
eqs. (A.7), (A.9), (A.15).

Note that, although the two 1PI Green functions for the ghost-gauge boson-fermion-
fermion (cAψψ) and the ghost-quartic gauge boson (cAAAA) contributions are both power-
counting UV-divergent, neither of the two Green functions gives rise to a non-vanishing
contribution, which is due to a cancellation of the leading power-counting term in the integrand
in the considered abelian theory, effectively reducing the power-counting degree by one, for
all such ∆-operator inserted Green functions.2 Further, the latter Green function can also
not contribute as it could not give rise to a renormalisable operator in the counterterm action,
which becomes clear when considering the inverse BRST transformation of the associated
operator, cf. eq. (2.7). In particular, the operator emerges from the BRST transformation
of AAAAA, which is non-renormalisable.3

In the following we provide the complete list of results for all relevant ∆-operator inserted
Green functions, suppressing all finite but evanescent terms.

(vi) Ghost-gauge boson contribution.

i
([
∆̂ + ∆ct

]
· Γ̃

)3

Aµc
=− e6

(16π2)3

[
Ĉ3,break
AA

1
ϵ3

+ B̂3,break
AA

1
ϵ2

+ Â3,break
AA

1
ϵ

]
p̂2 pµ

+ e6

(16π2)3

[
A3,break
AA

1
ϵ
+ F3,break

AA

]
p2 pµ,

(4.6)

with p being the incoming ghost momentum.

(vii) Ghost-fermion-fermion contribution.

i
([
∆̂ + ∆ct

]
· Γ̃

)3

ψjψic

= − e7

(16π2)3
(
YR

)
jk

{
B3, break
ψψ, ki

1
ϵ2

+A3, break
ψψ, ki

1
ϵ
+ F3,break

ψψ, ki

}(
/p1 + /p2

)
PR,

(4.7)

with p1 and p2 being the incoming fermion momenta.
2This is true only in the considered abelian theory with the given interaction structure, cf. section 2.2.
3Note that this changes in non-abelian gauge theories with more involved BRST transformations.
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(viii) Ghost-double gauge boson contribution.

i
([
∆̂ + ∆ct

]
· Γ̃

)3

AνAµc
∝ Tr

(
Y3
R

)
εµνρσ = 0, (4.8)

which vanishes identically due to the anomaly cancellation condition (2.5), used here and
in all other Green functions.

(ix) Ghost-triple gauge boson contribution.

i
([
∆̂ + ∆ct

]
· Γ̃

)3

AρAνAµc
=− e8

(16π2)3

[
A3, break
AAAA

1
ϵ
+ F3, break

AAAA

]
×

(
p1 + p2 + p3

)
σ

(
ηµν ηρσ + ηµρ ηνσ + ηµσ ηνρ

)
,

(4.9)

with p1, p2 and p3 being the incoming gauge boson momenta.
Ultimately, the full breaking of the Slavnov-Taylor identity at the three-loop level reads([

∆̂ +∆ct
]
· Γ̃

)3
=

− e6

(16π2)3

[
Ĉ3,break
AA

1
ϵ3

+ B̂3,break
AA

1
ϵ2

+ Â3,break
AA

1
ϵ

] ∫
dDx c ∂µ ∂̂

2A
µ

+ e6

(16π2)3

[
A3,break
AA

1
ϵ
+ F3,break

AA

] ∫
dDx c ∂µ ∂

2
A
µ (4.10)

− e7

(16π2)3
(
YR

)
jk

[
B3, break
ψψ, ki

1
ϵ2

+A3, break
ψψ, ki

1
ϵ
+ F3, break

ψψ, ki

]∫
dDx c ∂µ

(
ψj γ

µ PR ψi
)

− e8

(16π2)3

[
A3, break
AAAA

1
ϵ
+ F3, break

AAAA

] ∫
dDx

1
2 c ∂µ

(
A
µ
AνA

ν
)
+O(̂.).

As announced above, finite but evanescent terms are not written down explicitly but sum-
marised by the symbol O(̂.).4

4.3 Three-loop singular counterterm action

Combining all results, the complete singular counterterm action at the three-loop level is
given by

S3
sct =

e6

(16π2)3

[
B3,inv
AA

1
ϵ2

+A3,inv
AA

1
ϵ

] ∫
dDx

(
− 1

4 F
µν
Fµν

)
− e6

(16π2)3

[
C3, inv
ψψ, ji

1
ϵ3

+ B3, inv
ψψ, ji

1
ϵ2

+A3, inv
ψψ, ji

1
ϵ

]
×

∫
dDx

(
ψj i /∂ PR ψi − e

(
YR

)
kj
ψk /APR ψi

)
− e6

(16π2)3

[
Ĉ3,break
AA

1
ϵ3

+ B̂3,break
AA

1
ϵ2

+ Â3,break
AA

1
ϵ

] ∫
dDx

1
2 Aµ ∂̂

2A
µ

+ e6

(16π2)3 A3,break
AA

1
ϵ

∫
dDx

1
2 Aµ ∂

2
A
µ

− e6

(16π2)3

[
B3, break
ψψ, ji

1
ϵ2

+A3, break
ψψ, ji

1
ϵ

] ∫
dDx

(
ψj i /∂ PR ψi

)
− e8

(16π2)3 A3, break
AAAA

1
ϵ

∫
dDx

1
8 AµA

µ
Aν A

ν
.

(4.11)

4Such terms drop out in the ultimate symmetry restoration condition eq. (2.13), and hence do not affect
the symmetry-restoring counterterms.

– 12 –



J
H
E
P
0
2
(
2
0
2
4
)
1
3
9

Including these counterterms removes all three-loop UV-divergences from the theory, and
together with the one- and two-loop counterterms in eq. (B.2) and eq. (C.2), respectively,
they guarantee a finite theory up to the three-loop level. The first two lines of eq. (4.11)
represent the BRST invariant piece5 of the counterterm action, while the rest are singular
BRST breaking contributions. We highlight that there are two kinds of changes compared to
the one- and two-loop case given in eqs. (B.2), (C.2). First, there are higher order ϵ-poles
for already earlier appearing counterterm structures. Second and more interestingly, there
are two completely new counterterms generated at the three-loop level: the non-evanescent
bilinear gauge boson counterterm in the fourth line and the non-evanescent quartic gauge
boson counterterm in the last line of eq. (4.11). Beyond that and following on from the
previous discussion below eqs. (4.2) and (4.3); here, it becomes very clear that the choice
that only bilinear fermion terms contribute to the BRST breaking part, see the penultimate
line of eq. (4.11), and fermion-gauge boson interaction terms do not is not unique. We
could have also chosen it vice versa.

4.4 Three-loop finite symmetry-restoring counterterm action

Finally, the full three-loop finite symmetry-restoring counterterm action takes the form

S3
fct =

e6

(16π2)3 F3,break
AA

∫
d4x

1
2 Aµ ∂

2
A
µ − e6

(16π2)3 F3, break
ψψ, ji

∫
d4xψj i /∂ PR ψi

− e8

(16π2)3 F3, break
AAAA

∫
d4x

1
8 AµA

µ
AνA

ν
.

(4.12)

Together with the one- and two-loop counterterms in eq. (B.3) and eq. (C.3), these countert-
erms guarantee that the theory satisfies the Slavnov-Taylor identity after renormalisation
up to the three-loop level. In contrast to the singular counterterm action there are no new
counterterm structures emerging at the three-loop level. There are still the same three
counterterms as in the one- and two-loop case, cf. eqs. (B.3), (C.3), just with different
coefficients. They correspond to the restoration of the transversality of the gauge boson
self energy, the Ward identity between the fermion self energy and the fermion-gauge boson
three-point function, and the Ward identity for the quartic gauge boson self interaction. The
reason for the simplicity of these counterterms is that the symmetry-restoring counterterms
may be defined purely in 4 dimensions and are restricted by power-counting. Hence, we also
expect the same counterterm structure to continue to higher loop levels.

5 Conclusion

In this work, we successfully performed the complete three-loop renormalisation of an
abelian chiral gauge theory within the framework of DReg, treating γ5 rigorously as a non-
anticommuting object in the BMHV scheme. In particular, we computed not only the singular,
but also the complete finite symmetry-restoring counterterm action up to the three-loop

5The second line of eq. (4.11) can be obtained via a standard multiplicative parameter and field renormali-
sation of the invariant part of the classical action. The first line can be split using F

µν = F µν + (F µν − F µν)
into a fully D-dimensional and an evanescent part. Then its fully D-dimensional part can also be obtained via
multiplicative renormalisation, see also refs. [15, 16].
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level. While the first is necessary to render the theory finite, the latter is needed to cancel
the spurious symmetry-breaking induced by the BMHV scheme, such that the renormalised
theory is both finite and gauge invariant.

Technically we employed an efficient procedure for the symmetry restoration developed
and applied before at the one-loop and two-loop order to chiral gauge theories. Using the
quantum action principle the symmetry-breaking can be obtained from Green functions
with evanescent operator insertions, and the Slavnov-Taylor identity acts as a symmetry
requirement for the determination of symmetry-restoring counterterms at any given loop
order. The efficiency of this method stems from the fact that only the UV-divergent part
of power-counting divergent Green functions needs to be calculated to obtain all necessary
counterterms, including the finite symmetry-restoring ones. In this work, we have now
successfully applied this procedure at the three-loop level. To this end, we have upgraded
our computational setup and implemented the so-called all massive tadpoles method. This
method represents an infrared rearrangement and maps all Feynman diagrams to fully massive
single-scale vacuum bubbles, such that all UV-divergences can ultimately be extracted from
solving tadpole master integrals.

In the singular counterterm action we encountered not only higher order ϵ-poles for
already earlier appearing BRST breaking counterterm structures emerging at the three-loop
level, but also new counterterm structures were generated at the three-loop level for the first
time. In particular, a new non-evanescent bilinear gauge boson counterterm and a new non-
evanescent quartic gauge boson counterterm, both UV-divergent and BRST-breaking, emerge
for the first time at the three-loop level. In contrast to this, in the finite symmetry-restoring
counterterm action, there are no new counterterm structures emerging at the three-loop
level. These admit still the same counterterm structures as in the one- and two-loop case,
just with different coefficients. As a matter of principle, both the singular and the finite
counterterms are restricted by power counting. But the singular counterterms can involve D-,
4- or (−2ϵ)-dimensional Lorentz covariants and thus a larger number of different structures,
whereas the finite symmetry-restoring counterterms may be defined in purely 4 dimensions
and thus involve only a small number of different structures. Our three-loop findings are
in line with these general statements.

We have shown that γ5 can be treated rigorously and systematically at high loop orders
in the context of chiral gauge theories, without any ambiguities or the need for external
arguments, by using the BMHV scheme. Although the singular counterterm action obtains
new contributions, the counterterm action can still be written in a rather compact form,
suitable for computer implementations. This is crucial and becomes necessary in future
calculations of electroweak precision observables in order to achieve the required higher
precision to align with the increasing experimental precision.

We were able to further automate our methodology, such that calculations in other
theories, and at even higher loop orders come in reach. Most importantly, a consistent
renormalisation of the Standard Model at the multi-loop level employing the BMHV scheme
will become possible using the methods of the present paper.
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A Explicit results for the three-loop coefficients

In this section of the appendix we provide explicit results for the three-loop coefficients used
in section 4. We begin with the coefficients for the purely gauge bosonic terms:

Gauge boson three-loop coefficients.

B3,inv
AA = 4

162
(
3Tr

(
Y6
R

)
− 5Tr

(
Y4
R

)
Tr

(
Y2
R

))
(A.1)

A3,inv
AA = − 1

1620
(
2552Tr

(
Y6
R

)
+ 61Tr

(
Y4
R

)
Tr

(
Y2
R

))
(A.2)

Ĉ3,break
AA = 1

18 Tr
(
Y6
R

)
(A.3)

B̂3,break
AA = − 1

1080
(
529Tr

(
Y6
R

)
+ 122Tr

(
Y4
R

)
Tr

(
Y2
R

)
(A.4)

Â3,break
AA = 1

64800
((
156672 ζ3 − 49427

)
Tr

(
Y6
R

)
− 8374Tr

(
Y4
R

)
Tr

(
Y2
R

))
(A.5)

A3,break
AA = 1

1080
(
18Tr

(
Y6
R

)
+ 79Tr

(
Y4
R

)
Tr

(
Y2
R

))
(A.6)

F3,break
AA = − 1

21600
((
35242 + 8448 ζ3

)
Tr

(
Y6
R

)
+ 1639Tr

(
Y4
R

)
Tr

(
Y2
R

))
(A.7)

A3,break
AAAA = 1

54
(
6Tr

(
Y8
R

)
+ 13Tr

(
Y6
R

)
Tr

(
Y2
R

)
+ 48

(
Tr

(
Y4
R

))2) (A.8)

F3,break
AAAA = − 1

54

(1387 + 2592 ζ3
10 Tr

(
Y8
R

)
+ 101

20 Tr
(
Y6
R

)
Tr

(
Y2
R

)
+ 51

(
Tr

(
Y4
R

))2
)

(A.9)

Continuing with the coefficients for terms that contain fermions:
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Fermion three-loop coefficients.

C3, inv
ψψ, ij

= 1
6
(
Y6
R

)
ij

(A.10)

B3, inv
ψψ, ij

= 1
324

(
432

(
Y6
R

)
ij
− 186

(
Y4
R

)
ij

Tr
(
Y2
R

)
− 6

(
Y2
R

)
ij

Tr
(
Y4
R

)
−

(
Y2
R

)
ij

(
Tr

(
Y2
R

))2) (A.11)

A3, inv
ψψ, ij

= 1
3888

[
21843

(
Y6
R

)
ij
− 4338

(
Y4
R

)
ij

Tr
(
Y2
R

)
−

(
2166Tr

(
Y4
R

)
− 91

(
Tr

(
Y2
R

))2)(Y2
R

)
ij
+ 2430Tr

(
Y5
R

)(
YR

)
ij

] (A.12)

B3, break
ψψ, ij

= −1
3

[(
Y6
R

)
ij
− 1

2
(
Y4
R

)
ij

Tr
(
Y2
R

)
+

(
Y2
R

)
ij

54
(
3Tr

(
Y4
R

)
+ 13

(
Tr

(
Y2
R

))2)] (A.13)

A3, break
ψψ, ij

= − 1
18

[
79

(
Y6
R

)
ij
− 169

6
(
Y4
R

)
ij

Tr
(
Y2
R

)
−

(
Y2
R

)
ij

108
(
159Tr

(
Y4
R

)
− 113

(
Tr

(
Y2
R

))2)+ 45
4

(
YR

)
ij

Tr
(
Y5
R

)] (A.14)

F3, break
ψψ, ij

= −
(775

54 + 58
9 ζ3

)(
Y6
R

)
ij
+ 10

9
(
Y4
R

)
ij

Tr
(
Y2
R

)
−

(
Y2
R

)
ij

[(9725
3888 + 14

3 ζ3

)
Tr

(
Y4
R

)
− 1993

23328
(
Tr

(
Y2
R

))2
]

+
(
YR

)
ij

(215
96 − 7 ζ3

)
Tr

(
Y5
R

)
(A.15)

Finally, some relations among certain coefficients are in place:

C3, ij
ψψ

= C3, inv
ψψ, ij

(A.16)

B3, ij
ψψ

= B3, inv
ψψ, ij

+ B3, break
ψψ, ij

(A.17)

A3, ij
ψψ

= A3, inv
ψψ, ij

+A3, break
ψψ, ij

(A.18)

C3, ij
ψAψ

=
(
YR

)
ik

C3, inv
ψψ, kj

(A.19)

B3, ij
ψAψ

=
(
YR

)
ik

B3, inv
ψψ, kj

(A.20)

A3, ij
ψAψ

=
(
YR

)
ik

A3, inv
ψψ, kj

(A.21)

B One-loop results

Here, we provide the complete results for a full one-loop renormalisation of the considered
abelian chiral gauge theory in Rξ-gauge. We find perfect agreement with ref. [16], up to a
different sign convention in the covariant derivative as already stated before, cf. section 2.2.
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First, the full one-loop breaking of the Slavnov-Taylor identity is given by

(
∆̂ · Γ̃

)1 =− 1
16π2

∫
dDx

{
e2 Tr

(
Y2
R

)
3

[1
ϵ
c ∂µ ∂̂

2A
µ + c ∂µ ∂

2
A
µ
]

− 5 + ξ

6 e3 (Y3
R

)
ji
c ∂µ

(
ψj γ

µ PR ψi
)
−
e4 Tr

(
Y4
R

)
3 c ∂µ

(
A
µ
AνA

ν
)
+O(̂.)

}
.

(B.1)

Eventually, the one-loop singular counterterm action takes the form

S1
sct =− e2

16π2
1
ϵ

[2
3 Tr

(
Y2
R

) ∫
dDx

(
− 1

4 F
µν
Fµν

)
+ ξ

(
Y2
R

)
ji

∫
dDx

(
ψj i /∂ PR ψi − e

(
YR

)
kj
ψk /APR ψi

)
+

Tr
(
Y2
R

)
3

∫
dDx

1
2 Aµ ∂̂

2A
µ
]
,

(B.2)

whereas the one-loop finite symmetry-restoring counterterm action can be written as

S1
fct =− 1

16π2

∫
d4x

[
e2

3 Tr
(
Y2
R

) 1
2 Aµ ∂

2
A
µ − 2 e4

3 Tr
(
Y4
R

) 1
8 AµA

µ
AνA

ν

− 5 + ξ

6 e2 (Y2
R

)
ji
ψj i /∂ PR ψi

]
.

(B.3)

C Two-loop results

Finally, we provide the complete results for a full two-loop renormalisation of the considered
abelian chiral gauge theory in Rξ-gauge. In contrast to the one-loop results they have been
published only in Feynman gauge, i.e. ξ = 1, in ref. [16] so far.

In the limit ξ = 1 we again find perfect agreement with ref. [16], up to the different
sign convention in the covariant derivative and a typo in ref. [16] in the ghost-triple gauge
boson term in the breaking of the Slavnov-Taylor identity and equivalently in the quartic
gauge boson term of the finite symmetry-restoring counterterm action, cf. the last term in
eq. (C.1) and the second term in eq. (C.3), respectively. In ref. [16], there is a factor of
−1/2 missing, which we have corrected here.

With this being said, the full two-loop breaking of the Slavnov-Taylor identity reads([
∆̂ + ∆ct

]
· Γ̃

)2

=− 1
(16π2)2

∫
dDx

{
e4 Tr

(
Y4
R

)
6

[(
ξ

ϵ2
− 43− 26 ξ

12
1
ϵ

)
c ∂µ ∂̂

2A
µ − 5 ξ + 17

8 c ∂µ ∂
2
A
µ
]

+ e5

3

[(3 ξ + 17
8 ξ

(
Y5
R

)
ji
− 3 ξ2 + 4 ξ + 153

240 Tr
(
Y2
R

)(
Y3
R

)
ji

)1
ϵ

+ 3 ξ2 + 519 ξ + 4558
480

(
Y5
R

)
ji
− 471 ξ2 − 92 ξ + 1221

14400 Tr
(
Y2
R

)(
Y3
R

)
ji

]
(C.1)

× c ∂µ
(
ψj γ

µ PR ψi
)

+
3 e6 Tr

(
Y6
R

)
4

ξ + 5
6 c ∂µ

(
A
µ
AνA

ν
)
+O(̂.)

}
.

– 17 –
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The two-loop singular counterterm action can be written as

S2
sct =− e4

(16π2)2
2Tr

(
Y4
R

)
3

2 + ξ

3
1
ϵ

∫
dDx

(
− 1

4 F
µν
Fµν

)
+ e4

(16π2)2

[
ξ2

2
(
Y4
R

)
ji

1
ϵ2

+
(9(1 + ξ)− ξ2

12
(
Y4
R

)
ji

− 24ξ2 − 3ξ − 1
20

Tr
(
Y2
R

)
9

(
Y2
R

)
ji

) 1
ϵ

]
×

∫
dDx

(
ψj i /∂ PR ψi − e

(
YR

)
kj
ψk /APR ψi

)
− e4

(16π2)2
Tr

(
Y4
R

)
3

[
ξ

4
1
ϵ2

− 43− 26ξ
48

1
ϵ

] ∫
dDx

1
2 Aµ ∂̂

2A
µ

− e4

(16π2)2

[
ξ(17 + 3ξ)

24
(
Y4
R

)
ji
− 153 + 4ξ + 3ξ2

12
Tr

(
Y2
R

)
60

(
Y2
R

)
ji

] 1
ϵ

×
∫
dDx

(
ψj i /∂ PR ψi

)
,

(C.2)

whereas the two-loop finite symmetry-restoring counterterm action again admits the following
structure

S2
fct =

1
(16π2)2

∫
d4x

[5ξ + 17
48 e4 Tr

(
Y4
R

) 1
2 Aµ ∂

2
A
µ

−
3 e6 Tr

(
Y6
R

)
2

5 + ξ

6
1
8 AµA

µ
AνA

ν − e4
(3ξ2 + 519ξ + 4558

1440
(
Y4
R

)
ji

− 471ξ2 − 92ξ + 1221
43200 Tr

(
Y2
R

)(
Y2
R

)
ji

)
ψj i /∂ PR ψi

]
.

(C.3)

Open Access. This article is distributed under the terms of the Creative Commons
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