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1 Introduction

Recently, there has been a growing interest in the finite size corrections of form factors that
arise in integrable systems. The motivation comes from several, not directly related places.
Finite volume/temperature form factors are the building blocks of finite volume/temperature
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correlation functions. In turn, these are the fundamental observables and measurable
quantities of two-dimensional integrable systems that show up in statistical, condensed matter,
quantum field, and high-energy theoretical physics [1, 2]. In finite temperature statistical
physics, the authors [3] formulated form factor axioms and used them to calculate correlation
functions [4] which are relevant in generalised hydrodynamics. In condensed matter physics,
the quantities of interest are finite temperature form factors on the lattice. Significant progress
has been made in developing the thermal form factor expansion [5–7] for lattice observables
in integrable models, as well as applying it to the computation of real-time correlation
functions [8, 9]. In quantum field theory, finite volume theories interpolate between the
infrared scattering description and the ultraviolet Lagrangian formulation, where the volume
serves as the renormalisation group parameter. Thus the focus in these theories is mainly
on finite volume expectation values. There is an approach which exploits a fermionic basis
originating from a lattice discretisation [10–14], while one can also derive expectation values
directly from the lattice by taking the continuum limit [15, 16]. Finite volume form factors
are also related to AdS/CFT 3-point functions [17–21] which, together with 2-point functions
(or the spectrum of scaling dimensions) [22, 23], characterise these theories completely.

The integrable formulation of an integrable quantum field theory aims to express all of
its physical observables (e.g. the finite volume spectrum and correlation functions) purely in
terms of bootstrapable quantities at infinite volume [24, 25]. These quantities include masses,
scattering matrices and infinite volume form factors which are the matrix elements of local
operators between asymptotic multiparticle states. All these quantities can be determined by
completing the S-matrix and form factor bootstraps [1, 2, 26–29]. The leading polynomial
volume corrections originate from finite volume momentum quantisation, which can be
formulated in terms of pairwise scatterings [25]. The subleading exponentially suppressed
volume corrections are due to virtual particles [24] (which scatter among themselves) and
physical particles. All such contributions must be summed up for an exact formulation.

In the case of the energy spectrum, the polynomial volume corrections come from the
quantization of momentum, which implies the Bethe-Yang equations. The leading exponential
finite size corrections of multiparticle states include the modification of the Bethe-Yang equa-
tions and the direct contribution of the sea of virtual particles [30]. The subleading energy
corrections also involve the scattering of virtual particles among themselves [31]. The total
contribution of virtual particles is summed up for the ground state by the thermodynamic
Bethe ansatz (TBA), which comes from evaluating the torus partition function in two alterna-
tive ways, i.e. by choosing two different time evolutions along the two orthogonal cycles [32].
Excited state energies can be obtained either by analytically continuing the ground-state
result [33], or by calculating the continuum limit of integrable lattice regularisations [34–37].

Finite size corrections for diagonal and non-diagonal matrix elements of local operators
(form factors) are quite different. The simplest diagonal matrix element, namely the finite
volume/temperature vacuum expectation value, can be obtained by evaluating the torus one-
point function in two alternative ways (i.e. just like the groundstate energy). The result can
be expressed in terms of infinite volume connected form factors and the TBA pseudo-energy
through the LeClair-Mussardo (LM) formula [38]. Analytic continuation of this expression
provides the expectation values of excited states [39, 40], i.e. diagonal finite volume form
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factors. The situation for non-diagonal form factors has yet to be understood at the same
level, and our paper aims to advance precisely this direction. In other words, we would like
to formulate an LM-type description for non-diagonal form factors at finite volume by going
beyond the results which are available in the literature.

In the case of non-diagonal finite volume form factors, the polynomial corrections are
due to changing the normalisation of the states [41]. The leading exponential corrections
can be calculated by examining the analytical structure of two-point functions at finite
volume [42, 43]. By identifying and evaluating the singularities of two-point functions in
momentum space, both the finite size spectrum and the finite volume form factors can
be systematically computed. Although this approach works beyond the leading Lüscher
correction, it is technically very challenging to calculate higher-order Lüscher terms. A
significant simplification would involve the LM-type formula which was obtained for two-point
functions, i.e. for bilocal operators [44]. By analysing the large separation limit of the two
operators and inserting a complete system of finite volume states between them, it is possible
to focus on the contribution of each excited state. We would expect this approach to allow
us to extract finite volume form factors, however the projection to a given excited state does
not turn out to be very straightforward. That is why we take a different route here.

Our approach introduces the LM-type formulation of the excited state expectation value
for two-point functions and analyses their large separation limit. This is in spirit similar to
the approach that was taken in [45] for calculating certain 3-point functions in the AdS/CFT
correspondence. The dominant contribution in this limit comes from the vacuum, which
is easy to separate and elaborate. The resulting computational framework allows us to
determine systematically the finite size corrections of non-diagonal form factors.

Here’s the outline of our paper. In section 2, we introduce all the fundamental quantities
that are needed for our calculations. These include the infinite volume scattering matrix
and form factors (together with their relevant properties), the definition of finite volume
states and form factors, the exact description of the finite volume spectrum in terms of
pseudo-energies (which satisfy the excited state TBA equations), and the leading behaviour
of the finite volume form factor. At the beginning of section 3, we recall the LM-type formula
for bilocal operators and its large separation limit, together with the relation between the
physical and the mirror channels. We then generalise this formula for excited states. We
show that its leading behaviour in the large separation limit contains finite volume form
factors and a factor which grows exponentially in the exact finite volume energy difference
between the ground and the excited state. Section 4 deals with the evaluation of finite
volume form factors in the first three Lüscher orders. We proceed order by order by gradually
introducing simplifications. We provide detailed evaluations for the first two Lüscher orders,
while presenting only the idea of the calculation and the results for the third order. Finally,
we conjecture the generic structure of the all-order result and present our findings (up to
third order) in this language. Section 5 contains the definition of all-order non-diagonal
connected form factors and the graph rules with which we evaluate them. Section 6 explains
how our result can be extended from a one-particle state to multiparticle states. In section 7
we focus on the finite size form factors of the non-local σ-field in the free massive fermion
theory. We demonstrate that our approach indeed reproduces the non-trivial result of the
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Figure 1. Graphical representation of the scattering matrix S(θ1 − θ2).

literature [46]. We conclude in section 8 by also providing an outlook. The various technical
details are relegated to five appendices. In appendix A we expand the energy difference in
Lüscher orders, while in appendix B we do it in the excited state filling fraction. Appendix C
explains the singularity structure of one of the simplest connected form factors. Appendix D
contains the calculation of the most involved third order diagram, while appendix E provides
details on the calculation of free fermion form factors at finite size.

2 Preliminaries

Our aim is to express the finite volume matrix element (or form factor) of a local operator
O in terms of the infinite volume form factor FO and the scattering matrix of the theory
S. We consider integrable relativistic theories with a single particle type of mass m. We
also neglect bound state formation.1 The 2→ 2 scattering matrix S(θ1 − θ2), see figure 1,
is a single function of the rapidity difference, which satisfies unitarity S(θ)S(−θ) = 1 and
crossing S(iπ − θ) = S(θ). We have the sinh-Gordon theory in mind, but our considerations
can be easily generalised to any theory with diagonal scattering.

A N -particle state at finite volume can be parametrised by the momenta of the particles
{p̄i}, or alternatively by their rapidities {θ̄i}, where p̄i = m sinh θ̄i. The energy of the particle
will be denoted by ēi = m cosh θ̄i. We distinguish the physical rapidities from the rapidities
appearing in the thermal formulation by a bar. The physical rapidities are determined by
the exact quantisation conditions

ϵN

(
θ̄i + iπ

2

)
= iπ(2ki + 1), (2.1)

where {ki} are integers and the pseudo-energy satisfies the excited state TBA equation

ϵN (θ) = mL cosh θ +
N∑

i=1
log S

(
θ − θ̄i −

iπ

2

)
−
∫

dθ′

2π
φ(θ − θ′) log(1 + e−ϵN (θ′)). (2.2)

Here L is the volume, the integral kernel is related to the scattering matrix by φ(θ) =
−i∂θ log S(θ), while P =

∑
i

2πki
L is the total momentum. In all integrals, if not explicitly

stated otherwise, we integrate along the real line. The energy of a N -particle state is given by

EN ({θ̄i}) =
N∑

i=1
m cosh θ̄i −m

∫
dθ

2π
cosh θ log(1 + e−ϵN (θ)). (2.3)

1Boundstate formation implies that a single particle is described by more than one rapidity in the TBA
formulation. This would make the presentation more technical, however, our multiparticle result, with
appropriately placed rapidities can describe those theories, too.
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For the vacuum state N = 0 thus the sums, as well as the quantisation conditions, are absent.
The finite volume spectrum is discrete and the finite volume states

|θ̄1, . . . , θ̄N ⟩L, (2.4)

are symmetric and normalised to Kronecker delta functions2

L⟨θ̄1, . . . , θ̄N |θ̄′1, . . . , θ̄′N ′⟩L = δNN ′δk1,k′
1

. . . δkN ,k′
N

. (2.5)

We are interested in the finite volume form factors:

L⟨0|O|θ̄1, . . . , θ̄N ⟩L, (2.6)

which we would like to express in terms of the pseudo energies {ϵ0, ϵN} and the infinite
volume form factors

⟨0|O|θ1, . . . , θN ⟩ = FO(θ1, . . . , θN ). (2.7)

The infinite volume form factors (2.7) are the matrix elements of the local operator O between
asymptotic states. The initial states |θ1, . . . , θN ⟩ (with θ1 > · · · > θN ) are connected to the
final states |θN , . . . , θ1⟩ by the multiparticle S-matrix, which factorises into two-particle scat-
terings. As a result (infinite volume) form factors satisfy the permutation symmetry property

FO(θ1, . . . , θi, θi+1, . . . , θN ) = S(θi − θi+1)FO(θ1, . . . , θi+1, θi, . . . , θN ). (2.8)

More complicated matrix elements can be obtained from the crossing property, see figure 2,
which reads

⟨θ|O|θ1, . . . , θN ⟩ = FO(θ + iπ, θ1, . . . , θN ) = FO(θ1, . . . , θN , θ − iπ), (2.9)

and we have assumed that θ ̸= θi (i = 1, . . . , N). In case of coinciding rapidities we have
extra singular terms, which manifest themselves as kinematical singularities of form factors

FO(θ + iπ + iε, θ, θ1, . . . , θN ) = 1
ε

(
1−

N∏
i=1

S(θ − θi)
)

FO(θ1, . . . , θN ) + . . . (2.10)

Infinite volume states are normalised to the Dirac delta function as ⟨θ|θ′⟩ = 2πδ(θ − θ′),
while finite volume states to the Kronecker delta function. In changing between the two
bases in the large volume limit we need the Jacobian

ρN = det
j,k

∂θ̄k
(−iϵN (θ̄j + iπ/2)). (2.11)

At large distances (when exponentially small corrections in the volume are neglected) the
integral terms are absent from both the TBA (2.2) and the energy equations (2.3). At this
polynomial order the finite and infinite volume form factors are related by simply changing
the normalisation of states

L⟨0|O|θ̄1, . . . , θ̄N ⟩L = FO(θ̄1, . . . , θ̄N )√
ρN
∏

i<j S(θ̄i − θ̄j)
+ O(e−mL). (2.12)

2The phase of the state is not fixed and we have the freedom to choose it in a convenient way.
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Figure 2. Graphical representation of the form factor crossing property.

The normalization of the finite volume state does not fix its phase, that is why we have
included the phase factor

∏
i<j S(θ̄i − θ̄j), which makes the finite volume state symmetric.

The aim of our paper will be to systematically calculate all the exponentially suppressed
corrections in (2.12). These corrections appear in ρN , but also modify the form factor in
the numerator by the contribution of virtual particles (which circle around the finite volume
and are created/absorbed by the operator). We will extract these terms by analysing the
large separation behaviour of the excited state two-point functions.

3 Excited state expectation values of bilocal operators

In order to extract finite volume form factors, we analyse the excited state expectation values
of bilocal operators in the limit when the two operators are taken far apart. As a warmup,
we first go through the analogous procedure for vacuum state expectation values.

3.1 Vacuum expectation values of bilocal operators

Let us analyse the following finite volume matrix element

L⟨0|O1(x, t)O2(0, 0)|0⟩L, (3.1)

where we assume that t > 0, i.e. the operators are time ordered (see the left of figure 3). By
inserting a complete system of finite volume energy-momentum eigenstates we can write

L⟨0|O1(x, t)O2(0, 0)|0⟩L =
∑

|θ̄1,...,θ̄N ⟩L

L⟨0|O1|θ̄1, . . . , θ̄N ⟩L L⟨θ̄1, . . . , θ̄N |O2|0⟩L e−it(EN−E0)+ixPN ,

(3.2)

where we used that eiHt−iP xO(0, 0)eiP x−iHt = O(x, t) and denoted O(0, 0) by O. We then
put x = 0 and analytically continue to imaginary time t = −iy with y > 0. This way we can
suppress the contribution of excited states, so that in the large separation limit (y → ∞),
only the ground state survives:

L⟨0|O1(0,−iy)O2|0⟩L → L⟨0|O1|0⟩L L⟨0|O2|0⟩L, (3.3)

and the results factorise. That is why this limit is often called the clustering limit.
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Figure 3. Graphical representation of the finite volume two-point function in the physical (finite
volume) and in the mirror (finite temperature) channel.

The finite volume expectation value of the bilocal operator can be calculated in the
thermal channel, when the operators are space-like separated. In order to connect the finite
volume formulation (“physical channel”) to the finite temperature one (“mirror channel”), we
first need to continue the time (x, t)→ (x, y = it) from Minkowskian to Euclidean signature.
We then perform a rotation (x, y)→ (y,−x), and analytically continue back to Minkowskian
signature (y,−x) → (y, τ = −ix). With this procedure we obtain (see figure 3),

L⟨0|O1(x, t)O2(0, 0)|0⟩L → ⟨Ω|O2(0, 0)O1(y, τ)|Ω⟩, (3.4)

where we assumed that the operators do not have any spin(otherwise they should also be
rotated). The thermal state (corresponding to the inverse temperature L) which minimizes
the free energy is denoted by Ω. A LM-type of formula was derived for this expectation
value in [44]:

⟨Ω|O2(0, 0)O1(y, τ)|Ω⟩ =
∞∑

n=0

1
n!

n∏
i=1

∫
dθi

2π

1
1 + eϵ0(θi)

F 12
c (θ1, . . . , θn), (3.5)

where ϵ0 is the pseudo energy of the ground state TBA, and F 12
c (θ1, . . . , θn) is the connected

diagonal form factor of the bilocal operator O2(0, 0)O1(y, τ), which is given by the finite
ε-independent part of the almost diagonal matrix element

F 12
c (θ1, . . . , θn) = FP.F 12(θ1 + iε1, . . . , θn + iεn|θn, . . . , θ1). (3.6)

= FP.⟨θ1 + iϵ1, . . . , θn + iϵn|O2(0, 0)O1(y, τ)|θn, . . . , θ1⟩.

The main result of the paper [44] was to express the form factors of bilocal operators
in terms of the form factors of their constituent operators:

F 12({ϑ}In |{θ}Im) =
∞∑

N=0

1
N !

∫
R−iα

N∏
i=1

dµi

2π

∑
A+∪A−=Im

∑
B+∪B−=In

Ky,τ ({µ}, {ϑ}B− |, {θ}A+)

F 2 ({ϑ}B+ + iπ, {θ}A− , {µ}<) F 1 ({ϑ}B− + iπ, {µ}> + iπ, {θ}A+)
S({θ}A− , {θ}A+)S({ϑ}B− , {ϑ}B+), (3.7)

where the sets Im, A+, A− are ordered increasingly (e.g. Im = {1, . . . , m}), while the sets
In, B−, B+ are ordered decreasingly. The corresponding ordering of the µ-sets is indicated
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Figure 4. Graphical representation of the expansion of the bilocal form factor, for n = m = 4 and
specific A± and B±. Line crossings indicate S-matrix factors. The upper and lower lines connecting
the two circles denote the outgoing/incoming particles of the form factors. The black blob indicates
that the space-time dependent factor K is associated to the operator O1. To obtain the connected
form factor, we take ϑj = θj + iεj and collect all the ε-independent terms.

by their subscripts (>< respectively). We also denote the rapidities of the incoming particles
by {θ}, whereas the outgoing rapidities are denoted by {ϑ}. The kinematical factor is
then given by

Ky,τ ({α}|{β}) = e
imτ

(∑
j

cosh αj−
∑

k
cosh βk

)
e
−imy

(∑
j

sinh αj−
∑

k
sinh βk

)
, (3.8)

by assuming also that y2 − τ2 > 0, for y > 0. For y < 0 there is an analogous ordering
with oppositely shifted µ-integration. A graphical representation is shown in figure 4, for
n = m = 4 and a specific choice of the sets A±, B±. To obtain the connected form factor we
need to take ϑj = θj + iεj and project onto the ε-independent term. The connected form
factor is symmetric in all its arguments and regular for coinciding rapidities. Actually for
coinciding rapidities, the form factor can be expressed in terms of connected form factors
with less particles [39]. This follows from the kinematical singularity property of the form
factors (2.10). Note also that this property extends to bilocal operators, as do other form
factor properties (e.g. (2.8), (2.9)).

In the large separation limit, we take τ = 0 and y → ∞, which implies that some
exponents oscillate fast. The leading y-independent behaviour comes from terms without
µ integrals and for B− = A+. In these terms, the K-factor is absent, the S-matrix factors
cancel out and the connected form factors can be calculated separately for each of the two
operators [44]. Thus the whole formula factorises into the product of two usual LM formulae
(one for each operator) and we recover the clustering behaviour (3.3). In the following, we
repeat the above analysis for the excited state expectation value of bilocal operators.

3.2 Excited state expectation value of bilocal operators

Let us now analyse the following excited state two point function on the cylinder:

L⟨θ̄|O1(x, t)O2(0, 0)|θ̄⟩L, (3.9)

– 8 –
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Figure 5. Graphical representation of the finite volume excited state two-point function in the
physical (finite volume) and in the mirror (finite temperature) channel.

where again t > 0 and |θ̄⟩L is a finite volume one-particle state. We start with a one-particle
state, but later we explain how to generalise to multiparticle states. We can again insert
a complete finite volume basis to get

L⟨θ̄|O1(x, t)O2(0, 0)|θ̄⟩L =∑
|θ̄1,...,θ̄N ⟩L

L⟨θ̄|O1|θ̄1, . . . , θ̄N ⟩L L⟨θ̄1, . . . , θ̄N |O2|θ̄⟩Leit(E1−EN )−ix(P1−PN ). (3.10)

By taking x = 0 and continuing to imaginary time t = −iy (where y > 0), we can suppress
the excited states in the y →∞ limit, so that the ground state’s contribution will dominate
and diverge as

L⟨θ̄|O1(0,−iy)O2|θ̄⟩L → L⟨θ̄|O1|0⟩L L⟨0|O2|θ̄⟩Le(E1−E0)y + O(1). (3.11)

Thus the leading exponentially growing behaviour factorises into three terms: one depending
only on the operator O1, another that depends only on O2, and the third one which is
given by the space-time y-dependent exponential (where y is multiplied by the exact finite
volume energy difference of the vacuum and the one-particle state). We are after the two
finite volume form factors of O1 and O2.

Let us see how they can be calculated in the thermal channel (see figure 5). After
performing a double Wick rotation, we arrive at the formula:

L⟨θ̄|O1(x, t)O2(0, 0)|θ̄⟩L → ⟨Ω1|O2(0, 0)O1(y, τ)|Ω1⟩, (3.12)

where Ω1 refers to the excited state in the thermal formulation, that is the state which
minimizes the free energy in the presence of a physical particle.

Analytical continuation can be used to extend the vacuum state LM formula (3.5) to
the expectation values of local operators in excited states [39]. The derivation relies on
the special property of connected form factors that describes their behavior for coinciding
rapidities. As this property originates from the kinematical singularity axiom (2.10), it is
also shared by connected form factors of bilocal operators. The generalisation of the LM
formula turns out to be very similar. Let us spell out the details for the case of an excited
one-particle state. It consists two pieces:

⟨Ω1|O1(x, t)O2(0, 0)|Ω1⟩ = D1

ρ1(θ̄)
+D0. (3.13)
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The simpler piece D0 looks very much like the vacuum formula (3.5)

D0 =
∞∑

n=0

1
n!

n∏
i=1

∫
dθi

2π

1
1 + eϵ1(θi)

F 12
c (θ1, . . . , θn), (3.14)

but now ϵ1 is the pseudo-energy of the excited state TBA (2.2). The complicated part D1,
involves the particle’s rapidity θ̄. It reads:

D1 =
∞∑

n=0

1
n!

n∏
i=1

∫
dθi

2π

1
1 + eϵ1(θi)

F 12
c

(
θ1, . . . , θn, θ̄ + iπ

2

)
. (3.15)

The connected form factor of the bilocal operator F 12
c is given by the same infinite volume

quantity that we defined for the vacuum state expectation values in (3.6), when one of its
arguments is analytically continued to the physical channel θ → θ̄+ iπ

2 . Because connected form
factors are symmetric in all their arguments, it does not matter which argument is analytically
continued. Here, we found it slightly simpler to analytically continue the last argument.

Let us now locate the exponentially growing term in the clustering limit. In doing so
we set x = iτ = 0 and analyse the limit y → ∞. Terms in D0 behave qualitatively as the
vacuum state expectation value and do not lead to exponential growth. The exponentially
growing term can only come from Ky,0({µ}, {ϑ}B− |, {θ}A+) in D1:

Ky,0({µ}, {ϑ}B− |{θ}A+) = e−imy(
∑

B− sinh ϑj+
∑

k
sinh µk−

∑
A+ sinh θj). (3.16)

In F 12
c (θ1, . . . , θn, θ), the last argument is analytically continued to θ → θ̄ + iπ/2. Since

sinh θ → i cosh θ̄, a diverging term of the form eym cosh θ̄ requires that ϑ = θ + iϵ ∈ B−

and θ /∈ A+.
In the following, we analyse systematically the clustering limit, order by order in D1.

This involves expanding (3.15) in the number of thermal particles (θi integrals). The expected
behaviour is given by (3.11),

D1 → F̄ 1(θ̄)LF 2(θ̄)Ley(E1−E0), (3.17)

where the sought for finite volume form factors appear as

L⟨θ̄|O1|0⟩L = F̄ 1(θ̄)L√
ρ1(θ̄)

, L⟨0|O2|θ̄⟩L = F 2(θ̄)L√
ρ1(θ̄)

. (3.18)

Observe that we are free to move an operator-independent (phase) factor between the two
expressions, as they cancel in the product. This is related to the freedom we have in choosing
the phase of the one-particle state |θ̄⟩L.

The fact that the exact finite volume energy difference between the one-particle and the
vacuum state exponentiates is highly non-trivial. We are going to calculate each quantity
systematically by taking into account higher and higher order exponential volume corrections.
We organize the results according to the order of the exponential volume corrections:

E1 − E0 = m cosh θ̄ + ∆1E + ∆2E + . . . (3.19)

F 2(θ̄)L = F 2
(
1 + ∆1F 2 + ∆2F 2 + . . .

)
(3.20)

F̄ 1(θ̄)L = F 1
(
1 + ∆1F̄ 1 + ∆2F̄ 1 + . . .

)
, (3.21)
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Figure 6. Zero and first order diagrams in the connected bilocal form factors.

where we have also used the fact that for scalar operators the infinite volume one-particle
form factors F 1 and F 2 are constants. By inspecting the large volume behaviour of the
TBA pseudo-energies, we see that their leading term is always mL cosh θ. As a result, the
expansion can be organised in the small parameter e−mL cosh θi with integrations for θi. In
this case ∆k denotes the product of k such terms. Alternatively, we could choose either
e−ϵ0 or e−ϵ1 as small parameters and expand the other one around it. It will turn out to be
even more advantageous to choose n = (1 + eϵ1)−1 as the small parameter, in which case
∆k denotes the products of k such terms.

4 Evaluating the clustering limit order by order

In this section we evaluate the clustering limit of the excited state expectation value of the
bilocal operator order by order in the exponentially small finite volume corrections.

4.1 Zero order: infinite volume result

By recalling the leading order behaviour of the finite volume form factors as well as the
energy differences in (3.19), the clustering limit should take the form

D1 → F 1F 2eym cosh θ̄ = F 1F 2eyē . (4.1)

To recover this result we have to take the n = 0 term in D1. This amounts to evaluate the
connected form factor with only one rapidity ϑ = θ + iε and θ. Exponential growth requires
B− = {ϑ}, B+ = ∅ and A− = {θ}, A+ = ∅ . This term is indicated on the left diagram
of figure 6. As the expression is regular, we can take ε = 0. The leading term after the
θ → θ̄ + iπ

2 analytical continuation takes the expected form

F 12
c (θ̄ + iπ/2) = F 1F 2eyē . (4.2)

Let us note that for each µ integral there is a corresponding exponential factor e−iym sinh µ

which oscillates fast and together with the shifts becomes suppressed in the y → ∞ limit.
Observe also that in doing the analytical continuation we do not hit any (kinematical)
singularity of the form factor, thus all the µ integrals can be neglected. This extends to
any higher order terms, too.
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4.2 First order: Lüscher correction

At the next order in the exponentially suppressed volume corrections the terms which survive
in the clustering limit in (3.19) take the form

D1 → F 1F 2eyē(1 + ∆1F̄ 1)(1 + ∆1F 2)ey∆1E (4.3)
→ F 1F 2eyē(1 + ∆1F̄ 1 + ∆1F 2 + y∆1E) + . . . .

At this order we have to take the n = 1 term in (3.15), i.e. we have a single integral with
a thermally suppressed factor ∫

dθ1
2π

F 12
c (θ1, θ)

1 + eϵ1(θ1) . (4.4)

The exponentially growing term requires that ϑ ∈ B− and θ ∈ A−. As these extra particles
always connect to different operators, the corresponding form factor is never singular in
the ε → 0 limit, which limit can be taken from the start. We thus have to analyse the
F 12(θ, ϑ1|θ1, θ) form factor with ϑ1 = θ1 + iε1. By definition the connected form factor is
the O(1) term in ε1. Actually, being the connected form factor of a bilocal operator, it
should be regular for ε1 → 0. This is true for the full expression, but it is not true term
by term as we will see.

The rapidities ϑ1, θ1 can be connected to each operator in two different ways: B+ = {ϑ1}
or B+ = {∅} and independently A+ = {θ1} or A+ = {∅}. We can combine them in all
possible ways, see figure 6, which we analyse one by one:

1. B+ = {ϑ1}, A+ = {∅} and the contribution is

F 2(ϑ1 + iπ, θ1, θ)F 1e−iym sinh θ . (4.5)

The form factor of the first operator has a singular piece in ε1 originating from the
kinematical singularity axiom of the form

F 2(ϑ1 + iπ, θ1, θ) = s1
ε1

F 2 + F 2
c (θ1 + iπ, θ1, θ) + O(ϵ) , (4.6)

where s1 = 1 − S1, with S1 = S(θ1 − θ) = S(θ1 − θ̄ − iπ
2 ) and we defined the O(1),

finite term to be the connected part of this partially diagonal form factor. This is
not the same, how the connected form factor was defined in [42, 43] and differs in an
O(1) term. It is related to the freedom, how we normalize the individual states and
the freedom, that we can freely move terms between the form factors of incoming and
outgoing states. Of course when we put together the two form factors in the two-point
function the result has to be invariant. We will come back to this freedom when we
formulate an ansatz for the all order finite volume form factor.

2. B+ = {ϑ1} and A+ = {θ1} with contribution

F 2(ϑ1 + iπ, θ)F 1(θ + iπ, θ1)S1e−iym(sinh θ−sinh θ1) . (4.7)

This term is regular for ε1 → 0. Clearly the remaining contribution is not factorising
due to the integration for θ1, which connects the two operators. The exponent eiym sinh θ1

– 12 –
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however, upon integration, will suppress the contribution in the y →∞ limit. To make
this more precise we could shift the θ1 integration as θ1 → θ1 + iδ1 with δ1 > 0 , but
infinitesimally small. Then the exponent will vanish in the y →∞ limit and this term
will not contribute to the clustering limit.

3. B+ = {∅} and A+ = {∅} contributing as

F 2(θ1, θ)F 1(θ + iπ, ϑ1 + iπ)e−iym(sinh θ+sinh ϑ1) . (4.8)

Using similar argumentations to the previous case, we can see that this term will not
contribute either. In particular, the θ1 → θ1 + iδ1 shift with δ1 > 0 can be analytically
continued to δ1 < 0 without hitting any singularity of the integrand, which guaranties
a decaying exponent in the y →∞ limit.

4. Finally, B+ = {∅} and A+ = {θ1} gives

F 2F 1(θ + iπ, ϑ1 + iπ, θ1)S1e−iym(sinh θ+sinh ϑ1−sinh θ1) . (4.9)

The singular piece takes the form

F 1(ϑ1 + iπ, θ1, θ − iπ) = −s1S−1
1

ε1
F 1 + F 1

c (θ1 + iπ, θ1, θ − iπ) + O(ϵ) . (4.10)

The singular piece has two effects. First, it cancels the similar singular term coming
from 1, such that the total expression is finite in the ε1 → 0 limit. Second, in the limit
we also have to take into account the ε1-dependence in the exponent in (4.9) coming
from ϑ1 = θ1 + iϵ1, thus it gives an extra term by differentiating the exponent:

−s1F 2F 1ym cosh θ1e−iym sinh θ . (4.11)

The total contribution after the analytical continuation is then

eyē
(

F 2
c

(
θ1 + iπ, θ1, θ̄ + i

π

2

)
F 1 + F 2F 1

c

(
θ1 + iπ, θ1, θ̄ − i

π

2

)
S1 − s1F 1F 2ym cosh θ1

)
.

(4.12)

These terms should agree with the terms in (4.3) one by one. Let us see how they match.
When we organise the expansion in powers of the symbol Li = e−mL cosh θi and keep the

leading order (denoted by ∆1) we have to expand the integration measure as

1
1 + eϵ1(θ1) = e−ϵ1(θ1) + · · · = S−1

1 L1 + . . . ; L1 = e−mL cosh θ1 . (4.13)

This gives the following y-dependent piece

∆1E = −y

∫
dθ1
2π

(S−1
1 − 1)e1L1 ; ei = m cosh θi . (4.14)

This is indeed the leading exponentially small term in the energy difference, see appendix A
for the expansion of the energy difference.
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The analogous correction for the form factors are

F 2∆1F 2 =
∫

dθ1
2π

F 2
c

(
θ1 + iπ, θ1, θ̄ + i

π

2

)
S−1

1 L1 , (4.15)

and
F 1∆1F̄ 1 =

∫
dθ1
2π

F 1
c

(
θ1 + iπ, θ1, θ̄ − i

π

2

)
L1 . (4.16)

Let us note that these expressions agree with [42] up to an operator independent phase factor,
which are related to different normalizations of the one-particle states. This is also related
how we defined the connected form factors. The alternative definitions in [42] add a term to
F 2∆1F 2 and subtract the same term from F 1∆1F̄ 1, such that the sum is the same.

In summarising, we have seen that the singular terms in ε completely cancelled each
other. This is indeed expected from the connected form factor and it must happen also at
higher orders. We have also seen that the µ integrals are decaying in the clustering limit, so
we can completely neglect them. By shifting the θ1 integral we could also get rid off other
terms with unbalanced exponential factors. This will be also true at higher orders.

4.3 Second Lüscher correction

At the second Lüscher order when we take the clustering limit the correction terms (3.19)
have the form

1
2y2(∆1E)2 + y∆2E + y∆1E(∆1F 1 + ∆1F 2) + ∆1F 1∆1F 2 + ∆2F 1 + ∆2F 2 . (4.17)

If we were interested only in ∆2F then we could just locate the contributing diagrams and
evaluate them. For consistency, however we decided to evaluate all terms as we also would
like to confirm that our method is consistent. Indeed, we will see that this approach pays
off, since there are terms whose contributions are easy to miss, but they are relevant for
the correctness of the results.

We start by pointing out that the already calculated first order terms also contribute
at the second and higher Lüscher orders. Indeed, by expanding the measure∫

dθ1
2π

1
1 + eϵ1(θ1) =

∫
dθ1
2π

(e−ϵ1(θ1) − e−2ϵ1(θ1) + . . . ) (4.18)

=
∫

dθ1
2π

{
S−1

1 L1

(
1 +

∫
dθ2
2π

φ12S−1
2 L2 + . . .

)
− S−2

1 L2
1 + . . .

}
,

we get corrections which contribute to both form factors and energy differences. Here we just
displayed the ∆1 and ∆2 terms, but they appear at any ∆k. It is thus technically simpler to
perform the expansion directly in the excited state filling fraction

ni = 1
1 + eϵ1(θi)

, (4.19)

and express the energy difference at every order in terms of polynomials of ni and S-matrix
factors, since this term will not contribute at any higher ni orders. This is completely
analogous to the usual LM formula, which uses the filling fraction and connected form factors
to organize the result. At the leading ∆1 order expansion in ni or Li give the same result.
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1. 2. 3. 4. 5. 6.

Figure 7. Contributing diagrams at second order in the clustering limit.

Since whenever the symbol ni appears we also have an integration
∫ dθi

2π , we do not write this
integration out explicitly. With this convention the first order results read as

∆1E = −ye1s1n1 ; ∆1F 2 = F 2(1)n1 ; ∆1F̄ 1 = F̄ 1(1)n1 , (4.20)

where we also streamlined the notation by introducing

F 2(1) = F 2
c

(
θ1 + iπ, θ1, θ̄ + i

π

2

)
/F 2 ; F̄ 1(1) = F 1

c

(
θ1 + iπ, θ1, θ̄ − i

π

2

)
S1/F 1 . (4.21)

Clearly these terms will not contribute to higher orders in the expansion in the ni-s. The
k-th order term in the ni expansion contains exactly k number of ni factors. In the following
∆k in (3.19) collects the contribution of those terms. We are now ready to calculate the
second order.

At the second order we take the n = 2 term in D1, which has two integrations (not
written out explicitly)

1
2n1n2F 12

c (θ1, θ2, θ) . (4.22)

We thus need to evaluate F 12
c (θ1, θ2, θ) and continue in θ to θ → θ̄ + iπ/2. There are

16 diagrams which contribute to the exponential growth emy cosh θ̄ (after the analytical
continuation). Let us premise that those diagrams in which |B−| ̸= |A+| will not survive
in the clustering limit. These diagrams have different number of incoming θi and outgoing
ϑj rapidities. Consequently, in the exponent some unbalanced, oscillating sinh θi or sinh θj

terms remain (after putting all ε-s to zero) which suppress the contribution. This is similar
what happened at the previous order. Thus the contributing diagrams are those, which are
displayed in figure 7, which we analyse one by one. In order to focus on the corrections we
factor out the leading order result F 1F 2eiym sinh θ from each term. We start with the first
four diagrams, which individually are singular in the ε-s, but regular when summed up.

1. Let us see the contribution of the first diagram:

F 2(ϑ2 + iπ, ϑ1 + iπ, θ1, θ2, θ)/F 2 . (4.23)

Since ϑj = θj + iεj we have singular terms in the εs, originating from the kinematical
singularities of the form factor. Applying successively the kinematical singularity
property we arrive at

F 2(θ2 + iπ + iε2, θ1 + iπ + iε1, θ1, θ2, θ)/F 2 = A12
ε1ε2

+ A1
ε1

+ A2
ε2

+ F 2(1, 2) + . . . , (4.24)
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where the ellipses denote terms with ratios or higher order terms in εs, which do not
contribute to the connected evaluation. We abbreviated the connected form factor after
removing the zeroth order term as

F 2
c (θ2 + iπ, θ1 + iπ, θ1, θ2, θ) = F 2F 2(1, 2) . (4.25)

The A-coefficients turn out to be (see section 5)

A12 = s1s2 ; A1 = s1F 2(2) + S1s2φ12 ; A2 = s2F 2(1) + s1φ21 , (4.26)

where, as before, si = 1 − Si. Clearly, the whole expression is not symmetric in θ1
and θ2. Since similar objects appear at every order in the calculation we develop a
diagrammatic technique in section 5 to evaluate these expressions and define the basis
of connected form factors, which appears at the various orders in the finite volume
expansion. Singular terms in ε-s must be cancelled by other terms in the expansion.
Let us see how this happens.

2. The contribution of the second diagram is

F 2(ϑ1 + iπ, θ1, θ)/F 2F 1(ϑ2 + iπ, θ2, ϑ− iπ)/F 1S2e−imy(sinh ϑ2−sinh θ2) =(
s1
ε1

+ F 2(1)
)(
−s2

ε2
+ F̄ 1(2)

)
(1 + yε2e2) + . . . . (4.27)

3. The similar contribution of the diagram in which we crossed the particles is

F 2(ϑ2 + iπ, θ2, θ)/F 2F 1(ϑ1 + iπ, θ1, ϑ− iπ)/F 1S(ϑ2 − ϑ1)S12S1e−imy(sinh ϑ1−sinh θ1) =(
s2
ε2

+ F 2(2)
)(
−s1

ε1
+ F̄ 1(1)

)(
1+ (ε1 − ε2)φ12 − ε1ε2

(
iφ′

12 + φ2
12

))
(1 + yε1e1) + . . . .

(4.28)

where S12 = S(θ1− θ2). Due to this crossing we also had to expand the S-matrix factor
S(ϑ2 − ϑ1) in the ε-s which introduced further asymmetry in 1 and 2.

4. The contribution of the fourth diagram is

F 1(ϑ2 + iπ, ϑ1 + iπ, θ1, θ2, ϑ− iπ)/F 2S1S2e−im(sinh ϑ1+sinh ϑ2−sinh θ1−sinh θ2) =(
Ā12
ε1ε2

+ Ā1
ε1

+ Ā2
ε2

+ F̄ 1(1, 2)
)(

1 + yε1e1 + yε2e2 + y2ε1e1ε2e2
)

+ . . . , (4.29)

where Ā can be obtained from A by replacing Si with S−1
i and multiplying with S1S2:

Ā12 = s1s2 ; Ā1 = −s1F̄ 1(2)− s2φ12 ; Ā2 = −s2F̄ 1(1)− S2s1φ21 . (4.30)

5. The contribution of the fifth diagram is

F 2(ϑ1 + iπ, ϑ2, θ)/F 2F 1(ϑ2 + iπ, θ1, ϑ− iπ)/F 1S12S1e−iym(sinh ϑ2−sinh θ1) =

F 2(θ1 + iπ, θ2, θ)/F 2F 1(θ2 + iπ, θ1, θ − iπ)/F 1S12S1e−iy(p2−p1) + . . . , (4.31)

where we could safely put the ε-s to zero and denoted the momentum by pi = m sinh θi.
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6. The similar contribution of the last diagram is

F 2(ϑ2 + iπ, θ1, θ)/F 2F 1(ϑ1 + iπ, θ2, ϑ− iπ)/F 1S(ϑ2 − ϑ1)S2e−iym(sinh ϑ1−sinh θ2) =

F 2(θ2 + iπ, θ1, θ)/F 2F 1(θ1 + iπ, θ2, θ − iπ)/F 1S21S2e−iy(p1−p2) + . . . , (4.32)

where we could again safely put the ε-s to zero.

The connected form factor F 12
c (θ1, θ2, θ) is the finite, ε-independent part of the sum of the

six diagrams above. One can easily check that all singular terms in the ε-s cancel. Being
a connected form factor the result is a symmetric function in the rapidities, and regular
whenever they coincide. In particular, the result is symmetric in 1 and 2 and regular for
θ1 = θ2. This is true for the sum of the diagrams, but not for the individual diagrams.

We are interested in the clustering limit of the result. The contribution of the first four
terms does not have any exponentially oscillatory part and survive in the y →∞ limit. The
last two terms are more tricky. Naively we would drop these terms due to the oscillations in
the exponent, however this is not correct as the integrands develop singularities for θ1 = θ2,
whose residues do not oscillate. In oder to calculate their contributions carefully we shift
the integration contours as θ1 → θ1 + iδ1 and θ2 → θ2 + iδ2 with δ1 > δ2 > 0. Since the
connected form factor is regular in θ1 and θ2 in the vicinity of the real line, this is a safe
operation which does not change the result. With this regularization each individual diagram
gives a finite contribution and we are ready to investigate the y → ∞ limit. In order to
see how the exponents behave we note that e−iypj ∼ eyej sin δj . This implies that e−iy(p2−p1)

grows as eye2 sin δ2 and we need to analytically continue in δ2 to negative, i.e. we need to
shift the θ2 integration below the real line. As δ1 > δ2 there is no singularity in θ2 and after
the shift we can safely drop the contribution of the fifth diagram. In the sixth diagram,
however, we have a growing factor e−iyp1 ∼ eye1 sin δ1 and we have to shift the θ1 integration
below the real line. In doing so we have to pick up the residue of the integrand at θ2, which
follows from the kinematical singularity property

−2πiResθ1=θ2
n1
2π

n2
2π

(
is1

θ2 − θ1
+F 2(1)+ . . .

)(
− is2

θ1 − θ2
+ F̄ 1(2)+ . . .

)
S21e−iy(p1−p2) . (4.33)

After evaluating the residues and integrating by parts in the term in′
2n2s2

2 we arrive at

n2
2s2

{
−s2 (ye2 + φ(0)) + F̄ 1(2) + F 2(2)

}
. (4.34)

These residues are the terms where higher powers of the filling fractions appear, hence they
are instrumental to reproduce the exact energies.

By putting all the contributions together we successfully reproduce the lower order terms
and can extract the sought correction for the finite volume form factors

∆2F 1 + ∆2F 2 = 1
2n2

2s2
{
−s2φ22 + F̄ 1(2) + F 2(2)

}
+ (4.35)

1
2n1n2

{
F̄ 1(1, 2) + F 2(1, 2)−

[
s2F̄ 1(1) + s1F 2(2)

]
φ12 + s1s2φ2

12

}
,

where we have dropped the antisymmetric term 1
2n1n2s1s2iφ′

12, which vanishes under in-
tegration.
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1. 2. 3. 4. 5. 6. 7.

8. 9. 10. 11. 12. 13. 14.

Figure 8. Contributing diagrams at third order in the clustering limit.

Let us make a remark here: in integrating the connected form factors

1
2

∫
dθ1
2π

∫
dθ2
2π

n1n2
(
F̄ 1(1, 2) + F 2(1, 2)

)
, (4.36)

we have to be careful, as these objects are singular for θ1 = θ2 (see appendix C) and contain
a second order pole:3

F (1, 2) = − s1s2
(θ1 − θ2)2 +O(1). (4.37)

Thus keeping the prescription θ1 → θ1 + iδ1 and θ2 → θ2 + iδ2 for the connected form
factor integral is still necessary. The double pole, however, will not contribute. This is
because it gets multiplied with a measure factor 1

2n1n2 leading to the integrand of the form
−1

2f(θ1)f(θ2)/(θ1 − θ2)2 with f(θ1) = n(θ1)s(θ1). For an arbitrary function f(θ) the residue
of such a term is a total derivative:

Resθ1=θ2
f(θ1)f(θ2)
(θ1 − θ2)2 = 1

2
d

dθ2
f2(θ2), (4.38)

which vanishes under θ2-integration when f(θ) decays at the infinities, as in the case of
the filling fraction.

4.4 Third order correction

At the second order there were 5 graphs contributing in the clustering limit out of all the
16 graphs. At the third order we have 64 graphs out of which only 14 will have a non-zero
contribution in the clustering limit (see figure 8). As the calculation is quite cumbersome
we merely summarize the result here. In appendix D we demonstrate the most technically
involved calculation on diagram 11, when we had to deform two contours and after picking
up the residues we arrived at a single-integral term with measure factor n3

1.
After evaluating the diagrams, one needs to compare the result to the product of finite

volume form factor corrections and the exponentiated energy-difference (3.19) at third order

3As mentioned before, F 12
c (θ1, θ2, θ) is regular for θ1 = θ2, since the singularities cancel between diagrams

1, 4, 5 and 6, which are individually regulated by the contour shifts.
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in the excited state filling fraction ni. The y-dependent terms are

1
3!y

3(∆1E)3 + 1
2y2

(
(∆1E)2(∆1F̄ 1 + ∆1F 2) + 2∆2E

)
+y

(
∆3E + ∆2E(∆1F̄ 1 + ∆1F 2) + ∆1E(∆1F̄ 1∆1F 2 + ∆2F̄ 1 + ∆2F 2)

)
. (4.39)

which can be verified using the second order result for the form factor corrections and the
direct expansion (B.9) of the energy difference ∆E in terms of ni.

We found it useful to reorganize the y-independent part, i.e. the product of the finite
volume form factor corrections. This is because already at the second order (4.35) we
encountered terms such as −1

2n2
2s2

2φ22+ 1
2n1n2s1s2φ2

12, which cannot be associated naturally to
any of the operators. If we rather recollect these terms into a normalizing factor N 2 = 1+∆N 2

we can write (
1 + ∆F̄ 1

) (
1 + ∆F 2

)
=
(
1 + ∆N 2

) (
1 + ∆F̄1

) (
1 + ∆F2

)
, (4.40)

where ∆ means the full correction, i.e. the sum of all the ∆k orders. The newly defined
∆kF̄1, ∆kF2 constitute only from those terms at the kth order in ni, which contain connected
form factors of the respective operator. Then these corrections up to the second order
take the form:

∆1N 2 = 0 ; ∆2N 2 = −1
2n2

2s2
2φ22 + 1

2n1n2s1s2φ2
12 (4.41)

∆1F̄1 = F̄ 1(1)n1 ; ∆2F̄1 = 1
2n2

2s2F̄ 1(2) + 1
2n1n2

{
F̄ 1(1, 2)− s2F̄ 1(1)φ12

}
,

and one gets ∆F2 from ∆F̄1 by replacing the connected form factors F̄ 1(1, 2, . . . , N) with
F 2(1, 2, . . . , N).

The redefined expansion at third order looks as:

∆1F̄1∆2F2 + ∆2F̄1∆1F2 + ∆2N 2
(
∆1F̄1 + ∆1F2

)
+ ∆3N 2 + ∆3F̄1 + ∆3F2, (4.42)

and after subtracting the first few terms, which are already known from the previous orders, we
arrive at our new result (after permuting the integration variables many times to simplify it):

∆3N 2 + ∆3F̄1 + ∆3F2 =

φ11

(1
3n3

1s2
1(1− 2s1)− n1n2

2φ12s1s2S2

)
+ 1

3n1n2
2φ2

12s2(3s1s2 − s1 − 2s2)

+ n1n2n3

{
φ2

12φ13s2s3S1 + 1
3φ12φ23φ13(s1s2 + s1s3 − s1s2s3)

}

+
{

1
3n3

1s2
1 + n1n2φ12s2

(1
2n1 −

1
6n2s2 −

5
6n1s1

)
(4.43)

+ n1n2n3

(1
6s2s3φ12φ13 −

1
2S2s3φ12φ2,3

)}(
F̄ 1(1) + F 2(1)

)
+ 1

3!
(
ν12F̄ 1(1, 2) + ν21F 2(1, 2)

)
+ 1

3!n1n2n3
(
F̄ 1(1, 2, 3) + F 2(1, 2, 3)

)
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where we introduced the measure

ν12 = n1n2 ((2n1s1 + n2s2)− (φ23 + 2φ13) s3n3) . (4.44)

We may rewrite the terms in which this non-symmetric measure ν12 appears in a nicer way
(anti-symmetric terms disappear under integration) :

ν12F̄ 1(1, 2) + ν21F 2(1, 2) = νS
12

(
F̄ 1(1, 2) + F 2(1, 2)

)
+ νA

12

(
F̄ 1

A(1, 2)− F 2
A(1, 2)

)
, (4.45)

where νS
12 = (ν12 + ν21)/2, νA

12 = (ν12 − ν21)/2 and the antisymmetric part of the connected
form factors FA(1, 2) = (F (1, 2) − F (2, 1))/2 can be deduced from (5.11).

The last term on the r.h.s. of (4.45) takes the form

1
3!

{
n1n2φ2

12(s1 − s2)(n1s1 − φ13s3n3) (4.46)

+ 1
2n1n2 ((n1s1 − n2s2)− (φ13 − φ23) s3n3) φ12s2

(
F̄ 1(1) + F 2(1)

)}
,

and gives a correction to ∆3N 2, and also to the measure which multiplies single-argument
connected form factors F̄ 1(1) and F 2(1). These corrections appear in the formulae presented
in subsection 4.5. The symmetric part of the measure which multiplies the two-argument
connected form factor gives a term in ∆3F̄1:

1
3!ν

S
12F̄ 1(1, 2) = 1

4n1n2 ((n1s1 + n2s2)− (φ13 + φ23) s3n3) F̄ 1(1, 2). (4.47)

If we combine this term with that part of the second order correction ∆2F̄1 in which F̄ 1(1, 2)
appears, we get(1

2n1n2 + 1
3!ν

S
12

)
F̄ 1(1, 2) = 1

2n1n2

{
1 + 1

2 ((n1s1 + n2s2)− (φ13 + φ23) s3n3)
}

F̄ 1(1, 2).
(4.48)

We now collect what multiplies the single-argument connected form factor up to second
order, i.e. in ∆1F̄1 + ∆2F̄1:

µ1F̄ 1(1) = n1

{
1 + 1

2 (n1s1 − n2s2φ12) + . . .

}
F̄ 1(1), (4.49)

where we denoted this measure object as µ1, and by the ellipses we mean, that it will get
higher order corrections from ∆k≥3F̄1 as well. Notice that the measure appearing before the
two-argument connected form factor (4.48) is nothing but the product 1

2µ1µ2 truncated at
the third order. As the LO of µi is nothing but ni itself, the term 1

3!n1n2n3F̄ (1, 2, 3) is also
trivially consistent with the idea that the integration measure is factorizing. Note that as the
multivariate connected form factors F (1, 2, . . . , N) are not symmetric in their arguments, we
could also use their symmetrized version (4.51) as a basis, because the product µ1 . . . µN of
the measures projects out the non-symmetric part under integration.
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4.5 Organisation of the result

Now that we have calculated the finite volume corrections to the product of form factors
F̄ 1(θ̄)LF 2(θ̄)L up to the third order, we would like to understand the structure of the result.
There are many ways to factorise it, but in each case we expect a structure, which is similar
to the usual LM formula:

F (θ̄)L = N
{ ∞∑

N=0

1
N !µ1µ2 . . . µNF(1, 2, . . . , N)

}
, (4.50)

where we integrate for θ1, . . . , θN with the factorising integration measure µ(θi), which should
be expressed in terms of the ground state and excited state pseudo energies. The F(1, 2, . . . , N)
objects are related to the connected form factors; while the factor N is some normalisation
factor not containing connected form factors. Choosing a different basis for the form factor
building blocks F(1, . . . , N) redefines the measure and the normalisation factor. In order to
demonstrate our result, we choose the symmetrised versions of the connected form factors

F(1, . . . N) = 1
N !

∑
σ∈P

F (σ1, . . . , σN ) (4.51)

where we sum over all permutations. In the next section we provide the all order definition
of finite connected form factors in the generic case.

We have checked that our result is consistent with the factorizing structure. The
perturbative expansion of the normalisation factor, which does not contain any operator-
dependent terms turns out to be

N 2 = 1− 1
2n2

1s2
1φ11 −

1
3n3

1s2
1(1− 2s1)φ11 + n1n2

2φ12φ11s1s2(1− s2) + . . . (4.52)

+ 1
2n1n2s1s2φ2

12 + 1
2n1n2

2φ2
12s2(2s1s2 − s1 − s2) + . . .

+n1n2n3

(
φ2

12φ13

(
s2s3(1−s1)− 1

6(s1−s2)s3

)
+ 1

3φ12φ23φ31(s1s2+s1s3−s1s2s3)
)

+ . . .

while the measure is

µ1 = n1 + 1
2n2

1s1 + 1
3n3

1s2
1 −

1
2n1n2s2φ12 + 1

4n1n2s2φ12 (2n1 − n2s2 − 3n1s1) + . . . (4.53)

+ 1
12n1n2n3s3φ12 (s2(φ13 + φ23)− 6(1− s2)φ23) + . . .

In summarizing, up to the third explicilty calculated order, the finite volume form factor
takes the LM-type form (4.50) in the basis (4.51) with (4.52), (4.53). Our framework provides
a way to systematically calculate both the normalization factor and the measure, but at
higher orders they are getting more and more involved. Unfortunately, we could not recognise
any nice structure in these terms, which could give a hint how higher order terms should
look like. Most probably a better definition of the connected form factors could simplify
these expressions. Later we analyse the free fermion theory, where we can go to all orders
and sum up the appearing terms.
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5 Definition of connected form factors

In this section we investigate the singular ε-dependence of the form factor

F (θn + iπ + iεn, . . . , θ1 + iπ + iε1, θ1, . . . , θn, θ)/F (θ) , (5.1)

where for scalar operators the form factor is a constant F (θ) = F . This singular behaviour
is in stark contrast to the diagonal form factor, which is regular in the ε → 0 limit, but
the result depends on the direction how we approach it. Here, due to the extra particle,
the expression is singular and we work out all the singular terms. This calculation is the
extension of the one in [47] by keeping all the terms. Our method is to use the kinematical
singularity axiom successively to eliminate all εs and define the connected form factors
iteratively. From the repeated application of the kinematical singularity axiom it follows
that the singular terms in ε take the form:

A12...n

ε1 . . . εn
+

n∑
k=1

εk
A1...k−1k+1...n

ε1 . . . ϵn
+ · · ·+

n∑
k=1

Ak

εk
. (5.2)

Where all terms can be evaluated by using the following graphical rules:

1. Draw n labeled points (from 1 to n) and colour them each black or white all possible
ways

2. Connect the points with arrows all possible ways respecting the rules: each point has at
most one incoming arrow, arrows can leave from white points, such that at each point
arrows can go either all to the left or all to the right and there are no loops.

3. Calculate the contribution of each graph with the following rules and drop those in
which after cancelations ε remains in the numerator

(a) black dot contributes as
 k = sk

εk
,

(b) incoming left/right arrow (independently whether it is black or white)

G#k ← = εk ; → G#k = −εk ,

(c) outgoing left/right arrow (could be more then one, but the contribution does not
depend on their number)

← #k = 1
εk

; #k → = −Sk

εk
,

(d) each arrow (independently if it goes left or right or between different colours)
carries a factor

G#k → G#l = φkl = φlk = G#k ← G#l ,

(e) white dots without arrows give the connected form factor

We can proof these rules recursively.
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For n = 1 we can draw only one point which can be either black or white with contributions

 1 = 1− S1
ε1

; #1 = F (1) = Fc(θ1 + iπ, θ1, θ)/F .

This is simply the kinematical singularity axioms for F 2(θ1 + iε1 + iπ, θ1, θ) as we already
used in (4.6).

In the generic case we check the singular term of the form ε−1
k . Such term can either

come from a black dot  k or from a white dot with outgoing arrows. In the kinematical
singularity axioms the singular term in εk takes the form

F (θn + iπ + iεn, . . . , θk + iπ + iεk, . . . , θ1 + iπ + iε1, θ1, . . . , θk, . . . , θn, θ) = (5.3)
1
εk

(∏
j<k

S(θj − θk)S(θj + iπ + iεj − θk)− S(θk − θ)
∏
j>k

S(θk − θj)S(θk − θj + iπ − iεj)
)
×

F (θn + iπ + iεn, . . . , θ1 + iπ + iε1, θ1, . . . , θn, θ)k − removed

where we also used the permutation axiom. In the third line we have a form factor similar to
what we started with, but the kth particle is missing, thus we can use induction. Clearly
that form factor can have at most single poles in the remaining εs. This suggests to expand
the S-matrix factors as

S(θj − θk)S(θj + iπ + iεj − θk) = 1 + εjφ(θj − θk) + . . . (5.4)

in the terms for j < k and a similar expression but with −εj for j > k. We are now ready to
read off the graph rules for the terms containing ε−1

k . Keeping the ones in the product we get
a term proportional to 1− Sk = sk. This contribution is denoted by the black dot. Terms
coming from the j < k product are represented by arrows going to the left with no extra
factors, while terms from the j > k product has an extra −S(θk − θ) = −Sk factor as well as
an extra minus sign in −εj . We attribute this extra minus sign to the incoming arrow as more
than one ε can give contributions due to multiple εs in the remaining form factor. Clearly,
we have either the j < k or the j > k products, so arrows can be drawn either all to the left
or all to the right. Using these rules inductively, proves the correctness of our graph rules.

Let us now see the example of the two particle term. For n = 2 we have the following
contributions

 1  2 = s1
ε1

s2
ε2

,

 1 #2 = s1
ε1

F (2) ,

#1  2 = F (1)s2
ε2

,

#1 #2 = F (1, 2) = Fc(θ2 + iπ, θ1 + iπ, θ1, θ2, θ)/F ,

 1 ← #2 = s1ε1
ε1

1
ε2

φ21 ,

#1 →  2 =
(
−S1

ε1

)
s2(−ε2)

ε2
φ12 ,
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we would also have terms with two white dots and an arrow, but there some epsilon remains
in the numerator, so we dropped them. By summing all terms up we have the following form

F (θ2 + iπ + iϵ2, θ1 + iπ + iϵ1, θ1, θ2, θ)/F = A12
ε1ε2

+ A1
ε1

+ A2
ε2

+ F (1, 2) + O(ε/ε) , (5.5)

where
A12 = s1s2 ; A1 = s1F (2) + S1s2φ12 ; A2 = F (1)s2 + s1φ21 . (5.6)

We note that the connected form factor F (1, 2) is not symmetric. We can relate F (2, 1)
to F (1, 2) by using the form factor axioms

F (θ1 + iπ + iε1, θ2 + iπ + iε2, θ2, θ1, θ) = S(θ1 − θ2 + i(ε1 − ε2))S(θ2 − θ1)×
F (θ2 + iπ + iε2, θ1 + iπ + iε1, θ1, θ2, θ) . (5.7)

We need to expand the scattering matrix

S(θ + iϵ)
S(θ) = 1 + iε

S′(θ)
S(θ) −

1
2ε2 S′′(θ)

S(θ) + · · · = 1− εφ(θ) + 1
2ε2

(
φ(θ)2 − iφ′(θ)

)
+ . . . . (5.8)

where we used that

iφ(θ) = S′(θ)
S(θ) ; iφ′(θ) = S′′(θ)

S(θ) −
S′(θ)2

S(θ)2 = S′′(θ)
S(θ) + φ(θ)2 . (5.9)

Thus
F (2, 1) = F (1, 2) + φ12(A2 −A1)−A12(φ2

12 − iφ′
12) . (5.10)

A bit simplified form can be obtained as

F (2, 1)− F (1, 2) = φ12(F (1)s2 − s1F (2)) + iφ′
12s1s2 + φ2

12(S2 − S1) . (5.11)

which is clearly anti-symmetric for the exchange 1 ↔ 2. Actually this difference under
symmetric integration vanishes.

Finally we note that the rules for the ε-dependence of the form factor

F (θn + iπ + iεn, . . . , θ1 + iπ + iε1, θ1, . . . , θn, θ + iπ)/F (θ) , (5.12)

is analogous, we merely have to make the Si → S−1
i replacement. This form factor always

appears with a prefactor S1 . . . Sn so it is natural to include this factor in the definition
of the connected form factor.

6 Extension for multiparticle states

In this section we explain how the results can be extended from the simplest one-sided finite
volume form factor to the generic case

L⟨0|O|θ̄⟩L → L⟨0|O|θ̄1, . . . , θ̄N ⟩L ≡ L⟨0|O|{θ̄}⟩L (6.1)

We have to start by investigating the clustering behaviour of the generic excited state
expectation value of the bilocal operator

L⟨{θ̄}|O1(x, t)O2(0, 0)|{θ̄}⟩L , (6.2)
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In the y = it→∞ limit the expression factorizes into the product of the needed form factors
and the exponentialized excited state energy difference:

L⟨{θ̄}|O1(0,−iy)O2|{θ̄}⟩L → L⟨{θ̄}|O1|0⟩L L⟨0|O2|{θ̄}⟩Le(EN−E0)y + O(1) . (6.3)

We have to calculate the same limit in the crossed channel for the excited state expectation
value, which has the form [39]

⟨ΩN |O1(x, t)O2(0, 0)|ΩN ⟩ =
∑
α∪ᾱ

Dαρ̄ᾱ

ρN (θ̄)
(6.4)

Here |ΩN ⟩ denotes the thermal state related to the solution of the excited state TBA. We
have to sum up for all partitions α = {i1, . . . , i|α|} of the set {1, . . . , N} = α ∪ ᾱ and

Dα =
∞∑

n=0

1
n!

n∏
i=1

∫
dθi

2π

1
1 + eϵN (θi)

F 12
c

(
θ1, . . . , θn,

{
θ̄ + i

π

2

}
α

)
(6.5)

where {θ̄}α = {θ̄i1 , . . . , θ̄i|α|} and ρ̄ᾱ denotes the corresponding subdeterminant for the ᾱ

rapidity set. By investigating the exponential growth of the various Dα contributions one can
see that the expected e(EN−E0)y behaviour comes only from the DN term. Even more, it can
come only from diagrams when all the incoming particles are connected to operator O2, while
all the outgoing particles to operator O1, just as it happened for the one particle case. By
inspecting the details of the order by order calculations one can show that all steps generalizes
naturally. The filling fraction has to be replaced with the excited state filling fraction:

ni = 1
1 + eϵN (θi)

(6.6)

In drawing the various diagrams one can realize that the only thing one has to replace is our
spectator particle of rapidity θ with the group of such particles leading to the modification
of only the S-matrix factor

si = 1− Si = 1−
N∏

k=1
S

(
θi − θ̄k −

iπ

2

)
(6.7)

which now contains the contributions of all physical particles. Similarly the connected form
factor also includes all the physical particles as spectators.

F (1, . . . , k)F
(

θ̄1 + i
π

2 , . . . θ̄N + i
π

2

)
=

FP.F

(
θ1 + iπ + iε1, . . . θk + iπ + iεk, θk, . . . , θ1, θ̄1 + i

π

2 , . . . θ̄N + i
π

2

)
(6.8)

The graph rules apply also in this case with these replacements and our final formulas (4.50)
describe the generic one-sided excited state finite volume form factors.
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7 Free fermion finite volume form factors

In the work [46], Fonseca and Zamolodchikov derived the exact finite volume form factor of the
spin field in the thermally perturbed Ising model, which is nothing but the field theory of a free
massive fermion. The σ field is a non-local operator, which interpolates between the Ramond
and the Neveu-Schwarz sectors. Its simplest excited state matrix element takes the form

NS⟨0|σ|{θ̄}⟩R = S(L)g(θ̄1) . . . g(θ̄N )FN , (7.1)

where FN = FN ({θ̄}) is the infinite volume form factor,

S(L)NS = ⟨0|σ|0⟩R = exp
{

(mL)2

2

∫∫ ∞

−∞

dθ1dθ2
(2π)2

sinh θ1 sinh θ2 log coth | θ1−θ2
2 |

sinh(mL cosh θ1) sinh(mL cosh θ2)

}
, (7.2)

is the finite volume form factor of the σ operator, which creates the Neveu-Schwarz vacuum
from the Ramond. The excited state-dependent factor contains the norm of the state ρ1
and takes also an exponentiated form

g(θ̄) = eκ(θ̄)
√

mL cosh θ̄
; κ(θ̄) =

∫ ∞

−∞

dθ

2π

1
cosh(θ̄ − θ)

log 1− e−mL cosh θ

1 + e−mL cosh θ
. (7.3)

Let us manipulate these expressions by observing that

∂θL ≡ ∂θ log 1− e−mL cosh θ

1 + e−mL cosh θ
= mL sinh θ

sinh(mL cosh θ) . (7.4)

Integration by parts twice leads to the expression

S(L) = exp
{1

2

∫∫ ∞

−∞

dθ1dθ2
(2π)2 L(θ1)L(θ2)f(θ1 − θ2)

}
= e

1
2L1L2f12 , (7.5)

where
fij = f(θi − θj) = − cosh(θi − θj)

sinh(θi − θj)2 . (7.6)

In the following we recover these results from our approach. We start with the vacuum
amplitude S(L), we then turn to deriving the g(θ̄) factor.

7.1 Calculation of the vacuum amplitude

We start by recovering the S(L) factor, which can be interpreted as the vacuum amplitude of
the non-local operator. As this operator changes the NS vacuum to the R one it connects
the true ground state to an excited state and can be recovered by analysing the clustering,
y → ∞, limit of the excited state expectation value of the two-point function

R⟨0|σσ(y)|0⟩R = R⟨0|σ|0⟩NS NS⟨0|σ|0⟩R ey∆E + · · · = S(L)2ey∆E + . . . , (7.7)

where the energy difference is

∆E = ER − ENS = −m

∫
dθ1
2π

cosh θ1 L(θ1) = −e1L1 , (7.8)
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and we integrate for θi with a 1
2π factor, whenever the symbol Li appears. Since

L1 = log 1− L1
1 + L1

= −2
{

L1 + L3
1

3 + L5
1

5 + . . .

}
; Li = e−mL cosh θi , (7.9)

is negative, ∆E is positive, and we are indeed focusing on the leading exponentially growing
term. In recovering the exact result we observe that it exponentiates R⟨0|σσ(y)|0⟩R → ea+b +
. . . with a = L1L2f12 and b = −e1L1. In our approach we calculate directly the expansion
of these exponential terms ea+b =

∑∞
n,k=0

an

n!
bk

k! , thus the various contributions should be
factorised and each term should be divided by its symmetry factor. Having checked this
property it is enough to compare the exponent a + b to the connected terms.

In our approach we use the excited state LM type formula for the bilocal operator

R⟨0|σσ(y)|0⟩R =
∞∑

N=0

1
N !

N∏
i=1

∫
dθi

2π
n(θi)F σσ(y)

c (θ1, . . . , θN ) , (7.10)

with the measure factor, which corresponds to the Ramond groundstate

n(θi) = ni = 1
1− L−1

i

. (7.11)

This expansion factor is related to the one appearing in the exact result L as:

Li = log 1− Li

1 + Li
= − log(1− 2ni) = 2ni + (2ni)2

2 + (2ni)3

3 + · · · =
∞∑

k=1

(2ni)k

k
. (7.12)

We now specify the expression (3.7) by noting that the scattering matrix is simply
S = −1, implying that φij = 0. We also drop the µ integrals and keep terms only when
|A+| = |B−| in order to have terms, which survive in the clustering limit:

F σσ(y)({ϑ}I , {θ}I) =∑
A+∪A−=I

∑
B+∪B−=I

Ky({ϑ}B− |{θ}A+)F 2({ϑ}B+ + iπ, {θ})F 1({ϑ}B− + iπ, {θ}A+) . (7.13)

The key simplification is the explicit use of the form factors of the theory. The even infinite
volume form factors of the σ field are simply

F (θ1, . . . , θ2n) = in
∏
j<k

tanh((θj − θk)/2) . (7.14)

As we are in a free theory there is an alternative form based on Wick-theorem:

F (θ1, . . . , θ2n) =
∑

all pairings

∏
pairs

F (pairs)(−1)# , (7.15)

where the sign can be calculated as follows. We draw the 2n points on a circle and connect
them pairwise. # counts how many crossings we have. Since the S-matrix is also −1 we
just need to pair them in all possible way with the usual conventions, that whenever we
have a crossing we associate an S-matrix for it. Actually there are (2n− 1)!! = (2n)!

2nn! ways
to form pairs and connect the points and each contribution is factorised into two-particle

– 27 –



J
H
E
P
0
2
(
2
0
2
4
)
0
8
3

terms. We should also keep in mind that the σ field is non-local and that NS⟨0|σ|0⟩R and
R⟨0|σ|0⟩NS have opposite non-locality. As a consequence

F 2(θ1, . . . , θ2n) = (−1)nF (θ1, . . . , θ2n) ; F 1(θ1, . . . , θ2n) = F (θ1, . . . , θ2n) , (7.16)

where it is assumed that n particles are incoming and n are outgoing.
Let us see now why our formula (7.10), (7.13) gives a factorising and exponentiating result.

Clearly the measure factor and the Ky factor factorise into one-particle terms. Moreover, each
form factor is a sum of terms factorising into two particle terms, thus the total contribution
is a sum of factorised terms. The only thing we have to check is that contributions appearing
multiple times are divided by the corresponding symmetry factors. We argue in appendix E
why this actually happens. As a consequence it is enough to compare the connected part of
our formula to the exponent of the exact result. We start with the energy difference.

In the case of the energy difference we would like to recover the

y∆E = −ye1L1 = −ye1

(
2n1 + (2n1)2

2 + (2n1)3

3 + . . .

)
, (7.17)

term order by order. We need to show that at N th order the singly differentiated Ky factor
comes with a 2N /N factor. This term originates from deforming N − 1 contours and picking
up N − 1 times the residue. The main problem is to classify these diagrams and evaluate
them all. This is performed in appendix E and we completely recovered the measure factor
L1 multiplying the energy difference.

In the form factor part we use again factorisation and compare the exponent∫∫ ∞

−∞

dθ1dθ2
(2π)2 L(θ1)L(θ2)f(θ1 − θ2) , (7.18)

to the connected part of our result. In particular we compare the expansion of only one of
the Ls as the expression must be symmetric. At the k + 1 particle level it should give

(2n1)k

k
(2n2)f12 , (7.19)

which we test order by order. Since we cannot distinguish between n1 and n2 in the calculation,
for k > 1 there is an extra factor of 2. The calculation is similar to the energy difference,
which we detail in appendix E. The outcome is that we also recover completely the measure
as well as the form factor part.

7.2 Excited state

In order to extract the excited state form factor, we investigate the clustering, y →∞, limit
of the expectation value of the excited state two-point function

R⟨θ̄|σσ(y)|θ̄⟩R = R⟨θ̄|σ|0⟩NS NS⟨0|σ|θ̄⟩R ey∆Ē + · · · = S(L)2g(θ̄)2ey∆Ē + . . . , (7.20)

where the energy difference contains also the contribution of the moving particle

∆Ē = ER + m cosh θ̄ − ENS = m cosh θ̄ − e1L1 , (7.21)

– 28 –



J
H
E
P
0
2
(
2
0
2
4
)
0
8
3

We would like to recover this result from the expression (3.7) by simplifying it with
S = −1, φij = 0 and by dropping the µ integrals and keeping only terms when |A+| = |B−|
as in (7.13). The filling fraction is the same as before n(θi) = ni = 1

1−L−1
i

.

At kth order we take rapidities ϑj = θj + iεj for j = 1, . . . , k, while the last argument
ϑ = θ will be analytically continued to the physical rapidity θ → θ̄ + iπ

2 . Due to this extra
physical particle we need the odd form factors of the sigma field

F (θ1, . . . , θ2n+1) = in
∏
j<k

tanh((θj − θk)/2) , (7.22)

which again can be written as

F (θ1, . . . , θ2n+1) =
2n+1∑
j=1

(−1)j−1F (θj)
∑

all pairings

∏
pairs

F (pairs)(−1)# , (7.23)

where a pairing is understood for the even set missing j and the one-particle form factor
in the above normalization is F (θ) = 1.

In checking the excited state formula we focus only on the g(θ̄)2 factor, in particular,
only its exponent as we have a factorizing result

κ(θ̄) =
∫ ∞

−∞

dθ1
2π

1
cosh(θ̄ − θ1)

L(θ1) , (7.24)

which we expand in n1 as in (7.12). Thus at the kth order we need to check the contribution
1

cosh(θ−θ1)
(2n1)k

k . The calculation is similar to the energy difference and the form factor,
which we detail in appendix E. The result is that we completely recover this expression
in our framework.

8 Conclusion

We set out to understand non-diagonal finite volume form factors in integrable field theories
beyond the first exponential Lüscher correction. As the first step in our calculation, we
introduced a LeClair-Mussardo type formulation for the two-point function evaluated in
excited states. In the clustering limit, when the separation of the operators is significant, an
exponentially growing term dominates the expression, which is proportional to the square of
the finite volume form factor. The exponent is proportional to the separation of the operators
and the exact energy difference between the excited and ground states.

In section 4, we showed how to systematically use the bilocal form factor formulation of
the two-point function in the mirror channel to extract the exponentially growing terms in
the clustering limit. Understanding the kinematical singularity structure of the form factors
in our expression was instrumental for this step. We developed a graphical representation for
the singularity structure, by generalising the result for the connected expansion of diagonal
form factors [48].

Two kinds of terms contribute to the exponentially growing part of the two-point function.
The first kind shows apparent exponential growth in the clustering limit. Moreover, the
integration measure for the rapidities is linear in the filling fraction n. The second kind is
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a collection of seemingly exponentially suppressed terms; however, the integration region
contains kinematical singularities that modify the outcome and contribute to the clustering
limit. To calculate such terms, we shifted the integration contour of the rapidities with
infinitesimal imaginary parts with a specific ordering. By contour manipulation, it was
straightforward to calculate the contributing residues. Consequently, the integration measure
for such terms contains higher powers of the filling fraction, crucial in reproducing the exact
energy differences in the expression.

As proof of the viability of our approach, we calculated the finite volume form factor
in the field theory of free massive fermion, which is the integrable model describing the
thermal perturbation of the Ising conformal point. Due to the lack of interaction, the
calculation vastly simplifies, and we managed to derive the exact finite volume form factor
formulae presented in [46].

For a general massive integrable field theory with a single particle type that lacks bound
state formation, we explicitly calculated the clustering limit of the two-point function up to
the third Lüscher order. We can separate the terms contributing towards the energy factor
in the calculation. Up to the third order, they reproduce the energy difference between
the excited and ground states described by the TBA equations and show clear signs of
exponentiation. Hence we expect our method to reproduce the expected exponential growth
of the excited state two-point function for all orders.

From the remaining terms, we conjectured the general structure of the finite volume
form factor.

L⟨0|O|θ̄1, . . . , θ̄N ⟩L = 1
√

ρN
N


∞∑

K=0

1
K!

K∏
j=1

∫
dθjµ(θj)F(θ1, θ2, . . . , θK)

 (8.1)

It has three building blocks: the exact density factor of the excited states, an operator-
independent normalisation factor (4.52), and a “dressed” version of the non-diagonal form
factor.

The density factor appears in the denominator of the two-point function and propagates
to the finite volume form factor. This form is consistent with the exact diagonal finite volume
form factor formula and the polynomial correction to the form factors in large volumes.

The normalisation factor is independent of the properties of the operators, assuming that
they are spinless, as we did from the start of our calculation. Similarly to the density factor,
we symmetrically distribute the normalisation factor from the two-point function between
the two operators. The origin of the normalisation factor roots in the different finite volume
states on the two sides of the operators, namely the finite volume excited and ground states.
We can think of it as the ratio of the self-energies of the states.

The “dressing” of the non-diagonal form factor comes from summing up virtual particles
winding around the finite volume cylinder with a certain measure. The form factor term
under the integral is the connected non-diagonal form factor defined by the singular expansion.
We saw that the integration measure factorises into single particle contributions, and we
calculated its value up until the third order (4.53) in the filling fraction n.

With the conjectured structure for the finite volume form factor, the following open
question is to understand the introduced quantities in all orders of the filling fraction and
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express them with other physically meaningful quantities. For the former direction, we can
pursue the calculation of specific terms from the bilocal expansion that contribute to only
one specific quantity. However, our definitions still have some freedom, e.g. the rapidity
ordering inside the connected form factors or the imaginary shift of the integration contours.
Investigating the dependence on these properties might give insight into a natural choice that
leads to simplification. For the latter, results obtained by the fermionic base approach [10–13]
and expression for three-point functions in N=4 SYM via integrable techniques can give
essential insight [45, 49–52].

We plan to return to these questions in a subsequent paper.
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A Large volume expansion of the energy difference

In this appendix we perform the large volume expansion of the TBA energies. We do it
in the usual way in terms of the small quantity e−mL cosh θ. The expansion of the ground
state TBA equation takes the form

ϵ0(θ) = mL cosh θ −
∫

dθ′

2π
φ(θ − θ′)e−mL cosh θ′ + . . . , (A.1)

which leads to the ground state energy up to the second Lüscher order as

E0 = −m

∫
dθ

2π
cosh θ log(1 + e−ϵ0(θ)) (A.2)

= −m

∫
dθ

2π
cosh θ

[
e−ϵ0(θ) − 1

2e−2ϵ0(θ) + . . .

]
= −m

∫
dθ

2π
cosh θ

[
e−mL cosh θ− 1

2e−2mL cosh θ + e−mL cosh θ
∫

dθ′

2π
φ(θ−θ′)e−mL cosh θ′ + . . .

]
.

Similar calculation for the excited state gives

ϵ1(θ) = mL cosh θ + log S

(
θ − θ̄ − iπ

2

)
−
∫

dθ′

2π
φ(θ − θ′)S

(
iπ

2 + θ′ − θ̄

)
e−mL cosh θ′ + . . . ,

(A.3)

Eθ̄ = m cosh θ̄ −m

∫
dθ

2π
cosh θ log(1 + e−ϵ1(θ)) (A.4)

= m cosh θ̄ −m

∫
dθ

2π
cosh θ

(
e−ϵ1(θ) − 1

2e−2ϵ1(θ) + . . .

)
= m cosh θ̄ −m

∫
dθ

2π
cosh θ

[
S

(
iπ

2 + θ − θ̄

)
e−mL cosh θ − 1

2S

(
iπ

2 + θ − θ̄

)2
e−2mL cosh θ

+ S

(
iπ

2 + θ − θ̄

)
e−mL cosh θ

∫
dθ′

2π
φ(θ − θ′)S

(
iπ

2 + θ′ − θ̄

)
e−mL cosh θ′

]
.
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Clearly the difference between the ground state and the excited state energy is the change
e−mL cosh θ → S(iπ

2 + θ − θ̄)e−mL cosh θ, which can be substituted directly in any term of
the large volume expansion.

In order to streamline the notation we could introduce the symbol Li = e−mL cosh θi

and understood an integration for θi, whenever Li appears. Thus the energy difference
takes a compact form

Eθ̄ − E0 = ē− e1 (S−1
1 − 1)L1 + 1

2e1 (S−2
1 − 1)L2

1 − e1 φ12
(
S−1

1 S−1
2 − 1

)
L1L2 + . . .

= m cosh θ̄ + ∆1E + ∆2E , (A.5)

where we used the previously introduced streamlined notations S−1
1 = S( iπ

2 +θ1− θ̄), together
with φij = φ(θi − θj) and ei = m cosh θi. There is a nice graphical representation for the
whole expansion in [53]. It turns out that the expansion for the form factor is more natural
in terms of the filling fraction, so in the next appendix we perform that expansion.

B The energy difference in terms of the filling fraction

As one can see from appendix A, the energy difference

Eθ̄ − E0 = m cosh θ̄ −
∫ dθ

2π
m cosh(θ) ln

(
1 + e−ϵ1(θ)

1 + e−ϵ0(θ)

)
, (B.1)

is expressible by integrating the difference of the logarithmic factors corresponding to the
pseudo energies of the excited and vacuum states:

Li = ln
(

1 + e−ϵ1(θi)

1 + e−ϵ0(θi)

)
. (B.2)

Let us note here that a similar quantity plays the role of the measure in case of the Ising
model form factors.

We would like to compare the above energy difference appearing in the exponential factor
of the large separation limit to the result of the cluster expansion. For the ease of comparison,
we will expand the above quantity directly in terms of the ni excited state filling fraction.
That is, we would like to express Li as a sum of contributions

Li = ∆1Li + ∆2Li + ∆3Li + . . . + ∆kLi + . . . , (B.3)

where ∆kLi contains only terms exactly of order k in the ni filling fraction. Note that this
expansion at each order will regroup infinitely many terms of the Lüscher expansion. Actually,
at first we need to determine the Lüscher expansion of L1 and the filling fraction themselves
(we follow the notations established previously - except integration is not understood for
the θ1 variable now, if we write L1):

L1 = L1
(
S−1

1 − 1
)

n1 = L1S−1
1 LO

− 1
2L2

1

(
S−2

1 − 1
)

+ L1L2φ12
(
S−1

1 S−1
2 − 1

)
− L2

1S−2
1 + L1L2φ12S−1

1 S−1
2 NLO

+O(e−3mL) +O(e−3mL) . (B.4)
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At first we compare the leading orders and redefine the LO of L(θ1) such that it contains
the exact filling fraction, instead of the LO of n1 only:

L(LO)
1 = L1

(
S−1

1 − 1
)

= (1− S1) n
(LO)
1 ⇒ ∆1L1 = (1− S1) n1 . (B.5)

Now we proceed order-by-order, and our next step is to compare (neglecting e−3mL terms)
the two sides of:

L1 = ∆1L1 + ∆2L1 +O(e−3mL) = L(LO)
1 + L(NLO)

1 +O(e−3mL) . (B.6)

Thus we can determine ∆2L1 up to second Lüscher order, and we get:

∆2L1 = 1
2L2

1

(
S−1

1 − 1
)2

+ L1L2φ12
(
S−1

2 − 1
)

+O(e−3mL) , (B.7)

which we may rewrite by using the relation Li = niSi + O(e−2mL) as this modifies only
O(e−3mL) terms. In the end we arrive at a definition

∆2L1 = 1
2n2

1 (1− S1)2 + n1n2φ12S1 (1− S2) , (B.8)

where it is understood that we integrate over the argument θ2 of n2.
Here we also present the whole formula together with the third order in a compact

notation:

L1 = n1s1 + 1
2n2

1s2
1 + n1n2φ12S1s2 + 1

3n3
1s3

1 + n2
1n2φ12S1s1s2

+ 1
2n1n2

2φ12S1s2
2 + n1n2n3

[
φ12φ23S1S2s3 −

1
2φ12φ13S1s2s3

]
+O(e−4mL) , (B.9)

where si = 1 − Si.

C Pole structure of the connected form factor

In this appendix we would like to understand the behaviour of F (1, 2) when the two arguments
approach each other θ1 ∼ θ2. The antisymmetric part (5.11) of the connected form factor
has a zero at θ1 = θ2, thus we may write:

F (1, 2) = R(θ1, θ2)
(θ1 − θ2)2 +O(1), (C.1)

where R(θ1, θ2) is a symmetric function for the θ1 ↔ θ2 exchange.4 The source of this double
pole singularity is that the original form factor F (ϑ2 + iπ, ϑ1 + iπ, θ1, θ2, θ) (before taking its
finite part in the ε-s, where ϑj = θj + iεj) has another, independent pole structure. Namely
we can use the kinematical axiom between its first and third argument, and simultaneously,
between its second and fourth argument. Thus, it has an expansion also in terms of
(ϑ1 − θ2)−1, (ϑ2 − θ1)−1, which looks very similar to (5.5), i.e. the expansion in terms
of (ϑ1 − θ1)−1, (ϑ2 − θ2)−1. These two expansions - for the two different pairings of the

4Note that this definition is a bit arbitrary, as we did not fix the O(1) term. The coefficient of the
1/(θ1 − θ2)2 term should rather be a function which depends only on θ1 + θ2.
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arguments - can be used independently, even if all four arguments are close, which follows
from the kinematical singularity axiom. By using the permutation axiom, and expanding the
kinematical pole structure of F (ϑ2 + iπ, ϑ1 + iπ, θ2, θ1, θ) between its second and third, and
its first and fourth arguments, respectively (based on (5.5)), we get the most singular term

F (ϑ2 + iπ, ϑ1 + iπ, θ1, θ2, θ)/F = (C.2)

S12F (ϑ2 + iπ, ϑ1 + iπ, θ2, θ1, θ)/F ∼ S12

(
i

ϑ1 − θ2

i

ϑ2 − θ1
A21 + . . .

)
,

where A21 = s2s1. If we simply put ϑ1 = θ1, ϑ2 = θ2 (i.e. perform the ε limit) the above
term behaves as

−s1s2(θ1 − θ2)−2 +O
(
(θ1 − θ2)−1

)
, (C.3)

and we can read off that R(θ1, θ2) = −s1s2. The minus sign came from the S-matrix, since
S12 = S(0) + O(θ1 − θ2), and we dropped the higher order corrections.

D Contour deformation for the third order result

In this section we explain the difficulties in evaluating the third order graphs. In doing so we
pick one of the difficult ones, namely diagram 11 in figure 8, which has the contribution

F 2(ϑ3 + iπ, ϑ2 + iπ, θ1, θ2, θ)/F 2× (D.1)

F 1(ϑ1 + iπ, θ3, ϑ− iπ)/F 1S(ϑ2 − ϑ1)S(ϑ3 − ϑ1)S3e−imy(sinh ϑ1−sinh θ3).

The finite part operation for ε1, ε3 is trivial, only the ε2 limit will differentiate a single S-matrix:

F 2(θ3 + iπ, ϑ2 + iπ, θ2, θ1, θ)/F 2S12S(ϑ2 − θ1)× F 1(θ1 + iπ, θ3, θ − iπ)/F 1S31S3e−iy(p1−p3),

(D.2)
where for convenience we also used the permutation axiom for the form factor of the second
operator. We now expand in ε2 as

F 2(θ3 + iπ, ϑ2 + iπ, θ2, θ1, θ)/F 2S12S(ϑ2 − θ1) =( 1
ε2

(1− S21S32S2) F 2(θ3 + iπ, θ1, θ)/F 2 + F 2(θ2|θ3 + iπ, θ1, θ)
)

(1− ε2φ12) + . . . , (D.3)

where we introduced F 2(θ2|θ3 + iπ, θ1, θ) as the finite part of the above five-particle form
factor in ε2. When we approach θ3 = θ1, then this latter object still contains the kinematical
pole between the first and the fourth argument of F 2(θ3 + iπ, ϑ2 + iπ, θ2, θ1, θ), but nothing
from the kinematical singularity between the second and the third, i.e. no terms proportional
to 1/ε2 which would appear in a similar expansion (5.5). That is, we have

F 2(θ2|θ3 + iπ, θ1, θ) = i

θ3 − θ1
A2 + F 2(θ2, θ1) + . . . , (D.4)

where A2 = F 2(2)s1 + s2φ12 following from the definition in appendix 5.
Thus, after taking the ε → 0 limit, we have two terms:

−φ12 (1− S21S32S2) F 2(θ3 + iπ, θ1, θ)/F 2F 1(θ1 + iπ, θ3, θ − iπ)/F 1S31S3e−iy(p1−p3), (D.5)
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which clearly has double and first-order poles at θ1 = θ3, while being regular in the difference
of variables θ1 − θ2 or θ2 − θ3; and another one

F 2(θ2|θ3 + iπ, θ1, θ)F 1(θ1 + iπ, θ3, θ − iπ)/F 1S31S3e−iy(p1−p3), (D.6)

which is singular when any pair of the three variables θ1, θ2, θ3 coincides.
As for the sixth diagram of the second order, we need to consider the oscillatory behaviour

of the exponential factor and the singularity structure of the form factors, and regularize
the integrals accordingly. This can be done by shifting all three integration rapidities in
the positive imaginary direction by an infinitesimal amount θk → θk + iδk, k = 1, 2, 3, and
establishing an ordering where δ1 > δ2 > δ3 > 0.

The exponential factor e−iy(p1−p3) implies, that in the clustering limit we need to shift
the θ1 integration below the real axis, i.e. δ1 < 0. In the meantime we need to pick up
possible residues at around θ1 = θ2 and θ1 = θ3.

In the first case there is an exponential factor remaining, which after the θ1 → θ2
substitution looks like e−iy(p2−p3) , and needs to be treated as before. We now need to shift
the θ2 integration contour below the real line, i.e. δ2 < 0, and pick up a possible remaining
residue at θ2 = θ3. The exponential factor would disappear after taking this residue, leaving
us with a finite result. The remaining two-integral term - in which we exchanged the ordering
of the θ2 and θ3 integrations - gives zero since we still need to shift θ2 below the real line,
and in the end the exponential factor will decay because of δ2 < 0 and δ3 > 0; that is
e−imy(sinh(θ2−i|δ2|)−sinh(θ3+iδ3)) ∼ e−ym(sin |δ2|+sin δ3).

Clearly, only the second term (D.6) of the ε limit could contribute in this scenario, but
instead of dealing with the θ1 = θ2 singularity of the object F 2(θ2|θ3 + iπ, θ1, θ) we rather
return to the initial formula (D.1). While forgetting about the ϑ2 → θ2 limit, we use the
kinematical axiom between the second and third argument of the form factor:

F 2(ϑ3 + iπ, ϑ2 + iπ, θ1, θ2, θ)/F 2 = i

ϑ2−θ1
(1−S12S(ϑ3 − θ1)S1) F 2(ϑ3 + iπ, θ2, θ)/F 2 +O(1),

(D.7)
then we simply put all ε-s to zero. The reasoning behind this is that we can omit the 1/ε2
singularity as we know that its explicit contribution (D.5) is not singular for θ1 = θ2.

Now we take the residue at θ1 = θ2

− 2πiResθ1=θ2
n1
2π

n2
2π

n3
2π

{
−i

θ1 − θ2
(1− S12S31S1) F 2(θ3 + iπ, θ2, θ)/F 2× (D.8)

F 1(θ1 + iπ, θ3, θ − iπ)/F 1S21S31S3e−imy(p1−p3)
}

= n2
2

2π

n3
2π

(1 + S32S2) S32S3F 2(θ3 + iπ, θ2, θ)/F 2F 1(θ2 + iπ, θ3, θ − iπ)/F 1e−imy(p2−p3),

and then the second one at θ2 = θ3. There is clearly a double pole in the product of the
form factors, which will differentiate the multiplicative factors, even the square of the filling
fraction n2

2. As for the sixth graph in the second order, after partial integration, one can
recognize all these terms being proportional to n3

3. The result is then a single integral over
θ3, which is not shown here, since it is rather straightforward to derive.
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In the second case of the clustering limit, when we already pulled the θ1 integration
below the θ2 one, the first residue we need to take is at θ1 = θ3. For (D.1), this can be done
easily, the singularities come from the product of the two three-particle form factors again.
Even if the second order pole differentiates the n1 factor, after partial integration the result
will be a double integral where the measure factor is n2n2

3.
For the θ1 = θ3 residue of (D.6), we also need to consider the (θ1 − θ3)−1 pole shown

explicitly in (D.4):

− 2πiResθ1=θ3
n1
2π

n2
2π

n3
2π

(
i

θ3 − θ1

(
F 2(2)s1 + s2φ12

)
+ F 2(θ2, θ1)

)(
is3

θ1 − θ3
+ F̄ 1(3)

)
× S31S3e−iy(p1−p3), (D.9)

and the result will be proportional to n2n2
3 again.

Let us make some remarks about a particular term that appears after we evaluate
the residue (D.9):

−
∫

dθ2
2π

∫
dθ3
2π

n2n2
3F 2(θ2, θ3)s3S3. (D.10)

First of all, if we would like to present our result in the basis of symmetrized connected form
factors (see the discussion after (4.45) and also in subsection 4.5), we need to separate the
anti-symmetric part (5.11) of F 2(θ2, θ3), as it gets multiplied with a non-symmetric function.
Another peculiarity of this term is that because of the singularity (4.37) of the connected form
factor we need to keep the regularization θ2 → θ2 + iδ2, θ3 → θ3 + iδ3 where δ2 > δ3 > 0;

E Free fermion calculations

In this appendix, we summarise the calculations of the finite volume form factors in the
massive free fermion theory. Although the model is free, but the non-local σ field changes
the boundary condition and interpolates between the Neveu-Schwarz and Ramond sectors.
Its finite volume form factors are highly non-trivial and were determined explicitly in [46]. In
the following we explain how our approach reproduces this non-trivial result.

The even infinite volume form factors of the σ field are

F (θ1, . . . , θ2n) = in
∏
j<k

tanh((θj − θk)/2) , (E.1)

which can be written alternatively as

F (θ1, . . . , θ2n) =
∑

all pairings

∏
pairs

F (pairs)(−1)# , (E.2)

where # merely counts the crossing in the diagram. We need these form factors in our approach
when n particles are incoming, while n are outgoing and some of them are almost diagonal.

The simplest almost diagonal contribution is

F (θ1 + iπ + iε1, θ1) = 2
ε1

+ . . . , (E.3)
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where the dots represents terms of O(ε1). The simplest non-diagonal form factor is

F (θ1 + iπ + iε1, θ2) = F (θ1 + iπ, θ2) + · · · ≡ F̄12 + . . . , (E.4)

which is singular for θ1 → θ2:

F̄12 = 2i

θ1 − θ2
+ O(θ1 − θ2) . (E.5)

The next simplest diagonal form factor is

F (θ1 + iπ + iε1, θ1, θ2 + iπ + iε2, θ2) = 2
ε1

2
ε2
− F̄12F̄21 + F12F21 + . . . , (E.6)

where F12 = F (θ1, θ2) = −F21. Clearly the connected form factor, which is the O(1) piece,
is nothing but

F(θ1, θ2) = F12F21 − F̄12F̄21 = 4f12 , (E.7)

which is symmetric by itself. In the general formula

F 2({ϑ}B+ + iπ, {θ)F 1({ϑ}B− + iπ, {θ}A+) , (E.8)

we need to form all possible pairs between the particles and associate a contribution Fij

if they are both incoming or outgoing and F̄ij if they are different and multiply with an
S-matrix factor (−1) for each crossing, keeping also in mind that

F 2(θ1, . . . , θ2n) = (−1)nF (θ1, . . . , θ2n) ; F 1(θ1, . . . , θ2n) = F (θ1, . . . , θ2n) . (E.9)

Let us see now why our formula (7.10), (7.13) gives a factorising and exponentiating result.
Clearly the measure factor and the K factor factorise into one-particle terms. Moreover, each
form factor is a sum of terms factorising into two particle terms, thus the total contribution
is a sum of factorised terms.

In order to show exponentiation we need to show that each diagram comes with its
symmetry factor. At Nth order in the LM type formula we have the correct 1/N ! symmetry
factor as the connected form factor is fully symmetric. By expanding this connected form
factor we connect k outgoing particles to the first operator and N − k outgoing particles
to the second operator. Then we also connect k incoming particles to the first and N − k

outgoing to the second. Choosing different incoming distributions lead to different form
factors. They lead to the same form factor contribution only if we permute them together
with the outgoing particles. For outgoing particles we could choose

(N
k

)
ways how k rapidities

can be connected to the first and N − k to the second operator. They all contribute the
same as S-matrix factors cancel and each form factor is completely symmetric (once incoming
and outgoing rapidities are permuted together). Thus form factors come with their 1/k! and
1/(N − k)! symmetry factors. During the resolution of the form factor with k incoming and
outgoing particles we form k1, . . . , kl cycles. (In defining the cycle we just follow the indices
of the two-particle form factors in the product and see when do they close). The first cycle
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1. 2. 3. 4. 5.

Figure 9. Low order diagrams contributing to the measure of the energy difference.

with k1 particles can be formed
( k

k1

)
different ways. The second cycle with k2 particles can

be formed
(k−k1

k2

)
different ways, and so on. All together the symmetry factor is

1
k!

(
k

k1

)(
k − k1

k2

)
. . .

(
k − k1 − · · · − kl−1

kl

)
= 1

k1! . . . kl!
, (E.10)

which is indeed the symmetry factor of the graph if each cycle appears ones. It might happen,
however, that the k1 cycle appears l1 times. This means that we have overcounted the terms
and we have to divide by the symmetry factor l1. Similar arguments can also be made for
the higher ki-s. But this implies that each composition of disconnected graphs come with
the right symmetry factor, which guaranties exponentiation. We then compare only the
connected graphs to the exponents. We start with the energy and proceed to the form factors.

E.1 Energy difference

In the case of the energy difference we would like to recover the

y∆E = −ye1L1 = −ye1

(
2n1 + (2n1)2

2 + (2n1)3

3 + . . .

)
, (E.11)

expression order by order. We need to show that at N th order the singly differentiated Ky

factor comes with a 2N /N factor. We proceed inductively in N .
At the one-particle level we need the diagram when both particles are connected to the

O1 operator, which after resolving the form factor looks like the first diagram in figure 9
and contributes as

n1F 1(θ1 + iπ + iε1, θ1)eye1ε1 = n1
2
ε1

(1 + ye1ε1) = · · ·+ 2n1ye1 + . . . . (E.12)

Actually when they are connected to O2 it gives a term −2n1
ε1

, which cancels the singular
piece, while when they are connected to different operators the contribution will not survive
in the y → ∞ limit.

At the two particle level we are testing the (2n1)2

2 term. We thus need the connected
diagrams which differentiate the exponent. Similarly to the general case our convention is
that we put all εi to zero and then shift the contour θ1 + iδ1 such that δ1 > 0. The term
which is growing in this limit is

F 2(θ2 + iπ, θ1)F 1(θ1 + iπ, θ2)(−1)e−iym(sinh θ1−sinh θ2) = −F̄21F̄12e−iy(p1−p2) , (E.13)
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and can be drawn after the resolution of the form factor as the second diagram in the figure 9.
In this term we shift the contour below the real line and pick up the residue

−i
n2

2
2 res 2i

θ2 − θ1

2i

θ1 − θ2
(−1)(1− iye2(θ1 − θ2) + . . . ) , (E.14)

where we focused only on the surviving odd term, which gives the expected result

(2n2)2

2 ye2 . (E.15)

Let us think of the contributing diagram on the cylinder when ϑ1 is connected to θ1 and ϑ2
to θ2, see the third diagram in figure 9. Observe that we have one single loop which wraps
twice around the cylinder. Clearly this graph is the only connected graph of this sort.

At the three particle level we would like to reproduce (2n1)3

3 . This should come from
terms when two integrals are eliminated by contour shifts and residues. We now shift the
integrals in an ordered way: θ1 + iδ1, θ2 + iδ2 such that δ1 > δ2 > 0. We shift the θ1 integral
through the θ2 and θ3 integrals and then the θ2 integral through the θ3 integral. In order to
have a triple residue term ϑ1 should be connected to O1, while θ3 to O2. We need a connected
diagram, in which after resolving the form factors wraps three times. Such contribution is
displayed on the fourth diagram in figure 9.

(−1)n1n2n3
3! F̄12F̄23F̄31e−iym(sinh θ1−sinh θ3) . (E.16)

By deforming the θ1 contour and picking up (−i) times the single residue we arrive at

(−1)2n2
2n3
3! F̄23F̄32e−iym(sinh θ2−sinh θ3) , (E.17)

which is (2n2
3! ) times the diagram we already calculated at the second order. Actually there is

another diagram, the fifth in figure 9, with the same contribution, which comes from

n1n2n3
3! F̄13F̄32F̄21(−1)e−iym(sinh θ1−sinh θ3) . (E.18)

Together they correctly reproduce the (2n3)3

3 factor.
At the generic k particle level we need to reproduce the (2n1)k

k factor. Clearly after
resolving all the form factors we need all diagrams which wrap around the cylinder k times.
These diagrams can be characterised how we wrap. We always start with 1 from the top
and go through all other rapidities. Clearly there are (k − 1)! terms of this sort. This
cycle can be represented as

1→ i2 → i3 → · · · → ik → 1 , (E.19)

where each arrow represents a line going from top to down. The first 1 → 2 → · · · →
k → 1 gives

n1 . . . nk

k! F̄12F̄23 . . . F̄k−1k(−1)e−iym(sinh θ1−sinh θk) . (E.20)
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This diagram appears when only ϑk and θ1 are connected to operator O2, F 2(θk + iπ, θ1)
and the rest to O1, F 1(θk−1 + iπ, . . . θ1 + iπ, θ2, . . . , θk). The contribution of this diagram
can be evaluated by taking residues recursively: each residue gives a factor (2n).

What we really have to show that each wrapping order can appear only once via resolving
the form factors. This means that in the cycle (E.19) we have to associate either operator 2
or operator 1 to each line in order to indicate through which operator the line went. One
can recursively show that

ij −2→ ij+1 if ij > ij+1 ; ij −1→ ij+1 otherwise . (E.21)

Then we should count the number of 2s and associate a factor (−1) for each. We then
evaluate the residues starting from smaller θi to higher. To show that they all contribute the
same way follows from the fact how they transform for the permutation ij ↔ ij+1. Such flip
will change the operator of that arrow but in the same time it changes also the sign of the
residue, so all over they cancel. Similarly, if by this permutation the neighbouring arrows
also change so do their residues. This completes the calculation of the energy difference.

E.2 Form factor part

In the form factor part, we use again factorisation and compare the exponent L1L2f12 to
the connected component. In particular, we compare the expansion of only one of the Ls as
the expression must be symmetric. At the k + 1 particle level it should give

(2n1)k

k
(2n2)f12 , (E.22)

which we test order by order. Since we cannot distinguish between n1 and n2 in the
calculation, for k > 1 there is an extra factor 2.

At the leading two-particle level we have two connected form factor contributions
n1n2

2 (F(θ1, θ2) + F(θ1, θ2)) = 4n1n2f12 , (E.23)

which comes from F 2(ϑ2 + iπ, ϑ1 + iπ, θ1, θ2) and F 1(ϑ2 + iπ, ϑ1 + iπ, θ1, θ2), respectively.
At the k = 2 level we need

n1n2n3
3! ( )→ 2n2

2n34f23 . (E.24)

That is we should take one residue and a connected form factor should remain. In the
connected form factor we always have a loop-like term F12F21 and a crossed term −F̄12F̄21.
Since in the resolution we have to take all possible connections the crossed terms will appear
automatically , once we have a loop-like term. So we focus only on the loop-like term. A
loop-like term can originate for example from a term

F̄13F32F12 . (E.25)

This means that the outgoing θ2 and θ3 are connected, while the incoming θ1 and θ2 are
also connected and the outgoing θ1 is connected to the incoming θ3. This diagram can
originate only from

F 2(θ3 + iπ, θ2 + iπ, θ1, θ2)F 1(θ2 + iπ, θ3)e−iym(sinh θ1−sinh θ3) , (E.26)
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thus it comes with an extra (−1) factor from F 1: taking the residue of the θ1 integral at
θ3 gives the expected contribution

F̄13F32F12(−1)e−iym(sinh θ1−sinh θ3) → −2F12F12 → 2F12 . (E.27)

We then should check how many times we can connect two in coming and two outgoings,
such that the remaining incoming-outgoing line connects different particles, for which we
will take the residue. There are exactly six combinations

F̄12F32F13 ; F̄13F32F12 ; F̄23F31F12 ,

F̄31F21F21 ; F̄21F31F23 ; F̄32F21F13 . (E.28)

For each term we found a unique diagram where it came from and by evaluating the
residues they all contributed the same way. Altogether they reproduced the expected
combinatorial factor.

At the k + 1 particle level we need to have a cycle of size k − 1, such that after the
contour deformations only one form factor remains (with two rapidities). Such term can be
read starting from the top 1 and following its connections. We associate a double arrow if a
rapidity is connected on the same side (both outgoing or incoming, such that they contribute
to the form factor) and single arrow if they are between different outgoing/incoming rapidities.
A typical cycle looks like

1→ i2 → · · · → ij ⇒ ij+1 ⇒ ij+2 → · · · → ik → 1 , (E.29)

where j can be any of 1, . . . , ik−1. Since we need just one cycle, the two double arrows should
come after each other. We then again need to associate operators to the arrows. Single
arrows should be numbered as before. The double arrows should have the same numbers
(as we resolved a form factor) and can be contracted formally as

ij ⇒ ij+1 ⇒ ij+2 −→ ij ⇛ ij+2 . (E.30)

The numbering rule for the triple arrow is the same as for the single one. The resulting
diagram of length k looks similar than the previously (for the energy) investigated k cycle,
with the exception that the triple arrow now does not encode any singularity, so via contour
deformation it cannot pick up residue. Actually it should remain the last connection for
which residue is not taken since it contributes to the remaining form factor. First of all, there
are (k − 1)! cycle of length k. At each cycle there is always one specific connection, which
is the last. That last connection should be the triple arrow, which can be elevated to two
double arrows by inserting all possible k + 1 choices as the middle term. This all together
gives (k + 1)(k− 1)! terms. Argumentations as before guaranties that all contribute the same
way and with the 1/(k + 1)! prefactor they provide the required 1/k factor.

E.3 Excited state calculations

In this subsection we check the excited state form factor contribution κ(θ̄) order by order.
At the first non-trivial order we have the first and fourth diagrams on figure 6, which give
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the same contributions. Let us focus on the first. The form factor can be resolved as

F (θ1 + iπ + iε1, θ1, θ) = F (θ1 + iπ + iε1, θ1)− F (θ1 + iπ, θ) + F (θ1, θ)

= 2
ε1

+ Fc(1) + · · · = 2
ε1
− 2i

sinh(θ1 − θ) + . . . . (E.31)

The connected part after the analytical continuation θ → θ̄ + iπ
2 gives

2
cosh(θ − θ1) (E.32)

and together with the measure n1 reproduces the first order result.

At second order we gain contributions from the sixth diagram on figure 7. The second
operator’s form factor has a decomposition

F 2(θ2 + iπ, θ1, θ) = F̄21 − F (θ2 + iπ, θ) + F (θ1, θ) , (E.33)

while the first ones

F 1(θ1 + iπ, θ2, θ − iπ) = F̄12 − F (θ1 + iπ, θ − iπ) + F (θ2, θ) . (E.34)

After the contour deformation the residue comes either from F̄21 or from F̄12 and the result
is four times the contribution of the previous order, which together with the n2

2
2 measure

factor gives the correct result.

At the kth order we need to reproduce (2n1)k/k. The calculation is very similar to the
calculations for the energy and for the form factor. We need to pick up the residue of the
contour deformations consecutively k − 1 times. Keeping in mind that we shift the integrals
as θj → θj + δj with δj > δj+1 we need to start the deformations with θ1. In order to have the
appropriate number of singular terms we need again loops which wind around the cylinder.
Following the lines from above to below we represent the loop as

1→ i2 → · · · → ik → O12 → 1

where by O12 we mean that the loop should end with the two operators, out of which one
is connected with 1. There are exactly (k − 1)! such terms, which all contribute the same
way. By taking a residue we always pick up a factor (2ni). Using previous arguments one
can show that the labelling of the arrows with the operators is unique. Actually there are
twice as many terms as we could start the sequence with 1 and follow the lines from the
bottom. Altogether they give the correct measure factor.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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