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1 Introduction

A detailed understanding of quantum black holes remains one of the biggest goals in the
field. A particularly attractive model is 1+1d Jackiw-Teitelboim (JT) gravity [1, 2], which
captures the near-horizon region of a large class of higher-dimensional nearly extremal black
holes, see e.g. [3–7]. This model has been heavily investigated at the quantum gravitational
level in many recent works, see e.g. [8–33] for a selection, and was recently reviewed in [34].
The amount of solvability in this model is unprecedented. This allows us to make real
quantitative predictions to long-standing problems. Most notably, coupling the theory to
matter, it is able to shed a new light on the Hawking information paradox. By including
non-perturbative corrections to the gravitational path integral, the result is a unitary Page
curve of the entropy of the Hawking radiation [35, 36]. In [35], the black hole microstates
during the evaporation process are modeled by brane-like objects that end spacetime, the
so-called end-of-the-world (EOW) branes. These EOW branes, that we wish to consider in
this work, were first introduced in this model in [37] with the aim of geometrically describing
pure states in the gravitational quantum Hilbert space. Finally, dynamical EOW branes were
considered in [38], with the attempt of dealing with a gas of them.

EOW branes can be defined from the (Lorentzian signature) action [38]:

S = 1
2

∫
d2x ϕ

√
−g(R+ 2) +

∫
∂AdS

dτ ϕ
√
−gττ (K − 1) +

∫
EOW

ds
√
−gss(ϕK − µ). (1.1)

The first two terms are the usual JT gravity actions with ϕ the dilaton field and R the
Ricci scalar; the second term is the boundary term at a holographic boundary including a
counterterm. We omit a factor of 1

8πG by convention. The coordinates τ and s represent
two timelike parameters with one-dimensional induced metrics gττ and gss along the AdS2
boundary and the EOW brane boundary respectively. The parameter µ denotes the mass
of the EOW particle, while K denotes the extrinsic curvature along the two respective
boundaries of the spacetime.

Various quantum amplitudes have been obtained using the boundary-particle formalism.
The results depend greatly on the topology. In [35], several quantum amplitudes of EOW
branes attached to the disk partition function have been obtained. The result with one
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EOW brane boundary can be written as:

µ β =
∫ +∞

−∞
db ZHH(β, b)e−µb, (1.2)

where ZHH(β, b) denotes the Hartle-Hawking state preparing the vacuum, with a geodesic
boundary of length b and an asymptotic boundary of length β:

ZHH(b, β) =
∫ ∞

0
dk k sinh 2πk e−b/2K2ik(e−b/2)e−βk2

. (1.3)

We may already guess the appearance of the EOW brane wavefunction e−µb from the classical
on-shell approximation of the action (1.1).

Next to this, [38] has obtained the quantum amplitude of an EOW brane loop attached
to the neck of a single trumpet:

A(β;µ) = β µ =
∫ ∞

0
db Ztrumpet(β, b)

e−µb

2 sinh(b/2) . (1.4)

As opposed to (1.2), this result exhibits an unsettling correction to the classical saddle in
the denominator of the EOW brane wavefunction. In particular, there is a UV divergence of
this amplitude as the length of the brane circle approaches zero, b→ 0. Since this particular
amplitude is the main building block in the gas of EOW branes picture of [38], one has to be
careful with the interpretation of the b→ 0 region. Divergences of this kind, where the neck
of a wormhole shrinks to zero size, also appear in matter-coupled JT gravity, as pointed out
in [23]. In [31], a work-around was presented by q-deforming JT gravity in a suitable way.

We are motivated by another possibility of dealing with the b → 0 divergence. As
elaborated on in detail in [39], the b→ 0 divergence is actually analogous to the closed string
tachyon divergence in bosonic string theory. In fact, as studied in [23, 40–45], JT gravity can
be found as a limiting model of an actual string theory (the minimal string), so this statement
is more than an analogy. As usual in string theory, the tachyon divergence is dealt with by
instead considering superstring theory where the tachyon mode can be consistently projected
out of the string spectrum [46]. We are hence led to investigate the supersymmetric versions of
JT gravity to find out whether they allow for finite amplitudes of this kind. Supersymmetric
versions of JT gravity have been defined and studied alongside the bosonic model ever since
its conception, see e.g. [47, 48] and [49–51] for relevant recent work on the boundary super-
Schwarzian descriptions of these models. We distinguish the N = 1, 2, 4 supersymmetric
models. Just like the bosonic model is based on the sl(2,R) algebra, the supersymmetric
versions are based on the osp(1|2,R), osp(2|2,R), and psu(1, 1|2) superalgebras for N = 1, 2, 4
respectively. Progressively less is known on the quantum gravitational amplitudes as one
increases the amount of supersymmetry. For N = 1, we refer the reader to [15, 52] for the
boundary correlators, and to [53] for the sum over topologies. For N = 2, the boundary
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correlators were found in [54], and the sum over topologies in [55], see [56] for interesting
applications. Matrix model techniques were applied to these cases in e.g. [57–59]. For N = 4,
partial results are known on the sum over topologies in the same work [55].

In this work, we will compute the particular gravitational EOW brane amplitude (1.4)
for all supersymmetric versions of JT gravity. Our calculational method is based on the
BF gauge theoretical description of JT (super)gravity [60–62]. In particular, in [63], it was
observed that the form e−µb

2 sinh(b/2) of this EOW brane wavefunction coincides with a discrete
series character of SL(2,R). Here we will build on this observation. Our main new results,
generalizing (1.4), can be found in equations (3.68), (3.69) for N = 1, (4.11), (4.16) for
N = 2, and (5.5) for N = 4.

This work is structured as follows. In section 2, we aim to elaborate on the above
observation, and develop a generic method to arrive at the amplitude (1.4) within the
framework of the BF formulation of JT gravity. The main motivation will be to generalize
this framework to EOW branes in theories of JT supergravity in the next sections.

Subsequent sections 3, 4 and 5 then develop the machinery for the N = 1, 2, 4 JT
supergravity models respectively. In each case, we provide appropriate definitions of the
EOW branes. As we go up in the amount of supersymmetry, more and more complications
will arise that we will have to deal with. Finally, in section 6 we present some open questions
left for future and ongoing work.

The technical framework requires quite a bit of representation theory of these higher super-
symmetric models. We develop the required representation theory of the N = 2 OSp(2|2,R)
supergroup in appendix B, and of the N = 4 PSU(1, 1|2) supergroup in appendix D. These
results could be of interest to the reader beyond the current applications. Further technical
details are contained in the other appendices.

2 EOW brane amplitudes in bosonic JT gravity

2.1 Geodesic description of EOW branes

The term corresponding to the action of the EOW brane particle in (1.1), written in Euclidean
signature is [38]:

I =
∫
C
ds
√
gss(µ− ϕK). (2.1)

The first term in this action corresponds to the worldline action of the massive EOW particle.
In this context, the mass µ is often denoted as the tension along the brane. The second
term in (2.1) involves the extrinsic curvature K. When inserted in the path integral, the
value ϕ at the EOW brane trajectory acts as a Lagrange multiplier, enforcing the off-shell
constraint on the particle’s trajectory:1

K = 0. (2.2)
1Similarly to the bulk dilaton field, we need to path integrate along an imaginary contour. This procedure

(both in the bulk and here) can be viewed as defining the Euclidean gravitational path integral and in the
process resolving the negative conformal mode problem in Euclidean quantum gravity in this set-up.
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The vanishing of the extrinsic curvature trace along the particle’s trajectory severely restricts
its shape. In particular, it is well-known that K = 0 trajectories are geodesics.

In the interest of generalizing this to superspace in the next sections, let us demonstrate
this by starting from the geodesic equation of xµ(s) labeled by an affine parameter s along
the curve C:

Uα∇αUµ = 0. (2.3)

Here, Uµ(s) ≡ dxµ

ds (s) = ẋµ(s) denotes the tangent vector along the curve. The normal vector
nµ(s) is defined to be orthogonal to the tangent vector along the entire curve:

Uα(s)nα(s) ≡ 0. (2.4)

Applying the product rule for covariant derivatives on this definition readily yields a relation
between the variation of the tangent vector and the variation of the normal vector:

nα∇µUα = −Uα∇µnα. (2.5)

The geodesic equations follow from the variational solutions of the worldline action along
the curve. Since the variation in any direction can be decomposed into its tangential and
normal direction, we can restrict to the normal direction δxµ = nµ:2

δI = −
∫
ds δxµ(Uα∇αUµ) = −

∫
ds nµ(Uα∇αUµ) =

∫
ds UµUα∇αnµ. (2.6)

Here, we recognize the definition of the extrinsic curvature trace along the curve xµ(s):

K = UµUα∇αnµ. (2.7)

The variation of the action is therefore completely specified by the value of the extrinsic
curvature:

δI ∼
∫
ds K. (2.8)

Hence, on every curve for which K ≡ 0, the variation of the worldline action vanishes,
constraining it to solutions of the geodesic equation.

If we insert (2.1) in the path integral, we can rewrite:∫
Dx e−

∫
C ds

√
gss(µ−ϕK) Integrate over ϕ−−−−−−−−−−→

∫
geodesics

Dx e−µ
∫
C ds
√
gαβ ẋαẋβ

. (2.9)

Evaluating the worldline path integral on the r.h.s. over geodesics only, is the same as
evaluating the worldline path integral in the saddle approximation. The path integral
effectively localizes along those classical solutions in the limit of large mass, µ ≫ 1.

2The variation tangential to a given trajectory trivially yields δI = 0, as one can show by taking the
covariant derivative of UµUµ = 1. This is intuitive since this is merely a reparametrized version of the same
curve and the worldline action is reparametrization-invariant.
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2.2 Wilson loops as probe particles

A crucial identity to interpret EOW branes in a gauge-theoretic formulation is the equivalence
between Wilson operator (lines/loops) insertions and probe particles in the second order
metric formulation, proposed in the context of AdS3 in e.g. [64] and [65], and formulated
in the context of JT in [22].

Functionally integrating the worldline of a massive particle over a closed path C results
in a trace of the holonomy over the SL(2,R) spin-j discrete series highest-weight module,
which in a BF path integral is just a Wilson loop insertion:

Wj(A) = Trj
(
P exp−

∮
C

A
)
≃
∮

paths ∼C
Dx e−µ

∫
ds
√
gαβ ẋαẋβ

, (2.10)

where the r.h.s. contains all paths diffeomorphic to the curve C on the l.h.s. . This identity
should therefore be understood as an operator equivalence inside the BF path integral over
flat gauge connections, where infinitesimal gauge transformations on flat gauge fields are
equivalent to infinitesimal diffeomorphisms in the gravity theory [22]. The precise argument
in favor of this equality will be redone later on several occasions when we generalize to
the supersymmetric cases.

From generic AdS/CFT considerations, the conformal weight of a primary operator h
is related to the mass of the dual scalar field µ by:

h = 1
2 +

√
1
4 + µ2, → µ2 = h(h− 1). (2.11)

In terms of the representation label j = −h [21], this is related to the eigenvalue of the
quadratic Casimir

µ2 = h(h− 1) = j(j + 1) ≡ C2. (2.12)

In the limit where we localize along geodesics, we may neglect the linear term in the
relation between mass and conformal weight (2.11), and identify the mass of the probe with
the conformal weight of the Wilson operator:

µ ≈ h, µ≫ 1. (2.13)

2.3 Gravitational amplitudes involving EOW branes

We start by adding the Euclidean EOW brane action (2.1) in the gravitational path integral,
and path integrate the dilaton along the trajectories of the EOW brane. We may formally
write the gravitational amplitude as:

A(β;µ) ≡
∫
DgDϕ

∮
geodesics

Dx e−µ
∫
ds
√
gαβ ẋαẋβ

e−IJT[g,ϕ], (2.14)

where we path integrate over all closed geodesic worldlines. Splitting open the integral into
geodesics with fixed length b as:∮

geodesics
Dx =

∫ +∞

0
db

∮
geodesics with length b

Dx, (2.15)
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the fixed length integrand evaluates to a Wilson operator insertion, which in the BF lan-
guage reads:

A(β;µ) =
∫ +∞

0
db

∫
e
−
∮

A ≃ ebH
DBDAWj(A)e−IBF[B,A]. (2.16)

Note that we path integrate over the BF-model with a twisted holonomy constraint as
indicated, obtained by exponentiating the hyperbolic Cartan generator H ∈ sl(2,R), ebH ,

which in the fundamental representation reads
(
eb/2 0
0 e−b/2

)
. This non-local boundary

condition implements a standard hyperbolic defect in the BF path integral, which in turn
ensures a topological deformation of pure JT on the plane to a single trumpet with geodesic
neck length b [66]. We can graphically depict this decomposition as:

β µ =
∫ +∞

0
db

β

µ

b . (2.17)

The defect can also be regarded as a vertical Wilson line that pierces the two-dimensional
disk, and descends from the dimensionally reduced 3d Chern-Simons theory [20, 66]. From
this perspective, we have two linked Wilson lines, where the encircling one can be viewed
as measuring the label b of the inner one.

Integrating out the dilaton along the EOW brane yields the identification (2.13). The
path integral over the closed EOW brane contour generates a Wilson loop Wj(A), which
evaluates to a trace over a highest-weight discrete series irrep of the holonomy of A around
this contour. Due to the twisted boundary condition, the trace of the holonomy Wj(A) will
be evaluated as a hyperbolic character in the highest-weight discrete series representation [67]:

χj(ϕ) = Trj(e2ϕH) = e(2j+1)ϕ

2 sinh(ϕ) ≈
e−µb

2 sinh b
2
, j = −1

2 ,−1, . . . (2.18)

where we have used the dictionary between the hyperbolic parameter ϕ and geodesic length
b = 2ϕ, and the limit of large −j = h ≈ µ ≫ 1. This limit can also be interpreted as the
saddle approximation of the worldline path integral, including the one-loop determinant
over closed loop trajectories.

The amplitude of an EOW brane attached to the neck of a single trumpet can now be
readily deduced. As a first step, one should introduce a hyperbolic defect in the bulk, creating
a non-trivial monodromy along the thermal boundary circle. The procedure was explained in
detail in [66]. The essential takeaway is to introduce a hyperbolic character evaluated in the
continuous series representation labeled by a “momentum” label k [67]:

χk(ϕ) =
cos(2kϕ)
sinh(ϕ) . (2.19)
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Removing the Weyl denominator immediately leads to the hyperbolic defect insertion in
the trumpet partition function [66]:

Ztrumpet(β, ϕ) =
∫ ∞

0
dk cos(2kϕ)e−βk2

. (2.20)

Combined with the EOW brane character of (2.18), and gluing along positive b = 2ϕ (2.16),
finally recovers exactly the partition function (1.4) derived by [38] from the boundary particle
formalism:

A(β;µ) = β µ =
∫ ∞

0
dk e−βk

2
∫ ∞

0
db cos(kb) e−µb

2 sinh(b/2) . (2.21)

This opens up a way to extrapolate the notion of EOW branes to more exotic theories of
JT supergravity, entirely from their group theoretic formulations.

3 EOW brane amplitudes in N = 1 JT supergravity

We start by running the story for N = 1 JT supergravity.

3.1 EOW branes in superspace

Our goal is to formulate an equivalent boundary action along the lines of (1.1), that captures
the dynamics of end-of-the-world branes in superspace, and thereby to extend the discussion
of the previous section to N = 1 JT supergravity. First of all, we recapitulate the JT
supergravity action in 2|2-dimensional superspace formulated in [47], with the appropriate
1|1-dimensional UV boundary term formulated in [49]:

IN=1
JT = −1

2

[∫
d2zd2θ EΦ(R+− + 2) + 2

∫
∂AdS

dτdϑ ΦK
]
. (3.1)

The bulk superspace is spanned by two real holomorphic and antiholomorphic coordinates
z and z̄, and two fermionic (Grassmann) holomorphic and antiholomorphic coordinates θ
and θ̄, collectively denoted by ZM =

(
z, z | θ, θ

)
. E is the superdeterminant of the frame

fields in superspace E = sdet(EAM ), R+− the scalar supercurvature containing the usual
scalar curvature in the θθ̄-term in the superspace expansion [68], and Φ the superdilaton field
containing the scalar dilaton field ϕ in the bottom component of the superspace expansion.
The extrinsic curvature along the UV boundary curve is defined from the first order tangent
vectors along the curve TA = (∂τZM )E A

M and the variation of the normal vectors defined
by TAnA = 0 [49]:

K ≡ TADTnA
TATA

, (3.2)

in terms of a covariant derivative that acts as a superderivative D = ∂ϑ + ϑ∂τ along the
boundary equipped with the first order spin connections ΩM :

DTnA = DnA + nA
∂ZM

∂ϑ
ΩM + nAϑ

∂ZM

∂τ
ΩM . (3.3)
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An important realization is that the boundary curves are in fact 1|1-dimensional sheets
that are infinitesimally thickened in the fermionic ϑ-direction. I.e., the boundary curve
is parameterized in terms of a bosonic τ - and fermionic ϑ-affine coordinate. In Poincaré
super upper half-plane (SUHP) coordinates discussed in [52], the boundary curve covers the
1|1-dimensional boundary sheet in the parametrization

τ ′(τ, ϑ), y′(τ, ϑ), θ′(τ, ϑ), θ̄′(τ, ϑ), (3.4)

with z′ = τ ′ + iy′, z̄′ = τ ′ − iy′ and θ′, θ
′ superconformal transformations of the Poincaré

SUHP. However, we aim to describe EOW branes as geodesic curves in superspace. These are
genuine 1|0-dimensional curves in the 2|2-dimensional superspace, describing the trajectory

z′(s), z̄′(s), θ′(s), θ̄′(s), (3.5)

in terms of a single bosonic worldline parameter s, which we may take to be the proper
length along the curve.

A natural first step is to add to the JT supergravity action (3.1) a term containing the
worldline action in superspace, labeled in terms of this bosonic worldline coordinate s:

I = µ

∫
EOW

ds
(
ŻMgMN Ż

N
)1/2

. (3.6)

The target space coordinate ZM (s) =
(
z′(s), z′(s) | θ′(s), θ′(s)

)
labels the trajectory in (2|2)-

dimensional superspace, and the dot indicates differentiation with respect to the worldline
parameter s. The quantity gMN denotes the metric in superspace, following the conventions
of appendix A.3

Since our EOW brane trajectories form 1|0-dimensional worldlines, we need a different
definition of the extrinsic curvature than (3.2). A natural choice would be to simply generalize
the definition of the bosonic extrinsic curvature to superspace:

K = UµUα∇αnµ → K = UNUM∇MnN , UM ≡ ŻM = dZM

ds
, (3.9)

with the covariant derivative defined from the variation of the worldline action (see appendix A).
In particular, our convention for the superspace covariant derivative on both vectors and
covectors is given in (A.15) and (A.22) in terms of an appropriate definition of the generalized
Christoffel symbols (A.13).

We define the normal vector in superspace nM (s) through the condition:

UM (s) nM (s) ≡ 0. (3.10)
3We work in the NW-SE (north-west - south-east) convention, where covectors are constructed by acting

with the metric on the left (cf. (A.5))
ŻM ≡ gMN ŻN , (3.7)

and coordinate-invariant contractions appear NW-SE

ŻN gNM ŻM = ŻM ŻM . (3.8)

Similarly, Lorentz-contractions acting on local Lorentz indices, are defined NW-SE with respect to the
constrained Cartan-Killing (CK) metric κAB , see (3.27).
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The variation of the worldline action leads to the classical geodesic equations of a super-
particle (A.16)

UM∇MUN = 0. (3.11)

We next show that this generalization directly characterizes geodesic curves as those which
have K = 0.

Taking a covariant derivative of the identity UNnN ≡ 0, we can write

∇MUN nN = −(−)MNUN ∇MnN , (3.12)

where M,N in the exponent denote the usual fermionic sign factors defined around (A.2).
Inserting this into the variation of the worldline action (A.17) yields:

δI = −µ
∫
ds
(
UM∇MUN

)
nN = µ

∫
ds UNUM∇MnN ≡ µ

∫
ds K, (3.13)

where we have defined the extrinsic curvature along the 1|0-dimensional curve as:

K = UNUM∇MnN . (3.14)

This characterizes completely the variation of the worldline action in superspace. Any
superparticle for which K ≡ 0 along its worldline has a vanishing variation of the worldline
action δI = 0, and hence follows its classical geodesic trajectory in superspace.4

We may now extend the total Euclidean action of N = 1 JT supergravity (3.1) in the
presence of an EOW brane:

IN=1
JT =− 1

2

[∫
d2zd2θ EΦ(R+− + 2) + 2

∫
∂AdS

dτdϑ ΦK
]

(3.17)

+
∫

EOW
ds
√
ŻMgMN ŻN (µ− ϕK) , (3.18)

where ϕ coincides with the bottom component of the dilaton superfield Φ.
We emphasize again that the extrinsic curvature along the AdS-boundary K is different

from the extrinsic curvature along the EOW brane K. The former is defined along the
1|1-dimensional boundary curve (3.2), while the latter is defined along the 1|0-dimensional
brane in (3.14).

4Using the antisymmetry properties of the metric (A.4), contractions are commutative in the NW-SE
direction: V N WN = V N gNKW K = W KgKN V N = W KVK . One can thus argue that

∇M (V N WN ) = (∇M V N )WN + (∇M W N )VN . (3.15)

This property is compatible with the superspace analogues of the product rule for covariant derivatives (A.20)
and the invariance of the metric tensor (A.23). Taking the tangent vectors to be normalized UN UN = 1, it
readily follows using the above property that the variation of the worldline action (A.17) along the tangent
direction δZA = UA again trivially vanishes:

δI = −µ

∫
ds
(
UM∇M UN

)
UN = 0. (3.16)
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Evaluating the quantum mechanical amplitude, including the boundary action (3.18),
proceeds in the same way as the bosonic case. Path integrating over the dilaton superfield
at the EOW brane boundary imposes the extrinsic supercurvature to vanish:

K ≡ 0. (3.19)

By construction of the extrinsic supercurvature above, the worldline path integral localizes
along geodesics in superspace as:∫

DZ e−
∫
C ds
√
ŻMgMN ŻN (µ−ϕK) Integrate over Φ−−−−−−−−−−→

∫
geodesics

DZ e−µ
∫
C ds
√
ŻMgMN ŻN

. (3.20)

This localization along geodesics is equivalently achieved by taking µ ≫ 1 to be large in
the worldline path integral.

To explicitly evaluate (3.20), we need an analogous identification between a worldline
path integral and a Wilson operator insertion in the BF path integral, relevant for N = 1
JT supergravity.

3.2 Wilson loops as probe particles in superspace

We first extend the proofs in appendix E of [22] and appendix C.3 of [52], to generalize the
identification between Wilson loops and worldline path integrals in superspace for arbitrary
amount of supersymmetry. The gauge groups of interest here are 2d superconformal groups
G for any amount of supersymmetry. They are characterized as having an SL(2,R) subgroup:
SL(2,R) ⊂ G, identified as the gravity subsector, and possibly (for higher supersymmetry)
a bosonic R-symmetry group GR. The maximal bosonic subgroup is hence SL(2,R)⊗GR.
We work in Euclidean signature.

We start by introducing a gauge field for the group G, and expand it into the generators
of the supergroup in terms of what we will later on identify as the first order superframe
fields E A

M and superspin connection ΩM :

AM = E A
M JA +ΩMJ2, A = 0, 1, a, α, (3.21)

where letters at the beginning of the alphabet A,B, . . . denote Lorentz frame indices, while
letters in the middle of the alphabet M,N, . . . denote Einstein superspace indices. Latin
indices a, b, . . . denote additional bosonic generators in the (compact) R-symmetry group for
higher supersymmetry. Greek indices α, β, . . . denote spinor indices.

The first three bosonic generators J0, J1, J2 are taken as the generators of the SL(2,R)
subgroup, and are related to the usual Cartan-Weyl basis of sl(2,R) generators by [52]:

J0 = −H, J1 = 1
2(E

− + E+), J2 = 1
2(E

− − E+), (3.22)

which in the fundamental representation of the subalgebra sl(2,R) look like:

H = 1
2

[
1 0
0 −1

]
, E− =

[
0 0
1 0

]
, E+ =

[
0 1
0 0

]
. (3.23)

In particular, J2 is a compact generator, exponentiating into SO(2) ⊂ SL(2,R). In addition,
we have fermionic generators Jα, and R-symmetry generators Ja.
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The Cartan-Killing metric κAB is defined by the normalization of the generators:

STr(JAJB) =
κAB
2 . (3.24)

These generators can be chosen to be normalized as:

κAB = diag(1, 1,−1), (A,B = 0, 1, 2), κab = δab, (3.25)

καβ =

2ϵαβ : if α and β are conjugate pairs,
0 : otherwise,

(3.26)

and all unwritten components zero. The restriction of the Cartan-Killing metric to the
directions A = 0, 1, α coincides with the local Lorentz metric (in Euclidean signature) [52]:

κab = δab, καβ = 2ϵαβ , κaα = καa = 0. (3.27)

The symmetry properties of the Cartan-Killing metric are summarized as:

κAB = (−)ABκBA. (3.28)

We can write a Wilson loop along C in the discrete series representation labeled by j

as a path integral of the first-order action SΛ[g,A] over the closed path C with dynamical
variable g(s):

Wj(A) =
∫
C
DΛg e

−SΛ[g,A]. (3.29)

The first order action is minimally coupled to a gauge field in superspace AM = AM
AJA:

SΛ[g,A] =
∫
C
ds STr

(
Λg−1DAg

)
, (3.30)

with the covariant derivative defined symbolically as:

DA = ∂s + As. (3.31)

The gauge field along the curve is defined as As = ŻMAM (Z(s)). The argument is well-
known and goes under the name of the Borel-Weil-Bott theorem. It appeared in the 3d
Chern-Simons context in [69], as nicely explained more recently in [70, 71]; and has been
generalized in the supergroup context in [72, 73].

The action (3.30) has a gauge redundancy, being invariant under (local) left multiplication
by elements of G:

g → Ug, As → UAsU
−1 − ∂sUU−1. (3.32)

The vector Λ is the highest-weight vector of the spin-j representation in the g-algebra. The
precise choice of Λ can be changed by conjugation since the action is invariant under the
(global) right-multiplication:

g → gV, Λ→ V −1ΛV. (3.33)

The adjoint action on Λ as in (3.33) does not change any invariant tensors or Casimir
operators of the algebra. The representation is fixed by choosing the values of all Casimir
operators.
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3.3 Wilson loops as probe particles: rank-1 groups

To proceed, we need to construct all Casimirs of the Lie superalgebra, which depend on the
specific choice of g. For the N = 0 sl(2,R) and N = 1 osp(1|2,R) (super)algebra, there is
only the quadratic Casimir (and a trivial R-symmetry) and we review how the argument
works [22, 52], adding some clarifications. In a later section, we will have to revisit this
argument to deal with higher amounts of supersymmetry (non-trivial R-symmetry group)
and multiple Casimir operators.

Since, up to the value of the quadratic Casimir, the precise choice of the weight vector Λ is
irrelevant, we can average over this choice by introducing a functional integral over the latter:∫

DΛDΘDΛg e
−SΛ[g,A,Θ], (3.34)

with
SΛ[g,A,Θ] =

∫
C
ds

[
STr(Λg−1DAg) +

i

2Θ(ΛAΛA − 4C2)
]
, (3.35)

and with fixed value of the quadratic Casimir as:
1
2STr

(
Λ2
)
= 1

4Λ
IκIJΛJ = C2 ≡ j(j + 1/2), (3.36)

where the real number C2 is specifying the representation.
Performing the Gaussian integral over all components of Λ leads to the action:

S[g,A,Θ] = i

2

∫
C
ds

[ 1
2ΘSTr(g−1DAgg

−1DAg)− 4ΘC2

]
. (3.37)

If the connection in the BF path integral is flat, it can be absorbed into the group element
g by (3.32), and the action finally becomes:

S[g,A,Θ] = i

2

∫
C
ds

[ 1
2ΘSTr(g−1∂sgg

−1∂sg)− 4ΘC2

]
, (3.38)

which describes a particle moving on the group G manifold, with its canonical Cartan-Killing
metric ds2

CK ≡ 2STr[(g−1dg)2]. However, this is not gravity. We have not yet used the
dictionary between how the vielbein and spin connection are encoded into the components of
the gauge field (3.21). At the group theoretical level, we have described a particle moving
on the parent superconformal group G manifold, whereas we want a particle moving on the
right coset manifolds G/H describing hyperbolic space. In our particular case for N = 0 or
N = 1, we have G = SL(2,R) or OSp(1|2,R) respectively, and H = U(1) ≃ SO(2) (generated
by the compact generator J2 for Euclidean signature as here) or SO(1, 1) (generated by the
non-compact generator H for Lorentzian signature):

H2 ≃
PSL(2,R)

U(1) , H2|2 ≃
OSp(1|2,R)

U(1) , (3.39)

AdS2 ≃
PSL(2,R)
SO(1, 1) , AdS2|2 ≃

OSp(1|2,R)
SO(1, 1) . (3.40)

To implement this in the procedure, we note that the transformation (3.33) allows us
to choose Λ to be of the restricted form:

Λ = Λ0J0 + Λ1J1 + ΞαJα. (3.41)
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We have chosen here to set to zero the component of Λ along the J2-direction (and all
components along the R-symmetry group generators for higher supersymmetry).

At the coset level, we hence reintroduce a functional integral over the restricted set
of weights Λ as: ∫

DΛDΘDΛg e
−SΛ[g,A], (3.42)

where Θ is a scalar bosonic Lagrange multiplier enforcing the constraint (Λ0Λ0 + Λ1Λ1 +
ΞαϵαβΞβ) ≡ 4C2:

SΛ[g,A,Θ] =
∫
C
ds

[
STr(Λg−1DAg) +

i

2Θ(Λ0Λ0 + Λ1Λ1 + ΞαϵαβΞβ − 4C2)
]
. (3.43)

Note again that we integrate over adjoint elements ΛA that live in a subvectorspace of
the algebra (by excluding the J2 (and R-symmetry for higher rank) components in the
expansion (3.41)). This means that the components of g−1DAg along these directions are
absent. At the level of the Cartan-Killing metric of the particle on the group manifold (3.38),
this implements a coset condition along the J2-direction as:

ds2
coset = 2STr[(g−1dg)2]

∣∣∣
̸=J2

. (3.44)

Also note that the classical variables Ξα are treated as Grassmann-variables in this path
integral.

We fix the gauge redundancy in g, which induces a transformation of A, by setting
g ≡ 1 along the entire curve C and smoothly extending this gauge into the bulk [22]. This
gauge transfers the information of the metric from the group variables into the gauge fields
according to (3.21). The frame fields are then captured entirely by the covariant derivative
in the Lagrangian as:

g−1DAg = As = ŻME A
M JA. (3.45)

The total action thus becomes:

SΛ[g,A] = 1
2

∫
C
ds
[
ΛAκABŻME B

M + iΘ(Λ0Λ0 + Λ1Λ1 + ΞαϵαβΞβ − 4C2)
]
. (3.46)

Path integrating over all (non-zero) components of the weight vector Λ (Λ0,Λ1,Ξα) yields
a reduced action:

S[Z,E] = i

2

∫
C
ds

[ 1
4Θ Ż

ME A
M κABŻ

NE B
N − 4ΘC2

]
. (3.47)

The metric tensor is, by definition, related to the frame fields as:

gMN = E A
M κABE

B
N . (3.48)

The frame field should satisfy the symmetry property E A
M = (−)M+MAEAM in order to

obey the required symmetries (A.4). Then we can rewrite the gravitational coset metric
ds2

coset as a spacetime metric

ds2
coset = ŻME A

M κABŻ
NE B

N = ŻMgMN Ż
N , (3.49)
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to obtain:

S[Z, gMN ] =
i

2

∫
C
ds

[ 1
4Θ Ż

MgMN Ż
N − 4ΘC2

]
. (3.50)

The Gaussian integrals over the non-zero components of Λ also pick up the path integral
measure factor

∼
∏
s

1
Θ(s)D/2 , (3.51)

where D = 2−2 is the super-dimension (bosonic minus fermionic dimension) of the bulk super-
space H2|2. This is precisely the required measure in order to guarantee 1d reparametrization
invariance along the worldline of a particle in superspace (3.50). One pedestrian way to see
this, is to consider the free non-relativistic particle path integral in the discretized language:

1
(2πϵeN+1)D/2

N∏
n=1

∫
dDxn

(2πϵen)D/2 e
−
∑N+1

n=1 (xn−xn−1)2/2ϵen = 1
(2πT )D/2 e

−
(xf −xi)2

2T , (3.52)

where en is the discretized worldline einbein, and T =∑N+1
n=1 ϵen is the total physical proper

time as measured along the worldline. 1d reparametrization invariance is manifest on the
r.h.s. , and is implemented on the l.h.s. in that the einbein only appears in the combination ϵen.
In particular, we note the 1/eD/2

n in the path integral measure. This argument is purely on
the worldline, and hence generalizing to curved target spacetime is immediate.5 Generalizing
to target superspace is also immediate by incorporating Gaussian integrals of Grassmann
variables, leading indeed to the advertised measure (3.51).

Optionally, we can now integrate out the field Θ. Choosing the upper branch solution of Θ,

Θ = i

4C1/2
2

√
ŻMgMN ŻN , (3.53)

gives:

S[Z, gMN ] = C1/2
2

∫
ds
√
ŻMgMN ŻN . (3.54)

Here one recognizes the more familiar form of the worldline action. This is exact also off-
shell, but requires introduction of the proper path integration measure in the square-root
action, as usual.

Recognizing that flat field gauge transformations in the BF path integral are equivalent
to superdiffeomorphisms in the metric formulation finally proves the equivalence between
a Wilson loop operator insertion in the BF path integral, and the worldline path integral
in the metric formulation:

Wj(A) = STrj
(
P exp−

∮
C

A
)
≃
∮
C
DZ e−C1/2

2
∫
ds
√
ŻMgMN ŻN

. (3.55)

5Although of course the integral is no longer Gaussian.
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3.4 Supergravitational amplitudes involving EOW branes

To compute supergravitational amplitudes, we will have need for the analogous characters
of the representations. The relevant group to describe N = 1 JT supergravity in its BF
formulation is OSp(1|2,R), some of the representation theory was developed in [52].

Defects are implemented in the supergravitational amplitudes by inserting a suitably
normalized continuous series character in the disk partition function. Since we will be
interested in EOW branes ending at the neck of a supersymmetric trumpet, we consider
the insertion of a hyperbolic character, obtained by exponentiating the Cartan generator
H ∈ osp(1|2,R) [52]:

g(ϕ) = e2ϕH ≃


eϕ 0 0
0 e−ϕ 0
0 0 ±1

 , (3.56)

for the respective R (+) and NS (−) sectors. These two sectors of the supergroup are not
continuously connected to each other. The technical details to proceed can be found in [52]
and lead to two distinct characters depending on the relevant spin-structure sector

χNS
k (ϕ) = i

cos(2kϕ)
sinh(ϕ/2) , χR

k (ϕ) = i
sin(2kϕ)
cosh(ϕ/2) , (3.57)

for the principal series representation label j = −1/4 + ik, k ∈ R+. Removing the Weyl
denominator immediately yields the appropriate defect insertions in the super-gravitational
disk partition function:

ZNS
trumpet(β, ϕ) =

∫ ∞

0
dk cos(2ϕk)e−βk2 = 1

2

√
π

β
e−ϕ

2/β , (3.58)

ZR
trumpet(β, ϕ) =

∫ ∞

0
dk sin(2ϕk)e−βk2 = 1

2

√
π

β
e−ϕ

2/βerfi
(
ϕ√
β

)
. (3.59)

The NS trumpet is one-loop exact and recovers the bosonic trumpet partition function (2.20).
The R trumpet amplitude is not one-loop exact, and has the following perturbative expansion:

ZR
trumpet(β, ϕ) =

(
ϕ

β
+ ϕ3

3β2 + ϕ5

10β3 + ϕ7

42β4 + . . .

)
e−ϕ

2/β . (3.60)

In particular, we observe that the one-loop component vanishes, but higher-loop contributions
do not. The precise relation with a super-Schwarzian evaluation of this amplitude is not
clear to us, as these are usually one-loop exact [13], with the Ramond sector zero at one
loop due to a fermion zero-mode [53].

The NS sector is in this case the one-loop exact component, whose monodromy is
disconnected from the identity element. A similar situation will turn up in the connected
gravitational sector versus disconnected sector of N = 2 OSp(2|2,R) representation theory.
In that case, we observe that the component connected to the identity is one-loop exact,
whereas the component disconnected from the identity yields a similar all-order perturbative
expansion. The latter is treated in appendix B.8.
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From the previous discussion, the mass of the EOW particle is related to the quadratic
Casimir by:

µ2 ≡ C2 = j (j + 1/2) . (3.61)

For a highest-weight discrete series module with h = −j [52], the relation between mass
and conformal scaling dimension h leads to:

h(h− 1/2) = µ2. (3.62)

Integrating over the dilaton field along the EOW brane, we have the identification in
superspace: ∫

DgDΦ
∮

geodesics
DZ e−µ

∫
ds
√
ŻMgMN ŻN

e−I
N=1
JT [g,Φ]

=
∫ +∞

0
db

∫
e
−
∮

A ≃ ebH
DBDAWj(A)e−I

osp(1|2,R)
BF [B,A],

(3.63)

where we have again split the integral over geodesic paths according to (2.15). The (bottom
component of the) geodesic length b is related to the holonomy by the twisted boundary
condition, implementing a hyperbolic deformation of the disk.

Due to the relation between the mass parameter µ and the conformal weight h, the
geodesic approximation instructs us to identify

h ≈ µ, µ≫ 1. (3.64)

Note that we consider positive mass µ, and highest weight modules are defined for h > 0 [52].
Equation (3.55) demonstrates that the worldline path integral is the hyperbolic character

evaluated in a highest-weight discrete series representation module labeled in terms of the
tension parameter µ. The character depends only on the conjugacy class of the group element,
which for OSp(1|2,R) consists of a real hyperbolic variable ϕ and a Z2 choice, distinguishing
between the Ramond (R) and Neveu-Schwarz (NS) sectors. The resulting characters have
been calculated explicitly in [52], and take the form:

χNS
j (ϕ) = e(2j+1/2)ϕ

2 sinh (ϕ/2) , χR
j (ϕ) =

e(2j+1/2)ϕ

2 cosh(ϕ/2) . (3.65)

The transition from the group theoretical language to gravity is again achieved by
replacing b = 2ϕ [52]. We further identify the mass tension with the conformal scaling
dimension −j = h ≈ µ ≫ 1 within the geodesic approximation, yielding:∮

CNS
DZ e−µ

∮
C ds
√
ŻMgMN ŻN

≃ e−µb

2 sinh(b/4) , (3.66)∮
CR
DZ e−µ

∮
C ds
√
ŻMgMN ŻN

≃ e−µb

2 cosh(b/4) . (3.67)

It is again interesting to note that the denominator can be interpreted as a one-loop cor-
rection to the classical (geodesic) saddle approximation. Gluing the worldline particle
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amplitudes along the geodesic length at the neck of the relevant spin-structured trumpets
(equations (3.58), (3.59)) finally yields:

ANS(β;µ) =
∫ ∞

0
dk e−βk

2
∫ ∞

0
db cos(bk) e−µb

2 sinh(b/4) , (3.68)

AR(β;µ) =
∫ ∞

0
dk e−βk

2
∫ ∞

0
db sin(bk) e−µb

2 cosh(b/4) . (3.69)

An immediate realization is that the spurious UV divergence for small b→ 0 is only present
in the NS sector. On the other hand, the R sector is perfectly regular in the UV. The
Weyl denominator of the discrete series character is explicitly visible since the worldline
path integral evaluates to a genuine character in group theory, and can be viewed as the
culprit for this possible UV-divergence.

4 EOW brane amplitudes in N = 2 JT supergravity

In this section, we attempt to further generalize our group-theoretic construction to incorporate
N = 2 JT supergravity. Starting at this level of supersymmetry, the relevant superalgebra
is higher rank which adds new subtleties as we elaborate on.

4.1 EOW branes in superspace

The Euclidean worldline action for the EOW brane is readily generalized. Indeed, our
analysis for N = 1 in subsection 3.1 was written such that the discussion there immediately
applies. We hence retake

IEOW =
∫

EOW
ds
√
ŻMgMN ŻN (µ− ϕK) (4.1)

in a (2|4)-dimensional target space as our proposal for the EOW brane action. Our main
question is whether we can reproduce the corresponding worldline path integral from rep-
resentation theory.

4.2 Wilson loops as probe particles: higher rank groups

Starting with N = 2 supersymmetry, the superalgebra has higher rank which complicates
the derivation of subsection 3.3. We describe how to deal with this here. We are focused
on N = 2 but some of our notation directly generalizes to N = 4.

For general topological supergravity models, we write the gauge connection in super-
space as:

AM ≡ eMaJa + fM
αJα +ΩMJ2 + σM

bJR
b , a = 0, 1, b = dim R-symmetry group

= EM
AJA +ΩMJ2 + σM

bJR
b , (4.2)

where in the second line we have combined the two bosonic zweibein components with their
superpartners into the super-zweibein EM

A ≡ (eMa|fMα), and have introduced the notation
σM for the components of AM along the R-symmetry generators.
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In the N = 2 case, we work with the (4|4)-dimensional superalgebra osp(2|2,R). For N =
2 supergravity, there are hence four fermionic coordinates, one R-symmetry generator, and the
A-index takes on 2|4 values. The associated BF description was written down in component
form in [74]. In appendix C, we provide some details of the direct superspace description of
this model, in particular elaborating on how gauge transformations decompose gravitationally
into diffeomorphisms, local Lorentz transformations and U(1) gauge transformations.

Exponentiating this Lie superalgebra, we obtain the supergroups OSp(2|2,R) and
SU(1, 1|1), where the first contains two components out of which only the one connected to
the identity group element is appropriate for supergravity. The SU(1, 1|1) description on
the other hand directly produces supergravity. Nonetheless, in this work we will choose to
work explicitly with the real supergroup OSp(2|2,R).6,7

Picking a weight vector Λ that satisfies 1
2STrΛ2 = C2 = j2− q2 and STrΛ3 = C3 = q(j2−

q2), the character in the irrep (j, q) is obtained as a path integral over g with action:

SΛ[g,A] =
∫
ds STr(Λg−1DAg), DA ≡ ∂s + As, As(s) ≡ ŻM (s)AM (Z(s)). (4.3)

We now fix a gauge on the disk in which g = 1 along the curve C, such that g−1DAg reduces
to As = ŻM (EMAJA + ΩMJ2 + σMJ

R) and the action becomes

1
2

∫
ds
[
ΛAκABŻMEMB + Λ2Ż

MΩM + ΛŻMσM
]
. (4.4)

The last term describes the minimal coupling to a U(1) gauge field σM .
We now restrict the weight vector Λ to Λ = 0 = Λ2 and with quadratic and cubic

Casimir fixed as C2 and C3 respectively. Since the above holds for any weight vector Λ,
this step is merely a constructive step that will lead to the final result we want. The first
restriction is done to effectively reduce the target space of the particle to the right supercoset
where we mod out by the right action of the one-parameter subgroups generated by J2 and
Z. This corresponds to the fact that the bulk superspace is not a supergroup itself, but
is instead a homogeneous space that can be written as a supercoset of the original gauge
group. Indeed, similarly as in the bosonic and N = 1 case, the hyperbolic superspaces are
then constructed as a supercoset:

H2|4 ≃
OSp(2|2,R)

U(1)Lorentz ⊗U(1) , AdS2|4≃
OSp(2|2,R)

SO(1, 1)⊗U(1) , (4.5)

where we divide by a subgroup that is larger now compared to N = 0, 1.
This particular subgroup can also be characterized geometrically as the relevant tangent

space group in N = (2, 2) supergravity as follows. The tangent space group (or local
Lorentz group) can usually be defined by the ambiguity in the definition of the zweibein

6We have two reasons. Firstly, the required representation theory of SL(2, R) and OSp(1|2, R) will generalize
most straightforwardly if we work with a real supergroup. Secondly, as we will discuss in the concluding
section 6, (super)gravity is not precisely equal to a gauge theory. In the BF formalism, one can improve gauge
theory by adding a suitable positivity condition, which can only be done if we work with a real fundamental
representation to begin with.

7This group plays a similar role in the 3d Chern-Simons formulation of 3d pure N = 2 supergravity, see
e.g. [75] for a recent explicit description.

– 18 –



J
H
E
P
0
2
(
2
0
2
4
)
0
5
8

gMN = E A
M κAB EBN , given the metric. For the (2|4)-dimensional supermetric, the above

relation is preserved by local transformations EA → LABE
B belonging to OSp(2|4,R).

However, as well-known (see e.g. [76]), in superspace supergravity it turns out one should
restrict this “maximal” tangent space group to a specific subgroup in order to make contact
with the component formulation. In our case, we need to focus on the tangent space subgroup

U(1)Lorentz ⊗U(1) ⊂ OSp(2|4,R), (4.6)

where U(1)Lorentz and U(1) act on the basis EA ≡ (e±|f±, f̄±) precisely as described in
appendix C (as parametrized there by l and s respectively). Hence the (abelian) productgroup
U(1)Lorentz⊗U(1) serves as the superspace tangent group of relevance here for the construction
of aAdS N = 2 JT supergravity.

More generally, the relevant superspace tangent space group for any 2d superconformal
algebra is U(1)Lorentz ⊗ GR, where one includes the complete R-symmetry group. E.g. for
N = 4 JT supergravity, the tangent space group is U(1)Lorentz ⊗ SU(2), and we will see this
group appear in the coset construction of the N = 4 supersymmetric hyperbolic 2-plane
in section 5.

The restriction Λ = 0 = Λ2 effectively corresponds to considering those components
of the gauge connection (4.2) which are not Ω and σ. This can be viewed as a partial
gauge-fixing of the symmetry (3.33) of the system.

We implement the constraints on the Casimirs through two Lagrange multipliers as∫
ds

[1
2Λ

AκABŻ
MEM

B + iΘ1(STrΛ2 − 2C2) + iΘ2(STrΛ3 − C3)
]
. (4.7)

For bosonic higher rank algebras, such actions were written down in [64].8
To proceed and explicitly compute quantum gravitational amplitudes, we require explicit

expressions for the discrete and principal series characters of OSp(2|2,R). Unfortunately,
the representation theory has not been worked out sufficiently for our purposes, so we first
develop the required mathematical background explicitly, presenting the specifics in a detailed
appendix B. We can summarize our results as:

• We construct the principal series irreducible representations of OSp(2|2,R) by parabolic
induction, generalizing the explicit construction from PSL(2,R)
(N = 0) and OSp(1|2,R) (N = 1). As before, these irreps are physically important since
they describe the states that propagate in the bulk Hilbert space of the supergravity
model.

• We explicitly compute the characters in these representations to be (B.100):

χN=2
k,q (ϕ, θ) = 2 cos(2kϕ)e2iQθ coshϕ− cos θ

sinhϕ , (4.8)

where ϕ ∈ R+ and θ ∈ [0, 2π) label conjugacy classes of OSp(2|2,R) (they parametrize
the 2d Cartan subalgebra), and k ∈ R+ and Q ∈ R are labeling the irrep itself. One

8More generally, for a rank r group G we would add r constraints to fix all higher Casimirs, and fix the
irrep.
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can think of these as a momentum label k and charge label Q. The last factor in (4.8)
descends from the usual Weyl denominator of the superalgebra (B.43). This character is
physically important as it implements a hyperbolic defect in the super-JT bulk, which is
geometrically interpretable as a trumpet with a geodesic boundary. For those purposes,
as earlier, the Weyl denominator is stripped off [66], leading to the trumpet partition
function:

Ztrumpet(β;ϕ, θ) =
∫ +∞

0
dk

∑
Q∈N/2

e−β(k2+Q2)e2iQθ cos(2kϕ), (4.9)

where the Q charge quantum number is in principle discretized. The energy variable k2+
Q2 is (up to a sign) the quadratic Casimir of the principal series representations (B.93).

• We compute the character in the highest weight discrete series irreps to be (B.45):

χN=2
j,q (ϕ, θ) = e2iqθe2jϕ coshϕ− cos θ

sinhϕ . (4.10)

We will once again define the EOW branes as inserting this character into the gravita-
tional amplitude.

The reader who is willing to believe these statements can safely skip the results reported
in appendix B.

Armed with these expressions, we can write down some explicit amplitudes. However,
in order to make contact with the superspace action (4.1), we will need to distinguish two
possible definitions of branes, which we denote as class-1 and class-2 EOW branes, and
discuss consequently.

4.2.1 Class-1 EOW branes

We cannot integrate over Λ exactly in the action (4.7), but it is still interesting to analyze
the resulting Lagrangian perturbatively in Θ2. One could hope to rewrite the terms in
perturbation theory fully in terms of the second order metric gMN only. We attempt to
do so in appendix E, where we note that this is impossible: the brane action is a purely
first-order construction.

Nonetheless, we can proceed and define an EOW brane with “mass” label j and “charge”
label q through the first-order action (4.7). Using (4.10) and the stripped version of (4.8)
(removing the Weyl denominator), the final expression for the amplitude with one asymptotic
boundary and one EOW-brane boundary with mass µ and charge q can then be compiled as:

AI(β;µ, q) = β µ, q (4.11)

=
∫ +∞

0
dk

∑
Q∈N/2

e−β(k2+Q2)
∫ ∞

0
db

∫ 2π

0
dθe2iQθ cos(kb)e2iqθe−µb

cosh b
2 − cos θ

sinh b
2

,

where the hyperbolic parameter is replaced by the geodesic length parameter b = 2ϕ in the
same way as before. Furthermore, we take the highest weight label to be proportional to
the mass parameter −j = h = µ ≫ 1 in the geodesic limit.
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Next, we investigate convergence of this amplitude. In the IR where b→ +∞ (large EOW
brane circle), the integral over b converges due to the e−µb suppression. Far more interesting
is the UV region where b → 0. As a consequence of the Weyl denominator expression, we
find the typical UV-divergences due to the pinching of the brane length as:

∼
∫

0
db

cosh b
2 − cos θ

sinh b
2

. (4.12)

This is divergent due to the b→ 0 region unless simultaneously θ = 0. Physically restricting
to θ = 0 means fixing the U(1) gauge field holonomy along the brane worldline to vanish.
The gravitinos pick up an Aharonov-Bohm phase upon circling the tube ∼ eiθ. Hence
setting θ = 0 removes this phase, and makes the gravitinos periodic. This is the Ramond
sector. Setting on the other hand θ = π, leads to the other extreme where the fermions are
anti-periodic. This is the Neveu-Schwarz sector. This range of θ is continuously connected
by the spectral flow operation. Performing the integral over θ first, it is readily seen that
the amplitude AI(β;µ, q) again diverges.

4.2.2 Class-2 EOW branes

We next define a second type of EOW brane. This brane type can be directly formulated in
the bulk superspace in the second order formalism, and as such is perhaps a more natural
analogous definition. If we integrate the path integral with action (4.7) over C3, we enforce
Θ2 = 0 and the resulting path integral becomes Gaussian again. Path integrating over Λ,
we obtain the effective action (cfr (3.50)):

i

2

∫
ds

[ 1
4Θ Ż

MgMN Ż
N − 4ΘC2

]
, (4.13)

where we have again defined the supermetric gMN = E A
M κABE

B
N , with indices taking on

2|4 values. Additionally, we produce a measure factor

∼
∏
s

1
Θ(s)D/2 , (4.14)

where D = 2 − 4 is the super-dimension (bosonic minus fermionic dimension) of the bulk
superspace H2|4, precisely as required for the superspace worldline particle path integral
as discussed around (3.52).

At the classical level (or with a suitable path-integral measure at the quantum level as
well), the worldline einbein Θ can be eliminated by the equations of motion, leading once
again to the natural coupling of a massive particle to supergravity (cfr (3.54)):

S[Z, gMN ] = C1/2
2

∫
ds
√
ŻMgMN ŻN . (4.15)

The resulting final action (4.13) (or (4.15)) has the form of a particle moving on the
supermanifold with metric ds2 = dZM gMN dZ

N , and “mass” C1/2
2 . The result is an EOW

brane where we are forgetting about the eigenvalue of the cubic Casimir (morally the
U(1) charge).
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At a technical level, we can get the final amplitude by integrating the earlier result for
class-1 EOW branes (4.11) over the cubic Casimir eigenvalue C3:

AII(β; C2) =
∫ +∞

0
dk

∑
Q∈N/2

e−β(k2+Q2)

×
∫ ∞

0
db

∫ 2π

0
dθ e2iQθ cos(kb)

cosh b
2 − cos θ

sinh b
2

∫ +∞

−∞
dC3 e

−

√
C2+

C2
3

C2
2
b

e
2iC3

C2
θ
, (4.16)

where the quadratic and cubic Casimirs are related to the representation labels j, q by (B.46).
Note that the C3-integral converges, although it cannot be done analytically. Convergence

of the b-integral on the other hand is modified compared to the class-1 EOW brane from
the previous subsection. Due to the behavior of the integrand at large C3 as e−|C3|b, there
is an additional ∼ 1/(b − 2iθ/C2) factor in the integral, causing the b-integral to diverge
even when θ = 0.

5 Towards EOW brane amplitudes in N = 4 JT supergravity

The methods described in the previous sections 2, 3 and 4 can in principle be generalized to
the more complicated case of N = 4 JT supergravity, described in terms of the PSU(1, 1|2)
supergroup.

The worldline action is very similar to that of N = 2 JT supergravity detailed in
formula (4.1) in subsection 4.2. The main new thing is the presence of a non-abelian R-
symmetry group SU(2) that is completely modded out in the worldline description. This
corresponds to the description of the hyperbolic superspaces as supercosets:

H2|8 ≃
PSU(1, 1|2)

U(1)Lorentz ⊗ SU(2) , AdS2|8 ≃
PSU(1, 1|2)

SO(1, 1)⊗ SU(2) . (5.1)

This is a right coset of a 6|8 dimensional space by a 4|0 dimensional subspace, leading indeed
to the 2|8 dimensional superspace H2|8. Moreover, there are two Casimir operators: the usual
quadratic one and a higher rank Casimir that we sketch in appendix D.2.

Some aspects of the representation theory of the relevant supergroup PSU(1, 1|2) and
Lie superalgebra psu(1, 1|2) are discussed in appendix D. Here we simply report the discrete
series character and the principal series character, which can be used to write down the EOW
brane amplitudes in N = 4 JT supergravity. For this rank 2 supergroup, we again label
conjugacy classes by two real variables ϕ ∈ R+ and θ ∈ [0, π).

The principal series character is given by (D.18):

χN=4
k,j2 (ϕ, θ) = 4 cos(2kϕ) sin(2j2 + 1)θ (cos θ − coshϕ)2

sinhϕ sin θ , (5.2)

where the last factor descends from the Weyl denominator (D.11). This character without
the Weyl denominator is then used to derive the single trumpet amplitude as:

Ztrumpet(β;ϕ, θ) ∼
∫ +∞

0
dk

∑
J∈N/2

cos(2kϕ) sin(2J + 1)θ e−β(k2+J(J+1)), (5.3)
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where the energy variable k2 + J(J + 1) is the quadratic Casimir in the principal series
representation, quickly found by substituting the correct value of j1 = −1/2 + ik in (D.13)
(and subtracting a zero-point energy term).

For the highest weight discrete series representation, we have (D.17):

χN=4
j1,j2 (ϕ, θ) = 2e(2j1+1)ϕ sin(2j2 + 1)θ (cos θ − coshϕ)2

sinhϕ sin θ . (5.4)

This character is again used to define the relevant (class-1) EOW-brane insertion.
Going through the same logic as before, this then leads to the expression for the amplitude

with a single circular class-1 EOW-brane with mass µ and SU(2) spin j:

A(β;µ, j) = β µ, j =
∫ +∞

0
dk

∑
J∈N/2

e−β(k2+J(J+1))

×
∫ ∞

0
db

∫ π

0
dθ cos(kb) sin(2J + 1)θ e−µb sin(2j + 1)θ

(cosh b
2 − cos θ)2

sinh b
2 sin θ

. (5.5)

As for the N = 2 case discussed below (4.11), this expression is UV-divergent unless one
can somehow restrict to θ = 0, the Ramond (periodic) sector.

A further open (but technical) problem, is to integrate this expression over the second
(higher-rank) Casimir to obtain what we denoted as class-2 EOW branes, which are manifestly
described by a worldline action (4.1) on the supermanifold with “mass” C1/2

2 . Expressions for
the quadratic and higher Casimir in terms of j1 and j2 appear in appendix D.

6 Concluding remarks

In this work we have heavily utilized group-theoretical methods to compute and generalize
(super)gravitational trumpet amplitudes that contain an asymptotic boundary and a sec-
ond end-of-the-world brane boundary. Such amplitudes are the building blocks for more
sophisticated amplitudes that we leave for future work.

In this section we highlight several tangential routes, for which a thorough study is
postponed to the future.

6.1 Immediate extensions

Our treatment of N = 4 JT supergravity and its underlying PSU(1, 1|2) framework (in
appendix D) have been somewhat less developed than those of the other cases N = 0, 1, 2.
We leave this as a problem for the future.

Furthermore, in this work, we have focused solely on circular EOW branes. However,
the disk EOW brane segment amplitudes (as shown for the bosonic case in (1.2)), are
also interesting. We are in the process of understanding these amplitudes for the various
supersymmetric versions of JT gravity.

As a final possible extension, amplitudes with a single circular EOW brane have been
computed in the context of double-scaled SYK in [77]. It would be interesting to understand
those calculations directly in the language of q-representation theory of the underlying
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quantum algebra Uq(su(1, 1)), where q = e−λ denotes the double-scaling parameter, as
developed in this context in e.g. [78–83]. Relatedly, given the formal relation between this
quantum group and the one relevant for Liouville gravity [41, 84], also similar amplitudes
can be expected to be computable for Liouville gravity and the minimal string. It would
be interesting to understand these better.

6.2 Gravity and the positive semi-group

It is known that actual (super)gravity cannot be entirely described by a BF gauge theory
based on any of the groups we have studied in this work. The discrepancy has to do with the
fact that perfectly fine gauge connections can correspond to singular geometries in Euclidean
signature, which are not taken into account in the Euclidean gravitational path integral. In
terms of the BF gauge theory, this corresponds to the moduli space of flat gauge connections
containing several disconnected components, of which one (or two) actually correspond to
possible geometries, the Teichmüller component. These considerations played no role in the
story we have developed in this work at the level of the characters.

In previous works, and heavily inspired by an analogous story in the q-deformed setting
developed by Teschner and collaborators (see e.g. [85–87]), we have proposed to instead
change the gauge group G to its positive subsemigroup G+. We have worked out this
proposal and representation theory for the bosonic case, based on SL+(2,R) in [21] and the
N = 1 case based on OSp+(1|2,R) in [52]. It is not hard to make an analogous proposal
for higher supersymmetries: when working with a real representation of the gauge group,
one simply demands positivity of the four supernumbers in the bosonic subgroup in the
fundamental representation. For N = 2, this would be the supernumbers a, b, c, d in the
parametrization (B.1), defining the positive semi-supergroup OSp+(2|2,R). If one works with
a complex representation instead (such as the fundamental representation of PSU(1, 1|1)), one
has to transfer this positivity condition through the isomorphism between both formulations.
Notice that the positivity condition only applies to the “gravitational” SL(2,R)-like subsector
of the supergroup element: there is no constraint on the U(1) gauge connection for instance
in order to be a physical N = 2 supergravity configuration.

6.3 Gas of branes and better UV behavior?

This work initiated with the question on whether supersymmetric versions of JT gravity could
have ameliorated behavior in the UV, as b→ 0 and the wormhole neck shrinks to zero size.
There is reason to expect this since these amplitudes are essentially worldsheet amplitudes in
string theory. The b→ 0 divergence is the usual closed string tachyon divergence. Transferring
to supergravity means one transfers to the superstring where these divergences can be absent.
Indeed, in all cases the Ramond sector was convergent, familiar from worldsheet string theory
again. The main question we are hence led to is whether one can restrict to these kinds
of branes in a dynamical way.9

It is useful to characterize the appearance of the UV-divergence in more algebraic terms.
We have seen in all examples that the culprit is the numerator of the Weyl denominator,
defined generically for a superalgebra in (B.41). Now, for any superconformal algebra (for

9See e.g. [88] for a related analysis.
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which the maximal bosonic subalgebra is sl(2,R)⊕ gR for compact gR), there is one Cartan
element in the sl(2,R) algebra, which automatically leads to a ∼ sinh b/2 in the denominator
of the integrand of the amplitude. This means that there will generically be a divergence in
the amplitude, unless a conspiracy happens. We have seen this to happen when specifying
to the Ramond (θ = 0) subsector.

To achieve finiteness of the gravitational amplitudes, worldsheet string theory suggests we
should implement the analogue of the GSO projection and effectively project out the closed
string tachyon. It is our hope that we have provided the technical methods and expressions
that would allow us to tackle this question. We leave a more in-depth study of this problem
in JT supergravity amplitudes to future work.
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A Superspace differential geometry conventions

A.1 Conventions

In general, we locally parameterize the N = 1 superspace by a pair of bosonic and fermionic
coordinates zm, θµ (m = 0, 1, µ = 0, 1) respectively. The latter satisfy the anti-commutative
Grassmann algebra {θµ, θν} = 0. Along the lines of [68], the 2|2-dimensional bulk superge-
ometry is easy to describe by a pair of holomorphic and anti-holomorphic coordinates

ZM = (zm, θµ) = (z, z, θ, θ). (A.1)

Due to the anticommutative nature of the fermionic partners, care has to be taken when
swapping two superspace coordinates (or their differentials)

ZMZN = (−)MNZNZM , dZM ⊗ dZN = (−)MNdZN ⊗ dZM , dZMZN = (−)MNZNdZM .

(A.2)
We imagine the numbers M,N in the exponent (−)MN to be Z2-valued (0,1), and are either
even or odd if the respective coordinate is bosonic or fermionic.

Next, we define a metric in superspace gMN . This has a bosonic block for (M + N)
mod 2 = 0, and a fermionic block for (M +N) mod 2 = 1, with M,N the Z2-valued indices
labeling the bosonic (0) or fermionic (1) parity of the superfield. We further define an inverse
metric tensor gMN , satisfying

gNKgKM = gMKg
KN = δ NM . (A.3)
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For consistency between these definitions, we take the conventions

gMN = (−)MN gNM , and gMN = (−)MN+M+NgNM . (A.4)

Concretely, this means that both the fermionic and doubly fermionic block of the metric
tensor gMN are antisymmetric with respect to interchanges in the indices. This symmetry
property is consistent with the expression for the invariant distance in superspace, written
in the symmetric way as ds2 = dZMgMNdZ

N .
Moreover, since this line element ds2 = dZMgMNdZ

N is by definition coordinate invariant,
we define a covariant vector according to:

ŻM ≡ gMN Ż
N . (A.5)

Contractions are thereby defined in the NW-SE (north-west - south-east) convention:

ŻMgMN Ż
N = ŻM ŻM . (A.6)

We define a coordinate transformation on covariant vectors from the left

ŻM
′ ≡ ∂ZN

∂ZM ′ ŻN , (A.7)

where coordinate-invariant contractions again appear in the NW-SE ordering. The transfor-
mation rule on covectors (A.7) is consistent with the coordinate transformation of a gradient
in superspace ∂M , where the (fermionic) chain rule acts also from the left:

∂M → ∂M
′ = ∂ZN

∂ZM ′∂N . (A.8)

Due to the coordinate invariant (NW-SE) structure, a coordinate transformation acts
on a contravariant vector ŻM from the right:

ŻM ′ = ŻN
∂ZM ′

∂ZN
. (A.9)

∂ZM ′

∂ZN is defined as the inverse of ∂ZN

∂ZM ′ within the NW-SE structure:

∂ZM ′

∂ZN
∂ZK

∂ZM ′ = δKN . (A.10)

A.2 Geodesic equations in superspace

We start by writing the worldline action in superspace symbolically as:

I = µ

∫
ds
√
ŻMgMN ŻN = µ

∫ √
dZMgMNdZN , (A.11)

by formally absorbing the measure of the affine parameter ds inside the square root. Varying
the action yields:

δI = µ

∫
δ

(√
dZMgMNdZN

)
= µ

∫ 1
2
√
dZMgMNdZN

(
δdZM gMNdZ

N + dZM δgMN dZN + dZM gMN δdZN
)

= µ

2

∫
ds
(
(δŻM ) gMN Ż

N + ŻM δgMN ŻN + ŻMgMN (δŻN )
)
,
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where we have used the standard chain rule in the bosonic line element ds =
√
dZMgMNdZN .

Furthermore, the variation δ obeys the bosonic product rule in the convention that it
acts from the left. With our convention (A.4), the first and last terms are in fact equal.
Furthermore, using the natural chain rule within the NW-SE convention, we may write
δgMN = δZP∂P gMN and obtain:

δI = µ

∫
ds

(
(δŻM ) gMN Ż

N + 1
2 Ż

M δZP ∂P gMN Ż
N
)

= µ

∫
ds

(
(δŻM ) gMN Ż

N + (−)M 1
2δZ

P ∂P gMN Ż
N ŻM

)
≃ −µ

∫
ds

(
δZM gMN Z̈

N + δZM ŻP∂P gMN Ż
N − (−)M 1

2δZ
P ∂P gMN Ż

N ŻM
)
,

where we have partially integrated in the last line for the bosonic derivative with respect to s.
Separating out δZP gPK , and using our definition of the inverse metric gPKgKR = δ RP :

δI = −µ
∫
ds δZP gPK

(
Z̈K + gKRŻM∂MgRN Ż

N − 1
2(−)

MgKR∂RgMN Ż
N ŻM

)
= −µ

∫
ds δZP gPK

(
Z̈K + 1

2g
KR

(
2(−)M(1+R)∂MgRN − (−)M∂RgMN

)
ŻN ŻM

)
.

Symmetrizing the first term within brackets as:

2(−)M(1+R)∂MgRN Ż
N ŻM = (−)M(1+R)∂MgRN Ż

N ŻM + (−)N(1+R)∂NgRM Ż
M ŻN

=
(
(−)M(1+R)∂MgRN + (−)N(1+R+M)∂NgRM

)
ŻN ŻM ,

eventually yields:

δI = −µ
∫
ds δZP gPK

(
Z̈K

+ 1
2g

KR
(
(−)M(1+R)∂MgRN + (−)N(1+R+M)∂NgRM − (−)M∂RgMN

)
ŻN ŻM

)
≡ −µ

∫
ds δZP gPK

(
Z̈K + ΓKMN Ż

N ŻM
)
. (A.12)

In the last line, we have introduced an appropriate definition of the Christoffel symbol
in superspace:

ΓKMN ≡
1
2g

KR
(
(−)M(1+R)∂MgRN + (−)N(1+R+M)∂NgRM − (−)M∂RgMN

)
. (A.13)

This definition of the Christoffel symbol matches with the one introduced in [89]. By our
definition of the metric tensor (A.4) and the covector (A.5), we can write the last line in
a more suggestive coordinate-invariant NW-SE way as:

δI = −µ
∫
ds
(
Z̈K + ΓKMN Ż

N ŻM
)
gKP δZ

P

= −µ
∫
ds
(
Z̈K + ΓKMN Ż

N ŻM
)
δZK . (A.14)
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To proceed, we rewrite the geodesic equation more compactly by introducing a covari-
ant derivative in superspace in terms of the superspace Christoffel symbol. Acting on a
contravariant vector UM ≡ ŻM , we define

∇MUK ≡ ∂MUK + (−)M(K+1) ΓKMNU
N . (A.15)

One can check that this is indeed consistent:

UM∇MUK = U̇K + ΓKMNU
NUM . (A.16)

We may therefore write the variation of the action more suggestively as:

δI = −µ
∫
ds
(
UM∇MUK

)
δZK , (A.17)

where all contractions appear in a manifestly coordinate-invariant NW-SE ordering. This
unambiguously fixes the transformation of ∇MUK under general coordinate transformations
in order to preserve this structure,

∇MUK → ∇′
MU

K ′ = ∂ZL

∂Z ′M

(
∇LUR

) ∂Z ′K

∂ZR
. (A.18)

We introduce a covariant derivative acting on covariant vectors by demanding that the
covariant derivative acting on a scalar structure reduces to the standard (possibly Grassmann)
derivative: ∇MX ≡ ∂MX. Acting on the scalar product UNnN , it should obey the standard
(fermionic) product rule:

∇M
(
UNnN

)
≡ ∂M

(
UNnN

)
=
(
∂MU

N
)
nN + (−)MNUN (∂MnN ) . (A.19)

On the other hand, we define the covariant derivative on covectors such that it obeys a
similar product rule:

∇M
(
UNnN

)
≡
(
∇MUN

)
nN + (−)MNUN (∇MnN ) (A.20)

=
(
∂MU

N + (−)M(N+1) ΓNMKU
K
)
nN + (−)MNUN (∇MnN ) . (A.21)

Compared to the previous line (A.19), this fixes the covariant derivative on a general
covector nA:

∇MnN ≡ ∂MnN − (−)M(1+K)+N(1+K) ΓKMNnK , (A.22)

in terms of the Christoffel symbol (A.13). Additionally, one can check that the metric is
invariant under the covariant derivative

∇MUN = (−)M(N+K)gNK∇MUK . (A.23)

Since the l.h.s. in (A.21) and the first term on the r.h.s. are manifestly covariant under
the NW-SE convention, the transformation rule of the covariant derivative acting on covectors
under general coordinate transformations is a posteriori fixed to:

∇MnN → ∇′
Mn

′
N = ∂ZK

∂Z ′M ∇K

(
∂ZP

∂Z ′N nP

)
≡ (−)K(P+N) ∂Z

K

∂Z ′M
∂ZP

∂Z ′N ∇KnP . (A.24)
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This transformation is fine-tuned to keep the second term in (A.20) covariant:

(−)MNUN (∇MnN ) → (−)MN+K(P+N)UL
∂Z ′N

∂ZL
∂ZK

∂Z ′M
∂ZP

∂Z ′N ∇KnP

=(−)MPUL
∂Z ′N

∂ZL
∂ZP

∂Z ′N
∂ZK

∂Z ′M ∇KnP = (−)MPUP
∂ZK

∂Z ′M∇KnP

=(−)PK ∂ZK

∂Z ′M UP∇KnP . (A.25)

B OSp(2|2, R) representation theory

In this appendix, we give an overview of OSp(2|2,R) representation theory. We give the
details of the computation of the principal series character used in section 4. Our methods
are largely based on those used in appendix E of [52], for N = 1 JT supergravity.

B.1 OSp(2|2, R) supergroup and Lie superalgebra

The relevant group for N = 2 JT supergravity is the supergroup OSp(2|2,R), which is defined
as the subgroup of GL(2|2,R) matrices

g =


a b α1 β1

c d γ1 δ1

α2 β2 w y

γ2 δ2 z u

 , (B.1)

with 8 bosonic variables a, b, c, d, w, y, z, u and 8 fermionic variables α1,2, β1,2, γ1,2, δ1,2, that
preserve the orthosymplectic form Ω: gΩgst3 = Ω:

a b α1 β1

c d γ1 δ1

α2 β2 w y

γ2 δ2 z u




0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1




a c α2 γ2

b d β2 δ2

−α1 −γ1 w z

−β1 −δ1 y u

 =


0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 , (B.2)

where gst3 is the matrix obtained starting form a matrix of the form (B.1) after applying
the supertransposition three consecutive times.10

The matrix inverse has a particularly simple form:

g−1 =


d −b −β2 −δ2

−c a α2 γ2

γ1 −α1 w z

δ1 −β1 y u

 . (B.4)

10The supertranspose operation consists in flipping the sign of one block of fermionic variables so that the
property (g1g2)st = gst

2 gst
1 is preserved,[

A B

C D

]st

=

[
AT −CT

BT DT

]
. (B.3)
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The osp(2|2) Lie superalgebra is a 4|4 dimensional super-vectorspace, with bosonic
generators H,E±, Z and fermionic generators F±, F̄±. In the Cartan-Weyl/Chevalley basis,
these generators satisfy the superalgebra relations (see e.g. [90]):

[H,E±] = ±E±, [H,F±] = ±1
2F

±, [H, F̄±] = ±1
2 F̄

±,

[Z,H] = [Z,E±] = 0, [Z,F±] = 1
2F

±, [Z, F̄±] = −1
2 F̄

±,

[E±, F±] = [E±, F̄±] = 0, [E±, F∓] = −F±, [E±, F̄∓] = F̄±,

{F±, F±} = {F̄±, F̄±} = 0, {F±, F∓} = {F̄±, F̄∓} = 0, {F±, F̄±} = E±,

[E+, E−] = 2H, {F±, F̄∓} = Z ∓H. (B.5)

The Cartan subalgebra is spanned by the two generators H and Z, whose eigenvalues can be
raised and lowered by half a unit by acting with the different F±, F̄±, and the eigenvalue
of H by a full unit by acting with E±.

This form of the algebra is related to the more familiar global NS sector N = 2
superconformal algebra (L0, L±1, G± 1

2
, Ḡ± 1

2
):

[L0, L±1] = ∓L±1, [L+, L−] = 2L0, (B.6)
[L±, G∓ 1

2
] = ±G± 1

2
, [L±, Ḡ∓ 1

2
] = ±Ḡ± 1

2
, (B.7)

[L0, G± 1
2
] = ∓1

2G± 1
2
, [L0, Ḡ± 1

2
] = ∓1

2Ḡ± 1
2
, (B.8)

[J,G± 1
2
] = G± 1

2
, [J, Ḡ± 1

2
] = −Ḡ± 1

2
, (B.9)

{G± 1
2
, Ḡ± 1

2
} = 2L±1, {G± 1

2
, Ḡ∓ 1

2
} = 2L0 ± J, (B.10)

by the relations:

L0 = H, L+1 = −E−, L−1 = E+, J = 2Z, (B.11)
G+ 1

2
=
√
2F−, G− 1

2
=
√
2F+, Ḡ+ 1

2
= −
√
2F̄−, Ḡ− 1

2
=
√
2F̄+.

The fundamental representation of the osp(2|2) algebra is given by:

H =


1
2 0 0 0
0 −1

2 0 0
0 0 0 0
0 0 0 0

 , E+ =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , E− =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , (B.12)

Z =


0 0 0 0
0 0 0 0
0 0 0 i

2
0 0 − i

2 0

 , F+ =


0 0 1

2 −
i
2

0 0 0 0
0 1

2 0 0
0 − i

2 0 0

 , F̄+ =


0 0 1

2
i
2

0 0 0 0
0 1

2 0 0
0 i

2 0 0

 , (B.13)

F− =


0 0 0 0
0 0 −1

2
i
2

1
2 0 0 0
− i

2 0 0 0

 , F̄− =


0 0 0 0
0 0 1

2
i
2

−1
2 0 0 0
− i

2 0 0 0

 . (B.14)
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As a rank 2 Lie superalgebra, there are two independent Casimir operators spanning
the center of the universal enveloping algebra.

The Cartan-Killing (CK) metric STr(JIJJ) = κIJ/2 is determined from the overlap of
the generators JI and JJ . The inverse CK metric κIJκJL = δIL then defines the quadratic
Casimir according to the standard definition C2 = JIκ

IJJJ :

C2 = H2 − Z2 + E−E+ + F−F̄+ − F̄−F+. (B.15)

We write the cubic Casimir following [90]:

C3 =(H2 − Z2)Z + E−E+
(
Z − 1

2

)
− 1

2F
−F̄+(H − 3Z + 1) (B.16)

− 1
2 F̄

−F+(H + 3Z + 1) + 1
2E

−F̄+F+ + 1
2 F̄

−F−E+.

Both C2 and C3 are seen to commute with all generators.
The link between the group and the algebra is given by exponentiation. One convenient

parametrization of the group element g is the Gauss-Euler decomposition:

g = eθ̄
−F̄−

eθ
−F−

eβE
−
e2ϕHe2iθZeγE

+
eθ

+F+
eθ̄

+F̄+
, (B.17)

where the complex Grassmann variables θ± and θ̄± are complex conjugates.
It is convenient to transfer to new real fermionic generators defined as:

F+
x ≡

F+ + F̄+
√
2

, F+
y ≡

F+ − F̄+
√
2i

, F−
x ≡

F− − F̄−
√
2

, F−
y ≡

F− + F̄−
√
2i

, (B.18)

satisfying {F+
x , F

+
x } = {F+

y , F
+
y } = E+ and {F−

x , F
−
x } = {F−

y , F
−
y } = −E−. They form

the x- and y-components of a vector that is rotated by the generator Z. We can now use
the identities:

eθ
+F+

eθ̄
+F̄+ = eiθ

+
x θ

+
y E

+
e
√

2θ+
x F

+
x e

√
2θ+

y F
+
y , (B.19)

eθ̄
−F̄−

eθ
−F− = e

√
2θ−y F−

y e
√

2θ−x F−
x eiθ

−
x θ

−
y E

−
, (B.20)

where θ+ ≡ θ+
x − iθ+

y and θ̄+ ≡ θ+
x + iθ+

y and θ− ≡ θ−x − iθ−y and θ̄− ≡ −θ−x − iθ−y . Hence
using real variables, we can write the Gauss-Euler decomposition as (with a shifted coordinate
β and γ to absorb the above Grassmann-valued offset):

g = e
√

2θ−y F−
y e

√
2θ−x F−

x eβE
−
e2ϕHe2iθZeγE

+
e
√

2θ+
x F

+
x e

√
2θ+

y F
+
y . (B.21)

For later convenience we write it down explicitly in matrix form: eϕ eϕγ eϕθ+
x −eϕθ+

y

eϕβ e−ϕ + βγeϕ − (θ−
x cos θ − θ−

y sin θ)θ+
x − (θ−

x sin θ + θ−
y cos θ)θ+

y eϕβθ+
x − θ−

x cos θ + θ−
y sin θ −eϕβθ+

y + θ−
x sin θ + θ−

y cos θ

eϕθ−
x eϕγθ−

x + θ+
x cos θ + θ+

y sin θ eϕθ−
x θ+

x + cos θ −eϕθ−
x θ+

y − sin θ

−eϕθ−
y −eϕγθ−

y + θ+
x sin θ − θ+

y cos θ −eϕθ−
y θ+

x + sin θ eϕθ−
y θ+

y + cos θ


(B.22)
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B.2 Euler angle decompositions

Next to the Gauss-Euler decomposition (B.17), one can also find two other parametrizations
of the group element OSp(2|2,R), forming an analogue of the Euler “angle” decompositions
of the SL(2,R) group element. These are useful when constructing hyperbolic space and the
Lorentzian signature AdS superspaces as a coset of this (super)group as we do further on.

We start with (B.17), and consider only the bosonic subgroup:
a b 0 0
c d 0 0
0 0 cos θ − sin θ
0 0 sin θ cos θ

 , (B.23)

which is a direct product SL(2,R)⊗U(1). Using the “hyperbolic” Euler angle parametrization
of SL(2,R):

eφHeη(E++E−)eψH =
[
eφ/2 0
0 e−φ/2

] [
cosh η sinh η
sinh η cosh η

] [
eψ/2 0
0 e−ψ/2

]
, (B.24)

where η is the hyperbolic angle, we can write the full supergroup element:

g = eθ̄
−F̄−

eθ
−F−

eφHeη(E++E−)eψHe2iθZeθ
+F+

eθ̄
+F̄+

. (B.25)

Next, we move eψHe2iθZ all the way to the right, and eφH all the way to the left. From
the superalgebra relations, we see that this procedure leads to a simple replacement of the
Grassmann-coordinates by:

θ+ → θ+eψ/2+iθ, θ̄+ → θ̄+eψ/2−iθ, (B.26)
θ− → θ−eφ/2, θ̄− → θ̄−eφ/2, (B.27)

such that we obtain the “hyperbolic” Euler-angle decomposition (where we absorb the
rescalings again into the Grassmann-variables):

g = eφHeθ̄
−F̄−

eθ
−F−

eη(E++E−)eθ
+F+

eθ̄
+F̄+

eψHe2iθZ . (B.28)

Note that we chose to move the factor e2iθZ to the right here. One can make other choices,
but the current choice is very convenient to describe the anti de Sitter superspace AdS2|2
as a supercoset as we do in the next subsection.

Finally, there is the following “elliptic” Euler angle decomposition of SL(2,R):

eφ(E+−E−)/2eη(E++E−)eψ(E+−E−)/2 =
[

cos φ2 sin φ
2

− sin φ
2 cos φ2

] [
cosh η sinh η
sinh η cosh η

] [
cos ψ2 sin ψ

2
− sin ψ

2 cos ψ2

]
.

(B.29)

Conjugating with the SL(2,C) matrix t = 1√
2

[
1 i

i 1

]
implements the isomorphism of

SL(2,R) ≃ SU(1, 1). Then the above decomposition (B.29) is mapped into the SU(1, 1)
decomposition:

eiφHeη(E++E−)eiψH =
[
eiφ/2 0
0 e−iφ/2

] [
cosh η sinh η
sinh η cosh η

] [
eiψ/2 0
0 e−iψ/2

]
, (B.30)
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which is formally the analytic continuation φ→ iφ, ψ → iψ of (B.24). This is important since
the analytic continuation of the ψ-coordinate will precisely correspond to the Wick-rotation
to swap metric signature between AdS and hyperbolic (super)space.

Inserting this into the full matrix element for OSp(2|2,R), one can again move the left
and right rotation matrices (over ϕ and ψ) through the fermionic generators. This description
is useful for describing Euclidean hyperbolic superspace as a supercoset.

B.3 AdS2|4 and H2|4 space as supercosets

The group element g describes the full OSp(2|2,R) supermanifold. If we consider the
equivalence classes g ∼ g · (SO(1, 1)⊗U(1)) where the abelian subgroup SO(1, 1)⊗U(1) is
generated by H and Z, we get the superanalogue of AdS space. It is represented as the right
coset of the full isometry group by the isotropy subgroup. The above “hyperbolic” Euler
angle decomposition (B.28) allows a quick implementation of this procedure by e.g. picking
a representative of the equivalence class as:

gcoset = eφHeθ̄
−F̄−

eθ
−F−

eη(E++E−)eθ
+F+

eθ̄
+F̄+ (B.31)

by setting ψ = 0 = θ. Notice that the one-parameter group eψH is non-compact, corresponding
to a Lorentzian SO(1, 1) boost local Lorentz group. This means that what we are describing
here is the coset in Lorentzian signature as will be clear below. This describes a 2|4-
dimensional supermanifold that is the right supercoset:

AdS2|4 ≃
OSp(2|2,R)

SO(1, 1)⊗U(1) . (B.32)

We emphasize that this superspace is found by dropping the coordinates associated to the
two generators H and Z. This will be found as well in the main text in the physical context
of the BF description of N = 2 JT supergravity.

From the particle-on-group Lagrangian, the coset condition is implemented by setting
two of the components of the conserved currents to zero:

(g−1dg)|H,Z = 0. (B.33)

This implies in particular that the Cartan-Killing metric ds2
CK ≡ 2STr[(g−1dg)2] on the full

group manifold has a reduced structure on the coset:

ds2
coset = 2STr[(g−1dg)2]

∣∣∣
̸=H,Z

, (B.34)

where the notation means we simply do not add the contribution from H and Z in the compu-
tation. In order to concretely implement this, we note that the Euler angle description (B.28)
has the following properties:

• The component of the Cartan-Killing form g−1dg along dψ resp. dθ is only in the H
resp. Z direction in the algebra.11

11This is readily seen by plugging in the product decomposition (B.28) in the one-form g−1dg.
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• Translations ψ → ψ + a, θ → θ + b, implemented by right multiplication of (B.28) by
a constant matrix in the abelian subgroup eaHe2ibZ , leaves the metric ds2

CK invariant.
This means the metric components have no non-trivial ψ and θ dependence.

These properties directly imply that the reduced CK metric on the coset space (B.34) has
no non-zero dψ or dθ components, nor any dependence on these coordinates.

For illustration, if one applies this procedure to the bosonic subgroup, the resulting
coset metric is then:

ds2
coset = dη2 − sinh η2dφ2, (B.35)

which is the Lorentzian AdS2 metric with radial coordinate η ∈ R+, and time-coordinate
φ. In these coordinates, the AdS boundary is at η → +∞.

If one is instead interested in describing the Euclidean signature hyperbolic superspace
H2|4, one needs to instead consider the right coset by the compact rotation subgroup SO(2)
⊂ SL(2,R):

AdS2|4 ≃
OSp(2|2,R)

SO(2)⊗U(1) . (B.36)

This is usefully described in the coordinatization (B.29) by modding out the ψ- and θ-
subgroups. Pragmatically, this corresponds to changing to the SU(1, 1) description, where
one just analytically continues φ→ iφ and ψ → iψ from the hyperbolic description, and we
can then keep on using the same “hyperbolic” Euler angle decomposition.

B.4 Finite-dimensional representations

Finite-dimensional representation were classified in e.g. [91, 92]. We will not review the
specifics. Our focus here instead is on the characters and branching rules in the maximal
bosonic subgroup, since this is the part that will be used in the main text to describe
end-of-the-world brane amplitudes in supergravity models.

A typical finite-dimensional irreducible representation is labeled by two parameters j
and q, corresponding physically to the energy and the charge respectively. These are also the
eigenvalues of the Cartan generators H and Z on the highest weight state in the representation.
They are related to the Casimir eigenvalues (B.15), (B.16) in the irrep as

C2 = j2 − q2, C3 = q(j2 − q2). (B.37)

We can decompose these irreps into those of the bosonic subalgebra sl(2,R) ⊕ u(1) as a
direct sum:

(j, q) ⊕
(
j − 1

2 , q −
1
2

)
⊕
(
j − 1

2 , q +
1
2

)
⊕ (j − 1, q). (B.38)

The corresponding character is denoted as χN=2
j,q (ϕ, θ). The character depends only on the

conjugacy class of a group element. Group elements in the hyperbolic conjugacy class are
labeled by two real parameters ϕ ∈ R and θ ∈ [0, 2π). SL(2,R) and U(1) characters for the
finite-dimensional representations are of the form

χ
sl(2,R)
j (ϕ) = Trje2ϕH = sinh(2j + 1)ϕ

sinhϕ , χu(1)
q (θ) = e2iqθ. (B.39)
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The above decomposition (B.38) leads to a mirrored character decomposition formula:12

χN=2
j,q (ϕ, θ) ≡ STr

[
e2ϕHe2iθZ

]
= χ

sl(2,R)
j (ϕ)χu(1)

q (θ)− χsl(2,R)
j−1/2 (ϕ)χ

u(1)
q−1/2(θ)− χ

sl(2,R)
j−1/2 (ϕ)χ

u(1)
q+1/2(θ) + χ

sl(2,R)
j−1 (ϕ)χu(1)

q (θ)

= 2 sinh (2jϕ) e2iqθ (coshϕ− cos θ)
sinhϕ . (B.40)

A simple check is that as ϕ→ 0 and θ → π, we find χN=2
j,q (ϕ, θ)→ (−)2q8j, which is (up to a

possible sign) the dimension of the representation.13 Indeed, in this case, the insertion in
the supertrace of the charge Z leads to (−)2Z = ±(−)F (F is the fermion number), which
converts the minus sign for fermionic states back to a plus sign; hence adding all states and
producing the dimension of the representation.

The last factor in (B.40) does not depend on the representation labels (j, q) and can be
identified as the Weyl denominator−1/2 in analogy with an ordinary Lie algebra. Explicitly,
the Weyl denominator ∆(ϕ, θ) can be computed for the component of the Lie (super)group
connected to the identity, by using:14

∆(t) ≡
∏
αB
|eαB(t) − 1|∏

αF
eαF (t) − 1

, t ∈ h, (B.41)

in terms of the bosonic resp. fermionic roots αB and αF , and where t is in a Cartan subalgebra
h. In our specific case, the maximal torus has two bosonic coordinates t = (ϕ, θ), where
we have 2 bosonic and 4 fermionic roots:

αB(t) = ±2ϕ, αF (t) = ±ϕ± iθ. (B.42)

We hence obtain

∆(ϕ, θ) = (e2ϕ − 1)(1− e−2ϕ)
(eϕ+iθ − 1)(eϕ−iθ − 1)(e−ϕ+iθ − 1)(e−ϕ−iθ − 1) = sinh2 ϕ

(coshϕ− cos θ)2 . (B.43)

B.5 Highest and lowest weight representations

Highest and lowest weight representations can be constructed as well. The towers of states
decompose just as for the finite-dimensional representations into representations of the
bosonic subgroup SL(2,R) according to the same branching rule (B.38) (since this is just
an algebraic procedure). We can use the (hyperbolic conjugacy class) highest weight irrep
character for SL(2,R):15

χ
sl(2,R)
j (ϕ) = Trj(e2ϕH) = e(2j+1)ϕ

2 sinhϕ , j = −1
2 ,−1, . . . (B.44)

12The minus signs between the terms in (B.40) are related to the fact that the fermionic states get a minus
sign in the supertrace.

13We assume q ∈ N/2 as would be appropriate for the compact group U(1).
14It was proven in [52] that this is also precisely the measure appearing in Weyl’s integration formula on

supergroups, just like for ordinary Lie groups.
15We assume ϕ > 0 here. If not, an absolute value of ϕ should be used.
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The highest weight N = 2 character, evaluated in representation (j, q) is then readily
evaluated:

χ
osp(2|2)
j,q (ϕ, θ) = eϕ(2j+1)

2 sinhϕe
2iqθ + eϕ(2j−1)

2 sinhϕe
2iqθ − e2jϕ

2 sinhϕe
2i(q−1/2)θ − e2jϕ

2 sinhϕe
2i(q+1/2)θ

= e2jϕe2iqθ coshϕ− cos θ
sinhϕ . (B.45)

The highest weight state in this module has H = j and Z = q. The Casimirs are given
by the same expression as before:

C2 = j2 − q2, C3 = q(j2 − q2). (B.46)

B.6 Principal series representations

This section is devoted to the construction of the principal series representations of OSp(2|2,R).
We take inspiration from the textbook case of SL(2,R) [67], and its generalization in the
N = 1 case OSp(1|2,R) as worked out in [52].

The final aim of the construction is to find an action of the group on functions on
the real superline R1|2. So the carrier space of the representation will be L2(R1|2). The
group itself acts on the coordinates of R1|2 in terms of a super-Möbius transformation. Let
us first write down these super-Möbius transformations. In order to find superconformal
transformations for a bosonic variable τ and two fermionic variables ϑ1, ϑ2, we act with gst

3

on the homogeneous superspace vector (x, y|ϑ1, ϑ2), identified up to rescalings, where x, y
are bosonic variables and ϑ1, ϑ2 are fermionic variables. We can equivalently work with a
vector obtained after dividing all the entries of the previous one by y. After defining the
new coordinates τ ≡ x

y , ϑ1,2 ≡ ϑ1,2
y , we get

gst
3


τ

1
ϑ1

ϑ2

 =


c+ aτ + α2ϑ1 + γ2ϑ2

d+ bτ + β2ϑ1 + δ2ϑ2

−γ1 + wϑ1 + zϑ2 − α1τ

−δ1 + yϑ1 + uϑ2 − β1τ

 . (B.47)

Normalizing the resulting vector again to have its second entry as 1, we obtain the linear
fractional transformations:

(τ ′|ϑ′1, ϑ′2) =
(
c+ aτ + α2ϑ1 + γ2ϑ2
d+ bτ + β2ϑ1 + δ2ϑ2

∣∣∣∣ −γ1 + wϑ1 + zϑ2 − α1τ

d+ bτ + β2ϑ1 + δ2ϑ2
,
−δ1 + yϑ1 + uϑ2 − β1τ

d+ bτ + β2ϑ1 + δ2ϑ2

)
,

(B.48)

acting on the coordinates (τ |ϑ1, ϑ2) of R1|2.

B.6.1 Parabolic induction

We first work towards the definition of the principal series representation using the method
of parabolic induction [93] (see e.g. the textbooks [94, 95]). The following discussion will be
somewhat technical, but it is necessary in order to construct the representation correctly.
Our final result is reported in equation (B.69) below.
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To set this up, we need to identify some important subgroups of OSp(2|2,R). The upper-
and lower “triangular” parabolic subgroups N and N̄ are:

N =


1 γ θ+

x −θ+
y

0 1 0 0
0 θ+

x 1 0
0 −θ+

y 0 1

 , N̄ =


1 0 0 0
β 1 −θ−x θ−y

θ−x 0 1 0
−θ−y 0 0 1

 . (B.49)

The subgroup A is abelian and “maximally noncompact”. It is of the form:

A =


a 0 0 0
0 a−1 0 0
0 0 1 0
0 0 0 1

 , a ∈ R+, (B.50)

and the maximally compact subgroup K is:

K =


cos η − sin η 0 0
sin η cos η 0 0
0 0 cos θ − sin θ
0 0 sin θ cos θ

 , η, θ ∈ [0, 2π). (B.51)

The subgroup M = ZK(A) ∈ K is the centralizer of A in K, i.e. all matrices in K that
commute with all of A. This group has two disconnected components:16

M =


±1 0 0 0
0 ±1 0 0
0 0 cos θ − sin θ
0 0 sin θ cos θ

 = Z2 ⊗ SO(2). (B.52)

The full group G can be decomposed as G = N̄MAN , which is essentially the Gauss-Euler
decomposition (B.21).

The idea of parabolic induction is to take a non-trivial representation of the subgroup
H = MAN ∈ G and consider functions in L2(G) satisfying the additional constraint

f(gh) = D(h)−1f(g), h ∈ H, (B.53)

where D(h) is a representation matrix of the subgroup H . If one picks the trivial representation
of N , we have concretely:

f(gman) = DM (m)−1DA(a)−1f(g), m ∈M, a ∈ A, n ∈ N. (B.54)

This restricted function space defines a representation of g through the usual left action:
f(g0)→ f(g−1g0), as the property (B.53) is preserved since the left action does not “interfere”

16We restrict to the component of OSp(2|2, R) connected to the identity, of relevance to gravity. Otherwise,
we would have M = Z2 ⊗ O(2) ≃ Z2 ⊗ Z2 ⊗ SO(2).
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with (B.53). Because of (B.53) we can w.l.g. restrict to g0 = n̄ ∈ N̄ . The concrete problem is
then to decompose g−1n̄ = n̄′p = n̄′m′a′n′ in terms of some elements n̄′ ∈ N̄ , m′ ∈M, a′ ∈ A
and n′ ∈ N , after which we recover

f(n̄)→ f(g−1n̄) = f(n̄′m′a′n′) = DM (m′)−1DA(a′)−1f(n̄′), (B.55)

giving a concrete formula for the representation. So we just need to choose representations
of A and M , and solve the technical problem

g−1n̄ = n̄′p = n̄′m′a′n′, (B.56)

determining explicit expressions for m′, a′, n′ in terms of the group element g and the initial
coordinates n̄.

We fix the representation of the maximally noncompact abelian group A as DA(a) =
e−2ik ln a = a−2ik, where ln a acts as the generator of the 1d irreps of A, and k ∈ R labels
the representation. Due to the i in the exponent, we will be inducing from a unitary
representation of A.

For the representation of the central element m ∈ Z2 ⊗ SO(2), we take the character
σ(m) of Z2 as σ(m) = (1, 1) or σ(m) = (1,−1) for m = 12×2 or −12×2 respectively, where we
denote the former as the trivial representation with ϵ = 0, and the latter as the non-trivial
representation with ϵ = 1. In addition, we define a charge q SO(2) rotation matrix as

DM (m−1) ≡M (q)(θ) =
[
cos 2qθ − sin 2qθ
sin 2qθ cos 2qθ

]
, (B.57)

specifying the SO(2) representation.
Next, we explicitly solve (B.56). Inserting the matrix inverse (B.4), the first equality

is in detail:
d −b −β2 −δ2

−c a α2 γ2

γ1 −α1 w z

δ1 −β1 y u




1 0 0 0
−τ 1 ϑ1 ϑ2

−ϑ1 0 1 0
−ϑ2 0 0 1

 (B.58)

=


1 0 0 0

−aτ+c+α2ϑ1+γ2ϑ2
bτ+d+β2ϑ1+δ2ϑ2

1 −α1τ+γ1−wϑ1−zϑ2
bτ+d+β2ϑ1+δ2θ2

−β1τ+δ1−yϑ1−uϑ2
bτ+d+β2ϑ1+δ2ϑ2

α1τ+γ1−wϑ1−zϑ2
bτ+d+β2ϑ1+δ2ϑ2

0 1 0
β1τ+δ1−yϑ1−uθ2
bτ+d+β2ϑ1+δ2ϑ2

0 0 1

×

bτ + d+ β2ϑ1 + δ2ϑ2 −b −bϑ1 − β2 −bϑ2 − δ2

0 (bτ + d+ β2ϑ1 + δ2ϑ2)−1 0 0
0 −bϑ1−β2

bτ+d+β2ϑ1+δ2ϑ2
cosψ − bϑ2+δ2

bτ+d+β2ϑ1+δ2ϑ2
sinψ cosψ sinψ

0 − −bϑ1−β2
bτ+d+β2ϑ1+δ2ϑ2

sinψ − bϑ2+δ2
bτ+d+β2ϑ1+δ2ϑ2

cosψ − sinψ cosψ


where we have defined a supernumber angle ψ by:

cosψ = −β1ϑ2 + u+ β1τ + δ1 − yϑ1 − uϑ2
bτ + d+ β2ϑ1 + δ2ϑ2

(bϑ2 + δ2), (B.59)

sinψ = −α1ϑ2 + z + α1τ + γ1 − wϑ1 − zϑ2
bτ + d+ β2ϑ1 + δ2ϑ2

(bϑ2 + δ2). (B.60)
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This last matrix can then be further decomposed as p = m′a′n′:
bτ + d+ β2ϑ1 + δ2ϑ2 −b −bϑ1 − β2 −bϑ2 − δ2

0 (bτ + d+ β2ϑ1 + δ2ϑ2)−1 0 0
0 −bϑ1−β2

bτ+d+β2ϑ1+δ2ϑ2
cosψ − bϑ2+δ2

bτ+d+β2ϑ1+δ2ϑ2
sinψ cosψ sinψ

0 − −bϑ1−β2
bτ+d+β2ϑ1+δ2ϑ2

sinψ − bϑ2+δ2
bτ+d+β2ϑ1+δ2ϑ2

cosψ − sinψ cosψ



=


sgn(bτ + d+ β2ϑ1 + δ2ϑ2) 0 0 0

0 sgn(bτ + d+ β2ϑ1 + δ2ϑ2)−1 0 0
0 0 cosψ sinψ
0 0 − sinψ cosψ



×


|bτ + d+ β2ϑ1 + δ2ϑ2| 0 0 0

0 |bτ + d+ β2ϑ1 + δ2ϑ2|−1 0 0
0 0 1 0
0 0 0 1



×


1 −b

bτ+d+β2ϑ1+δ2ϑ2
−bϑ1−β2

bτ+d+β2ϑ1+δ2ϑ2
− bϑ2+δ2
bτ+d+β2ϑ1+δ2ϑ2

0 1 0 0
0 −bϑ1−β2

bτ+d+β2ϑ1+δ2ϑ2
1 0

0 − bϑ2+δ2
bτ+d+β2ϑ1+δ2ϑ2

0 1

 . (B.61)

To induce a unitary representation, we need to include the correct “half-density” as
follows. Using that the super-Jacobian in the decomposition of the Haar measure dg into
dn̄ and d(man) is a signed Berezinian (where the prime means we take the absolute value
of the determinant of the top left bosonic subblock when computing the Berezinian), the
precise super-Jacobian can be worked out as a product:

∆(man) = sdet′(Adg/man(man)) = sdet′(Adg/man(m)) sdet′(Adg/man(a)) sdet′(Adg/man(n)),
(B.62)

where generally

sdet′(Adg/man(a)) = a2(ρB−ρF ), sdet′(Adg/man(n)) = 1. (B.63)

Here, ρB = 1
2
∑
i∈∆+

B
αi and ρR = 1

2
∑
i∈∆+

F
αi are the Weyl vectors of (positive) bosonic

and fermionic roots. In our case ρB = ρF , and only the first factor sdet′(Adg/man(m)) is
the non-trivial one. The 1|2 dimensional super-vectorspace g/man is spanned by the three
generators E−, F−, F̄−. For the two components of m± ≡ diag(±12×2, SO(2)), we have
the adjoint action:

m−1
+ E−m+ = E−, m−1

− E−m− = E−, (B.64)
m−1

+ F−m+ = e−iθF−, m−1
− F−m− = −e−iθF−, (B.65)

m−1
+ F̄−m+ = eiθF̄+, m−1

− F̄−m− = −eiθF̄−, (B.66)
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leading to17

sdet′(Adg/man(m±)) = 1. (B.67)

Thus, the modular function ∆(man) for the parabolic subgroup P leads to a trivial Jacobian
in the decomposition of the Haar measure into dn̄ and d(man). The square root of the
modular function ∆(man)1/2 is absorbed in the inner product in the transformation of f ,
which then automatically induced a unitary representation.

Identifying the coordinates of f(τ, ϑ1, ϑ2) with the entries of the lower triangular parabolic
element n̄ according to (B.58), and the group elements m′, a′, n′ with the general decompo-
sition (B.61), the group action (B.55) finally leads to the definition of the principal series
irreps of OSp(2|2,R) (i = 1, 2):

fi(τ, ϑ1, ϑ2)→
2∑

k=1
M

(q)
il (ψ) sgn(bτ + d+ β2ϑ1 + δ2ϑ2)ϵ|bτ + d+ β2ϑ1 + δ2ϑ2|2j (B.68)

× fl
(
aτ + c+ α2ϑ1 + γ2ϑ2
bτ + d+ β2ϑ1 + δ2ϑ2

,−α1τ + γ1 − wϑ1 − zϑ2
bτ + d+ β2ϑ1 + δ2ϑ2

,−β1τ + δ1 − yϑ1 − uϑ2
bτ + d+ β2ϑ1 + δ2ϑ2

)
,

in terms of the label j = ik (coming from the chosen representation of A) and the labels (ϵ, q)
(coming from the chosen representation of M). For a hyperbolic monodromy matrix e2ϕHe2iθZ ,
we have that cosψ = u = cos θ, sinψ = z = sin θ, and hence ψ equals the θ-variable of g itself.

One can decouple the charge +q and −q sectors by complexifying the function space
by transferring to f ≡ f1 + if2, f̄ = f1 − if2, leading to:

f(τ, ϑ1, ϑ2)→ e2iqψ sgn(bτ + d+ β2ϑ1 + δ2ϑ2)ϵ|bτ + d+ β2ϑ1 + δ2ϑ2|2j (B.69)

× f
(
aτ + c+ α2ϑ1 + γ2ϑ2
bτ + d+ β2ϑ1 + δ2ϑ2

,−α1τ + γ1 − wϑ1 − zϑ2
bτ + d+ β2ϑ1 + δ2ϑ2

,−β1τ + δ1 − yϑ1 − uϑ2
bτ + d+ β2ϑ1 + δ2ϑ2

)
.

If one picks the trivial representation in M , the representation is called the spherical principal
series representation. In this case, it corresponds to zero charge q = 0 and ϵ = 0. In most
of what follows, we will focus on the representations with ϵ = 0.

B.6.2 Unitarity

Finally, we want to check explicitly that we require j = ik, k ∈ R+ and q ∈ R in order to
have induced a unitary representation.18 I.e. we want:∫

dτdϑ1dϑ2F (τ, ϑ1, ϑ2)∗(g ·G)(τ, ϑ1, ϑ2) =
∫
dτdϑ1dϑ2(g−1 · F )(τ, ϑ1, ϑ2)∗G(τ, ϑ1, ϑ2)

(B.70)
17If we would consider the other component of O(2) ≃ Z2 × SO(2) not connected to the identity, we

would find a minus sign here instead, leading to the overall factor sign
(

det
[

w y

z u

])
, leading to a factor

sign
(

det
[

w y

z u

])ϵ′−1/2

in the principal series definition where ϵ′ = 0, 1 is the additional irrep label of Z2.

Restricting to SO(2), this factor is absent altogether.
18The representation label q will be discretized q ∈ N/2 to correspond to the compact R-symmetry group

U(1), but this is not forced on us by unitarity.
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for any functions F and G in L2(R1|2), with the group action (B.69). If true, this property
shows that the inverse action is equal to the adjoint action and hence the representation
would be unitary. The proof in the N = 0 case is elementary, and the brute force proof in
the N = 1 case was given in appendix E of [52]. The main ingredient of this calculation is
the Jacobian/Berezinian of the coordinate transformation between (τ, ϑ1, ϑ2) and (τ ′, ϑ′1, ϑ′2),
where we the inverse transformations are:

(τ |ϑ1, ϑ2) =
(

dτ ′ − c+ γ1ϑ
′
1 + δϑ′2

−bτ ′ + a− α1ϑ′1 − β1ϑ′2

∣∣∣∣ βτ ′ − α2 + wϑ′1 + yϑ′2
−bτ ′ + a− α1ϑ′1 − β1ϑ′2

,
δ2τ

′ − γ2 + zϑ′1 + uϑ′2
−bτ ′ + a− α1ϑ′1 − β1ϑ′2

)
.

(B.71)
For computations, we utilize a trick by exploiting projective coordinates, which is easily
generalized to the supersymmetric cases. We start with N = 0, and consider the following
manipulations:∫

dτf(τ, 1) =
∫
dxdyf(x, y)δ(y − 1) (B.72)

=
∫
dx′dy′f(dx′ − cy′, ay′ − bx′)δ(ay′ − bx′ − 1) (B.73)

=
∫
dτ ′dy′f(dτ ′y′ − cy′, ay′ − bτ ′y′)|y′|δ(ay′ − bτ ′y′ − 1) (B.74)

=
∫
dτ ′f

(
dτ ′ − c
a− bτ ′

, 1
) 1
| − bτ ′ + a|2

. (B.75)

In the first equality we integrated in the coordinate y. In the second equality we performed
the change of coordinates and used that the Jacobian is det(g) which is 1 for SL(2,R). In
the third line we defined the projective coordinate τ ′ ≡ x′/y′. The factor in the last line is
also directly identified as the Jacobian in going from τ to τ ′ directly.

If now we generalize this argument to N = 1 and N = 2, we simply need to add the
integrals over the fermions and similarly renormalize ϑ′i,new = ϑ′i/y

′, which produces a factor
of y′ in the denominator for fermionic measures dϑi. For N fermionic coordinates, this
leads in the end to the Berezinian

Ber(g)
y2−N |y′=1

, (B.76)

where Ber(g) is the Berezinian of the (super)group element acting as a (super)Möbius
transformation on the coordinates. In particular for OSp(2|2,R) (N = 2), the Berezinian
is 1, leading to j purely imaginary for unitarity.19 To complete the proof, we further need
the following identity:

bτ + d+ β2ϑ1 + δ2ϑ2 = 1
−bτ ′ + a− α1ϑ′1 − β1ϑ′2

, (B.77)

and that the angles ψ one distills from the action g · x versus g−1 · x′ are related by a minus
sign. This can be proven by comparing g−1n̄ = n̄′p with gn̄′ = n̄p−1 where the matrix p−1 has
ψ → −ψ compared to p. This minus sign shows that (B.70) is consistent if the charge q ∈ R.

19Considering O(2) instead of SO(2), the Berezinian is sign
(

det
[

w y

z u

])
, which when combined with the

factor of footnote 17, can be shown to be consistent with unitarity.
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B.6.3 Infinitesimal level: Lie superalgebra

Next, we work out the infinitesimal level of the Lie supergroup and transfer to the associated
Lie superalgebra. From (B.69) we can deduce the group action for the one-parameter
subgroups:(

e2ϕH ◦ f
)
(τ, ϑ1, ϑ2) = e−2ϕjf(e2ϕτ, eϕϑ1, e

ϕϑ2),(
eγE+ ◦ f

)
(τ, ϑ1, ϑ2) = |1 + γτ |2j

(
1− iγϑ1ϑ2

1 + γτ

)2q
f

(
τ

1 + γτ
,

ϑ1
1 + γτ

,
ϑ2

1 + γτ

)
,(

eβE− ◦ f
)
(τ, ϑ1, ϑ2) = f(τ + β, ϑ1, ϑ2),(

e2iθZ ◦ f
)
(τ, ϑ1, ϑ2) = (cos θ + i sin θ)2qf(τ, ϑ1 cos θ + ϑ2 sin θ, ϑ2 cos θ − ϑ1 sin θ),(

e
√

2θ+
x F

+
x ◦ f

)
(τ, ϑ1, ϑ2) = (1− iθ+

x ϑ2)2q|1 + θ+
x ϑ1|2jf

(
τ

1 + θ+
x ϑ1

,
ϑ1 − τθ+

x

1 + θ+
x ϑ1

,
ϑ2

1 + θ+
x ϑ1

)
,(

e
√

2θ−x F−
x ◦ f

)
(τ, ϑ1, ϑ2) = f(τ + θ−x ϑ1, ϑ1 + θ−x , ϑ2),(

e
√

2θ+
y F

+
y ◦ f

)
(τ, ϑ1, ϑ2) =

(
1− iθ+

y ϑ1
)2q
|1− θ+

y ϑ2|2jf
(

τ

1− θ+
y ϑ2

,
ϑ1

1− θ+
y ϑ2

,
ϑ2 + τθ+

y

1− θ+
y ϑ2

)
,(

e
√

2θ−y F−
y ◦ f

)
(τ, ϑ1, ϑ2) = f(τ − θ−y ϑ2, ϑ1, ϑ2 − θ−y ). (B.78)

At the infinitesimal level, these correspond to the superspace differential operators:

2H = −2j + 2τ∂τ + ϑ2∂ϑ2 + ϑ1∂ϑ1 , (B.79)
2iZ = 2iq − ϑ1∂ϑ2 + ϑ2∂ϑ1 , (B.80)
E+ = 2jτ − 2iqϑ1ϑ2 − τϑ2∂ϑ2 − τϑ1∂ϑ1 − τ2∂τ , (B.81)
E− = ∂τ , (B.82)

√
2F+

x = 2jϑ1 − 2iqϑ2 − ϑ1ϑ2∂ϑ2 − τ∂ϑ1 − τϑ1∂τ , (B.83)
√
2F−

x = ∂ϑ1 + ϑ1∂τ , (B.84)
√
2F+

y = −2jϑ2 − 2iqϑ1 − ϑ1ϑ2∂ϑ1 + τ∂ϑ2 + τϑ2∂τ , (B.85)
√
2F−

y = −∂ϑ2 − ϑ2∂τ . (B.86)

These generators satisfy the osp(2|2) algebra, with the exception of the fermionic generators
that differ for a sign factor in the anticommutation relations, e.g.:

{F±
x , F

±
x } = {F±

y , F
±
y } = ∓E±. (B.87)

The infinitesimal group action leads to a representation of the opposite Lie superalgebra.20

In this language, we can appreciate the direct sum decomposition in irreducible sl(2,R)⊕
u(1) representations according to (B.38). Indeed, working with H on a purely bosonic function
f(τ), the Cartan H generator reduces to the standard spin-j H generator of sl(2,R), with
corresponding u(1)-charge of q under Z. Acting on the doubly fermionic function ϑ1ϑ2f(τ),
H reduces to the Cartan generator of sl(2,R) with spin (j − 1) and u(1) charge q. On the

20This mirrors the analysis of [52] in the context of N = 1 JT supergravity, where the infinitesimal osp(1|2)
generators also satisfy the opposite Lie superalgebra.
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other hand, acting on fermionic functions ϑ1f(τ) and ϑ2f(τ), H reduces to the spin (j − 1/2)
sl(2,R) H generator. The degeneracy is lifted when working with the linear combinations
(ϑ1 − iϑ2)f(τ) and (ϑ1 + iϑ2)f(τ), which form irreducible representations of sl(2,R). The
former has u(1) charge q + 1/2, while the latter has q − 1/2. The irreducible representations
of sl(2,R) are however not unitary, since that would require j = −1/2 + ik.

The quadratic and the cubic Casimirs, C2 and C3, commute with all the generators, and in
an irreducible representation, are proportional to the identity matrix. We can compute C2 and
C3 explicitly in the principal series representation using the differential operators in (B.79)-
(B.86). In this case, however, the fermionic generators satisfy opposite anti-commutation
relations (B.87). As a consequence, equations (B.15)–(B.16) modify into

C2 = H2 − Z2 + E−E+ − (F−F̄+ − F̄−F+), (B.88)

C3 = (H2 − Z2)Z + E−E+
(
Z − 1

2

)
+ 1

2F
−F̄+(H − 3Z + 1) (B.89)

+ 1
2 F̄

−F+(H + 3Z + 1)− 1
2E

−F̄+F+ − 1
2 F̄

−F−E+,

where the doubly fermionic terms ∼ FF have swapped signs compared to the earlier expres-
sions. In order to compute the terms F−F̄+ and F̄−F+ appearing in (B.88)–(B.89), it is
convenient to introduce the complex fermionic variables ϑ and ϑ̄:

ϑ ≡ ϑ1 − iϑ2, ϑ̄ ≡ ϑ1 + iϑ2, ∂ϑ ≡
1
2(∂ϑ1 + i∂ϑ2), ∂ϑ̄ ≡

1
2(∂ϑ1 − i∂ϑ2). (B.90)

The fermionic generators (B.18) can then be written as:

F+ = jϑ+ qϑ− 1
2ϑϑ̄∂ϑ̄ − τ∂ϑ̄ −

τ

2ϑ∂τ , F− = ∂ϑ̄ +
1
2ϑ∂τ , (B.91)

F̄+ = jϑ̄− qϑ̄+ 1
2ϑϑ̄∂ϑ − τ∂ϑ −

τ

2 ϑ̄∂τ , F̄− = −∂ϑ −
1
2 ϑ̄∂τ . (B.92)

Plugging the expressions (B.79)-(B.86) into (B.88)-(B.89), we have (painstakingly) checked
that the final expressions for the quadratic Casimir C2 and the cubic Casimir C3 are

C2 = j2 − q2 = −k2 − q2, (B.93)
C3 = q(j2 − q2) = −q(k2 + q2). (B.94)

Both C2 and C3 are proportional to the identity operator; and since they form a basis for
the center of the universal enveloping algebra, this essentially proves that the constructed
representation is indeed irreducible. Note that C2 is strictly negative, and the sign of C3 is
1:1 with the sign of the quantum number q for these representations.

B.6.4 Discrete representations: monomial realization

As in the SL(2,R) and OSp(1|2,R) cases, it is possible and illuminating to realize both the
finite-dimensional and the discrete highest and lowest weight irreps in a monomial basis on
the same superline R1|2, acted on by the differential generators (B.79)–(B.86).

A lowest weight state is annihilated by both F−
x and F−

y (and hence automatically by
E−). The solution is just a constant:

ψLW,j,q(τ, ϑ1, ϑ2) = 1, H = −j, Z = q. (B.95)
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Similarly, a highest weight state is annihilated by F+
x and F+

y :

ψHW,j,q(τ, ϑ1, ϑ2) = τ2j − 2iqτ2j−1ϑ1ϑ2 = τ2je−2iq ϑ1ϑ2
τ , H = j, Z = q. (B.96)

If 2j ∈ N, the representation contains both lowest and highest weight states, and is hence
finite-dimensional. The basis states are

{1, ϑ1, ϑ2, ϑ1ϑ2, τ, . . . , ϑ1ϑ2τ
2j−2, ϑ1τ

2j−1, ϑ2τ
2j−1, τ2j−1, τ2je−2iq ϑ1ϑ2

τ }. (B.97)

The states proportional to ∼ ϑ1 + iϑ2 and ∼ ϑ1 − iϑ2 directly correspond to the second
and third irrep in the branching rule decomposition (B.38), whereas the others are linear
combinations of the Grassmann algebra basis elements ∼ 1, ϑ1ϑ2.

If 2j ∈ −N,21 the representation is unbounded either from above or from below, and is the
discrete lowest (resp. highest) weight irrep. The above basis simply continues unboundedly
on either side. In particular, we observe the same branching rule (B.38) at work here, as
mentioned earlier.

B.6.5 Principal series character

Of particular interest in (super)gravity amplitudes are the characters of the different represen-
tations. In order to obtain the character of the principal series representations, we first use
the same trick as used in subsection B.4, but formally applied to the principal series represen-
tation by analytic continuation of the j-label. We have already observed that this analytic
continuation works for N = 1 in [52], so we anticipate a similar outcome here. Afterwards,
we will explicitly derive the character by brute force and show that the results indeed match.

We consider the principal series representation character of SL(2,R), parametrized in
terms of j:

χ
sl(2,R)
j (ϕ) = cosh(2j + 1)ϕ

sinhϕ , (B.98)

and insert it in (B.38). We then obtain:

χN=2
j,b (ϕ, θ)

= cosh(2j + 1)ϕ
sinhϕ e2iqθ − cosh(2j)ϕ

sinhϕ e2i(q− 1
2 )θ − cosh(2j)ϕ

sinhϕ e2i(q+ 1
2 )θ + cosh(2j − 1)ϕ

sinhϕ e2iqθ

= 2 cosh (2jϕ) e2iqθ (coshϕ− cos θ)
sinhϕ = 2 cosh (2jϕ) e2iqθ√

∆(ϕ, θ)
, (B.99)

where we recognize the Weyl denominator (B.43) in the last equality. Finally setting
j = ik, k ∈ R+, we obtain a candidate expression for the principal series character of
OSp(2|2,R):

χN=2
k,q (ϕ, θ) = 2 cos (2kϕ) e2iqθ coshϕ− cos θ

sinhϕ . (B.100)

We next reproduce and prove the result (B.100) starting from the Borel-Weil realization
of the osp(2|2) algebra in terms of a kernel K(τ, ϑ1, ϑ2|τ ′, ϑ′1, ϑ′2), following appendix E

21Just as in the simpler cases of SL(2, R) and OSp(1|2, R), this restriction to half integers is not visible at
the level of our current construction, which only probes the universal cover of OSp(2|2, R).
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of [52], where the same computation was done for the group OSp(1|2,R). We work in a
coordinate basis on the carrier space of square integrable functions on the superline L2(R1|2),
i.e. the real line “thickened” in the fermionic directions ϑ1 and ϑ2. The principal series
representation (B.69) can be written equivalently as

f ′(τ, ϑ1, ϑ2) =
∫
dτ ′dϑ′1dϑ

′
2K(τ, ϑ1, ϑ2|τ ′, ϑ′1, ϑ′2)f(τ ′, ϑ′1, ϑ′2), (B.101)

where

K(τ,ϑ1, ϑ2|τ ′, ϑ′1, ϑ′2) = e2iqψ |bτ + d+ β2ϑ1 + δ2ϑ2|2jδ
(
c+ aτ + α2ϑ1 + γ2ϑ2
d+ bτ + β2ϑ1 + δ2ϑ2

− τ ′
)

× δ
(−γ1 + wϑ1 + zϑ2 − α1τ

d+ bτ + β2ϑ1 + δ2ϑ2
− ϑ′1

)
δ

(−δ1 + yϑ1 + uϑ2 − β1τ

d+ bτ + β2ϑ1 + δ2ϑ2
− ϑ′2

)
, (B.102)

and e2iqψ can be computed starting from (B.59), (B.60).
The character χj,q(g) in representation (j, q) is then determined by summing up the

contribution in the vector space L2(R1|2) of functions that get mapped to themselves:

χN=2
j,q (ϕ, θ) ≡

∫
dτdϑ1dϑ2K(τ, ϑ1, ϑ2|τ, ϑ1, ϑ2) (B.103)

=
∫
dτdϑ1dϑ2e

2iqψ|bτ + d+ β2ϑ1 + δ2ϑ2|2jδ
(
c+ aτ + α2ϑ1 + γ2ϑ2
d+ bτ + β2ϑ1 + δ2ϑ2

− τ
)

× δ
(−γ1 + wϑ1 + zϑ2 − α1τ

d+ bτ + β2ϑ1 + δ2ϑ2
− ϑ1

)
δ

(−δ1 + yϑ1 + uϑ2 − β1τ

d+ bτ + β2ϑ1 + δ2ϑ2
− ϑ2

)
.

Since the character is a class function, i.e. only depends on the conjugacy class of the group
element, we can further simplify the calculation by considering a representative group element.
For the hyperbolic conjugacy class, we set:

g =


eϕ ϵ 0 0
0 e−ϕ 0 0
0 0 cos θ − sin θ
0 0 sin θ cos θ

 , (B.104)

where (B.104) is a group element in the maximal bosonic subgroup SL(2,R)⊗ SO(2), labeled
by (ϕ, θ) respectively. The parameter ϵ can be viewed as a small regulator in the computation
of the “solution at infinity”.

The bosonic and fermionic delta-functions can be worked out explicitly. For the bosonic
one, we have:

δ

(
eϕτ

e−ϕ + ϵτ
− τ

)
= δ(τ)
e2ϕ − 1 +

δ
(
τ − eϕ−e−ϕ

ϵ

)
1− e−2ϕ . (B.105)

While the fermionic delta functions are by definition just the arguments of those functions:

δ

(
ϑ1 cos θ + ϑ2 sin θ

e−ϕ + ϵτ
− ϑ1

)
= ϑ1 cos θ + ϑ2 sin θ

e−ϕ + ϵτ
− ϑ1, (B.106)

δ

(
ϑ2 cos θ − ϑ1 sin θ

e−ϕ + ϵτ
− ϑ2

)
= ϑ2 cos θ − ϑ1 sin θ

e−ϕ + ϵτ
− ϑ2. (B.107)
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The integral in (B.103) then precisely boils down to the principal series character (B.100).22

In gravity amplitudes, these characters are to be inserted in the JT disk amplitude to
transfer to the single-trumpet amplitude. It is moreover manifestly true that these characters
satisfy orthonormality relations:∫ +∞

0
dϕ

∫ 2π

0
dθ∆(ϕ, θ)χN=2

k,q (ϕ, θ)χ∗N=2
k′,q′ (ϕ, θ) = (2π)2δ(k − k′)δqq′ , (B.108)

where the Weyl denominator ∆(ϕ, θ) appears here as the natural measure of the space
of conjugacy class elements. This orthonormality relation is required when gluing super-
geometries together using the gluing procedure from N = 2 super-Teichmüller space.

Stripping the Weyl denominator of (B.100), the character can be identified with a certain
limit of the N = 2 super-Virasoro modular S-matrix for non-degenerate characters, see
e.g. eq (3.16)-(3.18) in [96]:

χN=2
k,q (ϕ, θ) ∼ 2 cos (2kϕ) e2iqθ ∼ lim

c→∞
S ϕ

2π
, 2θ

πb2

k,−q. (B.109)

The c→∞ limit is what we denoted as the Schwarzian limit in [15]. Here it does not change
the functional form of this expression, as is familiar from the simpler cases of N = 0, 1 as well.

B.7 Alternative SU(1, 1|1) perspective on N = 2 character

In this appendix, we consider a different enlightening perspective on the computation of the
N = 2 character and exploit the 2:1 homomorphism between the real supergroup OSp(2|2,R)
and the complex supergroup SU(1, 1|1) [97]:

OSp(2|2)/Z2 ≃ SU(1, 1|1). (B.110)

We will eventually show that the principal series character computed starting from a group
element g ∈ SU(1, 1|1) is the same as the one computed in appendix B.6.5 for (the component
connected to the identity of) OSp(2|2,R).

SU(1, 1|1) is a group of 3× 3 complex matrices with 5 bosonic and 4 fermionic variables

g =


a b α

c d γ

β δ e

 , (B.111)

preserving the orthosymplectic form Ω = diag
([

0 1
−1 0

]
, 2
)

as gΩg†3 = Ω.23 The maximal

bosonic subgroup of SU(1, 1|1) is

SU(1, 1)⊗U(1) ⊂ SU(1, 1|1), (B.112)
22Note that if one considers an elliptic conjugacy class element instead where g ∼ diag(SO(2), SO(2)), the

bosonic delta-function (B.105) yields zero, just like for N = 0, 1 in earlier work. This means, just as in those
cases, that elliptic defects in gravity are defined by analytically continuing the characters from the hyperbolic
scenario.

23The † operation consists of a super-transposition and complex conjugation of all the entries of the matrix.
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with SU(1, 1) being the group of 2 × 2 complex matrices with unit determinant,

h =
(
a b

b̄ ā

)
, |a|2 − |b|2 = 1. (B.113)

A well-known isomorphism relates SU(1, 1) and SL(2,R) matrices [67]:

g ∈ SL(2,R) ←→ h ∈ SU(1, 1), h = t−1gt, (B.114)

where t = 1√
2

(
1 i

i 1

)
.

The linear fractional transformation that realizes SU(1, 1) maps a complex coordinate
z into:

z 7→ az + b

b̄z + ā
. (B.115)

Whereas the SL(2,R) transformation maps the upper halfplane into itself (preserving the
real axis), (B.115) maps the unit disk into itself, preserving the unit circle. The isomor-
phism (B.114) between SL(2,R) and SU(1, 1) is connected to the Cayley transform in the form:(

τ

1

)
7→ t−1 ·

(
τ

1

)
: τ 7→ z ≡ i τ − i

τ + i
. (B.116)

(B.116) maps the upper halfplane (with coordinate τ) into the unit circle with coordinate z.
In order to find the superconformal transformations for the complex bosonic and fermionic

variables τ and ϑ, we first act with g ∈ SU(1, 1|1) on the complex vector (z+|ϑ). This results
in the linear fractional transformations

z′+ = az+ + αϑ+ b

cz+ + γϑ+ d
, ϑ′ = βz+ + eϑ+ δ

cz+ + γϑ+ d
, (B.117)

and their complex conjugates (where we denote z− as the complex conjugate of z+):

z′− = āz− + ᾱϑ̄+ b̄

c̄z− + γ̄ϑ̄+ d̄
, ϑ̄′ = β̄z− + ēϑ̄+ δ̄

c̄z− + γ̄ϑ̄+ d̄
. (B.118)

These are the same transformations as those in appendix A of [97].
We can equivalently define a new complex bosonic variable z through z+ ≡ z + ϑϑ̄.

Its complex conjugate is immediately found to be z− = 1/z − ϑϑ̄.24 The transformation
for z is a U(1) phase transformation on the unit circle, z̄ = 1

z
. Then the transformations

for z, ϑ, ϑ̄ are given by:

z′ =
b+ αϑ+ a(z + ϑϑ̄) + (δ̄+ēϑ̄+β̄(1/z−ϑϑ̄))(δ+eϑ+β(z+ϑϑ̄))

d̄+γ̄ϑ̄+c̄(1/z−ϑϑ̄)

d+ γϑ+ c(z + ϑϑ̄)
,

ϑ′ = δ + eϑ+ β(z + ϑϑ̄)
d+ γϑ+ c(z + ϑϑ̄)

, ϑ̄′ = β̄ + z(δ̄ + ēϑ̄− β̄ϑϑ̄)
c̄+ z(d̄+ γ̄ϑ̄− c̄ϑϑ̄)

.

(B.119)

24Using our convention that complex conjugation of Grassmann variables preserves the order.
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The kernel expression in this case is given by:

K(z,ϑ, ϑ̄|z′, ϑ′, ϑ̄′) = e2iqψ |d+ γϑ+ c(z + ϑϑ̄)|2j

× δ

b+ αϑ+ a(z + ϑϑ̄) + (δ̄+ēϑ̄+β̄(1/z−ϑϑ̄))(δ+eϑ+β(z+ϑϑ̄))
d̄+γ̄ϑ̄+c̄(1/z−ϑϑ̄)

d+ γϑ+ c(z + ϑϑ̄)
− z′


× δ

(
δ + eϑ+ β(z + ϑϑ̄)
d+ γϑ+ c(z + ϑϑ̄)

− ϑ′
)
δ

(
β̄ + z(δ̄ + ēϑ̄− β̄ϑϑ̄)
c̄+ z(d̄+ γ̄ϑ̄− c̄ϑϑ̄)

− ϑ̄′
)
. (B.120)

Using the isomorphism (B.114), a hyperbolic conjugacy class element in SU(1, 1) is of the form:

m =
[
eϕ 0
0 e−ϕ

]
, m ∈ SL(2,R) 7−→ h =

[
coshϕ i sinhϕ
−i sinhϕ coshϕ

]
, h ∈ SU(1, 1). (B.121)

Therefore a generic group element g ∈ SU(1, 1|1) in the hyperbolic conjugacy class is of
the form25

g =


coshϕ i sinhϕ 0
−i sinhϕ coshϕ 0

0 0 eiθ

 , (B.122)

where the bottom-right block is just a U(1) phase factor.
Using that the fermionic delta functions in (B.120) evaluate to their arguments and

integrating over the fermionic variables ϑ, ϑ̄, the character expression is given by:

χN=2
j,q (ϕ, θ) =

∫
dz e2iqθ| coshϕ− iz sinhϕ|2j

(
eiθ

coshϕ− iz sinhϕ − 1
)

×
(

ze−iθ

z coshϕ+ i sinhϕ − 1
)
δ

(
z coshϕ+ i sinhϕ
coshϕ− iz sinhϕ − z

)
. (B.123)

The bosonic delta can be decomposed as:

δ

(
z coshϕ+ i sinhϕ
coshϕ− iz sinhϕ − z

)
= δ(z − i)

1− e−2ϕ + δ(z + i)
e2ϕ − 1 , (B.124)

whose roots z = ±i correctly live on the unit circle. Also note that the Cayley transfor-
mation (B.116) maps the roots of the bosonic delta z = ±i in SU(1, 1) to the roots of the
bosonic delta found for SL(2,R), which in the ϵ = 0 case become τ = 0 and τ = ∞.

Evaluating the terms in (B.123) at z = ±i yields:

χN=2
j,q (ϕ, θ) = e2iqθ

[
e2jϕ (e−ϕ+iθ − 1)(e−ϕ−iθ − 1)

1− e−2ϕ + e−2jϕ (eϕ+iθ − 1)(eϕ−iθ − 1)
e2ϕ − 1

]
. (B.125)

Here, we have exactly the same factors that appeared in the Weyl denominator (B.43),
with the same bosonic and fermionic roots αB = ±2ϕ, αF = ±ϕ± iθ as the ones in (B.42).
Simplifying yields:

χN=2
j,q (ϕ, θ) = 2e2iqθ cosh(2jϕ)coshϕ− cos θ

sinhϕ , (B.126)

which agrees with the expression of the principal series character in (B.100).
25Note that the off-diagonal ϵ factor that was present in (B.104) does not appear in m ∈ SL(2, R). In that

case it was needed in order to have a quadratic equation with two solutions in the bosonic delta function.
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B.8 Other component of OSp(2|2, R)

In spite of not describing gravity, it is illuminating to describe some properties of the second
connected component of the supergroup. In the N = 1 case of OSp(1|2,R), both sectors play
a role and are thought of as describing R and NS sectors. For the higher supersymmetric
models, this is no longer true, but structurally it is interesting to observe the analogy.

If one writes the decomposition of a group element g in the component of the supergroup
that is not connected to the identity, as a conjugated element in the maximal torus T ,
we can write:

g = cMtc−1, t ∈ T, (B.127)

where the fixed element M = diag(1, 1| − 1, 1) causes a flip between the two components of
the supergroup. It can be regarded as a reflection operation on the 2-plane that is acted
on by the bosonic O(2) subgroup.

We have the relations:

M−1F±M = ∓F̄±, M−1F̄±M = ∓F±. (B.128)

Hence the (2|4)-dimensional Jacobian matrix in the Weyl integration formula, acting on
the super-vectorspace spanned by E+, E−, F+, F̄+, F−, F̄− in this ordering of basis vectors,
has the form:

Ad(t−1M)− 1 ≡ diag
(
e2ϕ − 1, e−2ϕ − 1,

(
−1 −eϕ+iθ

−eϕ−iθ −1

)
,

(
−1 e−ϕ+iθ

e−ϕ−iθ −1

))
.

(B.129)
In particular, F± and F̄± are no longer eigenvectors, but they transform in the above simple
way. Hence the super-Jacobian is readily computed:

∆(t) ≡ sdet′(Ad(t−1M)− 1)g/t =
(e2ϕ − 1)(1− e−2ϕ)
(1− e2ϕ)(1− e−2ϕ) = −1, (B.130)

the Weyl denominator is trivial in this sector of the supergroup.
One can redo the calculation of the principal series character in this sector. The calculation

proceeds very similarly as in subsection B.6.5. The result is:

χN=2
k,q (ϕ, θ) = 2i sin(2kϕ)e2iqθ. (B.131)

Notice in particular that no non-trivial Weyl denominator is present here, in agreement
with the explicit calculation (B.130) above. These characters also form an orthonormal
set. Moreover, we also observe that upon insertion in a super-JT amplitude, these would
not correspond to one-loop exact gravitational path integrals, but yield a similar all-loop
perturbative expansion like N = 1 discussed in subsection 3.4 in the main text.

C Supergravity and the BF formulation

A BF gauge theory has a superspace action of the form:

SSJT =
∫

Σ
STr(BF). (C.1)
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It is worthwhile to highlight precisely how the gauge transformations in the BF formula-
tion (C.1) of supergravity correspond to the gravitational superdiffeomorphisms and local
Lorentz transformations [74]. This matching will be illuminating for what follows later on.

The superspace action (C.1) is invariant under gauge transformations, with B trans-
forming (homogeneously) in the adjoint representation, and A as a gauge connection. In-
finitesimally this reads directly in superspace:

δAM = ∂M ϵ+ [AM , ϵ], δB = [B, ϵ]. (C.2)

For the applications toN = 2 supergravity, the superspace manifold Σ is (2|4)-dimensional
and the gauge group is OSp(2|2,R). For OSp(2|2,R), the dictionary between gauge theory
and gravity in superspace in Lorentzian signature is

AM = ΩMH+
∑
±
(e ±
M E±+f ±

M F±+f̄ ±
M F̄±)+σMZ, M = +,−, α, α = 1, 2, 3, 4, (C.3)

where we used the generators in the form of (B.5). The components of AM are again
interpreted in terms of the (super) spin connection Ω, super-zweibein EA ≡ (e±|f±, f̄±) (the
index A takes on 2|4 possible values), and the gauge potential σ. Notice the distinction of
this expansion compared to (4.2) and (3.21). This is due to the fact that here we work with
a Lorentzian target space instead.26 Both signatures are captured by the same OSp(2|2,R)
supergroup, but with a different coset to describe the bulk superspace. This reflects the
difference between hyperbolic superspace H2|4 and AdS superspace AdS2|4, as described
in equation (4.5).

Similarly expanding the gauge parameter as

ϵ = lH +
∑
±
(ϵ±E± + u±F± + ū±F̄±) + sZ, (C.4)

the superspace gauge transformations δAM = ∂M ϵ + [AM , ϵ], have the following compo-
nent form:

δGe
±

M = ∂M ϵ
± ± ΩM ϵ± ∓ e ±

M l + f ±
M ū± + f̄ ±

M u±, (C.5)

δGf
±

M = ∂Mu
± ± 1

2ΩMu
± + 1

2σMu
± ∓ 1

2f
±

M l − 1
2f

±
M s− e ±

M u∓ + f ∓
M ϵ±, (C.6)

δGf̄
±

M = ∂M ū
± ± 1

2ΩM ū
± − 1

2σM ū
± ∓ 1

2 f̄
±

M l + 1
2 f̄

±
M s+ e ±

M ū∓ + f̄ ±
M ϵ±, (C.7)

δGΩ = ∂M l + 2e +
M ϵ− − 2e −

M ϵ+ − f +
M ū− − f̄ −

M u+ + f −
M ū+ + f̄ +

M u−, (C.8)
δGσM = ∂Ms+ f +

M ū− + f̄−Mu
+ + f̄ −

M ū+ + f̄ +
M u−. (C.9)

The parameter s in (C.4) parametrizes a (compact) U(1) gauge transformation under which
the f± have charge +1/2 and the f̄± have charge −1/2, the remaining fields uncharged.
The parameter l in (C.4) parametrizes the (bosonic) SO(1,1) local Lorentz transformation,
simultaneously boosting e± as a vector, and f±, f̄± as spin-1/2 spinors.

26It is straightforward to change the current discussion to the Euclidean target space of (3.21), but for
illustrative purposes we focus on Lorentzian signature here.
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The remaining 2|4 parameters parametrize the super-diffeomorphisms on-shell:27

ϵ± = ξMe ±
M , u± = ξMf ±

M , ū± = ξM f̄ ±
M , l = ξMΩM , s = ξMσM , (C.10)

in terms of 2|4 functions ξM . To see that super-diffeomorphisms can indeed cover this
remaining 2|4 parameter family of gauge transformations, we rewrite the first three of the
above relations in superspace as a 2|4 equation ϵA = ξME A

M = EAMξ
M to obtain the inverse:

E B
N κBAϵ

A = gNMξ
M ≡ ξN , (C.11)

where we used the relation between the vielbein and metric:

gMN = E A
M κAB EBN . (C.12)

So given any fixed ϵA, if we choose ξM as in (C.11), we can interpret the transformation
as a super-diffeomorphism.

We can summarize the following physical decomposition of the full gauge group of (C.1):

Gauge group = (super-diffeo)⊗ SO(1, 1)Lorentz ⊗U(1). (C.13)

D Some representation theory of PSU(1, 1|2)

The relevant superalgebra for the N = 4 JT supergravity model is psl(2|2), with its noncom-
pact real form psu(1, 1|2) [98, 99]. The psu(1, 1|2) algebra has sl(2,R) ⊕ su(2) as maximal
bosonic subalgebra. It has 6 bosonic generators H,E±, Z, Z± and 8 fermionic ones F±

α , F̄
±
β

with α, β = 1, 2 spinor indices. In the Chevalley basis, the Lie superalgebra has the form:

[H,E±] = ±E±, [Z,Z±] = ±Z±, (D.1)

[H,F±
α ] = ±1

2F
±
α , [H, F̄±

α ] = ±1
2 F̄

±
α , (D.2)

[Z,F±
α ] = ±1

2F
±
α , [Z, F̄±

α ] = ∓1
2 F̄

±
α , (D.3)

{F±
α , F̄

±
β } = ∓2ϵαβE

±, {F±
α , F̄

∓
β } = ±2ϵαβZ

±, (D.4)

{F+
α , F

−
β } = 2ϵαβ(H − Z), {F̄+

α , F̄
−
β } = 2ϵαβ(H + Z), (D.5)

[E±, F∓
α ] = ±F̄±

α , [E±, F̄∓
α ] = ∓F±

α , (D.6)
[Z±, F∓

α ] = ±F̄∓
α , [Z±, F̄±

α ] = ∓F±
α , (D.7)

[E+, E−] = 2H, [Z+, Z−] = 2Z. (D.8)

There are two Cartan generators H and Z, with coordinates ϕ ∈ [0,∞) and θ ∈ [0, π).
The 4|8 roots are:

αB(t) = ±2ϕ,±2iθ, αF (t) = ±ϕ± iθ, (D.9)
27This is exact in these topological field theories, since the flatness condition holds off-shell as well through

the Lagrange multipliers.
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where each fermionic root is counted twice. The Weyl denominator hence becomes:

∆(ϕ, θ) = (e2ϕ − 1)(1− e−2ϕ)|e2iθ − 1||e−2iθ − 1|
(eϕ+iθ − 1)2(eϕ−iθ − 1)2(e−ϕ+iθ − 1)2(e−ϕ−iθ − 1)2 (D.10)

= sinh2 ϕ sin2 θ

(coshϕ− cos θ)4 . (D.11)

There is a quadratic and higher Casimir. The quadratic Casimir is given by the explicit
expression:

C2 = H2 + 1
2(E

−E+ + E+E−)− Z2 − 1
2(Z

−Z+ + Z+Z−)

− 1
4ϵαβ

(
F+
α F

−
β + F−

α F
+
β + F̄+

α F̄
−
β + F̄−

α F̄
+
β

)
. (D.12)

On a highest weight state (that is annihilated by all raising + generators) with eigenvalues
H = j1 + 1 and Z = j2, the above expression reduces to:28

C2 = H2 −H − Z2 − Z = j1(j1 + 1)− j2(j2 + 1). (D.13)

Finite-dimensional irreducible representations are characterized by this maximal value of both
Cartan generators (on the highest state), denoted by the half-integers j1 and j2. Restricting
to the maximal bosonic subgroup SL(2,R)⊗ SU(2), with (tensor product) irreps denoted as
(j1, j2), the typical finite-dimensional irreps have the branching rule decomposition [98]:

(j1, j2) ⊗
[
2 (0, 0) ⊕ 2

(1
2 ,

1
2

)
⊕ (0, 1) ⊕ (1, 0)

]
, (D.14)

with total dimension 16(2j1 + 1)(2j2 + 1) as readily checked. If we use the finite-dimensional
characters of sl(2,R) and su(2)

χ
sl(2,R)
j (ϕ) = sinh(2j + 1)ϕ

sinhϕ , χ
su(2)
j (θ) = sin(2j + 1)θ

sin θ , (D.15)

and the branching rule (D.14), the N = 4 finite rep character is found to be

χN=4
j1,j2 (ϕ, θ) = 4sinh(2j1 + 1)ϕ

sinhϕ
sin(2j2 + 1)θ

sin θ (cos θ − coshϕ)2 . (D.16)

Likewise, the discrete highest weight character can be computed using the same branching
rules (D.14) as:

χN=4
j1,j2 (ϕ, θ) =

e(2j1+1)ϕ

2 sinhϕ
sin(2j2 + 1)θ

sin θ

[
2− 4(eϕ + e−ϕ) cos θ + sin 3θ

sin θ + e2ϕ + 1 + e−2ϕ
]

= 2e(2j1+1)ϕ sin(2j2 + 1)θ (cos θ − coshϕ)2

sinhϕ sin θ . (D.17)

28Note the relative minus sign for the H-term. This is due to the fermionic contribution. The j1 quantum
number is introduced to match with SL(2, R) notation, but it is not the highest value of H in the representation
as denoted.
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The principal series character, in turn, requires the formal analytic continuation of the branch-
ing rule decomposition (D.14), using the principal series characters of SL(2,R) instead. To
induce a unitary representation, the analytically continued weight for general supersymmetry
can be found from the Jacobian rule (B.76), which for N = 4 yields: j = 1/2 + ik, k ∈ R+.
Using the shifted value of j1 = −1/2 + ik, k ∈ R+ instead,29 we find:

χN=4
k,j2 (ϕ, θ) = 4 cos(2kϕ) sin(2j2 + 1)θ (cos θ − coshϕ)2

sinhϕ sin θ . (D.18)

Character orthogonality is again manifest:∫
dϕdθ∆(ϕ, θ)χN=4

k,j (ϕ, θ)χ∗N=4
k′,j′ (ϕ, θ) = (2π)2δ(k − k′)δjj′ . (D.19)

D.1 Check via super-Virasoro modular S-matrix

As before, the principal series character (D.18) can be found in the Schwarzian (classical)
limit of the N = 4 super-Virasoro modular S-matrix for non-degenerate characters. Several
calculations along these lines have been made in the literature [100, 101]. The relevant
characters can be found in eqns (1) and (2) of [102], e.g. in the NS-sector:

chNSP (k, j; ν, τ) = qh−(j+1/2)2/(k+1)+1/4 θ3(q; z)2

η(τ)3 χjk−1(ν, τ), j = 0, 12 , 1, . . .
k

2 , (D.20)

where we parametrize h = P 2 + (j + 1/2)2/(k + 1) − 1/4, and where χjk−1(ν, τ) is the
affine character of the ŜU(2)k−1 affine algebra. The latter transforms under modular S-
transformations as

χjk−1(ν/τ,−1/τ) =
k/2∑
j′=0

Sj
j′χj

′

k−1(ν, τ), j′ = half-integer, (D.21)

where

Sj
j′ =

√
1

k + 1 sin
(
π(2j + 1)(2j′ + 1)

k + 1

)
. (D.22)

Performing a modular S-transform on (D.20) leads to a linear combination of the same types
of characters. Without loss of generality we focus on the simpler case where ν = 0:30

chNSP (k, j; 0,−1/τ) =
∫ +∞

−∞
dP ′

k/2∑
j′=0

( 1√
2
cos(4πPP ′)Sjj

′
)

chNSP ′ (k, j′; 0, τ). (D.25)

29If we would have denoted the highest value of H in the highest weight irreps as j1 (instead of j1 + 1),
we would have had j1 = +1/2 + ik. This +1/2 shift is the resulting Weyl vector for this superalgebra with
ρ = 1

2
∑

i
αi ≡ ρB − ρF and ρB = 1 and ρF = 2. The fermionic contribution is hence effectively flipping the

sign of the Weyl vector compared to the bosonic sl(2, R) algebra, resulting in −1/2 → +1/2.
30We used

θ3(0,−1/τ) = (−iτ)1/2θ3(0, τ), (D.23)

η(−1/τ) = (−iτ)1/2η(τ). (D.24)
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Introducing the central charge c = 6k, we read off the total modular S-matrix:

SP,j
P ′,j′ = 1√

2
cos(4πPP ′)

√
1

c/6 + 1 sin
(
π(2j + 1)(2j′ + 1)

c/6 + 1

)
. (D.26)

In the Schwarzian limit, we let c → ∞ in a double-scaled fashion, where we set P = bk

and 2πbP ′ = ϕ where b ∼ 1/
√
c → 0. The quantity π(2j′ + 1)/(c/6) effectively becomes

a continuous real number, between 0 and π, denoted by θ. Hence we obtain the N = 4
character (D.18), up to an irrelevant proportionality factor:

lim
c→∞

SP,j
P ′,j′ ∼ cos(2kϕ) sin((2j + 1)θ). (D.27)

As in all other cases, we also note that the Weyl denominator in (D.18) is not produced
when coming from the 2d (S)CFT perspective.

D.2 Higher rank Casimir

The higher rank Casimir can be found by taking the contraction of the Lie superalgebra
of D(2, 1;α) superalgebra down to psu(1, 1|2) ⊕ u(1)3 [103], and then setting to zero the
three U(1) generators. For the parent algebra D(2, 1;α), an expression is known for the
second Casimir operator as a quartic combination of operators [104]. Denoting the bosonic
subalgebra quadratic Casimirs as:

S ≡ H2 + 1
2(E

+E− + E−E+), T ≡ Z2 + 1
2(Z

+Z− + Z−Z+), (D.28)

the quartic Casimir of PSU(1, 1|2) can be written as:

C4 = S4 − T 4 + 1
2C2(S2 + T 2)− 2(S2 − T 2) + fermion bilinear. (D.29)

For a highest weight irrep, starting with the explicit expression (4.11) of [104], one can
show that −C4 evaluates to

(j1 +1)2(j1 +2)2− j2
2(j2 +1)2 +2j2(j2 +1)(2j1 +3)−2(j1 +1)[2j2(j2 +1)+(j1 +2)(2j1 +1)].

(D.30)
The quadratic and quartic Casimir can be taken as a basis for the center of the Lie superalgebra,
and hence serve the purpose of fully specifying the representation.

E Perturbative analysis

A standard way to get physical insight for a non-Gaussian path integral is to expand it
perturbatively. In the case of N = 2, we have a second Lagrange multiplier in the EOW brane
action equation (4.7), due to the fact that we have a second Casimir C3, cubic in the generators.
We present a simple perturbative analysis where we will use purely bosonic dimensions for
ease of notation. It is not hard to incorporate fermionic dimensions into the arguments below.

In terms of the generators Pa of the Lie algebra, we have explicitly:

C3 = P aP bP chabc, habc ≡ Tr(P(aPbPc)). (E.1)
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Consequently, the worldline action takes the form

S =
∫
dτ
(
Λa(g−1DAg)a +Θ1Λ2

a +Θ2ΛaΛbΛchabc
)
. (E.2)

This is the action of a quantum field theory with fields Λ0,Λ1.31 In the familiar language
of Feynman diagrams, we can depict each term appearing in (E.2).

Source term:

Ja b
Ja : = (g−1DAg)aδab

(E.3)

Propagator:

a b
⟨ΛaΛb⟩ : = δab

Θ1
δ(x− y)

(E.4)

Interaction vertex:

a b

c

= habcΘ2

(E.5)

The path integral for the effective theory can be written as e−Seff[J ] =
∫
[DΛa]e−S . We

consider several terms contributing in Seff[J ] to the quadratic term ∼ J2 explicitly:

O(Θ0
2) :

∑
a,b

Ja Jb

1
Θ1 =∑

a,b

1
Θ1

∫
JaJbδab

O(Θ1
2) : does not exist.

x y

c

d

τ1 τ2O(Θ2
2) :

∑
a,b

Ja Jb
= Θ2

2
Θ2

1

∫
dτ1dτ2

∫
dx dy[ 1

Θ2
1
δ(τ1 − x)δ(τ2 − y)]

×δ(x− y)2∑
a,b
hacdhbcdJa(τ1)Jb(τ2)

Recalling that ∑
a,b
JaJbδab = (g−1DAg)a(g−1DAg)a → ẊMgMNẊ

N , we would a priori

aim at writing a second order geometric Lagrangian, i.e. a functional of gMN only. The
higher-order terms however, cannot be written purely in terms of the metric gMN .

31Λ2 is set to zero, following the discussion in section 4.
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This is particularly transparent for the three-vertex itself, contributing to a ∼ J3-
contribution at tree level as:

Ja Jb

Jc

= Θ2
∑
a,b,c habcJaJbJc

(E.6)

which since J ∼ e, the vielbein, is not writable in terms of g ∼ e2 solely.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] R. Jackiw, Lower Dimensional Gravity, Nucl. Phys. B 252 (1985) 343 [INSPIRE].

[2] C. Teitelboim, Gravitation and Hamiltonian Structure in Two Space-Time Dimensions, Phys.
Lett. B 126 (1983) 41 [INSPIRE].

[3] P. Nayak et al., On the Dynamics of Near-Extremal Black Holes, JHEP 09 (2018) 048
[arXiv:1802.09547] [INSPIRE].

[4] L.V. Iliesiu and G.J. Turiaci, The statistical mechanics of near-extremal black holes, JHEP 05
(2021) 145 [arXiv:2003.02860] [INSPIRE].

[5] A. Castro et al., Gravitational perturbations from NHEK to Kerr, JHEP 07 (2021) 218
[arXiv:2102.08060] [INSPIRE].

[6] L.V. Iliesiu, S. Murthy and G.J. Turiaci, Black hole microstate counting from the gravitational
path integral, arXiv:2209.13602 [INSPIRE].

[7] A. Castro, F. Mariani and C. Toldo, Near-extremal limits of de Sitter black holes, JHEP 07
(2023) 131 [arXiv:2212.14356] [INSPIRE].

[8] A. Almheiri and J. Polchinski, Models of AdS2 backreaction and holography, JHEP 11 (2015)
014 [arXiv:1402.6334] [INSPIRE].

[9] K. Jensen, Chaos in AdS2 Holography, Phys. Rev. Lett. 117 (2016) 111601 [arXiv:1605.06098]
[INSPIRE].

[10] J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two
dimensional Nearly Anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857]
[INSPIRE].

[11] J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS2 backreaction and
holography, JHEP 07 (2016) 139 [arXiv:1606.03438] [INSPIRE].

[12] J.S. Cotler et al., Black Holes and Random Matrices, JHEP 05 (2017) 118 [Erratum ibid. 09
(2018) 002] [arXiv:1611.04650] [INSPIRE].

[13] D. Stanford and E. Witten, Fermionic Localization of the Schwarzian Theory, JHEP 10 (2017)
008 [arXiv:1703.04612] [INSPIRE].

– 56 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0550-3213(85)90448-1
https://inspirehep.net/literature/204694
https://doi.org/10.1016/0370-2693(83)90012-6
https://doi.org/10.1016/0370-2693(83)90012-6
https://inspirehep.net/literature/194389
https://doi.org/10.1007/JHEP09(2018)048
https://arxiv.org/abs/1802.09547
https://inspirehep.net/literature/1657772
https://doi.org/10.1007/JHEP05(2021)145
https://doi.org/10.1007/JHEP05(2021)145
https://arxiv.org/abs/2003.02860
https://inspirehep.net/literature/1784235
https://doi.org/10.1007/JHEP07(2021)218
https://arxiv.org/abs/2102.08060
https://inspirehep.net/literature/1846936
https://arxiv.org/abs/2209.13602
https://inspirehep.net/literature/2157964
https://doi.org/10.1007/JHEP07(2023)131
https://doi.org/10.1007/JHEP07(2023)131
https://arxiv.org/abs/2212.14356
https://inspirehep.net/literature/2619298
https://doi.org/10.1007/JHEP11(2015)014
https://doi.org/10.1007/JHEP11(2015)014
https://arxiv.org/abs/1402.6334
https://inspirehep.net/literature/1282634
https://doi.org/10.1103/PhysRevLett.117.111601
https://arxiv.org/abs/1605.06098
https://inspirehep.net/literature/1462288
https://doi.org/10.1093/ptep/ptw124
https://arxiv.org/abs/1606.01857
https://inspirehep.net/literature/1467447
https://doi.org/10.1007/JHEP07(2016)139
https://arxiv.org/abs/1606.03438
https://inspirehep.net/literature/1468666
https://doi.org/10.1007/JHEP05(2017)118
https://arxiv.org/abs/1611.04650
https://inspirehep.net/literature/1498126
https://doi.org/10.1007/JHEP10(2017)008
https://doi.org/10.1007/JHEP10(2017)008
https://arxiv.org/abs/1703.04612
https://inspirehep.net/literature/1517533


J
H
E
P
0
2
(
2
0
2
4
)
0
5
8

[14] A. Kitaev and S.J. Suh, Statistical mechanics of a two-dimensional black hole, JHEP 05 (2019)
198 [arXiv:1808.07032] [INSPIRE].

[15] T.G. Mertens, G.J. Turiaci and H.L. Verlinde, Solving the Schwarzian via the Conformal
Bootstrap, JHEP 08 (2017) 136 [arXiv:1705.08408] [INSPIRE].

[16] T.G. Mertens, The Schwarzian theory — origins, JHEP 05 (2018) 036 [arXiv:1801.09605]
[INSPIRE].

[17] H.T. Lam, T.G. Mertens, G.J. Turiaci and H. Verlinde, Shockwave S-matrix from Schwarzian
Quantum Mechanics, JHEP 11 (2018) 182 [arXiv:1804.09834] [INSPIRE].

[18] D. Harlow and D. Jafferis, The Factorization Problem in Jackiw-Teitelboim Gravity, JHEP 02
(2020) 177 [arXiv:1804.01081] [INSPIRE].

[19] Z. Yang, The Quantum Gravity Dynamics of Near Extremal Black Holes, JHEP 05 (2019) 205
[arXiv:1809.08647] [INSPIRE].

[20] A. Blommaert, T.G. Mertens and H. Verschelde, The Schwarzian Theory - A Wilson Line
Perspective, JHEP 12 (2018) 022 [arXiv:1806.07765] [INSPIRE].

[21] A. Blommaert, T.G. Mertens and H. Verschelde, Fine Structure of Jackiw-Teitelboim Quantum
Gravity, JHEP 09 (2019) 066 [arXiv:1812.00918] [INSPIRE].

[22] L.V. Iliesiu, S.S. Pufu, H. Verlinde and Y. Wang, An exact quantization of Jackiw-Teitelboim
gravity, JHEP 11 (2019) 091 [arXiv:1905.02726] [INSPIRE].

[23] P. Saad, S.H. Shenker and D. Stanford, JT gravity as a matrix integral, arXiv:1903.11115
[INSPIRE].

[24] P. Saad, Late Time Correlation Functions, Baby Universes, and ETH in JT Gravity,
arXiv:1910.10311 [INSPIRE].

[25] A. Blommaert, T.G. Mertens and H. Verschelde, Eigenbranes in Jackiw-Teitelboim gravity,
JHEP 02 (2021) 168 [arXiv:1911.11603] [INSPIRE].

[26] K. Okuyama and K. Sakai, JT gravity, KdV equations and macroscopic loop operators, JHEP
01 (2020) 156 [arXiv:1911.01659] [INSPIRE].

[27] A. Blommaert, Dissecting the ensemble in JT gravity, JHEP 09 (2022) 075
[arXiv:2006.13971] [INSPIRE].

[28] P. Saad, S.H. Shenker, D. Stanford and S. Yao, Wormholes without averaging,
arXiv:2103.16754 [INSPIRE].

[29] B. Post, J. van der Heijden and E. Verlinde, A universe field theory for JT gravity, JHEP 05
(2022) 118 [arXiv:2201.08859] [INSPIRE].

[30] A. Altland et al., Quantum chaos in 2D gravity, SciPost Phys. 15 (2023) 064
[arXiv:2204.07583] [INSPIRE].

[31] D.L. Jafferis, D.K. Kolchmeyer, B. Mukhametzhanov and J. Sonner, Jackiw-Teitelboim gravity
with matter, generalized eigenstate thermalization hypothesis, and random matrices, Phys. Rev.
D 108 (2023) 066015 [arXiv:2209.02131] [INSPIRE].

[32] A. Blommaert, L.V. Iliesiu and J. Kruthoff, Gravity factorized, JHEP 09 (2022) 080
[arXiv:2111.07863] [INSPIRE].

[33] L. Griguolo et al., Supersymmetric localization of (higher-spin) JT gravity: a bulk perspective,
JHEP 12 (2023) 124 [arXiv:2307.01274] [INSPIRE].

– 57 –

https://doi.org/10.1007/JHEP05(2019)198
https://doi.org/10.1007/JHEP05(2019)198
https://arxiv.org/abs/1808.07032
https://inspirehep.net/literature/1689177
https://doi.org/10.1007/JHEP08(2017)136
https://arxiv.org/abs/1705.08408
https://inspirehep.net/literature/1601018
https://doi.org/10.1007/JHEP05(2018)036
https://arxiv.org/abs/1801.09605
https://inspirehep.net/literature/1650953
https://doi.org/10.1007/JHEP11(2018)182
https://arxiv.org/abs/1804.09834
https://inspirehep.net/literature/1670217
https://doi.org/10.1007/JHEP02(2020)177
https://doi.org/10.1007/JHEP02(2020)177
https://arxiv.org/abs/1804.01081
https://inspirehep.net/literature/1665727
https://doi.org/10.1007/JHEP05(2019)205
https://arxiv.org/abs/1809.08647
https://inspirehep.net/literature/1695193
https://doi.org/10.1007/JHEP12(2018)022
https://arxiv.org/abs/1806.07765
https://inspirehep.net/literature/1678675
https://doi.org/10.1007/JHEP09(2019)066
https://arxiv.org/abs/1812.00918
https://inspirehep.net/literature/1706244
https://doi.org/10.1007/JHEP11(2019)091
https://arxiv.org/abs/1905.02726
https://inspirehep.net/literature/1733867
https://arxiv.org/abs/1903.11115
https://inspirehep.net/literature/1726905
https://arxiv.org/abs/1910.10311
https://inspirehep.net/literature/1760427
https://doi.org/10.1007/JHEP02(2021)168
https://arxiv.org/abs/1911.11603
https://inspirehep.net/literature/1767186
https://doi.org/10.1007/JHEP01(2020)156
https://doi.org/10.1007/JHEP01(2020)156
https://arxiv.org/abs/1911.01659
https://inspirehep.net/literature/1763142
https://doi.org/10.1007/JHEP09(2022)075
https://arxiv.org/abs/2006.13971
https://inspirehep.net/literature/1802877
https://arxiv.org/abs/2103.16754
https://inspirehep.net/literature/1854761
https://doi.org/10.1007/JHEP05(2022)118
https://doi.org/10.1007/JHEP05(2022)118
https://arxiv.org/abs/2201.08859
https://inspirehep.net/literature/2016677
https://doi.org/10.21468/SciPostPhys.15.2.064
https://arxiv.org/abs/2204.07583
https://inspirehep.net/literature/2068164
https://doi.org/10.1103/PhysRevD.108.066015
https://doi.org/10.1103/PhysRevD.108.066015
https://arxiv.org/abs/2209.02131
https://inspirehep.net/literature/2147160
https://doi.org/10.1007/JHEP09(2022)080
https://arxiv.org/abs/2111.07863
https://inspirehep.net/literature/1968909
https://doi.org/10.1007/JHEP12(2023)124
https://arxiv.org/abs/2307.01274
https://inspirehep.net/literature/2674385


J
H
E
P
0
2
(
2
0
2
4
)
0
5
8

[34] T.G. Mertens and G.J. Turiaci, Solvable models of quantum black holes: a review on
Jackiw–Teitelboim gravity, Living Rev. Rel. 26 (2023) 4 [arXiv:2210.10846] [INSPIRE].

[35] G. Penington, S.H. Shenker, D. Stanford and Z. Yang, Replica wormholes and the black hole
interior, JHEP 03 (2022) 205 [arXiv:1911.11977] [INSPIRE].

[36] A. Almheiri et al., Replica Wormholes and the Entropy of Hawking Radiation, JHEP 05 (2020)
013 [arXiv:1911.12333] [INSPIRE].

[37] I. Kourkoulou and J. Maldacena, Pure states in the SYK model and nearly-AdS2 gravity,
arXiv:1707.02325 [INSPIRE].

[38] P. Gao, D.L. Jafferis and D.K. Kolchmeyer, An effective matrix model for dynamical end of the
world branes in Jackiw-Teitelboim gravity, JHEP 01 (2022) 038 [arXiv:2104.01184] [INSPIRE].

[39] U. Moitra, S.K. Sake and S.P. Trivedi, Jackiw-Teitelboim gravity in the second order formalism,
JHEP 10 (2021) 204 [arXiv:2101.00596] [INSPIRE].

[40] T.G. Mertens and G.J. Turiaci, Liouville quantum gravity – holography, JT and matrices,
JHEP 01 (2021) 073 [arXiv:2006.07072] [INSPIRE].

[41] Y. Fan and T.G. Mertens, From quantum groups to Liouville and dilaton quantum gravity,
JHEP 05 (2022) 092 [arXiv:2109.07770] [INSPIRE].

[42] A. Goel, L.V. Iliesiu, J. Kruthoff and Z. Yang, Classifying boundary conditions in JT gravity:
from energy-branes to α-branes, JHEP 04 (2021) 069 [arXiv:2010.12592] [INSPIRE].

[43] K. Suzuki and T. Takayanagi, JT gravity limit of Liouville CFT and matrix model, JHEP 11
(2021) 137 [arXiv:2108.12096] [INSPIRE].

[44] S. Collier, L. Eberhardt, B. Mühlmann and V.A. Rodriguez, The Virasoro Minimal String,
arXiv:2309.10846 [INSPIRE].

[45] A. Blommaert, T.G. Mertens and S. Yao, The q-Schwarzian and Liouville gravity,
arXiv:2312.00871 [INSPIRE].

[46] F. Gliozzi, J. Scherk and D.I. Olive, Supersymmetry, Supergravity Theories and the Dual Spinor
Model, Nucl. Phys. B 122 (1977) 253 [INSPIRE].

[47] A.H. Chamseddine, Superstrings in arbitrary dimensions, Phys. Lett. B 258 (1991) 97
[INSPIRE].

[48] M. Astorino, S. Cacciatori, D. Klemm and D. Zanon, AdS(2) supergravity and superconformal
quantum mechanics, Annals Phys. 304 (2003) 128 [hep-th/0212096] [INSPIRE].

[49] S. Forste and I. Golla, Nearly AdS2 sugra and the super-Schwarzian, Phys. Lett. B 771 (2017)
157 [arXiv:1703.10969] [INSPIRE].

[50] S. Förste, J. Kames-King and M. Wiesner, Towards the Holographic Dual of N = 2 SYK, JHEP
03 (2018) 028 [arXiv:1712.07398] [INSPIRE].

[51] R. Campos Delgado and S. Forste, Lyapunov exponents in N = 2 supersymmetric
Jackiw-Teitelboim gravity, Phys. Lett. B 835 (2022) 137550 [arXiv:2209.15456] [INSPIRE].

[52] Y. Fan and T.G. Mertens, Supergroup structure of Jackiw-Teitelboim supergravity, JHEP 08
(2022) 002 [arXiv:2106.09353] [INSPIRE].

[53] D. Stanford and E. Witten, JT gravity and the ensembles of random matrix theory, Adv. Theor.
Math. Phys. 24 (2020) 1475 [arXiv:1907.03363] [INSPIRE].

[54] H.W. Lin, J. Maldacena, L. Rozenberg and J. Shan, Looking at supersymmetric black holes for
a very long time, SciPost Phys. 14 (2023) 128 [arXiv:2207.00408] [INSPIRE].

– 58 –

https://doi.org/10.1007/s41114-023-00046-1
https://arxiv.org/abs/2210.10846
https://inspirehep.net/literature/2168044
https://doi.org/10.1007/JHEP03(2022)205
https://arxiv.org/abs/1911.11977
https://inspirehep.net/literature/1767458
https://doi.org/10.1007/JHEP05(2020)013
https://doi.org/10.1007/JHEP05(2020)013
https://arxiv.org/abs/1911.12333
https://inspirehep.net/literature/1767472
https://arxiv.org/abs/1707.02325
https://inspirehep.net/literature/1609281
https://doi.org/10.1007/JHEP01(2022)038
https://arxiv.org/abs/2104.01184
https://inspirehep.net/literature/1856098
https://doi.org/10.1007/JHEP10(2021)204
https://arxiv.org/abs/2101.00596
https://inspirehep.net/literature/1839251
https://doi.org/10.1007/JHEP01(2021)073
https://arxiv.org/abs/2006.07072
https://inspirehep.net/literature/1800963
https://doi.org/10.1007/JHEP05(2022)092
https://arxiv.org/abs/2109.07770
https://inspirehep.net/literature/1922760
https://doi.org/10.1007/JHEP04(2021)069
https://arxiv.org/abs/2010.12592
https://inspirehep.net/literature/1826225
https://doi.org/10.1007/JHEP11(2021)137
https://doi.org/10.1007/JHEP11(2021)137
https://arxiv.org/abs/2108.12096
https://inspirehep.net/literature/1912924
https://arxiv.org/abs/2309.10846
https://inspirehep.net/literature/2700403
https://arxiv.org/abs/2312.00871
https://inspirehep.net/literature/2729895
https://doi.org/10.1016/0550-3213(77)90206-1
https://inspirehep.net/literature/111434
https://doi.org/10.1016/0370-2693(91)91215-H
https://inspirehep.net/literature/313961
https://doi.org/10.1016/S0003-4916(03)00008-3
https://arxiv.org/abs/hep-th/0212096
https://inspirehep.net/literature/604240
https://doi.org/10.1016/j.physletb.2017.05.039
https://doi.org/10.1016/j.physletb.2017.05.039
https://arxiv.org/abs/1703.10969
https://inspirehep.net/literature/1520898
https://doi.org/10.1007/JHEP03(2018)028
https://doi.org/10.1007/JHEP03(2018)028
https://arxiv.org/abs/1712.07398
https://inspirehep.net/literature/1644420
https://doi.org/10.1016/j.physletb.2022.137550
https://arxiv.org/abs/2209.15456
https://inspirehep.net/literature/2159006
https://doi.org/10.1007/JHEP08(2022)002
https://doi.org/10.1007/JHEP08(2022)002
https://arxiv.org/abs/2106.09353
https://inspirehep.net/literature/1869075
https://doi.org/10.4310/ATMP.2020.v24.n6.a4
https://doi.org/10.4310/ATMP.2020.v24.n6.a4
https://arxiv.org/abs/1907.03363
https://inspirehep.net/literature/1742818
https://doi.org/10.21468/SciPostPhys.14.5.128
https://arxiv.org/abs/2207.00408
https://inspirehep.net/literature/2104755


J
H
E
P
0
2
(
2
0
2
4
)
0
5
8

[55] G.J. Turiaci and E. Witten, N = 2 JT supergravity and matrix models, JHEP 12 (2023) 003
[arXiv:2305.19438] [INSPIRE].

[56] J. Boruch, L.V. Iliesiu and C. Yan, Constructing all BPS black hole microstates from the
gravitational path integral, arXiv:2307.13051 [INSPIRE].

[57] C.V. Johnson, Nonperturbative Jackiw-Teitelboim gravity, Phys. Rev. D 101 (2020) 106023
[arXiv:1912.03637] [INSPIRE].

[58] C.V. Johnson, Jackiw-Teitelboim supergravity, minimal strings, and matrix models, Phys. Rev.
D 103 (2021) 046012 [arXiv:2005.01893] [INSPIRE].

[59] C.V. Johnson, A Non-Perturbative Random Matrix Model of N = 2 JT Supergravity,
arXiv:2306.10139 [INSPIRE].

[60] T. Fukuyama and K. Kamimura, Gauge Theory of Two-dimensional Gravity, Phys. Lett. B 160
(1985) 259 [INSPIRE].

[61] K. Isler and C.A. Trugenberger, A Gauge Theory of Two-dimensional Quantum Gravity, Phys.
Rev. Lett. 63 (1989) 834 [INSPIRE].

[62] A.H. Chamseddine and D. Wyler, Gauge Theory of Topological Gravity in (1+1)-Dimensions,
Phys. Lett. B 228 (1989) 75 [INSPIRE].

[63] A. Blommaert and M. Usatyuk, Microstructure in matrix elements, JHEP 09 (2022) 070
[arXiv:2108.02210] [INSPIRE].

[64] M. Ammon, A. Castro and N. Iqbal, Wilson Lines and Entanglement Entropy in Higher Spin
Gravity, JHEP 10 (2013) 110 [arXiv:1306.4338] [INSPIRE].

[65] A. Castro, N. Iqbal and E. Llabrés, Wilson lines and Ishibashi states in AdS3/CFT2, JHEP 09
(2018) 066 [arXiv:1805.05398] [INSPIRE].

[66] T.G. Mertens and G.J. Turiaci, Defects in Jackiw-Teitelboim Quantum Gravity, JHEP 08
(2019) 127 [arXiv:1904.05228] [INSPIRE].

[67] N.Y. Vilenkin and A.U. Klimyk, Representation of Lie groups and Special Functions: Volume 1,
Kluwer Academic Publishers (1991).

[68] P.S. Howe, Super Weyl Transformations in Two-Dimensions, J. Phys. A 12 (1979) 393
[INSPIRE].

[69] G.W. Moore and N. Seiberg, Taming the Conformal Zoo, Phys. Lett. B 220 (1989) 422
[INSPIRE].

[70] C. Beasley, Localization for Wilson Loops in Chern-Simons Theory, Adv. Theor. Math. Phys.
17 (2013) 1 [arXiv:0911.2687] [INSPIRE].

[71] Y. Fan, Localization and Non-Renormalization in Chern-Simons Theory, JHEP 01 (2019) 065
[arXiv:1805.11076] [INSPIRE].

[72] I.B. Penkov, An introduction to geometric representation theory for complex simple Lie
superalgebras, in the proceedings of the XIII International Conference on Differential Geometric
Methods in Theoretical Physics, Shumen, Bulgaria, August 20–25 (1984).

[73] V. Mikhaylov and E. Witten, Branes And Supergroups, Commun. Math. Phys. 340 (2015) 699
[arXiv:1410.1175] [INSPIRE].

[74] J. Gomis and J. Roca, Superfield description of N = 2 topological supergravity, Phys. Lett. B
268 (1991) 197 [INSPIRE].

– 59 –

https://doi.org/10.1007/JHEP12(2023)003
https://arxiv.org/abs/2305.19438
https://inspirehep.net/literature/2664145
https://arxiv.org/abs/2307.13051
https://inspirehep.net/literature/2680369
https://doi.org/10.1103/PhysRevD.101.106023
https://arxiv.org/abs/1912.03637
https://inspirehep.net/literature/1769218
https://doi.org/10.1103/PhysRevD.103.046012
https://doi.org/10.1103/PhysRevD.103.046012
https://arxiv.org/abs/2005.01893
https://inspirehep.net/literature/1794367
https://arxiv.org/abs/2306.10139
https://inspirehep.net/literature/2669873
https://doi.org/10.1016/0370-2693(85)91322-X
https://doi.org/10.1016/0370-2693(85)91322-X
https://inspirehep.net/literature/16530
https://doi.org/10.1103/PhysRevLett.63.834
https://doi.org/10.1103/PhysRevLett.63.834
https://inspirehep.net/literature/278068
https://doi.org/10.1016/0370-2693(89)90528-5
https://inspirehep.net/literature/26049
https://doi.org/10.1007/JHEP09(2022)070
https://arxiv.org/abs/2108.02210
https://inspirehep.net/literature/1899947
https://doi.org/10.1007/JHEP10(2013)110
https://arxiv.org/abs/1306.4338
https://inspirehep.net/literature/1239141
https://doi.org/10.1007/JHEP09(2018)066
https://doi.org/10.1007/JHEP09(2018)066
https://arxiv.org/abs/1805.05398
https://inspirehep.net/literature/1673203
https://doi.org/10.1007/JHEP08(2019)127
https://doi.org/10.1007/JHEP08(2019)127
https://arxiv.org/abs/1904.05228
https://inspirehep.net/literature/1729140
https://doi.org/10.1088/0305-4470/12/3/015
https://inspirehep.net/literature/6669
https://doi.org/10.1016/0370-2693(89)90897-6
https://inspirehep.net/literature/276583
https://doi.org/10.4310/ATMP.2013.v17.n1.a1
https://doi.org/10.4310/ATMP.2013.v17.n1.a1
https://arxiv.org/abs/0911.2687
https://inspirehep.net/literature/836908
https://doi.org/10.1007/JHEP01(2019)065
https://arxiv.org/abs/1805.11076
https://inspirehep.net/literature/1675108
https://doi.org/10.1007/s00220-015-2449-y
https://arxiv.org/abs/1410.1175
https://inspirehep.net/literature/1320592
https://doi.org/10.1016/0370-2693(91)90803-X
https://doi.org/10.1016/0370-2693(91)90803-X
https://inspirehep.net/literature/317169


J
H
E
P
0
2
(
2
0
2
4
)
0
5
8

[75] W. Merbis, T. Neogi and A. Ranjbar, Asymptotic dynamics of three dimensional supergravity
and higher spin gravity revisited, JHEP 06 (2023) 121 [arXiv:2304.06761] [INSPIRE].

[76] P.C. West, Introduction to supersymmetry and supergravity, World Scientific (1990).

[77] K. Okuyama, End of the world brane in double scaled SYK, JHEP 08 (2023) 053
[arXiv:2305.12674] [INSPIRE].

[78] M. Berkooz, M. Isachenkov, V. Narovlansky and G. Torrents, Towards a full solution of the
large N double-scaled SYK model, JHEP 03 (2019) 079 [arXiv:1811.02584] [INSPIRE].

[79] M. Berkooz et al., Quantum groups, non-commutative AdS2, and chords in the double-scaled
SYK model, JHEP 08 (2023) 076 [arXiv:2212.13668] [INSPIRE].

[80] A. Blommaert, T.G. Mertens and S. Yao, Dynamical actions and q-representation theory for
double-scaled SYK, arXiv:2306.00941 [INSPIRE].

[81] H.W. Lin, The bulk Hilbert space of double scaled SYK, JHEP 11 (2022) 060
[arXiv:2208.07032] [INSPIRE].

[82] A. Goel, V. Narovlansky and H. Verlinde, Semiclassical geometry in double-scaled SYK, JHEP
11 (2023) 093 [arXiv:2301.05732] [INSPIRE].

[83] H.W. Lin and D. Stanford, A symmetry algebra in double-scaled SYK, SciPost Phys. 15 (2023)
234 [arXiv:2307.15725] [INSPIRE].

[84] T.G. Mertens, Quantum exponentials for the modular double and applications in gravity models,
JHEP 09 (2023) 106 [arXiv:2212.07696] [INSPIRE].

[85] B. Ponsot and J. Teschner, Liouville bootstrap via harmonic analysis on a noncompact quantum
group, hep-th/9911110 [INSPIRE].

[86] J. Teschner, Liouville theory revisited, Class. Quant. Grav. 18 (2001) R153 [hep-th/0104158]
[INSPIRE].

[87] J. Teschner and G.S. Vartanov, Supersymmetric gauge theories, quantization of Mflat, and
conformal field theory, Adv. Theor. Math. Phys. 19 (2015) 1 [arXiv:1302.3778] [INSPIRE].

[88] V. Balasubramanian, A. Kar, S.F. Ross and T. Ugajin, Spin structures and baby universes,
JHEP 09 (2020) 192 [arXiv:2007.04333] [INSPIRE].

[89] S. Matsumoto, S. Uehara and Y. Yasui, A Superparticle on the Superriemann Surface, J. Math.
Phys. 31 (1990) 476 [INSPIRE].

[90] L. Frappat, P. Sorba and A. Sciarrino, Dictionary on Lie superalgebras, hep-th/9607161
[INSPIRE].

[91] M. Scheunert, W. Nahm and V. Rittenberg, Irreducible Representations of the OSP(2,1) and
SPL(2,1) Graded Lie Algebras, J. Math. Phys. 18 (1977) 155 [INSPIRE].

[92] G. Gotz, T. Quella and V. Schomerus, Representation theory of sl(2|1), J. Algebra 312 (2007)
829 [hep-th/0504234] [INSPIRE].

[93] I. M. Gel’fand and M. A. Naimark, Unitary representations of the classical groups, Acad. Sci.
USSR (1950).

[94] A. Knapp and P. Trapa, Representation theory of lie groups, IAS/Park City Mathematics Series
(2000) pp. 5–87, DOI:10.1090/pcms/008/02.

[95] A. Jeffrey and D. Vogan, Representation Theory of Lie Groups, IAS/Park City Mathematics
Series 8 (2000), https://bookstore.ams.org/pcms-8.

– 60 –

https://doi.org/10.1007/JHEP06(2023)121
https://arxiv.org/abs/2304.06761
https://inspirehep.net/literature/2651447
https://doi.org/10.1007/JHEP08(2023)053
https://arxiv.org/abs/2305.12674
https://inspirehep.net/literature/2661563
https://doi.org/10.1007/JHEP03(2019)079
https://arxiv.org/abs/1811.02584
https://inspirehep.net/literature/1702434
https://doi.org/10.1007/JHEP08(2023)076
https://arxiv.org/abs/2212.13668
https://inspirehep.net/literature/2618661
https://arxiv.org/abs/2306.00941
https://inspirehep.net/literature/2664636
https://doi.org/10.1007/JHEP11(2022)060
https://arxiv.org/abs/2208.07032
https://inspirehep.net/literature/2136037
https://doi.org/10.1007/JHEP11(2023)093
https://doi.org/10.1007/JHEP11(2023)093
https://arxiv.org/abs/2301.05732
https://inspirehep.net/literature/2623828
https://doi.org/10.21468/SciPostPhys.15.6.234
https://doi.org/10.21468/SciPostPhys.15.6.234
https://arxiv.org/abs/2307.15725
https://inspirehep.net/literature/2683637
https://doi.org/10.1007/JHEP09(2023)106
https://arxiv.org/abs/2212.07696
https://inspirehep.net/literature/2614886
https://arxiv.org/abs/hep-th/9911110
https://inspirehep.net/literature/510158
https://doi.org/10.1088/0264-9381/18/23/201
https://arxiv.org/abs/hep-th/0104158
https://inspirehep.net/literature/555600
https://doi.org/10.4310/ATMP.2015.v19.n1.a1
https://arxiv.org/abs/1302.3778
https://inspirehep.net/literature/1219824
https://doi.org/10.1007/JHEP09(2020)192
https://arxiv.org/abs/2007.04333
https://inspirehep.net/literature/1806023
https://doi.org/10.1063/1.528882
https://doi.org/10.1063/1.528882
https://inspirehep.net/literature/278389
https://arxiv.org/abs/hep-th/9607161
https://inspirehep.net/literature/420927
https://doi.org/10.1063/1.523149
https://inspirehep.net/literature/109602
https://doi.org/10.1016/j.jalgebra.2007.03.012
https://doi.org/10.1016/j.jalgebra.2007.03.012
https://arxiv.org/abs/hep-th/0504234
https://inspirehep.net/literature/681687
https://doi.org/10.1090/pcms/008/02
https://bookstore.ams.org/pcms-8


J
H
E
P
0
2
(
2
0
2
4
)
0
5
8

[96] C. Ahn, M. Stanishkov and M. Yamamoto, One point functions of N = 2 superLiouville theory
with boundary, Nucl. Phys. B 683 (2004) 177 [hep-th/0311169] [INSPIRE].

[97] W. Fu, D. Gaiotto, J. Maldacena and S. Sachdev, Supersymmetric Sachdev-Ye-Kitaev models,
Phys. Rev. D 95 (2017) 026009 [Addendum ibid. 95 (2017) 069904] [arXiv:1610.08917]
[INSPIRE].

[98] G. Gotz, T. Quella and V. Schomerus, Tensor products of psl(2|2) representations,
hep-th/0506072 [INSPIRE].

[99] G. Gotz, T. Quella and V. Schomerus, The WZNW model on PSU(1,1|2), JHEP 03 (2007) 003
[hep-th/0610070] [INSPIRE].

[100] M. Heydeman, L.V. Iliesiu, G.J. Turiaci and W. Zhao, The statistical mechanics of near-BPS
black holes, J. Phys. A 55 (2022) 014004 [arXiv:2011.01953] [INSPIRE].

[101] L.V. Iliesiu, M. Kologlu and G.J. Turiaci, Supersymmetric indices factorize, JHEP 05 (2023)
032 [arXiv:2107.09062] [INSPIRE].

[102] T. Eguchi and A. Taormina, On the Unitary Representations of N = 2 and N = 4
Superconformal Algebras, Phys. Lett. B 210 (1988) 125 [INSPIRE].

[103] S. Aoyama and Y. Honda, Spin-chain with PSU(2|2)⊗U(1)3 and Non-linear Σ-model with
D(2,1;γ), Phys. Lett. B 743 (2015) 531 [arXiv:1502.03684] [INSPIRE].

[104] J. Van Der Jeugt, Irreducible representations of the exceptional lie superalgebras D(2, 1;α), J.
Math. Phys. 26 (1985) 913 [INSPIRE].

– 61 –

https://doi.org/10.1016/j.nuclphysb.2004.02.007
https://arxiv.org/abs/hep-th/0311169
https://inspirehep.net/literature/633623
https://doi.org/10.1103/PhysRevD.95.026009
https://arxiv.org/abs/1610.08917
https://inspirehep.net/literature/1494854
https://arxiv.org/abs/hep-th/0506072
https://inspirehep.net/literature/684501
https://doi.org/10.1088/1126-6708/2007/03/003
https://arxiv.org/abs/hep-th/0610070
https://inspirehep.net/literature/728083
https://doi.org/10.1088/1751-8121/ac3be9
https://arxiv.org/abs/2011.01953
https://inspirehep.net/literature/1828227
https://doi.org/10.1007/JHEP05(2023)032
https://doi.org/10.1007/JHEP05(2023)032
https://arxiv.org/abs/2107.09062
https://inspirehep.net/literature/1888750
https://doi.org/10.1016/0370-2693(88)90360-7
https://inspirehep.net/literature/262619
https://doi.org/10.1016/j.physletb.2015.03.006
https://arxiv.org/abs/1502.03684
https://inspirehep.net/literature/1344232
https://doi.org/10.1063/1.526547
https://doi.org/10.1063/1.526547
https://inspirehep.net/literature/217324

	Introduction
	EOW brane amplitudes in bosonic JT gravity
	Geodesic description of EOW branes
	Wilson loops as probe particles
	Gravitational amplitudes involving EOW branes

	EOW brane amplitudes in N=1 JT supergravity
	EOW branes in superspace
	Wilson loops as probe particles in superspace
	Wilson loops as probe particles: rank-1 groups
	Supergravitational amplitudes involving EOW branes

	EOW brane amplitudes in N=2 JT supergravity
	EOW branes in superspace
	Wilson loops as probe particles: higher rank groups
	Class-1 EOW branes
	Class-2 EOW branes


	Towards EOW brane amplitudes in N=4 JT supergravity
	Concluding remarks
	Immediate extensions
	Gravity and the positive semi-group
	Gas of branes and better UV behavior?

	Superspace differential geometry conventions
	Conventions
	Geodesic equations in superspace

	Osp(2|2,R) representation theory
	Osp(2|2,R) supergroup and Lie superalgebra
	Euler angle decompositions
	AdS(2|4) and H(2|4) space as supercosets
	Finite-dimensional representations
	Highest and lowest weight representations
	Principal series representations
	Parabolic induction
	Unitarity
	Infinitesimal level: Lie superalgebra
	Discrete representations: monomial realization
	Principal series character

	Alternative SU(1, 1|1) perspective on N=2 character
	Other component of OSp(2|2,R)

	Supergravity and the BF formulation
	Some representation theory of PSU(1, 1|2)
	Check via super-Virasoro modular S-matrix
	Higher rank Casimir

	Perturbative analysis

