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1 Introduction

Whatever the role of supersymmetry in the phenomenological description of the world at

accessible energies there is no doubt that supersymmetric quantum field theories in various

dimensions have enhanced our understanding of quantum field theories more generally. This

is especially true non perturbatively where the duality between different theories was first

developed and the existence of conformal fixed points in three and higher dimensions is



much better understood. However there are also constraints at the perturbative level where
supersymmetric non-renormalisation theorems have implications for more general S-functions
and related quantities when they are reduced to the supersymmetric case.

In this paper we explore these, and other, constraints for general scalar fermion theories in
four space-time dimensions at up to three loops. For pure scalar theories, this is hardly state
of the art as general three loop results have been known for more than 30 years [1], and higher
orders are available [2-5]. Nevertheless, the corresponding expressions for general scalar
fermion theories, allowing for arbitrary Yukawa couplings, have only been obtained quite
recently [6-8]. While field anomalous dimensions and Yukawa [S-functions were obtained,
these depended on results already found for a variety of special cases. The general (-
and y-functions are expressed in terms of contractions of generalised coupling tensors with
each term corresponding to a specific allowed Feynman diagram at each loop order. The
associated results for the quartic scalar g-function at three loops have not previously been
fully determined [6]. Closing this gap would also represent a stepping stone towards complete
three-loop renormalisation group equations of any renormalisable QFT, which is now feasible
after recent advances in general four-loop gauge and three-loop Yukawa results [7-9]. Without
gauge interactions, each term corresponds to a one particle irreducible (1PI) diagram, whose
numbers increase rapidly with each loop order. With the quartic scalar coupling in standard
regularisation schemes all one vertex reducible diagrams (or snail diagrams) can be omitted so
that the necessary diagrams are one vertex irreducible (1VI). The unknown coefficients may
be partially fixed with direct calculations, e.g. [10-16] in our case. However, their number
can be greatly reduced and literature results cross-checked by applying constraints arising
from special cases such as supersymmetry, which is the exercise undertaken here. We are
then able to fully determine the three loop beta function for the quartic scalar couplings
in general scalar fermion theories.

To carry out our analysis for general four-dimensional renormalisable scalar fermion
theories, it is natural to consider a basis with n, real scalars ¢* and essentially n; pseudo-real
Majorana fermions 1) where the couplings are just a symmetric 4 index real tensor \®b¢d
and a Yukawa coupling y* which is a symmetric ny x ny real matrix in the non spinorial
fermion indices (which are here suppressed) [6, 9]. The discussion in subsequent sections then
concerns the beta functions 5y*¢?, By as well as associated anomalous dimensions 'y¢ab, and
vy- These quantities completely determine S-functions when superrenormalisable couplings,
corresponding to operators with dimension three or less, are introduced, if background field
methods are used and 3,**°¢ is extended to By (o) for an arbitrary quartic scalar potential
V. Equivalently by applying the so called dummy field technique [17-19]. The results here
encompass those for Dirac fermions, the corresponding reduction is described later.

For each fermion loop graph which leads to a trace over products of the Yukawa coupling
matrices y® then with our conventions the numerical coefficient for each such trace for a
four-dimensional four-component Majorana spinor ¥ should have an additional factor 2
times the results quoted here. Such four-dimensional Majorana spinors reduce in three
dimensions to two two-component real spinors which belong to inequivalent representations
of the three-dimensional Dirac algebra.

General theories of course can be restricted by imposing symmetries. With complex
fields, ns even, then we may take y* — (y¢, ;) with %%, 7; not necessarily square matrices but
related by hermitian conjugation. Imposing a U(1) symmetry where both scalar and fermion
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fields carry a charge, so that all lines in any diagram are directed, the number of diagrams is
significantly reduced (for the three loop 1PI Yukawa vertex diagrams from 52 to 12) [20].

As a special case the U(1) symmetric theory encompasses the Wess-Zumino theory
with A/ = 1 supersymmetry and four supercharges [21]. In a superspace formalism, for
the renormalisable theory, there are complex chiral superfields ®;, ®*, with an overall U(1)
symmetry and the general couplings are given by a symmetric 3 index tensor Y% and its
conjugate l?ijk, which determine the scalar quartic couplings. There are then very strong
non-renormalisation theorems [22, 23] which ensure that the j3-functions By “*, By ijk are
determined just in terms of the anomalous dimensions g, . Moreover, dedicated literature
for such supersymmetric QFT’s is available to high orders [24-29]. This yields conditions on
the S-functions and anomalous dimensions for an arbitrary scalar fermion theory but these
do not significantly reduce the number of independent terms [6].

In three dimensions there are scalar-fermion theories with just two supercharges [30].
In a superfield formalism the theory is described in terms of a real superfield &% and for
current interest there are just real cubic couplings given by the symmetric three index tensor
Y%, Such theories can emerge at fixed points under RG flow [31-34] and may be relevant
for fixed point exponents in some condensed matter systems. For a single scalar field and a
Zo symmetry this is a supersymmetric version of the 3d Ising model. For several scalar fields
then extending the theory away from three dimensions it is possible to set up an epsilon
expansion determining potential fixed points and their associated critical exponents [35].
The 3d supersymmetric Ising model has been explored using the bootstrap [36—-40], with
extensions to several fields in [39]. Of course extending supersymmetric theories away from
their natural integer dimension, even just in a perturbative expansion, is potentially fraught
with problems. Various Ward identities necessary for supersymmetry are no longer valid.
These relate contributions with different numbers of fermion loops and depend on Fierz
identities. However these problems do not arise at low loop order, up to three loops in our
case. A discussion of the four dimensional N' = 1 supersymmetry algebra extended away from
four dimensions using a form of dimensional reduction was given in [41]. The minimal three
dimensional supersymmetric scalar-fermion theory would define an apparent four dimensional
theory with N = % supersymmetry.! These theories of course do not exist as well defined
Lorentz invariant unitary theories though there exists the possibility of considering such
a theory away from three dimensions where the full d-dimensional Lorentz symmetry is
broken. Dimensional regularisation breaks supersymmetry but for A/ = 1 theories such
anomalous contributions breaking supersymmetric Ward identities should be removable by
an appropriate redefinition of the couplings, or essentially a change of scheme. At one, two
or three loops it is sufficient just to ensure that fermion traces are appropriately normalised.
We defer further discussion to the conclusion.

In section 8 we make use of the three loop results to discuss possible fixed points in
the e-expansion for fermion scalar theories. We consider generalisations of the Gross-Neveu,
Nambu Jona-Lasinio and Heisenberg theories which have ns = 1,2, 3 scalar fields and have
O(ns) symmetry. For ng > 4 there are theories with reduced H C O(ny) symmetry which
have two scalar couplings and one Yukawa coupling. For a consistent RG flow with the

!This is different from the N = % supersymmetry discussed in [42, 43] which involve non anti-commuting

@’s or §'s. The renormalisation of these theories was considered in [44-50].
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reduced set of couplings it is necessary to impose completeness relations on the matrices
defining the Yukawa couplings. For square matrices we identify six different examples where
these are satisfied. In each case the numbers of fermions ny can be arbitrarily large. For
vanishing Yukawa coupling these theories generally have just the O(ns) and Gaussian fixed
points though one example is equivalent to the scalar theory with hypertetrahedral symmetry
where there are two further fixed points with S, 411 X Za symmetry. Assuming just lowest
order S-functions the Yukawa g-function does not contain the scalar couplings and is easily
solved. For the scalar couplings there are then relations between the fixed points for small
and large ny. A similar pattern emerges in each example. Even if there are four fixed points
when ny = 0 these reduce to two except for very tiny or very large ny. Generally there
are two fixed points for low and large ny and for intermediate ns either 0 or 4. These do
not necessarily lead to scalar potentials which are bounded below, the Gaussian fixed point
becomes unstable when ny > 0, but there is a stable potential for large ns related to the
Gaussian fixed point as ny — 0. We also consider an example where the Yukawa matrices
are not square, corresponding to chiral fermions, and where there is a U(r) x U(s) symmetry
and ng = rs. The purely scalar theory may have four fixed points for suitable r, s but with
a non zero Yukawa coupling there is a similar pattern.

Further constraints relating the coefficients for the contributions of various diagrams to
B-functions and anomalous dimensions can be obtained from applying a perturbative version
of the a-theorem [1, 9, 20, 51, 52]. In general this relates certain combinations of § and
~-function coefficients at a particular loop order to lower order contributions. In the present
context this provides relations for the coefficients of the three loop Yukawa S-function and
also 74 and 7y,. Such conditions were analysed at length by Poole and Thomsen [9], including
also gauge couplings. We present their results here without any explicit evaluation of lower
order one and two loop contributions so that the structure of the conditions is more apparent.
We also consider the restriction to U(1) symmetry where results are more tractable.

The outline of the paper is as follows: In the next four sections we list the diagrams for
the scalar and fermion anomalous dimensions and the Yukawa and quartic scalar S-functions
for the general scalar fermion theory at up to three loops. We also give the values for
the corresponding coefficients, 143 at three loops, which are all consistent with the various
relations obtained later. Of course at one and two loops results have been known for a long
time, we list the coefficients diagram by diagram. Our conventions match those in [9] and
our numerical results at one and two loops agree precisely once they are multiplied by the
required factor to ensure overall symmetry. Similarly the three loop results for the Yukawa
p-function and also the anomalous dimensions agree exactly with [8]. In the case of the
quartic scalar g-function the relations obtained here are used to provide complete results
for all terms appearing in the general expansion. For simplicity the Yukawa couplings are
rescaled by 47 and the scalar quartic couplings by 1672. These coefficients all correspond to
what would be obtained in a MS scheme although no explicit calculation is undertaken here.

The results are simplified in section 6 where a U(1) symmetry is imposed which signif-
icantly reduces the number of terms present in the expansions of the general g-functions
and anomalous dimensions. The U(1) restriction contains as a special case N’ = 1 super-
symmetry and the various necessary linear constraints are derived in section 7. We there



Figure 1. One and two loop diagrams giving contributions to the scalar field anomalous dimensions,
containing Yukawa and quartic scalar couplings. Fermion lines are solid, scalar lines are dashed.

also consider also the example of what is here termed N = % supersymmetry where there
are a significant number of linear constraints which are all satisfied by the explicit results
listed earlier in sections 2, 3, 4, 5.

Besides supersymmetry conditions there are also relations for the various coefficients
derived from the existence of a perturbative a-function. We list the conditions for the general
scalar-fermion theory which are all derived from [9]. For the two loop anomalous dimensions
and the Yukawa [-function there are 4 relations whereas at three loops there are 42. At
three loops it is necessary to also allow for 5 possible antisymmetric contributions to the
anomalous dimensions and 4 relations for these are obtained.

Section 8 contains our discussion of scalar fermion fixed points. For multiple scalars we
show there are theories which can be restricted to a single Yukawa coupling and two quartic
scalar couplings. As special cases these include the well known renormalisable Gross-Neveu
and Nambu Jona-Lasinio theories.

In general results for individual coeflicients corresponding to particular diagrams are
scheme dependent. In section 10 scheme variations which preserve the structure in terms
of contributions from 1PI diagrams are considered. Coefficients corresponding to primitive
diagrams, which have no subdivergences, are individually invariant but this of course not
true in general. We demonstrate how scheme invariants can be formed and applied in detail
to the three loop Yukawa [S-function. These can be linear or higher order in the coefficients.
The scheme invariance of the a-function relations is also verified.

Some further details are considered in various appendices. Appendix A describes a
basis for Majorana fermions relevant for reduction to three dimensions and their possible
extensions away from d = 3 with broken Lorentz invariance. In appendix B we outline some
tensorial calculations relevant for the fixed point discussion. Some figures elucidating how the
fixed points in scalar fermion theories vary with differing numbers of fermions are given in
appendix C. In appendix D we describe the derivation of the a-function relations at two and
three loops after restricting to U(1) symmetry, there is then one relation at two loops and 12
at three. Finally in appendix E we discuss some general features of scheme changes which
preserve the perturbative structure in terms of contributions corresponding to 1PI diagrams.

2 Scalar anomalous dimension

The one and two loop 1PI and 1VI diagrams relevant for ’y¢“b = 'y¢ba are just shown in figure 1,
while at three loops are shown in figure 2.
The corresponding expansions are then

1)ab
,.Yé )a = Y41 tr(yab) ,
7(;2)111) = Y424 )\acdeAbcde + Vb2b tr(yabCC) + Vp2c tr(yach) 7
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3a 3b 3c 3d 3e
3f 3g 3h 3
37 3k 3l 3m

Figure 2. Three loop diagrams giving contributions to the scalar field anomalous dimensions,
containing Yukawa and quartic scalar couplings.

7é3)ab = Y30 acde ydefg y\befg Vo3 \acde y bedf tr(y° f) + o5 S \acde tr(ybcde)
+ Yoz tr(y ™) tr(y°) + vpse tr(y ) tr(y°?) + vpsp tr(y et
+ Yp3g tr(y") + Yp3n tr(y + Vo3 tr(y
+ Yok tr(y + Yoa1 tr(y ) + vpzm tr(y

accbdd) abcdcd) ( yacbcdd)

+ Y435 Satr

acdbdc) , (2 ) 1)

acdbcd)

employing the abbreviation y®°® = y%Pycy? ... and where Sy denotes the sum over two

terms necessary to ensure symmetry for a <> b so that fygb = fyg“ for the three loop expressions.
The normalisations of the traces correspond to the fermions having two components, as

would be appropriate in three dimensions. For four dimensional Majorana fermions y, —

(y(;l yz) so that

(Y™ Y™ - y") Vgjorana = (1 (=1)7) tr(y™ 7). (2.2)

The coefficients for the trace corresponding to a fermion loop then has an additional factor
two and there are only an even number of Yukawa couplings on any loop.

With this notation the results of calculation for the individual coefficients in the general
fermion scalar theory are [6-8, 53]

%;51:%, ’Y¢2a:%v 7¢2b:—%7 7¢2c=—%,

%3@:—%, V¢3b:—%, ’7¢3c=§, Vo34 = 1, ’Y¢>3e=1%,
’Y¢3f:—1%a ’Y¢3g:%a 7¢3h:3%, Yo3i = %,

V635 = 15 » Vosk = 55 Vo3 = =%, Yesm = 3G — 1. (2.3)



Figure 3. One and two loop diagrams giving contributions to the fermion field anomalous dimensions,
containing Yukawa and quartic scalar couplings.

At three loop order there is the further possibility of 1PI antisymmetric contributions
to the anomalous dimension [14, 53-55] which take the form [9]

Ugﬂ)ab = Ugse As )\acde tr(ybcde) + Vg3, Ao tr(yacbcdd) , (2.4>
where now Aj tr(yaedd) = tr(yacbedd) _ tr(ybeacdd)  Such terms can usually be neglected
but they play a role in finding fixed points with vanishing energy momentum tensor trace.
In this context the results [8] are then

5 3 2.5
Vg3c = —3g» Vg3j = — 7 - ( : )
3 Fermion anomalous dimension

For ~y = 7¢T, at one and two loops the 1PI, 1VI diagrams are displayed in figure 3
and at three loops there are 16 1PI diagrams shown in figure 4.

Corresponding to figures 3 and 4 the contributions have the general form
'fo) = 1Y,
78 = vpza Y (™) + v v+ Y Y,
71,(&3) = g Ao \bede yab o abed pabed by (gjac) (g be)
+ (,ngd yaccb + Vo3 ycabc + Yyaf 82 yacbc) tr(yab) + Y3g yab tr(yabCC)
+ Yosh Yy tr(ye) + Vosi yabbeca | Vo3 yabecha | Yok yobacbe Yosl yobebea

+ ,ngm 82 yabcbac + ,ngn 82 y + ’)/1/)30 yabccab + 71/)312 yabcabc7 (31>

abbcac

where here Sy ¢ = yacbe 4 ycbea G, gabebac — gabebac | gcabeba onq gimilarly as necessary

for the symmetry 7&3) = 1513)T. In this case the coefficients in a MS scheme are then [6-8, 53]

V1 = 3, 7¢2a=—%7 7¢2b=—§7 Yp2e =0,
Vo3a = — s Yp3b =1, Vose = —75 Vp3d = —1,
Vpze = 55, Ve3f = —55, Yp3g =1, Ve3h = 3,
’Yw:'n':—g%, %p:sjzl%y ’ngk:%y ’Yw:sl:—l%,
Yp3m =0, Voin = 55, V3o =1, Ypsp = 3¢ — 1. (3.2)
For potential antisymmetric contributions
3
Ufj)) = vy3y ./42 yacbc tr(yab) + Vyp3m ./42 yabcbac + Ye3n ./42 yabbcac ’ (3.3)
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Figure 4. Three-loop diagrams giving contributions to the fermion field anomalous dimensions,
containing Yukawa and quartic scalar couplings.

Figure 5. One and two loop Yukawa vertex diagrams.

with A2 yacbc tr(yab) — (yacbc _ ycacb) tr(yab)’ A2 abcbac _ yabcbac _ yacbabc‘ In this case [8]

<

7 3 5
Up3f = 16> Uy3m = —g» Uy3n = —1g - (3.4)

4 Yukawa couplings
The Yukawa coupling S-function can be decomposed as
By =By" =B+ + v v + v s (4.1)

where BN; is determined solely by the contributions of 1PI diagrams.
At one and two loops the relevant 1PI diagrams are shown in figure 5, where

Bg(;l)a _ ﬁyl ybab,
5:52)(1 _ /By2a Aabcdybcd + /Bbe ybac tr(ybc) + ByQC Ss ybaccb + ﬁy?d Ss ybacbc
+ ﬁer ybcacb + By?f ybcabc’ (42)



with Sy ybaccd = gbacch 4 ybecab aq necessary for symmetry. Old results, with our conven-

tions, give

/Byl:za

ByQa =

_27 ﬁbe = /ByQC =

=1, By2a =0, Byse=—2, Byayr=2.

(4.3)

At three loops there are 52 distinct diagrams so we use the alphabet twice over as labels

(figure 6). Joining the external lines to a single vertex the resulting vacuum diagrams can

be either planar or non planar. In the above list 3¢, 3s, 3z, 33, 30, 3p, 37, 3§, 34, 30, 3w, 3%, 3y

are non planar.

With this diagrammatic decomposition the three loop Yukawa S-function is expanded as

BZ(/S)(I _ ﬁy3a )\bdef)\cdef ybac + )\abefAede(ﬁygb 82 ybcd + BySc ycbd)
+ )\acde tr(yeb) (ﬁy?)d ycbd + BySE 52 ybcd) + )\bcde (By?)f ybcade + /By?)g 52 ybacde)
+ )\abcd (5y3h yebcde + ﬂy3i ybeced + By?)j S, ybeecd + /BySk S, yebecd + 6y3l S, yebced)
+ ﬂySm ybac tl"(ybd) tr(yCd)
+ (5y3n ydbacd + By3a ybdadc + By?)p 82 ybaddc + By3q 82 ydabdc) tr(ybc)
+ (Bysr S "™ + Byss So y™* + Byzi So y ™) tr(y™)
+ ybac (/BySu tr(yded) + /By?w tl'(yded)) + (ﬁy?)w ybcd + ﬁy?;a: 82 ybdc> tr(yabcd)
+ By?)y ybccaddb + By?)z S, ybaccddb + By3(~z S, ybacddcb + By3l; S, ybcacddb

+ By?)& 82 ybcaddcb + By?}J SQ ybcadcdb + By?)é 52 ybacdcdb + By3f~ ybcdadcb

+ BySg ybcdacdb + /ByBB 52 ybcbaddc + ﬂy?ﬁ 82 ybaccdbd + /Bij 82 ybacddbc

+ By3/~€ 82 ybacbddc + ﬁy3l~ 82 ybacbdcd + By?ﬂh 82 ybacdbdc + BySﬁ 82 ybadcdbc

+ /By36 82 ybcabddc + /By?)ﬁ 82 ybcaddbc + ﬁy&j 82 ybcacdbd + ﬁny 82 ybcadbdc

beabdced ., bebaded bedadb bacdbed
+5y3§82yca c +/8y3tycac +/@y3ﬂyca C+5y3f;82yac C

+ ﬂySvi) 52 ybcdacbd + ﬁySi‘ 82 ybcadbcd + 51/3;7 ybcdabcd + By?)i 82 ybcadcbd’

with [6-8, 53]
Bysa = —12,
Bysf =2,
Bysk = —1,
Bysp = —3%,
Bysu = 2,
Bys: = —3,
Bysze = —1,
Bys; = 1,
Byss = —%,
Bysi = —2,
Bysg =2,

By3p =
Bysg =
Byar =
Bysq =
Bysv =
Bysa =
Bysf =
Bysk =
Bysp =
Bysa =

BySE -

i

N W -

Sl sl wolee

NI > =

Byze =
Bysn =
Byzm =
Bysr =
Byzw =
57;31; -
By3g
Bysi =
Bysq =

By?ﬁ) =

3, Bysa =3,

5, Bysi =3,

-1, Bysn = 2,

-3, Byss = —3 ,

0, Bysz = 2(3¢3 — 2),
-1, Byse = 2,

6¢3 — 5, Bysh = —3,

2, Bysim =1,

-3, Bysr = 3(2¢3 — 1),
32— 1), Byse =2(3¢—1),

(4.4)

1
62,{36 = 355
1
Bij =3
By?)o = _17
2
ﬁy3t = Tga
1
5y3y = T35
ﬁy3d~ _17
Bysi = —3,
Yy 2
/By3ﬁ =-2
Byss =1,

Bysz = 203G — 1),

(4.5)

Of the above two and three loop diagrams 2a, 2f, 3f, 3l, 3w, 3%, 3y, 32 do not have
subdivergences and are primitive.
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Figure 6. Three loop Yukawa vertex diagrams.
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Figure 7. One and two loop diagrams relevant for the scalar quartic S-function.
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Figure 8. Three loop diagrams involving the quartic scalar coupling contributions to the scalar
S-function.

5 Scalar quartic couplings

The scalar quartic coupling is a symmetric 4 index tensor A®°¢ and the -function has a
similar decomposition as for the Yukawa coupling in (4.1)

ﬁ)t\zbcd — B}c\zbcd + ,ygeAebcd + ,yé))e)\aecd 4+ ,Yge)\abed + ,yge)\abce — B}c\zbcd + 84 7/ge)\ebcd (5'1)

with £ bed given in terms of 1PI diagrams and &4 here denoting the sum over the four terms,
each term with unit weight, necessary to obtain a fully symmetric result.
At one and two loops the relevant diagrams (figure 7) are so that

B = Brig SAPI NS 1 By, Sytr(y™ed),
B@abed — Broa S aabef \cfgh ydegh | Brap Sa \abe \edeg tr(y fg)
¥ Baze So AP tr(yefed) 4 By 0y S AP tr(yecd)
+ Bage Sta tr(yeeted) 1 Bros Stz fr(yacbede) 4 Brag Se fr(yeabeed) (5.2)

with §,, denoting the sum over n terms necessary to achieve symmetrisation over all per-
mutations of a,b, c,d. Historic results, with our conventions, give

Bata =1, Bty = —4, Broa = —1, Brop = —1,
Brze =0, Braa =2, Broe =2, Bray =4, Brog = 4. (5.3)

At three loops there are O(A*, A3y2, A2, y*, A%, 4®) contributions to the scalar quartic
B-function. For our discussion it is convenient to isolate related sets of diagrams out of
a total of 62. The O(A*) purely scalar contribution corresponds to the diagrams shown

— 11 —
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Figure 9. Three loop diagrams involving fermion bubble contributions to the scalar S-function.

in figure 8, so that

Bg\aab“l — 5}\3(1 83 )\abef)\ehij)\ghij)\cdfg + B}\?’b 812 )\abef)\cegh)\fgij)\dhij
+ /B>\3C 83 )\abef)\egij)\fhij)\cdgh + Bk?)d 86 )\(lb@f}\cegh)\ghij)\dfij
+ B>\3€ 86 )\afge)\bfgh)\ceij)\dhij + ﬁ>\3f )\aefg)\behi)\cfhj)\dgij ) (54)

For the purely scalar case the general three loop coefficients have long been known:

Brsa=—3, Brsp = 2, Brse =13, Brsd = —% Brse =—7%, Brszg = 12¢3.

(5.5)

Diagrams involving two or one insertions of fermion bubbles into internal scalar propagator

lines in one or two loop diagrams are just depicted in figure 9. The corresponding contributions
are then

ngcd — ﬁ)\?,g 83 )\abef)\cdgh tr(yeg) tl"(yfh) + 6/\3h 83 )\abefAcdeg tl“(yfh) tr(yhg)
+ B)\Si 56 )\abef)\cegh)\dfgi tr(yhi) + ﬁ/\?)j 812 )\abef)\cegh)\dghi tr(yfi)
+ Bz Si2 A tr(y ) tr(yd) + Brgr S AP tr(y!9) tr(yeed)

+ S12(Brzm tr(y™ ) + Bagn tr(y V) tr(y)

+ Brso Se tr(y™ee¥ ) tr(y/), (5.6)
with
Brzg = —1, Bash=—3%, Brzi=2, Brsi=—%, Buk=3, Bw=2,
Brzm = _% ) Brzn = —4, Brzo = —3. (57)

There are further O(\?) diagrams which are depicted in figure 10, which give
BRE" = Sz ATIN (Brgp tr(y ") + Brsg tr(y "))
+ S1o AN (By 5 tr(yTIM) + Brgs tr(y M)
+ Sy XS \eAIh (B 5 (YT IM) + Brgy, tr(y9I ™))

+ S12 NINETR (B 5 t1(y ™) + Brge tr(y9)) . (5.8)

— 12 —
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Figure 10. Three-loop O(\?) diagrams contributing to the scalar S-function.
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Figure 11. Three-loop diagrams containing one scalar vertex and one fermion loop.
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Figure 12. Double fermion loop diagrams without scalar vertex.

Diagrams with a single scalar vertex are shown in figure 11. These correspond to

BT = Brse Sia X9 tu(y*009) 4 Sg AT (B tr(y* 99T + s, tr(y )
+ S12 X (Brza tr(y™9T) + By tr(y 9T) + Brac tr(y00h))
+ S12 X (Baad tr(y™97) + Bage tr(y*IUT)) + By Ss A tr(y oo
S \abef (@\3@ tr(ycegdfg) + 5A3f1 tr(ycdgefg) 1 Bz tr(yegfcgd))
+ Bz Sa A9 tr(yPe99) + Brsi Sog A9 tr(yPeedl) (5.9)

The remaining diagrams have no quartic scalar vertex. Those which involve two fermion
loops are just depicted in figure 12:

~§\leCd =S6 (5A3?tr(yabef) +Bx3m tr(yaebf)) tr(QCdef) + B3 S3 tf(@/aebf) tr(ywdf) . (5.10)
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Figure 13. Three-loop diagrams containing only Yukawa couplings with a single fermion loop.

The final set of diagrams, shown in figure 13, is then

nabed
AF —

+ 812 (Bagr tr(y™™e) + Brgs tr(y™/T))
+ Saq (Bysr tr(yebeedy 4 By an tr(yoeifbecd) 4 oo tr(yacheetfdy)

+ Brga Soa tr(yaefebfcd) + Brsz Se tr(yaebecfdf) + 5}\3@ S19 tr(yabecefdf)
+ 812 (Basz tr(yaefbfecd) 1 Braa tr(yaefbefcd) + Brap tr(yabecfedf))

+ Brge Soa tr(y“ffebced) + Sio (5>\3d’ tr(yabeCffde) + Bager tr(yaefebcfd))
+ Soa (Basyr tr(yoe/breed) 4 Brsg tr(yyae/becld))

+ S (5)\3h’ tr(yaefbcfed) + Basi tr(yaefbcefd)) + /8/\3j’ S; tr(yaebfcedf)'

Brss S12 tr(yabcdeeff) + ﬁA3ﬁ Se tr(yabeecdff) + 5>\3(j Sio tr(yaeebffcd)

(5.11)

Of the quartic scalar diagrams 2g, 3f, 3h, 3, 37, 3k, 30, 3¢/, 31, 3i’, 3§’ are primitive. The
diagrams 37, 31, 3s, 3u, 3w, 3d, 3¢, 3f, 3G, 37, 3k, 3a’, 3V, 3¢', 3i’, 3j" are non planar.
As explained subsequently the 62 individual coefficients can be determined so that

Brsa = —7%,
Brze = —3,
Brzi =2,
Brgm = —22,
Brsg =2,

Brzu =3¢ —1,
Bazy = —1,
Brsze = —6,

Brzg = 2(6¢3 — 5),

Brsp = 2,
Brsr = 12¢3,
Brsj = —1,
Brsn = —4,
Brsr = 2,
Brzv =3,
Brg: = =3,
Brsd = —4,
5,\3FL =-2,

Brse =13,

Brizg = —1,

Brsk =3,

Brzo = =3,

Brzs = 2(3¢ — 2),
Brsw =1,

Brsa = —3,

Brze = —4,

Brgr = —10,

— 14 —

Brsd = —3,

Brsh = —%

Brsi =2,

Brsp = 2,

Brst =2,

Brzz = —10,

Brsp = =2

Brsf =43¢ —2),
Brz; = —24(3,



Bask = —12¢3, Brsi = -8, Bazm = —12, Brzn = —4

Brss =1, Brsp =1, Brzg =1, Brsi = — %,

Brss =2, Brsi = 2, Brsa = —4, Brss =2,

Brze = 2, Brsz = 4, Brzg =4, Bys3z = —8,

Brsar = —2(6¢3 —=5), By =0, Brze = —1, Brzar = —1,

Brzer = =6, Brspr = —2, Brzg = —12¢3, Bz = —4,

Brzir = —12¢3, Brzjr = —24(3 . (5.12)

This completes the expressions given in [6], which have been obtained using N'=1 SUSY
relations as well as explicit literature results for the SM [10-14] and Gross-Neveu type
models [15, 16]. In this paper N' = % SUSY conditions are also considered, which are not
sufficient to obtain (5.12), but overcomplete the conditions in [6] without inconsistencies.
Hence, literature results [15, 16] are cross-checked by the SUSY relations and explicit SM
computations.

6 Reduction to U(1) symmetry

For complex fields with a U(1) symmetry the number of diagrams is significantly reduced.?
This restriction is achieved by taking ¢® = (i, ¢'), so that ¢?¢'* = ; " + @ ¢, and

APl grgbged — LN R GG orer, ¢y = iy (38) + @' 5 (99) - (6.1)
The scalar and fermion lines on each diagram then have arrows with the basic vertices for

the Yukawa couplings y*, ; represented by ;('—<— , _H:k and for the scalar quartic coupling

)\ijkl by ::x:: . The triangle graphs present for real couplings are no longer allowed. With

this prescription then for traces over the Yukawa couplings

tr(ya1a2a3“'a2") _ %(tr(gélyizgi‘?’ - yiQn) + tr(yizn . ng“)) , (62)
%(tr(yl1gi2y13 s giQn) + tr(giQn .- 'giQy“)) :
In general, for the anomalous dimensions
. . . v 0
%" = ey Wi’) W= < - ) : (63)
T
and for the S-functions from (4.1) and (5.1)
By' =By +w v + U W+ es" s Bai = By A Ui+ Ui v + i’ Ui
Baii™ = Brig™ + Yoi " Ami™ + Yoi " Nim™ + X Yom® + AT Yom! (6.4)

where v, — 7y 8,0 — Byi by taking y* < 7, A;* — A% in each contribution. For
gi = (YO, A = (Ai;*)* then v, = 74" and 7, ;¢ = (7,4/)*. At one loop

’Vw'j(l) = Vo1 tr(¥; yj) ) ’w(l) = Yy1 Y'Y , Byi(l) =0,

Brii™ M = Bria Mg ™ A 4+ 2 8o X" A ™) + LB Satr(yi v*u; v (6.5)

2This example was considered in [20].
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where Sy Xl'jkl = Xijkl + inkl = Xijkl + Xz'jlk. At two loops

I@ = 39500 Xt ™A™ + L yg0n (b1 vF Gk ) + t0(T T YY)
@ = You ' (T ) + Y2 ¥ Y i
By'® = Byaa Nt i y® + Byar v ik v' G vF
Bris™® = Broa (2 X Amp™ g + 2 Xip™IN g™ A+ St Aip T X ™ A
+ 288 NP X T g™
+ Baze(Aig ™ Amg™ + Sa Aim™ Xjg"™) tr (77 )
+ 3 Broe Sa Nim " (60(F5 4 G y™) + tr(55 4™ G v'))
+ Baza (Nij ™™ 6 (G Y G ') + A 1 (55 55 y"))
+ 3 Baze Sa (6 ¥¥ 5 ¥' 55 y™) + 00 (G v 5 v 55 91))
+ 1 Brog Sutr(§i v um v G y™) (6.6)
with 83 Xi;* = Xi;F 4+ XM + X% + Xtk
At three loops the results here reduce to 8 contributions for 4
Yoi? @ = vona k™ A Apg™ + ANik™ Nt A
+ Y630 Nt ™ A + 2 X" N ™) tr (4 y*)
+vs3e k'™ (@Y G v7) + (5 Y Tk y™) Aim™)
+ % Yosa (r(G v g y’) + 0@y ™)) (g y')
2 Yosr (@i v* e v G’ + e v Gk v* i y'))
+ 2 ve3g (0@ VT Y G ) + (T VR Y T YE))
+Yo3n tr(Ur "0 ¥ 51 y7) + Yosm tr(Uk v G v G y) (6.7)

and 9 for

) = 3930 Y75 Nim P A™ + Ys VTR Y T A
+ Yese Y 0 0) tr (U ) + (vesa ¥ Tk 75 + Yose vV ) ST (47 i)
+ L vusg T (v gk v ) + tr (v ge v )
Y3 Y'Y Y Uk U Ui+ s VU Y U Y Ui+ Yosp VT Y T Y Tk (6.8)

Ve

and 12 for By

By 3 =2 836 ¥ T U Mg At™™ 4+ X At™) + Byze ¥ Tk Y A1 A ™
+ Bysd ¥ Jm VN (™) + Byse GF T y™ + v 0 v ) Nk tr (Y Gim)
+ Bysg Y hm ¥ U v M + Bysj (VT Ui Y+ T Y Gm') At
+ Byt (v y’“ﬂm Y+ y’“zim Yy A’
+ Byss (Wi y" yk v+ Y ey iy ) tr(y* ;) + 5 Bysw WUk vt + 9 0 v?) tr(; v iy
+ Byss U Vv e v + v 0y e 5 )
+ Byss 0y T v e v + v 0y k)
+ Bysz (WU ¥ T v U y" + 0y Uy Ry - (6.9)
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For the scalar quartic S-function at three loops the 1PI contributions are restricted to
43 diagrams as 3n, 3¢, 3b, 3¢, 3¢, 3f, 33, 3t, 3a, 30, 3w, 3%, 37, 3%, 3¢, 3f’, 3¢, 37,35 are
no longer present. There remain 7 primitive 3 loop diagrams.

There is one possible antisymmetric term at three loops

i)

Vi’ B = vgze Nk (G Y T v7) — (T 0 T y™) Aim™) - (6.10)

7 Supersymmetry relations

Supersymmetry of course relates bosons and fermions. Imposing symmetry on the scalar
fermion theory leads to linear relations between the anomalous dimension and S-function
coefficients which we describe below.

7.1 N =1 supersymmetry

The Wess Zumino theory for scalars and fermions is a special case which can be obtained
by restricting the couplings of the theory with U(1) symmetry so that

G Y=y G Y =V, A VY™ (7.1)
The usual non renormalisation theorems require
W= =7 =0, By =2V Y™ (7.2)
At one loop this just imposes
VP = Y1 = Vel s 4Bx1a + Bry =0, Brta =277 . (7.3)

At two loops the necessary conditions are

V5 = Yp2a + V2o = 3Vp20 + V26 » By2a + By25 =0,
2B8x2a + Br2a =0, 4Bx2a +2Bx2c+ Brzg =0, Brza + Brzp + Baze =0,
6)\211 = 2’75 (74)

At three loops the conditions on the anomalous dimensions and Yukawa couplings are then
Vo4 = Yse + V3i = Vo3a + V631 V5B = Vp3d = Vg3b + Ve3h
Vo = 3psa + Ypse T Vs + Yo3i = 27936 + Ve3d + Vp3g
WD = Yosb + Ywsp = 47630 + 2Vp3e + Vo3m »
4 By3p + Bysf + 2 Byai + Bysw + 2 By3: =0,
Byse + By3j + Byss + Byzs = 0, Byse + Byzd + 2 By3p =0, (7.5)

so that

S S
7o = vf+<>h 7 = 725@,
S
7¢(3) = 7§A®+7§B@+V§C+@”‘+V§D@v
(7.6)
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with

C S S
1= Y34 = — 1> V3B = —

v . me=1, 5y =3C.

(7.7)

[N
S
Il
\
N~
=
ool—

The contribution (6.10) to v vanishes on reduction to supersymmetry as in (7.1).
The constraints arising from (7.2) at three loops leads to 4 conditions relating 3y to
the anomalous dimensions

Brsh = 2754 Brzg = 2735 » 3 Brza + Brzp = 2750 » 2 Brze + Bazu = 25D »
(7.8)
and 14 linear homogeneous relations for Sy

3 Brza + Brzi + Bazm + Basp + Brzi =0,

4 Bx3p +4Bx3a +2Bx3r + Brzi =0, Basb + 2 Brz; + Bazk + Brza + Brzer =0,

4 B3 +4Bx3e + 2 Bx3t +4Bx30 +2By37 + Basi + Bz =0,

2Bx3c +2Br3i + Brazo + 283y =0, Basd + Brzn + Brazs =0, 283 + Br3g =0,
Baze +2 B39 + Bazp =0, 2 Brze + Bazi + Brzo + Brzz + Bazar =0,

Basp + Bazi + Pazd =0, 8 Brze + 8 Br3w + Bazn =0, 48335+ Bzt =0,

4 Bx3b + 2 Ba3s + Basz + Brsar =0,

4 Bx3p +4Br3a+ Brzp + 283 + Bazg + 2 Bask + Bz = 0. (7.9)

The last 5 relations involve contributions arising from non planar diagrams.

7.2 N = % supersymmetry

This is a special case of the general scalar fermion theory where of course the number of
real scalars matches the number of fermions with y® — Y ¢ a symmetric real tensor and
also \2%¢d 5 Sy yabeyede  For this theory ¢, can be combined as a real superfield ® and
in a perturbative expansion the diagrams reduce to those of a simple ¢3 theory. Under

abc

renormalisation as a four dimensional theory there is a S-function £y ¢ and anomalous

dimension 5.

For this case, unlike for N' = 1 supersymmetry, there are non trivial
divergent vertex graphs so that Sy and ¢ are independent although the scalar g-function
B is determined in terms of these.

At lowest one loop order this gives

'yq)l = f‘}/¢1 = "y,wl s 5}/1 — 2/8,\1a = 5y1 — 47¢1 9 4/8)\10, + B/\lb = 0’ (710)

1o =901 = D=, B =5 K} (7.11)

The equality v41 = 741 is a reflection of the choice of normalisation of fermion traces in

where

the main body of results. Each fermion trace gives the contribution of a two component
real fermion propagating round the loop.
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At two loops equality of 74, 7y and symmetry of 3, requires

Y824 = 3Vp2a T Vo2b = Vep2a T Vo2b 5 Yo2B = 67Y20 + Vp20 = Vo2
BYQA = Bbe = /6y2Ca 6)’23 = ByQa + ﬂy2d = 6@/267 BYQC = ByQa + By2f )

where

1o = ’Y<I>2A@ + 7@23@7

By = S; </8Y2A }} + By 2B }3%) + Bya2c :XF

Determining 8 in terms of By and <4 imposes the restrictions

Brza = 27024 = By2a = 5 By28, 0 =928 = Byac,
4 Broq = 4 Brap = —2Bx2d = —2 Brz2e = —Pray = —Br2g s Br2e =0,

which implies further constraints on the Yukawa S-functions

By2a = —By2r = 2 By — By2d » Byab = 2(Vp2a + Y2p) -

At three loops there are 9 propagator diagrams

0¥ = ’Y<1>3A{} + 7@33@ + 7@30@ + V83D S2 @
+ 7@33@ + 7¢3F@ + 7@30@ + 'Y@SH{D}

+ Y31 {Z}
with So ﬂ} = ﬂ} + ﬂ} Reducing general results requires

VYB3A = Vp3a T Vp3f = Vap3c T Vep3i s

Yo3B = V¢3b T V¢3h = Vep3d

Yo3C = 29436 + Vp3d T Vo3g = 3Vw3a T Vep3e + Vp3g T Vw35 5
V83D = 2%¢3a + 27436 + V635 = Ye3f T Vusn

Yo3E = 27430 T Vo3¢ = Vip30

Yo3F = 2430 + Vo3i = 6Yp3a T Vep3n T V3l s

Yo3¢ = 129430 + 4V¢3c + Vo310 = Y36 + 2V93m

Yo3H = 47p3a T Ve3k = V36 + Vep3k 5

Y31 = 47Vp3a + 27p3c T Vo3m = Vp3b + Ve3p -

For an antisymmetric contribution

ve® = v3p Ay @ = V3D (@ - ﬂ}) )

where from (2.4) and (3.3)

U3D = Vg3j = —Uy3f + Uy3n -

,19,
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(7.15)

(7.16)
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At three loops there are 17 1PI contributions to the symmetric g-function which are
expressible diagrammatically as

By® 53 BY3A>§7+BYSB>§7+/BY3C>§7+BY3DKD7
+ Byse }@})

+8s(Bar }j} +Brac E + Bron m>
+ 8By p +Byss m + Bysx }f})
+8i(Brar X} + Brow XP) ¥ ﬁygw
}X% &) +Brag & (7.20)

with Sg denoting the sum over six inequivalent permutations. Imposing symmetry on the

+ 33 ﬂmo + Bysp

general Yukawa [-function in this case requires 18 relations

Bysp — Bysy =0, Byzm — By3- =0, 6 By3a + Byzw — Byze =0,

Byzd — Bysn + By3; =0, Byze — Byso + Bysh =0, Byze + By3zq — Byze =0,
By3j + Bysr — By3p =0,

3 Bysa — Byst + Bysu — Bysa =0, Bysb — Bysj — Bysr + Byt =0,

By3g + Bysk — Bysf + Bysi =0, By3g — Byan — Bysg + Byzs = 0,

Bysh — Bysi + Bysd — Bysm =0, 2 Bysb — Bysf — 2 Bysk + Bysg — Bysi =0,

2 Bysp + Bysg — Byan + Byat — Byszd + Byszn =0,

2 Byse — Bysj + 2 Bysq — Byse — Bysk =0,

2 Bysec — Bysk — Byss + Byza =0, By3g — Bysn — Bysg + Byzs =0,

Byse + Bysd — Byse — By3sj — Byss — Byss + 2 Bysp =0

2 Bysp + 2 Byzc — Byas + Byst + Bysz + Bysw — 2 By3z — Bysg = 0. (7.21)

Subject to (7.21)

Bysa = Bysp, By3zs = PBysm, Bysc =3By3a+ Bysus BLy3p=0By3, Byse= PBysn,
By3r = Byze + By3q» Bysa = By3j + Bysr, Bysu = Byan + Bysd,
Bysr =2 Bysp + Bysg, Byss = Pysf, BLyszx =6LBy3a + Py,

By3r = Byze + Bysj + Byss + By3s Bysm = Byak + By3s,
Bysn = 2 Byse + Bysi + 2 Bysr By 30 = Bysn + By3s »
Bysp = Byss +2By3z + Bysg, Byszg = 4Bysp+ Bysr + 2 Bysi + Pysw + 2 Byaz - (7.22)

— 20 —



Explicit results for this N' = % theory in the MS scheme are then

Yo1=13, Yoo4=—7%, Yo2B =0, Vo34 =—1, Vo3B3 =—%, Ye3c =1,
Yo3p =0, Yosp=1, Vo3P =—%, Ye3a =1, Yosg =13, Yosr=3C3,
(7.23)
with vesp = —% and
By1 =2, Py2a = —1, Byop = —2, By2c =0,
Bsa=—%, Bysp=—%., Bysc =2, Bysp = —1,
Byse =2, Bysr =2, Bysa = —1, B3 =4,
Bysr = =2, Byzs =4, Bysx = —1,
Bysn = 12¢3, Byso = 6¢3, Bsp = 12¢3, Bysr = Bysm = Pysg =0.
(7.24)

These results can be obtained directly from superspace calculations [56].
Reducing the three loop scalar S-function to the N = % theory requires large numbers of
relations. For the anomalous dimension and the symmetric 5 function

Bazh = 27#34, Brzg = 27038, 3630+ Bx3p=2703¢c, 0=1a3D,
Brse = 27038 = 3703G s 6Brza + Brsg = 2703F
2B8z3c + Br3t = 2v03m, 2 Bx3¢ + Brzu = 27031

Brsa = 2 Brzg = Bash = Brgj = 5(Brazi + Brsz) = 3(Brsp + Baza) = (2 Bazp + Base)
= 2(6 Br3a + Brsg) = Bysa = B3 = 5 Bysp = 5 Bysc = 1 Bvsr = 3 Bysk

3Bxsa + Brsp = Bz = Brzi = 2Bx3j + Bask = 2 Brze + Bast + 5 Bash
= Bysc = Byse = Bysr = 5 Bysu = 3 BvaJ,
2 8x3c + Brzy = 4 Bxze + Baszh = 48x3q + Bazr =0,

Bxsb + Baszi + Basd = 4 Bz + Bast = By s 0 =20x3p + Brse = Pysm

4 Br3p + Basf = Bysn

2 Basp + Bass = 4 Brze + 2 Bazu = 2 Bazp + 2 Brza + Basr + 5 Bazg = Byso = 5 Bysp,

4 Bx3p + 4 Bx3a + 2 Brzr + Bazr = Bysq - (7.25)

There are here 18 linear relations on the 3 loop B coefficients. There are also 33 additional
consistency equations. For those involving contributions from planar diagrams

4Bx3p+Px3: =0, Basb+Br3i+Bxr3a =0, 28x3i+Bx3n =0, 253 +Bx33 =0,
2Bx34+2Br3;+Bx3i=0, 4 Bx34+4Br3e+6x35 =0, Brsa+Brsn+Br35=0,
8Bx3e+ B3z =0, 28x3¢+2 8235+ 6x35 =0, Brzet2Br3g+Br35=0,

6 Br3a+2Br3d+Brzg+Br35 =0, 3Bx3a+Br3i+Bxr3m+Bazp+Lrsi =0,

4 Br3p+4Br3a+2Brzr+Br3: =0, 4 Bx3b+4Br3c+2 Bash+Brzer =0,
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4 Bx3p+4 Brzd+Br3r + B3z +Brze =0, 2 Bx3p+4 Br3e+2 Brzo+Brze+Brzp =0,
Basb+2 B3+ Bask+ B33+ Lr3e =0, 2 B3 +28x3i+Br30+2Br3y =0,

2 Bx3e+Br3i+Brszvt+Brsz+Basar =0, 4 BrzvtBrzm =0,

4 Bxset4Bx3e+2Bast+4 Bazo+2 Bash+Basi+ Bz =0. (7.26)

For the relations which involve contributions from the non planar diagrams for the quartic
[B-function,

Bazb + Brszi + Brzd =0, 2 B3+ Baze =0, 4 Bx3; + Bzt =0,
2 8x3¢ + Brzw =0, 8 Bx3e +8Br3w + Brzn =0,

2835 +Br35=0, 4 Bx3p + Brsp + Baszf+2B8x3k =0,

4 Bxsp +2Bx3s + Baze + Brsar =0,

4 B3y + 4 Brza + Bazg + 283 + Bazg + 283k + Bz =0,

4 Bx3p + Brsf + 2 Bx3s + Bask + Brzg =0,

8 Br3c + Bz +4Bxa3u +28x3r =0, 2 B35 + Brzjr = 0. (7.27)

The 14 homogeneous relations in (7.9) are contained in (7.26), (7.27). Combining (7.26), (7.27)
with (7.25) would apparently generate 51 conditions but 2 are redundant. Two of the
conditions in (7.26) imply Bysr = Bysg = 0 and the relations in (7.25) 0 = 2 B3 + Srse
and Basp + Bazi + Basd = 4 Bazj + Frz; can be omitted since they are all zero in (7.26). There
remain 49 independent equations.

The conditions Bysa = Bsp = 1 Bysp = 3 Bysc = 3 Bvsr = 3 Bysk, B3¢ = Pysp =
Bysr = 5 Bysm = % Byss, Brso = 3 Bysp and B3z = Bysu = Pysg = 0 impose 13 further
relations on the Yukawa [-functions from (7.22).

8 Special cases and fixed points

To analyse the RG flow in scalar fermion theories, and potentially find fixed points in an
€ = 4 — d expansion, it is generally necessary to restrict to cases where the RG flow is
constrained to a small number of couplings. Here we describe various examples where
symmetries are imposed so that the RG flow is reduced to two scalar couplings and one
Yukawa coupling. Of course with minimal subtraction € only appears at zeroth order in a
loop expansion so that various perturbative results listed here can easily be used in the hunt
for fixed points. Possible fixed points are first determined by using the one loop contributions
to the S-functions and are described in this section. Corresponding two and three formulae
which give €2, e? contributions are obtained by restriction of the general results and are
presented in supplementary material attached to this paper.

At one loop the results obtained here for the general case give
By =20y + 5 (5% y" ) + 5" ety
B}\(l)abcd -3 )\ef(ab)\cd)ef 49 )\e(abc tl‘(yd)ye) ~ 192 tr(y(aybycyd)) ’
Y =der(yy’),  wt =y, (8.1)

with {y?} symmetric and real.
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For n, real scalars and ny pseudo real Majorana fermions the reduction to three couplings

is achieved by assuming
(8.2)

ya — yta Ty, )\abcd _ A(dabdcd + 5ac(sbd + 5ad6bc) + ghabcd7
with {t*} a set of real traceless n x n symmetric matrices and m essentially arbitrary.

We assume?
tr(t@tP¢td) = na heed (8.3)

In general the symmetry group is given by
RY%W"R=R"" for ReH;CO(ny), [R® € HsC O(ns), (8.4)

and then h%d is an Hy invariant O(n,) symmetric tensor. Assuming (8.2) Hy ~ H x O(m)
with H C O(n). For simplicity we take t* to be traceless and Hs ~ H/Zo with H simple.
At one loop a consistent RG flow is achieved by requiring for the Yukawa [-function

the conditions
(8.5)

" =ngal,, @) =nad®, 1% = 51",

where ny = nm and o > 0 depends on a choice of scale for {t*}. For the scalar coupling

it is also necessary that
hef(abhcd)ef _ A(éab(scd + 5a05bd + 5ad6bc) + Bhabcd ) (86)

The tensor A% may be further decomposed as

pabed — qabed . (gabged | gacgbd | gadgbey . ?))7(1;80;—1—2? ’ (8.7)
for d*°? symmetric and traceless and (8.2) is alternatively expressed as
xebed = X(575%d 4 5P 4 505%) + gdtl, N=X+rg. (8.8)
With this definition (8.6) is equivalent to
(8.9)

def(abdcd)ef —a 5(ab50d) + bdabcd ’

where b = B — 47, a = 3(A+ rB) — (ns + 8)r?.
At higher loops the necessary constraints are such that the S-functions are reduced to

By, By, By and the anomalous dimension matrices have the form -y, 5o, w L X 1y

3The corresponding scalar potential should be bounded below. The constraints on X, g may be determined

s, modd

by the inequalities for any hermitian traceless n x n t
(n—1)%*+1 i {rlu n even

Eiptr(t?)? > tr(th) > k_tr(?)? ki =
+tr(t7)” > tr(t7) > (%), + n2(n—1)
For the potential to be bounded below it is possible for either g or A to be negative so long as A > 0,

3AX+kinag>0o0rg>0,3\x+k_nag>0.
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Using
htee = L(2nga + B) 6, (8.10)

the lowest order results (8.1) are consistent with this form and give,
BV = (nsa+ 26+ gy’

B\ = (ng +8)X* + 2(2n,a + B)A g +4iip Ay? + 3 A g%,
59(1) = 12)\g+3Bg2+4ﬁfgy2 —24ﬁfy4,

v =npyt, Y =gnsay?, Ay =jang. (8.11)
Alternatively
A=x+rg, B =(n,+8) 2 +ag®+4nshy®— 240y,
B =12 g +3bg® +4nsgy® — 2475 y*. (8.12)

For quadratic scalar operators then at lowest order the anomalous dimension for the
singlet o = ¢? and the corresponding matrix for p® = ¢%¢? — L5242 are just
g p g P s J

fyg(l) = (ns + 2)3\ +2ny y2 ,
,Yp(l)ab,cd — 2(3\ + ﬁ‘f yZ)(%((Sac&bd + 5ad5bc - nis(sab(scd) + gdabcd. (813)

At higher orders, besides the symmetric traceless tensor d*°? it is necessary to take
into account the mixed symmetry tensor w®°® defined by

2t (D tCtD) — tr(t2eett?) — tr(t2%°1°) = na(wd — (696 4 §adge — 25905°%)) |

(8.14)
which with
nsa—
§ = — 8.15
2L, (5.15)
satisfies wabed = q(ab)(ed) — yyedab yalbed) — () and is traceless on contraction of any pair of
indices. This contributes to 'yp“b’“l at two and higher loops. The anomalous dimensions are

then dictated by the eigenvalues of d®* and w®°? as Z(n — 1)(n + 2) x 3(n — 1)(n + 2)
symmetric matrices. There are discussed in appendix B. In general there are three eigenvalues
as symmetric traceless tensors decompose into components belonging to representation spaces
of the reduced symmetry group H.

If a = 0 then in (8.7) d** = 0 and the g coupling is redundant. The scalar S-function
at one loop is given just by 83! in (8.12) with ¢ = 0. This restriction necessarily holds
for n = 2,3 since, for any traceless ¢, tr(t!) = tr(¢?)2. This translates into the condition
3(ns +2)na = 2nga + B. In this case H = O(n,) and there are just two anomalous

dimensions for quadratic scalars ., 7, with

fya(l) = (ns + 2)5\ + 21y y2 7 7/)(1) = 2(:\ +ny y2) . (8.16)
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Two extreme examples of matrices satisfying (8.5) are given by

1. Symmetric. t* — s where {s®} are a basis for symmetric traceless n x n real matrices
with n > 2 satisfying the completeness condition (5%)ag(5%)vs = ay 085 + 0as dgy —
2 5,5 045, and tr(s?s?) = 269, {s?} are the generators corresponding to the coset

Si(n,R)/SO(n).

2. Diagonal. t® are traceless diagonal n x n real matrices with n > 2. A basis is obtained by
taking (t*)ap = €% 0ap Where €%, o =1,...,n form the n vertices of a n—1 dimensional
hypertetrahedron and satisfy 3, €2 =0, 3°, el = 2% with €afs = 20ap — % In

this example the tensor w®? in (8.14) vanishes.

For these cases we have

ya g ny [0} I5} A B H
L. fn—=1)(Mn+2) nm 2 Ll 2 9%(73 +6) & (2n*+9n—36) O(n)
2. n—1 nm 2 2(p-_1) :;% 2(n —2) Sn
(8.17)
For purely scalar theories these examples were described long ago in [57].
In general defining
Sapys = () (@s()s) = 3057 (0asas + 0aryd55 + 0as0py)
Wapys = (1)ap(t")rs = 5 ((1)ay (") g5 + (1)as (t")37)
+ 224 (0apdys — 5(0aydps + Gasdpy)) . (8.18)
then positivity of Sagys5a8y6 and WagysWapys give the bounds
(22— in)a < B < (n— 2, (8.19)

which entails ng < %(n— 1)(n+2). This is of course saturated in case 1 and the upper bound on

B is saturated in case 2. With O% = %> — n% 52 t¢t¢ then since [tr(O% 0%)| < tr(0O% O%)
we must have also the bounds

—(ns —2)a < <nsa. (8.20)

General results for fermion scalar theories can be restricted to ns real scalars and ny
Dirac fermions by taking

0 yt® -~
v (yfa 0 )1’"’ £ =)', (8.21)

with {t*} n x n matrices so that ny = nm. Assuming the Yukawa interaction satisfies

U U =R®" for UcH;cCU(ng)xUng), [R™ € HsCO(ny), (8.22)

to preserve the form (8.21) U = (UO‘ UD+) with Uy € H x U(m) so that the symmetry groups

become Hy = H x H x U(m) with H, = H/U(1). Here we require as previously that {t*}
are traceless so that it is necessary to take UL = U.
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For each fermion trace the reduction of general results is obtained by taking

tr(y™y® . y®2) — m(yy)" (tr(t4 92 L E0%) + tr(EM2 L. 9%
+ tr(t9% L EPN) (20 L 2EM)
tr(y™y® ... y*?+) = 0. (8.23)

The identities in (8.5) and also (8.3) become
% =ngal,, tr(t*?) =nad®, °19%"=p1, tr(t(at_btct_d)) =nah®®?  (8.24)

As before a > 0 but the bounds in (8.19) are no longer valid although, as previously with
0% = o — n% 5% ¢¢1¢, (8.20) remains. The results in (8.1) and (8.11) then remain valid
after taking ny — 4ny.

Various examples of matrices {t*} satisfying (8.24) are obtained from the generators in
the fundamental representation of classical Lie groups
3, Unitary. t%, t* — \* where {\?} are hermitian traceless n X n matrices, n > 2, forming
generators for SU(n), satisfying the completeness condition (A?),%(A\%),0 = 2(3,%6,° —
%50/3575), and tr(\°\P) = 267,
4, Antisymmetric. t*, —t® — a® where {a} are antisymmetric n x n real matrices, n > 2,
forming generators for SO(n), satisfying the completeness condition (a®)ag(a®)ys = 6ary 085 —
005 03y, and tr(a%a’) = —246%.
5, Symplectic. t%, t* — o where {o®} are hermitian n x n matrices, n = 2p, p > 1, which are
generators of Sp(n) so that for Jug, (J71)** antisymmetric matrices then J~ 0% J = —(0%)T
or (6¢J)T = 0%J. The assumed completeness relation is then (0%),”%(0%),% = 8,20,% +
Jory (J7HP and tr(o%?®) = 246%.
6, Symplectic’. t%, t* — 6% where {G%} are hermitian traceless n x n matrices, n = 2p, p > 2,
corresponding to generators belonging to the coset SU(n)/Sp(n). With J, J~! antisymmetric
matrices as in case 4 J715%J = (6% or (6%J)T = —5%J and the completeness relation
becomes (6%)0”(6%),° = 64°6,° — Jos (J71)P — %%5575 and tr(576%) = 2§,
For the different cases we have

y* s ny a B A B H

3 n?—1 nm 2 —2 S;%(7124-3) & (n*-9) SU(n)
4 tn(n—1) nm 2 1 2 $(2n-1) SO(n)
5 in(n+1) nm 2 -1 2 $(2n+1) Sp(n)
6. 3(n=2)(n+1) nm 2 —L(n42) Z;(n*+6) - (2n°-9n—36)  Sp(n)

(8.25)

For case 4 and n = 2, H reduces to Zs.
Beyond one loop there are further conditions necessary on t%, t* for each primitive
diagram (which are those with no subdivergences). At two loops it is sufficient to require

tb.ECtat_th — ,yt(l,
tr(t° @0 e 10 1D) = na (6 h®d 4 La(nga — ) (375 + §9¢gb 4 gadgbey) | (8.26)
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In general
v =nsa(2a+6) — (2a — B)5 — 52. (8.27)

For the different examples considered here results for a,b in (8.9) and also v, are then

y® a b 5y o

1. (n_S)(n_GQL((Zi)z()ZH)(n+6) 2n4+11?§;g;:j;)90n+72 L (wranr—ants) 12

2. o L) Dt 2eg

S i wotsn

4. : (733(;35;)32_3) (n_5)9((7:z+f2()2 = 3=n -1

s dmliee ot 1

6. (n—6)(n—ézl((::i);)gﬂ)(w:ﬁ) 2n47111183;(7nlsn+2§r)90n+72 # (—nd+3n2+ants) —1— %
(8.28)

The results for d*cdqabed — %ns (ns + 2)a correspond in cases 3,4,5 to the evaluation of the
quartic Casimir for SU(n), SO(n), Sp(n) [58]. In general for a > 0 it is necessary to restrict
n > 3 except for case 6 when n > 6 is required.

8.1 Further algebraic relations

For the characterisation of the different possibilities we may further define for cases 1,2,3,6

additional invariant tensors

tr(t@t°49) = nad® /A\ = na/l\, (8.29)

where d* is symmetric and traceless, These three index d-tensors are constrained by the
one and two loop identities

dacddbcd = ay 5ab ’ dadedbefdcfd — Bd dabc 7 ddbfdefgdaghddhideic = dabc , (830)

or diagrammatically

O Amm A Aw AL e

and at three loops there are two primitive diagrams and it is then necessary that

PO

More general versions of these equations with more than one d-tensor were discussed
for various n in [35].
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For the particular cases considered here

Qd Ba Yd
L En—2)(n+4) Em*+4n—-24) gh(n—4)(3n® +4n - 80)
2. 2 (n—2) 2(p —3) 2 (n* — 6n + 10)
3. L (n?—4) = (n? —12) — 4 (n® — 10)
6. 5 (n—4)(n+2) (" —4n—24) —gu(n+4)(3n° —4n—80) (8.33)
and
g €d
Lo s (Gt +&n®+gnt = Hnd+2m2+116n-256) 55 (Gn®+fnt—Lnd —n>+116n—264)
2. £ (n® —9n® +29n — 32) 5. (n® —9n® + 29n — 33)
3. o5 (n? — 8)(n — 8n” + 256) — ks (n — 687 + 528)
6. %(61—4716—%n5+én4+%n3+2n2—116n—256) —%(G%n5—%n4—%n3+n2+116n+264) . (8.34)

The results for cases 2 and 3 were given previously in [59, 60] and [61].
For further applications

Sym)Z( = Ad(: + | | + X) + Bg/na Sym)i( (8.35)

where (ns +2)A4 + %(Qns a+ B)Byg = %(Qad + Ba)cg. For the different cases we have

Ag By B1
1. 52(3n° +32) g (n® +8n—64) §(5n° + 14n — 72)
9 5 2(p — 4) 2(7n — 18) : (8.36)
3. G (Bn?+16) L (n?-32) 5n” — 36
6. ouz(3n® +32) gi(n®—8n—64) §(5n° — 14n - 72)

The tensors d¢ defined as in (8.29) may be used to form symmetric traceless Yukawa
couplings so that the number of fermions ny = mn,. In this case (8.11) becomes

By(l) — (ad+25d+ %adm)ys,
B = (ng + 8N+ 2(2nga+ B)Ag + 2aamAy? +3A g% — 12 Agmy®,
B =12 g +3Bg* +2a4mgy? — 12 Bymy*

As was discussed in detail in [62] for m = 1, ng = ny there is a reduction to a single component

N = % supersymmetric theory with the couplings constrained by

A= 247, g=231y>. (8.38)
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The results in (8.37) with this restriction all correspond to

BV =164t (8.39)

with formulae for §; given in (8.36). The reduction depends on non trivial relations between
A, Ay, B, By which are satisfied in each of the cases listed. Except for the last case 51 > 0,

and there are fixed points in an e-expansion, for n > 3. For the N = 5 supersymmetric

theory then taking Y%¢ — y d*° there is a single coupling theory with a S-function and e,
with three loop coefficients given in (7.23), (7.24), expanded as

By = (aq+28a)y° —3(3ad +aqfa+264)y°
+(1850‘ + adﬂd—k%adﬁd —f—SOBd)y
+ ((5 ag + 30 Bd)'yd + 36 Ed)Cg y7 + O(yg) ,

Yo =2 agy? - Sadtyt + (Bad —3adBat3asBid+3asvals)y’ +0@°). (8.40)

Of course the lowest order term corresponds to (8.37). Furthermore

vor =2aqy’ — (5 af + 4adﬂd)y4
+ (10ad + TadBi+ 2204 B4 + 6(adBi+ 6 aq Bd +4aiva)is)y®
+ 270 + O(1®). (8.41)

The bounds (8.19) becomes —2(”#122) ag < By < =g 2 T ag. The upper bound for g
corresponds to the vanishing of Wyg+s in (8.18) and holds exactly for case 2 in (8.33) for any
n. The lower bound for 4 corresponds to the vanishing of S,s,s in (8.18) which becomes
in this case the condition

dabedcde + dadedbce + daceddbe — K(5ab55d + 5ad5bc + 5&06db) ’ K = ani-dZ 7 (8.42)

or diagrammatically

>_< :( )/ + 1 1+ X) (8.43)

This was analysed in [63] and related to the Fy family of Lie groups.
A uniform treatment is obtained by considering hermitian traceless n x n matrices {e,},
a = 1,...,ng, satisfying

%(eaeb + epeq) = % dab L, + dape €c dape = d(abc) y daae =0. (8.44)

Of course this implies ese, = %ns 1, tr(eqep) = dqp. The algebra defined by (8.44) is
equivalent to the result that hermitian real, complex and quaternionic matrices form a
special real Jordan algebra. Furthermore 3 x 3 hermitian octonionic matrices also form
an exceptional real Jordan, or Albert, algebra, with Fy as the automorphism group. For
3 X 3 hermitian traceless matrices

T = Tgq, ® — ttr(a®) e — Str(2®) 15 =0. (8.45)
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This is just the Cayley Hamilton theorem for real or complex matrices in these cases. The
result also extends to hermitian traceless quaternionic and even octonionic matrices [64]
where the trace is just the sum of the real diagonal elements. (8.45) is equivalent to (8.42)

with just K = %. For each case it is straightforward to check

R C H O

(8.46)
n, 5 8 14 26

Defining dy, B4, 4, 04, €4 just as in (8.31) and (8.32) with normalisation dictated by (8.44)
then applying (8.43) to each diagram gives the relations

2B4+ag=1%, Fa+2B,=%Ba+284), 281+ BaVa= 2 Ba(2Pa+ ),
oa+ éq+ Ba® = £ (Ja+ B’ + ad?) . (8.47)

Since (8.42) directly determines &4 the results are then

Qg Ba Yd daq €q

L(net2)  —55(ni—2) —5553(n2-10m.-16) 5555 (nP—3n24+80n,4+100)  — 5z n.(na—2)(n.—10)

(8.48)
For ng = 5,8, 14 these results are identical to the corresponding results obtained above apart
from a change of normalisation. That the only solutions of (8.42) are given by (8.46) was
demonstrated in [63] as a consequence of various bounds following from (8.42).

8.2 Fixed points

Extending to 4 — e dimensions the interactions become marginally relevant and the S-functions
in a MS scheme take the form

Bya — _% Eya + Bya 7 B}\abcd = —¢ )\abcd + ﬁ/\abcd ) (849)

There are then fixed points which can be analysed in terms of an € expansion.

In the restricted theories described previously we consider first the case where there are
just two couplings y, A. Within the examples discussed here this coresponds to requiring
a = 0 as given in (8.28) where the various possiblities arise for ny = 1,2,3,5,8,14. At lowest
order from (8.11) and (8.37), with 7iy = fany from (8.11),

1
2 1 -
2=1ye, Mt =———(1-2Y7r+VZ)e, 8.50
Y 2 € + 2(n3+8)( nf )E ( )
for .
Y = Z =1 10 48)Y? . 8.51
nsa+2/3+7~lf’ +ns+2(n5(ns+ )OC+ ﬂ) nf ( )

For ny Dirac fermions the results for fixed points remain unchanged except y? — yy and it is
necessary to take in (8.50) and (8.51) ny — 4ny. For Z = 0 there is a bifurcation point. This
requires [ to be sufficiently negative but with just the lower bound in (8.20) this is impossible
and for non zero n ¢ 4 > 1so that A\,_ < 0 which leads to an unstable scalar potential. For
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ny = 0 the fixed points are just A\, = €/(ns +8), A~ = 0 which reproduce the fixed points
for the purely scalar O(n,) theory. From (8.50) and (8.51) to leading order for large 7 s

1 1 1
2
N~ €, Aip ~b6r—¢, As ~ — €. 8.52
Y 2nf o+ " ny ns + 8 ( )
Since A,_ < 0 this case is seemingly not relevant.
The anomalous dimensions at the fixed point to lowest order are then just
Yo =30sYe, Y =1insaYe. (8.53)
For just two couplings the stability matrix at a fixed point becomes
ENCINKC,
M = < A *@y> . (8.54)
ayﬁ/\ ayﬁy A=, Y=Y

At lowest order since 0y, = 0 the eigenvalues obtained from (8.1) and (8.11) for the fixed
points corresponding to A.+ are then given by

ke = (1, £VZ)e. (8.55)

The theories described in (8.17) and (8.24) reduce to the case where there are just two
couplings A, y when n = 2,3. Theories corresponding to n = 2 are well known. For case
2 in (8.17) and case 3 in (8.24) there is just a single scalar and both correspond to the
Gross Neveu model, a fermionic generalisation of the Ising model. For case 1 in (8.17) then
ns = 2 when n = 2 and this is a renormalisable form of Nambu Jona-Lasinio model which
has complex scalars and extends the XY model. Case 3 and case 5 are identical for n = 2,
reflecting SU(2) ~ Sp(2) and this extends the Heisenberg theory for ny = 3. Examples
corresponding to taking n = 3 do not seem to have been considered previously. The lowest
order results taking n; — %N , are then given in terms of

results for n N Y« Ast
. . 1 6—N+vVN2+132N+36
Antisymmetric 2 1z 18(N+6)
3 3 1 8—N+vVN2+160N+64
NTS 2(N+8)
. 1 4—N+vVN?+152N+16
Symmetric 2 2 §g 20(N+4)
3 5 1 8— N+ N2+192N+64
N+8 26(N+8) (8.56)
. 1 8—N+v/N?1144N164 ’
Diagonal 3 2 w 20(N+8)
. 1 2-N+VN21172N+4
Unitary 2 3 & 22(N+2)
3 8 1 8—N+vVN24+240N+64
N+8 32(N+8)
. 1 —1-N+VNZ+106N+1
Symplectic 4 5 §3 26(N—1)
6 14 1 4—N+/N?+168N+16
N-+4 44(N+4)
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Of course the n = 2 results are in accord in special cases with lowest order results already
in the literature [15, 16, 33, 65-67].* Results in [15] extend to four loops. There is an
extensive literature considering large ny [33]. For the XY theory and 7y = 1 then, as is well
known [31-33], there is a supersymmetric fixed point with, at lowest order A,y = 5,2 = %E,

—

Vo = Vs = G E Yox = & Vpx = %5 and stability matrix eigenvalues (1, 3)e. For the Ising
case and ny = % there is an apparent N' = 1 supersymmetric fixed point [31-34] with
Mg =y = %5, Vox = Yopr = ﬁ €, Vox = %5 and stability matrix eigenvalues (1, 1—73)5

For three non zero couplings results are more involved. At lowest order from (8.11)
fixed points are determined by solving

— %6y+(nsa+26+ﬁf)y3,
(—e+4nry*)A+ (ns +8)A* + 2(2nsa+ B)Ag+3Ag°,
= (—e+4nsy?)g+12Mg+3Bg* — 247 y*, (8.57)

0
0
0

for the various choices of «, § and ns. The example of hermitian y* was considered in [68§]
though our results differ in one term in ). A large N analysis for Yukawa couplings given in
terms of Lie algebra generators was discussed in [69]. For the purely scalar theories obtained
when ny = 0 there are no fixed points with both A, g non zero for the theories discussed
here for allowed n except in case 4 when n = 4 and in case 2 for arbitrary n. This latter
case corresponds to the hypertetrahedral theory discussed in [70] and more recently in [71].
Besides the Gaussian fixed point with vanishing couplings there is of course always the
Heisenberg fixed point with, at lowest order,

1
€ gHx = Oa (KJIH, K;ZH) = <1a is_fg)ev (858)

)\* = ’
= ns + 8

which clearly becomes unstable, in this approximation when ns > 4.

For a non zero Yukawa coupling it is trivial to solve (8.57) to determine .2 to O(e).
Furthermore A appears only linearly in the 3, equation so that the fixed point equations
reduce to just finding the roots of a quartic polynomial f(g). In consequence there are
generically four possible roots though of course these may be complex. Once y,2 is eliminated
the equations (8.57) have a crucial symmetry under

i %M £ —¢. (8.59)
ng
This relates solutions for large and small 7iy. Under this transformation it is easy to verify
from (8.50) and (8.51) that, since Y — nyY/(nsa + 25), Ay < M.

When 7 is small the Yukawa interaction is weakly relevant. The Gaussian fixed point
is perturbed to give

0 e BB o, 184 s (s60)
9= (ns o+ 23)2 ! (nsa+2p)* Fe Y (nsa+2B)4 Fe '

“The results in [15] correspond to those described here by taking A\ — \/4,y — 2%, n — 1y and
Yo /2 = Yo, Yo /2 = Yo, By/4 — yBy, 481 — Bx. The results in [33] also relate to those here by taking
g2/ (4m)* — 3\, g1/4m — y, N — 2f; while (47)2B4,/3 — B, 4784, — By
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and starting from the O(ng) symmetric fixed point

6(ns + 8) 3 ) 1 6(ns(ns + 12)a + 80)
(s =) nsa+ 282 75 Y a8 = ) (ns + 8)(ms a1 20)1

nye.
(8.61)
If there are additional fixed point solutions for 71y = 0, as in the special cases described

gx ~

above, these disappear for very tiny non zero 7.

When 7y is large a corresponding pattern related by (8.59) emerges. For A, g both of
O(1) as ny — oo, then since 47y y® — 2¢, it is easy to see that the fixed point equations
are, to leading order, of the same form as the purely scalar theory but with ¢ -+ —e. For
€ > 0 this leads in general to a scalar potential which is not bounded below and in any
event there are no solutions except in the cases described above. For large ny there are
solutions with both g, A small which have the form

1 1 1 1
~N—2~8&, g*N6f5—108B~75, )\*N—108A~75, (862)
27 nf nf n g

where the scalar potential is bounded below, and also for A = O(1)

?/*2

ns+8 1 1

—€, A ~ — €.
ng —4ny ng + 8

i ~ 6 (8.63)
The second solution leads to instabilities so only (8.62) remains as a valid possibility.

For intermediate 7y the possible fixed points depend on n. For lowish n < 7 the number
of solutions drops to zero as 7y increases and then goes back to two (for case 2 this happens if
n < 5 and for case 6 if n < 14). For higher n the number of solutions jumps from 2 to 4 with
increasing 7y and then reverts to two which match on to (8.62) and (8.63) for large ns (for
case 2 and case 4 if n = 4 there are four solutions for very large 7y and very tiny s as the
purely scalar theories have fixed point in these cases). The critical n dividing the two cases is
determined by d(n.) = 0 for d(n) = §(2n.a + 8)* — 12(ns + 8)A. For d(n) < 0 as happens
for n < n. then h(\, g) = (ns + 8)A% + %(21130[ + B)Ag +3A¢* > 0. For 47ify? = ¢, or
ny = nso+ 20, the lowest order fixed point equations require h(A4, g«) = 0. This ensures that
there can be no fixed point solutions for a finite region n < n.. Conversely for n 2 n. h(\, g) is
no longer positive definite and there are solutions with g non zero. In consequence for n = n.
and iy = ny. = (nsa + 23)|n=n, there are either 0 or 4 solutions For the symmetric case
n. =6 and fif,. = 8.5 For the other cases the results for (n., ny.) are then 2. (4.37,2.31), 3.
(6.58,12.24), 4. (7.37,8.37), 5. (6.37,5.37), 6. (14.11,10.69). The jumps are associated with
bifurcation points which correspond to there being two coincident roots of the polynomial
f(g), or that its discriminant vanishes. The boundaries of the regions where there are jumps
from 2 to 0 or 2 to 4 correspond to 7y linked by (8.59) though the fixed point couplings have
opposite signs. At the fixed points in general the couplings do not give potentials which
are bounded below except for one which matches (8.62) when 7 is large. The positivity
condition remains satisfied as iy is reduced until just above the upper bifurcation point.

Diagrams showing the structure of fixed point solutions outlined above are presented
in appendix C.

SFor n = 6, fiy = 8 the fixed point solutions become .2 = ie, A = i2—145, g = :FiE- In neither case are
the conditions for a stable potential satisfied.
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For the stability matrix eigenvalues the absence of g, A contributions to the Yukawa
B-function at lowest order ensures that one eigenvalue is € for any n, 7 and the remaining
eigenvalues are obtained from

M- (8,\/3A (99@,\> . (8.64)
aAﬁg 8gﬁg A=XAs,9=0gx Y=Y
For ny small from (8.60)
2n
~ e _ _ _B)2 AN
K ~ —€ (9B+nsa B+ 1/(9B —2n.a — ) +648A) O TAR (8.65)
Starting from (8.61) the eigenvalues are
ns — 4 ~ 6(ns(ns +10)ar + 458) _
o~ 0 ~ . 8.66
ML SR e T O, et oy Y E (8.66)
Otherwise for large fiy from the fixed point (8.62)
2
he ~e+ (9B +n,a— B+ V(9B —2n.a — p)? +6484) —c. (8.67)

ng

For the supersymmetric case using (8.40) there are possible fixed points in the ¢ expansion
if 484 + 3ag > 0. From the lower bound on [, this is satisfied whenever ng > 2.
8.3 U(1) symmetry

A similar reduction is possible for complex scalar fields where there is at least an overall
U(1) symmetry. In this case we consider chiral fermions 1) and x of opposite chirality which
need not be equal in number. Writing

yi =Y ]lmti ’ Yi =Y ]lmfz ) fl - (tl)T ) (868>

then t', i = 1,...,n, need not be a square matrix but is assumed to be r x s. In this
case we assume

U'%WU, =R¢, U_cU(r), Uy €U(s), [Ry]€HCU(n). (8.69)

Corresponding to the previous discussion we assume, with a choice of normalisation for ¢,

t't; =s1,, Lt =rl,, tr(t;t)) = rs/nd . (8.70)

Defining
tr(t_(i tk fj) tl) = hijkl , hitk = %rs(r +3s)/n 67, (8.71)

the scalar coupling is assumed to have the form®

)\ijkl = /\(&kéjl + 52-16/"’) + ghijkl . (8.72)

5The necessary conditions for a positive potential can be obtained from
(te(E1))?/ min(r,s) < te(ft7t) < (te(f1))”,

where t is a 7 X s complex matrix and ¢ its hermitian conjugate.
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As above we assume conditions are imposed such that g-functions determining the RG
flow are reduced to By, Bz, By with 85 = (B,)* and the anomalous dimension matrices become
Yo Ln, Yo lr, 7y ls with v, = 75. Quadratic operators are decomposed as

0 =007 +pd, pit=0, wip;=(2ij, (8.73)

and the corresponding anomalous dimension matrices are then of the general form

Yo 0i7 YVoil k' = (346017 — 267641) + ) dis?t + A p war?t
Yo2ii" = 25 (00851 + 610,7) + A dif™ (8.74)
where
hijkl = q(5ik5jl + 5¢l5jk) + dijkl , (n+1)g= %rs(r +3s)/n,
tr(tpt 4t = p(6:76," — 6'6,;%) + wi™, (n—1)p=grs(r—s)/n, (8.75)

so that both d;;* and w;;* are zero on contraction of up and down indices. Instead of (8.72)
A = A6+ 6116%) + gdi™, A=X+qg. (8.76)

The eigenvalues and corresponding degeneracies for the d and w tensors as they appear
in (8.74) are given in appendix B.
At one loop it is sufficient to impose the conditions

Hence

By(l) %(r + 5+ mrs/n)ngj,

B =2+ DN +4(n+grg+ (A+44)¢* +2mrs/n Ay,
59(1) =12Ag+ (B+4B"g?> +2mrs/ngyy — 4m (yj)? . (8.78)
A necessary condition is
hit ™ hyn™ = (n + 1) (A + ¢ B)67 = 2(n + 1)(A' + ¢ B') — (n+1)%¢%)5 . (8.79)
Defining
a=A4+qB—-2¢,  dp™dm" = (n+1)as, (8.80)

then the one loop scalar S-function can be alternatively expressed as
B =2(n+4) X2+ 3ag> +mrs/nAyy —4mq(yy)?. (8.81)

Fora =0 dijkl = 0 and hijkl = q(6ik5jl + 6il5jk) so is no longer independent and the g
coupling is redundant.

This framework encompasses a variety of theories discussed in the literature. As an
illustration we may consider {t*} to be a basis for r X s complex matrices where n = rs and
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which satisfy (8.70). The scalar field symmetry group is H = U(r) x U(s)/U(1). Positivity
of the potential holds if

A>0, 2X4+¢g>0 or ¢g>0, 2A+g/min(r,s)>0. (8.82)

This example requires (8.77)

A=l B-=o0, A=1, B=1lr+s. (8.83)
In this case from (8.80) and (8.75)

~ _ (rP=1)(s*-1) _ _r+s

0= "o 7 4= 5(q1) - (8.84)

For the purely scalar theory, without fermions, results for g-functions have been obtained
to five loops in [72] and more recently to six loops in [5, 73] and a bootstrap analysis has
been undertaken in [74].

The lowest order p-functions and anomalous dimensions are then, with n = rs,

B = (G +s+myg)y, AU =2+ N +2(r+s)Ag+ 3 g% +2m Ay,
B =129 A+ (r + 5) g% + 2m gy — 4m (y7)?,

v =gmyy, W =4ryy, WY =1isu, (8.85)
and in (8.74)
o =2+ DA +myy, Y =7, =28+ myg,
v =y =2g, A =0, (8.86)

Setting s = 1, r = n, so that @ = 0 and the d-tensor vanishes, the S-function reduces to
B =2(n+4) A2 + 2m Ay — 2m (yy)? . (8.87)

For n = 1 this coincides with the Nambu Jona-Lasinio extended XY model, with U(1)
symmetry when m = 1, so long as yy — 2y°.
At higher orders further relations corresponding to primitive diagrams are necessary.
The primitive Yukawa diagrams 2a, 2f and scalar diagram 2g correspond to
tjfktl djlki = (n + 1)& tt , tjgktifjtk = ¢ , tr(f(itmfj)t(kfmtl)) = %(&kéjl + 5il(5jk> . (8.88)
The two loop 1PI contributions to the Yukawa and scalar p-functions are, with a, ¢ as

in (8.84), then

By = (=2(r+s)Ayg—2(n+1)agys+2yy)?)y,

B = —46Gn+1D)A —6(n+7)ag*XA —4(n—5)qag® —2(n+4)m X2 yy —3amg® yy
+8qmA(yy)® +4amg (yy)® + 4((r + s)g + )m (y)°,

B = —12(n4+7)gA% —2(n —5)qg? (12X + myy) — 2(n + 4 — 18(n — 1)¢%)¢>
—12mglyy+8mA(yy)? —8qmyg (yy)? + 4(r + s)m (yy)>. (8.89)
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At two loops the anomalous dimensions are given by

W = 4+ D+ Fag?) - dm(r+s) (5)?,

W = —Lrs +3m) 7)?, WP = —Ls(r+3m) (47)°,

Y0P = —6(n+1)(A2+ Lag?) —2n+1)miyy+ 27,2,

v = —2(n+3) A% —2ag® — 2mAyg +dgm (y§)? + 27,

Yed? = —8Ag—2(n—3)gg* —2mgyy +4m(yy)*,

Y = —2n+3) N - 2=Hag® —2mAyy+ 2+,

W= —8lg—(n-Tag*—2mgyy, VP =-F(r-s5g. (890

At three loops further relations are necessary. Corresponding to 32
Ittt + Lttt = (r + s)t (8.91)
For just the quartic scalar coupling at three loops then corresponding to 3 f there is the relation

A" djy, P dps™F D = A(87551 + 6,16,%) + cdy*
A=1(n+4-18¢%a, i=—2(n+29)qg+2(6n—-1)¢". (8.92)

For the purely scalar theory obtained by setting the Yukawa couplings to zero there are
non trivial fixed points which to lowest order have the form, for r,s > 1,

n—2 N D,s £+ (n+ 1)VR,s
Get = 5> Mk = £, (8.93)
Dys + 3V Ry 4(n +1)(Dys £ 3v/Rys)
for
Dps=(n—5)(r+s), Res=r"+s>—10rs+24. (8.94)

Since R.s = (1 —n4(s))(r — n_(s)) for ni(s) = 5s £ 2v/6v/s2 — 1 then R,s > 0 and there
are real fixed points if 7 > n4(s) or < n_(s). For r > s only the first case is relevant. The
corresponding stability matrix eigenvalues at the fixed points in (8.93) are then

(K1t, Kot) = (Li% Vlfiz)e. (8.95)

Integer solutions for the bifurcation points when R,; = 0 can be obtained iteratively, for
r > s, by taking r; = 10r;_1 — s;_1, s; = r;—1 starting from rq = 5, s; = 1. This scalar
theory with H = U(r) x U(s)/U(1) symmetry is an obvious extension of the bifundamental
theory with real scalars and O(m) x O(n)/Za symmetry discussed recently in [71, 75] which
contains earlier citations. Defining the invariants

~

VP = At = 2000+ D02+ 1ag?),  Deal=Ag¥ =n(nt 1A, (396)
then at the fixed point (8.93)

INetl? = g n(e® = ko), haal = pn(e +rax) . (8.97)
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2 in accord, of course, with the bound obtained by Hogervorst and

Clearly |[Xt||? < 2—14n6
Toldo [76] extending the results in [75]. For any n there is also the Heisenberg fixed point

with O(2n) symmetry where

“ 1
and
(mamsmom) = (152 ), IDarll® = 5355 €%, nl = 5ie. (8:99)

For n = 2 these results coincide with (8.93), (8.95) and (8.97).
For non zero Yukawa couplings the one loop S function requires

(yy)« =¢/(r+s+m). (8.100)
After using (8.100) the equations determining A, g« are then invariant under

2
mo TS (8.101)
m

relating results for large and small m. At m = m, for m, = r + s there are no solutions
if 2(n + 4)A2 + 2(r + s)Ag + 3¢ > 0 or

o2n <r’+ s <n+12. (8.102)

This is rather restrictive. Taking r,s > 2 and r < s the only possibilities for (r, s) are just
(2,2), (2,3), (3,3), (2,4) (in the last case r2 + s? = n + 12). In these cases where R,.s < 0
there are two fixed points for small and large m but none over some interval centred on
r 4 s, the interval shrinks to zero in the (2,4) case where the bound in (8.102) is saturated.
Otherwise for R,s < 0 there are again two fixed points for small and large m but four over a
region centred on r + s. If R.; > 0 there are four fixed points for any m.

At large m there is a fixed point which is the counterpart of the Gaussian fixed point
for small m and gives rise to a positive semi-definite potential and positive stability matrix
eigenvalues

4 16 24 6
kY — E — —E&, MA~——¢, ~ +4)—e¢. 8.103
ge~ —e (T+S)m26 5, K e+ (r+s )me ( )

For s = 1 and r = n there is just one scalar coupling and at lowest order

“ 1 m-—n-—1 = = (m—n—1)24+16(n+4)m
At = - tVZ2)e, Z= . (8104
* 4(n+4)( m4n+1 )6 ( )

(m+n+1)2
For n = 1 this is identical to the XY case as given by (8.50) and (8.51).
9 Consistency relations

The existence of an a-function requires consistency relations between the coefficients for
individual non primitive graphs appearing in the S-functions and the anomalous dimensions.
The basic equation has the form, for couplings {g’} [20],

oA ="T;;B’, (9.1)
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where A is constructed from 1PI and 1VI vacuum diagrams, 77y also from 1PI, 1VI vacuum
diagrams with two vertices identified and

B' =" — (vg)", (9:2)

with v(g) corresponding to an element of the Lie algebra of the maximal symmetry group
of the Lagrangian kinetic term. In general for a vanishing trace of the energy momentum
tensor and hence conformal symmetry the requirement is that BY = 0. In (9.1) Tr; need
not be symmetric, although any antisymmetric part has further constraints. In (9.2) v(g)
is necessarily present starting at 3 loops. There is a freedom in (9.1) where

A~ A+g1B'B7, Try~Trs+ L grs + 01(g ik BY) — 9;(91x BY), (9.3)

for arbitrary symmetric gry. This does not preserve the symmetry of 17 ;.

In the present context the lowest order contribution to T7; is first present at two
loops for the Yukawa couplings, T}, and at three for the scalar quartic couplings, T). In
consequence (9.1) provides potential relations between the Yukawa [S-functions and fermion,
scalar anomalous dimensions at £ loops and the scalar coupling S-function at ¢ — 1 loops
where A involves £ + 2 loop diagrams. Eliminating A and T7; ensures that the relations
contain non linear contributions involving the S-functions and anomalous dimensions at lower
loop order. The elimination of any particular contribution to A is possible when the relevant
diagram is not vertex transitive. If the diagram has n inequivalent vertices then (9.1) leads
to n independent equations in this case. For ¢ = 2,3, and including also arbitrary gauge
couplings, the possible relations were exhaustively analysed by Poole and Thomsen [9]. At
this order the conditions relate contributions to the S-functions and anomalous dimensions
which have insertions of one loop triangles and one loop bubbles.

For ¢ = 2 there are 11 5-loop vacuum diagrams for A (3 are vertex transitive) and
9 possible 3 loop 777, all of which are symmetric, and (9.1) gives rise to 21 equations.
Nevertheless there are 4 conditions on the individual S-function coefficients which reduce
to the vanishing of

B = Y41 By2a — 3 Baib Vg2a ; B = 2741 By2c + 2791 Vp2e — Byl Vo2b »
Bs = By vwan — By1ver (Byze + Yw2e) — Yori (Byad — By2e)
By = Byt Yp2a — Byt (Y1 By2o + Vo1 Yeze) + Vo171 (By2d — By2e) (9.4)

or inserting one loop results this gives the conditions

ByZa, =24 Yo2a > /3y2c = 2’7¢>2b — Yé2c > 463/20 + ﬁde - ﬁer = 16’7¢2a - 4'71020 )
Byab + Byae = 4 (Vyp2a + Yp2v) — 2 Vap2c - (9.5)

The non planar 8,2 is not present since the associated vacuum graph obtained by joining
the external lines is vertex transitive.

For ¢ = 3 there are, for a general renormalisable fermion scalar theory 49 5 loop diagrams
for A (6 are vertex transitive) and for Ty, there are 33 distinct contributions for Ty, which
are symmetric and 20 with no symmetry. (9.1) then generates 152 equations which reduce to
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42 conditions on the SB-function, anomalous dimension coefficients. We consider first relations
for non planar contributions to the S-function and anomalous dimension where there are
7 relations due to the vanishing of

C1 = Byszw — By3z » Co = By1(Byss — Bysp) — Y1 (Byss — Bysa) »

Cs = By1(Bysg — Byss) + (By2da — By2e) By2s »

Cy = By1 Yeap + Y1 (Byss — Byss) — Yw2e By2r »

Cs = By1 Byss + Y1 (Bysg — Bysr) — By2e By2f »

Co = By1 Ve3m — 161 (Bysg — Bysa) — Vo2 Byas »

C7 = By1 Byas — V1 (Bysg + Bysi + Byss — Bysa — 2 Byss) — Byav Byay - (9.6)

For the planar three loop contributions there are 35 conditions in total. For those correspond-
ing to contributions involving A there are 14 corresponding to the vanishing of

D1 = g1 By3f — 37824 Br2g » Do = 41 Byai — 3Yp2a Br2g »

D3 = vy1 Byse + Vo1 Y36 — By2a Yop2a »

Dy = vyp1(Bysg — Byak) — By1 1y3b + By2a Yy2c

D5 = 27941(Bysp — Byze) — 37420 (Brac — 2 Br24)

Dg = 2(741 V$3a — Bria V3b) + 3 Vp2a Bazs »

D7 = By1(Bysg — Bysn) — By2a(By2a — Byz2e) ,

Dg = By1 Bysd + 161(2 Bysg — Bysn — By3i) — By2a By2b ,

Dy = By1 Bysj + Y1(Bysh — Bysi) — By2a By2c
D10 = 2 By1 Ve3¢ — 2761 Bysh + 3 Bats Byza — By2a(By2s + 27p2c) + 6 Y924 By
D11 = vp1(Ye1 By3a — By1 Y3a) — Yé2a (V1 By2b — By1 Ye2a) 5
Do = o1 Y91 (Bysh + Bysk) + 37620 (By1 Baze — Baiv By2e — 2 Vg1 Brzf) »
D13 = 2751 (V1 Byse — Ba1b Yo3b + 2751 Vo3e) — Vo1 (V26 By2a — 6 Vp2a Baze)
D14 = By1(7e1 Byse + 2 Bata Vo3¢ — Batb Vo3a) — Vo1 Bata By3n

— 3 By1 Vé2a Brad — Brta(By2a Yo2¢ — 3 V24 Brzy) - (9.7)

Of the remaining 21 there is one relation which has total loop order 4 involving the vanishing of

D15 = By1(Bysy — Bysk) + Yp1(Bysi — By3a) , (9.8)

and otherwise we have, for total loop order 5, 15 relations enforcing the vanishing of

Dig = Byt Vs3a — Byt ¥o1(2 Byst + Ve3i) + 2V61° Byse — 2Vp2¢(By1 Yw2a — Vo1 Y2 -
D17 = By Ve3e — Byt Yo1(Bysn — Byzo + Ve31) + 2761 (Bysd — By3q)
— Yo2e(By1 By2s — 27¢1 By2d) »
Dis = Byt Ve3g — 2 By1 Vo1 Bysa — Byl Vo1 Ve3i + 2 Vo1 Vo1 Byse
— 29g2¢(By1 2o — Vo1 V2e) 5
Dig = By vwse — Byt (Vo1vwst + Yot Byst) + Vo1 Vo1 Byse
— Y1 Yp2a(By2d — By2e) + Yp2e (Y1 By2s — 2 Byt Y2a + 2761 Yo2c) »
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Doy = Byt Yy3g — Byt Yo1(Bysu + 27e3n) + 2741 Byse + 2 Byac (1 By2e — Byt Yp2a) »
Dot = Byt vy3; — Byt o1 (Bysa + Yeat) + Yori Byse — Y1 ((By2d — Byze)vwab + By2e Yo2e) »
Doy = By Ywso + By1 Y1 (Bysh — Bysi — 2Vwsm) + Yot (Bysim + Bysi — Bysq — Bysi)
+ Yp2c (Vo1 (By2d + By2e) — By1 By2e)
Dog = Byt®Bysp — Byt Y1 (Bysh + Bysz) + Byt Ty1(Bysn — Byso)
— Vo1 Y1 (2 Bysd + Bysi — Bysi — 2 Bysg) — By2e(By1By2p — 2 V61 By2d) »
Doy = By (Bysn — Bysq) — By1 ¥61(2 Bysd — Bysi — Bysn)
+ (By2d — By2e) (By1 By2b — 271 By2d) »
Doz = Byi*Bysy — By1 Y1 (2 Byss + 2 Bysh — Byst — Bysj)
+ Y12 (2 Bysd — Bysi — Bysm — 2 Bysi + Bysg + Bysi)
— By2e(By1 By2e + Y1 (3 By2d — By2e)) + (3 By2d + By2e) (By1 Yp2b — Vo1 Yop2e) »
Dag = By1* (Byse — Bysy) — Byt Yo1(Bysd + Bysf — Bysm — Bysn)
+ (By2d — By2e) (By1 By2e — Y1 (By2d + By2e))
Doz = By* (Bysu + 27635) — 2 By1 Y1 (Bysw + 2Ve3k + Ve31) — 4 By1 Ve1 Bys;
— 47941 71 (Byaf — Bysm — Bysa + By3q)
— 2 Byac(By1(Byas + 27p2¢) — 2741 By2d)
+ 4(Byad + By2e) (By1 Yp2a — Y1 By2b — Y1 Yorze + Yor1 Yo2c) »
Das = By* (Bysa + 2Vusn) — By Y1 (Byse + 2 Bysj + 2Vusk + 2 Vp3m)
— 29412 (Bysi — Bysm — Bysn + Bysi)
+ By1( = Byad + 2 By2a Yy2p — 2 By2e Ypac)
+ Y1 ( = By2e(By2d — By2e) + 2 Byze Yip2c) »
Dag = Byt (Byst + 27p3r) — 2 By1 Y1 Bysn — Byt Vo1 (Byse + 2 Y3k + 2Vp3m)
+ 2791761(2 Bysd — Byai — By3q)
— By1(By2s(By2c + 2 vp2¢) + 2 By2d Vo2a) + 2741 Byav(By2da + By2e)
+ V61 (6 Y 2¢ By2d + By2e(By2d — By2e))
D3y = By1 V61 (Bysb + Bysj) — By1 Y1 (Bysn + Bysr)
+ Vo1 Y1 (By3d — Bysf + Bysi — Bysi — Bysg + Bysi)
+ (By2d + By2e) (2 By1 Yp2a — Y1 By2b — Y1 (By2e + 2p2¢)) 5 (9.9)

and finally 5 with loop order six

D31 = Byt® Yyse + Byt® (Yo1(Byst — Yw3n) — Vo1 Bysm)
— By1 Y1 ¥61(2 Bysn — Bysv) + By1 Vo1 (Byss — Byse + Byss — Yusk)
+ 7612 Y1 (3 Bysd — Bysin — Bysn — 2 Bysq + Bysi)
+ By Yp2a Yo2e + Byt Vo1 (Vw2a By2d — Byas(Byze + Yp2e)) — Byt Y1 Vo2e Byan
+ 761 (Yp2e(Byad — Byze) — 2 Byze Byze) + Vo1 Vo1 By2s Byze »
D32 = By Yoan + Byt w1 Bysu — By1 Vo1 Vo1 (2 Byss — Bysi + Bysz) — 2 Byt i (Byse + Vo3k)
+ o1 11 (2 Bysd — 2 Bysf — Bysi + Bysm — Bysq + Bysi)
— By1 761 By2é — Byt w1 (2 By2e(By2b + Vo2e) + Yw2a(By2d — By2e))
+ Vo1 Y1 (Vo2e(By2d — By2e) + 2 Byac By2e)
+ 71 (By2o(By2d — By2e) + 2 Byze Vo2e) »
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Ds3 = Byi* Yy3i + Byt ve1 (Bysa — Bys= — Yust) + Byt Yo (Byss — Bysj — Yesk)
+ 71 (= Bysd + Bysm + Bysi — Bysi)
— By1 Vw1 (By2d + By2evze + By2a vwas — Vw2l ) + Yot (By2e Byze + 2 Byad Yoae) »
Dsy = Byi* Yysa + Byt (Vo1 Byst + Vo1 Bysa) — Byt Ye1 Y1 (2 Byse + Bysi + Bysy + 2 vwsk)
— Yo1 Y1 (3 Bysi — Bysm — 2 Bysn — Bysg + By3t)
— By1 Y1 By2e(Byze + Yp2e) — Byt Vo1 (By2n(2 Byze + Yy2e) + Yp2a(3 Byad — By2e))
+ 761 101 (By2¢(3 Byad — Byze) + Y2e(5 By2d — By2e)) + 271> By2b By2d
Dss = Byt Yoss + Byt (1 (Bysu — ¥63i) — 2761 Bysz) — 2 By Vet (Bysv + Vosk)
+2 By1 Y61 1 (Byse + Byt — Bysz) — 2761 1t (Bys7 — Bysr — Bysm + By3q)
+ 2 By1 Y1 (Vo2e Yp2e + Yor2a(By2d + By2e) — By2e(By2s + Vp2¢))
— 2961 Y1 Yo2e(By2d + Byze) + 2751° (Vo2 Byze — By2o(By2a + Byze)) - (9.10)

To satisfy (9.1) with three loop S-functions it is necessary to include contributions to
v as in (2.4) and (3.3). The consistency relations require

2 By1V¢3c = — 3 Br1b Bysa + By2a By2w »
2 By1v¢3; = — By1 Bysu + Yy1 Bysv + 2 By2w Byac
2 By1(By1 Vy3n — Y1 Vy3m) = — By1(By1 Bysa — 11 By3e)
+ Y1 By2c(Byad — By2e) + Byt Byaé
2 By1(By1vysyr — Yg1 Vysm) = By1(By1 Byst — Vo1 Byse)
+ 761 By2c(By2d — By2e) — By1 By2n By2e - (9.11)

Together with (7.19) these suffice to determine the results in (2.5) and (3.4).

9.1 Supersymmetry reduction

For the reduction as described in subsection 7.2 the consistency relations reduce to just one
at two loops given by the vanishing of

So = By1 7024 — 2701 (Py2a + Yo2B) (9.12)

and at three loops for planar contributions there are 7 relations obtained by setting to zero

S1=By1(Byse—Byar)—vs1(Bysu —Bysi),

So = Py1(28y34—PBysc—2va3p+4Ye3E)+2701(Bysr — Py sc+ By 3k — Ve3¢ +2Vae3H) s

S3=Py1(Bysa+re3e) —ve1(Bysp—Byse+Pysr+Pysc+re3a)
—By24(By2a+vs2B) +Py2B V024

S1=By1(ve3a+7938) +791(By3a—2By3p+Pysc—2703D +2793E —Vo3F)
—Y224(2By24—"22B)

S5 = By1? Bysa—By1701(2By3p —Bysr+Bysc) +2701> (Bysr— Byss)
+By24(27818y28—Py1Py24),

Se =2 By1*ve38 —By17e1(2Bysa—Bysc+27e3p) +27012(2 By 3p — By 3k +7036)
—2701(By 24>+ By 2B V024) ,

S7 = By12va30—2 By 1701 (Bsc+7a3r) +4701° By 3k — 4781 By 24 Yo25 =0, (9.13)
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and for the non planar diagrams just 2

Ss = By 1Bysr — Ya1(Bysn — 2 By30) — 2 Pyac Pyaa,
So = By1vesr + v1(Bysm — Byso) — Byac Yo2B - (9.14)

10 Scheme variations for scalar fermion theory to three loops

The coefficients appearing in the expansions of the S-functions and anomalous dimensions
for a general scalar fermion theory are in general dependent on the choice of regularisation

scheme. At £ loops possible scheme variations in fyd,(@), *m(@), By(e), B\ are determined in terms
of arbitrary parameters related to the expansions of ’y¢(f*1), fyw(zfl), By(efl), B\~ This
depends on preserving the form of the functions B, ~ in terms of contributions corresponding
to 1PI and 1VI diagrams. Labelling the coefficients « in the expansion at ¢ loops by g, /¢, r,
where here g = ¢, 1, y, A, the general forms of the variations for ay = oy, with o — «y for

g=¢, Yand a — §for g — y, A, are shown in appendix E to involve a sum over contributions

X

/ !l ! " " pll I
q.q" = _Xg”,g’ = agl eg// — Eg/ O[g//, g =g ET y g =g E o, (].0].)

where {¢,} are arbitrary parameters, so that

dag= > N9 Xy g s (10.2)

sy
9.9

>
Yy e —

1 1

and Ny99 = —/\/’99//9/ are integer coefficients. Of course one loop coefficients are scheme
invariant and higher loops coefficients corresponding to primitive diagrams, which have a
different topology and do not lead to integrals which have subdivergences, are also scheme
invariant. Any e such that for a given /¢

!

> eINGT =0, (10.3)

g, U=t

gives rise to a linear ¢ loop scheme invariant »_  e9ay.
At two loops there are 10 possible X’s but only 7 appear in scheme variations as X1 a1s,

Xy1.a1a> Xy1,a1a, are not present, so we have

V20 = 0Vyp2b = 0By2a = 6By2d = 0Py2e = 6By2r = 0Br2a = 0fr2g =0,

Vg2 = 4 Xy101, 0Vg2e =2 X161, 020 = 2 X101 5 OVp2e = 2 Xy101,

0By =2 Xp191, 0By2e =2Xy1y1, 0B =4 Xp1 010y Br2e = 2 Xo1pMa s

0Br2d = Xatvatar 08x2e = 2 Xy 16, 08x2r = Xy1 210 - (10.4)
The cases y2a, y2f, A2g correspond to primitive diagrams and so the variation is necessarily
zero. Apart from those coefficients which are individually invariant there are four linear
scheme invariants.

At three loops the results for scheme variations separate into different groups. There
are six primitive three loop diagrams for the Yukawa S-function so that

0By = 0By31 = 0Py3w = 0By3z = 0By3g = 0By3: =0, (10.5)
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and there are cases where the individual terms are scheme invariant

0vy3; = 0By3f = 0Bysi = 0By 3 = 0. (10.6)

For those diagrams containing the non planar subgraph corresponding to 3,2y the varia-
tions are

0Byss =2 Xg14y2f, 0By3s = 0By3p = 2 Xy1,y27
0Vp3m =2 Xyap01,  OVp3p =2 Xyapyt, (10.7a)
0Bysg = 0Byss = Xy2ry1.  OBysr = 0Byss = 0Bysa = Xy1y2r - (10.7Db)

There are evidently 3 linear invariants from (10.7a) and 4 more from (10.7b). Otherwise for
the variations of the anomalous dimension contributions arising from planar diagrams we have

0Y¢3a = 6 X 14,624 » Y36 = 6 X41,624 » 0Yg3e = 3 Xa1b,62a + Xy2a,01 5
Vp3d = 2 Xg1,620 + 4 Xy2a,01 Vs = 4 Xy1,g20 5 Vp3g = 2 Xy1,p26 + 4 Xyabe1
0Vp3n = 2 Xy1,626 (10.8a)
Vp3e = 2 X162 + 2 Xyav 91, 0Yp3i = 4 Xyacp1 + 2 Xy1,620 5
0v3j = 4 Xyt g2c + Xy1,¢20 + 2 Xyac o1 Y3k = 2 Xy1,¢2¢ + 2 Xy2e 61
0vg31 = 2 Xy1,g2c + 4 Xyod,e1, (10.8b)
and
0vpsa =2 Xg2a,01,  Ovpse =2Xyau1,  0vp3e =4 X124
0Yp3d = 2 Xop1 20 + 2 X1 926 0Vp3e = 2 X192 + 2 Xoyp2a,1 5
0vp3g = 4 Xyt p2a + 2 Xgopy1 0vp3i = 4 X142 » (10.9a)
0vy3r = 2 Xg1,92c + Xy1,92a + Xy2v,01 0Vy3h = 2 Xy192a + 2 Xo2c,1
Ivpak = 2 Xyt g2c + 2 Xy2d.1 V31 = 2 Xyoept + 2 Xyt 926
0Vp3m = Xy1,p2e + Xy2e,01 + Xy2d,01 5 0Vp3n = 2 Xy1,p2e + Xy1,920 + Xy2c,01
3o = 2 Xy1pae + 2 Xyaep1 - (10.9b)

The remaining scheme variations are then

0By3b = 0By3c = X1a,y2a » 0By3d = 0By3e =2 X 41,424 » 08y3j =2 Xy1 24

6Bysw = 0Byss = Xa1by2a. (10.10a)
0By3a =2 Xg2a,y1 » 0By3g = 0By3n = Xy2a,y1» 0By3i = 0By3k = Xy1,42a ,

0By3m =4 Xg1,2, 0Byan =2 X1 y2e + Xy2by1 5 0By30 =2 X 41 y2e +Xy1,42b

0Py3p =2 Xg1,y2c+2 Xy1 2, 0By3q =2 Xp1,y2d+Xy2b,1 5 0Bysr =2 Xo1,y2d+Xy1,92
0Byst =2 X1 42 +2 Xy2a,1 5 0Byzu =4 X1 yov+2 Xpop 1,

0 Bysv =2 X1 y20+2 Xp2ey1 5 0Bysy = 0By3. =4 Xy1 42,

0Bysa =2 Xy1,y2c+2 Xyopy1 , 0By3b=2Xy1 y2e+Xy1,42¢ 0Byse =2 Xy1 y2e + Xy2cy1,
0Bysd= Xy1y2e +Xy2d,1, dByse =2 Xypoae 1 +2 Xyt 2,

0Bysh = 0By3i =2 Xy1,y2d+Xy1y2¢ 0By35=06By3k =2 Xy1,y2a+ X291,

dByzm = Xy1 y2a+Xy2e,y1 5 0By35 = Xy1,y2e +Xy1 y2d » 0By3t=2X 1,424 - (10.10Db)
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FEach variation is necessarily such that the number of fermion loops is conserved. The
variations in (10.7a), (10.8a), (10.9a) and (10.10a), apart from that for (3., correspond to
the restriction to the U(1) invariant case. The 21 variations in (10.8a), (10.9a) and (10.10a)
involve 14 different X’s and there are 7 linear invariants. The 40 variations in (10.8b), (10.9b)
and (10.10b) involve 23 different X’s but there are 18 linear invariants since the equations

are invariant under

0 X g1 92c = 0 Xy120 = P 0X g1 y2e = 6 X1, g2 = 0 Xy1,.02a = —P 5 0X 1,620 = 2p.
(10.11)
Individual coefficients in the expansions of § or -y, besides those corresponding to primitive
diagrams, are scheme invariant when the associated vertex or propagator subgraphs are a
nested sequence all of the same form. Examples appear in (10.6). In this case yy1, Yyp2p, Yo3;
correspond to rainbow diagrams and 3,1, 8y2¢, By3f correspond to vertex ladder diagrams. For
these cases there are exact all orders results [77, 78] obtained by solving quadratic equations

1,2 1,4 1,6 5 ,8
’Y¢|ralnbow:m_1:§ —gy +Ey —my —i—’
BylYlipaaer = VI T4Y2 — 1 =297 = 29" +49° —103° + ... (10.12)

Further sequences of nested diagrams are also associated with 3,1, 8,24 and By3i or By 37
so these are necessarily scheme invariant.

For the restriction to the U(1) theory discussed in section 6, the scheme variations
in (10.4), (10.8a), (10.9a), (10.10a) consistently restrict as they only involve the v and (-
function coefficients relevant in that case. The sequence of nested diagrams for 'y¢|rainbow
remains in this case. The scheme variations may be restricted to N' = 1 and N' = 3
supersymmetry. They are consistent with the various constraints obtained earlier so long as

all lower order conditions are imposed. For the latter case at two loops

e =2Xyv1e1, Ofvea=2Xe1y1, Ove24 =0Byap = 0fyec =0, (10.13)
and at three loops individual scheme invariant coefficients correspond to
0vesc = 0Bysn = dPByss = dPysp = 6Pysq =0, (10.14)

with Bysp, Bysq arising from primitive diagrams while ¢3¢, along with v¢1, ye24, forms
part of a sequence of nested rainbow diagrams. For planar contributions

Vo34 = 26783 = 4 Xo1,924 , dve3p = 4 Xo1,02B + Xv1,024 + 2 Xyvoa,01,

0Va3E = 2 Xo1,028 + 2 Xy24,01, 0va3r = 4 Xoop,a1 + 2 Xy1,024 ,

Vosq =2 Xyi1.008 + 4 Xvop a1, Mosn =2 Xy1,028 +2 Xyvop a1,

dBys3a = 0Bysp =4 Xo1,y24, Bysc =4 Xo1,y2a +2 Xe24ay1,

0By3p = 0Bysa = 2 Xao1,y2B + Xv1,y24, dBy3e = 0Bysr = 2 Xo1,yoB + Xy2a,v1,
0Pysr =2 Xy1y2B, 0Pysk =2 Xyiyoa+2Xa2B Y1, (10.15)

and for non planar

0ve3r =2 Xyacoe1, OPysr =4 Xe1y20,
0Bysm = Xyiyac, 0Pyan =2Xyviyvaec, 6Byzo = Xvacyi- (10.16)
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From (10.13) there is one linear invariant, ye2p + Sy24. (10.15) contains 8 independent
X'’s and 15 equations giving 7 linear invariants whereas in (10.16) 5 equations and 2 X’s
lead to 3 linear invariants.

These results may be used to verify the invariance of the consistency conditions obtained
in section 8. The variations are either identically zero, using the antisymmetry of X, or
lead to antisymmetrised products of three X'’s,

Yy1,90,95 = Qg1 Xgo,g5 + gy Xgy g0 + gy Xgg g1, (10.17)

with g; = gif;r;. Given the definition of X in (10.1) necessarily Y, g, 4, = 0 and, from the
antisymmetry of X, 4,, there is the identity

g1 Ygo,95,90 — Qo Yg3,91,91 + Qg3 You,01,90 — ¥ga Yg1,90,95 = 0 (10.18)
and hence

Qg1 Yg3,03,00 — Qg Ygs,90,01 D Xga,a - (10.19)

Apart from linear invariants there are also possible quadratic invariants

Qn — HgngCkglagZ , KI192 — (9291 , (1020)
if k9192 is such that

Eg Hg19'/\/’g9293 — 919293 — plorg29s] ’ (10.21)
as then 6Q, = % 2 g1.go.gs FI9293 Yy, g5~ Higher order invariants are also possible as

demonstrated later.
Applying this for (10.4) there are two quadratic invariants obtained from Y1 y1,, and
Yy141,015- However as a consequence of (10.19)

Y1 Y1 Aan1b — BataYo1,01,010

= Y1 (Vo1 Xn1an1b + Baib X1 a1a) — Brta(Ver Xeaa1e + Bats Xo1,1) 5 (10.22)
leads to a further cubic invariant. At the next order from (10.7a), (10.7b) there are three
possible Y's, Y1 41,927, Yo1,41,92f Yi1,41,92f, Which would lead to three potential quadratic
invariants. Nevertheless these are not independent due to (10.18) and so there remain two

quadratic invariants for the non planar coefficients. From (10.8a), (10.9a) and (10.10a) we
can construct

Y¢17’¢1119’ g= QZ)QCL, ¢2b7 ¢2aa ¢2b7 yQCL,
Ys1 010,90 Yy1a10,9s YalaM1bg, 9= $2a, y2a, (10.23)

which would appear to give 11 quadratic invariants. These are not independent due to
the identity

Y1 (Vo1 Yatanib,g + Batb Yor 1a9) — Bata (61 Yu1,a16,9 + Br1sYo1,u1,9)
= g (Y1 Y1 xanis — Bata Yot,oi01) » 9 = $2a,y2a, g = Yg2q, By2a » (10.24)
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so there remain 9 quadratic invariants when U(1) symmetry is imposed. In the general case
there are additional invariants flowing from (10.8b), (10.9b) and (10.10b).

Yor,01,95 Yoiytg, Yoiylgs g = @2c, Y2c, y2b, y2c, y2d,y2e, (10.25a)
Y1419, Yoiylg, g = ¢2a, p2b, Y2a, Y2b, y2a. (10.25b)

These are not independent due to (10.18). In (10.25a) we may then reduce to two sets of 6
and in (10.25b) to one set of 5. Possibilities are further restricted by requiring results are
independent of p in (10.11) which leaves 16. There are then 11 independent Y’s for which
there is no constraint, a possible basis is given by

Yo1,91,62ar Yoru1,62e0 Yo1,u1,0200 Yol yl2es Yolyly2as Yolyl,y2b
Yy1,y1,02es Yorunh2d: Yo1p1,y2d: Yo1,u1,2es Yor,y1,02e s (10.26)

and 5 involving pairs of Y’s formed from Yyi 41,4 or Yy141,9, 9 = ¢2¢, y2b, Yy141,4 OF
Yo1,41,90 9 = ¥2¢, y2¢, Yp141,9 OF Y1419, 9 = ¥2a, $2b which are p invariant. To achieve
this (10.11) implies

—0Yp1,91,02c = 0Yop1,91,920 = —0Yp1 41,920 = Vo1 P 5 0Yp1.01,020 = 2761 P
—0Yp1 p1,02c = 0Yp1 91 92¢ = —0Yy1 1920 = V1 5 OYyp1 1,620 = 2Y91 P
—0Y51 1,02c = 0Yp1 41,92 = 0Yyp1 41,02 = —0Yy1 41920 = By1 p- (10.27)
In (10.15) Yo1y1,4, g = ®2A, P2B, Y2A, Y2B, lead to four quadratic invariants and
from (10.16) Yg1y1,y2c to one more.
The various consistency conditions must be scheme invariant. We here check this by

reducing their variations to sums of Y’s which then show how they can be expressed in terms
of quadratic invariants. At lowest order the variations of (9.4), using (10.4), are just

(sBl = 0, (SBQ = 4Y¢17¢1,y1 5 533 = 0, 5B4 = Qﬂyl Y¢17w17y1 5 (1028)
and for the non planar conditions (9.6) at the next order from (10.10a)

0C1L =6Cy =90C3=0,
0Cy = —(5C5 = 2Y¢1’y1,y2f, 606 = —(507 = 2Y¢17y17y2f, (10.29)

and for the variations of (9.7), (9.8), (9.9)

0Dy = 0Dy =0D5 =0D7 =0, 0D3=—-2Y41 91420, O0Ds=0Dg=—2Yy1 y142a,
0Dg = — 12Y1 g2a01a» 0Ds = =2Y41 y192a5, 0D10 = 2 Y51 41,924 + 6 Y20 41,210 5
0D11 = 2941 Y51,62a,91 — 2 By1Ys1,02a,01,  0D12 = —69924 Y1 41,010 5
0D13 = 12941 Ygoa w1016 — 12 Bats Yo1,¢2a,01 + 4 B1 Xg1 91,
0D14 = Vg1 Yy1,92a. 010 — 3 V620 Yy1 10,010

+ 6 By1 Yo2a,x1a.016 — 2 By1 Yo1 y2a.01a + 2 By2a Yo1,y1.010 — B1 Xy1 214,
0D15 =0,
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0D16 = 4741 (Yor,y1,m2¢ + Yorpoey1) + 2 Byt (Yor,e261 — 2 Yo1,42a,91)
— 4 vp2e Yor,p1,1 — 2 B2 Xg1 1,
0D17 = — 4951191924 + 2 Byt (Yor,g2e1 + Yory1,92) 5
0D18 = 4791 Y1 ,y1,92¢ + 4701 Yo1,02e1 — 2 Byt (2 Y1, 926,01 + Yoobp1,01) — 2 B2 X141
0D19 = 2741 Yyp1 p2c1 + 2791 Yo y1h2e + 2 By1 Y1 y2v 1
— 2(yy1(By2d — Byze) + 2 Byr Yo2e) / Byt Y111 + 2(Bs X191 + Ba Xy1,491) /By
0D20 = 4yp1 (Y1120 — Yorep1,91) + 2 By1 (2 Yy1,02a1 + Yoobp1,41)
— 4 By2cYp1,p1,91 +2Ba Xy141,
0D21 = 291 (Yy1,p2ey1 + Y1 y192e) »
0D = — 2vy1 (Yyr,y1,92a + Y1 y1,92¢) + 2 Byt (Yor,p2ey1 + Yory1,2e) »
0D23 = 4961 Yp1,y1,92d — 2 Byt (Yery1,926 + Yory1,2¢) »
0Das = 2 By1 (Y1, y102d — Yoi1,92¢) »  0D25 = 4791 Y1 1 y2e — 4 Byt Yop1 1 y2¢ »
dD26 = 2 By1 (Yip1,41,92d — Yop1,41,92¢) »
0Do7 = — 8 By1 (Yor,01,92d + Yorewty1) — 8 V1 Yo1,y1,92e + 4 Byt (Yo1,y1,92¢ — Yop1,51,920)
+ 8(2 By2d + By2e) Yo1,01,01
0D2g = 4 By1 Y1 w2ey1 — 2791 (Yory1,y2a + Yor,y1,92e) »
0D29 = 2 By1 (Yy1y1,20 — Yory1m2e + 2 Yo1p2ey1) — 2761 (3 Yyry1,92d + Y1 y1,92¢)
+ 4 yy1 Yor,y1,92¢ — 4 By2d Yor,91,491 5
6D30 = 2 By1 (Yo1,01,92d + Yo1.61,92¢) + 2 (By2da + By2e) Y1, 41,01 »
6D31 = 4 Byr® Y1 pavat + 2 Byt vt (Yotp2ent + Yoryimze) — 271 Yt y1y2e + 4 Bs Xyt 1
6D33 = — 2By Yaopp141 — 4 Byr et (Yor,u1,m2e + Yt y1,y25)
— 21 (By2a — 3 By2e) Yo1,p1,91 — 2 B2 By1 Xy11
6D33 = — 4 Byl® Yyob w11 + 4 By1ver (Yorwzet — Yory1420) + 8 Byt Vo1 Yol yly2e
— 41 Y1 g1 42e + 4791 (By2a + Byze) Yor,p1,91 — 4 Ba Byt Xyt g1
6D34 = 2 Byt® (Yor.p2by1 + Yorw2ay1) — 2 By1Ve1 Yot y1y2e — 2 By1 Vo1 Yol .y1.y2e
= 2913 By2d — By2e) Y1011 +2 B3 Xg1 g1 +2 By Xp1 41
6D35 = 4 Byr® Yar.2a01 — 2 Byiver (Yoryim2e + Yorewi ) + 4 Byivor Yoiy1m2
— 291 (2 Y1 1,20 + Yot g12e) + 4 V61701 Yo1, 91,52
+ 2 (Vg1 By2d + Byt Vo2¢) Yo1,91,91 + 2 Ba Xg141 - (10.30)

For the constraints obtained in the reduced N' = % theory listed in sub section 9.1,
corresponding to a ®? interaction, then with (10.13), (10.15), (10.16),

050 =051 =05 =0, 0S3=-2Yp1y1,y24, 0S1=—6Yp1y1524

0S5 = —4 By1 Yo1,y1,y24 + 4701 Yo1,v1,v28B,

0S¢ = —4 Py1 Yo1,y1,024 + 8701 Yo1,y1,028 + 450 Xo1,v1 5

057 =871 (Ya1,v1,y24 — Yo1,v1,82B) ,

058 = —4Ya1y1,v2c, 059 =2Yp1y1yv20- (10.31)
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11 Conclusion

The detailed results given here for S-functions and anomalous dimensions correspond to a
MS regularisation scheme. As is well known attempting to extend supersymmetric theories
away from their natural dimension is problematic and generally inconsistent and these issues
affect any variant of dimensional regularisation [79-82]. For N’ = 1 supersymmetry and scalar
fermion theories, without gauge fields, there are manifestly supersymmetric regularisation
schemes and potential problems with MS arise only beyond three loops so long as the
normalisation of fermion traces is chosen appropriately. These issues become significantly
more severe for what we term N = % symmetry in this paper. Traces of three or more odd
numbers of three dimensional Dirac gamma matrices are potentially non zero due to the
appearance of the three dimensional antisymmetric symbol. This is not relevant for a fermion
loop with three external scalars, due to momentum conservation, but such contributions are
present if a fermion loop has five external scalar lines. Of course analogous problems with s
are present with perturbative calculations using MS for chiral fermions. Such problems also
arise in four dimensional chiral gauge theories for loops with two external vector lines and two
external scalars and such loop diagrams contribute at four loops to 1PI contributions with
two external vector lines and also to the Yukawa [-function [83]. In [83] it was shown how
consistency with the a-function helps resolve some analogous ~s issues. In three dimensions
similar potential problems arising for five vertex fermion loops as sub graphs occur at four
loops in the Yukawa vertex renormalisation where the relevant diagrams are of the form

: (11.1)

together with various permutations of the internal vertices on the fermion loop. Such diagrams
are primitive since there are no subdivergences when evaluated in four dimensions with some
prescription for the contraction of two three dimensional € symbols. A procedure for obtaining
such contributions was described in [15]. However starting from four dimensional Dirac or
Majorana fermions contributions related to (11.1) are absent [84]. The four dimensional
fermion splits into two three dimensional fermions whose Yukawa couplings have the opposite
sign, as shown here in appendix A.

In terms of the discussion of scheme changes and forming scheme invariants an alternative
though equivalent approach is obtained within the framework of the Hopf algebra approach
to Feynman diagrams [85-87]. The requirement of scheme invariance is identical with finding
linear sums of graphs such that the Hopf algebra coproduct is cocommutative. A potentially
interesting possibility is whether there is any extension of the Hopf algebraic approach to
deriving consistency conditions, such as those considered here in section B.2, which might
avoid some of the rather tortuous analysis required here and in [9].

The results obtained here suggest that there are potentially many interesting fixed points
in scalar fermion theories once more than three scalar fields are allowed and the condition
that there is just a single Yukawa coupling is relaxed. Finding a large n; expansion for
such theories may be tractable.
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12 Note added, fixed points with one scalar or one fermion field

Since this paper was finished Pannell and Stergiou [88] have investigated in detail possible
fixed points in fermion scalar theories with low numbers of scalars and fermions. Many
possiblities were discovered. Here we illustrate some results for either one scalar or one
fermion which can be obtained quite easily.

For a single scalar field and n two component real fermions the couplings are just A
and y a real symmetric n X n matrix. For four dimensional Majorana fermions n should
be even. At one loop order the Sg-functions in 4 — € dimensions reduce, with the usual
rescaling to eliminate factors of 4w, to

By= —gey+3y° +5ytr(y?),

Br= —eA+3X2+2Atr(y?) — 12tr(y?) . (12.1)
To solve 5, =0, By = 0 we set ¢ = 1 and diagonalise y by an O(n) transformation so that
it has diagonal elements y;, i = 1,...,n. The Yukawa S-function then gives

1 n
_ 3 . —3 2 2 _ _
%—6%+%R,R—sgﬂ“ = Y= B (12.2)

Substituting in 8y = 0 then gives

A:L(6—ni¢n2+132n+36). (12.3)

6(n+6)

The stability matrix becomes

Or\Br OxBy,
M = J 4
(%m M) (124)

where y;, A are determined by (12.2), (12.3). Without any loss of generality we can take

Yyi =
" Vn+6 -1, di=p+1,....n

Then M becomes for the two possible solutions for A in (12.3)

1 1, i=1,...p,
Si, Si:{ b , p=0,...,n. (12.5)

1 +vn? + 132
_ Vn2 +132n + 36 0 . (12.6)
n+6 * 605 + ;5
The eigenvalues are then
in%rﬁ Vn2+132n+36, 1, ni%. degeneracy n — 1, (12.7)
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where the eigenvectors for the last two cases can be given by

-1, 1=2,...,p ) )
vi=8;, vi=1,v;= , v =0,7#1,4. (12.8)
1, i=p+1,...n

The fixed points corresponding to (12.5) are invariant under O(p) x O(n — p). Each point on
the orbit corresponding to the coset O(n)/O(p) x O(n — p), of dimension p(n — p), generated
by the action of O(n) defines an equivalent theory.

For one fermion and ny = m+ 1 scalars then by an O(n;) rotation the Yukawa interaction
can be considered to involve just one scalar ¢ while the remaining m scalars ¢, correspond
to a purely scalar theory formed by quartic polynomial in ¢ together with interactions
involving o. If the maximal O(m) symmetry is preserved then there are three couplings A\;
corresponding the O(m) invariant quartic (p?)2, Ag for o4 and g for a p?0? interaction. For
g = 0 there are two decoupled theories. The resulting lowest order S-functions take the form

Bay = —eM + (m+8)A\ +¢2,

By = —5)\2+9)\§+m92—|—2y2)\2—4y4,
By= —cg+ ((m+2)M\ +3X)g+44¢° +1y%g. (12.9)

For y = 0 this is just a biconical theory, for Ay = Ay = g there is an O(m + 1) symmetry.
Other fixed points with g non zero are irrational and have two quadratic invariants, The
Yukawa S-function gives at a fixed point y? = % For m = 4, ¢ = 1 there is a rational solution
Al = 2—11, A =0,¢g= %, otherwise the g # 0 solutions are irrational. For the scalar invariants

S=3mm+2) A2 +9\"+mg?, ao=m(m+2)\ +3X\+2mg. (12.10)

For the first few values of m these take the values, with ¢ = 1 and g,y non zero,

m S ap

0 5% 7

1 0.29635 0.23347 0.8081 0.6518

2 0.42391 0.28682 1.2569  0.9066

3 0.55581 0.34503 1.7530  1.1996

4 0.68552 0.41049 0.66475 22 22841 1.5422 23582 18

(12.11)

Note that % ~ 0.65306. As a function of m, S is depicted in figure 14.
There are bifurcation points close to m = 4, 6 where two fixed points are created or annihilated.
At lowest order the stability matrix eigenvalues can be determined from the 3 x 3 matrix
determined from fy,, B,, By analogously to (12.4). For m = 1,2 the solution corresponding
to the first case in (12.11) has three positive eigenvalues and is therefore RG stable. For
m = 4 the two additional solutions each have a small eigenvalue of opposite sign. These both
tend to zero as m approaches the bifurcation point, m ~ 3.965.
For m > 2 there are scalar theories with reduced symmetry which should lead to a ranged
of additional fixed points with a Yukawa coupling to a single fermion.
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Figure 14. Scalar invariant S (12.10) as a function of the number of scalars m.

A Majorana fermions and their reduction
For a spinor field ¥ its conjugate V¥ is defined by
U =04, (A1)

where A satisfies (the choice of both signs is a matter of convention, they are chosen here

for later convenience)
AyPATY = — (4T, At =—A, (A.2)
with, for d = 4, the 4 x 4 Dirac matrices here defined by
{4y =2n0"1, nt = diag.(—1,1,1,1). (A.3)
2

Taking v5 = i7%y'92+3, then AysA~! = —57 and 752 = 1. Under a reflection in the z'z

plane, charge conjugation and time reversal

= 7 7 n—1
v ?3) \I}rg = R\P|13H,x3 ) v ?3) \I’TB =VR ‘m3~>7{z3 ’
\I/C—> \IICZC\I/T, ‘ijc—> \I/c:_\DTcila
)\ ?> U, = T\Ij‘x0_>_;c0 , v ?> \T’t =0 T_l‘xo_> 20 (A.4)

where T is antilinear and

3

s =0,1,2 K =
Ry R={" 0 L Chre=—(F,  Tyrr=dT ,
-7 u=3

with C 71y C = 57, T '45*T = ~5. In general

cT=—c, ACA=-C', AWTA=-1T71  A'RTA=R1'. (A6
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Using these results R,T can be given by

R=ivvys, T=0C"A~% = 7TT*=-1, (A.7)
and W =7 RUV=U T _—— —CC TV =V, ¥ - TT*V = —W.

For a Majorana fermlon
U=y, (A.8)
and for present purposes we consider the Lagrangian
Lyy=—igUy- 00 —ilU MU —ilUY* Ve, (A.9)

with both M, Y* real, symmetric and [M,~#] = [V* +*] = 0. With the conventions (A.1)
and (A.2) ,CM]L = Luy.

For reduction to three dimensions a convenient basis is obtained by taking y* — F*
with, adapting [84, 89, 90],

540 : 0 —1
5/“ = <00 —6"“‘) y U= 071727 5—# = (7:0_270_37_0_1)7 5/3 = (Z OZ> . (A10>

Here 6%, —G* correspond to the two inequivalent two dimensional irreducible representations
for the d = 3 Dirac algebra. ¢icy = (—12,01,03) form a basis for symmetric 2 x 2 matrices.
For the d = 4 representation defined by (A.10)

010 (10 o193 (01
=7"9'4* = <0 _1> =17 = <1 0) , (A.11)
and
T TN 0 i) “lo-1)"
C—iitqpas = (02 0} po [0 to2) (A.12)
0 209 109 0

The representation in (A.10) can be related to the more commonplace chiral repre-
sentation by

- )
U@“U*:(.(_) w>, U%U_l:( 0>7 o' =(1,0), d"=(1,-0o),

1o 0 01
(A.13)
where
Uzl 03 — 09 09 — 03 ’ U_lzl 03 — 09 0903 — 1 . (A.14)
2 \o3o9 — 1 0309 — 1 2 \og — 03 0903 — 1
With (A.10) the spinor field decomposes into two d = 3 two-component spinors as

v <Z1> ;U= (Y1, =), Yo =tdion, Y1 =11, e =—vs. (A.15)

2
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a

Using the decomposition (A.15), and taking M — (7% 2), Y% — (yo yoa), (A.9) becomes,

Lap= —i5Y0m10%ab - 0thy — 5(U1 0502 + 12 05¢1)
— i $(Prmapy — Yamape) — i (1 y 1 — Yoy o) 9. (A.16)

For zero mass, m = 0, this has a Zs symmetry where 1 <> 9, ¢¢ — —¢®. This ensures
the cancellation of fermion loops with odd numbers of Yukawa vertices. For a symmetry
h=ly®h = y®, h™l6rh = 6* with h € Hy C O(ny) then in general there is a symmetry
Hjs but this extends to (Hps x Hpyy) X Zo when d = 3. For a single scalar this becomes
(O(ng) x O(ny)) x Zo when m = 0.

With conventions from (A.4)

(wl'r';;a wQTg) = (77/}17 _1’/}2)‘m3—>—x3 ; (&17‘3) 1;27"3) - (77;17 _1’/_}2)‘m3—>—$3 )
(11, o) = (io2t2, ioot)| o, Lo (V1r, Vo) = (—Wioe, —thrion)| o, 0. (A7)

Thus (A.16) is invariant under R3,7 so long as the time reversal 7 transformation is
combined with v <> 9, 11191 Eadhe i oyhor. If T is combined with ¥ <> ¥ the sign of
the mass term is reversed. However for a reflections R or Ry, corresponding to z! — —x!
or z2 — —z2, then instead 191 <> —1910s and the individual mass terms are not invariant
by themselves under either R or R, as expected for three dimensional spinors. The three
dimensional theory with just one two component spinor cannot have mass terms which
preserve 7 or R; invariance [91].

If the Yukawa interaction is modified to
Ly =5 V775 YU " = ~i 5 (1 y™h1 + b2y ih2)¢”, (A.18)

it is then necessary to include the four loop diagrams corresponding to (11.1). the symmetry
for d = 3 is enhanced to a subgroup of O(2ny), for ny = 1 the symmetry is O(2ny). This
prescription allows for fermion loops with odd numbers of Yukawa vertices but is not relevant
up to three loops. By including contributions corresponding to diagrams of the form (A.15)
it was implicitly followed in [15] in their four loop calculation. Nevertheless (A.18) breaks
Lorentz invariance for d # 3 though O(2,1) is preserved. Applying dimensional regularisation,
d = 4—¢, the one loop counterterms necessary when starting from (A.9) or equivalently (A.16)
are, for a single scalar o,

2
1 Yy 1T . = .z
Lgt) = (an)% (z Uy -0V —imUV + (00)* +6m?c? —iyTWo + %y204>. (A.19)

For the modified Yukawa interaction (A.18) the result becomes

y2

1 = = R
[,((:t)]modiﬁed: m(z Ty 9V —iWy305 0 — im U + 2((90)* — (930)%) + 4m?0?

+ % y U3y o + % 1> 0'4> . (A.20)

Besides breaking Lorentz invariance explicitly in the kinetic terms the counterterm has
different coefficients for the Yukawa and the quartic scalar terms. For a consistent flow it
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would be necessary to allow for modified kinetic terms for the scalar and fermion fields so that
the propagation velocity is different in the 3-direction from the 1,2 directions, bringing in two
new parameters consistent with the breaking O(3,1) to O(2,1). Whether the e-expansion
can be applied in this case is unclear.

An alternative possibilty, yet to be explored, is to take M — (’6‘ 1\04) and require
A > M > m for A some cutoff. This breaks Lorentz invariance more softly and should lead
to 19 being decoupled so as to generate an effective theory for ;. This non Lorentz invariant
theory can potentially be extended to N = % supersymmetry away from d = 3.

B Algebra of d and w tensors

The tensors defined by (8.7) and (8.14) satisfy identities which allow determination of

eigenvalues,

dabef dcdef _ _1 a(%ns((sac(sbd + 5ad5bc) _ 5ab(scd) + ewabcd + bdade,

ng—1
dabef wcdef _ wabef dcdef _ fwabcd + hdade,

wabef wcdef _ _1 - a/(%ns((;ac(;bd + 5ad5b0) _ 6ab5cd) + ¢ wabcd + y dabcal7 (B.l)

ns—

where a,b are as in (8.9). For consistency
ead =ha, fd =ba, fh=0e, %a:)ﬂ—l—eh—bf—ee/. (B.2)

The relevant eigenvalue equations necessary for obtaining the anomalous dimensions
¢? operators given general perturbative results are

dabcd ,Ucd = vab , wabcd UCd _ V’Uab , (B3>

for symmetric traceless v®. (B.1) then requires

" a, pv=fv+hu, V=ev+bpu+

Ns

p=ecv+bu+

noq/. (B4

Ns

As a consequence of (B.2) the last equation is redundant and then eliminating v leads to a
cubic equation for p whose solutions determine v. There are thus three possibilities u;, v;.
The associated degeneracies are then determined by

Sidi=5(ns—D(ns+2),  Y;dipi=Y;div;=0. (B.5)

For the examples of interest here the coefficients appearing in (B.1), besides a, b which

are listed in (8.28), are given by

y° e f h a b e
1 (n=38)(n+6)  (n=3)(n+6)(ns—1)  2n(ns+2)  3n(n=2)(n+1)(n+4) m n®—5n2+14n+24
: 27Tn In(ns+2) 3(ns—1) (ns—1)(ns+2) 6(ns—1)
3 2(n*-9) 2(n%=9)(ns—1) An(ns+2) 24n?(n?—4) 4 2n(ns+11)
: 27n 9n(ns+2) 3(ns—1) (ne—1)(ns+2) n 3(ns—1)
2(n+1) (n—8)(n+1)? 8(ns+2) 24(n—3)(n%—4) 4(ns+11)
4 27 9(ns+2) 3(n+1) (nt1)(ns+2) 4(n—8) 3(n+1)
n—1 (n—=1)%(n+8) 4(ns+2) 6(n?—4)(n+3) 2(n.+11)
5. o7 8(n.12) 3(n—1) =D (n.+2) 2(n+8) 3(n—1)
6 (n—6)(n+3) (n—6)(n+3)(ns—1) 2n(ns+2) 3n(n—4)(n—1)(n+2) m n34+5n2+14n—24
: 27Tn In(ns+2) 3(ns—1) (ns—1)(ns+2) 6(ns—1)

(B.6)
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Solving (B.4) and (B.5) gives

y® w 2 Lo d2 Vo 3 ds v3
1 (n—3)(n+1)(n+6) n?%(n+1) (n—3)(n%—4) 2(n?—4) (n—1)(n+4)(n+6) (n—1)(n+4)
: 6(ns+2) 2(ns—1) 3n(ns+2) T Thn.—1 - 6n(ns+2) ne—1
% (n—1)(n+2) 714 n(n—1)(n+1)(n+6) % n(n—3)(n+1)(n+2)
3 2n(n%—9) 2n3 2(n—3)(n—2)(n+1) _ 4(n—=2)(n+1) _ 2(n—=1)(n+2)(n+3) 4(n—1)(n+2)
: 3(ns+2) ns—1 3n(ns+2) ns—1 3n(ns+2) ns—1
n?—1 1 n?(n—1)(n+3) 1 n?(n—3)(n+1)
4 n(n—3)(n+1) 2n(n—23) (n—1)(n—8) _4(n—-1) _2(n+1)(n+2) 8(n+2)
' 3(ns+2) n+1 3(ns+2) n+1 3(ns+2) n+1
1 (n-1)(n+2) 5 n(n—3)(n+1)(n+2) 55 n(n—3)(n—2)(n—1)
5 n(n—1)(n+3) n(n+3) (n—2)(n—1) 7 4(n—2) . (n+1)(n+8) 2(n+1)
' 6(ns+2) n—1 3(ns+2) n—1 6(ns—+2) n—1
1 (n-2)(n+1) 2 n(n+1)(n+2) (n+3) & n(n—2)(n—1)(n+3)
6 (n—6)(n—1)(n+3) n?(n—1) (n—6)(n—4)(n+1) _ (n=4)(n+1) o (n®—4)(n+3) 2(n?—4)
: 6(ns+2) 2(ns—1) 6n(ns+2) ns—1 3n(ns+2) ns—1
2 (n=2)(n+1) 5 n(n—2)(n—1)(n+3) 55 n(n—6)(n—1)(n+1)

(B.7)
The results in (8.28) and (B.6) satisfy

{G,, b,e, f: h, G,, blv 6/}1 |n—>—n - {av —b, —e, _f7 —h, ala _bla _6/}5 ’

{CL, b7 €, fv ha a/7 b,7 6,}2| = {av _ba -6, _fv _h7 CL/, _b/a _6,}2 )

{a,b,e, f,h,a' V', €'} = {4a, —2b, —2e, —2f, —2h,4a’, =2V, —2¢'}, (B.8)

n——mn
n——n
which are a reflection of SO(n) ~ Sp(—n), SU(n) ~ SU(—n) [63]. There are corresponding
relations for the eigenvalues and degeneracies in (B.6).

B.1 Results for U(1) case

Corresponding to subsection 8.3 a similar analysis can be applied. The basic equations
relevant in (8.74) are

dij ™" ™ = (0761 + 6'0;7) + bdi™, a=1(1-4¢%), b=-4q, (B.9)

and, with n = rs,
dim?"d™ = 5 a(n 8,107 — 57 8,") + bdp! + wy?
A" W™ = Wi "™ = R + fwpd!,
Wigy "Wy, ™ = (:fll)z a(noi'o? —070,) + ' dip?' + & w2 (B.10)
where
b= #f’l)(r%—s), e=1r—s), V=L1r+s), &= 48:3_31)(7’—8),
f=aytr+s),  h=qt50r—s). (B.11)

Eigenvalues and degeneracies are determined as before. From (B.9) there are two eigen-
values (i1, p2 corresponding to eigenvectors v;; = vj; which are given, with their associated
degeneracies, by

M1 dy 2 do -
(r=1)(s=1) 1 1 1) _ b+ 1 1) (s — 1 (B.12)
nt+1 grs(r+1)(s+1) 1 grs(r—1)(s—1)
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From (B.10) with (B.11) there are three sets of eigenvalues fi,, 14, u = 1,2, 3, for eigenvectors

v, vi" = 0 where dyiFv,! = v, wiFol = vl
H1 141 H2 v u3 V3
dy da ds
s(r2—1)  s(r?=1) r(s?-1) r(s?—1) r+s r—s : (B13)
2(n+1) 2(n—1) 2(n+1) ~ 2(n—1) ~ 2(n+l) 2(n—1)
s -1 r?—1 (r? = 1)(s* = 1)

The degeneracies correspond to expected representations of SU(r) x SU(s). Related results
are given in [74].
The results in (8.89) are obtained from

}<2>|y:0 = —4(n+1)N —6(n+T7)ag’A—2(b+4b)ag®,
8

Bg<2>|y:0 = —12(n+7) g\ —12(b + 4b) g*) —

C Figures
For some of the cases listed in (8.17) and (12.11) figure 15 displays the fixed point values of
SIAIP/ms s /ms, NP = Ametaet ] = xet, (C.1)

respectively orange, blue, as functions of logm where m gives the number of fermions. The
log plots exhibit the symmetry following from (8.59). For the purely scalar theory, when
m =0, 8]|A|[*/ns < 1 [75] and when this is satisfied |A|/ns = 3. These bounds are clearly
violated for a non zero number of fermions.

At the O(ng) or Heisenberg fixed point

[Aal] = 2l | =t (C.2)

Of course \*" < 0 is indicative of an unstable potential.

Corresponding results for U(r) x U(s) fixed points are given in figure 16 where plots of
24||X||?/rs and |A| /rs are given for various representative r, s as functions of m determining the
number of fermions. The intercepts at m = 0, and also for m — o0, are determined by results
for the purely complex scalar U(r) x U(s) theory and are obtained from (8.95), (8.97), (8.99).
There are two or four fixed points according to whether R,.s < 0 or R, > 0. Forr =5, s =49
R.s = 0 which is a bifurcation point and then 24||A||?/rs = 1.
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Figure 15. Fixed point values |A|/ns (blue) and 8||A||?/ns (orange) as a function of logm.
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Figure 16. Fixed point values |\|/rs (blue) and 24||\||?/rs (orange) as a function of logm for the
U(r) x U(s) theory.
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Figure 17. First coefficients of critical exponents as a function of m for indicated values of r and s.
Different colour correspond to exponents of distinct fixed points.

For this case the eigenvalues k of the stability matrix, taking e = 1, as functions of
m are given by figure 17.
The intercepts at m = 0 and m — oo are given by (8.99) and, when R,s > 0, (8.95). For
R,s < 0 there is, as m — 0, one k — 1 and two k — —1, corresponding to the Gaussian
fixed point. For R,; > 0 there are two further cases with x — 1.

D U(1) scalar fermion theory consistency equations

The derivation of consistency relations for the three loop Yukawa couplings can be illustrated
by restricting to case when U(1) symmetry is imposed. The number of couplings is significantly

reduced but there remain non trivial relations which are a subset of the general case.”
At lowest order
Tif? dg'd'g” = to(tr(dy’ d'g;) + tr(dg; d'y')) (D.1)
and
A® = agq (tr(§iy'G5v7) + (Y 5 v ) + ase tr(i 7 ) te(559°) (D.2)
The consistency equations are then
asa = 3 taYy1, asp = 5 ta Vo1 - (D.3)

"The consistency relations in this case were discussed less completely in [20].
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At the next order
T/ dg'd'g”| |, = tsn dr™ d' A
71/ dg'd'g” |, = taa, (tr(dgi d'y’ 55 97) + te(dgi 5 d'y'))
+ tsa, (tr(dg; d'y? g5 y") + tr(dgiy'y; d'y))
+ taa, (tr(dgiy' d'g5 o) + tr(dgiy! d'g5y))
+ tap, tr(dg; d'y?) tr(y; y') + tap, tr(dy; o) tr(y; d'y")
+ tap, tr(dgi y?) tr(d'y; v') (D.4)
with 77,3 dg'd’ ¢’ | dy obtained by conjugation and the notation indicates which 3 loop

contribution in (D.2) each term corresponds to. At this order T7 %) is symmetric. Four
loop vacuum graphs give

AW = agy ™M™ N+ AN N AT
+ aga A (G y™) Mem™ 4 anp N tr (e y' Gy’
+ age tr(Giy?) te (G5 y") te (e y') + asa (0@ y' 5597 G y") + ey 5 v 55 9" r)
+age (0(Tiy' 55 9") +tr(y' 5 9" 95)) tr(Ge y’) + aag te(Gi v 9 y" 55 ')
+ ag tr (5 YUk ' U y") - (D.5)
In this case there are 11 relations corresponding to the number of inequivalent vertices in (D.5)
sy = % t37 Bata s asa = 3t2Vp2a = 2130 Vo1 , asp = t3x Bt = 3 t2 By2a s
a4e = %(t?)bl + 30, + t303) Vo1 5 ay4q = %(t&zl + 130 + t3a3) Vo1 5
ase = 5 taYoow + (t3by + t3vy) Vo1 = 2 Y20 + (E3as + t3a5) Vo1 = 301 Vo1 + t3b, Yool »
asf = tovpar + (t3as + t3as) Vo1 = 234, Vo1 5 asg = 312 Byoy - (D.6)

The O(B?) freedom in A at this order corresponds just to the variations

Sase = €2741°,  Oaaq = €2y, Oase = 2€2Yp17p1, Oaaf = 2€3Vp1, (D.7)
which is compatible with (D.6) if

0t3q; = 0t3a, = 01343 = €2 Yy 1 , Ot3p, = Ot3p, = Ot3p, = €2 Vg1 - (D.8)

There is one non trivial relation at this order from the a4, a4 equations requiring the
vanishing of

Uo = Y1 By2a — 3 Br1b V24 » (D.9)
which is identical to By in (9.4).
At the next order we initially focus on contributions involving A
Tr. /D dg'd’ 7|, = tax (AN d'Na™ Ann™ + d'Xi™ AN ™ A + 8 A d' Ny ™ ™ )
+ taay (AN A N+ AN AN ) tr (7 y™)
+ taay AN g™t (G ') 4 t2(d G y™) M)
+ taay AN A" t0(Q'Gin v ) + t2(5 Y™ ™)
+ tap, AN (e (T y' 5 d'y) + te (G y' AT y)) (D.10)
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and
1 dg'd'g”| 4 = taas 0™ tr(dGy™) Mom™ + taas NG Au™ tr(dgm o)
+ taag tr(dg; A'y?) N jm ™ A™ 4 tap, I N tr(dgn vio v
+ tapy (tr(dg; d'y* g5 y") + tr(dy; y*y; d'y)) A
+ tap, tr(dg; y* d'g; v A (D.11)
with
AP = axsa (A N ™ AP Apg™? + 8 XM N ™™ AP A pg )
+ a>\5b()\ijklAkmj”)\lnqupqim + )\ijkl)\lmin)\kpmq)\nqu) + axse )xiklm)\lmkj)\jnpq)\pqm
+ asa (A ™ A Apg™ + 4™ A Ang™) tr(Gix y')
+ azp (Aig™ Amn ™+ 2 )‘(i|mnl)\j)nmk) tr(ge ') tr(fy’)
+ ase Ak N (5 9™) tr (Gn y')
+ asg e " N (6 (G5 Y G ") + tr (5 4 0 ')
+ ase Mg ™ An™ (W v G y7) + as g AN e (G v iy’
+ asg Nij™ (0 (Te ™) 0 Gm v G0 y?) + @y’ Gy™) 0 (Gm y?))
+ asn Nig™ (G " U V' Gy + Gy ey Gy™))
+ azi A" (e YUY Gm ) - (D.12)

If T7y is symmetric only if

taay = taay taas = taag tap, = tap, - (D.13)

The associated consistency equations deriving from d\ variations in A®) are then

arsa = 5tax Brtas  @xsh = 2t3x Baza +4tax Brtas  Gase = 3t3) Vo2a s
asq = t3x Brop + 4tax Vo1 = 2tax Vo1 + taa; Brta s asy = taa; V41 »
ase = (taa, + taay + taas) Vo1 5 asd = t3x Yo2b + (taas + taas) V1 5
ase = t3) Brod +tax Batp,  asp = 2t3x Broe +4tan Batn,  asg = taa; Bate + tav, Vo1,
asp = 2t3x Brze + 2tap, Vo1, asi = 2t3x Brzg (D.14)

and from dy variations

asq = t2 Vp3a + (tsas + taas)Bria,  asp = 5 t2 V30 + 3 (taas + taas) Vel
ase = 3t3b, Y20 + (taas + taag) Vo1 = 3 (t3p, + t3bg) Vo2a + tas Vo1 »

asd = 3t2Yy3a + 3(t3ay + t3a5)Vp2a = 3130y Vo2 + taag Vo1 5

ase = 52 Byse + 2 taby Brta s asy = 2t2 Byzp + 2tab, Bata

asg = to Bysp + (tap, + tany)Ve1 = t2 Bysa + (tavy + tavy ) Vo1 = 3, By2a + tav, Vo1
= t2(V¢3c — Uspse) + taby By2a + taas Baib = t2(Ve3e + Vese) + t3bs By2a + taas Baib

asp, = ta Byzj + (taps + tavy ) Vo1 = 301 By2a + taps Y1 = t2 Y36 + (t3as + t3a3) By2a
as; = t2 Byzp = t2 Bysi - (D.15)
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For the A dependent contributions to A®) there is an additional O(52) freedom as well
as that corresponding to (D.7)

Saxsa = €31 Bria » daxsh = 8ezr Bria » dasqe = 8€3x Vg1 Bata dasp = 4egn Vo1 s
Sase = 6€27p17p2a + 4 €3x Vo1, dasq = 6 €2 Yp17p2a » dase = 2 €3) Bata Batp
dasr = 8€3x Brta Batb s dasg = €2 Y1 By2a + 4 €37 V61 Batb s dasn = 2 €2 Y1 By2a -
(D.16)

Correspondingly in addition to (D.8) we need to take

Otax = 2 €35 Brta Otaa, = Otaa, = Olags = €3 Vo1, Otap, = 4€3) Bt
Ot4ay = Otaay = Olaas = 3 €2 Vp2a Otap, = Otap, = Otap, = €2 By2a (D.17)

to ensure (D.14) and (D.15) are invariant. These variations do not preserve (D.13) as expected.

By eliminating the as’s, t4’s from (D.14), and then the t3’s using (D.6) there remain
10 necessary consistency relations which become

Ur = Byas — Byat Uz = Y41 Byss — 3 V424 Brzg »

Us = 27941(By3b — Byse) — 3(Brze — 2 Brad) Vo2 »

Us = 2 (V41 Y¢3a — Brta V63b) + 3 Brzb Vo2a »

Us = Yy1 Byse + Vo1 Yo3b — By2a V24 »

Us = Yp1(7p1 Bysd — Vo1 Byss) — By2a(Vp1 V2a — Vo1 Yp2b) 5

Ur = 2741 (2761 Vo3e — Baib Yo3b + Vo1 Byse) — Vo1 (By2a Y26 — 6 Y24 Baze) 5
Us = Y1 (Vo1 Y636 — 2Y01 Vo3e — 3 Batb Yp3a + By2a(Vo2o + Yp2a) — 3 Brze Yg2a)

— Vo1 By2a Vb2 »
Ug = Y12 (2761 Bysb — Brta Byse + By2a Brab — 3Vp2a Brze)
— Bata(By2a (V1720 — Vo1Yw26) + 3 Vp17V62a Brze) 5 (D.18)
and
2 Y1 Y20 Vp3e + (Vo1 Yp3a — Vo2a Vb2a) By2a = 0. (D.19)

This result for vg3. is equivalent to the one in (9.11) using By = U1 = 0. Substituting for
one and two loop coefficients the relations reduce to

Bysb = Byst =2,  Bysb — Byso =0,  Bysc — Bysv = Bysa — Bysj =1,
Bysb + Ysb = 3
279¢3c — 24930 — Yyp3b = 3. (D.20)

 Vesa — 2763 =1, Ve3b T 3Vy3a = —3 .
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There are 14 contributions to A®) independent of A which are

A® = a5t y?) tr (7 9F) (@ o) 1@y

+asy, (00(F v 5 91 + (G ' g5 M) (e ') (G y?)
+asy (t0(5s y* 55 97) + (@i 55 97)) tr(ﬂk v tr(iy’)
+ asm (05 v G5 o G o )+tr(yzy ygy I y)) tr(iny’)
+asn (0T ' Uk "0 ") + (@ 'G5 v e o)) (i y’)
+ aso (5 55 90k vF) tr(@ ') + asp tr(@i v Uk 'G5 0F) tr(Gny')
+ asq (tr(7; yj Un yl) + (7 y' e y’)) (@ v ')
+ase (r(Fi Y55 ') + tr@i v 5 y") (tr(Ti yj.@z yl) + (Y e )
+ ass (tr(yzy UiV ey ') + tr(giy’ ygy Uy uy))
+ ast (tr(yi y* yyy ykyyzy )+ tr (@i 55 o yzyyky )
+ asy (tr(giy' ygy Ty y’) + (i’ yky ny" y]y )
+ asy (tr(Fiy'y; y" uy ykyl)+tr(yzy iy ygy yzy )

y).

+asw (r(5 Y Ik Y'Y 59" + e (0 0y iy Uiy (D.21)
The O(B?) freedom in (D.7), (D.16) extends to

Sasj = (€3by + €36y + 2 €355) V010, Oask = 2 €2 Y51 Yir2a + (€305 + 2 €305) Vol »

Sasi = €2 Y51 Vp2b + €301 Vo1 + 2(€36; + €365 + 2 €305) Vo1 Veb1 »

Sasm = 2 €2 Yp1 Yo2a + 2(€3a1 + €305 + 2 €305) Vo1 V1 + €301 Vo1 s

basn = 2 €2 (Y1 Yp2o + Y1 Yw2n) + 2(€3a2 + 2 €3a5) 761 V01 5

daso = 4 €30, Vo1 Y1 + 2 €30, Yoo, Oasp = 2€2Yp1 By2r,  Oasg = 3 €3x Bty

Sasr = 2 €2 vy1 Vo2 + 2(€3hy + 2€305) V1o s 0a5s = (€301 + €305 + 2 €305) V1" »

Sast = 2 €271 Yyp2b + (3 €301 + 2 €305 + 4 €305 )Vp1" »

Sasy = 2 €2 Y1 Vy2b + (€30 + 2 €305) Vg1, 0G50 = 2 €271 Byay - (D.22)

The contributions to the four loop T involving only the yiy couplings can be obtained
by determining inequivalent pairs of vertices in (D.5). There are 36 possible contributions.
There are 36 equations resulting correspond to the number of inequivalent vertices in A®) |y
as given in (D.21).

as; = %(Mcl +tac, Flacy +tac, Hacs) Vo1,

sk = § 2 Ygaa+} (tava + ) Y20+ 3 (baens +taers) Vo1
= L t30, Y20+ 5 (tae, +taes +taey) Vo1

a5t = t2Vyp3et (tdey Htdes Ftae, +laes ) Vo1 = tac, Vo1 + (Laey +taes Fldern) Vo1
= L (t30y H 365 ) V20t (tacs +Hlacy) V1 +Hders Vo1
= L t30, Yoon+ (tacy +lacs ) Vg1 + (fers Haery) Vo »

A5m = % t2Vg3f+ (taey; Ftaer, Flaers Ftaers) Vo1 = tad, Yo1+ (taes +taer +taey) Vo1

= 130y Vop2a T (tads +ads ) Vo1 (Laes FHaes) Vo1
= (30, +13a3) Y20+ (tady +tady ) Vo1 +taes Yoot 5
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asn = 5 t2 Y39+ (t3ns + 30y ) Vw20 + (Laers Flaers) Vo1 =301 Vo2a+tae, Yo + (tags +lags) Vo1
=t2Vp3e+ (L300 H13a5) Y20+ (Lag, Ttag) Vo1
= t3p, Yop2b+ (Laee Tlaeg) Y1 Fags Vo1,
as0 =12 Vyp3d+ (taes +ldes) 1+ (Fap +tag;) Vo1 = 2taer Y1 +2ta56 Vo1
=toVy3h+2(taern Tder) Vo1 5
asp =t2Yg3m + (L300 +1305) By2r = t2 Byzs+(tag, +tagy) Vo1
asq = 3 (t2 Bysw+taas Batv) ,
a5 = % Lo Y39+ % (302 +13a5) Y20+ % (taes +taes) Vo1
= 230, Yoov+ 5 (Laeg +lderg Ttaers) Vo1 »
ass = 5 (tad, +tady +tads +tad, +tads) Vo1,
ast =to Yyai+ (tap, +tap, +tap, +tags) Vo1 = (tady +2ta5, Htap Hag) Y1
= (t3a; +13a5) Y20+ (fady +taa, Htagp) Y1
= t3a, Yop2b+ (Pads Hads HHags +tags) V1,
sy = 5 toYp3j+ 5 (t3as +t3as) Yeon+ 5 (Fagy +Hagy) Yo
= 5 taa; Ypoo+ g (tagy Hag +tag) Y1,
a5y = t2 By3s+(tag, +tags) Y1 = t2 Bysp~+ (tags +lags) Yo
= t2Yy3p+ (t3az +13a3) By2f = t3a1 By2s +tag Vo1,
asw =%t Bysz - (D.23)

This leads to the non planar condition from the relations involving asp, as,

Uto = 2751(By3s — Yg3m) — 2761 (Bys — Ye3p) + (Yo2b — 2Vp24) By2s » (D.24)

and just two other conditions

Uit = ve1(Ve3j — 27p3i) + Y1 (Yesd + Ypse + Vo3r — Vo3g — Vosh) + (Yo2o — 272a) Ve2b »
Upp=2 ”y¢12 Vo1 Vep35 — Vol 71#12(2 Yuze + Vo3g) + 71!)13%361
— (27961 Y20 — Y1 Yo20) (Vo1 Yp2b — Vo1 Vep2a) - (D.25)
The results obtained in (D.9), (D.18), (D.24), (D.25) are a subset of those obtained in
section B.2 in the general case. We list some scheme variations which are not immediately
evident from previous results
0Us = — 27941 Yo1,41,92a » 0Us = =291 (Yo1,01,92a + 3 Yo2a01,491) »
86Uy = 21 ( — Y1 Ys1,92a,010 — By2a Yo1,01,010 + 3 V624 Yot x1a.016 + Uo X1 A1a) 5
U0 = — 8Yy1 01,921 U = =8 Yyt p1,02
Utz = — 29p1° (2 Y1 91,020 + Yo, 026,01) - (D.26)

E Scheme variations in general

The coordinates in quantum field theories are the couplings. Physical results should be invari-
ant under reparametrisations of the couplings or in this context changes of renormalisation
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scheme. Of course determining possible invariants is an exercise in differential geometry.
Under changes of scale there is a RG flow in the space of couplings determined by a vector
field, the S-function, and at any fixed point where the S-function vanishes the scale dimensions
of operators are determined by the eigenvalues of the anomalous dimension matrix which,
at a fixed point, is a two index tensor under reparametrisations.

In a perturbative context the possible reparametrisations of couplings are naturally
restricted to preserve the form of the g-function in terms of contributions corresponding to
1PI diagrams which are superficially divergent. For an expansion in terms of diagrams with
increasing loop order there a usually a restricted set of possible vertices {V;}, labelled by
v and edges {F,} labelled by e. The various possible e correspond to the different fields in
the theory and each v to the different basic couplings. For n, lines meeting at a particular
vertex V5, there is then an associated coupling (Gv>i1...inv where 7,, an index associated with
the a diagram line or edge, e, connected to the vertex v. In a diagram with a line e there is
an associated two index link or propagator (P°¢);; with 4,j = 1,...n.. For each coupling G"
there is a symmetry group Gy C S, generated by permutations of those lines corresponding
to identical particles. For convenience we may consider a basis in which the couplings are
real and (P€);; is symmetric, otherwise for complex couplings they form conjugate pairs.
For simplicity we restrict to dimensionless couplings.

It is convenient to adopt a notation where for any set of {(R);;} and {(x)i;}

(
(GV e R)iLuinV = (GV)]IJnv (Rl)]lll ctt (an)]nvlnv
(Gvﬁ)ilminv = Zr (Gv)il...irfljirJrl...'L‘nv ( )jzr . (El)
Clearly (G¥oR)oR' = G¥o RR/, with RR' = {R.R%.}, (G¥ k) k') — ((GV K') k) = (GY [k, K]).
For an overall symmetry G then G¥ o R = GV, for each R® belonging to the appropriate
representation of G, and (P°)(R®)ki(R®);; = (P°)i;. For a vacuum diagram there is a
corresponding amplitude formed by joining couplings for each vertex with appropriate

propagators
AG,P)=Alg), ¢'=G'oPi,  Alg)=Ag1), (E2)

with G = {G"V}, P ={P.} and Pe% is required to be symmetric. In general we require
AGoR,RTPR) = A(G,P), AlgoR)=A(g), R={R}, RRT=1°

(E.3)
Reparametrisations of relevance here are generated by
0 o 0
Dyw(G, P) = ZUGP @HZ w(G, P)P°) - o
= > (G, P)- 0 _, > w(G,P)- _9 (E.4)
S ’ o0GY S ’ ope—1’

where vV (G, P), (w*(G, P));; are determined in terms of sums of 1PI one and higher loop
vertex and propagator graphs with vertices mapped to the appropriate G¥ and similarly
internal lines to P°. The 2 in (E.4) is introduced for later convenience. For a finite
transformation GV — G/, P® — P then

GY(G, P) = exp (Dyw(G, P))GY,  P(G,P)=exp (Dyu(G,P)) P°.  (ES5)
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With this definition
GV'(G,P)=G" + f¥(G, P), PY(G,P)"t =Pl — 265G, P), (E.6)

where fV, ¢ can be expressed in terms of contributions from 1PI vertex and propagator
graphs. Following from (E.2) then

FUG.P)=f"(g)o P2,  (G,P)=P° 3c¢(g)P° 3, (E.7)
and .
gV/(Gv P) = GVI(G7 P) © PI(G7P)§ = gv/(g) © R7 (ES)
where
9"(9) = (9" + f'(g9)) o (1 —2¢(g)) 2, (E.9)
with .
RE = (1° — 2¢%(g))? P* 2 PY(G, P)2 . (E.10)

From this definition
ReRT =1°. (E.11)

The inverse of (E.8)

0(d) = (g% + F(g) o (1 —2(g')) 2, (E.12)

is obtained by taking

D=

Mg = —fg)o(1—{(g")2,
Eg) = 18— (1° = 2¢%(g)) " = —(1° = 2¢°(g)) T 2(g) (1° — F(g) "2, (B.13)

D=

from which it follows that fV'(g’), ¢®/(g’) are both expressible as expansions in ¢’ in terms
of contributions corresponding to 1PI diagrams. For f, ¢ infinitesimal the generator of
reparametrisations can be reduced, from (E.8), (E.11), to the form

v 0
D.o(G, P) = Dsi(90)(9) + Digw)(9), Dnlg) =Y _h'(g)- 99 (E.14)
where
R =1°4w°, Wl = —w°, (E.15)
Under a reparametrisation
A(G,P)=AG,P) =  Alg)=Ag), (E.16)

is consistent with (E.2).
The essential RG functions 3V(G, P), 7¢(G, P) are formed from contributions corre-
sponding to 1PI diagrams, with v¢(G, P) symmetric. Corresponding to (E.3)

B(GoR,RTPR)=F"(G,P)oR, ~*(GoR,RI'PR)=RT~(G,P)R®. (E.I7)
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Reduction to the coupling g, determined as in (E.2), is achieved by taking
BY(GP)=B(9)o P2, 7°(G,P) = P*Tay%(g) P73, (E-18)

and then 3Y(g), v°(g) are expressible just in terms of 1PI contributions. RG flow is then
generated by

DBy’Y(Gv P) ) (Elg)
where
Dj~(G,P)A(g) =Ds(g) A(g),  BY(9) =6"(9) + (¢"1(9)), (E.20)
where we make use of
Dj. (G, P) P°2 = P°2(~° +w°) = (1° — w®)P°2 , for some w® = —wT (E.21)
and
D(gw)(g) Alg) = 0. (E.22)

In (E.20) the S-function 5V(g) then has the standard form in terms of 1PI contributions
and from (E.3)
Under a reparametrisation as in (E.6)

BY(G',P') = D (G, P)G*'(G, P),
V(G P') = —Djn(G, P) P*(G,P)"t = °(G,P) + Dj,(G,P)*(G,P).  (E.23)

Defining
BV,(G/,P/) OP/l _ 5‘//(9/) OR, Pe/— e/(G/ Pl) Pe/% — ReT,ye/(g/) Re’ (E24)

then reduces, with R given by (E.10), for 5(g), v(g) to

1

BY(d') = (B¥(9) + Ds(g) £ (9) — (fo(9)¥(9))) o (1 — 26( ))*5,

(o) = (1= 2¢%(9)) 2 (4 (0) + Dal0) “(9) ~ {(1°(9). (@)} (@ ~ 2°(9)) 2. (B.25)
To achieve (E.25) we make use of
Digu)(9) f(9) = (f*(9)w),  Dgw)(g) *(9) = [°(9), ] (E.26)

The expressions obtained in (E.25) ensure that 3Y/(¢'), v (¢') expanded in terms of ¢’ as
in (E.8) are expressible in terms of 1PI contributions and furthermore

BY(d) = B""(d) + (9"'1(d)) =Ds(9) g + (97 Q), Q=-0T, (E.27)

where

NI

Q° = (1 —2¢°(9)) "2 ([°(9),7°(9)] + Q) (1 — 2¢°(g)) 7,
Ds(g)(L —2¢°(9)) 72 (1 —2¢°(g))% = (L —2¢%(9)) (Dplg) (9) — ). (E.28)

D=
=
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From (E.23)
D (G, P) = exp (— Dyw(G, P)) Dj(G, P) exp (Dyw(G, P)), (E.29)
or

/BV/(Gv P) = €xXp (_Ev,w(Ga P))BV(Gv P) s WGI(G?P) = €xXp (_ﬁv,w(Ga P))Pye(Gu P) y

(E.30)
with, to lowest order,
08Y(G, P)=—L0,u(G,P) B*(G,P)=Dj4(G, P)v" (G, P)~Dyu(G, P) ¥ (G, P)
(G,P)=—Lyw(G,P)¥*(G,P)=Dj,(G,P)w*(G,P)—Dyu(G,P)v(G,P). (E.31)

For application here we set up a basis of 1PI vertex and propagator graphs so that

V(G P) =" €vtr Spo, GV (G, P), w(G,P) =" €ctr Spey, G°(G,P).  (E.32)
lr l,r

In the expansion of v¥(G, P) the sum is over contributions G¥*"(G, P) corresponding to
particular £, ¢ = 1,2,..., loop 1PI vertex graphs G¥*", with the same external lines as v, and
labelled by r. In each case Sp,,, denotes the sum over the pyy- permutations of the external
lines of GV¢" necessary to ensure the symmetry under external line permutations satisfied by GV.
Similarly G (G, P) corresponds to a 1PI propagator graph G°", the associated permutations
over external lines are Sp,,. with pes- = 1, 2 according to whether G is symmetric or not.
Inserting vertex or propagator graphs generates an algebra which arises from

1910 8 v /,,1 r s
Spoip GV (G, P) - oG Sre G (@, P) Z N BT Sy GEL(GL P,
ety 0 r elrglr g s
“Spuy GG P) 5y Spoy G (G P) ZNgfs 80 Sy GG, P),

g€ {v, e}, =0 +0. (E.33)

gér glr

In general N are integers.

Just as in (E 32) there is a similar expansion

BY(G,P)=>" Botr Spue G (G, P),  7(G,P) = Yetr Sprn G"(G,P).  (E.34)
L,r l,r

The results in (E.31) then ensure

_ g ' glr _ _ _ _
6agLs - Z Ng! NgLs Xg’@’r’,géra QyLs = BVLS? QelLs = YeLs, T/ = 17 Ne = 27
g/T,E/,T[
' +e=L
X 1ol glr = Olgl gl pt fgér — Eg/glrl Oéggr . (E35>
g g g

This is then equivalent to (10.1) and (10.2) used in section 10.
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