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1 Introduction

In 1973, theoretical physicists Sidney Coleman and Erick Weinberg published a work in-
troducing what it has been known as the Coleman-Weinberg (CW) mechanism [1]. A
massless scalar field at tree-level may gain mass due to loop corrections. In fact, the ra-
diative corrections of a gauge field can provide masses not only for the scalar degree of
freedom but also for the gauge mediator itself. Indeed, depending on the parameter space
of the theory, spontaneous symmetry breaking can take place. The scalar field acquires a
vacuum expectation value (vev) and the gauge bosons acquire mass through a Higgs-like
mechanism.

The CW effective potential that triggers the non-trivial vev is provided by the tree-
level contribution from the scalar field quartic self-interaction plus the radiative corrections.
Furthermore, within the CW mechanism those introduced by the gauge interactions are
assumed to dominate over other possible loop contributions (e.g., loops with scalar self-
interactions). These corrections can be computed perturbatively for any number of external
scalar fields, being dominated by one-loop Feynman diagrams.

In this work, first, we will briefly review the analysis done by Coleman and Weinberg on
quartic self-interaction theories of a charged scalar field interacting with electrodynamics,
and second, we will generalize this approach for the gravitational interaction. For such a
purpose, we will assume a particular model for the gravitational mediator: graviton. In
the first place, we will define the fundamental elements of the theory: Lagrangian density,
graviton propagator or interaction vertices. We will study which diagrams contribute to
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the potential and we will use the aforementioned elements to obtain the potential through
the CW mechanism.

In section 2, we will review the basic example discussed by Coleman and Weinberg,
Scalar Quantum Electrodynamics (SQED) [1]. Starting from a conformal λφ4 potential, the
gauge-boson loops trigger a dynamical symmetry breaking. Section 3 provides the central
results of this article. Therein we study a conformal classical Lagrangian including a scalar
field φ with a non-minimal gravitational coupling. We find that graviton loops are also
able to trigger a non-zero vev 〈φ〉 6= 0 and an effective Planck Mass. Section 4 generalises
this model to cases with more than one scalar field. Our final conclusions are provided in
section 5, whereas certain technical expressions have been relegated to appendix A.

2 Dynamical symmetry breaking through gauge boson loops: SQED

The CW approach studies the effective action Γ of a quantum theory including a scalar φ.
We will focus our attention on the non-derivative terms that only contain classical scalar
fields φc:

Γ = −
∫

d4xV (φc) + . . . (2.1)

where the dots stand for terms with derivatives or including other fields apart of φc. The
effective potential V is thus defined by the non-derivative part of the effective action Γ. It
will be the central object of the CW analysis.

The simplest classically conformal theory one may consider contains just one real scalar
φ with a quartic self-interaction potential:

L = 1
2(∂µφ)2 − λ

4!φ
4 . (2.2)

At lowest order the effective potential V (φc) coincides with the tree-level potential V0(φc) =
λφ4/4! with a trivial vacuum 〈φ〉 = 0. At the loop level, Coleman and Weinberg showed
that scalar loops are not able to push this vev to a calculable non-trivial value 〈φ〉 6= 0.
Indeed, the authors noticed that a purely perturbative analysis leads to inconsistencies
that need to be cured by the use of renormalization group equations [1].

Nonetheless, these issues can be solved if we incorporate interactions with additional
particles. Starting from a scale invariant Lagrangian, Coleman and Weinberg proposed a
perturbative framework where the scalar (or scalars) gains a non-vanishing vev 〈φ〉 6= 0
due to the loops of these other states [1]. The simplest example is provided by SQED,
a renormalizable theory with a massless complex scalar Φ = (φ1 + iφ2)/

√
2 and quartic

potential with a U(1) gauge interaction (with e the corresponding charge). The Lagrangian
density can be expressed in terms of the two real scalar fields φ1 and φ2 in the form:

L = −1
4(Fµν)2 + 1

2(∂µφ1 − eAµφ2)2 + 1
2(∂µφ2 + eAµφ1)2 − λ

4!(φ
2
1 + φ2

2)2 . (2.3)
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The effective potential up to one-loop is given in dimensional regularization by,

V (φ) = λ

4!φ
4 + i

∫ dDk
(2π)D

∞∑
n=1

(D − 1)
2n

(
e2φ2

k2 + iε

)n

+ i

∫ dDk
(2π)D

∞∑
n=1

1
2n

( 1
2λφ

2

k2 + iε

)n
+ i

∫ dDk
(2π)D

∞∑
n=1

1
2n

( 1
6λφ

2

k2 + iε

)n
, (2.4)

with φ2 = φ2
1 + φ2

2, and D, the space-time dimension. After resumming the loops with
an arbitrary number of external legs and renormalizing the ultraviolet divergences in the
MS-scheme one gets the finite potential,

V (φ) = λ

4!φ
4 + 3e4φ4

64π2

[
ln
(
e2 φ

2

M2

)
− 5

6

]

+ λ2φ4

256π2

{[
ln
(
λ

2
φ2

M2

)
− 3

2

]
+ 1

9

[
ln
(
λ

6
φ2

M2

)
− 3

2

]}
, (2.5)

whereM stands for the renormalization scale. For simplicity, the computation is performed
in the Landau gauge [1]. Perturbation theory requires that the O(λ2) terms are subdomi-
nant with respect to the tree-level potential, which is O(λ). Hence, these loops cannot be
responsible for bending the leading order (LO) scalar potential to generate a non-trivial
minimum. However, perturbativity does not imply that the O(e4) terms need to be sup-
pressed with respect to the O(λ) one. Thus, Coleman and Weinberg neglects these O(λ2)
scalar boson loops, so the effective potential is essentially provided by the O(λ) tree-level
contribution and the O(e4) gauge boson loops. Under the assumption λ2 � |λ| ∼ e4, the
model is now able to trigger the spontaneous symmetry breaking and generate a non-trivial
minimum given by the condition,

dV
dφ

∣∣∣∣
〈φ〉

= 0 =⇒ λ = 9
8π2 e

4
[

1
3 − ln

(
e2 〈φ〉2

M2

)]
, (2.6)

with λ and e renormalized at the scale M . Note that perturbativity is still valid around
the minimum extracted above as far as e4/(4π)2 ∼ |λ| � λ2/(4π)2. Substituting this vev
condition in the potential leads to the final expression,

V (φ) = 3e4

64π2φ
4
[
ln
(
φ2

〈φ〉2

)
− 1

2

]
, (2.7)

where we have changed the dependency on λ by that on 〈φ〉 by means of (2.6), this is, we
have changed a dimensionless parameter by a dimensional one. This phenomenon is known
as dimensional transmutation [1].

The spontaneous symmetry breaking generates one massless boson [2] and a real scalar
S = φ− 〈φ〉, with mass,

m2
S = d2V

dφ2

∣∣∣∣∣
〈φ〉

= 3e4

8π2 〈φ〉
2 . (2.8)

Due to the gauge nature of the U(1) symmetry, the massless boson mixes with the U(1)
gauge boson and leads to a physical vector boson V with mass [1],

m2
V = e2〈φ〉2 . (2.9)
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3 Gravitational interaction

Next, we shall study the CW mechanism for the gravitational interaction. For this purpose,
we should introduce a gravitational theory without explicit dimensional parameters. There
have been numerous proposals about scale-free gravitational interactions. For instance, the
idea of conformal gravity has been recurrent from different approaches [3–10]. In the same
way that the mass term of a scalar field can be provided by dimensional transmutation,
quantum radiative corrections can induce the Planck scale [11]. For analysing this question,
we introduce the Lagrangian density with which we shall work:

√
|det g| LG =

√
|detg|

(
R2

6f2
0

+
1
3R

2 −R2
µν

f2
2

+ 1
2(∂µφ)2 − λ

4!φ
4 − ξ

2φ
2R

)
. (3.1)

Except for a total derivative, in 3+1 dimensions, this Lagrangian density is the most general
one associated to gravity that does not contain dimensional constants. When the scalar
field φ develops a non-trivial vev 〈φ〉 6= 0, a reduce Planck mass M̄2

pl = ξ〈φ〉2 is generated
in the Lagrangian. Likewise, the physical spectrum of the above action contains the usual
massless spin-two graviton, a massive spin-two mediator with mass m2

2 = f2
2 M̄

2
pl/2, and

a massive scalar mode with mass m2
0 = f2

0 M̄
2
pl/2 [12, 13] in the limit when it does not

mix with φ.1 The massive scalar graviton has an interesting phenomenology and it has
been proposed as inflaton [16] or dark matter [17]. The role of the massive spin-two
graviton is more controversial due to the fact that its kinetic term is ghost-like and it
potentially leads to unitarity violations. Recent works claim that this problem could be
solved, for instance, with an alternative definition of probability [18, 19]. Furthermore,
within the standard probability approach, negative-energy ghosts can be well-defined in
classical mechanics, quantum mechanics and classical field theory [20]. However, there is
not a consensus about this serious issue that in addition to the unitarity problem could
introduce breaking of causality and inadmissible instabilities [21]. On the other hand, the
model is renormalizable, what makes it particularly interesting for the analysis we develop
within this work. Indeed, this type of gravitational theories have been studied in different
contexts [12–14, 22–25]. We will follow a similar approach to that followed within the
agravity model [14].

The real scalar field φ is coupled to gravity through different interaction terms. Again,
there is no tree-level mass term for the scalar field. On the one hand, we have the kinetic
part of the graviton described by the following elements: R is the curvature scalar, Rµν
is the Ricci tensor and f0 and f2 are the dimensionless constants that are related to the
gravitational coupling. On the other hand, we have the kinetic and potential terms of
the scalar field that we have already studied previously. Finally, the interaction between
the scalar field and the gravitons depends also on the coupling constant ξ, which is also
dimensionless.

1In general, the mixing between the gravitational scalar mode and φ cannot be neglected as we discuss
in appendix B and it has been pointed out in refs. [14, 15].
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To continue with the study of the interaction, we expand the metric tensor as a per-
turbation with respect to the Minkowski geometry as follows:

gµν = ηµν + κhµν . (3.2)

where ηµν is the Minkowski spacetime metric, and hµν is the perturbation describing the
graviton. At this point, κ is an arbitrary parameter which allows to normalize canonically
the perturbation hµν and its propagator. We can write this propagator as:

≡ Dµνρσ = 1
κ2

i

k4

[
−2f2

2P
(2)
µνρσ + f2

0P
(0)
µνρσ + 2ζgf

(
P (1)
µνρσ + P

(0w)
µνρσ

2

)]
,

(3.3)
with ζgf , the gauge-fixing parameter. The propagator is expressed by means of projectors
on the components of the graviton of spin 2, 1 and 0. It is worth noting the presence of
the gauge fixing term. The expressions of these projectors are the following [14]:

P (2)
µνρσ = 1

2TµρTνσ + 1
2TµσTνρ −

1
D − 1TµνTρσ ,

P (1)
µνρσ = 1

2 (TµρLνσ + TµσLνρ + TνρLµσ + TνσLµρ) ,

P (0)
µνρσ = 1

D − 1TµνTρσ ,

P (0w)
µνρσ = LµνLρσ , (3.4)

where
Tµν = ηµν −

kµkν
k2 , Lµν = kµkν

k2 , D = 4− 2ε . (3.5)

To find the vertex of two scalar fields with one and two gravitons we must expand√
|detg|R to the linear and quadratic order of the perturbation hµν , respectively. To carry

out the perturbative expansion we must study how this perturbation affects the geometrical
quantities:

Γρµν = κ

2 (ηρσ − κhρσ) (∂µhσν + ∂νhµσ − ∂σhνµ) +O(h3) , (3.6)

R = (ηµρ − κhµρ)
(
∂νΓνµρ − ∂µΓννρ + ΓλµρΓνλν − ΓλνρΓνλµ

)
+O(h3) , (3.7)

where we have used that [26]

gµν = ηµν − κhµν +O(h2) . (3.8)

Taking into account the above results, we can write the following perturbative equality:√
|detg|R = κ

(
∂µ∂νh

µν − ∂2h
)

+ κ2
(
hµν∂µ∂νh+ hµν∂2hµν

− 2hµν∂µ∂ρhρν − ∂µhµν∂ρhρν + ∂µh
µν∂νh+ 3

4∂ρhµν∂
ρhµν

− 1
4∂µh∂

µh− 1
2∂ρhµν∂

µhνρ + 1
2h∂µ∂νh

µν − 1
2h∂

2h

)
+O(h3) , (3.9)
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where h ≡ hµµ and we have used that [26]√
|detg| = 1 + κ

2h+O(h2) . (3.10)

Therefore, we can write the following expressions for the vertices:

≡ C(1ξ),µν=iκξ
(
kµkν−k2ηµν

)
=−iκξk2Tµν , (3.11)

≡ C(2ξ),µνρσ=iκ2ξ

[
Aµνρσ+Aρσµν

− 1
2 (Aνσµρ+Aµσνρ+Aνρµσ+Aµρνσ)+k2

(
1
2Bµρνσ+ 1

2Bµσνρ−Bµνρσ
)]

= iκ2ξk2
(
P (2)
µνρσ−(D−2)P (0)

µνρσ

)
, (3.12)

where Aµνρσ = kµkνηρσ and Bµνρσ = ηµνηρσ. We could continue with the expansion to
order h3 to obtain the expression for the interaction vertex of two scalar fields with three
gravitons. However, they will be only relevant for diagrams that contribute to the potential
at two or higher loops, which would depart from the one-loop leading order approach we are
computing. In this theory, unlike what happened in electrodynamics, the hφ2 interaction
does contribute. Therefore, we also need to study the diagrams represented in figure 1.

When performing the contraction of the vertices and the propagators in this type of
diagrams, we see that only the projector term P (0) contributes. This is the result for 2n
vertices: (

i

k2 C
µν
(1ξ)Dµνρσ C

ρσ
(1ξ)

)n
=
(

(D − 1)f2
0 ξ

2

k2

)n
. (3.13)

On the other hand, we have the interaction φ2h2 to which the diagrams presented in figure 2
correspond. The contraction of this type of diagrams is non-zero for the projectors P (0)

and P (2). For n vertices:

Tr
{(
D · C(2ξ)

)n}
=
(2ξ
k2

)n [((D − 2)
2 f2

0

)n
+ (D2 −D − 2)

2 f2n
2

]
, (3.14)

with the trace TrC ≡ Cµνµν and the dot-product defined as (A · B)µν ρσ ≡ AµναβB
αβ ρσ for

the tensors A and B. For the results in eqs. (3.13) and (3.14), we have made use of the
projector relations summarised in appendix A.

Note that the gauge fixing term of the propagator vanishes when contracted with
the vertices. This is of great importance since it implies that the types of diagrams that
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Figure 1. 1PI diagrams of the φ2h interaction contributing to the potential at the one-loop
approximation.

Figure 2. 1PI diagrams of the interaction φ2h2 that contribute to the potential in a loop approx-
imation.

contribute to the potential are independent of the gauge, at least at one-loop order. In
short, we can now write the expression we obtain for the potential:

V (φ) = λ

4!φ
4 + i

∫ d4k

(2π)4

∑
n

1
2n

(
(D− 1)f2

0 ξ
2φ2

k2 + iε

)n

+ i

∫ d4k

(2π)4

∑
n

1
2n

(
(D− 2)f2

0 ξφ
2

k2 + iε

)n
+ i

(D2−D− 2)
2

∫ d4k

(2π)4

∑
n

1
2n

(
2f2

2 ξφ
2

k2 + iε

)n

+ i

∫ d4k

(2π)4

∑
n

1
2n

( 1
2λφ

2

k2 + iε

)n
. (3.15)

Resumming the contributions for any number of external legs and renormalizing the ultra-
violet divergences in the MS-scheme leads to the effective potential,

V (φ) = λ

4!φ
4 + 9ξ4f4

0φ
4

64π2

[
ln
(

3ξ2f2
0
φ2

M2

)
− 3

2

]
+ ξ2f4

0φ
4

16π2

[
ln
(

2ξf2
0
φ2

M2

)
− 3

2

]

+ 5ξ2f4
2φ

4

16π2

[
ln
(

2ξf2
2
φ2

M2

)
− 1

5

]
+ λ2φ4

256π2

[
ln
(
λ

2
φ2

M2

)
− 3

2

]
. (3.16)

As it happens in the basic example of Coleman and Weinberg, the scalars loops can never
overcome the tree-level potential and generate a non-trivial minimum, as O(λ2) corrections
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Figure 3. CW Potential in eq. (3.19) as a function of the scalar field for ξ = f0 = f2 = 〈φ〉 = 1.

are subdominant with respect to the tree-level O(λ) term. However, this is not the case with
the loops of the remaining particles of the theory. Indeed, we shall see that the gravity loops
deform the effective potential and trigger the spontaneous symmetry breaking. Following
Coleman and Weinberg construction, we will consider ξf2

j /(4π)2 ∼ ξ2f2
j /(4π)2 ∼ |λ| �

λ2/(4π)2. Under this hypothesis, scalar loops associated with O(λ2) contributions, can
be then neglected for simplicity of the derivation that follows. V (φ) has now a minimum
〈φ〉 6= 0 provided by the relation:

dV
dφ

∣∣∣∣
φ=〈φ〉

= 0 , (3.17)

which implies,

λ = 3
8π2

{
9ξ4f4

0

[
1− ln

(
3ξ2f2

0
〈φ〉2

M2

)]

+ 4ξ2f4
0

[
1− ln

(
2ξf2

0
〈φ〉2

M2

)]
+ 20ξ2f4

2

[
3
10 − ln

(
2ξf2

2
〈φ〉2

M2

)]}
. (3.18)

This equality establishes a relationship between λ and the scalar field vev. So we can
eliminate that coupling from the effective potential and express it in terms of 〈φ〉 and the
gravitational couplings:

V (φ) = ξ2

64π2

(
9f4

0 ξ
2 + 4f4

0 + 20f4
2

)
φ4
[
ln
(
φ2

〈φ〉2

)
− 1

2

]
. (3.19)

This potential is represented in figure 3. Notice that the potential contains terms of order
ξ2 and ξ4. In principle, we are implicitly assuming ξ ∼ O(1) and all contributions are kept
in our results. Nonetheless, V (φ) can be further simplified in the case of models with either
ξ � 1 or ξ � 1.
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Expanding the potential around the vacuum state, one can extract the mass of the
physical scalar field S = φ− 〈φ〉, which now becomes massive:

m2
S = d2V

dφ2

∣∣∣∣∣
φ=〈φ〉

= 〈φ〉
2

8π2 ξ
2
(
9f4

0 ξ
2 + 4f4

0 + 20f4
2

)
. (3.20)

Furthermore, as φ2 gets a non-vanishing vev 〈φ〉2 6= 0, the Lagrangian (3.1) gets an effective
term proportional to R. This generates the Planck scale and leads to the following relations
between the latter and the scalar mass:

ξ〈φ〉2 = M̄2
Pl =⇒ m2

S = M̄2
Pl

8π2 ξ
(
9f4

0 ξ
2 + 4f4

0 + 20f4
2

)
, (3.21)

where M̄Pl is the reduced Planck mass [14, 27].

4 Gravitational interaction with two scalar fields

It is also interesting to extend the study to the case of several scalar fields. In this section,
we will discuss how the mechanism behaves if we have two real scalar fields φ1 and φ2. They
couple to each other and to gravity through the following renormalizable Lagrangian:√

|detg| L =
√
|detg|

[1
2(∂µφ1)2 + 1

2(∂µφ2)2 − V0(φ1, φ2)

+ R2

6f2
0

+
1
3R

2 −R2
µν

f2
2

− 1
2R(ξ1φ

2
1 + ξ2φ

2
2)
]
, (4.1)

with the general tree-level scalar potential,

V0(φ1, φ2) = 1
4!
(
λ11φ

4
1 + λ22φ

4
2 + 2λ12φ

2
1φ

2
2

)
= λ

4!φ
4 + α

4!φ
2(φ2

1 − φ2
2) + β

4!(φ
2
1 − φ2

2)2 ,

(4.2)

with φ2 = φ2
1 + φ2

2. In the general case, there are two different non-minimal gravita-
tional couplings: ξ1 and ξ2; and three independent quartic couplings of the scalar sector:
λ11, λ22, λ12. For convenience, it may be useful to express the latter quartic couplings in
terms of λ = (λ11 + λ22 + 2λ12)/4, α = (λ11 − λ22)/2 and β = (λ11 + λ22 − 2λ12)/4.

We can derive the one-loop potential following the previous discussion for one real
scalar. On the one hand, for the diagrams with gravitational interactions of the type φ2h,
where we had ξ2φ2 for the single scalar case, now we have ξ2

1φ
2
2 + ξ2

2φ
2
2. On the other hand,

for interactions of the type φ2h2, we substitute ξφ2 for ξ1φ
2
1 + ξ2φ

2
2. Thus, the one-loop

correction to the effective potential due to gravitational loops (figures 1 and 2) has the
following form:

V (φ1,φ2)1`oop = 9f4
0

64π2

(
φ̃T ξ̃2φ̃

)2
[
ln
(

3f2
0
φ̃T ξ̃2φ̃

M2

)
− 3

2

]
(4.3)

+ 1
16π2

(
φ̃T ξ̃φ̃

)2
{
f4

0

[
ln
(

2f2
0
φ̃T ξ̃φ̃

M2

)
− 3

2

]
+5f4

2

[
ln
(

2f2
2
φ̃T ξ̃φ̃

M2

)
− 1

5

]}
,
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where we have defined:

φ̃ =
(
φ1
φ2

)
, ξ̃ =

(
ξ1 0
0 ξ2

)
= ξ

[
1 + δ̂

(
1 0
0 −1

)]
, (4.4)

with ξ1,2 ≡ ξ ± δ ≡ ξ(1 ± δ̂). In this section, we define ξ as the average of the two
non-minimal couplings: ξ = (ξ1 + ξ2)/2; whereas δ is their difference divided by two:
δ = (ξ1 − ξ2)/2. δ̂ accounts for the same difference but normalized to the average value:
δ̂ = δ/ξ. Following the CW approach, we will assume that these contributions are of the
same order as the tree-level potential and, hence, scalar boson loops are subdominant and
can be neglected.

4.1 U(1) symmetry limit

It is interesting to pay particular attention to the case in which the two scalars are charac-
terised by similar self-interactions and to the scalar curvature. In theories with ξ1 ' ξ ' ξ2
and λ11 ' λ22 ' λ12, there is an approximated global U(1) symmetry and a Nambu-
Goldstone boson shows up if it is spontaneously broken. It is convenient to decompose the
real scalar doublet in polar coordinates in the form φ1 = φ cos θ, φ2 = φ sin θ, where θ will
be related to the mentioned Nambu-Goldstone mode.

In the U(1) symmetric limit ξ1 = ξ2 = ξ and λ11 = λ22 = λ12 = λ, the CW potential
becomes:

V (φ, θ) = λ

4!φ
4 + 9ξ4f4

0φ
4

64π2

[
ln
(

3ξ2f2
0φ

2

M2

)
− 3

2

]

+ ξ2φ4

16π2

{
f4

0

[
ln
(

2ξf2
0φ

2

M2

)
− 3

2

]
+ 5f4

2

[
ln
(

2ξf2
2φ

2

M2

)
− 1

5

]}
. (4.5)

The O(λ2) terms from scalar boson loops have been neglected.
In order to extract the minimum at φ̃ = 〈φ̃〉 of the potential, we apply the critical

point condition:
dV
dφ

∣∣∣∣
〈φ̃〉

= 0 , dV
dθ

∣∣∣∣
〈φ̃〉

= 0 , (4.6)

The first constraint yields exactly the same relation for λ found in the one-scalar case in
eq. (3.18). On the other hand, the second condition is trivially fulfilled, as the symmetric
potential does not depend on θ. Thus, we have a continuous set of non-trivial vacua with
φ = 〈φ〉 6= 0 and any value of θ, related through U(1) transformations. This scenario is
traditionally referred as spontaneous symmetry breaking and is characterised by a potential
that is independent of the Goldstone fields:

V = ξ2φ4

64π2

[
9ξ2f4

0 + 4f4
0 + 20f4

2

] [
ln
(
φ2

〈φ〉2

)
− 1

2

]
. (4.7)

This potential allows us to compute the masses of the scalar excitations around the
chosen vacuum. In this case we have two degrees of freedom, so we have two scalar masses.
The squares of these are the eigenvalues of the Hessian matrix at the minimum. In the U(1)
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limit, the crossed elements of the matrix vanish and the physical eigenstates are S = φ−〈φ〉
and the canonically normalized Nambu-Goldstone boson θc, with masses,2

m2
S = d2V

dφ2

∣∣∣∣∣
〈φ̃〉

= ξ2〈φ〉2

8π2

(
9ξ2f4

0 + 4f4
0 + 20f4

2

)
,

m2
θc = 1

〈φ〉2
d2V

dθ2

∣∣∣∣∣
〈φ̃〉

= 0 . (4.8)

Since we have assumed an exact U(1) symmetry, m2
θc

= 0 and θc is an exact Nambu-
Goldstone boson.

In the case of a small value of ξf2
j and ξ2f2

j (with j = 0, 2), we could also consider
another interesting scenario: if we gauge the U(1) symmetry, the corresponding vector
boson may trigger the spontaneous symmetry breaking in the fashion described in section 2.
The effective potential gains then an additional contribution generated by the gauge boson
loops (e4 term in eq. (2.5)). If, in addition to the basic CW assumption (λ2 � e4), the
gravitational couplings are suppressed with respect to the U(1) charge (ξ2f4

j , ξ
4f4
j � e4,

with j = 0, 2), then gauge boson loops dominate in the effective potential and scalar and
gravitational loops can be neglected. We are led to the spontaneous symmetry breaking
described in section 2, where the scalar field modulus φ gets a non-zero vev with value

〈φ〉 = e−1M exp
[

1
6 −

4π2

9
λ

e4

]
, (4.9)

where scalar and gravitational loops have been neglected. Notice that this is the result
obtained in eq. (2.6). This vev (4.9) implies the appearance in the action of a Planck mass
term given by M̄Pl = ξ〈φ〉2, generated by the referred spontaneous symmetry breaking.
Likewise, the Goldstone boson is no longer physical and it is absorbed by the U(1) gauge
boson, which becomes massive, with m2

A = e2〈φ2〉. Finally notice that, depending on the
value of ξ (i.e., ξ ∼ 1, ξ � 1 or ξ � 1), the pattern of the mass spectrum of the scalars, the
massive spin–2 state, the massive U(1) gauge boson and the Planck scale can vary. This
mechanism will be treated in future works and we will not further discuss it here. In what
follows we will not introduce this additional gauge boson, and we will just focus on the
case where the spontaneous symmetry breaking is due to the gravitational interactions.

4.2 Soft U(1) breaking

We will now consider that the U(1) symmetry is not exact but approximate, with ξ1,2 ≡
ξ± δ ≡ ξ(1± δ̂). We will perform a perturbative expansion of the potential up to one loop

2In order to compute the mass of the angular scalar component, we have to take into account that its
kinetic term is given by 1

2 〈φ〉
2∂µθ∂

µθ. In order to have a canonically normalized kinetic term 1
2∂µθc∂

µθc,
it is necessary to rescale the field in the following way: θc = 〈φ〉θ.
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in powers of δ̂ for |δ̂| � 1:

V (φ, θ) = V0(φ, θ) + 9ξ4f4
0φ

4

64π2 (1 + 2δ̂ cos(2θ))2
[
ln
(

(1 + 2δ̂ cos(2θ))3ξ2f2
0φ

2

M2

)
− 3

2

]

+ ξ2φ4

16π2 (1 + δ̂ cos(2θ))2
{
f4

0

[
ln
(

(1 + δ̂ cos(2θ))2ξf2
0φ

2

M2

)
− 3

2

]

+ 5f4
2

[
ln
(

(1 + δ̂ cos(2θ))2ξf2
2φ

2

M2

)
− 1

5

]}
+ O(δ̂2) , (4.10)

where we have neglected O(λ2) terms, and we can write the tree-level potential as

V0(φ, θ) = λ

4!φ
4 + α

4!φ
4 cos(2θ) + β

4!φ
4 cos2(2θ) . (4.11)

We have made use of the following relations:

ξ2
1φ

2
1 + ξ2

2φ
2
2 = ξ2(φ2

1 + φ2
2) + 2δξ(φ2

1 − φ2
2) +O(δ2) = ξ2φ2(1 + 2δ̂ cos(2θ)) +O(δ̂2) ,

ξ1φ
2
1 + ξ2φ

2
2 = ξ(φ2

1 + φ2
2) + δ(φ2

1 − φ2
2) = ξφ2(1 + δ̂ cos(2θ)) . (4.12)

We note that the terms of the tree-level potential absorb different one-loop gravitational
UV divergences: λ renormalizes the O(δ̂0) divergences; α cancels O(δ̂) divergences; and
β absorbs the O(δ̂2) UV infinities. According to the CW framework, the spontaneous
symmetry breaking pops up due to an interplay between the tree-level potential of the
scalar fields and the loop contributions with other particles, which are assumed to be of
the same order around the vacuum of the theory. Hence, it sounds reasonable to assume
the soft-breaking scalings α ∼ O(δ̂) and β ∼ O(δ̂2) in our CW approach. The potential
would be then arranged in the form

V (φ, θ) = V(δ̂0)(φ) + δ̂ cos(2θ) g(φ) + O(δ̂2) , (4.13)

with the symmetric potential V(δ̂0)(φ) provided by eq. (4.5), and the first correction O(δ̂),
given by

g(φ) = α

4!δ̂
φ4 + φ4

16π2

{
9ξ4f4

0

[
ln
(

3ξ2f2
0φ

2

M2

)
− 1

]
(4.14)

+ 2ξ2f4
0

[
ln
(

2ξf2
0φ

2

M2

)
− 1

]
+ 10ξ2f4

2

[
ln
(

2ξf2
2φ

2

M2

)
+ 3

10

]}
.

Here, we are assuming that β ∼ O(δ̂2) as we have discussed above. In the case when the
symmetry breaking coupling β scales like O(δ̂) one should consider the contribution of this
term of the tree-level potential to g(φ). Our intention in this subsection is, however, to
illustrate the soft symmetry breaking, so this β-term will be neglected.

We extract the minimum 〈φ̃〉 of the potential V (φ, θ) by demanding the critical point
condition:

dV
dφ

∣∣∣∣
〈φ̃〉

= V ′(δ̂0)(〈φ〉) + O(δ̂) = 0 , dV
dθ

∣∣∣∣
〈φ̃〉

= − 2δ̂ sin(2〈θ〉) g(〈φ〉) + O(δ̂2) = 0 ,

(4.15)
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where the first equation implies the same relation for λ found in eq. (3.18) up to corrections
O(δ̂). This substitution turns V(δ̂0)(φ) into the simplified result given in eq. (4.7), up to
O(δ̂) corrections. The second equation in (4.15) implies

sin (2〈θ〉) = 0 =⇒ 〈θ〉 = k π

2 = 0, π2 , . . . (k ∈ Z) (4.16)

Studying the Hessian, we find that if δ̂g(〈φ〉) is positive (negative) the minimum is located
at θ = π/2 (at θ = 0), this is, at 〈φ1〉 = 0 and 〈φ2〉 = 〈φ〉 (at 〈φ1〉 = 〈φ〉 and 〈φ2〉 = 0). We
are just discussing the analysis of the first quadrant in the (φ1, φ2) plane. The results are
analogous for the other three quadrants.

Finally, we compute the masses of the physical scalar excitations around the vacuum.
There will be a massive radial component S, given by φ = 〈φ〉+S+O(δ̂), and a canonically
normalized pseudo-Goldstone boson θc, given by θc = 〈φ〉θ + O(δ̂). Beyond the leading
order in δ̂, we have a mixing between the φ and θ fields, which can be nevertheless ignored
at lowest order. Thus, the mass of the physical eigenstates is given at the first non-vanishing
order by

m2
S = d2V

dφ2

∣∣∣∣∣
〈φ̃〉

+ O(δ̂) = V ′′(δ̂0)(〈φ〉) + O(δ̂) ,

m2
θc = 〈φ〉−2 d2V

dθ2

∣∣∣∣∣
〈φ̃〉

+ O(δ̂2) = 4〈φ〉−2
∣∣∣δ̂ g(〈φ〉)

∣∣∣ + O(δ̂2) . (4.17)

Employing the previous expressions for V(δ̂0)(φ) and g(φ), these expressions become:

m2
S = ξ2〈φ〉2

8π2

(
9ξ2f4

0 + 4f4
0 + 20f4

2

)
+ O(δ̂) ,

m2
θc = |δ̂| 〈φ〉2

∣∣∣∣∣ α̂6 + 9ξ4f4
0

4π2

[
log

(
3ξ2f2

0 〈φ〉2

M2

)
− 1

]

+ ξ2f4
0

2π2

[
log

(
2ξf2

0 〈φ〉2

M2

)
− 1

]
+ 5ξ2f4

2
2π2

[
log

(
2ξf2

2 〈φ〉2

M2

)
+ 3

10

] ∣∣∣∣∣+O(δ̂2) ,

(4.18)

with α ≡ α̂δ̂, and the relation with reduced Planck mass given by M̄Pl = ξ〈φ〉2 [14, 27].
Since we have slightly and explicitly broken the U(1) global symmetry, the angular mode
can be understood as a pseudo-Goldstone boson (even in the case with 〈θ〉 = 0). This
boson acquires a suppressed mass, O(δ̂), not only with respect to the Planck scale, but
also to the mass of the radial scalar mode, following a hierarchy m2

θc
� m2

S � M̄2
Pl.3

3Read appendix B. In addition, notice that for f0,2 ∼ O(1) the masses m2
0,2 = f2

0,2M̄
2
Pl/2 of the ex-

tra massive spin-two and spin-zero mediators of the gravitational interaction become of the order of the
Planck scale.
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5 Conclusions

In this work, we have carried out a study of the CW mechanism triggered by the gravi-
tational interaction. First, we have reviewed the case studied by Coleman and Weinberg
for scalar electrodynamics with quartic self-interaction. Then, we have extended the same
mechanism for a renormalizable Lagrangian that couples a scalar field and gravity. It
should be noted that despite being of different natures, there are great similarities between
the electromagnetic and the gravitational interaction with respect to this mechanism since
we have been able to extrapolate the procedure in a relatively simple way. The gravita-
tional interaction is able to produce the same effect by providing a finite mass and a vev
to the scalar field.

The main difference, is that the CW mechanism produces the symmetry breaking
of the gauge interaction for the electromagnetic case. Therefore, the photon acquires
mass since a Higgs-like mechanism takes place. On the contrary, for the gravitational
interaction, although the CW mechanism breaks scale invariance as in the electromagnetic
case, it preserves general diffeomorphisms, which is the local symmetry associated to the
interaction. Therefore, the standard spin-two graviton remains massless. In any case, the
dimensional transmutation of the CWmechanism induces the Planck scale in a natural way.

Finally, we have extended our study for the gravitational CW mechanism to a multi-
scalar case. In particular, we have analysed in detail a model with two scalar degrees of
freedom. We pay special attention to the case of an approximated global U(1) symmetry
in the scalar sector. This has allowed us to study the system by performing a perturbative
expansion in terms of a δ̂ parameter characterising the explicit U(1) symmetry breaking.
If we consider equal coupling constants for the two scalar fields, the global U(1) symmetry
is exact and the theory contains a massive scalar and an exact Goldstone boson with
zero mass. Deviations from this limit turns this state into a pseudo-Goldstone with a
non-vanishing square mass proportional to the soft breaking parameter δ̂. The study of a
general multi-scalar case can be performed in an straightforward way by generalising the
studies performed in this analysis, leading to similar qualitative conclusions. This type of
models provide a viable construction of a pseudo-Goldstone sector with masses at a scale
much lower than the Planck scale. These ideas can be pursued in order to introduce the
Higgs action and the Standard Model within this framework.
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A Projectors, tensor relations and traces

For the longitudinal and transverse projectors we have the relations

T · T = T , L · L = L , L · T = T · L = 0 ,
Tµν + Lµν = ηµν , TrT = (D − 1) , TrL = 1 . (A.1)

Notice that, for D = 4, the last relations become TrT = 3 and TrL = 1
For the graviton propagator projectors, we have analogous relations:

P (i) · P (i) = P (i) , P (i) · P (j 6=i) = P (j 6=i) · P (i) = 0 ,∑
i=0w,0,1,2

P
(i)
µν,αβ = 1

2 (ηµαηνβ + ηµβηνα) ,

TrP (2) = (D2 −D − 2)
2 , TrP (1) = D − 1 ,TrP (0) = 1 , TrP (0w) = 1 , (A.2)

where here, there is not implicit sum over repeated indices unless explicitly stated. Notice
that, for D=4, the last relations become TrP (2) =5, TrP (1) =3, TrP (0) =1 and TrP (0w) =1.

Here we provide some intermediate steps of the calculation of the gravity loops:

D · C(2ξ) = 2ξ
k2

(((D − 2)
2 f2

0

)
P (0) + f2

2P
(2)
)
, (A.3)

(
D · C(2ξ)

)n
=
(2ξ
k2

)n (((D − 2)
2 f2

0

)n
P (0) + f2n

2 P (2)
)
,

Tr
{(
D · C(2ξ)

)n}
=
(2ξ
k2

)n

((D − 2)

2 f2
0

)n
× 1︸︷︷︸

=TrP (0)

+ f2n
2 ×

(
D2 −D − 2

2

)
︸ ︷︷ ︸

=TrP (2)

 .

B Masses of the scalar sector

In this type of models, the scalar sector mixes due to the presence of finite vevs in the non-
minimal gravitational couplings. For instance, in the case of a single field, the normalized
quadratic term in the action can be written in terms of the matrix:

M2 =

 3
32

(
∂µ∂µ

m2
0

+ 1
)
∂ν∂

ν 3
4ξ

1
2∂µ∂

µ

3
4ξ

1
2∂µ∂

µ −
(
∂µ∂

µ +m2
S

)
 , (B.1)

associated to the scalar degree of freedom of the metric perturbation and the scalar mode
corresponding to the field that develops the vev, as it has been discussed in [15]. In the
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limit where ξ −→ 0, the two scalar modes do not mix, and the square mass eigenvalues are
just m2

0 and m2
S . However, ξ does not need to be small. In such a case, the square mass

eigenvalues corresponding to the propagating scalar eigenstates can deviate strongly from
the above values:

m2
heavy = (1 + 6ξ)m2

0

(
1 + 6ξ

(1 + 6ξ)2
m2
S

m2
0

+O
(
m4
S

m4
0

))
,

m2
light = 1

(1 + 6ξ) m
2
S

(
1− 6ξ

(1 + 6ξ)2
m2
S

m2
0

+O
(
m4
S

m4
0

))
. (B.2)

In any case, the perturbativity and the CW condition of the model forces to have a well-
defined hierarchy between the two masses: m2

heavy > m2
0 � m2

S > m2
light. Note that the

recovery of the Planck scale by M̄2
pl = ξ〈ϕ〉2 requires ξ > 0. This result is consistent with

previous studies within the same Jordan frame [15] or the Einstein frame [14].
For a gravitational CW mechanism with several scalar fields, the situation is more

involved. In general, there will be mixing terms due to the non-minimal coupling, between
the scalar mode of the metric and each additional scalar field that develops a vev. Therefore,
the Planck mass will have contributions from each of these vevs. However, an important
simplification arises if there is only one scalar field with non-minimal coupling or only one
scalar field acquires a vev. Under these conditions, only this field mixes with the scalar
mode of the geometry. In such a case, the propagation matrix (B.1) is trivially extended
without additional non-diagonal entries. This is exactly what happens for the case with
two additional scalar degrees of freedom with an exact global U(1) symmetry discussed
in this work. The radial mode mixes with the scalar graviton, whereas the angular mode
remains as a propagation eigenstate with zero mass. Indeed, when the U(1) symmetry is
slightly broken, the situation does not change at first order in the soft breaking parameter
δ̂, and the mass m2

θc
given by eq. (4.18) is not modified at leading order.
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