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Abstract: We derive the Symmetry Topological Field Theories (SymTFTs) for 3d super-
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engineering or holography. These 4d SymTFTs encode the symmetry structures of the 3d
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differential cohomology, we derive the SymTFT by reducing M-theory on a 7-manifold Y7,
which either is the link of a conical Calabi-Yau four-fold or part of an AdS4×Y7 holographic
solution. In the holographic setting we first consider the 3d N = 6 ABJ(M) theories and
derive the BF-couplings, which allow the identification of the global form of the gauge group,
as well as 1-form symmetry anomalies. Secondly, we compute the SymTFT for 3d N = 2
quiver gauge theories whose holographic duals are based on Sasaki-Einstein 7-manifolds
of type Y7 = Y p,k(CP2). The SymTFT encodes 0- and 1-form symmetries, as well as
potential ’t Hooft anomalies between these. Furthermore, by studying the gapped boundary
conditions of the SymTFT we constrain the allowed choices for U(1) Chern-Simons terms
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1 Introduction

Symmetries and their anomalies have proven to be powerful tools in analysing quantum field
theories (QFTs). Following the proposal in [1], symmetries are now understood to be the
set of topological operators in a given QFT. This generalization leads to a broadening of the
paradigm of ‘symmetry’, including higher-form symmetries [1], higher-group symmetries [2–
7] and non-invertible symmetries — the most recent progress being in higher-dimensional
d ≥ 4 theories [8–32]. Since their recent inception, generalized symmetries in string theory
and related theories have thus been studied extensively.1

The realization of QFTs within string theory has most of its utility when studying
strongly coupled regimes of theories, either in geometric engineering or from a dual holo-
graphic perspective. In some instances this provides otherwise inaccessible information
about strongly coupled QFTs, and in particularly favorable circumstances even a framework
for classification of particular types of (supersymmetric) QFTs. The string theoretic realiza-
tion has to capture some of the salient physical properties of the QFTs, in particular the
generalized symmetries and their ’t Hooft anomalies, which are robust under RG-flow. The
symmetry structure of a QFT can be encoded in the so-called Symmetry Topological Field
Theory (SymTFT or Symmetry TFT) [76–78], see [28, 29, 31, 79–81] for recent applications.

In a nutshell, the SymTFT is a (d+ 1)-dimensional topological field theory, which upon
reduction on an interval with topological boundary conditions on one side, and physical
(non-topological) boundary conditions on the other, gives rise to the physical theory (and its
anomaly theory). The SymTFT contains, for example, the BF-couplings of the background
fields for global symmetries and the couplings that give rise to ’t Hooft anomalies. We will
shortly give a more thorough introduction in section 2.

The main observation in [78], is that for QFTs that have a realization in string theory,
the SymTFT can be derived from a supergravity approach. For a geometric engineering setup
that corresponds to a dimensional reduction on a (non-compact) space X, the SymTFT is
obtained by a suitable dimensional reduction on ∂X — and thus is naturally one dimension
higher than the QFT that is being engineered. In order to capture subtle aspects such as
finite group (higher-form) symmetries, the dimensional reduction is not a standard KK-
reduction in supergravity, but we are required to utilize differential cohomology to capture
background fields of finite group symmetries. Prior applications of differential cohomology
to string/M-theory have appeared in [78, 82–86], and for a mathematical review see [87].

Closely related to this is that of holography, where the strongly-coupled regime of
a superconformal field theory is realized in terms of string/M-theory on AdSd+1 × X

spacetime. In this case, the SymTFT can be interpreted as the topological couplings in the
bulk supergravity on AdSd+1 (or in more general holographic setups). The most well-studied
example of AdS5×S5 has the bulk coupling N

∫
AdS5

B2∧dC2, which is precisely an example
of such a BF-coupling for the 1-form symmetries of the dual 4d gauge theories (with gauge
algebra su(N)) [88]. More precisely, the SymTFT in holography lives in the near-boundary
region of the bulk and models the choice of global forms of the gauge group and the singleton
sector [88, 89]. In terms of the formulation as generalized symmetries and SymTFTs, there

1For a sample list of references see [33–75].

– 1 –



J
H
E
P
0
2
(
2
0
2
3
)
2
2
6

has been much recent interest in the holographic literature [24, 28, 85, 88, 90–96], in
particular for AdS4/CFT3 in [92] for 3d N = 6 SCFTs of ABJM type [97].

The goal of this paper is to determine the SymTFT for 3d QFTs which either have a
realization as geometric engineering in M-theory on an 8-manifold, or in terms of AdS4/CFT3
holographic setups in M-theory. These two constructions are closely related and we provide
a systematic computational approach to determining the SymTFT in both cases. The main
focus will be on conical 8-manifolds (with special holonomy) X8 = C(Y7) in setups with and
without branes. Using differential cohomology in the supergravity reduction allows us to
take into account the effects of torsion in the homology of Y7, which is associated with a
new set of background fields for finite higher-form symmetries.

For Y7 a Sasakian 7-manifold we provide a prescription for computing the SymTFT
coefficients explicitly, which correspond to secondary invariants in differential cohomology,
from the intersection theory in the non-compact complex 4-fold X8.2 We give detailed
examples when the cone X8 is toric, in particular for X8 = C4/Zk and X8 = C(Y p,k(CP2)),
where combinatorial formulas for intersection numbers can be explicitly computed. As such,
we explain how physical anomaly coefficients and BF-terms are encoded in the geometric
information of the toric diagram. In summary, we will derive the SymTFT and give a
procedure for computing the coefficients for

1. Geometric engineering: M-theory on a singular, non-compact Calabi-Yau 4-fold
X8 = C(Y7), i.e. Y7 is a Sasaki-Einstein 7-manifold.

2. Holography: AdS4 × Y7 solutions of M-theory, which are dual to M2-branes probing
X8 = C(Y7), where Y7 is a Sasakian 7-manifold (Sasaki-Einstein when X8 is a Calabi-
Yau 4-fold).

For concrete applications, we will mostly focus on the holographic setups, leaving the
exploration of geometrically engineered 3d QFTs for future work. We first compute the
SymTFT in the M-theory models dual to ABJM and ABJ theories. This relatively simple
holographic setup is well-suited to demonstrate these new refined geometric methods while,
at the same time, allowing for a match with known results from type IIA [92] in the case
where discrete background torsional flux is turned off. Finally, we apply this machinery in
a much more subtle (and not completely fixed) duality of 3d N = 2 theories realized on
M2-branes probing C(Y p,k(CP2)) [98–100]. By computing the SymTFT from the geometry,
we obtain previously unknown anomalies for these theories. Furthermore, we will see that
analysing consistent gapped boundaries of the SymTFT provides some further checks and
balances to the proposed dictionary, coming from the spectrum of extended operators.

Generalized symmetries and their ’t Hooft anomalies have a rich structure that has
been studied field-theoretically from various angles in e.g. in [60, 101–104]. Some of these
results will be used later on to cross-check against our string theoretic results.

Let us summarize some of the main results.

ABJ(M). The N = 6 ABJM theories were conjectured in [97] as a class of U(N)k ×
U(N)−k Chern-Simons matter theories with bifundamental matter, realized on N M2-branes

2We assume that X8 has a resolution, so that we can rely on a smooth model and intersection theory therein.
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probing C(S7/Zk) = C4/Zk. The addition of b fractional M2-branes takes us to the ABJ
variant [105] with U(N + b)k ×U(N)−k gauge group. The theories are conjectured to be
holographically dual to M-theory on AdS4 × S7/Zk with N units of 4-form flux over the
external space. It was argued in [105] that the presence of fractional branes gives rise to an
additional b units of torsional G4 flux in the near-horizon limit.

In [92], generalized symmetry methods were used to derive a suite of gauge theories
within the framework without fractional branes by considering different boundary conditions
of a topological field theory in one dimension higher. In particular, these gauge theories
have the same Lie algebra as the U(N)× U(N) ABJM theory, but different global forms of
the gauge group.

In this work we use differential cohomology tools in M-theory to determine the BF-term
Skin
2π =

∫
AdS4

kB2 ∧ dB1 +NB2 ∧ F , (1.1)

which matches that found from IIA in [92]. We emphasize that whilst the BF-term is
familiar, we must employ recent technology [78] to understand the geometric origin of
the 1-form symmetry background. In this work, we make this link precise by reducing
11-dimensional supergravity on the torsional components of the M-theory geometry. We
identify the 1-form symmetry background as the reduction of Ğ4, a differential cohomology
refinement of G4, on the generator of H2(S7/Zk,Z) = Zk. Furthermore, we give a geometric
derivation of a 1-form symmetry anomaly of the ABJ theories

− b

2k

∫
AdS4

B2 ^ B2 . (1.2)

The anomaly is known from field theory [106], but, to our knowledge, has not previously
been detected from geometry.

N = 2 quiver gauge theories. We also investigate a set of holographic quiver gauge
theories on N M2-branes probing a Calabi-Yau 4-fold C(Y7) which preserve N = 2 su-
persymmetry. We take the 7-manifold to be Y7 = Y p,k(CP2) [98, 99], which are S3/Zp
bundles over CP2. In [100] the field theory duals to these geometries are proposed, where
the authors furthermore consider the effect of wrapped M5-branes on non-trivial cycles in
H3(Y p,k,Z), corresponding to torsional G4 flux. They derive a triangular Chern-Simons
quiver with gauge group

GY p,k =
3∏
i=1

U(Ni)ki . (1.3)

We compute all SymTFT terms arising from the differential cohomology reduction of
11-dimensional supergravity. We derive the BF-term using a combination of M-theory
techniques, including the differential cohomology reduction, supplemented with a type IIA
computation. Given the SymTFT, we can then realise all different global forms of the
gauge group of the quiver by imposing boundary conditions on the gauge fields consistent
with the SymTFT. We also derive a new 1-form symmetry anomaly for a subclass of these
theories, which restricts certain choices of global form. Furthermore, we show that picking
certain boundary conditions can induce the presence of residual mixed 0-/1-form symmetry
anomalies in the boundary field theory.

– 3 –



J
H
E
P
0
2
(
2
0
2
3
)
2
2
6

Finally, the field theories conjectured in [100] suffer from a parity anomaly. This gauge
anomaly can be cured by turning on additional U(1) CS-terms, which however are not
completely determined by anomaly cancellation. Since the monopole operators and therefore
the screening of line operators are sensitive to these additional CS-levels, the SymTFT can
be used to constrain the additional terms in the Lagrangian.

The structure of this paper is as follows: in section 2 we provide a brief review of
the concept of the SymTFT. In section 3 we provide some background on differential
cohomology and compute a general expression for the SymTFT for 3d QFTs which can
be constructed from M-theory on X8 = C(Y7) with and without branes. We then explain
how to compute the coefficients in the SymTFT in section 4, in particular in the case of
toric X8. In section 5 we apply the above technology to our first example: the 3d N = 6
((U(N + b)k ×U(N)−k)/Zm ABJ(M) theories [97, 105, 106]. We next apply our technology
to the Y p,k(CP2) 3d N = 2 quiver gauge theories of [98–100] in section 6. In section 7
we discuss matching with field theory results of [100]. Finally, in section 8 we highlight
various possible future directions. We also provide some appendices. In appendix A
we consider contributions to the SymTFT from background fields obtained by gauging
spacetime isometries. In appendix B we use type IIA to conjecture the existence of an
additional BF-term in the Y p,k case.

2 The Symmetry Topological Field Theory

Central to our analysis is the Symmetry Topological Field Theory (SymTFT). This will be,
for the purpose of this paper, a (d+ 1)-dimensional topological field theory, which encodes
salient symmetry structures of a d-dimensional QFT, obtained by an interval reduction. In
particular it captures:

• The choice of global structure of the gauge group.

• The ’t Hooft anomalies of the higher-form and higher-group symmetries.

More generally the SymTFT will have topological boundary conditions (to the anomaly
theory) and non-topological boundary conditions, which upon reduction along an interval
result in the d-dimensional QFT. The SymTFT is an extension of the usual anomaly theory
picture in the following way. A d-dimensional QFT T is relative to an invertible theory
which we call the anomaly theory. The gauge variation of the anomaly theory placed on
a manifold with boundary will, by definition, exactly cancel the anomalous variation of
the partition function of T . An invertible theory assigns a 1-dimensional Hilbert space
to closed codimension-1 sub-manifolds in spacetime. This is the partition function of the
QFT T , evaluated on the codimension-1 manifold. Relaxing the invertible condition gives
what is called the Symmetry Topological Field Theory. This allows for the assignment of a
larger-than-one dimensional Hilbert space. Now the QFT has a vector of partition functions.
This set of distinct partition functions encodes the possible choices of global structures of
T . In particular, the QFTs encoded in these choices will have identical local physics but a
distinct spectrum of extended operators. The setup is summarized in figure 1.

– 4 –
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SA

BphyBtop

Figure 1. The blue slab (”sandwich”) is the SymTFT S, with boundary conditions on the right
(Bphy) which are non-topological and to the left, which are topological Btop. The red line is a gapped
interface separating the symmetry theory from the anomaly theory A. The picture introduced
earlier of T being defined as a theory relative to A is obtained by collapsing the blue sandwich. The
anomaly theory describes anomalies for a particular choice of global structure of the QFT.

The concept of a SymTFT is in principle completely general and can be applied to
capture the global structures of any given QFT.3 However, it is a particularly useful notion
in the context of string theory since recent progress has showed that the SymTFT can be
computed independently using geometric methods.

Brane constructions and inflow. Brane constructions in string theory provide a large
class of examples of anomaly theories. Ambient space gauge anomalies are cancelled by
worldvolume ’t Hooft anomalies via so-called ‘anomaly inflow’. In particular, cutting out a
neighbourhood around the branes, which act as sources of flux in the ambient string theory
background, induces a boundary in the 10/11d geometry, rendering the full effective action
no longer gauge invariant. In [85, 107] it was explained that these anomalies, described by
a (d+ 1)-dimensional TFT or (d+ 2)-dimensional anomaly polynomial, can be obtained by
dimensional reduction of the topological terms of the 10/11d effective action.

Geometric Engineering. In string theory constructions without branes, the notion of
inflow becomes less clear. However it was argued in [78] that for compactifications on
a (D − d)-dimensional cone C(YD−d−1) (with D = 10, 11), dimensional reduction on the
link space YD−d−1 remains a powerful tool in determing ’t Hooft anomalies. The cases
considered in [78] are 7d Yang-Mills and 5d SCFTs obtained from M-theory on singular
Calabi-Yau spaces. The SymTFT is derived in both cases from dimensional reduction of
the topological terms in the 11d supergravity action and is tested with non-trivial checks
with known field theory computations for certain anomalies.

Background fields from cohomology. The SymTFT in the cases discussed here is
formulated in terms of background fields for various generalized symmetries. These cor-
respond to massless gauge fields in the supergravity reduction, of which there are two
sources: the reduction of the supergravity gauge potentials Cn on the cohomology of the
internal space YD−d−1, and the gauging of isometries of the geometry. First, considering
continuous symmetries (and specializing to D = 11): expanding the M-theory C3 field on

3In a more categorical setting the SymTFT is the Drinfeld center of the symmetry category of the QFT.
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representatives of the free part of the cohomology Hp
Free(Y10−d;Z) gives rise to massless

(3− p)-form gauge fields. Schematically, we write

G4 = dc3 +
∑
i

dci2 ∧ ωi1 +
∑
j

dcj1 ∧ ω
j
2 +

∑
k

dck0 ∧ ωk3 , (2.1)

where subscripts denote form degrees and the forms ωp are representatives of the free parts
of the pth cohomology group. Superscripts represent various components of the integral
cohomology groups Hp

Free(Y10−d;Z). The massless q-form gauge fields cq furnish background
fields for continuous (q − 1)-form symmetries when fixed on the boundary.4

Torsional contributions. An obvious extension is to consider finite higher-form symme-
tries that arise from torsional contributions to the cohomology of Y10−d. Manifesting the
associated discrete background gauge fields requires a reduction of C3 on torsional cocycles:
a problem beyond the scope of ordinary differential forms.5 This is where the framework
of differential cohomology H̆(Y10−d) can be used to incorporate more general symmetry
structures [78]. We include torsional contributions by lifting G4 to differential cohomology
and expanding as follows

Ğ4 =
∑
α

B̆α
3 ? t̆

α
1 +

∑
β

B̆β
2 ? t̆

β
2 +

∑
γ

B̆γ
1 ? t̆

γ
3 +

∑
δ

b̆δ ? t̆δ4 . (2.2)

Here, t̆αp are differential cohomology lifts of generators of TorHp(Y10−d;Z) of torsional degree
`αp ∈ N. We leave a detailed explanation of this notation and technology for later sections.
Here, we wish only to demonstrate that the notion of ‘expanding G4 in cohomology’ is
maintained. The fields B̆α

q represent background fields for Z`αp higher-form symmetries.
Crucially, including gauge fields of this new type allows for a whole new class of SymTFT
couplings upon dimensional reduction. It is terms of this type in particular that we explore
in this paper.

Background fields from isometries. Isometries of the internal space Y10−d are another
source of background fields. Turning on 1-form gauge fields for isometries is equivalent
to fibering the manifold Y10−d over the external space. At the level of the SymTFT, this
procedure will generate new couplings involving these 1-form gauge fields. We consider
a subset of such terms by gauging spacetime isometries within the free subsector of the
cohomology reduction, see appendix A. We leave the torsional components of this story to
future work.

4In recent work [81] where the mathematical framework of SymTFTs has been fleshed out, the authors
consider finite symmetries only. However here, and in our general SymTFT reduction in section 3 we allow
for continuous global symmetries following the work of [78]. In cases where the continuous fields participate
in BF terms, after a choice of consistent boundary conditions these become finite. Where the continuous
fields do not participate in a BF term, the SymTFT terms they contribute to represent an additional
invertible sector (the anomaly theory for these symmetries). Additionally, in the holographic contexts we
consider, although continuous gauge fields admit non-topological kinetic terms, these are sub-leading at
large distances (at the boundary where the field theory lives).

5Some attempts towards using standard harmonic forms were made in [108, 109].
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Holographic theories. Much progress has been made in recent years in identifying
generalized symmetry structures in holographic correspondences. In this paper, we will
discuss it in detail for AdS4 solutions. For now, let us simply exemplify the most basic aspect
of this: the choice of global structure for the boundary theory is encoded in a BF-term for
the bulk gauge fields, which constrains the possible boundary conditions one can impose on
the fields [88, 89, 110]. For example, in [28, 94] the following 5d bulk supergravity term
was derived in the Klebanov-Strassler holographic solution [111]

SBF
2π = gcd(N,M)

∫
M5

b2 ∧ dC2 , (2.3)

for integers N,M and 2-form fields b2, C2. The equations of motion force b2, C2 to be flat
gauge fields. The topological bulk operators ei2π

∮
b2 , ei2π

∮
C2 are mutually non-local due to

the BF-action since the two composite fields are canonically conjugate [88]. Now suppose
the following boundary conditions are chosen:

b2 Dirichlet , C2 Neumann . (2.4)

Then ei2π
∮
C2 are the topological codimension-2 operators in 4d generating a Zgcd(N,M) 1-

form symmetry with charged lines given by the operators ei2π
∮
b2 restricted to the boundary.

Alternate choices of boundary conditions correspond to different boundary global symmetries
or, equivalently, different choices of global form of the boundary field theory gauge group.
This type of analysis has been extend to a 3d example in [92] and 4d in [94]. Anomalies in
holographic theories have also been studied for example in [85, 107].

3 SymTFT from M-theory on Y7

We derive the SymTFT of any 3d QFT that arises in M-theory, either as compactification
on R1,2 × C(Y7), or holographically dual to AdS4 × Y7. This is achieved by reducing the
topological terms of 11d supergravity on both the free and torsional parts of the cohomology
of Y7. A caveat in this analysis is that the symmetries we will capture from this approach
need to be manifest within the geometric realization. We focus our main attention on
the dimensional reduction using differential cohomology. A generalization to equivariant
differential cohomology is discussed in appendix A, where gauging of isometries is included,
which can give rise to additional global symmetries of the QFTs.

3.1 Reduction using the free part of cohomology

Let us start by performing the reduction of M-theory on M11 = M4 × Y7, using only
the free part of the cohomology Hp

Free(Y7;Z) which gives rise to continuous gauge fields
in the effective 4d theory. As discussed above, these massless modes are obtained by a
Kaluza-Klein expansion of the 4-form flux G4 on representatives of the cohomology of
the internal space with integral periods. Their topological couplings arise from the 11d
supergravity term

S11d
2π =

∫
M11

[
−1

6C3 ∧G4 ∧G4 − C3 ∧X8

]
. (3.1)

– 7 –
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The 8-form characteristic class X8 is constructed from the Pontryagin classes of the tan-
gent bundle

X8 = 1
192 (p1(TM11) ∧ p1(TM11)− 4p2(TM11)) . (3.2)

To derive the 4d topological couplings we consider the gauge invariant 5-form I5, on an
auxiliary 5d space, which is the derivative of the 4d topological Lagrangian

I5 = dI4 , S4d = 2π
∫
M4

I4 . (3.3)

We identify I5 as

I5 =
∫
Y7
I12 =

∫
Y7

(
−1

6G4 ∧G4 ∧G4 −G4 ∧X8

)
. (3.4)

Assuming Y7 is connected, the betti numbers br(Y7) = dimHr(Y7,R) satisfy bi(Y7) =
b7−i(Y7). We denote the associated closed p-forms by

ωip , p = 0, . . . , 7 , i = 0, . . . , bp(Y7) , (3.5)

with ω0 ≡ 1. We expand the 4-form flux using these forms

G4 =
4∑
p=0

bp(Y7)∑
i=0

gi4−p ∧ ωip . (3.6)

When considering particular solutions it will be convenient to have separated the background
Gbg

4 supporting the vacuum from the dynamical fluctuations G′4 around the solution:

G4 = G′4 +Gbg
4 . (3.7)

Imposing the Bianchi identity, we find that giq can locally be written as

gi0 ≡ N i , giq = dciq−1 , q = 1, 2, 3 , g4 = dc3 + LvolM4 , (3.8)

with the background parametrised by∫
Ci
Gbg

4 = N i ∈ Z ,
∫
Y7
?Gbg

4 = L ∈ Z , (3.9)

where Ci is a basis of 4-cycles in Y7. We can therefore write the fluctuations

G′4 =
3∑
p=0

bp(Y7)∑
i=0

dci3−p ∧ ωip , (3.10)

and background

Gbg
4 = LvolM4 +

b4(Y7)∑
i=0
N iωi4 . (3.11)

In the reduction of the CS-term G3
4, the background flux over the external space will

contribute metric-dependent terms (which belong to the scalar potential) that we neglect.

– 8 –
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Performing the reduction we find∫
Y7
−1

6G
3
4 =

∑
ijk

(
−1

2K
ijkdci2 ∧ dc

j
0 ∧ dc

k
0 + 1

2K
ijkdci1 ∧ dc

j
1 ∧ dc

k
0 + KijkN idcj1 ∧ dc

k
2

)
+
∑
ij

KijN idcj0 ∧ dc3 ,

(3.12)
where the intersection numbers are given by

Kijk =
∫
Y7
ωi1 ∧ ω

j
3 ∧ ω

k
3 , Kijk =

∫
Y7
ωi2 ∧ ω

j
2 ∧ ω

k
3 ,

Kij =
∫
Y7
ωi4 ∧ ω

j
3 , Kijk =

∫
Y7
ωi4 ∧ ω

j
2 ∧ ω

k
1 .

(3.13)

To factorise the characteristic class X8, we can employ the Whitney sum formula for
Pontryagin classes defined on a product manifold [112]. Assuming the external spaceM4 is
orientable and spin, we obtain

p1(TM11) = p1(TM4) + p1(TY7) ,

p2(TM11) = p2(TM4) + p2(TY7) + p1(TM4) ^ p1(TY7) .
(3.14)

The second Pontryagin classes vanish on dimensional grounds. We can therefore write the
8-form characteristic class

X8 = − 1
96p1(TM4) ^ p1(TY7) . (3.15)

Together with the expansion (3.6) we find

−
∫
Y7
G4 ∧X8 = − 1

96

b3(Y7)∑
i=1

[∫
Y7
ωi3 ∧ p1(TY7)

]
dci0 ∧ p1(TM4) . (3.16)

Defining
Ci = 1

96

∫
Y7
ωi3 ∧ p1(TY7) , (3.17)

the gauge invariant 5-form is

I5 =
∑
ijk

(
−1

2K
ijkdci2 ∧ dc

j
0 ∧ dc

k
0 + 1

2K
ijkdci1 ∧ dc

j
1 ∧ dc

k
0 + KijkN idcj1 ∧ dc

k
2

)
+
∑
ij

KijN idcj0 ∧ dc3 −
∑
i

Cidci0 ∧ p1(TM4) .
(3.18)

Acting with an anti-derivative, we find

I4 =
∑
ijk

(1
2K

ijkdci2 ∧ c
j
0 ∧ dc

k
0 + 1

2K
ijkdci1 ∧ c

j
1 ∧ dc

k
0 + KijkN icj1 ∧ dc

k
2

)
−
∑
ij

KijN idcj0 ∧ c3 −
∑
i

Cici0p1(TM4) .
(3.19)

Notice in particular the single derivative terms

I4 ⊃
∑
ijk

KijkN icj1 ∧ dc
k
2 −

∑
ij

KijN idcj0 ∧ c3 . (3.20)
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Such BF-terms constrain the possible boundary conditions that can be imposed on the
pairs (cj1, ck2) and (cj0, c3), which in turn dictates the global symmetries of the resulting
field theory. For example, if KxyzN x ≡ m 6= 0, giving cy1 Neumann (free) boundary
conditions implies that cz2 must be fixed to a background value in Zm in the boundary
theory, giving rise to a Z(1)

m global 1-form symmetry in the 3d theory. Exchanging the
boundary conditions corresponds to gauging the full Zm 1-form symmetry, and we obtain a
Zm 0-form symmetry instead. After a choice of boundary conditions consistent with the BF
terms, the other terms in (3.18)/(3.19) give rise to mixed anomalies between the resulting
finite higher-form symmetries.

3.2 Review of differential cohomology

In [78] it was shown, by employing a description in terms of differential cohomology, that
torsion in Hp(Y7;Z) may give rise to additional couplings in the SymTFT. In this section
we recap the introduction of [78] on differential cohomology in order to introduce both the
notation and some of the mathematical machinery we use throughout this work. For further
mathematical details and implementations of differential cohomology in string/M-theory
see e.g. [78, 82–84, 86, 87].

Differential cohomology combines information about the characteristic class of the
gauge bundle and the connection. The pth differential cohomology group H̆p(M) of an
n-dimensional manifold M is a differential refinement of the ordinary integral cohomology
group Hp(M ;Z). Denote by Ωp closed p-forms, and by Ωp

Z the subset of those with integral
periods. The differential cohomology class takes part in the commutative diagram, whose
diagonals are all short exact sequences:6

TorHp(M ;Z)

Hp−1(M ;R/Z) Hp(M ;Z)

Hp−1(M ;R)
Hp−1

Free(M ;Z)
H̆p(M) Hp

Free(M ;Z)

Ωp−1(M)
Ωp−1
Z (M)

Ωp
Z(M)

dΩp−1(M)

−β

i %I

R

dZ

τ

d

r

(3.21)

6An alternative way of describing differential cohomology is as follows. Differential cohomology is useful
to describe the non-trivial topological structure of higher-form gauge fields. A representative Ă of a class
[Ă] ∈ H̆p(M) is specified by a tuple [86]

Ă = (N,A, F ) .
Here F is the field strength and is a closed (p + 1)-form. A and N are maps from Cp(M), the space of
p-chains, to R and Z respectively. They encode holonomies and the non-trivial interplay between these
holonomies and the field strength. See [86] for more information on differential cohomology phrased in
this way.
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Differential cohomology is endowed with a bilinear product

? : H̆p(M)× H̆q(M)→ H̆p+q(M) , (3.22)

with the properties

ă ? b̆ = (−1)pq b̆ ? ă , I(ă ? b̆) = I(ă) ^ I(b̆) , R(ă ? b̆) = R(ă) ∧R(b̆) , (3.23)

for ă ∈ H̆p(M) and b̆ ∈ H̆q(M). It has two non-trivial integration maps, namely:

• the primary invariant of a differential cohomology class of degree n = dim(M)∫
M
ă =

∫
M
I(ă) =

∫
M
R(ă) ∈ Z , ă ∈ H̆n(M) , (3.24)

• the secondary invariant of a differential cohomology class of degree n+1 (see e.g. [113])∫
M
ă =

∫
M
w mod 1 =

∫
M
u ∈ R/Z , ă ∈ H̆n+1(M) , (3.25)

with

τ(w) = ă , w ∈ Ωn(M)
Ωn
Z(M) , and ă = i(u) , u ∈ Hn(M ;R/Z) . (3.26)

In the setting of M-theory, we can write the action (3.1) as the secondary invariant of a
class Ĭ12 ∈ H̆12(M11),

S

2π =
∫
M11

Ĭ12 mod 1 , (3.27)

where
Ĭ12 = −1

6Ğ4 ? Ğ4 ? Ğ4 − Ğ4 ? X̆8 , (3.28)

with Ğ4 ∈ H̆4(M11) and X̆8 ∈ H̆8(M11).
For a given 7-manifold Y7, the generators of Hp(Y7;Z), p = 0, . . . , 7 are denoted as

follows:

• free generators of Hp(Y7;Z): r(ωip) ≡ vip, i = 1, . . . , bp(Y7) with ωip ∈ Ωp
Z(Y7),

• torsion generators of Hp(Y7;Z): tαp , α ∈ Ap for some set of superscripts Ap.

For each torsion generator, there exists a minimal positive number `αp ∈ N, such that

`αp t
α
p = 0 . (3.29)

We will be particularly interested in the secondary invariant of Ĭ12 on a product space,
which is the compactification space of M-theory. For a set of differential cohomology classes
ă ∈ Hp(M4), b̆ ∈ Hq(Y7) with p+ q = 12 we have

∫
M4×Y7

ă ? b̆ =


(∫
M4

u
) (∫

Y7
R(b̆)

)
if p = 5(∫

M4
R(ă)

) (∫
Y7
s
)

if p = 4
0 otherwise

(3.30)
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where
i(u) = ă , i(s) = b̆ . (3.31)

Now, we can choose the differential cohomology uplifts of the torsion generators t̆ to
be flat [78]

R(t̆) = 0 , (3.32)

which implies that for terms in Ĭ12 involving the torsion generators t̆, only those with 8
internal components will contribute (i.e. with p = 4 in (3.30))

3.3 Accounting for torsion using differential cohomology

In this section we expand the differential refinement of G4, Ğ4 ∈ H̆4(M11), on the product
space M11 =M4 × Y7 and derive the topological sector of the effective 4d supergravity
theory, including torsion contributions.

We will takeM4 to be connected, so H0(M4;Z) = Z, and assume vanishing torsion
TorH•(M4;Z) = 0. We will furthermore assume that Y7 is closed, connected and orientable,
so that [114]

H0(Y7;Z) = Z , TorH1(Y7;Z) = 0 . (3.33)

Thus, we take v0 ≡ 1 as the generator of H0(Y7). We can expand the ordinary cohomology
class7 G4 ∈ H4(M11;Z) as

G4 =
4∑
p=0

bp(Y7)∑
i=1

F i4−p ^ vip +
4∑
p=2

∑
α∈Ap

Bα
4−p ^ tαp . (3.34)

Here, F iq ∈ Hq(M4;Z) are a set of field strengths related to giq in (3.6) by

%(F iq) = r(giq) , (3.35)

and Bα
q ∈ Hq(M4;Z) model a set of closed q-form gauge fields. In particular, let us

comment on the 0-forms F i0 and Bα
0 . Due to flux quantisation (over ordinary and torsional

cycles, respectively), F i0 and Bα
0 are in fact integers. For F i0, we have %(F i0) = r(N i). We

will simply write
F i0 = N i ∈ Z , (3.36)

which is background flux over internal 4-cocycles supporting the vacuum. For Bα
0 ∈

H0(M4;Z), commutativity of the righthand diagram in (3.21) for p = 0 implies the existence
of a set of integers bα ∈ Ω0

Z, such that %(Bα
0 ) = r(bα), parametrizing the background flux

over torsion 4-cocycles in Y7. We write

Bα
0 = bα ∈ Z . (3.37)

In order to distinguish this background flux from the fluctuating fields, we will use bα below.
7We use G4 both for the cohomology class and for the differential form representing the free part.
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The uplift to differential cohomology Ğ4 ∈ H̆4(M11) is performed using the surjec-
tive map I : H̆p(M) � Hp(M ;Z) in (3.21), which implies the existence of differential
cohomology classes F̆ i4−p, B̆α

4−p ∈ H̆4−p(M4) and v̆ip, t̆αp ∈ H̆p(Y7) such that

F i4−p = I(F̆ i4−p) , Bα
4−p = I(B̆α

4−p) , vip = I(v̆ip) , tαp = I(t̆αp ) . (3.38)

We therefore can write the differential cohomology uplift

Ğ4 =
4∑
p=0

bp(Y7)∑
i=1

F̆ i4−p ? v̆
i
p +

4∑
p=0

∑
α∈Ap

B̆α
4−p ? t̆

α
p , (3.39)

such that
G4 = I(Ğ4) . (3.40)

The map I only determines Ğ4 up to a topologically trivial element. However the contribution
from this element is accessible through the ordinary cohomology formulation, so we set it
to zero in the following.

Dimensional reduction of the CS-term, using the expansion of Ğ4 in (3.39) (and flatness
of t̆) yields a significant number of potential topological couplings, which we organise by
the number of continuous, respectively discrete, gauge fields (i.e. into four types of the form
F 3, F 2B, FB2 and B3). Furthermore, we denote the 8-dimensional secondary invariants of
H̆8(Y7) over the internal space by8

Λijknm ≡
∫
Y7
v̆in ? v̆

j
8−n−m ? v̆km ,

Λijαnm ≡
∫
Y7
v̆in ? v̆

j
8−n−m ? t̆αm ,

Λiαβnm ≡
∫
Y7
v̆in ? t̆

α
8−n−m ? t̆βm ,

Λαβγnm ≡
∫
Y7
t̆αn ? t̆

β
8−n−m ? t̆γm .

(3.41)

For the F 3 component we obtain
∫
M11
−1

6Ğ
3
4

∣∣∣∣
F 3

=
∑
ijk

[
−K

ijk

2

∫
M4

F̆ i3?F̆
j
1 ?F̆

k
1 +K

ijk

2

∫
M4

F̆ i2?F̆
j
2 ?F̆

k
1 +KijkN i

∫
M4

F̆ j2 ?F̆
k
3

+ Λijk23
2

∫
M4

F̆ i2?F̆
j
1 ?F̆

k
1 + Λijk24

2 N
k
∫
M4

F̆ i2?F̆
j
2 + Λijk14

2 N
k
∫
M4

F̆ i3?F̆
j
1

]

+
∑
ij

[
KijN i

∫
M4

F̆ j1 ?F̆4−
Λij40
2 N

iN j
∫
M4

F̆4

]
.

(3.42)
Here we notice that the four terms with primary invariants on Y7 are precisely those captured
by the ordinary cohomology reduction (and we therefore use the previous notation for the
coefficients). Using the definition of the primary invariant (3.24) we have for n,m = 0, . . . , 4

8Note that the Λ’s containing vi0 ≡ 1 will have one less i, j, k index. E.g. we write Λijk0m ≡ Λjk0m.
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and 3 ≤ n+m ≤ 7∫
Y7
v̆n ? v̆7−n−m ? v̆m =

∫
Y7
R(v̆n) ∧R(v̆7−n−m) ∧R(v̆m)

=
∫
Y7
ωn ∧ ω7−n−m ∧ ωm .

(3.43)

By comparison with (3.13) we conclude that

Kijk =
∫
Y7
v̆i1 ? v̆

j
3 ? v̆

k
3 , Kijk =

∫
Y7
v̆i2 ? v̆

j
2 ? v̆

k
3 ,

Kij =
∫
Y7
v̆i4 ? v̆

j
3 , Kijk =

∫
Y7
v̆i4 ? v̆

j
2 ? v̆

k
1 .

(3.44)

Furthermore, using (3.25) we have (again, for n,m = 0, . . . , 4 and 3 ≤ n+m ≤ 7)∫
M4

F̆4−n ? F̆n+m−3 ? F̆4−m =
∫
M4

wnm mod 1 , wnm ∈
Ω4(M4)
Ω4
Z(M4) , (3.45)

where
dZwnm = R(F̆4−n ? F̆n+m−3 ? F̆4−m) = g4−n ∧ gn+m−3 ∧ g4−m . (3.46)

From this we see that (3.42) reproduces all the couplings from the CS-term in I5 (3.18).
The other four terms are new compared to the ordinary cohomology reduction. The F 2B

contribution is∫
M11
−1

6Ğ
3
4

∣∣∣∣
F 2B

=
∑
ijα

[
Λijα33

∫
M4

F̆ i1?F̆
j
2 ?B̆

α
1 +Λijα43 N

i
∫
M4

F̆ j3 ?B̆
α
1

−Λijα42 N
i
∫
M4

F̆ j2 ?B̆
α
2 +Λijα34 b

α
∫
M4

F̆ i1?F̆
j
3

−Λijα24
2 bα

∫
M4

F̆ i2?F̆
j
2 + Λijα32

2

∫
M4

F̆ i1?F̆
j
1 ?B̆

α
2

]
−
∑
iα

Λiα44N ibα
∫
M4

F̆4 .

(3.47)
Finally, the FB2 and B3 terms are respectively∫

M11
−1

6Ğ
3
4

∣∣∣∣
FB2

=
∑
iαβ

[
Λiαβ32

∫
M4

F̆ i1 ? B̆
α
1 ? B̆

β
2 + Λiαβ23

2

∫
M4

F̆ i2 ? B̆
α
1 ? B̆

β
1

− Λiαβ22 bα
∫
M4

F̆ i2 ? B̆
β
2 + Λiαβ13 bα

∫
M4

F̆ i3 ? B̆
β
1

− Λiαβ42
2 N i

∫
M4

B̆α
2 ? B̆

β
2

]
−
∑
αβ

Λαβ04
2 bαbβ

∫
M4

F̆4 ,

(3.48)

and ∫
M11
−1

6Ğ
3
4

∣∣∣∣
B3

=
∑
αβγ

[
Λαβγ23

2

∫
M4

B̆α
2 ? B̆

β
1 ? B̆

γ
1 −

Λαβγ24
2 bγ

∫
M4

B̆α
2 ? B̆

β
2

]
. (3.49)

Finally, we wish to account for the higher derivative contribution from the M-theory
effective action given by

∫
M11

C3 ∧X8 with X8 ∈ H8(M11;Z) in (3.15). We can promote
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X8 (equivalently, the Pontryagin classes) to a differential cohomology class X̆8 ∈ H̆8(M11)
as described in [115]. We have

X̆8 = − 1
96 p̆1(TM4) ? p̆1(TY7) . (3.50)

Then ∫
M11
−Ğ4 ? X̆8 =

∑
α

[ 1
96

∫
Y7
t̆α4 ? p̆1(TY7)

] ∫
M4

bαp̆1(TM4)

+
∑
i

[ 1
96

∫
Y7
v̆i3 ? p̆1(TY7)

] ∫
M4

F̆ i1 ? p̆1(TM4)

+
∑
i

[ 1
96

∫
Y7
v̆i4 ? p̆1(TY7)

] ∫
M4
N ip̆1(TM4) .

(3.51)

The second term again reproduces what we found using the ordinary cohomology reduction.
For the remainder of this work we ignore such contributions. Notice that the first and third
terms above contain no dynamical fields. The second term may in principle contribute
non-trivially, but for all examples we consider these terms are absent.

Application: holographic AdS4 backgrounds. We now turn to AdS4/CFT3 holo-
graphic setups, where the supergravity background is supported by L units of G4 background
flux over AdS4 and the internal space has torsion cycles. In this case the background flux
that we have parametrized by N i in the above will not be turned on. In addition, all the
examples we consider satisfy

H1(Y7;Z) = 0 , H3(Y7;Z) = 0 , (3.52)

for which the topological action in (3.27) simplifies significantly to

Stop
2π = −

∑
ijα

Λijα24
2 bα

∫
M4

F̆ i2 ? F̆
j
2 −

∑
iαβ

Λiαβ22 bα
∫
M4

F̆ i2 ? B̆
β
2

−
∑
αβ

Λαβ04
2 bαbβ

∫
M4

F̆4 −
∑
αβγ

Λαβγ24
2 bγ

∫
M4

B̆α
2 ? B̆

β
2 .

(3.53)

We briefly comment on the roles of each term in the above expression. The BF-term
bα
∫
M4

F̆ i2 ?B̆
β
2 = bα

∫
M4

Bβ
2 ^ F i2 encodes non-commutativity of certain extended operators

and enforces the requirement to pick a polarization in order to obtain an absolute QFT.
After picking a polarization, in certain circumstances terms of this type can correspond
to a mixed ’t Hooft anomaly polynomial between a discrete 1-form symmetry Z`β with
2-form background gauge field Bβ

2 and a U(1) 0-form symmetry with field stength F i2. The
BB-term bγ

∫
M4

B̆α
2 ? B̆

β
2 = bγ

∫
M4

Bα
2 ^ Bβ

2 is a ’t Hooft anomaly for the discrete 1-form
symmetries Z`α and Z`β . Note that the presence of discrete background flux bα 6= 0 for
some α is essential for the existence of the anomalies. We will not discuss the physical
effects of the θ-term bα

∫
M4

F̆ i2 ? F̆
j
2 or bαbβ

∫
M4

F̆4 in this paper.9

9Such terms in the anomaly polynomial are gauge invariant by themselves, and they do not change the
equation of motion for the bulk gauge fields in the AdS/CFT interpretation.
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4 SymTFT coefficients from geometry

A crucial aspect of the above analysis is the coefficients Λ. Clearly, the numerical value of
these

∫
Y7

integrals is important: a value of zero implies the absence of a particular term in
the anomaly polynomial, whilst a non-zero coefficient contains physical information. In this
section we determine these explicitly in the case of toric Calabi-Yau 4-folds.

4.1 SymTFT coefficients from intersection theory

The coefficients of the 4d topological action resulting from (3.42), (3.47)–(3.49) are given
by the primary/secondary invariants of elements of H̆p(Y7) with p = 7, 8 over Y7. In the
case where the integrand is an element of H̆7(Y7) we showed that these are simply the
intersection numbers (3.44) that we also obtain from the ordinary cohomology reduction.
On the other hand, when the integrand is an element of H̆8(Y7) as in (3.41) there is no
analogue in ordinary cohomology. Still, we would like a convenient way to evaluate these
coefficients, which, it turns out, can be accessed by considering a space X8 of which Y7
is the boundary. In holography this notion is quite natural since the duality is precisely
between supergravity compactified on Y7 and branes probing the tip of the cone over the
compactification space, i.e. we can take X8 = C(Y7) to be this cone. It should be clear that
the Λ’s in (3.41) are defined purely in terms of the geometry of Y7, and we resort to the
space X8 only for computational convenience.

In this section we present an extension to the arguments of section 3.3 in [78], where
the coefficients (3.41) are derived from an intersection number computation on the resolved
space X̃8. In the geometric engineering set-up, we will assume that X̃8 is a non-compact
Calabi-Yau 4-fold. However, the Calabi-Yau condition can be relaxed in the holography
setups, such as the ABJ(M) theories in section 5.

We will make use of the long exact sequence

· · · → Hp(X̃8;Z)→ Hp(X̃8, Y7;Z)→ Hp−1(Y7;Z)→ Hp−1(X̃8;Z)→ . . . . (4.1)

Note in particular that elements of Hp(X̃8;Z) are compact p-cycles in X̃8 and elements
of Hp(X̃8, Y7;Z) are non-compact p-cycles in X̃8. We assume that there are no compact
(7− n)-cycles in X̃8

H7−n(X̃8;Z) = 0 , (4.2)

for a specific n ∈ {0, . . . , 6}.
This implies that any (7− n)-cycle in Y7 can be realised as the boundary of an (8− n)-

chain in X̃8. In the examples we consider, X̃8 is a non-compact toric 4-fold, and these have
no non-trivial odd-dimensional cycles, H2k−1(X̃8;Z) ≡ 0 for k ∈ N. Using Poincaré duality
in Y7, from (4.1) we find

H8−n(X̃8;Z) A→ H8−n(X̃8, Y7;Z) f→ Hn(Y7;Z)→ 0 . (4.3)

Since f is surjective, we conclude that every n-cocycle in Y7 can be mapped to a non-compact
(8− n)-cycle D in X̃8. Furthermore, a torsion class tn ∈ Hn(Y7;Z) satisfies

`tn = 0 , (4.4)
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for some (minimal) ` ∈ N. Then exactness of (4.3) implies that there exists a compact
(8− n)-cycle Z ∈ H8−n(X̃8;Z) such that

A(Z) = `T , f(T ) = tn , (4.5)

which we use to map a torsion class tn ∈ Hn(Y7;Z) to a compact (8− n)-cycle Z in X̃8.
Taking A to be the intersection pairing in X̃8, the coefficients (3.41) of the SymTFT can be
computed as follows.

We associate to tαn of torsional degree `αn a compact (8− n)-cycle Z8−n
α in X̃8, and to

vim a non-compact (8−m)-cycle D8−m
i in X̃8. The coefficients are then given by

Λijknm =
[
D8−n
i ·Dn+m

j ·D8−m
k

]
mod 1

,

Λijαnm =
[
D8−n
i ·Dn+m

j · Z8−m
α

`αm

]
mod 1

,

Λiαβnm =
[
D8−n
i · Zn+m

α · Z8−m
β

`α8−n−m`
β
m

]
mod 1

,

Λαβγnm =
[
Z8−n
α · Zn+m

β · Z8−m
γ

`αn`
β
8−n−m`

γ
m

]
mod 1

,

(4.6)

where · denotes intersections in X̃8 = C(Y7).
We must take extra care with the terms in the 4d effective action which come with

a factor of a half. That is, the relevant object to compute is not Λ but rather Ω ≡ Λ/2.
However multiplication by 1/2 is not a well-defined operation due to the mod 1 in (4.6).
Instead, using the approach by Gordon and Litherland [116], the refinement by a factor of
1/2 is accounted for by computing

Ωij
n = 1

2

∫
Y7
v̆in ? v̆

i
n ? v̆

j
8−2n =

[
D8−n
i ·D8−n

i ·D2n
j

2

]
mod 1

,

Ωiα
n = 1

2

∫
Y7
v̆in ? v̆

i
n ? t̆

α
8−2n =

[
D8−n
i ·D8−n

i · Z2n
α

2`α8−2n

]
mod 1

,

Ωiα
n = 1

2

∫
Y7
v̆i8−2n ? t̆

α
n ? t̆

α
n =

[
D2n
i · Z8−n

α · Z8−n
α

2(`αn)2

]
mod 1

,

Ωαβ
n = 1

2

∫
Y7
t̆αn ? t̆

α
n ? t̆

β
8−2n =

[
Z8−n
α · Z8−n

α · Z2n
β

2(`αn)2`β8−2n

]
mod 1

,

(4.7)

which are R/Z-valued quantities.

4.2 Intersection numbers of toric 4-folds

The above subsection explained that the computation of the SymTFT coefficients reduces
to a computation of intersection numbers in X8. In this section we focus on toric 4-folds. It
will become apparent in later sections that the non-trivial coefficients we are particularly
interested in are those involving t̆α2 , t̆α4 and v̆i2. The key identifications to make are therefore
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the compact divisor Z6 corresponding to t̆α2 , the compact 4-cycles Z4
β corresponding to t̆β4

and the non-compact divisor D6 corresponding to v̆i2. We will address the identifications in
turn. First however, we introduce the technology required to compute intersection numbers
of toric 4-folds.

Quadruple toric intersections. All non-zero integrals of the type we wish to consider
reduce to a sum of quadruple intersection of toric divisors Ti in the Calabi-Yau

Ti · Tj · Tk · Tl . (4.8)

We begin with a toric fourfold X̃8, described by a toric diagram with set of rays {vi},

vi = (vxi , v
y
i , v

z
i , v

w
i ) . (4.9)

Each ray corresponds to a toric divisor vi ↔ Ti, amongst which there exists a set of linear
relations ∑

i

vxi Ti = 0 ,
∑
i

vyi Ti = 0
∑
i

vzi Ti = 0 ,
∑
i

vwi Ti = 0 . (4.10)

Furthermore, we triangulate the toric diagram with a set of 4d cones

{vavbvcvd} , (4.11)

which restrict the non-zero quadruple intersections in the following way. The intersection
of four distinct toric divisors is given by the volume bounded by the rays (we denote this
region Vijkl)

Ti · Tj · Tk · Tl = 1
vol(Vijkl)

, i 6= j 6= k 6= l . (4.12)

The quadruple intersection numbers involving self-intersections can be computed using (4.12)
and the linear equivalence relations (4.10).10,11

Now we consider the case of a toric Calabi-Yau 4-fold X̃8, such that the boundary
7-manifold Y7 is Sasaki-Einstein. The Calabi-Yau condition forces the rays {vi} to lie in a
plane. We enforce this in coordinates by choosing the fourth coordinate of all rays to be 1

vi = (vi, 1) = (vxi , v
y
i , v

z
i , 1) . (4.13)

For a 4d cone vivkvkvl, the volume of Vijkl takes the form of

vol(Vijkl) = det
(
vj − vi vk − vi vl − vi

)
. (4.14)

10In order to perform such calculations in practise, a computer code is necessary for larger toric diagrams.
Assuming we have computed Ti · Tj · Tk · Tl for all distinct i 6= j 6= k 6= l we can compute the following
intersections in turn

1. Ti · Ti · Tj · Tk i 6= j 6= k

2. Ti · Ti · Ti · Tk , i 6= k and Ti · Ti · Tk · Tk , i 6= k

3. Ti · Ti · Ti · Ti .
In each step we use the intersections computed in the step prior.

11Note that in the cases of a non-compact toric 4-fold, the quadruple intersection numbers only involving
non-compact divisors are usually not well-defined. Nonetheless, we do not encounter this issue as we only
use the intersection numbers which involve at least one compact divisor, see analogous computations in the
case of CY3 [117, 118].
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4.3 Differential cohomology generators and toric divisors

t̆2 generators. From the set of divisors {Ti} and the linear relations between them, we
can obtain a set of linearly indepent divisors. We denote them Ca , Da for compact and
non-compact respectively. From these, we can construct a basis of compact curves

{Nk} = {Ca ·Db ·Dc , Ca · Cb ·Dc , Ca · Cb · Cc} . (4.15)

In general these curves are not linearly independent. For example, for the case Y p,k(CP2),
the curves Ca ·Db ·Dc already form a complete basis of compact curves.

In order to obtain the central divisors Z6, we compute the SNF of the intersection
matrix Nk · Ca

SNF(Nk · Ca) =



Γ1 0 . . . 0
0 Γ2 . . . 0
...

... . . . ...
0 0 . . . Γn
0 0 . . . 0
...

... . . . ...
0 0 . . . 0


= A · (Nk · Ca) ·B , (4.16)

where A and B are matrices and Γα are a set of integers. The group

Γ = ⊕nα=1ZΓα , (4.17)

is generated by a set of linear combinations of divisors given by the matrix B.
Thus the change of basis matrices used in the SNF procedure can be used to find

explicit expressions for the compact divisor dual to t̆2 in terms of the basis elements Ca. For
each Γα > 1, there is a differential cohomology class t̆α2 with torsion degree Γα. Furthermore,
it is clear that the group Γ is in fact equal to the 1-form symmetry

Γ(1) = Γ . (4.18)

In particular, we can read off the generators as follows. The linear combination of divisors
generating the factor Γα is given by

Z6
α =

∑
i

BiαCi . (4.19)

t̆4 generators. Analogously to the above procedure, we wish to identify the appropriate
linear combination of 4-cycles Z4

α dual to t̆α4 . We can construct a basis for compact 4-cycles
by {Sk} = {Ca ·Db, Ca · Cb}. Once again we take the SNF of the intersection matrix

SNF{Sj · Sk} = diag(Γ′1,Γ′2, . . . ) = A′ · {Sj · Sk} ·B′ . (4.20)

We derive that the group
TorH4 = ⊕αΓ′α , (4.21)
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is generated by the linear combinations

Z4
α =

∑
i

B′iαSi . (4.22)

We observe that a consistent choice must be made of ordering of columns in the SNF process
when two different Y p,k models are compared. A change of basis of the matrix corresponds
to choosing different diagonal combinations of symmetries inside the group ⊕iΓ′i.

v̆2 generators. In general, the number of independent v̆2 generators is equal to b3(Y7).
One can pick any of the b3(Y7) linearly independent non-compact divisors as v̆2 generators,
and they will give the same physical results.

5 SymTFT for holography: ABJ(M)

We now employ the geometric tools developed in the previous sections to derive from M-
theory the global structure and higher-form symmetries for the 3d N = 6 U(N+b)k×U(N)−k
ABJ(M) theories [97, 105]. In the brane picture, the theories arise on N M2-branes probing a
C4/Zk singularity, together with b fractional M2-branes localised at the orbifold singularity.
The 11d supergravity dual is AdS4 × S7/Zk with N units of G4 flux over AdS4 and b

units of torsion flux. The 7-manifold S7/Zk is generally a tri-Sasakian manifold, and it is
Sasaki-Einstein only when k = 4. All 3d N = 6 ABJM type theories were classified, up to
discrete quotients of the gauge group, in [119], which was subsequently extended to account
for all global forms in [106]. In [92] it was shown how to realise different global forms of
the gauge group holographically from type IIA supergravity (in the absence of background
torsion, i.e. for b = 0) in the regime k � N � k5 where the M-theory circle is small. We
reproduce these results, taking the perspective of 11d supergravity, where the technology
presented in previous sections is crucial to understand the geometric origin of the symmetry
background fields. Moreover, with b turned on, we determine a ’t Hooft anomaly for the
1-form symmetry

− b

2k

∫
AdS4

B2 ^ B2 . (5.1)

We derive the anomaly from torsional geometric data, and match with field theory re-
sults [106]. The SymTFT, computed using differential cohomology, is precisely the tool
suited to pick up such a torsional effect.

5.1 Global form of the gauge group

The global form of the gauge group is associated with a choice of boundary conditions for
the gauge fields of the 4d bulk theory [35–37, 78, 88, 120]. This choice is constrained by
the fact that, in the presence of torsion in the homology of the internal space Y7 = S7/Zk,
the G4 and G7 fluxes do not commute at the boundary [113, 121]. In the SymTFT this
non-commutativity of fluxes shows up as a set of BF-couplings that constrain the consistent
set of boundary conditions which can be imposed on the participating 4d gauge fields. The
BF-terms arise from the differential cohomology reduction of the kinetic term in the 11d
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supergravity action, see [80] for a derivation.12 In the following however, we will instead
take an operator perspective and derive the commutation relation.

In holography the procedure for choosing asymptotic values of the fields at the conformal
boundary ofM11 =M4 × Y7 is to quantize the theory onM11 = Rt ×M10, by identifying
the radial direction with time, and choosing a state in the Hilbert space ofM10 = M3 × Y7,
where M3 is the conformal boundary ofM4 at infinity [88, 120]. Consider the operators
Φ(T3) and Φ(T6) which detect the periods of the M-theory gauge potential C3 and the
electric-magnetic dual potential C6 over 3- and 6-cycles T3, T6 defining torsion homology
classes inM10. As shown in [113, 121], these operators pick up a phase under commutation

Φ(T3)Φ(T6) = Φ(T6)Φ(T3)e2πiL(T3,T6) , (5.2)

where L is the linking pairing. The homology of S7/Zk is

H•(S7/Zk;Z) = {Z,Zk, 0,Zk, 0,Zk, 0,Z} . (5.3)

Since we are assuming Tor•(M3;Z) = 0, we can apply the Künneth formula to obtain

TorH3(M10;Z) = H2(M3;Z)⊗H1(S7/Zk;Z)⊕H0(M3;Z)⊗H3(S7/Zk;Z) ,

TorH6(M10;Z) = H3(M3;Z)⊗H3(S7/Zk;Z)⊕H1(M3;Z)⊗H5(S7/Zk;Z) .
(5.4)

This implies that the torsional 3- and 6-cycles ofM10 must be of the form

T3 = Σ2 × T1 , T3 = Σ0 × T3 , (5.5)

and
T6 = Σ3 × T3 , T6 = Σ1 × T5 , (5.6)

where Σp generates Hp(M3;Z) and Tq generates Hq(S7/Zk;Z) = Zk for q < 7 odd. Consider
the expansion on cohomology of G4 around the ABJ(M) background

G4 = NvolAdS4 +B2 ^ t2 + b ^ t4 , (5.7)

where t2 and t4 are both torsional generators of degree k. The differential cohomology
uplift is

Ğ4 = N v̆olAdS4 + B̆2 ? t̆2 + b̆ ? t̆4 . (5.8)

Here, B̆2 represents a dynamical Zk 2-form gauge field, whereas

I(b̆) = b ∈ Z , (5.9)

is an integer parametrizing background flux over torsion 4-cocyles, as argued around (3.37).
This discrete flux is associated to b M5-branes wrapping the torsion 3-cycle H3(S7/Zk;Z) =
Zk. In the ABJ paper [105] it was conjectured that we must have b ≤ k for the super-
conformal U(N + b)k × U(N)−k theories to exist as unitary theories. As was also noted

12We thank Iñaki García Etxebarria and Saghar Sophie Hosseini for explaining this to us, and refer the
reader to their upcoming work [80] for more details.
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in [105], this restriction is consistent with the interpretation of b as discrete Zk torsion.
Without imposing a relation between G4 and G7, we can make a corresponding cohomology
expansion of the latter

G7 = NvolS7/Zk +B3 ^ t4 +B1 ^ t6 . (5.10)

In order to quantize onM11 = Rt ×M10, we consider a gauge as in [88] where the form
representatives of the Bp classes do not have components along the radial direction (or
time direction, in terms of the quantization scheme), i.e. they can be taken to define either
degree-p cohomology classes inM4, as in (5.7), (5.10), or in M3. Then, by Poincaré duality,
the integral homology classes Σq are dual to B3−q in the (torsion-free) cohomology of
M3 = R1,2.

For the present, let us ignore the discrete background flux and study the ABJM theories
whose type IIA duals were studied in [92]. Then the non-commuting operators are Φ(Σ2)
and Φ(Σ1), which are push-forwards of the 11d operators Φ(Σ2×T1) and Φ(Σ1×T5). Their
commutation relation is determined using

L(Σp × Tq,Σp′ × Tq′) = (Σp · Σp′)LS7/Zk(Tq, Tq′) , (5.11)

with Σp · Σp′ the intersection in M3 and [36]

LS7/Zk(T1, T5) = 1
k
. (5.12)

Hence, we have
Φ(Σ2)Φ(Σ1) = Φ(Σ1)Φ(Σ2)e2πi(Σ1·Σ2)/k . (5.13)

If we consider the form representatives of B2, B1, and abuse notation by denoting them the
same as their corresponding cohomology classes, this commutation relation is encoded in a
BF-coupling

SBF
2π = k

∫
AdS4

B2 ∧ dB1 . (5.14)

As we remarked above, this coupling can alternatively be derived by considering the
differential cohomology reduction of the kinetic part of the 11d supergravity action, see [80].

The symmetries of the 3d field theory are determined by imposing boundary conditions
on B2, B1 consistent with the commutation relation (5.13), or equivalently the action (5.14).
Fixing B2 to a background value as we approach the conformal boundary is associated
with a 1-form symmetry, whereas fixing B1 would furnish a background gauge field for an
ordinary 0-form symmetry.

First however, we must also take into account the additional global 0-form symmetries
that can arise from gauging the isometry group of the internal space. The isometries of
S7/Zk are U(1)× SU(4)R, with the latter realising the R-symmetry of the 3d N = 6 theory.
We can describe S7/Zk as a circle bundle over CP3 with metric [97]

ds2
S7/Zk = 1

k2 (dϕ+ kw)2 + ds2
CP3 , (5.15)

with ϕ ∼ ϕ+ 2π parametrizing the M-theory circle, and dw = J with J the Kähler form on
CP3. The Zk quotient is simply making the M-theory circle smaller, and ∂ϕ is generating
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the U(1) isometry. We can gauge the isometries by lifting the 4-form flux to equivariant
cohomology, which gives rise to a single 1-form gauge field A1 for the U(1) isometry

dϕ→ dϕ+A1 , (5.16)

and a set of 15 gauge fields for the SU(4)R. We are interested in the fate of the U(1) global
symmetry, and whether it couples to the B2, B1 gauge fields in (5.14). We will answer this
question by conjecturing a map to the type IIA description.

When N � k5 the appropriate supergravity description is 11-dimensional. On the
other hand, when k � N � k5 the M-theory circle becomes very small (in Planck units)
and the relevant description is type IIA supergravity on AdS4×CP3 with N units of F6-flux
over CP3 and k units of F2-flux over CP1 ⊂ CP3. (In the presence of background torsion
flux b 6= 0 the NSNS 2-form on CP1 ⊂ CP3 has a discrete holonomy b/k.) Consider the
type IIA supergravity analysis in [92], where a topological term

SIIA
2π =

∫
AdS4

BNS ∧ d(kAD4 +NAD0) , (5.17)

was identified and the consistent boundary conditions were studied in detail. Here BNS is the
NS-NS 2-form, and AD4, AD0 are U(1) 1-form gauge fields that couple electrically respectively
to D4-branes wrapping CP2 ⊂ CP3 and D0-branes. Under dimensional reduction from 11d
supergravity to type IIA (see e.g. [122]), the U(1) gauge field A1 associated with the isometry
generated by the M-theory circle direction ∂ϕ gives rise to the 1-form gauge field AD0 sourced
by D0-branes. The 1-form gauge field B1 couples electrically to M5-branes wrapping the
torsional 5-cycle, which descends to D4-branes wrapping CP2 coupled electrically to the
1-form AD4. Finally, B2 couples electrically to M2-branes wrapping the torsional 1-cycle
associated with the M-theory circle. Under dimensional reduction these M2-branes become
fundamental strings coupling to the NS-NS 2-form. Therefore, we conjecture a map

A1 ↔ AD0 , B1 ↔ AD4 , B2 ↔ BNS . (5.18)

Using this map implies the existence of a topological coupling between B2 and F = dA1
in M-theory, to which either equivariant or differential cohomology are not sensitive by
themselves — for a discussion of this see appendix A13. The 11d kinetic term is then

Skin
2π =

∫
AdS4

kB2 ∧ dB1 +NB2 ∧ F . (5.19)

The different global forms of the gauge group are realised holographically by imposing
boundary conditions consistent with this BF-coupling. This part of the analysis is now
completely analogous to [92]. For convenience, we here give a brief summary of one extreme
possibility, namely (U(N)k ×U(N)−k)/Zk.

13We propose that a full equivariant differential cohomology treatment of the problem will give rise to an
improvement of Geq

4 by a term involving the 2-form B2 and the U(1) field strength F like

Geq
4 = NvolAdS4 +B2 ∧ F + · · · .
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Suppose we apply the conditions

A1, B1 Dirichlet , B2 Neumann , (5.20)

which constrains the boundary values of the 1-forms to satisfy kB1 +NA1 = 0. Hence, the
1-form background gauge field we can specify at the boundary gives rise to Γ(0) = U(1)×
Zgcd(N,k), where the U(1) is supplied by the diagonal combination (B1, A1) = (pA,−qA),
with p · gcd(N, k) = N and q · gcd(N, k) = k, which decouples from the action. If N = nn′

for some integers n, n′ more complicated boundary conditions are possible. These realise
the gauging of a subgroup of the 1-form symmetry.

5.2 ’t Hooft anomaly for the 1-form symmetry

We now turn on the torsion flux b 6= 0 and see how the theory is modified. From the
differential cohomology reduction of the 11d Chern-Simons term we determine the Symmetry
TFT coupling

Stop
2π = −Ω

∫
AdS4

B̆2 ? B̆2 ? b̆ mod 1 , (5.21)

with
Ω = 1

2

∫
S7/Zk

t̆2 ? t̆2 ? t̆4 =
[
Z6 · Z6 · Z4

2k3

]
mod 1

, (5.22)

The primary invariant over AdS4 gives

Stop
2π = −Ωb

∫
AdS4

B2 ^ B2 , (5.23)

which signals an anomaly in the Zk 1-form symmetry of U(N+b)k×U(N)−k, determined by
the coefficient Ω. The 4d term (5.23) constrains the possibility of gauging a Zm subgroup,
with k = mm′, of the Zk 1-form symmetry. That is, the anomaly is only consistent with B2
having periodicity Zm′ for Ωbm′2 = 0 mod 1

2 (since B2 ^ B2 is even on a spin manifold)
or, equivalently,

2Ωk2b

m2 = 0 mod 1 . (5.24)

To compute the coefficient Ω geometrically from (5.22), let us consider the resolution X̃8 of
C4/Zk. Note that the singularity C4/Zk has a toric description, with the rays

v1 = (1, 0, 0, 0) , v2 = (0, 1, 0, 0) , v3 = (0, 0, 1, 0) , v4 = (−1,−1,−1, k) (5.25)

and the 4d cone v1v2v3v4. It has a unique toric resolution X̃8 = C̃4/Zk, where the compact
exceptional divisor C corresponds to the new ray v5 = (0, 0, 0, 1).14 The new set of 4d
cones in C̃4/Zk is {v1v2v3v5, v1v2v4v5, v1v3v4v5, v2v3v4v5}. Denote the non-compact divisor
corresponding to v1 by D (which is linearly equivalent to v2, v3 and v4). We can compute
the following intersection numbers

D4 = 0 , C ·D3 = 1 , C2 ·D2 = −k , C3 ·D = k2 , C4 = −k3 , (5.26)
14Restricting to toric varieties, C̃4/Zk is the unique resolution because v5 = (0, 0, 0, 1) is the only primitive

ray inside the cone v1v2v3v4.
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from which we obtain the generators Z4 = C ·D, Z6 = C . Note that the resolution is only
crepant and leading to a toric Calabi-Yau fourfold when k = 4. Nonetheless, this is not a
problem since it is not necessary to define the SymTFT in a supersymmetric way and one
can use any (possibly non-crepant) resolution for the purpose of computing the SymTFT
action. Hence we can plug (5.26) into (5.22) to get

Ω = 1
2k mod 1 . (5.27)

Recalling the condition (5.24), the gauging is consistent for

kb

m2 = 0 mod 1 . (5.28)

The anomaly thus implies that gauging a Zm subgroup of the 1-form symmetry of U(N +
b)k × U(N)−k is consistent only for certain choices of m. That is, compared to the analysis
at the end of the previous section, when b is turned on, certain global forms of the 3d gauge
group are no longer consistent. E.g. in the presence of this anomaly we can only gauge the
full 1-form symmetry m = k, if b/k ∈ Z.

Note that this anomaly was also determined from the field theory point of view in [106],
where the authors show that, the anomaly can be measured by the topological spin of a
line of charge m′, where k = mm′. In [106] the anomaly free lines were determined to be
exactly the ones satisfying (5.28).

6 SymTFT for holography: AdS4 × Y p,k(CP2)

We now apply the Symmetry Topological Field Theory technology to a class of holographic
3d N = 2 QFTs. We study the theories living on the worldvolume of a stack of M2-
branes probing the cone C(Y p,k(CP2)) with torsional G4 flux turned on [100]. The latter
phenomenon arises from wrapped M5-branes on the torsional elements of the third homology
group of Y p,k (which is non-trivial). The purpose of this section is to put into practise the
machinery developed in the preceding sections of this paper in an intricate holographic
setup, where the SymTFT can be used to derive new constraints on the 3d field theory.
In particular, we derive SymTFT terms via M-theory reduction and compute the relevant
coefficients using the toric CY4 methods explained in section 4.

The BF-terms we obtain are
SBF
2π =

∫
B2 ∧

(
Nf2 + gcd(p, k)g̃2 + Ωp,k

n0,n1g2
)
, (6.1)

with integral coefficients Ωp,k
n0,n1 which depend on p, k as well as the G4 torsion flux pa-

rameterized by two integers (n0, n1). Furthermore, in many cases we derive new 1-form
symmetry anomalies of the form

ΩBB

∫
B2 ^ B2 , (6.2)

for 1-form symmetry background fields B2 and some coefficient ΩBB which we compute.
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The dual field theories described in [100] are subtle and furthermore not completely
constrained. We discuss the matching of our results with this work in section 7, and
comment on how the SymTFT could be used to solve some ambiguities.

It should be noted that more generally one could consider a stack of M2-branes probing
the cone C(Y p,k(B)) for more generic base B [123, 124]. For example, for B = CP1 × CP1

the SymTFT is almost identical in structure, differing only in the number of v̆2 generators,
and therefore F̆2 background fields.

6.1 SymTFT for general p, k

In this section we perform the torsional reduction detailed in section 3 here for

M11 = AdS4 × Y p,k(CP2) . (6.3)

The cohomology groups for the 7-dimensional space are

H•(Y p,k(CP2);Z) = {Z , 0 ,Z⊕ Zgcd(p,k) , 0 ,Γ ,Z ,Zgcd(p,k) ,Z} , (6.4)

where Γ is a finite group given by

Γ ∼= Z2/〈(3k, k), (k, p)〉 . (6.5)

We expand Ğ4 on generators for each of these non-trivial elements

Ğ4 = N v̆olAdS4 + F̆2 ? v̆2 + B̆2 ? t̆2 +
2∑

α=1
b̆α ? t̆α4 , (6.6)

where we have included the flux of the M2-branes in the first term and the parameters b̆α
represent the torsion G4 flux.

t̆2 generators. We use methods described in section 4.3 to compute the 1-form symmetry
generator (for cases with non-trivial B̆2 field, so gcd(p, k) 6= 1)

Z6 =
p−1∑
a=1

aCa , (6.7)

where Ca are compact toric divisors associated to the points (0, 0, a, 1) in the toric diagram.

v̆2 generators. We have b2(Y p,k(CP2)) = 1, and we can use any one of the non-compact
divisors to represent the single v̆2 generator.

t̆α4 generators. We follow the prescription in section 4.3 and construct a basis of compact
4-cycles. We wish to compute the torsional components of Γ. Again focusing on cases where
gcd(p, k) 6= 1, we obtain the following formula from the Smith decomposition of the lattice
〈(3k, k), (k, p)〉

H4(Y p,k(CP2);Z) = Γ = Zgcd(p,k) ⊕ Z k(3p−k)
gcd(p,k)

(6.8)

We generically denote these torsional components

Γ = Zk1 ⊕ Zk2 . (6.9)
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We can independently turn on G4 flux of varying amounts in both directions. These flux
numbers are denoted (b1, b2), along the directions given in (6.8).

In [100] the authors parametrize G4 flux along the Γ directions with two integers
(n0, n1), which differ from (b1, b2) by a basis change. To make contact with their results
we require a mapping between (n0, n1) and the torsional flux parameters introduced in the
differential cohomology language above. This basis change can be read off by the column
entries in the matrix B defined as(

gcd(p, k) 0
0 k(3p−k)

gcd(p,k)

)
= SNF

(
3k k
k p

)
= A ·

(
3k k
k p

)
·B . (6.10)

We are able to provide a general expression for Y p,p/c for some c ∈ Z which divides p

b1 = 1× n0 + 0× n1 , b2 = −c× n0 + 1× n1 , (6.11)

but give a selection of numerical values in table 5.

SymTFT coefficients. We derive the following Symmetry TFT for general Y p,k(CP2)
geometries with gcd(p, k) non-trivial15

Stop
2π = +αFF (k1)

∫
M4

F̆2 ? F̆2 ? b̆
1 + αFF (k2)

∫
M4

F̆2 ? F̆2 ? b̆
2

− αFB(k1)

∫
M4

F̆2 ? b̆
1 ? B̆2 − αFB(k2)

∫
M4

F̆2 ? b̆
2 ? B̆2

− αBB(k1)

∫
M4

b̆1 ? B̆2 ? B̆2 − αBB(k2)

∫
M4

b̆2 ? B̆2 ? B̆2 .

(6.12)

Given the non-trivial way the t̆4 dual 4-cycles are determined, we do not expect a nice
closed-form expression for general p, k for all coefficients. In table 4 we summarize the α
coefficients for a large set of values of (p, k).

Since the background torsion flux participates in all the above couplings, this general
SymTFT only contains terms of three types: FF , BF and BB — we are particularly
interested in the latter two.16 The BB term is a 1-form symmetry anomaly, whilst the BF
term will be crucial in understanding possible global forms of the gauge group.

6.2 The BF-term

In this section we focus in particular on terms of BF type, which govern the choice of
gauge group in the 3d SCFT. These terms come from two sources: the first is torsion in the
geometry, as introduced via non-commuting flux operators in section 5.1. The second is from
background flux, both continous and discrete. The first type is standard, appearing already
in AdS5 × S5 with N units of F5 flux over the external space [88], as well as in (2.3) [94].
The latter appears via terms in the differential cohomology reduction of the 11d topological
terms of the form ∫

Y7
t̆4 ? t̆2 ? v̆2

∫
M4

F̆2 ? B̆2 ? b̆ . (6.13)
15Note here we do note include F̆4 ? b̆ ? b̆ and p̆1 terms as these contain only one or zero dynamical fields.

The coefficients α are expressible in terms of the Λ...... of (3.41), but we choose this notation from now on
for compactness.

16With a choice of boundary conditions the FF terms are background Chern-Simons terms for 0-form
global symmetry background gauge fields.
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BF-terms from non-commuting fluxes. We follow the procedure outlined in [78]
which we applied in section 5.1 to derive a new BF term:

SBF
2π = gcd(p, k)

∫
AdS4

B2 ∧ dB1 . (6.14)

The origin of the field B1 is exactly the same as that presented in section 5.1, and the
derivation of the coefficient follows analogously with minor modifications.

BF-terms from 11d CS-term. From reduction of the 11d CS-term we obtain the
following 4d term of BF-type

Stop
2π ⊃ gcd(p, k)

(
αFB(k1)b

1 + αFB(k2)b
2
)
B2 ∧ g2 . (6.15)

We denote this coefficient as

Ωp,k
n0,n1 ≡ gcd(p, k)

(
αFB(k1)b

1 + αFB(k2)b
2
)
, (6.16)

and give values of Ωp,k
n0.n1 for certain (p, k) in table 6. The coefficient depends implicitly on

the integers (n0, n1), which are linear combinations of (b1, b2) determined by (6.10).

Full BF-term. Reduction of the 11d supergravity action on the cohomology of Y p,k(CP2),
with discrete background flux parametrized by (n0, n1), thus yields

SBF
2π =

∫
B2 ∧ d

(
gcd(p, k)B1 + Ωp,k

n0,n1c1
)

+ · · · . (6.17)

Here we have left open the possibility for further BF-type terms arising when we turn on
background gauge fields for the isometry group of Y p,k(CP2) which is SU(3)×U(1)2. In
section 5 we used a reduction to type IIA to conjecture that gauging the M-theory circle
direction would furnish a new coupling with the discrete 2-form B2. In appendix B we
derive the analogous coupling from reduction to type IIA for these geometries. The result is

SBF
2π =

∫
B2 ∧

(
Nf2 + gcd(p, k)dB1 + Ωp,k

n0,n1g2
)
, (6.18)

where f2 = da1 is the field strength of the U(1) 1-form gauge field associated with the
M-theory circle direction.

Let us consider the field theory interpretation of the bulk gauge fields at the level of the
SymTFT — i.e. before imposing boundary conditions consistent with the BF-coupling (6.18),
which realise a particular global form of the 3d gauge group. The gauge fields in this EFT
arise respectively from a reduction of C3 on the free part, c1 (with g2 = dc1), and torsion
part, B1, B2, of H•(Y p,k;Z), and from gauging the U(1) isometry of the M-theory circle,
a1. At the boundary, the 2-form gauge field may give rise to a background for a 1-form
symmetry which is a subgroup of U(1)B2 . Fixing the 1-form gauge fields at the boundary
we may realise a 0-form symmetry that sits inside U(1)3 = U(1)a1 × U(1)B1 × U(1)c1 .
In particular, we can parametrize a set of 1-form gauge fields A, A′ for U(1)2 ⊂ U(1)3

defined by
(a1, B1, c1) = (−yA− zA′, xA, xA′) , (6.19)
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with
N

x
= gcd(p, k)

y
=

Ωp,k
n0,n1

z
= gcd(N, p, k,Ωp,k

n0,n1) , (6.20)

which decouple entirely from the action (6.18) and so can always be fixed at the boundary,
giving rise to a U(1)(0) ×U(1)(0) global symmetry of the dual field theory. The isometry
group of Y p,k is SU(3)×U(1)2. In the UV, we can identify one of the U(1) factors with the
topological U(1) symmetry of the field theory and the other with the R-symmetry. However,
as is well-known, this R-symmetry mixes with the other U(1) global symmetries at the
SCFT fixed point to give the superconformal R-symmetry. (The exact IR superconformal
R-charge can be determined by extremization of the 3-sphere partition function [125].)
The SU(3) isometry group of the base CP2 corresponds to the baryonic SU(3) that rotates
the bifundamental matter in the quiver. In addition to the M-theory U(1) circle direction
associated with the gauge field c1, we therefore have an SU(3)×U(1) isometry for which
we do not turn on gauge fields.

6.3 Boundary conditions and global symmetries

Given the SymTFT, we can now realise all different global forms of the gauge group of the
boundary theory (up to ’t Hooft anomalies which obstruct certain gaugings, which we discuss
shortly). Imposing a particular set of boundary conditions on the gauge fields, consistent
with the action (6.18), we pick out a specific global structure for the 3d N = 2 quivers.

Standard boundary conditions. First consider Dirichlet boundary conditions on a1, B1
and c1, and Neumann on B2. The action forces the boundary constraint(

Na1 + gcd(p, k)B1 + Ωp,k
n0,n1c1

)
= 0 . (6.21)

This corresponds to a 0-form symmetry

G(0) ∼ U(1)×U(1)× Zgcd(N,p,k,Ωp,kn0,n1 ) . (6.22)

This global 0-form symmetry sits inside the U(1)3 = U(1)a1 ×U(1)B1 ×U(1)c1 . The two
U(1)’s in G(0) can be parametrized by A and A′ as in (6.19). There is no 1-form symmetry
with this choice of boundary conditions.

Mixed boundary conditions. Consider fixing c1 and a1, but letting B1 be free within
Zn ⊂ Zgcd(p,k), with gcd(p, k) = nn′. This is equivalent to saying that B1 is free in Zgcd(p,k)
modulo the relation n′B1 = 0. The global symmetries of this choice are therefore

G ∼ U(1)(0) ×U(1)(0) × Z(0)
gcd(N,Ωp,kn0,n1 ,n

′)
× Z(1)

n . (6.23)

Clearly the special case where (n, n′) = (1, gcd(p, k)) is the ‘standard’ choice given above.
Another special case is (n, n′) = (gcd(p, k), 1), which realizes the largest possible 1-form
symmetry group. In this case, the global symmetries are

G ∼ U(1)(0) ×U(1)(0) × Z(1)
gcd(p,k) . (6.24)
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BC a1 B1 c1

1 D D N/D; Free mod Zn′ ⊂ ZΩp,kn0,n1

2 D N/D; Free mod Zm′ ⊂ Zgcd(p,k) D
3 N/D; Free mod Zl′ ⊂ ZN D D

Table 1. A selection of the possible boundary conditions consistent with the BF-action (6.18),
where D: Dirichlet and N: Neumann. We take Ωp,k

n0,n1
= nn′, gcd(p, k) = mm′ and N = ll′. ‘N/D;

Free mod Zq’ for a field A means that the field is free to fluctuate modulo the relation qA = 0.

Boundary Condition G(0) G(1)

1 U(1)2 × Zgcd(N,p,k,n′) Zn
2 U(1)2 × Zgcd(N,m′,Ωp,kn0,n1 ) Zm

3 U(1)2 × Zgcd(l′,p,k,Ωp,kn0,n1 ) Zl

Table 2. 0- and 1-form symmetries for the boundary conditions in table 1.

Here, since B2, a1 and c1 are fixed at the boundary, the following BF term∫
B2 ∧ d

(
Na1 + Ωp,k

n0,n1c1
)
, (6.25)

corresponds to a 3d mixed anomaly.

General boundary conditions. We describe a subset of the allowed boundary conditions
and the resulting global symmetries in tables 1 and 2 respectively.

6.4 1-form symmetry anomaly

Using the definition of the primary invariant, the BB terms of (6.12) evaluate to

Stop
2π

∣∣∣∣
BB

= ΩBB

∫
M4

B2 ^ B2 , (6.26)

with
ΩBB = −αBB(k1)b

1 − αBB(k2)b
2 . (6.27)

The coefficients ΩBB depend on p, k, b1 and b2 (or, equivalently p, k, n0 and n1). This term
is a 1-form symmetry anomaly: it presents an obstruction to gauging certain subgroups of
the 1-form symmetry. In other words, it is an obstruction to selecting certain boundary
conditions of the BF-action (6.18). Suppose gcd(p, k) = mm′ and we consider gauging a
subgroup Zm ⊂ Zgcd(p,k) of the 1-form symmetry with background B2. The anomaly free
condition is that

2ΩBBm
′2 = 0 mod 1 . (6.28)

Specific coefficients of this anomaly can be computed using table 4 (for a parametrization
in terms of (n0, n1) we make use of table 5 as well).
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For example, Y 2,2 with (n0, n1) flux numbers has ΩBB = −3
4n1. If we consider gauging

the Z2 1-form symmetry, the anomaly free condition is that 3
2n1 = 0 mod 1. Hence, we

can only gauge the 1-form symmetry if n1 is even. In this way the torsion flux influences
the possible choices of gauge group one can have for a given theory. Furthermore, we
should highlight the presence of many mixed 0-/1-form symmetry anomalies of the type
demonstrated in (6.25).

7 Comparison to the field theory dual to Y p,k(CP2)

We now compare our results with the field theory of [100], which is subtle for several
reasons. The proposed quiver gauge theories initially have a parity anomaly which much be
quenched to ensure consistency. The authors provide several mechanisms through which
this could occur. We show that ambiguity in this anomaly resolution permeates into the
global symmetries of the theory: in particular the 1-form symmetry is sensitive to the
anomaly cancellation mechanism one chooses. In this section we discuss how the SymTFT
can be used to constrain this problem.

7.1 Quiver gauge theories

The quiver gauge theories dual to the AdS4 × Y p,k(CP2) M-theory backgrounds [100] are
defined for three ‘windows’ of parameter values of the G4 torsion flux, parametrized by
integers (n0, n1).

1. −k ≤ n0 ≤ 0 , 0 ≤ 3n1 − n0 ≤ 3p− k

2. 0 ≤ n0 ≤ k , 0 ≤ 3n1 − n0 ≤ 3p− k

3. k ≤ n0 ≤ 2k , 0 ≤ 3n1 − n0 ≤ 3p− k

The field theories for these three cases are

1. U(N + n1 − p− n0)−n0+ 3
2n1
×U(N) 1

2n0−3n1+ 3
2p−k

×U(N − n1) 1
2n0+ 3

2n1− 3
2p+k

2. U(N + n1 − p)−n0+ 3
2n1
×U(N)2n0−3n1+ 3

2p−k
×U(N − n1)−n0+ 3

2n1− 3
2p+k

3. U(N +n1− p) 1
2n0+ 3

2n1− 3
2 q
×U(N) 1

2n0−3n1+ 3
2p+

1
2k
×U(N −n1 +n0− k)−n0+ 3

2n1− 3
2p+k

with bi-fundamental matter content arranged in a quiver structure shown in figure 2.
The theories as they are presented above suffer from a Z2 parity anomaly. The authors

of [100] suggest that there are several mechanisms through which this residual anomaly
could be cancelled. They highlight the simplest: the addition of mixed Chern-Simons
couplings between the U(1) pieces of different U(Ni),U(Nj) factors, with levels Λij such
that [126–128]

ki + 1
2
∑
j

AijNj ∈ Z , Λij −
1
2Aij ∈ Z . (7.1)
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U(N1)k1

U(N2)k2U(N3)k3

Figure 2. Quiver diagram for theory with gauge group Π3
i=1U(Ni)ki . The triple arrows denote

the fact that the bi-fundamental matter fields transform in the fundamental representation of a
flavor SU(3).

Here ki are the Chern-Simons levels given above, Aij is the quiver adjacency matrix

Aij =

 0 3 −3
−3 0 3
3 −3 0

 . (7.2)

The first condition is satisfied by the above, but the second is not since we have so far set
Λij = 0. In [100], for theories with (n0, n1) = (0, 0), the authors quote a sufficient choice

Λij =

 0 3
2 −

3
2

3
2 −3 3

2
−3

2
3
2 0

 , (7.3)

which does not spoil the matching of the moduli space with the geometry. Considering
only the spectrum of local operators this appears to be an ambiguity in the AdS/CFT
correspondence. We now return to study this ambiguity from the point of view of the
1-form symmetry, which is sensitive to Λij .

7.2 1-form symmetry of the quivers

We now compute the 1-form symmetry of these field theories. The key subtlety in this
computation is the presence of monopole operators which can screen Wilson lines. A
monopole operator in this theory is specificed by its magnetic charges under the U(1)
elements of the Cartan subgroup of each U(Ni) factor

Hi = (mi,1 . . .mi,Ni) . (7.4)

Crucially, the choice of Chern-Simons levels Λij can influence the gauge charges of monopoles
and therefore the 1-form symmetry.

Electric charge of monopoles. In a vacuum where the gauge group ΠiU(Ni) is broken
to its maximal abelian subgroup, the Lagrangian becomes [100]

LCS =
∑
i,m

∑
j,n

kiδijδmn + Λij
4π Ai,m ∧ dAj,n . (7.5)
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Suppose we put the theory (7.5) on R× S2 and integrate over the S2:

∫
S2
LCS =

∑
i,m

ki
4πmi,m +

∑
i,m

∑
j,n

Λij
4π mj,n

∫ Ai,m . (7.6)

From this we observe that a monopole acquires electric gauge charge under each U(1)
Cartan of each U(Ni):

gi,m = kimi,m +
∑
j,l

Λijmj,l . (7.7)

One-loop monopole charge modifications. This expression is modified at 1-loop [100]
due to integrating out bifundamental matter Xij :17

gi,k = kimi,k + δgi,k +
∑
l

∑
j

Λijmj,l , (7.8)

with

δgi,k = −1
2
∑
Xij

Nj∑
l=1
|mi,k −mj,l|+

1
2
∑
Xji

Nj∑
l=1
|mi,k −mj,l| . (7.9)

Charge under the center. The charge of a monopole under the central U(1)3 = Z(G)
is

qi =
Ni∑
k

gi,k . (7.10)

The bifundamental matter breaks this to a diagonal U(1) ⊂ U(1)3 under which the monopole
has charge

qdiag =
3∑
i=1

qi . (7.11)

It can be checked explicitly that one can drop the 1-loop correction (δgi,k) contribution
from qdiag due to the quiver’s shape:

qdiag =
3∑
i=1

qi =
3∑
i

Ni∑
k=1

kimi,k +
∑
l

∑
j

Λijmj,l

 . (7.12)

Denoting the topological U(1) charges mi = ∑
lmi,l, we write this as

qdiag =
3∑
i=1

qi =
3∑
i

kimi +Ni

∑
j

Λijmj

 . (7.13)

Y p,k without torsion flux. We now explicitly compute qdiag for an arbitrary monopole
in a general Y p,k theory without torsion flux (n0, n1) = (0, 0), with gauge group

U(N − p)0 ×U(N) 3
2p−k

×U(N)− 3
2p+k

. (7.14)

17Note that the formula in [100] contains a third correction term, which for our case of a circular
quiver vanishes.
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Furthermore, we consider arbitrary Λij which obeys both the parity anomaly condition and
the moduli space matching condition [100]

Λij −
1
2Aij ∈ Z ,

3∑
j=1

Λij = 0 . (7.15)

For a monopole with charge (m1,m2,m3), we obtain

qdiag = m1 (−pΛ11) +m2

(3
2p− k − pΛ12

)
+m3

(
−3

2p+ k − pΛ13

)
. (7.16)

In the triangular quiver in question, the adjacency matrix is given in (7.2). Using the parity
anomaly condition, we can rewrite (λi ∈ Z)

Λ11 = λ1 , Λ12 = 3
2 + λ2 , Λ13 = −3

2 + λ3 , (7.17)

with the futher condition ∑i λi = 0. We therefore have

qdiag = −pλ1m1 − (λ2p+ k)m2 + (k + (λ1 + λ2)p)m3 . (7.18)

The final 1-form symmetry of the field theory is the subgroup of the diagonal U(1) ⊂ Z(G)
which leaves all monopoles invariant:

Γ(1) = Zgcd(pλ1,λ2p+k) . (7.19)

For example, picking λ1 = 1 and leaving λ2 arbitrary gives Γ(1) = Zgcd(p,k). Furthermore,
the choice of λi must be compatible with supersymmetry. We have a supersymmetric
solution when the effective FI parameters satisfy [100]

ξeff1 = 0 , ξeff2 = −ξeff3 . (7.20)

Since ξeff1 ∝ λ1, the authors of [100] suggest that a convenient choice is λ1 = 0, and λ2 = 0.
In this case, there is an enhancement of the above 1-form symmetry to Γ(1) = Zk. We
emphasise that this solution is far from unique. Picking λ1 6= 0 means that we must
introduce bare FI parameters ξbarei to fulfill the SUSY requirement.

Y p,k with torsion flux. Now consider the general Y p,k with torsion flux (n0, n1) 6= (0, 0).
For demonstration we consider the first window of torsion space, where the gauge group is

U(N + n1 − p− n0)−n0+ 3
2n1
×U(N) 1

2n0−3n1+ 3
2p−k

×U(N − n1) 1
2n0+ 3

2n1− 3
2p+k

. (7.21)

We use the parameterization (for i 6= j)

Λij = Aij + λij , λij ∈ Z , (7.22)

to derive
qdiag = m1 (−(1 + Λ11)n0 + (Λ11 − λ31)n1 − pΛ11)

+m2 ((−1− λ12)n0 + (λ12 − λ32)n1 + p(−λ12)− k)
+m3 ((−1− λ13)n0 + (3 + λ13 − Λ33)n1 + p(−λ13) + k)

≡
3∑
i=1

mihi .

(7.23)
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Once again we have the condition ∑j Λij = 0 which enforces some redundancies in the
parameters λij via

∑
j λij = 0. Since all parameters mi, λij ,Λii are integers, the trivially

acting subgroup of U(1) ⊂ Z(G) is

Γ(1) = Zgcd(h1,h2,h3) . (7.24)

Again, one must check that any particular choice of Λij preserves supersymmetry.

7.3 A check on the holographic dictionary

In this subsection we aim to demonstrate how consistency with the SymTFT can be used
to constrain the field theory. In particular, since the 1-form symmetry is sensitive to the
U(1) CS-levels Λij , the SymTFT predicts that only certain sets of Λij can potentially be
realised. This illustrates in a concrete problem how the study of higher-form symmetries in
AdS/CFT refines the dictionary. We focus on Y p,p with all G4 torsion flux turned off. The
SymTFT is

SBF
2π =

∫
pB2 ∧ dB1 +NB2 ∧ da1 . (7.25)

The gauge group of the 3d field theory [100] with which we would like to match a boundary
condition of the SymTFT is

U(N − p)0 ×U(N) 1
2p
×U(N)− 1

2p
, (7.26)

with 1-form symmetry given by

Γ(1) = Zp·gcd(λ1,λ2+1) . (7.27)

We want to show that not every choice of λ1, λ2 is consistent with (7.25). In more precise
terms, imposing boundary conditions consistent with the BF-term can give rise to a restricted
set of 1-form symmetries. We show that not all values of λ1, λ2 corresponds to field theories
whose 1-form symmetry belongs to this set.

If we pick the Dirichlet boundary condition for a1 and Neumann for B1, the boundary
field theory has 1-form symmetry Γ(1) = Zp. Swapped boundary conditions would give
Γ(1) = ZN 1-form symmetry, whilst any mixed condition would give Γ(1) ⊆ Zgcd(p,N) ⊆ Zp.
It is clearly not possible therefore to pick a boundary condition with Γ(1) = Zl·p, for some
l ∈ N for all N . Noticing that the field theory result (7.27) is valid for all N , we can
therefore constrain Λij to be such that

l = gcd(λ1, λ2 + 1) = 1 . (7.28)

Thus compatiblity between the SymTFT and field theory computations can be used to
constrain the U(1) Chern-Simons levels conjectured to resolve the known parity anomalies
of these theories. We have focused here on a simple Y p,p model without torsion flux for
concreteness, but claim that this technique is generically applicable to a broader class of
examples. For general (p, k, n0, n1) the coefficients Ωp,k

n0,n1 are given in table 6 and the 1-form
symmetry is given by (7.24): with this information one can run a similar analysis in any
case of interest.
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8 Outlook

There are several possible avenues of future work, some of which we summarize now:
The utility of SymTFTs is only being uncovered, and much remains to be understood,

both field theoretically, but also in the realization of SymTFTs from string/M-theory. In this
work we derived SymTFT terms from two sources: the differential cohomology reduction
of C3, and from gauged isometries of the internal space Y7. However, these two sources
were kept distinct, whereas, ideally, they would be treated in a unified manner. If one
could identify the appropriate framework, we expect that this could yield new topological
couplings in many interesting setups.

Although the examples that we considered were based on Calabi-Yau cones and
associated Sasakian 7-manifolds (as well as their holographic counterparts), the methods
should equally apply to other string/M-theory compactifications with special or exceptional
holonomy. A natural extension of the work in this paper is to consider Spin(7) holonomy
spaces, which often are quotients by orientation-reversal of Calabi-Yau fourfolds.

In view of holography, our main example was to study duals to 3d N = 2 SCFTs, and
we focused on the addition of extra U(1) Chern-Simons terms as a resolution to the parity
anomaly of the N = 2 quiver gauge theories of [100]. One other possibility is to restrict
the gauge group to G′ =

(
Π3
i=1SU(Ni)

)
×U(1). It would be interesting to examine the full

scope of the SymTFT in terms of its constraining power with regards to the consistency of
these field theories.

Another possible future direction is to consider the SO-Sp type 3d SUSY gauge
theories, which are defined as the worldvolume theory of N M2-branes probing a C4/D̂k

singularity [97]. Here D̂k is the binary dihedral group with order 4k, and the singularity
C4/D̂k is the anti-holomorphic involution of the toric singularity C4/Z2k. To compute
the SymTFT in this case, one needs to work out a real resolution of C4/D̂k. It would be
interesting to compare the geometric results with the expected higher-form, higher-group
and non-invertible symmetries from field theory [56, 129].

The SymTFT is a powerful tool. In our analysis we have focused on two of its key
features: encoding the choice of the global form of the gauge group, and the presence of ’t
Hooft anomalies for higher-form symmetries. However, by definition, the SymTFT in all its
generality should encode all symmetry information about its associated QFT(s). Developing
this further, field theoretically, and in conjunction with string/M-theory/holography provides
a very exciting future research direction.
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A Gauging isometries

We consider the effects of gauging (a subgroup of) the isometry group G of the internal
space Y7. The isometry 1-form gauge fields are associated with 0-form global symmetries in
the 3d boundary theory, and may exhibit non-trivial topological bulk couplings with the
gauge fields of the differential cohomology reduction, such as 0-/p-form mixed anomalies.

Suppose that Y7 admits a collection of Killing vectors kµI with µ a curved index and I
labelling a basis. There is a G Lie algebra structure

£IkJ = [kI , kJ ] = f K
IJ kK , (A.1)

where repeated G-indices are summed over. Gauging an internal p-form x amounts to the
substitution x→ xg where

xg =
p∑

M=0

1
M !A

I1 . . . AIM ιI1 . . . ιIMx , (A.2)

where AI are external connections associated to the Killing vectors kµI . The field strengths
of the isometry gauge fields are

F I = dAI − 1
2f

I
JK AJ ∧AK . (A.3)

Under a gauge transformation the gauge field and field strength transform as

δλA
I = −dλI − f I

JK λJAK , δλF
I = −f I

JK λJFK . (A.4)

A gauged internal form xg in an arbitrary representation of the isometry algebra transforms as

δλ(xg) = λJ(£Jx)g . (A.5)

A.1 Equivariant cohomology

The approach we will now take is to uplift the flux to G-equivariant cohomology Hp
G(M11;R),

see e.g. [130] for an introduction. This description is at the level of differential forms and so
is only suited for describing the free part of the cohomology. The method was used in [107]
to compute anomaly polynomials for even dimensional QFTs that are engineered from 11d
supergravity with 4-form background flux over internal 4-cocycles, i.e. with L = 0 and
N i 6= 0 in (3.11). They also considered gauging of internal harmonic 2-forms in G4. The key
idea is that under gauging the flux picks up a dependence on the external connections AI
so that Gg4 is generically neither closed nor gauge invariant. In [107] it was shown that such
a 4-form flux can be given a completion Gg4 → Geq

4 that allows for a lift to G-equivariant
cohomology, i.e. such that

δλG
eq
4 = 0 , dGeq

4 = 0 , (A.6)

and that this completion correctly computes the anomaly polynomial for the isometry
gauge fields.

We are mainly interested in backgrounds associated with the presence of M2-branes,
which are supported by flux over the external space M4. For now we therefore take a
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general perspective, allowing for any background flux configuration. We will derive the
equivariant completion of G4 expanded on all harmonic p-forms of the internal geometry Y7
and compute the resulting contribution to the SymTFT.

The free part of the background flux LvolM4 , is clearly invariant under gauging of
the isometries of the internal space, so any AI dependence in the free part of the flux is
necessarily associated with the expansion on the cohomology of Y7. That is, the harmonic
p-forms ωip, i = 1, . . . , bp(Y7) may transform under gauging ωip → (ωip)g. (In the following
we will suppress indices i, j = 0, . . . , bp(Y7) that label the basis of the p’th cohomology in
an attempt to keep notation to a minimum). The equivariant completion of the 4-form flux
can therefore be parametrized as

Geq
4 = LvolM4 + g4 + g3 ∧ ωeq

1 + g2 ∧ ωeq
2 + g1 ∧ ωeq

3 +Nωeq
4 , (A.7)

where an ansatz for the putative p-form representatives of the equivariant cohomology
Hp
G(Y7;Z) is

ωeq
1 = ωg1 ,

ωeq
2 = ωg2 + F IηI ,

ωeq
3 = ωg3 + F I ∧ ηg1I ,
ωeq

4 = ωg4 + F I ∧ ηg2I + εIJF
I ∧ F J ,

(A.8)

with η2I , η1I , ηI , εIJ = εJI internal 2-, 1-, and 0-forms with isometry group indices, which
do not have to be closed.

The terms linear in the F I transform as

δλ(F I ∧ ηgpI) = −f I
JK λJFK ∧ ηgpI + F I ∧ λJ(£JηpI)g , (A.9)

and the quadratic piece gives

δλ(εIJF I ∧ F J) = −εIMf I
JK λJFK ∧ FM − εIMF I ∧ f M

JK λJFK + λJ(£JεIM )F I ∧ FM .

(A.10)
Requiring gauge invariance of Geq

4 thus implies

£IηpJ = f K
IJ ηpK , £IεJK = f M

IJ εMK + f M
IK εJM . (A.11)

To obtain the conditions for Geq
4 to be closed, we will make use of the identity [107]

d(xg) +AI ∧ (£Ix)g = (dx)g + (ιIx)g ∧ F I , (A.12)

which implies
d(ωgp) = (ιIωp)g ∧ F I , (A.13)

for the harmonic forms. Furthermore, we have

d(F I ∧ ηgpI) = F I ∧
[
(dηpI)g + (ιJηpI)g ∧ F J −AJ ∧ (f K

JI ηpK)g
]

+ dF I ∧ ηgpI . (A.14)

Observe that
dF I = f I

JK AJ ∧ FK , (A.15)
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where we used the Jacobi identity. Thus, we find

d(F I ∧ ηgpI) = F I ∧ (dηpI)g + (ιIηpJ)g ∧ F I ∧ F J . (A.16)

For the quadratic term we have

d(εgIJF
I ∧ F J) = (dεIJ)g ∧ F I ∧ F J , (A.17)

since all other contributions vanish on dimensional grounds. Hence, Geq
4 is closed if ηpI and

εIJ solve
ιIω4 + dη2I = 0 , ι(Iη2J) + dεIJ = 0 ,
ιIω3 + dη1I = 0 , ιIω2 + dηI = 0 .

(A.18)

Notice that it is not always possible to solve this set of equations. Equivariantising a
harmonic p-form is obstructed if ιIωp is not exact.18 This issue is circumvented e.g. if the
even/odd cohomology of Y7 is trivial, as is the case in all the examples we consider in
this paper.

We would like to interpret the equivariant completions ωeq
p as equivariant maps

f : g→ Ω•(Y7) , (A.19)

which obey
£If(X ) = f K

IJ X J
∂

∂XK
f(X ) , (A.20)

and are closed under
deq(F (X )) ≡ d(f(X )) + ιX f(X ) , (A.21)

for X = X ItI ∈ g in some basis {tI} of g. Given this identification, the forms ωeq
p correspond

to non-trivial elements in G-equivariant cohomology. Since the expressions derived for ωeq
4

and ωeq
2 match those in [107], we need only consider the odd pieces ωeq

3 and ω1. We consider
the map

fω3 : X I → fω3(X I) = ω3 + X Iη1I , (A.22)

for some X = X ItI ∈ g. We begin with closure, and in particular identify F I = X I

deqfω3(F ) = d(f(F )) + F I ∧ ιIf(F )

= d
(
ω3 + F I ∧ η1I

)
+ F I ∧ ιI

(
ω3 + F J ∧ η1J

)
,

= dω3 + dF I ∧ η1I + F I ∧ dη1I + F I ∧ ιIω3 + F I ∧ F J ∧ ιIη1J .

(A.23)

which reproduces the condition in (A.18). Furthermore, it implies a new condition

ι(Iη1J) = 0 , (A.24)

which is not necessary for g1 ∧ωeq
3 to be closed, but it is necessary to be able to identify ωeq

3
with a non-trivial G-equivariant cohomology class. The equivariant transformation (A.20)

18We thank Ibou Bah and Federico Bonetti for pointing out this subtlety.
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reproduces the result for the Lie derivative of η1I in (A.11). The map we consider for the
harmonic 1-form is simply

fω1 : X I → fω1(X I) = ω1 , (A.25)
which trivially satisfies (A.20). However, from (A.21) we find

ιIω1 = 0 , (A.26)

which is not required for Geq
4 to be closed, but without it ω1 cannot represent an element of

H1
G(Y7;R). Note that this is a constraint on the geometry, similar to the condition discussed

after (A.18). If this condition is not satisfied it poses an obstruction to an equivariant uplift.
Finally, before computing the SymTFT, we make a few comments on the scope of this

formalism and the interplay with torsion. The limitation of the description of equivariant
cohomology in terms of differential forms is of course that it only captures the free part of
the cohomology ofM11, since the torsion generators are not associated with any differential
form. In principle, a complete treatment of the gauging of isometries in the presence of
torsion might be formulated in equivariant differential cohomology Ĥn

G(M ;Z). However at
present, it not known how to write down an appropriate parametrization of Ĝ4 ∈ Ĥ4

G(M ;Z),
and how to define an action principle generalising (3.27). So, whereas the differential
cohomology formulation of section 3 determines the couplings of the KK field strengths gip
and discrete gauge fields Bα

p , and the equivariant cohomology uplift discussed above gives
the couplings of the gip and F I , we are not sensitive to couplings involving both Bα

p and
F I fields. Yet, in section 5 we find evidence from the AdS/CFT correspondence for the
existence of such couplings.

A.2 SymTFT with gauged isometries

We now compute the SymTFT couplings of the isometry gauge fields by dimensionally
reducing the 12-dimensional M-theory gauge invariant polynomial

I12 = −1
6(Geq

4 )3 −Geq
4 ∧X8 . (A.27)

Using (A.7) and restoring indices so that

Geq
4 =

4∑
p=0

bp(Y7)∑
i=1

gi4−p ∧ (ωip)eq , (A.28)

the CS-term gives

−1
6

∫
Y7

(Geq
4 )3 −G3

4 =
∑
ijk

(
−1

2H
ijk
I gi1 ∧ g

j
1 ∧ g

k
1 + Θijk

I N
igj1 ∧ g

k
2 +HijkI N

iN jgk3

)
∧ F I

+
∑
ijk

Πijk
IJ N

iN jgk1 ∧ F I ∧ F J .

(A.29)
The new coefficients are given by

H ijk
I =

∫
Y7
ηi1I ∧ ω

j
3 ∧ ω

k
3 , Θijk

I =
∫
Y7
ωi4 ∧ ωk2 ∧ η

j
1J + ηkIω

i
4 ∧ ω

j
3 ,

HijkI =
∫
Y7
ωi4 ∧ η

j
2I ∧ ω

k
1 , Πijk

IJ =
∫
Y7

1
2η

i
2I ∧ η

j
2J ∧ ω

k
3 + ωi4 ∧ η

j
2I ∧ η

k
1J + εjIJω

i
4 ∧ ωk3 .

(A.30)
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C C+ C− D D+ D−

D 0 1 1 C C+ C−

D+ 1 3 0 C+ 3C+ 0
D− 1 0 −3 C− 0 −3C−

Table 3. Intersections between 4-cycles {D,D+, D−} and 2-cycles {C, C+, C−} [100].

Furthermore, equivariantly completing X8 amounts to

p1(TY7)→ p1(TY7)g + F Iσg2I + F IF JφIJ . (A.31)

These new terms will be subject to constraint equations. However, we previously argued
that only p1(TY7) ∧ p1(TM4) survives inside X8, then on dimensional grounds we do not
obtain any new terms from the isometries.

Finally, we can also have topological contributions from the kinetic term. We find that
the kinetic term contains new contributions to the SymTFT∫

Y7

1
2 |G

eq
4 |

2 ⊆ Lg4 +
[∫
Y7
ηIvolY7

]
Lg2 ∧ F I +

∑
i

[∫
Y7
εiIJvolY7

]
LN iF I ∧ F J . (A.32)

Here we have used a normalisation where Y7 has unit volume.

B BF-terms from type IIA for Y p,k

In this section we utilize a reduction to type IIA to derive an extra BF-term contribution on
top of those computed via M-theory methods in section 6.2. In [100] the authors reduce the
M-theory solution on AdS4 × Y p,k background to IIA along a circle. The IIA supergravity
background is

AdS4 ×wM6 , (B.1)

where M6 is a S2 bundle over CP2. The homology groups of M6 are

H• = {Z, 0,Z2, 0,Z2, 0,Z} . (B.2)

The RR field strengths and Kalb-Ramond field are parametrized as

[F2] = pD+ − kD ,

[BNS] = −b0D− + b+D ,

[F6] = ND · C+ .

(B.3)

Here, {D,D+, D−} are an over-complete basis of 4-cycles. There is a dual set of 2-cycles
{C, C+, C−} which is also overcomplete. They are related by

D+ = D− + 3D , C+ = C− + 3C . (B.4)

Their mutual intersections are given in table 3. We write a set of Poincaré dual 2- and
4-forms

{D,D+, D−} ↔ {ω2, ω
+
2 , ω

−
2 } ,

{C, C+, C−} ↔ {ω4, ω
+
4 , ω

−
4 } .

(B.5)
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Let us consider fluctuations around this background in this basis
F ′2 = F2 + f2 = pω+

2 − kω2 + f2 ,

B′NS = BNS + b2 = −b0ω−2 + b+ω2 + b2

F ′6 = F6 + f6 = Nω2 ∧ ω+
4 + g+

4 ∧ ω
+
2 + g

(0)
4 ∧ ω2 + g−2 ∧ ω

−
4 + g

(0)
2 ∧ ω4 .

(B.6)

We now look for single derivative terms in the IIA equations of motion [78, 94], which will
dominate at long distances, i.e. near the conformal boundary of AdS. In particular, we are
interested in couplings involving b2 and 1-form gauge fields

d ?10 F2 = H3 ∧ F6 = db2 ∧Nvol(M6) + · · · = Ndb2 ∧ vol(M6) + · · · .

d ?10 H3 = F2 ∧ F6 =
(
pg

(0)
2 − kg

−
2 +Nf2

)
∧ vol(M6) + · · ·

d ?10 F6 = H3 ∧ F2 = db2 ∧ (pω+
2 − kω2) + · · ·

(B.7)

The Bianchi identities are dF6 = H3 ∧ F4, dF2 = H3 ∧ F0, dH3 = 0 are trivially satisfied
given our expansion. At the boundary, we are left with the following topological equations
of motion

Ndb2 = 0
pdb2 = 0
kdb2 = 0(

pg
(0)
2 − kg

−
2 +Nf2

)
= 0 .

(B.8)

These equations of motion are reproduced by
SIIA
2π =

∫
b2 ∧

(
Nf2 + pg

(0)
2 − kg

−
2

)
. (B.9)

If we package up

(3p− k)g+
2 + pg

(0)
2 ≡ gcd(p, k)

(
q1g
−
2 + q2g

(0)
2

)
≡ gcd(p, k)g̃2 , (B.10)

we can rewrite
SIIA
2π =

∫
b2 ∧ (Nf2 + gcd(p, k)g̃2) . (B.11)

Let us compare with the M-theory analysis of section 6.2, in particular (6.17). As discussed
in section 5.1, we conjecture that b2, which couples electrically to the fundamental string,
uplifts to B2 which couples to M2-branes wrapping the torsional 1-cycle. The field a1
sourced by D0-branes with field strength f2 uplifts to the U(1) isometry gauge field A1
associated with the M-theory circle direction. In IIA, the 1-form gauge field c̃1 with field
strength g̃2 couples electrically to D4-branes wrapping the two 4-cycles in the M6 geometry.
We expect that the linear combination c̃1 maps to B1 upon uplift to M-theory, which couples
electrically to M5-branes wrapping the torsional 5-cycle.

The NB2 ∧ f2 coupling is precisely the one we do not have access to from M-theory.
We claim that this would be visible if we combined the equivariant cohomology description
with differential cohomology, analogously to the matching we did in the ABJM example.
On the other hand, IIA does not see the Ωp,k

n0,n1B2 ∧ g2 term of (6.17), at the level of our
analysis. We use this to conjecture an additional term in the M-theory BF-coupling:

SBF
2π =

∫
B2 ∧

(
Nf2 + gcd(p, k)dB1 + Ωp,k

n0,n1g2
)
. (B.12)
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p k αBB(k1) αBB(k2) αFB(k1) αFB(k2)

2 2 3
4

3
4

1
2 0

3 3 5
6

2
3

1
3 0

4 2 0 1
4 0 1

2

4 4 7
8

5
8

1
4 0

4 6 0 1
4 0 1

2

5 5 9
10

3
5

1
5 0

6 2 3
4

1
2

1
2

1
2

6 3 2
3

5
6

2
3

2
3

6 4 3
4

1
4

1
2 0

6 6 11
12

7
12

1
6 0

6 8 3
4

1
2

1
2

1
2

6 9 0 1
6

2
3

2
3

7 7 13
14

4
7

1
7 0

8 2 0 3
4 0 1

2

8 4 0 5
8

1
2

3
4

8 6 0 3
4 0 1

2

8 8 15
16

9
16

1
8 0

8 10 0 3
4 0 1

2

8 12 0 1
8

1
2

3
4

Table 4. A selection of the Y p,k(CP2) SymTFT coefficients obtained for selected p, k values
with non-trivial gcd(p, k). Note we have also not included pairs of gcd(p, k) values related by
(p, k)→ (p, 3p− k).

p 6 6 6 8 8 8 9 9
k 4 8 9 6 10 12 6 12

b1 n1 − n0 3n1 − 2n0 2n1 − n0 n1 − n0 4n1 − 3n0 2n1 − n0 n1 − n0 3n1 − 2n0

b2 2n1 − 3n0 4n1 − 3n0 3n1 − 2n0 3n1 − 4n0 5n1 − 4n0 3n1 − 2n0 2n1 − 3n0 4n1 − 3n0

Table 5. Mappings from (n0, n1) torsion flux numbers to (b1, b2) flux numbers. Here we give cases
where k 6= p

c for some c ∈ Z.
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p p 4 4 6 6 6 6
k p 2 6 2 3 4 8

Ωp,k
n0,n1 n0 −2n0 + n1 −2n0 + 3n1 −2n0 + n1 −2n0 + 2n1 n1 − n0 7n1 − 5n0

p 6 8 8 8 8 8
k 9 2 4 6 10 12

Ωp,k
n0,n1 10n1 − 6n0 −4n0 + n1 −4n0 + n1 3n1 − 4n0 5n1 − 4n0 13n1 − 8n0

Table 6. Values of Ωp,k
n0,n1

coefficients for various values of p and k. These were computed by using
values in table 4 and mapping (b1, b2) to (n0, n1) (table 5). Notice in the first column we give a
general expression for Y p,p.
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