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1 Introduction

The microscopic nature of dark matter (DM) is one of the most pressing issues in fundamental
physics, as no known elementary particle has the right properties to make up DM. An
interesting possibility is that DM particles are part of a “dark sector”, a set of fields
that are uncharged under the Standard Model (SM) gauge group [1, 2]. A dark sector
may contain its own gauge interactions and matter fields, and may indeed have a level of
complexity and structure similar to or exceeding the SM. Such dark sectors are very natural
from a theoretical point of view, and in fact are ubiquitous in string theory constructions
incorporating the SM.

As there are very few theoretical constraints on the nature of the dark sector, it is
important to explore a wide range of possibilities that may lead to viable DM candidates. In
this paper, we will study the scenario where the dark sector possesses conformal symmetry.
Conformal field theories (CFT’s) are generic in the landscape of quantum field theories,
arising whenever renormalization group evolution has a non-trivial attractive fixed point [3–
5]. Moreover, while CFT’s are generally strongly-coupled and cannot be studied via
perturbative techniques, the conformal symmetry is often sufficient to make non-trivial
physical predictions in these theories. In practice, this will allow us to construct models
of dark matter in which observables such as relic density are both calculable and differ
parametrically from the prediction of any perturbative model of the dark sector. In fact,
in many cases the only input needed from the CFT side is the two-point function of the
CFT operator coupled to the SM, which is completely determined by the dimension of this
operator and conformal invariance.

Suppose that a conformally-invariant dark sector exists, and some energy is injected
into this sector in the early universe. Conformal symmetry implies that in the expanding
universe, the energy density of the dark sector will scale as ρdark ∝ a−4, where a is the scale
factor. This scaling is that of radiation, not non-relativistic matter, leading to an immediate
objection to the idea of dark matter made out of a CFT. However, very generically, we can
expect the dark sector to interact, at some level, with the non-conformal sector containing
SM.1 These interactions necessarily lead to breaking of the conformal symmetry in the dark
sector. While the SM-CFT coupling may be perturbatively small in the UV, it grows with
decreasing energy if the interaction involves a relevant operator (dimension< 4) in the CFT.
Eventually, the conformal symmetry is completely broken at an IR scale Mgap. Below this
scale the theory enters a “hadronic” phase, with ordinary massive particle excitations in
the spectrum. These particles can play the role of Cold Dark Matter (CDM). While the
DM today consists of “normal” particles in this scenario, it is possible that the processes
that are responsible for populating the dark sector (thus fixing the relic density of the DM)
occurred when the dark sector was in the conformal regime.

If the SM-CFT coupling is sufficiently strong for the two sectors to come to thermo-
dynamic equilibrium in the early universe, a rough estimate shows that the observed relic
density of DM requires Mgap ∼ 10− 100 eV. This scenario would lead to hot dark matter,

1Here, we consider non-gravitational coupling of the SM to the CFT. Models with gravitational coupling
of the two sectors were studied in [6].
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ruled out by observations of large-scale structure. (It is possible to avoid this conclusion if
the DM can effectively annihilate to the SM in the hadronic phase, but in that case, the relic
density would be completely determined by the ordinary particle physics of the hadronic
phase, not the CFT.) We will therefore focus on the case when the CFT does not come
into thermal equilibrium with the SM due to weakness of the coupling between the two
sectors. We assume that the CFT sector is not populated by inflaton decays, since otherwise
the DM relic density becomes just an initial condition with no physical origin. (A model
in which such “asymmetric reheating” is realized naturally is discussed in ref. [7].) The
interactions with the SM then provide the main mechanism for populating the CFT sector
in the early universe. Such a non-thermal production mechanism in the case of ordinary
particles is known as “freeze-in”. The scenario studied in this paper can then be described
as “conformal freeze-in (COFI)”, the term that was first introduced in ref. [8], where we
considered a specific realization of this scenario. In this paper, we present a systematic
study of the COFI mechanism, including several possible SM operators, or “portals”, that
can couple to the CFT dark sector, as well as effects of operator mixing. We also include
an updated analysis of astrophysical constraints from stellar cooling and other sources. We
find that the COFI scenario is very generic and can occur for any of the portals we consider,
and in many cases the resulting DM candidate is phenomenologically viable.

The rest of the paper is organized as follows. In section 2, we describe the model of
the dark sector and its interactions with the SM underlying our scenario. This includes
the discussion of the CFT phase, the hadronic phase that emerges at low energies after
the conformal invariance is broken, and a possible UV completion of the CFT by a gauge
theory with a strongly-interacting Banks-Zaks fixed point. In section 3, we describe the
cosmological evolution of the dark sector in the COFI scenario, and calculate the dark matter
relic density. The figures in this section provide a snapshot of the parameter space in various
COFI models containing a viable dark matter candidate, along with observational and
theoretical constraints on these models. The derivation of these constraints is presented in
section 4. Finally, we summarize and conclude in section 5. Technical details of calculations
of relic density and stellar cooling rates are contained in the appendix.

2 Theoretical framework

We consider a theory in which a Dark Sector (i.e. a set of fields with no direct charges under
SM gauge groups) is described by a Conformal Field Theory (CFT) across a broad range
of energy scales, between the “gap scale” Mgap in the infrared (IR), and the ultraviolet
(UV) cutoff ΛUV �Mgap. We discuss the theory in the CFT window and its interactions
with the Standard Model (SM) in section 2.1. We describe the mechanism that generates
the gap scale and the physics at and below that scale in section 2.2. For completeness, we
outline a possible UV completion above ΛUV in section 2.3, although that theory is not
directly relevant for the discussion of dark matter.

2.1 Conformal dark sector

At energy scales between Mgap and ΛUV, the Dark Sector is described by a CFT. We
assume that the CFT contains an operator OCFT with a scaling dimension d < 4, i.e. a
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relevant operator. Generically the CFT is strongly coupled, and d need not be integer.
Further, we assume that OCFT is charged under a global symmetry G (for example a discrete
Z2), which forbids a Lagrangian term of the form cOCFT . Standard Model (SM) fields are
not charged under G.

We consider a coupling between the SM and the dark CFT of the form

Lint = λCFT

ΛD−4
CFT

OSMOCFT , (2.1)

where OSM is an operator made out of SM fields. Here λCFT is a dimensionless constant,
while ΛCFT is a mass scale. Further,

D = d+ dSM , (2.2)

where dSM is the scaling dimension of OSM . The interaction term (2.1) explicitly breaks
both conformal symmetry (since the SM is not conformal), and the global symmetry G.
We consider the regime where this interaction is small enough to consider this breaking
perturbatively, and work to leading order in the interaction strength.

Since the dark sector does not carry SM gauge charges, OSM must be gauge-invariant,
but there are a priori no other restrictions on this operator. For simplicity, we assume that
at tree level, there is a single SM operator interacting with the CFT via eq. (2.1). (Of course,
couplings between OCFT and other SM operators will generically be induced by quantum
corrections, as discussed below.) To illustrate the range of possibilities, we consider several
possible portal operators OSM , which couple the CFT to quark, lepton, and gauge sectors
of the SM. We can classify these operators into two types: Type-I operators that acquire a
non-zero vacuum expectation value (VEV) in the IR, and Type-II operators that do not.
We consider three Standard Model operators in the class of type-I operators:

• Higgs portal, H†H,

• Quark portal, HQ†LqR, and

• Gluon portal, GµνGµν .

The Higgs portal operator gets a VEV at the weak scale, while the quark and gluon portals
get VEVs at the QCD confinement scale. Further, we consider three examples of type-II
operators:

• Lepton portal HL†`R,

• Weak-gauge portal WµνWµν , and

• Hypercharge-gauge portal BµνBµν .

All our examples involve relevant or marginal SM operators, which are expected to be
dominant at low energies. Also, all operators we consider are Lorentz scalars. For an
example of a non-scalar portal, namely OSM = Bµν which results in a composite dark
photon, see ref. [9].
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In the case of quark and lepton portals, the flavor structure of the CFT coupling to the
SM needs to be specified. We will assume that the portal operators are flavor-diagonal in
the SM mass eigenbasis. The coupling to CFT can then be written in this basis as

Lint = λCFT

ΛD−4
CFT

OCFT ·
(∑

i

κiOiYuk

)
, (2.3)

where the sum runs over the six flavors of SM quarks or three flavors of charged leptons,
and OiYuk is the SM Yukawa operator for each flavor. The constants κi encode the flavor
dependence of the CFT-SM interactions. Specifically, we will consider three cases:

• Minimal Flavor Violation (MFV), with entries proportional to SM Yukawas: κi = yi,
i = 1 . . . 6 for quarks and 1 . . . 3 for charged leptons.

• Democratic, with all entries the same: κi = 1.

• First-Generation Only: κi = 1 for the first-generation quarks or electrons, and 0 for
the second and third generations.

2.2 CFT breaking in the infrared

Since the Dark Sector CFT contains a relevant operator OCFT , the generic expectation is
that the conformal symmetry is broken in the infrared (IR). Specifically, if the Lagrangian
contains a term

L = cOCFT , (2.4)

where c is a constant of mass dimension 4− d > 0, the conformal symmetry is broken at
the “gap” mass scale

Mgap ∼ c1/(4−d) . (2.5)

Here and below, we make use of Naive Dimensional Analysis (NDA) to estimate various
quantities of interest up to order-one factors. In most cases, more precise analytic results are
not available due to the strongly-coupled nature of the underlying theory. NDA estimates
will be sufficient to establish the basic features of the dark matter model and establish its
viability. At energy scales below Mgap, the theory is no longer conformal. In this subsection,
we will first estimate the gap scale for each of the six SM portals, and then describe the
physics at low energies below Mgap.

2.2.1 Estimates of the gap scale

Global symmetry G forbids the deformation (2.4) within the CFT itself, and the infrared
breaking of the CFT is entirely due to its interaction with the SM, eq. (2.1). For each portal
operator OSM , there are several distinct contributions to Mgap, with the NDA estimates for
each of them summarized in table 1. Below, we will discuss each of these contributions.

For type-I operators, a non-zero VEV directly leads to an effective Lagrangian of the
form (2.4), with a coefficient

c = λCFT

ΛD−4
CFT

〈OSM〉. (2.6)
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Figure 1. Contributions to conformal symmetry breaking via “radiative direct” diagrams, in
the Higgs, quark/lepton and gluon/weak boson portals respectively. Blue circles indicate CFT
operator insertions.
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Figure 2. Diagrams that contribute to conformal symmetry breaking via mixing with the Higgs,
in the quark/lepton portal, the gluon portal and the electroweak boson portal respectively. Blue
circles indicate CFT operator insertions.

An estimate of the corresponding contribution to the gap scale Mgap for each of the three
type-I portals is listed in the first column of table 1. We refer to this contribution as
“tree-level”. Note that since these are NDA-level estimates, all QCD condensates are simply
taken to be ΛQCD to the appropriate power.

For both type-I and type-II operators, the deformation (2.4) is induced by quantum
corrections. For example, the leading contributions of this type for Higgs, quark/lepton and
gluon/weak boson/hypercharge boson portals are illustrated in figure 1. We refer to these
contributions as “radiative direct”. The Feynman diagrams that contribute are generally
UV-divergent, and the NDA estimates of their contributions are proportional to powers
of the scale ΛSM which serves as the UV cutoff of the SM loops. The LHC constraints
generally imply ΛSM >∼ 1TeV. Note that if ΛSM � 4πv, the observed weak scale requires
strong fine-tuning. A similar fine-tuning may or may not occur in the SM loop contributions
to (2.4), and the gap scale in this scenario is strongly model-dependent. For concreteness,
we will use ΛSM = 2πv ∼ 1.5TeV in the estimates of this paper. The NDA estimates of this
contribution to Mgap for each portal are collected in the second column of table 1.

Quantum corrections in the SM also introduce mixing among the SM operators. In
effect, for each choice of the portal operator in eq. (2.1), interactions of OCFT with all other
gauge-invariant SM operators are induced, with loop-suppressed coefficients. In particular,
a coupling of the CFT to the Higgs portal operator is always generated. The leading
contributions to this coupling for lepton, quark, gluon, weak and hypercharge portals are
illustrated in figure 2. Below the weak scale, this coupling induces the deformation (2.4).
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Figure 3. Diagrams that contribute to conformal symmetry breaking via generation of O2
CFT

, in
the Higgs portal, quark/lepton portal, and the gluon/weak boson portal respectively. Blue circles
indicate CFT operator insertions.

We refer to this mechanism as “radiative mixing”. The NDA estimates of the corresponding
contribution to the gap scale for each portal are summarized in the third column of table 1.
Mixing with the other two type-I operators is also generically present, but their effect is
subdominant since ΛQCD � v.

Another potential source of radiative breaking of conformal symmetry is the deformation

L = c′O2
CFT , (2.7)

which can also be generated through SM loops. For example, the relevant diagrams for
each portal are shown in figure 3. If O2

CFT is a relevant operator (which in the large-N limit
corresponds to OCFT having d . 2), this leads to IR breaking of the conformal symmetry
and generation of the gap scale. The NDA estimates of the resulting contribution to the
gap scale are listed in the last column of table 1.

Depending on the parameters λCFT , ΛCFT and d, each of the conformal symmetry-
breaking contributions listed in table 1 may be dominant. We found that in the parameter
space where the models successfully reproduce the observed dark matter relic density via
freeze-in, O2

CFT deformations are sub-leading to OCFT deformations for all operators studied
here. For the Higgs portal, the tree-level contribution to the gap scale dominates. For quark
and lepton portals, the dominant source of conformal symmetry breaking is radiative mixing.
For gauge-boson portals (gluon, weak and hypercharge), the radiative direct contribution
is dominant. Note that for the quark and gluon portals, radiative contributions dominate
over the tree-level one; this is primarily due to the hierarchy v � ΛQCD.

2.2.2 Physics below the gap scale

Below the conformal symmetry breaking scale Mgap, the dark sector is populated by particle-
like excitations which are hadronic composite states of the original CFT degrees of freedom.2
Predicting the spectrum of these excitations in a given CFT requires non-perturbative
analysis, which is outside the scope of this paper. Instead, we will make a few simple,
realistic assumptions about the properties of the low-energy theory, which will be sufficient
to estimate the dark matter density and other quantities of interest up to order-one factors.

2While a hadronic phase seems generic, another possible IR phase suggested by certain five-dimensional
CFT duals is a “gapped continuum” [10]. For a recent example of viable dark matter models with gapped
continuum, see [11, 12].
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We assume that the lightest of the CFT composite states χ is stable on cosmological
time scales. This particle plays the role of dark matter. Stability may be due to a conserved
global (discrete or continuous) symmetry under which χ (and possibly some other CFT
composites) are charged, but SM states are all neutral. Further, as in [8], we posit that
the DM particle is a pseudo-Goldstone boson (PGB) of an approximate global symmetry
spontaneously broken at Mgap. In this case, mDM �Mgap is natural, with the DM mass
dictated by the amount of explicit symmetry breaking.This is necessary to satisfy self-
interaction constraints [13, 14], as will be discussed in section 4. Notably, both the PGB
property and a Z2 global symmetry are in fact realized for pions in QCD, although in that
case the would-be stabilizing symmetry is anomalous leading to π0 → 2γ decay. (For other
examples of models with dark pion playing the role of dark matter, see e.g. [15, 16].)

Note that the ratio r = mDM/Mgap is a free parameter of the theory. Phenomenologically,
the value of r is bounded from above by the self-interaction bound and from below by the
warm dark matter constraint (since very light DM states can disrupt structure formation).
It turns out that these considerations restrict r to a parametrically narrow range, so that the
theory remains highly predictive with respect to the DM mass and other relevant quantities.
Figure 14 illustrates this for one of the models studied in this paper, while section 4 explains
these constraints in detail.

In addition to χ, the low-energy theory generically contains a set of bound states with
masses ∼Mgap. These states will couple to χ and mediate both DM self-interactions and
its interactions with the Standard Model. We model these couplings as

L ∼ g?ρµ
(
χ†∂µχ+ h.c.

)
, (2.8)

for a vector mediator ρµ, and
L ∼ g?

Mgap
φ (∂χ)2 , (2.9)

for a scalar mediator φ. The characteristic coupling can be estimated in the large-N limit as

g? ∼
4π√
N
. (2.10)

In a generic theory (such as QCD), both vector and scalar mesons will be present with
comparable masses.

The interactions of χ with the SM are obtained by matching the interaction Lagrangian
in the CFT phase, eq. (2.1), to the low-energy effective theory. Dimensional analysis and
large-N arguments suggest

OCFT −→
Md−1

gap
g?

φ , (2.11)

while contributions from ρµ and χ are subdominant. This is seen by first noting that
OCFT is a scalar operator with scaling dimension d. Once the CFT confines, it is expected
to “interpolate” a scalar operator made up of canonically normalized field operators of
composite states. A single trace interpolation is given by the above equation where φ is a
gauge invariant operator for a composite scalar. The factor Md−1

gap is fixed by the dimensional
analysis, while the factor 1/g? is determined by the large-N counting. Explicitly, in the
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large-N limit, 〈OCFTOCFT〉 ∼ N
16π2 = 1

g2
?
, suggesting that OCFT ∝ 1

g?
. For ρµ or χ, the

interpolation relation is either that of a “descendant” or multi-trace. This is simply because
OCFT ∼ ∂µρ

µ by Lorentz invariance and OCFT ∼ (∂χ)2 by the shift symmetry of χ. This
amounts to raising the effective dimension with more suppression by inverse powers of Mgap,
rendering them subdominant in the low-energy effective theory.

2.3 Ultraviolet completion

There exists a natural UV completion of a dark-sector CFT considered above: SU(N)
gauge theories with fixed points in the infrared a la Banks-Zaks [17, 18].3 In the UV, an
operator of this gauge theory, for example, a fermion bilinear, is coupled to the SM. At
some scale ΛCFT , there is a fixed point and the UV gauge theory has a phase transition into
the (generically strongly coupled) conformal phase. OCFT is the operator in the conformal
phase that corresponds to the original operator of the gauge theory. The matching for the
example of a fermion bilinear operator is,

LUV = λBZ

M
dSM−1
BZ

OSMΨ̄Ψ ΛCFT−−−→ λCFT

ΛD−4
CFT

OSMOCFT ⇒ λCFT ≈ λBZ

(ΛCFT

MBZ

)dSM−1
, (2.12)

where MBZ is the UV cutoff scale of the gauge theory, λBZ is the coupling and Ψ is a
fermion in the UV. We impose λBZ ∼ O(1) as a naturalness condition in all the models we
consider in the paper. Since dSM > 1 and ΛCFT < MBZ, it is natural for λCFT to be very
small. The dark sector is never in equilibrium with the Standard Model, and dark sector
energy density is produced through the freeze-in mechanism. In the next section, we will
show that this mechanism can provide dark matter with the observed relic density.

3 Cosmology and relic density

In this section, we outline the cosmological history of the dark sector, and estimate the
resulting dark matter relic density for the six portal operators in table 1. We find that
each portal operator can provide a phenomenologically viable dark matter candidate. The
key features of these candidates are summarized in table 2. Further, figures 5–10 and 12
below illustrate the parameter space consistent with the observed dark matter density for
each portal. Phenomenological and theoretical constraints on the model will be discussed
in detail in section 4.

3.1 Cosmological history of the dark sector

We consider the regime where the coupling between the SM and the dark sector is sufficiently
small that the two sectors are not in thermal equilibrium at any time. At the end of inflation,
the Standard Model sector is reheated to temperature TR. We assume that the inflaton
does not couple to the dark sector, so that the energy in the dark sector is zero at that time.
(Without this assumption, the dark matter density receives a contribution depending on

3The UV theory may be any gauge theory with an interacting IR fixed point. The gauge group need not
be SU(N) and also we do not require the fixed point to be weakly interacting.
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the details of the inflaton couplings and dynamics, and the model loses predictivity.) After
reheating, SM collisions and decays can populate dark sector states via the interaction (2.1).
We consider the “Conformal Freeze-In” (COFI) scenario where

Mgap < TR < ΛCFT , (3.1)

so that the dark sector is described by a CFT in this epoch. This allows us to calculate
energy transfer rates using the “unparticle” approach of Georgi [19, 20]. The energy
transferred to CFT quickly thermalizes due to strong coupling among the CFT states, but
the CFT temperature TD always remains below the SM plasma temperature TSM . The
transfer of energy from the SM plasma to the conformal dark sector continues until either
the SM states coupled to the CFT become non-relativistic and drop out of equilibrium,
or the SM temperature drops below the gap scale Mgap. In either case, the dark sector
eventually undergoes a confining phase transition at TD ∼Mgap. The energy stored in the
CFT degrees of freedom is transferred to the particle-like bound states of the dark sector,
which then rapidly (compared to Hubble timescale) decay down to stable dark matter states.
Given the small coupling of the dark sector to the SM, such decays would typically not
involve SM states, so that essentially all of the energy stored in the CFT at the time of the
phase transition ends up in dark matter.

Quantitative predictions of dark matter relic density in the COFI scenario are obtained
as follows. Energy transfer between the SM and CFT degrees of freedom is described by a
Boltzmann equation,

dρSM

dt
+ 3H(ρSM + PSM) = −ΓE(SM→ CFT), (3.2)

where H is the Hubble expansion rate, ρSM and PSM are the energy density and pressure of
the SM plasma, respectively, and ΓE is the energy transfer rate per unit volume given by

ΓE(SM→ CFT) =
∑
i,j

ninj〈σ(i+ j → CFT)vrelE〉+
∑
i

ni〈Γ(i→ CFT)E〉 . (3.3)

Here the sums run over all SM degrees of freedom coupled to the CFT. The cross-sections
and decay rates can be evaluated using the “unparticle” technique of Georgi [19, 20]; an
explicit example of such a calculation is given in appendix A.1. In the COFI scenario, the
dark sector temperature TD remains well below the SM temperature, TD � TSM , throughout
the cosmological history. For this reason, we have neglected the reverse energy transfer,
from the CFT back to the SM sector, in eq. (3.2). Conformal symmetry of the dark sector
guarantees that its energy-momentum is traceless, PCFT = 1

3ρCFT , and thus its energy
density redshifts as radiation, ρCFT ∝ a−4, as the universe expands. At the time when the
CFT sector is populated, the energy density in the SM sector is dominated by relativistic
matter, so that SM and CFT energy densities redshift in the same way. The total energy of
the two sectors can only change due to work done against the expansion of the universe:

d

dt
(ρCFT + ρSM) + 4H (ρCFT + ρSM) = 0. (3.4)
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Figure 4. Dark sector energy density (normalized by SM energy density) vs. temperature of the
Standard Model plasma, for two different values of D. The red curve (D < 9/2) shows IR-dominant
production, while the blue curve (D > 9/2) shows UV-dominant production.

Subtracting eq. (3.2), we find that the CFT energy density evolves according to

dρCFT

dt
+ 4HρCFT = ΓE(SM→ CFT) . (3.5)

Solving this equation, with the initial condition ρCFT = 0 at TSM = TR, yields the CFT
energy density as a function of the SM temperature T .

It is instructive to discuss an analytic solution of (3.5) for the simple case when the
energy transfer rate is given by

ΓE(SM→ CFT) ∼
λ2

CFT

Λ2(D−4)
CFT

T 2D−3
SM . (3.6)

This scaling occurs when the SM temperature TSM is well above all relevant SM energy
scales (such as masses) and the mass gap of the dark sector.4 This can be easily shown via
simple dimensional analysis, keeping in mind that the SM temperature is the only relevant
dimensionful scale besides (the square of) the coupling to the dark sector. Integrating (3.5),
the energy density of the dark sector grows as

ρCFT ∼
Mpl

Λ2D−8
CFT

[
T 4

(
T 2D−9
R − T 2D−9

2D − 9

)]
, (3.7)

where Mpl is the Planck mass.
For values of D below the critical dimension D = dSM +d = 4.5, most of the dark sector

energy density is produced at low temperature (“in the infrared”) and the dark matter relic
density can be predicted without knowledge of UV physics and the reheating temperature.

4This regime, where the SM itself is approximately conformal, was also considered in ref. [21].
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OSM DM Mass DM Mass Dominant CFT Dominant
(Scalar Mediator) (Vector Mediator) Deformation Production Mode

H†H 0.4 - 1.2MeV 40 - 400 keV Tree-level h→ CFT

HQ†q

1st: ��SN
All: 0.1 - 1MeV
MFV: 0.5 - 5MeV

1st: ��SN
All: 50 - 200 keV
MFV: 0.1 - 1MeV

Radiative mixing qq̄ → CFT

HL†`R

1st: ����WDM
All: 3 - 10 keV

MFV: 10 - 100 keV

1st: ����WDM
All: ����WDM
MFV: ����WDM

Radiative mixing `¯̀→ CFT

GµνGµν 0.2 - 2MeV 50 - 400 keV Radiative direct gg → CFT

BµνBµν 0.1 - 10MeV 0.05 - 1MeV Radiative direct γγ → CFT

Table 2. Summary table for each SM operator portal considered. In this table, ��SN stands for
models that are ruled out by supernova cooling constraints, and ���WDM stands for models that are
ruled out by warm dark matter constraints.

(See figure 4.) This is similar to the original freeze-in scenario of Hall et al. [22]. For
D > 4.5, most of the dark sector energy density is produced soon after the reheating. In
this case, the predicted dark matter relic density does depend on TR. However, in practice
this dependence is weak, due to the low powers in the exponent for TR compared to the
dependence on the mass gap, as will be shown later in this section.

The Boltzmann equation (3.5), with energy transfer rates calculated within the ‘un-
particle’ approach, is valid as long as TSM > Mgap (required for the validity of the collision
term) and TD > mDM (required for radiation-like Hubble term). As the universe expands
and cools, both conditions may become invalid, requiring modifications to the Boltzmann
equation. For TD < mDM, we simply replace 4H → 3H in the Hubble term, since at these
temperatures the dark sector is populated by non-relativistic dark matter particles. For
Mgap > TSM > mDM, we consider dark matter production in the “hadronic phase”. The
corresponding collision term is calculated within the low-energy effective theory discussed
in section 2.2. Note that production in the hadronic phase only occurs if the SM particles
interacting with the CFT are light (electrons or photons); in all other cases, the relevant
SM particles drop out of the thermal bath at TSM > Mgap and all production is in the CFT
regime. Moreover, we find that for all portal interactions considered here, dark matter
production in the hadronic phase is subdominant to production in the CFT regime, with
the exception of a small region in the parameter space of the lepton-portal model.

We note that in the COFI scenario, it is possible that at some time in the cosmological
history TSM > Mgap > TD . In this regime, the thermal bath of the dark sector is described
by particle-like bound-state excitations. However, the energy transfer from the SM to
the dark sector can still be described within the unparticle approach, since the energy
transferred in a single collision is above Mgap. This is analogous to using the parton model
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Figure 5. Dark matter relic density contours (red) and observational/theoretical constraints, in
the Higgs portal model, with a scalar mediator (left) and a vector mediator (right). The solid red
line indicates parameters where the observed dark matter abundance is reproduced.

to calculate (inclusive) rates of hadron production at the LHC, even though no quark-gluon
plasma is produced.

With the low-temperature modifications outlined above, eq. (3.5) remains valid to
present day. Integrating this equation, with energy transfer rates evaluated separately
for each portal, provides predictions for current dark matter relic density which can be
compared with the observed value, Ωh2 = 0.1. These predictions will be discussed in the
rest of this section.

3.2 Higgs portal: OSM = H†H

There are multiple mechanisms of SM → dark sector energy transfer in the H†H portal
model. For TSM between the reheating temperature (TR) and the weak scale, the leading
mechanism is the scattering process HH → CFT. After the electroweak phase transition,
one Higgs in the interaction term can be replaced with its VEV and dark energy density
will be produced through Higgs decay. Additionally, there is production from quark and
gluon fusion through a Higgs portal. Quark fusion continues until the quarks fall out of the
thermal bath. Other contributing processes include heavy quark to light quark + CFT decay
and pion annihilation below ΛQCD . These are subdominant due to phase space factors and
can be neglected. It can be shown that the Higgs decay process is the dominant production
mechanism, provided that production is IR dominated with D < 4.5 (or equivalently the
CFT operator dimension d < d∗ = 2.5).

An analytic approximation for the relic density can be obtained by considering only the
dominant mode of production: Higgs decay. The collision term in the Boltzmann equation
is given by,

ΓE(SM→ CFT) = nh〈Γ(h→ CFT)E〉 =
fdλ

2
CFTv

2m
2(d−1)
H T

Λ2d−4
CFT

K2(mH/T ), (3.8)
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where fd = 2−2dπ1/2−2dΓ(d+ 1/2)/(Γ(d− 1)Γ(2d)), v is the Higgs VEV, mH is the Higgs
boson mass and K2(x) is the modified Bessel function of the second kind.

Using eqs. (3.8) and (3.5), the current relic density of dark matter can be calculated.
This yields

ΩDMh
2

0.1 =
[
mDM

1 MeV

] 
(
Af3

d g
−9/2
∗

)1/4

10−5



(
Mgap
mh

)(6− 3d
2 )

10−12

 . (3.9)

Here, g∗ ≡ g∗(mH) is the effective number of SM degrees of freedom when TSM = mH and
A is a model-dependent constant that represents the number of degrees of freedom of the
dark sector as ρCFT ≡ Am4

DM . We have used the mass gap formula from table 1 to convert
the interaction coupling dependence to mass gap dependence as,

Mgap =
(
λCFT

Λd−2
CFT

v2
) 1

4−d

.

The ratios in each bracket are O(1) for 1 < d < 2.5 and A ∼ O(1). Thus, we expect
a mass-gap for the Higgs portal model at the MeV scale. For details of this calculation,
see appendix A.1. This result is in good agreement with the numerical integration of the
Boltzmann equation.

The dark matter mass mDM and the dimension d of the CFT operator that produce
the correct observed relic density are shown in figure 5. Since the dark sector is mostly
populated through Higgs decays which occur at temperatures below the weak scale, the
relic density is independent of the reheating temperature or any other UV-scale parameters.
Figure 5 also shows phenomenological and theoretical constraints on the model, which
will be discussed in detail in section 4. We observe that the model produces a viable DM
candidate with masses mDM ∼ 0.1 − 1MeV. In these figures, we have fixed the value of
r = mDM/Mgap (see section 2.2 for the discussion of this parameter). The ratio r is tightly
constrained by the combination of bounds from large-scale structure (warm dark matter)
and dark matter self-interactions. Given these bounds, r can only be varied by a factor of
at most a few relative to the values shown. Such variation does not have a strong effect on
the predicted dark matter mass range.

3.3 Quark & lepton portals: OSM = HQ†q, HL†`R

Above the weak scale, energy transfer from the SM to the dark sector occurs via scattering
processes Hff̄ → CFT and Hf → f + CFT, where f refers to quarks or leptons depending
on the SM operator used. The energy transfer rate in these channels peaks at high
temperatures, introducing dependence on the reheat temperature TR. Below the weak
scale, OSM is matched onto a dimension-3 bilinear fermion operator. The dominant process
contributing to production of CFT energy density is fermion annihilation ff̄ → CFT. We
find that for TR <∼ few TeV, production below the weak scale is dominant and the resulting
DM relic density is independent of TR. For D < 4.5⇒ d < 1.5, the energy transfer through
fermion annihilation peaks at low temperatures, while for d > 1.5, temperatures of order
the weak scale dominate.
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Figure 6. Dark matter relic density contours (red) and observational/theoretical constraints, in
the quark portal model with minimal flavor violation couplings, with a scalar (vector) mediator on
the left (right).
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Figure 7. Dark matter relic density contours (red) and observational/theoretical constraints, in the
quark portal model with democratic couplings, with a scalar (vector) mediator on the left (right).

For the quark portal, conformal freeze-in continues until T = ΛQCD or T = Mgap,
whichever happens first. For the lepton portal, it continues until T = me or T = Mgap.
Again, we assume that there are dark pions that form the dark matter relic density we
observe today, that are a factor r ∼ 0.01 (with scalar mediator) or r ∼ 0.001 (with vector
mediator) lighter than the mass gap induced by the Standard Model deformation. The
dark sector energy density redshifts as radiation until TD hits mDM = mχ, and redshifts as
matter afterwards, until today.
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Notably, in the lepton portal, it is possible for the SM temperature at which TD hits
mDM to be higher than the stopping temperature. In the short period when the universe
cools from the former temperature to the latter, the DM energy density is produced in
the CFT phase, but hadronizes quickly to matter and redshifts as matter. Additionally, in
parts of the parameter space of the lepton portal, production can also be dominated by
hadronic processes, where most of the energy density is produced below T = Mgap through
the processes involving the IR composite states. This is the case for the grey shaded regions
in figure 9. See appendix A.2 for details of thermally averaged hadronic cross-sections and
production rates.

As discussed in section 3, we consider three scenarios for flavor structure of the
quark/lepton portal couplings: Minimal Flavor Violation, Democratic, and First-Generation
Only. The three scenarios give different mass gap scales for which the correct relic abundance
is produced.

The energy density (ρCFT) produced through the dominant process of fermionic scatter-
ing scales as follows for each structure:

• First Generation Only: ρCFT ∼Mpl

(
m4−d

α2v2m1

)2

T 4 (v2d−3 − T 2d−3) (3.10)

• Democratic: ρCFT ∼Mpl

(
m4−d

α2v2∑
imi

)2

T 4 (v2d−3 − T 2d−3) (3.11)

• Minimal Flavor Violation: ρCFT ∼Mpl m
2
j

(
m4−d

α2v2∑
im

2
i

)2

T 4 (v2d−3 − T 2d−3)

(3.12)

where ΛSM ≡ α v and mi stands for the relevant fermion masses. At the end of the
freeze-in process for each interacting fermion, T = Max[mi, Mgap] for the lepton portal and
T = Max[mi, ΛQCD, Mgap] for the quark portal. Each of these contributions is summed
and appropriately redshifted to obtain the relic density. See appendix A.1 for the relic
density equations for each flavor structure and portal.

Of the three scenarios, the MFV model is the least constrained, due to suppressed
couplings to the first generation of fermions. In the quark portal, the First-Generation
Only scheme is ruled out by supernova cooling constraints from SN1987A data (for both
scalar and vector mediators). The other four models are viable and the plots are shown in
figures 6 and 7.

In the lepton portal, the mass of the DM candidate with correct relic abundance tends
to be lower than in other models, and the bound on dark matter free-streaming length
from the Lyman-α forest data [23] plays a major role in constraining the models. This
is illustrated in figures 8 and 9. The viability of COFI dark matter in this case depends
on the details of the model: for example, MFV and democratic models with a scalar
mediator predict mDM >∼ 10 keV and are consistent with observations, while in other cases
mDM ∼ 1 keV and the models are ruled out.
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Figure 8. Dark matter relic density contours (red) and observational/theoretical constraints, in
the lepton portal model with minimal flavor violation couplings, with a scalar (vector) mediator on
the left (right).
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Figure 9. Dark matter relic density contours (red) and observational/theoretical constraints, in
the lepton portal model with only the first generation of leptons on the left and all generations of
leptons on the right, with a scalar mediator.

In summary, we find six models with allowed parameter space that reproduces the relic
density: quark portal with MFV or democratic coupling (both scalar and vector mediators),
and the scalar mediator lepton portal with MFV or democratic couplings.

3.4 Gluon portal: OSM = GµνGµν

The dominant mode of populating the dark sector is through gluon annihilation, gg → CFT.
Additionally, there are subdominant processes of production, through loop-induced quark
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Figure 10. Dark matter relic density contours (red) and observational/theoretical constraints, in
the gluon portal model, with a scalar (vector) mediator on the left (right).
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Figure 11. Dark matter mass that produces the observed relic density, as a function of the reheating
temperature, for various values of d, for the gluon (left) and hypercharge (right) portals.

annihilation. The dark sector energy density produced via gluon annihilation scales as,

ρCFT ∼Mpl

(
m4−d

16π2 α4v4

)2

T 4 (T 2d−1
R − T 2d−1) (3.13)

As in the quark portal, production continues until T = ΛQCD or TD = Mgap, whichever
happens first. The constraints on the model parameter space are shown in figure 10. For
analytic estimates of the relic density, see appendix A.1.

Since the operator GµνGµν is of dimension dSM = 4, and the CFT operator dimension
d ≥ 1 by unitarity, the dark sector energy density is always dominated by the production at
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Figure 12. Dark matter relic density contours (red) and observational/theoretical constraints, in
the hypercharge portal model, with a scalar (vector) mediator on the left (right).

the highest available temperature, i.e. the reheating temperature TR (see section 3.1). The
predictions of these models thus depend on an additional parameter, TR, making it less
predictive. However, in practice, the dependence of the predicted dark matter candidate
mass on TR is rather weak. As shown in the derivation in appendix A.1, the relic density of
dark matter today scales as

Ωh2 ∝ (Mgap)7− 3
2d (TR)

3
4 (2d−1) . (3.14)

For relic density fixed to the observed value, the dependence of the inferred mass gap on
TR is given by

∂ logMgap
∂ log TR

=
(3

8

( 2d− 1
3d− 14

))
. (3.15)

The logarithmic derivative is small throughout the range of d considered here. The
relationship between the dark matter mass and the reheating temperature is shown in
figure 11, for various values of the CFT operator dimension d.

3.5 Electroweak boson portal: OSM = W µνWµν , B
µνBµν

Since the phenomenology of both the weak SU(2)L (OSM = WµνWµν) and the hypercharge
(OSM = BµνBµν) portals are similar, we consider only the case of OSM = BµνBµν to
illustrate the salient features of the electroweak boson portal. The dominant production
process is that of vector boson annihilation, with the initial dynamical degrees of freedom
being hypercharge gauge bosons above the electroweak phase transition (EWPT) and
photons below EWPT. Subdominant processes include Z boson decay below the weak scale,
and fermion annihilation through the electroweak portal. Photon annihilation continues
till TSM ∼ Mgap, and the dark matter redshifts as matter below TD ∼ mDM . Photon
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Figure 13. Left panel: effective energy scale of the SM-CFT interaction in the MFV lepton portal
with a scalar mediator. Right panel: effective dimensionless strength of the SM-CFT coupling for
the same portal, for SM collision energies of order 100GeV.

annihilation to CFT states produces dark sector energy density that scales similarly to the
gluon portal model;

ρCFT ∝Mpl (1− sin2 θw)
(

m4−d

16π2 α4v4

)2

T 4 (T 2d−1
R − T 2d−1) (3.16)

where θw is the Weinberg angle. For analytic estimates of the relic density, see appendix A.1.
The viable parameter space and constraints on this model are shown in figure 12. The

value of r is 0.1 and 0.01 respectively for scalar and vector mediators. As in the gluon
portal, the interaction term dimension D is always > 5 and production is dominant at
the reheating temperature TR, making the relic density dependent on an extra parameter.
Due to the similarities with the gluon portal, where vector boson annihilation in the UV
determines the relic density, equations (3.14) and (3.15) apply in this case as well. Figure 11
demonstrates this scaling.

4 Dark matter phenomenology and constraints

The interactions of the COFI dark matter candidate with the Standard Model particles
are extremely weak. The effective energy scale suppressing the SM-CFT interaction is well
above the weak scale

Λ = (λCFT)−
1

D−4 · ΛCFT ∼ 1010 − 1015 GeV, (4.1)

leading to tiny couplings of the DM particles to SM at energies of order the weak scale
and below. This is illustrated in figure 13, in the case of the lepton portal in the MFV
flavor scheme; other portals produce similar results. As a result, no relevant constraints
arise from direct, indirect, and collider searches for DM. However, there are important
phenomenological constraints on the model from dark matter self-interaction and large-scale
structure (which are independent of the DM-SM coupling), as well as stellar cooling rates
(where the small coupling is compensated by large amount of SM particles in the stellar
bodies). These constraints will be considered in this section. We will also outline theoretical
constraints on the model parameter space related to naturalness and CFT bootstrap bound.
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4.1 Dark matter self-interaction bound

Observations of galactic clusters, such as the Bullet cluster, place an upper bound on the
cross-section of elastic scattering of non-relativistic DM particles, σSI/mχ . 4500 GeV−3 [13,
14]. One generally expects that the hadronic phase of our dark sector has characteristic
coupling g? ∼ 4π√

N
. If the dark matter is a generic composite state, the elastic scattering

cross-section is of the order
σSI ∼

g4
?

8πM2
gap

. (4.2)

For the values of Mgap that produce the observed DM relic density, N ∼ 104 would be
required for consistency with the observational bound. Such large values of N are possible,
but theoretically unattractive. This leads us to consider an alternative possibility that
g? ∼ 1 but the DM state is not a (or a collection of) generic composite particle(s), but
rather is a derivatively-coupled PNGB. DM elastic scattering is mediated by exchanges of
a scalar or vector resonance with mass of order Mgap. Using the effective theory (2.9), the
cross-section for the case of a scalar mediator is estimated to be

σSI ∼
r6

8πM2
gap

, r = mχ/Mgap (4.3)

while for a vector mediator (using (2.8)),

σSI ∼
r2

8πM2
gap

. (4.4)

Here r = mDM/Mgap � 1 is a model-dependent parameter. If both vector and scalar
mediators are present with similar masses, the vector exchange will dominate. This is the
case in QCD where ρ exchange is the main contribution to pion elastic scattering. However,
for completeness, we consider both scalar and vector mediator-dominated cases in our
phenomenological analysis. We find that in the scalar case, r ∼ 0.01–0.1 is sufficient for
consistency with observational bounds, while in the vector case r <∼ 10−2 is required. See
figure 14 for an illustration of allowed values of r and its effect on the value of mDM that
produces the observed relic density, in one particular model.

4.2 Warm dark matter bound

Since dark matter in COFI models is light as well as relativistic in the early universe, they
can free-stream, leading to suppression of structure/inhomogeneity below a certain length
scale λFS. Observation of the existence of a DM halo of a certain size then puts an upper
bound on λFS, and hence on the mass of DM. Typically, observations of the Lyman-α flux
spectra, which probes DM halos from redshifts of z ∼ (3− 5.5), are used to set such bounds.
Depending on the particular data set used and the systematics of the analysis, the current
bound is [23],5

mDM & (3.5− 5.3) keV. (4.5)
5As discussed above, our DM generically has self-interactions, while the analysis of [23] is based on an

assumption of collisionless DM. The bound for self-interacting dark matter is somewhat weaker [24], but the
difference is not large enough to affect the present discussion.
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Figure 14. r vs. mDM dependence for the lepton portal with the MFV flavor structure, assuming a
scalar mediator.

This bound places a non-trivial constraint on certain COFI models with a lepton portal,
where the DM mass consistent with relic density is in the 1 − 10 keV range. For other
portals, COFI DM candidates are much heavier and this bound is irrelevant.

4.3 Stellar cooling bounds

In this section, we discuss constraints imposed on COFI dark matter models from the
evolution of stars. Dark matter candidates in the keV-MeV mass range can be produced in
collisions of SM states (nucleons and electrons) in stars. In spite of weak DM-SM coupling,
the production can be significant due to large amount of matter in stars. Once a DM state
is produced, the weak coupling may allow it to escape the star without interacting, carrying
away energy. Systems supported by degenerate pressure, e.g. supernovae, have a positive
heat capacity and production of DM results in an extra cooling mechanism. Systems
supported mainly by thermal pressure, such as Main Sequence (MS) stars, have a negative
heat capacity. Energy carried by DM states produced in the core does not necessarily lead
to extra cooling, but still affects the dynamics of the star, changing the time scale for each
stage in its evolution. In either case, existing observations provide constraints on the rate
of extra energy loss, which can be translated into bounds on new physics.

In this work, we consider constraints from the following classes of stars: main Sequence
(MS, e.g. Sun), Red Giant Branch (RGB), Horizontal Branch (HB), and Supernova (SN).6

6It has been pointed out in [25] that white dwarfs (WD) and neutron stars (NS) give either comparable
or weaker bounds and we do not further consider them.
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For the purpose of computing bounds, each system may be characterized by the core
temperature T , mass density ρ (which is dominated by nuclear mass density), electron
number density ne, the degree of electron (and nucleon) degeneracy EF and pF (since the
Fermi energy and momentum are higher than the temperature only when electrons/nucleons
are degenerate), and composition of nuclear matter. From these data and the form of
interaction between new physics state and SM states, one then computes energy loss rate
per mass ε, and compares it to existing bounds. In our estimates, we will adopt the following
benchmark parameters for each class of stars [25]:

• MS: T ≈ 1.3 keV, ρ ≈ 156 g cm−3, ne = 6.3× 1025 cm−3, ε . 0.2 erg g−1 s−1.

electrons not degenerate, nucleons not degenerate.

• HB: T ≈ 10 keV, ρ ≈ 104 g cm−3, ne = 3× 1027 cm−3, ε . 10 erg g−1 s−1

electrons not degenerate, nucleons not degenerate.

• RGB: T ≈ 10 keV, ρ ≈ 106 g cm−3, ne = 3× 1029 cm−3, ε . 10 erg g−1 s−1

electrons degenerate (EF ≈ 144 keV, pF ≈ 409 keV), nucleons not degenerate.

• SN: T ≈ 30 MeV, ρ ≈ 3× 1014 g cm−3, ne = 1.8× 1038 cm−3, ε . 1019 erg g−1 s−1

electrons degenerate (EF ≈ pF ≈ 344 MeV), nucleons nearly degenerate.

The production of DM in stars may occur in one of the two regimes. If energy transferred
from the SM into the dark sector in a single collision is above Mgap, the final state consists of
CFT states and the cross-section can be calculated using the unparticle approach. Following
the collision, the produced dark sector states quickly hadronize and decay, resulting in
multiple DM particles that share the transferred energy. If, on the other hand, energy
transferred from the SM into the dark sector in a single collision is between mDM and Mgap,
the production occurs in the hadronic phase and is estimated using the low-energy effective
theory in the dark sector, see section 2.2. For each COFI portal and class of stars, we start
by determining which of the two regimes is appropriate, and proceed to estimate the DM
production cross-section and the resulting energy loss rate. In cases where the energy loss
argument imposes a relevant bound on the COFI scenario, we also estimated the mean-free
path `MFP of the produced DM particle in the star. If `MFP is smaller than the star radius,
the DM will typically become trapped in the star, depositing its energy back into the stellar
material. In this case, the energy-loss bounds do not apply.

4.3.1 Quark and gluon portals

In this case, dark sector states are produced in stars primarily through Bremsstrahlung in
nucleon collisions. For T < Mgap (MS, HB, RGB), the final state is the hadronic state of
the confined CFT, while for T > Mgap (SN), the process is energetic enough to produce
CFT state directly.
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T < Mgap (MS, HB, RGB). We first consider the case with T < Mgap. The matrix
element for the quark scalar operator in nucleons is given by (see for example [26, 27])

〈N | q̄q |N〉 ≡ fNTq
mN

mq
=: C(N)

q (4.6)

where fNTq is the mass fraction parameter of the quark q. Values of fNTq can be found
in [26, 27]. The matrix element for the gluon scalar operator can be obtained from the
trace anomaly in QCD [26, 27]:

〈N |GaµνGµνa |N〉 = −8
9
π

αs
mN

(
1−

∑
q

fNTq

)
+O(αs) =: C(N)

G . (4.7)

Together with the matching of CFT to its low-energy effective theory described in section 2.2,
this provides the effective theories of nucleon-dark hadron interactions. For quark portal,
we have

L ∼ λCFT

ΛdCFT

HQ†qOCFT → L ∼
(
λCFT vM

d−1
gap√

2g∗ ΛdCFT

)(
fNTq

mN

mq

)
N̄Nφ+ g∗

Mgap
φ (∂χ)2 (4.8)

Below the gap scale, φ can be integrated out, yielding the nucleon-DM coupling:

L ∼ G(q)
Nχ N̄N (∂χ)2 , (4.9)

where

G
(q)
Nχ =

16π2∑
q κqC

(N)
q(∑

q κqmq

)
Λ2

SM
. (4.10)

Here the sums run over quark flavors, and we have used the mass gap formula for the
quark portal.

For gluon portal, the effective theory of nucleon-dark hadron interactions

L∼ λCFT

ΛdCFT

G2
µνOCFT→L∼

(
λCFT M

d−1
gap

g∗ΛdCFT

)(
− π

αs

8
9mN

(
1−
∑
q

fNTq

))
N̄Nφ+ g∗

Mgap
φ(∂χ)2 .

(4.11)
Below mφ ≈Mgap we again integrate out the φ. In addition, since fNTq ∼ 10−2, we neglect
its contribution. Using αs(ΛQCD) ≈ 4π and thereby approximating C(N)

G ≈ −mN/4, we
obtain the nucleon-DM coupling

L ∼ G(g)
Nχ N̄N (∂χ)2 (4.12)

where

G
(g)
Nχ = C

(N)
G

(
16π2

Λ4
SM

)
. (4.13)

Using these effective couplings, energy loss rate due to DM emission can be calculated in anal-
ogy with the well-known calculation for energy loss through standard model neutrinos [28].
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The energy loss rate per unit volume is given by

Quark-Portal: Q(χχ) = Q(ν̄ν)
(
T 2

2G2
F

)  G
(q)
Nχ∑

q C
(N)
q

2
Cχχ
Cν̄ν

Gluon-Portal: Q(χχ) = Q(ν̄ν)
(
T 2

2G2
F

)  G
(g)
Nχ∑

q C
(N)
q

2
Cχχ
Cν̄ν

(4.14)

Here GF is the Fermi constant. Explicit expressions for Q(ν̄ν) (the rate for neutrino-
pair production in the standard model) and the constants Cν̄ν and Cχχ are given in the
appendix B.3, along with the details of the calculation. The energy loss rate per unit mass
(ε) that we compare with the observed bounds is calculated as ε = Q/ρ.

T > Mgap (SN). When T > Mgap such as in SN, the dark-sector states produced in
nucleon collisions are described by a CFT, and the production rate can be calculated
using the unparticle approach.7 It is useful to normalize the energy loss rate using a
simple benchmark model of a light scalar particle φ coupled to nucleons through a Yukawa
interaction ∼ g φ ψ̄NψN . In this case, the energy loss per unit volume Q(φ) is well-known [28];
see appendix B for an analytic formula. The ratio ε(CFT)/ε(φ) can be reliably estimated by
a procedure explained in appendix B. We obtain

ε(CFT) ∼ G2
eff(mNT )d−1

g2
1

(2π)2d−2
dofCFT

dofφ
〈ω〉CFT

〈ω〉φ
Q(φ)
ρ

, (4.15)

where d is the dimension of the CFT operator, while ρ and T are the nucleon mass density
and temperature in the SN core. Note that the dependence on the coupling g in the
benchmark scalar model cancels out since Q(φ) ∝ g2. Here, dofCFT

dofφ denotes the ratio of
the internal degrees of freedom of the final state produced in the CFT and the benchmark
scalar model, while 〈ω〉CFT

〈ω〉φ is the ratio of the average energy carried by the corresponding
final states. Explicit expressions for the effective coupling Geff in quark and gluon portals
are given in the appendix B.3 (see eqs. (B.23) and (B.24)). The factors dofCFT

dofφ and 〈ω〉CFT
〈ω〉φ

can be determined only if CFT is fully specified, but we expect that they will take values
within the range 1 ∼ d. We use 1 in the constraint plots of section 3.

4.3.2 Higgs portal

For Higgs portal, the COFI dark matter candidate has mass of order MeV, and can only be
produced in supernovae. Comparing Mgap in the Higgs portal model to TSN, we learn that
the production is in the CFT regime. Again, the dominant production mechanism for dark
states is Bremsstrahlung in nucleon collisions. The relevant part of the Lagrangian is

L ∼ λCFT v√
2Λd−2

CFT

hOCFT + αs
12πv hG

a
µνG

µνa (4.16)

7See [29] for a more heuristic approach to calculating cosmological and astrophysical bounds with
unparticles.
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where the second term is the top-loop induced coupling between the Higgs and gluon
(see for example e.g. [30, 31]). Integrating out the Higgs and using eq. (4.7) yields the
effective coupling

L ∼ C(N)
G

(
αs

6
√

2π

)(
M4−d

gap
v2m2

h

)
N̄N OCFT . (4.17)

To get this form, we used the mass gap formula for the Higgs portal model. The energy
loss rate in the SN is calculated as in the gluon portal (see appendix B.3) and is given by

ε(CFT) ∼ G2
eff(mNT )d

g2
1

(2π)2d−2
dofCFT

dofφ
〈ω〉CFT

〈ω〉φ
Q(φ)
ρ

(4.18)

where

Geff = C
(N)
G

(
αs

6
√

2π

)(
M4−d

gap
v2m2

h

)
. (4.19)

Numerically, emission from the SN core in the region of the model parameter space relevant
for COFI dark matter is well below the observational bound, so that the Higgs portal
scenario is unconstrained by stellar cooling considerations.

4.3.3 Lepton portal

Dark sector states are produced through their interactions with electrons in the stellar
medium. In all star systems other than the supernova, the electron temperature is below
Mgap, so that the production is in the hadronic phase of the dark sector. The effective
theory of electron-dark hadron interactions has the form

L ∼ λCFT

ΛdCFT

(
HL†`R

)
OCFT →

λCFT vM
d−1
gap√

2g∗ ΛdCFT

(ēe)φ+ g∗
Mgap

φ (∂χ)2 . (4.20)

Integrating out the scalar meson φ yields the electron-DM coupling:

L ∼ 16π2κe
(∑κ`m`) Λ2

SM
(ēe) (∂χ)2 (4.21)

where the sum runs over all charged lepton flavors.
The calculation of the energy loss rate due to DM emission is again similar to the case

of standard model neutrinos [28]. The relevant process in MS and HB stars is Compton
scattering, e−γ → e−χχ. The energy loss rate per unit mass is given by

ε = Q

ρ
∼ 9! 2α

(∑κ`m`)2 Λ4
SM

Ye
mum2

e

T 10. (4.22)

Here, α is the fine-structure constant, Ye is the electron number fraction per baryon and
mu = 1.661× 10−24 g is the atomic mass unit. The calculation of this rate is outlined in
appendix B.1.

In red giants, electrons are degenerate, and Compton scattering receives a strong
suppression by the final state Pauli-blocking effect (see section 3.2 of [28] and footnote 8 in
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appendix B.1). Instead, production by a Bremsstrahlung process e−N → e−Nχχ is more
efficient. The energy loss rate per mass is given by

ε(χχ) ∼ π α2

189

(
Z2

Amu

)(
16π2 κe

(∑κ`m`) Λ2
SM

)2

T 8,

where Z is the charge of nuclei and A is the atomic mass. The calculation of this rate is
outlined in appendix B.2.

In the core of the supernova, temperature is sufficiently high for a thermal population
of positrons to exist. In this case, e+e− annihilation becomes the dominant production
channel. Moreover, since T > Mgap, the produced dark-sector states are described by a
CFT, and their production rate is estimated using the unparticle approach.

The energy loss rate is given by

Q(CFT) ∼ ne−ne+〈σvE〉 , (4.23)

where the energy transfer rate 〈σvE〉 is given by

〈σvE〉 ∼
(
λCFT v√
2 ΛdCFT

)2(4π4 d(d2 − 1)
(2π)2d+1

)
E2d−3
F , (4.24)

where EF ≈ 344MeV is the electron Fermi energy. This is very similar to the expression
that was used in the calculation of relic density produced during freeze-in, with the main
difference being that the typical collision energy is now of order 2EF rather than T . The
positron number density is given by

ne+ = 2
∫

d3p

(2π)3
1

e(E+µe− )/T + 1
≈ e−βµe− × nth (4.25)

with nth being the equilibrium number density at T = TSN with Boltzmann distribution,
and the chemical potential µe− ≈ EF .

Unsurprisingly, the MFV flavor scheme lepton portal models are not constrained by
supernovae due to the suppressed couplings to electrons and positrons. In both the first
generation and democratic flavor schemes however, the dark matter particles end up trapped
in the core of the supernova due to significant interactions with the electrons in the plasma.
Details of SN trapping calculations can be found in appendix B.6. As a result, there is no
relevant constraint from supernovae in any of the viable lepton portal models.

4.3.4 Hypercharge portal

In this model, the dark matter candidate has a mass of order MeV, and only the SN has a
high enough temperature to produce dark-sector states. There are three possible processes
to consider: photon annihilation, e+e− annihilation through a photon loop, and nucleon
Bremsstrahlung. Quantitatively, the photon annihilation turns out to be the most important
channel as explained in appendix B.5. This is due to the loop- and electromagnetic coupling-
suppression for the e+e− annihilation, and phase space- and loop-suppression for the nucleon
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Bremsstrahlung. The energy loss rate per volume from the photon annihilation is given by
(see appendix B.5 for details)

Q(CFT) ∼ n2
γ 〈σvE〉 ∼ n2

γ

(
λCFT cos2 θw

ΛdCFT

)2(16 d2(d2 − 1)(d+ 2)
(2d− 1)(2π)2d+1

)
T 2d−1

SN , (4.26)

where cos θw is the Weinberg angle.

4.4 Naturalness bound

In addition to the observational bounds discussed so far, we consider two constraints on the
model parameter space motivated by theoretical considerations, the naturalness and “CFT
bootstrap” bounds.

The effective coupling of the SM to the dark sector required to reproduce the observed
DM relic density is tiny, O(10−14 − 10−11). The naturalness bound is the requirement that
such a coupling can be obtained in the effective theory without invoking trans-Planckian mass
scales or unexplained small dimensionless parameters. As a concrete example, consider the
UV completion of the CFT in terms of a gauge theory with a BZ fixed point, see section 2.3.
In addition to consistency requirements of the COFI scenario, TR <∼ ΛCFT

<∼ MBZ,
naturalness requires

MBz <∼ MPl, λBZ ∼ 1. (4.27)

In some of the COFI dark matter scenarios, there are parts of the parameter space where
these requirements cannot be satisfied; those regions are shaded in green in the plots of
section 3. However, it is worth keeping in mind that these bounds are model-dependent.
Any amount of tuning, or alternative UV completions, may lead to modifications of the
naturalness bound.

4.5 Numerical CFT bootstrap bound

One of the attractive features of the COFI theories is that the small mass scale in the CFT
sector is generated dynamically. This occurs through a combination of cosmological phase
transitions in the SM sector followed by a slow RG running of the CFT sector, and finally
dimensional transmutation within the CFT sector triggered by the O(1) CFT breaking
effect. Our analysis so far has been based on an assumption that the largest breaking of
the conformal invariance is from the interaction between the SM and the CFT sector and
associated operator mixing effects. In particular, we assumed that the CFT scalar operator
OCFT appearing in the interaction does not show up on its own in the UV Lagrangian. If it
did, it would make the CFT RG run from the onset and may result in a larger value of
Mgap than what we have been taking.

As explained in section 2.2, we may assume a Z2 discrete symmetry in the CFT sector
under which the particular OCFT is odd, hence can not be added to the UV Lagrangian.
However, the CFT may contain another Z2-even scalar operator of dimension < 4, which
may not necessarily couple to the SM but would potentially generate a large Mgap on its
own. Such an operator would generically appear in the OPE of two of OCFT operators. A
useful bound on this indeed does exist in the numerical CFT bootstrap literature [32, 33].
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The idea is that given a scalar operator with scaling dimension d, the numerical CFT
bootstrap provides an upper bound on the dimension of scalar operators that enter the OPE
OCFT ×OCFT . This latter dimension turns out to be ≤ 4 if d . 1.6. We indicate this bound
by a dashed line on the plots of the COFI parameter space in section 3; the parameter
space below the line is potentially problematic. This bound is, however, somewhat model
dependent and can be evaded, for example, by assuming a larger global symmetry, e.g. Z4,
in the CFT sector.

5 Conclusions

In this paper, we have considered a dark sector that is invariant under conformal symmetry,
broken only by a weak coupling to the Standard Model. This coupling leads to breaking of
the conformal invariance in the infrared, at a scale Mgap. Below this scale, the dark sector
is described by a hadronic phase, with the lightest meson (dark pion) playing the role of
dark matter. Within a broad range of model and cosmological parameters, the dark matter
relic density is dominated by the energy transfer from the SM plasma to the dark sector in
the conformal regime. We have labeled this scenario “Conformal Freeze-In” (COFI). We
showed that the COFI scenario provides a viable dark matter candidate, consistent with
all phenomenological constraints, for several choices of the SM portal operator primarily
interacting with the dark sector. We conclude that a conformal dark sector minimally
coupled to the SM can naturally produce the observed dark matter.
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A Details of calculations in cosmology

A.1 Analytical estimates of relic densities

Higgs Portal:
In this section, we show a brief derivation of eq. (3.9), that relates observed dark matter

relic density to parameters in the theory in the Higgs portal. In addition, the computation
for eq. (3.8) is shown in more detail. Using the same procedure, analytical results for relic
density can be computed for all portals considered in this paper, and the results for other
portals are summarised at the end without going into technical details.
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In the Higgs portal case, as mentioned before, below the critical dimension d∗ = 5/2,
dark matter production is dominated by the Higgs decay process. At temperatures below
the electroweak phase transition, the effective interaction between the dark sector and the
SM becomes,

Lint = λCFT

ΛDCFT

v√
2
h OCFT . (A.1)

The energy transfer rate through this process is given by eq. (3.8) and can be computed
as follows:

nh〈 Γ(h→ CFT) E〉 =
∫∫

dΠh dΠCFT fh (2π)4 δ4(ph − P )Eh |M|2. (A.2)

Here and below, P = pCFT is the momentum carried by the dark sector. The phase space
for the CFT sector is chosen to be identical to that of “unparticles” as prescribed by Georgi
in [19]. Using Georgi’s notation, we have,

nh〈 Γ(h→ CFT) E〉

=
∫∫ d3~ph

(2π)32Eh
d4P

(2π)4 e−βEh(2π)4 δ4(ph − P ) Ad (P 2)d−2 Eh
v2

4
λ2

CFT

Λ2d−4
CFT

=
Ad v

2 λ2
CFT

4Λ2d−4
CFT

(m2
h)d−2

∫ d3~ph
2(2π)3 exp(−β

√
|~ph|2 +m2

h), (A.3)

where,

Ad = 16π5/2

(2π)2d
Γ(d+ 1/2)

Γ(d− 1)Γ(2d) . (A.4)

Setting p ≡ |~ph| and simplifying gives

nh〈 Γ(h→ CFT) E〉 =
Ad v

2 λ2
CFT (m2

h)d−2

4Λ2d−4
CFT

∫
4πp2 dp

2(2π)3 exp(−β
√
p2 +m2

h)

=
Ad v

2 λ2
CFT (m2

h)d−2

32π2Λ2d−4
CFT

∫
p2 dp exp(−β

√
p2 +m2

h). (A.5)

This integral represents a Bessel function of the second kind. Additionally, in our notation,
fd = Ad/16π2. Thus, on simplifying, we get,

nh〈Γ(h→ CFT)E〉 =
fd λ

2
CFTv

2m
2(d−1)
h T

Λ2d−4
CFT

K2(mh/T ). (A.6)

The CFT energy density at any point in time (as a function of the Standard Model bath
temperature) can be obtained by integrating the Boltzmann equation given in eq. (3.5). To
get a simple estimate, it suffices to do this calculation in the relativistic approximation where
the Higgs is assumed to be massless and is described by a Maxwell-Boltzmann distribution.
The process roughly starts around the electroweak scale ∼ v and continues till the SM
temperature reaches the Higgs mass.
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In the relativistic approximation (i.e., taking the limit mh → 0 in the thermal average
calculation), the energy transfer rate in this process is given by,

nh〈Γ(h→ CFT)E〉 = 2fd λ2
CFT v

2 m
2d−4
h

Λ2d−4
CFT

T 3. (A.7)

We integrate the Boltzmann equation with this collision term, ignoring the temperature
dependence of g∗ for now, and enforcing the condition that decays are inactive above the
electroweak scale. Thus, we have,

ρCFT(T ) =
2M∗fdλ2

CFT

3
√
g∗(T )v

(
mh

ΛCFT

)2d−4
T 4
(
v3

T 3 − 1
)
, (A.8)

where M∗ = 3
√

5/(2π3/2)Mpl, comes from the definition of Hubble as H = √g∗ T 2/M∗.
At T ∼ mh, as the Higgs falls out of the thermal bath, this process becomes exponentially

suppressed, and further production of dark sector energy can be neglected for this analysis.
The energy density present in the dark sector then redshifts like radiation (ρ ∝ a−4) until
its temperature TD becomes comparable to the mass of the dark matter candidate. After
this point, it redshifts like matter (ρ ∝ a−3) as required.

Thus,

ρCFT(mh) =
2M∗fdλ2

CFT

3
√
g∗(mh)v

m2d
h

Λ2d−4
CFT

(
v3

m3
h

− 1
)
, (A.9)

and

ρCFT(Tm) =
2M∗fdλ2

CFT g∗(Tm)
3(g∗(mh))3/2v

(
mh

ΛCFT

)2d−4
(
v3

m3
h

− 1
)
T 4
m, (A.10)

where Tm is the SM temperature at which the dark sector temperature (TD) drops to the mass
of the dark matter candidate. We also define the CFT energy density at this temperature
as ρCFT ≡ Am4

DM , where A represents a model-dependent measure of the number of degrees
of freedom of the CFT (times a constant = π2/30). Thus, the relic density is given by

ρDM(T0) = Am4
DM

g∗(T0)T 3
0

g∗(Tm)T 3
m

, (A.11)

where T0 is the current CMB temperature. Additionally, from eq. (A.10), Tm is given by,

T 4
m = Am4

DM

[
2M∗fdλ2

CFT g∗(Tm)
3(g∗(mh))3/2v

(
mh

ΛCFT

)2d−4
(
v3

m3
h

− 1
)]−1

(A.12)

Using eq. (A.12) in eq. (A.11) gives the relic density of dark matter from the Higgs portal
in terms of other parameters in the theory.

Note that we use g∗(T0) ∼ g∗(Tm) ∼ O(1). This is a reasonable approximation,
as both temperatures are below the QCD scale. g∗(mh), denoted as just g∗ below, is
approximately O(100). We also replace

(
v3

m3
h
− 1

)
→ O(1) for this order-of-magnitude

estimate. Additionally, we substitute Mgap in the equation instead of λCFT and ΛCFT using
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the mass gap equations. Taking the ratio of ρDM(T0) and the present critical energy density
gives eq. (3.9):

ΩDMh
2

0.1 =
[
mDM

1 MeV

] 
(
Af3

d g
−9/2
∗

)1/4

10−5



(
Mgap
mh

)(6− 3d
2 )

10−12

 . (A.13)

This simple estimate is in good agreement with the results of numerical integration
of eq. (3.5).

Following the same procedure, the relic density can be calculated for each of the other
three portals. These equations are given below, neglecting derivatives of g∗, but keeping all
scales intact.

For the quark and lepton portals, the primary production process is that of fermion
annihilation below the weak scale, where the Higgs is replaced by its VEV. The thermal
averaging process can be repeated for 2→ CFT processes as,

n1n2〈σ(f1f2 → CFT)vrelE〉 = g2
f

λ2
CFT

Λ2d
CFT

4d(d2 − 1)
(2π)2d+1 v2 T 2d+3 (A.14)

where gf is the number of degrees of freedom of the fermion (considered massless in
this limit).

Integrating the Boltzmann equation, we get,

ρCFT(T ) = g2
f

λ2
CFT

Λ2d
CFT

4d(d2 − 1)
(2d− 3)(2π)2d+1 T

4(T 2d−3
w − T 2d−3) (A.15)

where Tw is the weak scale temperature.
For the gluon and electroweak portals, the results are similar, since the dominant

process is that of vector boson scattering. However, the SM operator is dimension 4, and
Tw is replaced by TR since production starts right away after reheating, and these portals
depend on the UV scale of reheating. Thus, in the gluon and electroweak portals, we have,

ρCFT(T ) = g2
V

λ2
CFT

Λ2d
CFT

d2(d2 − 1)(d+ 2)
(2d− 1)(2π)2d+1 T 4(T 2d−1

R − T 2d−1) (A.16)

Following the same procedure as described by eqs. (A.9)–(A.13), we get the following
equations for relic densities in other portals.

Quark Portal:

1. First Generation Only:

ρDM(T0) =mDMM
6−3d/2
gap A1/4T 3

0

[
M∗

α4v4(mu+md)2
16d(d2−1)

(2d−3)(2π)2d+1 (v2d−3−Λ2d−3
QCD)

]3/4

2. Democratic:

ρDM(T0) = mDMM
6−3d/2
gap A1/4T 3

0

[
M∗

α4v4m2
top

16 d(d2 − 1)
(2d− 3)(2π)2d+1 (v2d−3 − Λ2d−3

QCD)
]3/4
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3. Minimal Flavor Violation:

ρDM(T0) = mDMM
6−3d/2
gap A1/4T 3

0

[
M∗m

2
b

α4v4m4
top

16 d(d2 − 1)
(2d− 3)(2π)2d+1 (v2d−3 −m2d−3

b )
]3/4

Note that in the MFV flavor structure, due to the dependence of the coupling on
the fermion mass, the heaviest fermion in the thermal bath below the weak scale
contributes more to production than the other flavors. This would be the bottom
quark in the quark portal.

Lepton Portal:

1. First Generation Only:

ρDM(T0) = mDMM
6−3d/2
gap A1/4T 3

0

[
M∗

α4v4m2
e

16 d(d2 − 1)
(2d− 3)(2π)2d+1 (v2d−3 −m2d−3

e )
]3/4

2. Democratic:

ρDM(T0) = mDMM
6−3d/2
gap A1/4T 3

0

[
M∗

α4v4m2
τ

16 d(d2 − 1)
(2d− 3)(2π)2d+1 (v2d−3 −m2d−3

e )
]3/4

3. Minimal Flavor Violation:

ρDM(T0) = mDMM
6−3d/2
gap A1/4T 3

0

[
M∗

α4v4m2
τ

16 d(d2 − 1)
(2d− 3)(2π)2d+1 (v2d−3 −m2d−3

τ )
]3/4

Just as in the quark portal, in the lepton MFV case, the τ -lepton contributes most to
the dark matter energy density.

Gluon Portal:

ρDM(T0) = mDMM
6−3d/2
gap A1/4T 3

0

[
M∗

256π4α8v8
36 d2(d2 − 1)(d+ 2)

(2d− 1)(2π)2d+1 T 2d−1
R

]3/4

Hypercharge Portal:

ρDM(T0) = mDMM
6−3d/2
gap A1/4T 3

0

[
M∗ cos4 θw
256π4α8v8

16 d2(d2 − 1)(d+ 2)
(2d− 1)(2π)2d+1 T 2d−1

R

]3/4

As in the Higgs portal case examined previously in this appendix, these analytical
estimates are in good agreement (with DM mass within an order of magnitude) with the
numerically integrated results shown in figures 5, 6, 7, 8, 9, 10, and 12. Further, the DM
mass dependence on reheating temperature as shown in figures 11 and eq. (3.14) can be
shown using these relic density estimates.
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A.2 Estimates for hadronic production

While the exact nature of IR physics in COFI models depends on the details of confinement
and the hadronic spectrum, we can still calculate the thermally averaged cross-sections in
this regime up to O(1) factors, assuming a simple model as described in section 2.2.2. In
this section, we show an example calculation for the lepton portal in the democratic flavor
scheme, since hadronic production dominates in parts of the parameter space that produces
the observed DM relic density in this model. This is one of very few COFI models with
this property, and adding the hadronic contribution is important in this case.

As explained earlier, we model the confined/hadronic regime as containing a cosmologi-
cally stable pseudo-Nambu-Goldstone Boson, χ, which acts as dark matter and a mediator
with mass ∼ Mgap. Note that OCFT is a scalar, and operator matching ensures that the
scalar mediator has the dominant coupling to the SM sector. Thus we ignore any contri-
butions from the vector mediator (if it exists). Using eqs. (2.9) and (2.11) the SM-DM
interaction can be written as,

L ∼ λCFT

Λd+dSM−4
CFT

Md−1
gap
g?
OSM φ+ g?

Mgap
φ (∂χ)2 , (A.17)

where φ is the scalar mediator, χ is the DM, and g? is the coupling (= 4π/
√
N in large-N

theories).
Since the hadronic processes are only relevant below the confinement scale, the mediator

with mass ∼Mgap can be integrated out and we get,

L ∼ λCFT

Λd+dSM−4
CFT

Md−4
gap OSM (∂χ)2 . (A.18)

In the lepton portal with democratic flavor scheme, using the relation between the coupling
and gap-scale, this simplifies to,8

L ∼ 1
α2v2mtot

ēe (∂χ)2 , (A.19)

where mtot = me + mµ + mτ is the sum of masses of all the leptons running in the loop
that generates the deformation of the CFT. Since these hadronic processes occur at very
low energies (T < Mgap), we only need to consider electrons as the other leptons are no
longer in the bath. The Higgs is also replaced by its VEV below the weak scale.

The energy transfer rate is then given by,

n2
e 〈σ(e+(p1) e−(p2)→ χ(p3)χ(p4)) E 〉

=
∫∫∫∫

dΠe1 dΠe2 dΠχ1 dΠχ2 fe1 fe2 (2π)4 δ4(Σp) (E1 + E2) |M|2

=
∏
i

∫
d3pi

(2π)3Ei
e−βE1 e−βE2 (2π)4δ4(Σp)

( 1
α2v2mtot

)2
(E1 + E2) (p3.p4)2 (p1.p2)

=
( 1
α2v2mtot

)2∏
i

∫
d3pi

(2π)3Ei
e−β(E1+E2) (2π)4δ4(Σp) (E1 + E2) (p1.p2)3, (A.20)

where Σp = p1 + p2 − p3 − p4, and in the last line, the particles involved are approximated
to be relativistic/massless.

8Recall that the dominant deformation that leads to confinement and generation of a mass gap in the
lepton portal is from radiative mixing with the Higgs operator.
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Figure 15. Feynman diagram for Compton scattering in the lepton portal.

Computing the phase space integrals and using the delta function as usual, one gets,

n2
e 〈σ(e+(p1) e−(p2)→ χ(p3)χ(p4)) E 〉 =

( 1
α2 v2mtot

)2 3240
π8 T 13. (A.21)

This ‘collision term’ can be plugged into the Boltzmann equation and integrated to get
the energy density of dark matter states (χ) produced in the hadronic phase:

ρDM(T ) = M∗√
g(T )

( 1
α2 v2mtot

)2 3240
π8

T 4

5 (M5
gap − T 5), (A.22)

where dark matter is assumed to redshift as radiation, and M∗ is as defined in the previous
subsection. The interaction term in the Lagrangian is very irrelevant, and the power of
temperature in this expression is high, as one might expect. Thus, this process is dominant
at the temperature it starts, and we can use (M5

gap − T 5)→M5
gap for calculating the final

contribution of the hadronic production process. Additionally, we dropped terms of O(me),
since me < Mgap.

For most COFI models, hadronic production is very negligible. It is only relevant in
lepton portal models with significant couplings to electrons since only electrons are light
enough to persist in the thermal bath at such low temperatures (unlike QCD states and
Higgs bosons). The same argument could be used in the case of the hypercharge portal,
since photons are always present in the SM plasma; however, the CFT-phase energy density
production in this case is proportional to positive powers of the reheating temperature
which easily overwhelms the hadronic production that is proportional to powers of Mgap.
Thus, regions of parameter space with non-negligible hadronic production exist only in
IR-dominated regime (d < 1.5) in the first-generation and democratic flavor schemes in the
lepton portal model.

B Derivation of energy loss rates

B.1 Compton scattering in MS and HB

In [28], the production of a neutrino (ν̄ν) pair from the Compton scattering of non-relativistic
and non-degenerate electrons is studied and the rate is9

σ(ν̄ν) ∼ α

8π2G
2
Fm

4
e

(
ω

me

)4
, (B.1)

9If electrons are degenerate, the rate is suppressed by a factor

Fdeg ∼
3EFT

p2
F

.

However, Compton scattering is important only in MS and HB starts in which electrons are not degenerate.
Also, throughout the calculation, we use the criterion that if the photon plasma mass ωp is less than 3T

then we can neglect the plasma mass effects. For more details, see [28].

– 35 –



J
H
E
P
0
2
(
2
0
2
3
)
2
2
1

e e

N N

φ

χ

χ

e e

e e
NN

N

φ

χ

χ

N

φ

χ

χ

π γ
γ

Figure 16. Feynman diagrams for relevant Bremsstrahlung processes.

where ω is the energy carried by the ν̄ν pair, which is roughly ω ∼ T (up to O(1)). Using
this result and the effective theory eq. (4.21), the cross-section for the production of χχ-pair
is estimated to be

σ(χχ) ∼ 2π2α

(∑κ`m`)2 Λ4
SM
m4
e

(
ω

me

)6
. (B.2)

For non-relativistic and non-degenerate electrons, they are almost at rest, and the energy
loss rate per unit volume Q can be approximated as

Q ∼ ne
∫

2 d
3kγ

(2π)3
ω σ(χχ)
eω/T − 1

, (B.3)

where kγ is the photon momentum and the factor 2 is for the two photon polarization
degrees of freedom. The computation proceeds by writing

σ(χχ) = σ∗

(
ω

me

)p
, σ∗ ≡

2π2α

(∑κ`m`)2 Λ4
SM
m4
e (B.4)

and p = 6 for our case. Explicit computation given in [28] shows that

Q ∼ (p+ 3)!ζ(p+ 4)
π2

σ∗neT
p+4

mp
e

(B.5)

where ζ(n) is the Riemann zeta function. We can further use ne = Ye
ρ
mu

(where Ye is the
electron number fraction per baryon and mu = 1.661× 10−24 g is the atomic mass unit) to
finally get the energy loss rate per mass ε:

ε = Q

ρ
∼ 9!2α

(∑κ`m`)2 Λ4
SM

Ye
mum2

e

T 10. (B.6)

Here, we used the expression for σ∗ and p = 6.

B.2 Bremsstrahlung from an electron in RGB

The expression for ε for the production of a ν̄ν pair from a degenerate electron line is given
in [28] and is (with CV ≈ CA = 1 and F+ = 1, F− = 0 and assuming a single species of
nuclei of charge Z and atomic mass A)

ε(ν̄ν) ≈ 2πα2

189

(
Z2

Amu

)
G2
FT

6. (B.7)
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One reasonable estimation of the rate for the case of χχ production can be made by
comparing the effective coupling between the two cases. The matching condition is

GF√
2
→ 16π2ω

(∑κ`m`) Λ2
SM

(B.8)

where we have included one factor of ω to make up the right dimension. That ω, rather than
EF , is the right factor even in the degenerate situation, is understood as follows. Unlike
in e−e+ annihilation where the final state energy is of the order EF , in Bremsstrahlung,
the final states carry only ω ∼ T because of final state Pauli-blocking for the electron:
essentially, while the electron has energy ∼ EF , the amount of energy change by the
momentum transfer, i.e. displacement in the Fermi surface with radius EF , is limited to
∼ T . In the end, we get

ε(χχ) ∼ πα2

189

(
Z2

Amu

)(
16π2

(∑κ`m`) Λ2
SM

)2

T 8. (B.9)

We emphasize that our estimation is at the level of O(1) or even an order of magnitude,
due to non-trivial combinatoric factors and precise values for ω/T and so on, that our
computation does not take into account.

B.3 Bremsstrahlung from a nucleon

This process is most relevant for quark-, gluon-, and Higgs-portal. For the part of parameter
space relevant for the relic density, the production is in the form of hadrons of confined
CFT in MS, HB, and RGB, while in SN, the final state is CFT state.

Hadronic final state: MS, HB, RGB. We first derive rates for the case when the
final states are hadrons of confined CFT. The strategy is the same as before. We take
the expressions obtained for ν̄ν production and estimate for the χχ production by making
necessary modifications. In section 4 of [28], Q(ν̄ν) is shown to be

Q(ν̄ν) =

∑q C
(N)
q GF√
2

2
nB

20π4

∫ ∞
0

dω ω6 Sσ(−ω) (B.10)

where in the non-degenerate (for nucleons) limit

Sσ(ω) = Γσ
ω2 s(ω/T )×

1 for ω > 0
eω/T for ω < 0

Γσ = 4
√
πα2

πnBT
1/2m

−5/2
N (B.11)

s(x) ≈
√

1 + |x|π/4

απ = m2
N

πm2
π

≈ 15.

The convention is that ω < 0 corresponds to the energy taken away from the medium and
nB = np+nn is the nucleon number density. It may be worth clarifying that the factor C(N)

q
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comes from the matching of quark-neutrino four fermion interaction to nucleon-neutrino
four Fermi interaction. Hence, C(N)

q appearing here is literally the same as the one in the
effective theory eq. (4.9). Performing the integration, Raffelt showed that

Q(ν̄ν) ≈ 2048
385π7/2

(∑
q

C(N)
q

)2

G2
F α

2
π

n2
B

m
5/2
N

T 11/2. (B.12)

The rate for χχ production can be obtained from this by (i) matching the effective coupling
and (ii) taking into account difference in the integration. For quark- and gluon-portal, the
matching of coupling becomes

Quark-Portal:

∑q C
(N)
q GF√
2

2

↔

 16π2∑
q κqC

(N)
q(∑

q κqmq

)
Λ2

SM

2 (
ω

2

)2
(B.13)

Gluon-Portal:

∑q C
(N)
q GF√
2

2

↔
(
C

(N)
G

16π2

Λ4
SM

)2 (
ω

2

)2
(B.14)

where ω ∼ T and the form factors C(N)
q and C

(N)
G are defined in eq. (4.6) and (4.7),

respectively.
Next, in the case of ν̄ν production, the integration in the expression of Q(ν̄ν) is∫ ∞

0
dω e−ω/T ω4 s(−ω/T ) ≡ Cν̄νT 5 (B.15)

In the case of χχ production, on the other hand, it is given by (other than the ω-independent
part of effective coupling factors for which we have already shown the matching)

1
4

∫ ∞
0

dω e−ω/T ω6 s(−ω/T ) ≡ CχχT 5
(
T

2

)2
. (B.16)

Identifying (T/2)2 = (ω/2)2 in the matching of the coupling, we see that a slightly more
accurate ratio of the ε’s requires a factor of Cχχ/Cν̄ν . More explicitly, we get

Quark-Portal: Q(χχ) = Q(ν̄ν)

 16π2
∑

q
κqC

(N)
q(∑

q
κqmq

)
Λ2

SM

2 (
T
2

)2

(∑
q
C

(N)
q GF√
2

)2
Cχχ
Cν̄ν

(B.17)

Gluon-Portal: Q(χχ) = Q(ν̄ν)

(
C

(N)
G

16π2

Λ4
SM

)2 (
T
2

)2

(∑
q
C

(N)
q GF√
2

)2
Cχχ
Cν̄ν

(B.18)

where Q(ν̄ν) is given in eq. (B.12). We make two comments. First, since both ν̄ν and χχ
productions involve two particles, the phase space factor for the two cases are the same. The
internal degrees of freedom, however, can differ. In addition, while the neutrino production
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is predominantly via axial coupling [28], the production of χχ pair is likely to be from a
vector coupling. We do not think the latter two factors will generate more than an order of
magnitude effect. It would be interesting to carry out improved stellar cooling computations
for COFI, which we leave for future investigations.

CFT final state: SN. Our strategy is based on the fact that the ratio ε(CFT)/ε(φ), the
energy loss rate for COFI to that of real scalars, can be estimated to a reasonable accuracy.
To this end, (i) we need to compare the effective couplings, (ii) use powers of (mNT ) to
make up the correct dimensions, and (iii) powers of (2π) to take into account difference in
phase space. In addition, one can improve the estimation by including (iv) ratio of internal
degrees of freedom of the energy carrying final states and (v) ratio of thermal averaged
energy 〈ω〉 of the new physics states. Regarding point (ii), we recall that nucleons are
non-relativistic, implying p2 ≈ 2mNT , and this in turn means that the characteristic size of
the energy transfer is ω ∼

√
mNT . Next, the correct factors of (2π) for the phase space: for

each extra particle we have 1
(2π)3 × (2π) = 1

(2π)2 where the first factor is the naive one from
the phase space integral measure and the second factor of (2π) is the result of extra angular
integration. This seemingly naive argument works even for the case of CFT final state. In
this case, we recall that the phase space associated with a dimension d CFT operator can
be thought of as d massless particles, and so we can estimate the phase space factor as
∼ 1

(2π)3d × (2π)d−1 = 1
(2π)2d+1 , again the first factor for d number of naive phase space factor

and the second factor for (d− 1) extra angular integration. The final answer indeed agrees
with explicit computations once we adopt the Georgi’s choice for the unparticle phase space
density. To summarize, below we will estimate the ratio ε(CFT)/ε(φ) using

ε(CFT)
ε(φ) = Q(CFT)

Q(φ) ∼
G2

eff(mNT )r
g2

1
(2π)2d−2

dofCFT

dofφ
〈ω〉CFT

〈ω〉φ
(B.19)

where the exponent r depends on the model and g is the Yukawa coupling, ∼ gφψ̄NψN .
Before we show our results, it is instructive to present the known cases, confirming the
validity of our analysis scheme. To this end, let us compute the ratio ε(ν̄ν)/εa, i.e. the ratio
of rate of neutrino-pair production to that of axions. Without including the ratio of 〈ω〉’s it
is given by

ε(ν̄ν)
εa

=

(∑
q C

(N)
q GF

)2
(mNT )2

g2
a

1
(2π)2

(3× 2× 2
1

)
= 3
π2

(∑
q C

(N)
q GF

)2
(mNT )2

g2
a

(B.20)
where 3, 2, 2 are respectively family, spin, and SU(2)L-doublet degrees of freedom of neutrino.
The same ratio can also be computed using explicit expressions for ε(ν̄ν) and εa (eqs. (4.8),
(4.10), (4.23), and (4.24) in [28]) and the outcome is about twice larger than our estimation.
This factor of two, however, can also be explained since 〈ων̄ν〉/〈ωa〉 is numerically about 2.

We now present our results. First of all, Q(φ) for a degenerate nucleon medium is given
by (eq. (4.13) in [28])

Q(φ) = g2α2
π

4π
44
153

(
T

mN

)4
p5
F Gφ(mπ/pF ) (B.21)
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Figure 17. Feynman diagrams for relevant annihilation processes in the lepton and hypercharge
portals, in the CFT phase (T > Mgap).

where απ is defined in eq. (B.11) and numerically Gφ(mπ/pf ) ≈ 0.8. Also, since nucleons
are borderline degenerate in SN, we can use pF ≈ mNT (which in a sense we have been
using so far already). We can now use eq. (B.19) with the effective couplings

Higgs-Portal: Geff = C
(N)
G

(
αs

6
√

2π

)(
M4−d

gap
v2m2

h

)
(B.22)

Quark-Portal: Geff =
∑
q

κqC
(N)
q

16π2M4−d
gap(∑

q κqmq

)
Λ2

SM
(B.23)

Gluon-Portal: Geff = C
(N)
G

16π2M4−d
gap

Λ4
SM

(B.24)

and r = d− 1 for all cases since the mass dimension of Geff is 1− d for all three cases. The
factors dofCFT

dofφ and 〈ω〉CFT
〈ω〉φ depend on the details of the CFT and on a general grounds they

are expected to be within 1 ∼ d.

B.4 Electron-positron annihilation

The process of interest is the annihilation of e−e+ to a CFT final state and this is relevant
for the lepton-portal and hypercharge-portal models in the SN. In lepton-portal it is via
tree-level coupling, and for the hypercharge-portal it is a one-loop generated coupling.

Lepton-portal. From the Lagrangian

L ∼ λCFTv√
2ΛdCFT

ēeOCFT (B.25)

we can estimate the energy transfer rate in the exactly the same way we do for the freeze-in
calculation

〈σvE〉 ∼
(
λCFTv√
2ΛdCFT

)2(4π4d(d2 − 1)
(2π)2d+1

)
E2d−3
F , (B.26)

where EF ≈ 344MeV is the electron Fermi energy. From this we get the energy loss rate
per volume

Q(CFT) ∼ ne−ne+〈σvE〉 (B.27)

and hence ε by ε = Q/ρ. For the number density of electrons in SN, we use ne− ≈
1.8× 1038 cm−3, while for the positrons, we note that the process e−e+ ↔ γγ imposes the
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relationship among chemical potentials, µe+ = −µe− and we know µe− ≈ 344 MeV. Using
this, the number density for the positron can be shown to be

ne+ = 2
∫

d3p

(2π)3
1

e(E+µe− )/T + 1
≈ e−βµe− × nth (B.28)

with nth being the equilibrium number density at T = TSN (= 1/β) with Boltzmann
distribution. We see that the positron number density is suppressed compared to the
thermal density by the factor e−βµe− .

Hypercharge-portal. The computation goes through the exact same steps as in the
lepton-portal. To this end, we first derive an effective action by computing the loop-diagram
shown in figure 17. The result is estimated to be

L ∼
(
λCFT

ΛdCFT

)(
2e2me

π2 log
(ΛSM
EF

))
ēeOCFT (B.29)

The appearance of the log is due to the massless particle (i.e. photon) running in the loop,
and we used the external momentum to be EF appropriate for the degenerate electrons
in the SN core. To get the energy loss rate per mass, we now simply need to replace the
effective coupling in the lepton-portal computation:

λCFTv√
2ΛdCFT

→
(
λCFT

ΛdCFT

)(
2e2me

π2 log
(ΛSM
EF

))
. (B.30)

B.5 Photon annihilation

This process is relevant for the hypercharge portal at the core of SN. The photon number
density is that of a thermal Boltzmann distribution,

nγ ≈
2 ζ(3)
π2 T 3

SN (B.31)

and since the plasma frequency ωp ∼ 19 MeV is less than 3TSN ∼ (60 – 80) MeV, we ignore
plasma mass effects. The energy loss rate per volume is estimated to be

Q(CFT) ∼ n2
γ〈σvE〉 ∼ n2

γ

(
λCFT cos2 θw

ΛdCFT

)2(16 d2(d2 − 1)(d+ 2)
(2d− 1)(2π)2d+1

)
T 2d−1

SN . (B.32)

This process is the dominant process for supernova cooling in hypercharge-portal. To
illustrate this, we compute the ratio

Q(e−e+ → CFT)
Q(γγ → CFT) ∼ e

−EF /TSN

(
EF
TSN

)2d ( me

TSN

)2
8α log

(
ΛSM
EF

)
cos2 θw

� 1. (B.33)

Numerically, for ΛSM = 1TeV, the above ratio is . 10−2 for 1 ≤ d ≤ 3.
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Figure 18. Production of CFT state via e−e+-annihilation in SN followed by a hadronization into
composite dark matter (χ) plus Z2-even final states (denoted as X) in lepton portal model.

B.6 Trapping in supernovae

In this section, we describe how to estimate the cross-section required to evaluate the
trapping of hadronic states of the confined CFT at the core of SN. For concreteness sake,
we focus on the lepton-portal case, where trapping is important. (See [34] for discussion of
supernova constraints on dark sectors.)

Let us first discuss production of a pair of dark matter states χ near the core of the
supernova. We assume that the CFT is described by a large-N gauge theory. When such
a theory confines in the IR, we can use large-N analysis which we follow. Schematically,
when Mgap < TSN, an annihilation of e−e+ produces directly the state associated with OCFT

which can be thought of as the “partonic” state of a confining CFT. Once these “partonic”
CFT states are produced, they will go through the hadronization process, somewhat similar
to the QCD jets. The situation is shown schematically in figure 18. Some of the hadronic
states then can travel out of the supernova, resulting in an extra mechanism for its cooling.
Assuming O(1) fraction of energy is transferred to the dark matter state χ (which is
consistent with our freeze-in calculations), we can make a rough estimation as follows. Here,
we assume that the dark matter χ is a goldstone boson created by a current operator Jµ
of a broken global symmetry. We are interested in the rate for OCFT to result in a pair of
Jµ’s which in turn “hadronizes” into the dark matter χ and other hadronic states. This
information will be used below to estimate the cross-section responsible for trapping in SN.
The rate for OCFT to turn into a pair of Jµ’s is encoded in the OPE (Operator Product
Expansion) coefficient

JµJµ ∼ cOCFT + · · · , (B.34)

where c is the OPE coefficient which carries a scaling dimension of 6− d (recall that the
conserved current has dimension 3 and acquires no anomalous dimensions). In addition, the
probability for a current Jµ to produce a single χ can be summarized in an interpolation
relation of the form (in large-N limit)

Jµ ∼
1
g?
Mgap∂µχ (B.35)

where the factor of g? ∼ 4π√
N

is inserted to be consistent with large-N behavior

〈JJ〉 ∼ N

16π2 ∼
1
g2
?

. (B.36)
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Figure 19. Diagram relevant for trapping in SN, and the assumption of factorization.

The other factors are fixed by dimensional analysis and the fact that χ is a goldstone boson
associated with a broken current Jµ.

The matrix element for the pair production diagram in figure 18 is then estimated to be

M∼
(
v

λd

)
· 1
c
·
(
Mgappµ
g?

)2
· (ūu) (B.37)

We wish to determine g?-dependence of the OPE coefficient c which is needed to figure out
correct g?-counting for the rates. While there is no fully rigorous and systematic means
to answer this question, “matching” between the above estimation and the fully-hadronic
picture may be used to get a reasonable assessment. To this end, we first note that at
leading order in 1/N -expansion the hadronic cubic interaction vertex is Γ3 ∼ g?. This is
understood by noting that

〈OCFTJJ〉 ∼
N

16π2 ∼
1
g2
?

, OCFT ∼
Md−1

gap
g?

φ (B.38)

where φ is a scalar meson interpolated by OCFT with mass of the order Mgap. Using these
together with eq. (B.35), we get,

〈OCFTJJ〉 ∼
1
g2
?

∼
(
Md−1

gap
g?

)(
Mgap
g?

)2
· Γ3 → Γ3 ∼ g?. (B.39)

With this information at hand, the matching to the fully-hadronic picture gives

M∼
(
v

Λd
)
·
(
Md−1

gap
g?

)
· 1
M2

gap

(
Mgappµ
g?

)2
· Γ3 · (ūu) . (B.40)

Comparing this to eq. (B.37) finally shows that

c ∼Md−6
gap g0

?. (B.41)

With these preparations, we now discuss trapping. Again, with a simplifying assumption
that most of the CFT energy is processed to the DM state χ, the relevant picture is: we
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have DM particles produced in the core of SN and we are interested in the cross-section
of χ + e− → χ + e− + X, where X denotes any other collectively Z2-even states in the
final state. To the extent that the leading contribution comes from χ+ e− → χ+ e−,10 a
reasonable estimate is possible assuming the factorization shown in figure 19. From the
discussions given above about the OPE, the lower part of the diagram is given by

〈χ2|OCFT |χ1〉 ∼
1
c
〈χ2|JµJµ|χ1〉 ∼

Md−4
gap
ĉ g2

?

pχ1 · pχ2 (B.42)

where we have introduced a dimensionless quantity ĉ defined by c = ĉM6−d
gap . The full

matrix element is then computed to be

M∼
(

λv

Λd
√

2

)(
Md−4

gap
ĉ g2

?

pχ1 · pχ2

)
ū(k1)u(k2) (B.43)

with k1,2 being the four-momentum of the incoming and outgoing electrons, respectively.
The cross-section can finally be estimated and one gets,

σ ∼ 1
8πγ ĉ g4

?

E4
F

(∑` κ`m` α2v2)2 (B.44)

where EF is the electron Fermi energy and γ, defined by Eχ = γ EF , encodes the fraction
of energy carried by the DM χ upon CFT-hadronization. v is the VEV of the Higgs and α
is defined by ΛSM = α 4πv. Also, we used the formula for the Mgap given in section 2. The
mean free path is obtained from

λχ = 1
neσ

(B.45)

and we use the optical depth criterion∫ Rc

r0

dr

λχ
&

2
3 ⇒ 3

2
0.1Rc
λχ

& 1 (trapped) (B.46)

to assess the possibility of the trapping. To get the final expression, we used r0 ≈ 0.9Rc
and Rc ≈ 13 km is the radius of the core [34].

In the lepton portal, models of both first generation and democratic flavor schemes
have trapping cross-sections many orders of magnitude above the optical depth criterion,
and the dark matter particles produced are completely trapped. Thus, there is no relevant
supernova constraint.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.

10A simple argument based on phase space suppression seems to support this assumption, although
multiplicity of the diagrams and any unknown non-perturbative physics could in principle invalidate the
claim. Here, we simply assume, which is certainly enough for the stellar cooling bound, that at least O(1)
contribution comes from the simple 2→ 2 process.
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