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Ramond-Ramond sector, which can be encoded as an orthosymplectic spinor (encoding
the complex of super p-forms in conventional superspace). Its covariant field strength
bispinor itself appears as a piece of the supervielbein. We provide a concise discussion
of the superspace Bianchi identities through dimension two and show how to recover the
component supersymmetry transformations of type II DFT. In addition, we show how the
democratic formulation of type II superspace may be recovered by gauge-fixing.
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1 Introduction

The massless sector of the bosonic string can be described in a duality-covariant way in
the language of double field theory (DFT) [1-6]. In this approach, the metric, Kalb-
Ramond field, and dilaton are encoded in a generalized metric that transforms under
generalized diffeomorphisms, which encompass standard diffeomorphisms and abelian B-
field transformations. The generalized metric nominally depends on twice the usual number
of coordinates: the additional coordinates can be understood as dual to winding modes
of strings. Different duality frames correspond to different solutions of a section condition
that determines which coordinates are the physical ones.

For type II superstrings, the above constituents describe only the massless part of
the NS-NS sector. An additional (bosonic) sector, the massless Ramond-Ramond sector,
involves a complex of p-form field strengths that describe either the IIA or IIB superstring
depending on whether p is even or odd. Finally, the massless R-NS sectors involve the
gravitini and dilatini. Since the ITA and IIB superstrings are related by (spacelike) T-
duality, their complete massless sectors ought to also be described within the framework
of double field theory. Indeed, this was shown by Hohm, Kwak, and Zwiebach for the
Ramond-Ramond sector [7, 8], and by Jeon, Lee, Park, and Suh for the Ramond-Ramond
and fermionic sectors as well [9, 10].!

The two approaches [7, 8] and [9, 10] are fascinating in how complementary they are
in their treatment of the Ramond-Ramond sector. Hohm, Kwak, and Zwiebach employ
the metric formulation of double field theory and encode the Ramond-Ramond sector in a
spinor of O(D, D). Since spinors of O(D, D) encode p-form complexes of GL(D), this is a
very natural assignment and it is inspired by earlier approaches involving torus compacti-
fications [13, 14]. No mention is made of the generalized vielbein of DFT since there is no
need for it: as a purely bosonic formulation, one can make do with the generalized metric.

In contrast, the supersymmetric approach of Jeon, Lee, Park, and Suh includes
the gravitini and dilatini and fully analyzes their supersymmetry transformations. The
Ramond-Ramond sector is described not as a spinor of O(D, D) but as a bispinor of
O(D —1,1) x O(1,D — 1); in common parlance, it possesses “flat” rather than “curved”
spinor indices, and this in turn bears relation to early work by Hassan [15, 16]. All of
this is quite natural from the perspective of the supersymmetry transformations, of course,
because the complex of Ramond-Ramond p-forms appears there as a flattened bispinor.
(A closely related discussion was given in the context of generalized geometry [17, 18],
which is equivalent to double field theory when the section condition is explicitly solved.)
Very recently, we have discussed in some detail the connection between the spinor and
bispinor formulations of the Ramond-Ramond sector [19], and this permits one to connect
the results of [7, 8] and [9, 10] without any gauge-fixing.

The goal of the present paper is to explore type II double field theory in superspace,
where supersymmetry is geometrized along with the duality symmetry, in a way that allows
us to directly make contact with [7, 8] and [9, 10]. In fact, one of Siegel’s early papers

!The generalized metric and Ramond-Ramond sector also emerge as the lowest two levels in the O(10, 10)
decomposition of E11 [11, 12]. We will return to this point in the conclusion.



on what we now call type I double field theory couched it in a superspace setting [2]. We
revisited Siegel’s work recently [20]. Let us briefly highlight some of the crucial features of
this superspace approach:

1. The type I supervielbein is an element of the orthosymplectic group OSp(10,10|32),
which is a straightforward supersymmetrization of O(10,10). However, the local
tangent space group is not just O(9,1)r x O(1,9)r. Nor is it the largest natural
sub-supergroup, which would be OSp(9,1|32);, x O(1,9)g. Rather, the left tangent
space symmetry is extended from O(9, 1), to a proper subgroup Hy, € OSp(9,1|32)y.
(Actually, it is only the connected part, including SO™(9,1), because we fix the
chirality of supersymmetry.) The Lie algebra of this group was explored and it was
shown how it is precisely what is needed to eliminate from the type I supervielbein
all but the physical fields.

2. In order for a local connection to exist to define the torsion tensor, the local symmetry
group Hy, must be extended to a new group H, (with the additional generators leaving
the supervielbein inert). Notably, the bosonic truncation of this suggested that the
right-handed sector O(1,9) z should also be extended to a new group O(1,9) . For ex-
ample, a new local symmetry appears at dimension 1 that gauges the shift symmetry
of the irreducible hook representation of the Lorentz connection. A new connection
is then introduced for this local symmetry, new symmetries must be gauged, and so
on, leading to a (presumably) infinite hierarchy of additional local gauge symmetries
and associated (composite) connections of increasing engineering dimension.

3. The extended group ﬁL is dual to the super-Maxwell,, algebra recently explored
in [21, 22]. Using the Polacek-Siegel framework for gauge symmetries in double field
theory [23] (see also appendix B of [20] for a detailed discussion), this lets one nat-
urally define the torsion and curvature tensors that either vanish or involve only
physical components (i.e. the generalized Ricci tensor and scalar in the Riemann
tensor). After solving the superspace Bianchi identities, the covariant torsion and
curvature tensors lead to the correct supersymmetry transformations of supersym-
metric type I DFT [24, 25]. In addition, it appears possible there may exist higher
curvatures beyond dimension two, although this point has yet to be explored.

The above results each have clear extensions to type II double field theory, and the first
part of this paper will address this. There is past work on type II DFT in superspace by
Hatsuda, Kamimura, and Siegel [26, 27] and by Cederwall [28], elements of which inspire
the work here. In the former approach, only the double Lorentz group is employed and
a number of torsion constraints are imposed on the supervielbein. This appears to be in
contradiction with our results, where the additional connections in H I X H g are crucial for
constraining the torsion tensors. Presumably the results in [26, 27] could be recoverable
after further constraining our supervielbein (either by hand or by gauge choice); but as
we will see, the extra gauge symmetries are crucial for building invariant torsions and
curvatures and for making sense of the truncations to component DFT and conventional
type II superspace. The work by Cederwall (who also gauged the double Lorentz group)



introduced a key idea: just as the Ramond-Ramond p-forms of GL(D) lift to super p-
forms of GL(D|s) in conventional type II superspace (for D = 10 and s = 32), Ramond-
Ramond spinors of O(D, D) ought to lift to spinors of OSp(D, D|2s). Understanding this
prescription in detail and how the Ramond-Ramond sector is simultaneously observed in
the DFT supervielbein (as argued in [26-28]) is one of our main results.

The paper is arranged as follows. Section 2 provides a concise discussion of the su-
perspace structure of type II DFT from the perspective of the supervielbein, extended
connections, torsion constraints, and Bianchi identities. Much of this is directly analogous
to the type I situation. We give a complete solution to the Bianchi identities, specifying
torsions and curvatures through dimension two. The new ingredient, the Ramond-Ramond
orthosymplectic spinor, will be introduced in section 3 where we discuss both curved and
flat spinors and the constraints on the Ramond-Ramond spinor field strength. The physi-
cal component fields and their supersymmetry transformations will be derived in section 4,
recovering the results [10] of Jeon et al. Then in section 5, we will explain how conventional
type II superspace can be recovered in a democratic way, encompassing not only IIA and
IIB but also their variants ITA* and IIB*, which arise by timelike T-duality [29]. We offer
some concluding comments and speculate on extensions and open problems in section 6.
Finally, there are two appendices. The first addresses our 10D spinor conventions, while
the second is a technical discussion about decomposing the DFT supervielbein.

2 Supergeometry of double field theory

2.1 Elements of OSp(D, D|2s) and the supervielbein

In analogy to conventional O(D, D) double field theory, let us introduce OSp(D, D|2s)
double field theory with 2D bosonic coordinates and 2s fermionic ones. This approach was
essentially pioneered by Siegel [2], who addressed what we now call type I and heterotic
double field theory, and reintroduced by Hatsuda, Kamimura, and Siegel [26, 27] and
Cederwall [28]. Our previous work [20] addressed type I DFT (D = 10, s = 16) and here
we will be concerned with type IT (D = 10, s = 32). The details are essentially the same so
we will be brief. The supercoordinates are collectively denoted z™. Superdiffeomorphisms
have an OSp(D, D|2s) x R structure, and act on a supervector W™ of weight w as

LEWM = VoM — WA (9 eM — oMen (—1)"™) +woneN WM (-1 (2.1)

where the factor (—1)™™ is a grading, denoting —1 if both A/ and M are fermionic and +1
otherwise. Indices M can be raised or lowered with the canonical orthosymplectic element
n of OSp(D, D|2s), with the usual NW-SE convention, i.e.

WM =MV W =WV (2.2)

The metric 7 itself is graded symmetric, nyyn = nyam(—1)"". Because of the grading,
Ny is not quite the inverse of n”™V: instead, one finds ”MPnpy = § M (—1)"". Closure
of the algebra of superdiffeomorphisms is ensured by the section condition

P Noy @ 0 =0. (2.3)



Under the GL(D|s) € OSp(D, D|2s) subgroup, the coordinates and derivatives decom-
pose as

om = (6M,5M) , M= (EM,zM), M= (zM,ZM(—)m) . (24)

omz" = dm - aMZN = 5MN, 5MZN = 5NM(—)nm . (2.5)

The OSp(D, D|2s) metric is

N 0 My _ 0 Sy
YN = <5MN(—)m" 0 > MmN = <5MN(—)m” 0 ) : (2.6)

The section condition becomes OM ® 83y = 0 and we solve it by taking 9™ = 0 to recover
a conventional GL(D|s) superspace described by coordinates z™. This coordinate further
decomposes into D bosonic coordinates and s fermionic ones, zM = (2™, 0%). A similar
statement applies to its dual winding coordinate, Zy; = (im,éﬂ). We have denoted the
fermionic index with a hat for later convenience: in type Il superspace, there are two
copies of the fermions and we can further decompose 67 = (9#, 61).

The supervielbein is naturally taken as a weighted element of OSp(D, D|2s) x RT. As
in the bosonic case, it is more convenient to split the supervielbein into an OSp(D, D|2s)
element, which we denote V, and a separate scalar density, the superdilaton ®, which

we take to have weight 1. These transform respectively as

oV = EN oVt + (O = PV em (-1 ), (2.7a)
6@ = Non® 4+ oneN @ (—1)" . (2.7b)

The condition that the supervielbein is a group element amounts to
VM = MV (1) (2.8)

The supervielbein admits a conventional level decomposition, with the OSp(D, D|2s)
generator Tn decomposed into the GL(D|s) generator Ty at level 0 and nilpotent gen-

TMN

erators Ty and at levels 1. Exponentiating each of these gives three independent

matrix factors which can be combined in the conventional way?

1B\ (E 0 10
et = (05 (3 ) < (53): o

B =Byn(-)", E=Ey?, ET=FgM-1)omte §=g48

In this expansion, Ej;? is an invertible supermatrix that can be identified as the superviel-

SAB

bein, By is the Kalb-Ramond super-two-form, and is an additional scalar superfield,

which will turn out to contain the dilatino and Ramond-Ramond bispinor, as we will discuss

2The field S was denoted C' in the context of type I DFT [20] and is typically denoted /3 in bosonic DFT.



shortly. Let us presume the section condition to be trivially satisfied with 9™ = 0. Then
under generalized diffeomorphisms (2.7) with Exq = (€7, €M), these fields transform as

0BynN = 28[]\/[5]\7] + fPapBMN + 26[M|§PBP|N} , (2.10a)
5EMA = gNaNEMA + 3M£NENA , (2.10Db)
6848 — My, 848 (2.10c)

This decomposition of the supervielbein is the simplest means of identifying the various
type II superfields present, although it is not completely correct: not every orthosymplec-
tic element (or O(D, D) element for that matter) can be put in this form. The above
decomposition really applies to a specific connected component, and this is related to the
topology of the supergroup in ways we will discuss in due course. A key point to mention
is that the topology of a supergroup is determined by its bosonic part, which in the case
of OSp(D, D|2s) is O(D, D) x Sp(2s,R). Since the symplectic groups are connected, the
topology of the orthosymplectic group is determined by the split orthogonal group, and
this decomposes into four pieces O#) (D, D) with & = +1 and 8 = +1 depending on
whether there is an orientation reversal in either factor in the maximal compact subgroup
O(D) x O(D). This has been discussed at length in [19], building off a discussion in [9, 10],
and we will discuss in section 5 how to generalize it.>

The superdilaton meanwhile transforms as a scalar density

60 = NoND® + OnEN @ (—1)" (2.11)

and one can define the conventional dilaton superfield ¢ by factoring out the superdeter-
minant of Ej4,

e 2% = & x sdet Byt . (2.12)

2d

Recalling that the conventional dilaton is given in component DFT by e 2% = ¢=2¢ x

det e,,*, one can see that e—24 differs from ® by a factor of sdet EMA/ det e,,*.

2.2 The local tangent space group of the supervielbein: H; x Hp

The DFT supervielbein Va# is acted on by a local symmetry group, whose infinitesimal
form is

NVt = VBt (2.13)

for some parameter obeying A4 = —A AB(—)“b. This cannot be a generic element of
OSp(D, D|2s), as then the entire DFT supervielbein could be gauged away. The simplest
possibility, advocated by Hatsuda, Kamimura, and Siegel [26, 27] and Cederwall [28], is
for the local symmetry group to simply be the double Lorentz group. Recall that in the

bosonic case, the local tangent space symmetry group is O(D —1,1) x O(1, D — 1) and can

3 A slightly different parametrization will be used in section 4 for component DFT, but we will show how
to relate them.



be defined as a subgroup of O(D, D) that also leaves invariant not just 7,; but also a flat
metric H,;; these are given by

0 5ab Nab 0
L o , 2.14
nab <5ab 0 > ’ Hab ( 0 nab) ( )

Then for the bosonic double vielbein, decomposed as in (2.9), one can gauge S to zero,
leaving behind the diagonal Lorentz subgroup to be the local symmetry group of the
vielbein e,,*. However, in the superspace framework, this is unsatisfactory because it
leaves unphysical components behind in the supervielbein, specifically in whatever is left
unfixed in S4B,

Here is a good opportunity to elaborate on the tangent space vector indices A. In the
bosonic theory, a double vector W@ can be decomposed either toroidally as W& = (we, Wa),
or chirally as W% = (W2 W?); these are related by

_ 1

Wa
V2

(Wt g®Wy),  Wo= — (W — W) . (2.15)

Sl

In the chiral decomposition, 7,; and H; are given by*

Tab 0 Mab 0
Mah = v My = Ty = ~Tab = ~Tab - (2.16)
ab ( 0 ab) ab ( 0 — ab) ab a a

In the superspace case, one naturally assigns the fermionic components of A to be spinors
of one or the other Lorentz groups. For type I DFT, they carried spinor indices « of the
left Lorentz group. For type II, there will be both left and right spinor indices,  and @.
It will occasionally be useful to group all left indices together. Then the unbarred capital
Roman indices A = (a,«) transform only under the left Lorentz group and the barred
capital Roman indices A = (&, @) transform only under the right, and we write

W-A = (WA? WK) = (Wav Wa: Wav W§7 WE? Wa) y

WA = (WA WA) = (W, W, —W,, WE W, —Wa), (2.17)
and
Tab 0 0 0 0 0
0 0 6°0 0 0
nag 0 0 —6% 0|0 0 0
NAB = = ,
0 m5p 0 0 0 ing O 07
0 0 0|0 0 &°
0 0 0[]0 5% 0

“In our type I DFT paper [20], we took the opposite sign for 7. The advantage of the choice made
here is that all formulae for the right sector follow from the left sector merely by barring expressions.



" 0 00 0 0
0 0 6% 0 0 0
A (UAB 2}3) Y U (lb 00 (2.18)
0 n 0 0 0l 0 0
0 0 00 0 &%
0 0 0|0 =57 0

A natural proposal for the tangent space group might seem to be extend the bosonic
case by introducing a flat supermetric H 45. This is not really the right approach. An
easy way to see this is that in conventional superspace, the supervielbein Ejp;4 is the
fundamental geometric object and there is no natural notion of an invertible supermetric.
The closest analogue is Gyn = FEa®En’nqp; however, (i) this is not invertible, and (ii)
does not involve the gravitino one-form Fj;¢ and so it doesn’t completely encode the
relevant physics. Within double field theory, one could address at least the first issue by
constructing an invertible H 45 by adding a sign to the right-handed sector of 745; this
mirrors the bosonic situation (2.16) and then one could build projectors (545 £ H.A")
onto the left and right-handed sectors. However, the relevant local symmetry group is not
the group leaving invariant n and #H: this group, OSp(D — 1,1|s)r x OSp(1, D — 1|s)g, is
too large.

Instead, we argued in [20] that the original proposal of Siegel [2], inspired by the
Hamiltonian description of the superstring worldsheet, was more sensible. Let’s review
Siegel’s proposal for type I DFT. There the spinors are valued in the left Lorentz group
and this group is extended with the parameters A subject to the conditions

1
A" =0, A= Zxﬂ‘b(%b)aﬂ . (2.19)

with A8, \,P, and A\.® unconstrained except for the symmetry conditions A% = )\B«
and A*® = —\P2. The second condition above amounts to the requirement that fermionic
orthosymplectic indices transform as spinors under the SO(9, 1) subgroup of OSp(9, 1/32).
In addition, as we showed in [20], it is natural to include an additional constraint on the
fermionic parameter \,°,

(’Ya)aﬁ)\aﬁ =0 (2.20)

which eliminates its spin-1/2 part. The upshot is that we have three local symmetries,
generated by A\aP, \o?, and A*2. This group, which we denoted Hy, is a subgroup (for type
I) of OSp(9,1|32). It is also precisely the right group to eliminate the unphysical parts of
the tensor S48 of the supervielbein (2.9). For type I, this tensor consists of S%, S and
S8 and the A parameters allow one to eliminate all but the spin-1/2 part of S — this
is the dilatino.

For type IT DFT, the obvious proposal is to require the local symmetry group of the
supervielbein to be Hy, x Hr where Hp is just a copy of Hy. For type II DFT, the tensor



S4B now consists of

gaB Saﬁ S@
S g8
Sab

We can eliminate S%, the spin-3 /2 pieces of S and S“B, and S and 5@ The remaining
spin-1/2 pieces of S and S will become the two dilatini, and S** must become the
Ramond-Ramond polyform field strength, written as a bispinor. This identifies all the
physical fields from a superspace perspective.

2.3 Generalized fluxes and torsion and extending H; x Hp

To see how we recover the physical spectrum of type II DFT, we will analyze the possible
constraints on the torsion tensor. The analysis will be extremely similar to the type I
analysis [20], so we will not go into exhaustive detail.

The generalized fluxes F4pc and F 4 are given by

Fasc = —=3D VM Ve, Fa=Dalog®+ o VM=) . (2.21)

These are the only scalars (under diffeomorphisms) that can be built purely from the su-
pervielbein involving a single derivative, and can be alternatively defined as the generalized
Lie derivative of the supervielbein and superdilaton with respect to the supervielbein,

]LVAVBM = —FusVeM, Ly, ®=Fu® . (2.22)
The flattened derivatives D 4 := VMO here obey
[Da,Dp] = —FagDe,  DADa=-FADy . (2.23)

These flux tensors in turn obey the following Bianchi identities:

4 DiaFpep) = —3F s Felep) » (2.24a)
2D Fp = —FasFe — D Feas, (2.24b)

1 1
DAFp = — 5 FAFa— 5 F % Fepa . (2.24c)

We give the various components of the flux tensors in table 1, organized by engineering
dimension. We use hatted indices @ = (a,a) and & = («, @) to denote both left and
right-handed vector and spinorial indices collectively.

The basic definition of engineering dimension is to assign dimensions 1/2, 1, and 3/2
to Dga, Dga, and DY, respectively, and identically for Opy O, and O". In this way, for
example, V," has vanishing engineering dimension. This rule implies that a flux F4zc has
dimension —2+ A(A) + A(B) + A(C) where A(A) denotes the dimension of D 4, consistent
with (2.23).5 Similarly, 4 has dimension A(A).

The factor of —2 arises because the flux Faz® has dimension A(A) + A(B) — A(C) and then lowering
the C index with n exchanges A(C) with 2 — A(C).



dimension | fluxes
-3 Fapy = Taps
0 Fape = Tape
3 Faber ]:a,éﬁv Fa
1 Fabe faéﬁ’ Fa
R
2 FaP
5 FOBY

Table 1. Generalized fluxes in type II super-DFT.

The fluxes themselves are not invariant under the local symmetry group Hy x Hg.
This group leaves the superdilaton invariant and acts on the supervielbein and fluxes as

VM = 2PV M . Fupe = —3Da5c) + 3)\[AD~7:D|BC} . 0FA=—DBXga—FBrga .
(2.25)

In order to build invariant torsions, we introduce the Hj; x Hg connection Q45c =
(uBc, Q ,5o) with non-vanishing components

Qabe , Qup’ = iQAbc ("7, Qab”, 047,
Qape Q5 = iﬂAa ()5, Q57 Q47 (2.26)
The invariant torsions are then given by
Tase == =3V V" Ve = Fasc +3 Qs (2.27)
Ta = Valog®+DpuVa™ = Fa+ Q.. (2.28)

These are the covariantizations of the generalized fluxes (2.21) and can be defined as
the covariant generalized Lie derivatives of the supervielbein and superdilaton, similarly
to (2.22). Note that the dimension -1/2 and dimension 0 torsion tensors coincide with the
fluxes, because the € connections are dimension +1/2 and higher. (We assign dimension
to © so that the torsion and flux dimensions match.)

A conventional H;, x Hg connection would transform as

? a
0Qm a8 = LeQaas + Omdas — QmaAes + Qusiea(—)? . (2.29)

However, Q) is actually going to transform a bit differently and this is related to an en-
hancement of the local symmetry group. This comes about for two reasons: (i) certain
components of €} are absent in the torsion, implying an enhanced symmetry that shifts
these components; and (ii) the supersymmetry constraints we wish to impose on the tor-
sion require modifications of the €2 transformations. The upshot is that the local symmetry

~10 -



group is enhanced from Hy x Hp to ﬁL X ﬁR, but only the subgroup Hy x Hg actually
acts on the supervielbein.

In our previous work on type I DFT [20], we defined the group ﬁL by relating it
to the so-called super-Maxwell,, algebra, using the framework of Poldcek and Siegel [23]
where one doubles not just spacetime but also the local gauge symmetries (e.g. the Lorentz
group). For a detailed discussion of this framework, see appendix B of [20]. In the interests
of being pedagogical, we will first sketch here why such an extended group is necessary by
reviewing how constraints, both physical and conventional, may be imposed on the torsion.

Let us begin with an observation. All components of torsions and curvatures are
covariant objects. However, the only covariant objects in type II double field theory, at
least at the component level, are found at dimension 3/2 and dimension 2: these are the
generalized gravitino curvature and the generalized Riemann tensor, and they are built out
of derivatives of the physical fields (e.g. double vielbein, gravitini, dilatini, dilaton) that lie
at lower dimensions. This means that in order to recover component double field theory, all
components of torsions and curvatures through dimension 1 must vanish. Let us describe
how this comes about by analyzing the constraints we can impose on the various torsion
tensors.

Using the various components of the spin connection €2, it is possible to impose con-
straints on the torsion tensor:

fixing Qape = Tabe =Tabe =Tap’ =0, Ta=0, (2.30)
. 1 5 1 ,
fixing Q41,7 = T’ = ﬁ?fa,g(%) T, Ta = TOXEB(’Yb) v,
_ 1
T = Exaﬂ(%)ﬁw’ (2.31)
fixing 04" = TP =T =T =9 (2.32)

and similarly for their barred versions. Because €2 41,7 is y-traceless, only certain represen-
tations may be eliminated.

The remaining torsion tensors may be organized by dimension. At dimensions -1/2
and dimension 0, no ) connections appear and so the torsion tensors can be identified with
the flux tensors:

T,

aBy = 0, %Bc =k ('VC)aﬁ’ T@a =k ('76)@7 ,Taﬁé = 7:156 = JaBc = 0. (2'33)
The constant k fixes the normalization of supersymmetry and is imaginary for a Majorana
representation of the v-matrices. We leave it unspecified, because then we can more easily
compare against results in other papers with different conventions. Finally, we fix T4 to
vanish: this defines ® as the superdilaton uniquely. We summarize the various torsion
tensors and constraints imposed in table 2.

In using the € connections to eliminate various torsion tensors, it happens that the
putative transformation rule (2.29) receives corrections. This happens for two reasons.
First, the naive action of Hy x Hy would rotate 7;, into 7 B> but this is contradicted by
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dimension | conventional constraints physical constraints remaining torsions
_% — 7; 4y = —
0 - Tape =k (Y)ap  Tape =0 -
Tape=Fk(eas Top.=0
Taﬁe =0
3 Tabe = Tape =0 Ta=0 Tave, To37
1 ahe = Ta=0 - o) Tan”
Tan? = %0 Xdﬂ(%)ﬁv X&A
Ta5" = 10 X505
3 Tan’ =T =0 - TS, TP
ab! = Tlo Xéﬁ(’Yb)w Xap, XaB
T5 = 15 X 05)"”
TaBr = TaB7 =0
2 TP = TP =0 - X, XO5
T = 15X%3(w)"
To5 = 15X ‘“g%ﬁ
% TaBY = — —

Table 2. Conventional and physical constraints on torsion. Conventional constraints arise from
a specific choice of QQqpc. The remaining torsions vanish upon solving the Bianchi identities.
Engineering dimensions follow from the same considerations as for the fluxes.

the former vanishing with the latter non-vanishing (and depending on the constant k). So
there must appear k-dependent corrections to the Hy, x Hp transformations:

2
MQrbe = —2k V' (Yp)apAa” — 9
1

AxQun” = EVp® ((Vb)mx”g — 18(%0)(1’8(76)75)\75) - (2.34Db)

kYt (Ve )ag A (2.34a)

The second complication is that the {2 connections are not uniquely determined by fixing
the torsions. This is well-known in the bosonic sector where there remains unfixed the ir-
reducible hook representation of €2,1.; it turns out similar ambiguities appear in the other
connections. It is natural to associate these ambiguities with additional local gauge symme-
tries, and indeed we must do so, because the algebra of the H;, x Hp transformations only
closes on ) subject to these new transformations [20]. These additional transformations
involve parameters Aa,bﬂ and A®? (which are both y-traceless in bf) and AYBY which is
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symmetric in 8y but with vanishing totally symmetric part:

AQMbe = VM Aajbe — 2VMalApg” (2.35a)
1

A’ = ZVMO“(VCd)aBAucd + VY Aap” + VataA% (2.35b)

AT = V(0P Aca” + 2V AP 4+ Vpgo AT (2.35c¢)

2.4 Interpreting the torsion constraints

Before moving on, we want to address the significance of the remaining torsions — those in
the final column in table 2. We have already alluded to the fact that the Bianchi identities
will tell us that all these torsions vanish. Before getting to that, we should understand just
what these objects correspond to at the component level.

For the dimension 1/2 and dimension 1 torsions, they lead to potential contributions to
the supersymmetry transformations of the vielbein (via Tang), the gravitini (via 7,57, Tan”,
and 7:3[3?) and the dilatini (via &} ;). In principle, there could have been new covariant
fields into which these fields transform; that there are not will turn out to be a consequence
of the Bianchi identities at the superspace level. We emphasize that just because 7 and X
will turn out to vanish does not mean that there are no supersymmetry transformations;
rather, SUSY transformations will arise from the complicated orthosymplectic structure of
the supervielbein.

For dimension 3/2, one can interpret 74”7 similarly as a contribution of new covariant
fields to the SUSY transformation of the Ramond-Ramond bispinor. The fact that there
is no such new contribution is again a consequence of closure. More interesting are 7,
Xag, X,5-
the dilatini and gravitini. A linearized analysis — see section 4.2 of [20] for the type I

From their dimension, they have an obvious interpretation as curvatures for

discussion — would reveal that after solving the section condition in components, these
tensors are given by

T = (") Qaps + U5, Xy, = Ogpa — (1")ap Da T (2.36)

where pq is the dilatino and Wg® is the gravitino. There are two important facts about
these quantities. The first is that they are the equations of motion (in the linearized
theory) for the dilatini and gravitini respectively; the fact that they vanish in superspace
is therefore consistent. The second fact is that when the derivatives are covariantized with
the double Lorentz connection, these are the only invariant curvature temsors that one can
construct. For example, D[E‘I/E]ﬁ is Lorentz covariant but it involves the irreducible hook
representation of the component Lorentz connection w_p—; this means it is not truly a
covariant object.

At dimension 2, the only quantities we encounter are Xag and its barred version.
(The generalized Ricci tensor and curvature scalar are found elsewhere in the generalized
Riemann curvature.) A linearized analysis would reveal that X3 is nothing but the Dirac
operator on the Ramond-Ramond bispinor,

X% o (V°) a0 S7 . (2.37)

which is the linearized equation of motion of the Ramond-Ramond sector.
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dimension | generator constraint dual generator | dual dimension
1 P, — P2 1
1/2 Qa — Q- 3/2
0 M,y antisymmetric Mab 2
-1/2 My ~-traceless M8 5/2
-1 Mg symmetric MeB 3
Kabe hook irrep Kalbe
-3/2 Kabs ~-traceless on b3 Kab8 7/2
-2 Kapp ~-traceless on bf KB 4
Loy ca pairwise antisymmetric Labed
Lajbjed 21000 irrep L2lbled

Table 3. Generators of H 1 and their duals. The positive dimension generators make up the super-
Maxwell, algebra.

The point we wish to drive home is that the majority of the torsion tensors vanish
purely for conventional reasons — some (2 is being fixed — and involve no dynamical in-
formation. It was crucial here that the {2 connections be extended from the double Lorentz
group to Hy, x Hg so that conventional constraints could be imposed on those torsion com-
ponents (see table 2) that have no component interpretation. For those not constrained
in this way, there is physically meaningful data — a supersymmetry transformation or
an equation of motion — associated with them. This is one reason to believe the results
of [26, 27] should be understandable only after a significant gauge-fixing.

2.5 The extended gauge group ﬁL X ﬁR, connections, and curvatures

Let’s return to the discussion of the {2 connections. Already we have discussed how con-
straining the torsion tensors leads to an extension of the local symmetry group to H; xH R.
We have elaborated in [20], for the case of type I DFT, how this group can be seen to come
about by considering successive commutators of the corresponding generators, and gave a
proposal for the connection to the super-Maxwell, algebra. For type II DFT, the right-
handed sector is just a copy of the left-handed sector, so we may bring over all of our
results.

We summarize the generators of the left-handed sector in table 3. A simple way of
understanding this set is that the tilde generators Q%, M2 and so on arise as a free Lie
algebraic extension of the super-Poincaré algebra of ), and P,. In the case of a Yang-Mills
superalgebra (a possible extension of super-Poincaré that highlights the various possible
structures), Q“ can be interpreted as the spinorial gaugino superfield, M?® is the bosonic
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field strength, and so on, with higher dimension generators corresponding to covariant
derivatives of these objects and commutators thereof. Their Lorentz representations and en-
gineering dimensions follow from the free Lie algebra construction. The dual generators ly-
ing at non-positive dimensions are implied by extending the free Lie algebra to a double su-
peralgebra; this requires an invariant bilinear form 7 pairing generators of dimension A and
2— A (such as P, with itself, Q, with Q%, and so on). Further details may be found in [20].

Since we will only be working to dimension 2 in curvatures, only a few of these gen-
erators will be relevant for us. The generators corresponding to the A4z parameters we
denote M 4p. They are normalized to recover the OSp(9, 1/32) transformation

1
§[ABCMCB, Pal = MPPg + - (2.38)
where the elided terms correspond to deformations arising from the background k-
dependent SUSY algebra. The Lorentz generator acts in the usual way

1 ~ 1 -
[Mcba Pa] = Npale — Neall [Mcb7 Qa] = _7(7cb)a6Qﬂ ) [Mcba Qa] = _5(7cb)aﬁQﬂ

2

(2.39)

while the other M generators act as
{Mpp, Qa} =k (v) ga Mbc — %Ok('Yb’YCd)BaMcda (2.40a)
[Mpy, Pa] = mbaQp — 1*10(%%)57@7 7 (2.40D)
[Ma, Q%) = ~05° By + 1 (n1 )5 P (2.40¢)

and

[My3,Qa] = —2k(v?)as M) + ék('yb)vﬁMab , (2.41a)
(Mo, Pa] = gk('Vb)'yﬁMbaa (2.41D)
[My3,Q% =2Q(, 05" . (2.41c)

The additional generators responsible for the shift symmetries of (2, are denoted Kgjp,,
K,ps, and K, pg. Some of their (anti)commutators are given in [20], but we do not
reproduce them here.

We adopt the Polacek-Siegel framework for local gauge symmetries in double field
theory [23] (see also appendix B of [20]). Superspace double field theory can be built
on a rigid double super-Poincaré algebra involving the generators Qq, P, and Q% in the
left-handed sector and Qg, Px, and Q% in the right. They obey the algebra

{Qaa Q,B} = —k ('Yc)aﬁ Pc y [Qou Pb] =—k (’Yb)om/Q’y ) (2‘42)

with other (anti-)commutators vanishing. (The right-handed sector follows by adding bars
to all indices.) These relations can be collectively written

(P4, Pg] = —fas®Pe (2.43)
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where the structure constants with a lowered index, fasc = fasTnpc, are (graded) totally
antisymmetric. This rigid algebra is then augmented by additional generators correspond-
ing to ﬁL x Hpr. The latter we denote Xq, where the graded index a has no relation
to a vector index, and corresponds to an infinite set of generators lying in increasingly
complicated Lorentz representations. The full extended algebra schematically reads

(P4, Pg] = — fas’Pe — X feus | (2.44a)
[Xq, Pg] = — fas" P — fap®Xe (2.44D)
[Xa, Xp] = —far®Xe (2.44c)
(X% XY = —X° f2, (2.44d)
[P.A7 XQ] = _)zgngQ7 (2446)
[Xa, XY = —X€ foa? — fu2Pe — fu2X, . (2.44f)

The generators X, comprise Lorentz transformations M,y, the additional tangent space
transformations acting on the supervielbein, which we denote Mg, and M,g, the new shift
symmetries of  involving the A parameters (whose generators we denote by K), and a
higher tower of generators that arise when we attempt to build curvatures for €. It is
important that X, furnish a closed algebra — this generates H L X H r. The generators X2
are additional dual generators that are paired with X, via a non-degenerate n metric, in
the same manner that P, is paired with itself and Q,, is paired with Q°.
A more compact form of the above relations is

(X o Xgl = —f 5 X5 (2.45)
for X7 = (X, P4, X%) and where fige = fﬁéﬁnﬁg is totally antisymmetric with 7z
given by

0 0 6,2
Nig = 0 nas 0 | . (2.46)

The requirement of a non-degenerate 7 is one reason to introduce the dual generators X<

Now we want to gauge this formal algebra by introducing a supervielbein, connections,
and so on. Following the discussion in appendix B of [20], we introduce the superdilaton
®, the supervielbein VA, connections Ha%, and an additional graded antisymmetric
superfield P2, These transform under diffeomorphisms and gauge transformations (with

parameter A%) as®
50 = Le®, (2.47a)
VA = LeVut + VaBAf 52 (2.47b)
SHp® = Le Ha® + O A% + HaASfor® + VaPASf o5, (2.47¢)
0P = Mo P — A f e — 2 0P f - HMg A — AP fp L (2.47d)

SFor purposes of legibility, we have suppressed gradings in these and subsequent expressions.
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The connection H % generalizes Q8 and the field P2 generalizes the one introduced
by Polacek and Siegel [23]. Ome can check that the algebra of H L X ﬁR closes on these
fields with

[0A1>00s) = Onsy  for  App® = ArPASEf® (2.48)

With these ingredients, we can construct covariant derivatives

~ 1
V=V Mo — HiPXy,  VE= HM9,, + (P“b - QHM“HMI’)XI, . (2.49)

These correspond to the curved extensions of P4 and X2, Their algebra can again be
written (2.45), but with some of the components of f now becoming structure functions.
These consist of four curvatures Tasc, Rass, Ra%, and R, which appear in the curved

algebra as
[Va,VB] = —Tas’Ve — RasXe — VE feas , (2.50a)
(X0, V] = —fa5°Ve — fas® Xe, (2.50b)
[Xa» Xo) = —far® X, (2.50¢)
Ve, Vb = —ve f2b - RUCY, — RaeX,, (2.50d)
[V, VY = =V fosb — RAC Ve — RA%X,, (2.50e)
[Xa, VY = =V foa® = f2Ve — fa2X, . (2.50f)
The torsion tensor is
Tesa = =3V Vs Vg, VeVsM = DoV + He fagVa (2.51)

The curvature tensor Reg? is
1
Repd =2 D[CHB}Q + ]:CBDHDQ — I‘IBQI‘ICQfCi,g -2 H[Cifdlg]g — fCBd(Pda + 2H}—dH]:a) .
(2.52)

The other curvature tensors, particular to double field theory, are R, which is the
covariantized derivative of the Polacek-Siegel field,

Rebe = [ — D P — 2 HePY fy,® — 2 PY fge® + HP°De Hp® — 2 HP Dp He® — He® f

+ FeBAHREH 42 — HDQHDd(fo + Hccfcda)] (2.53)
[ba]

and the curvature R,

1
RLL = 3 x {PCd fa* — HEDeP* + HH® D Hp® + S H“H™ H* Fepa
1 1
+ Pedplef o HDCHDd<2fd"“ + PP fog + H ngsefde“)} . (259)
[cbal

which is essentially the covariantized version of VI¢Pbal,
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Finally, we include the superdilaton ®, a scalar density under diffeomorphisms and
invariant under the local symmetry group. With it, one can construct dilaton-dependent
torsion and curvatures

Ta = Valog®+ VWM, (2.55a)
RE = DB Hp® + FBHp® — HP¢f.5% + P%fa2, (2.55b)

where F 4 = D 4log ® + Op VM
The two sets of torsions and curvatures obey a set of Bianchi identities. The ones most
relevant to us are

0=4V Aﬁsw] + 378" Tejem) + 6 RiasSfeiep) - (2.56)
0=3 V[ARBC — ve “Tasc + 37:43‘ Rgm + 3R[AB| fe|c] + 3R fe|BC] (2.57)

and
0 =2VuT5 + TasTc + ViTeus + 2 R4V fopis) + REfous - (2.58)

In terms of these formulae, we can define the following Hy, x Hg curvatures. In terms
of the naive 2 curvatures,

1
R(Q) asep =2 DaQpiep — 2Qac* Upjep + Fas®Qeep + 595,43 Qecp, (2.59)

the R apcq are given (through dimension two) by

(
Raged = B(Q)apea +4E(Ve)y (52w (2.60a)
Rofea = B ,5ea +2k(1e), 5% 5 (2.60D)
R@cd (Q>@cd ) (2'600)
Rabed = R(Q)abea + gk Mofe (V)76 = 2k (Ve Doy Qia)” — Habled (2.60d)
Robea = B opea = 2k (Vc)ay L) (2.60¢)
Rabed = R(Q)abed + gk Moje(Va))76Q"° — Haped (2.60f)
Rapea = B35 (2.60g)
Rabed = R(Q)abed + gk QU Myje(Ya))as — 2 Hia bjed + Pabed (2.60h)
Ropea =R, 5eq — g’f Mafe (V) ap %™ + Hp ajea (2.60i)
Rapea = B(Q)ipea T P ea (2.60j)
RaPcd = R(Q)o"ca + 2 Hyeq) + %(Vab)aﬁpabcd : (2.60k)
Ro’cd = R(Q)a"ca . (2.601)
Ra’cd = R(Q)a"ca + 2 Hy [C,d]ﬁ, (2.60m)
Redea = ROt + 10" Prpg (2.600)
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There are additional components of R 454, namely Rdgc q and R&Bcd, at dimension 5/2
and dimension 3, but we will not need them here. The dilatonic curvature R, also lies at
dimension 2; it is given by

2
Rab = (DC + ]:C)QCab - Hcc\ab + §kQ[a7ﬁ(7b])ﬂ“{ - 2PC[a,b]C . (261)

The additional contributions from the H connections and the Poldcek-Siegel field per-
mit a number of constraints to be imposed on these curvatures (similarly for their barred

versions):

Hapea = Rabed =0, (2.62a)

bled
Hzpea =  Rabed| =0, (2.62b)

blcd
Paba - Raba = Raab ’ (2620)

1

Ha,b\Cd s Pabed - Rabea = Ena[cnd]b R+ 7z[aub cd] (2.62d)

where |b|cd denotes projection to the irreducible hook representation.
There are a few additional curvature tensors through dimension two. First, the curva-

tures
Rape’ = R(Q)age” — 2k 0\ lk 70 0 (4d 1 e v
afc’ — ( )0450 (’70)5(5 a) + 9 (’YCd)(B a) (’Y )56 2(7 )(6 a)clde »
(2.63a)
Ry’ = R0 = )5 + 1k (e)a? 255 (15 = 1) Hygae (2:630)
afc aBc Ye)da B 18 Yed) o B Y )ée 1 Y )a Belde ° .
Rage' =R (2.63¢)

(2.63d)
1 .1
7—\)’agcw = R(Q)a507 +k ('Yc)oaéﬂgé7 - Ek ('7cd)047 (Vd)éngd + 1(’7 f)a7 ch|ef R (2.636)
,Rfabc’y = R<Q)Eb C’y - I—Iab,c’y 5 (263f)
Rape = RB()z5." (2.63g)
and

Rap"’ = R(Q)ap™ = 2H(an " (175", (2.64a)

R.5"° = R(Q),5"° — Hz, U (7")a (2.64D)

Ras' = Rz (2.64c)

(along with their barred versions) correspond to the covariantizations of the remaining
dimension < 2 pieces of R(2) apcp. Among these curvatures, the only constraint we can
impose is

H@b’(ﬂ — Rabe! =0. (2.65)

~19 —



The only remaining curvatures at dimension two are the lowest dimension pieces of
’R/AB(K)C'de:

Raﬁ(K)dde =2 D(aHﬁ) clde + faﬂgHS c|de + 4k Q(o¢| C’Y(PYd)'yéQLB) e(s

+ 4k H(cx d,ey('Yc)ﬂ)w — 4k H(a c,d,y(’Ye)B)v proj (2.66a)
R,5(E)clde = 2D(aH3) e + Foi Heclde + 4k Qal (7)25Q5)”

+2k Hg o ) (Ye)ayy — 2k Hg . 4" (Ye)a)y ros” (2.66b)
Rag(K)eide = 2DaHp qe + Fag’ He clde + 4k Qaie” ()16 - (2.66¢)

The covariant derivative D above carries the double Lorentz connection alone. We denote
these curvatures with a (K') separating the form indices from the indices of the generator
K |qe, both to distinguish the types of indices and to reduce confusion with R 45cp.

2.6 Solving Bianchi identities through dimension 2

Now we turn to solving the Bianchi identities. We will restrict our analysis to dimension
< 2. The three Bianchi identities read:

0=2R = [4V 3T st —6R 2.67
ABCD [ ATBep + 3Tas" Teep ABCD| L peny” (2.67a)
0=Bus = [2VA713 4 TusTe + VoTous — RuPos + RPoa — RAB] . (2.67b)
1 1 1
0=B=VATu+ T Ta+ 5T Tesa — ;R P pa (2.67c)

In our previous work on type I DFT [20], we analyzed all three Bianchi identities simultane-
ously. Here we will take a bit of a different approach and focus only on the first set (2.67a),
which does not involve the superdilaton. The reason for this is that the double superge-
ometry emerging there will naturally correspond to generalized type II supergravity [30],
where a dilaton is not presumed to exist. The analysis of (2.67a) is nearly identical to the
type I discussion, so we will be relatively brief, proceeding by dimension.

Dimension 0. The Bianchi identities B, 445 are all satisfied trivially given the dimension

—1/2 and dimension 0 constraints.

Dimension 1/2. The Bianchi identities at dimension 1/2 read

1

Bapra =0 = Taas’ (s =0 = Tag” = Xy = 5(1)as(0)* X5, (2.68)
Baﬂwa =0 = (’Ye)(aﬁﬁy)a =0 = Tarc= (’Yb)aBWBa (2.68Db)
Bagra =0 = Tsa’(va)ps =0 = Tas" =0, (2.68¢)
Bua=0 = Tag’(ii5 =0 = Tag” =0, (2.684)

plus their barred versions. The dimension 1/2 torsions that remain even in light of the
Bianchi identities are the fields X, and W5; (corresponding to parts of Tap” and Tobg)-
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Both can be set to zero by redefining the dilatino and the gravitino superfields. In other
words, this is merely another conventional constraint — exactly the DFT analogue of a
gravitino redefinition discussed in [30]. The dimension 1/2 torsions then all vanish,

T

abé

=0, T,;7=0. (2.69)

Dimension 1. Using Qcp, and Qepa, we can set 7,;. = 0 as a conventional constraint.
Since we are not addressing the superdilaton curvatures yet, we do not set 73 = 0, so QP
remains unfixed. The other torsion tensors at dimension 1 involve 723“7. Recall we can
use Q5.7 to fix 75,7 = %(73)752(37 s and its barred version. Then the Bianchi identities

Baﬁa& = 0 read: -
Bagea =0 = Raged = %(%d)(a”?\fgm, (2.70a)
Bsa=0 = Tg (%)ayy =0 = T =0, (2.70D)
B,jga=0 = Rosaa =0, (2.70c)
Bgea=0 = R\Bed %(’ch)cﬂ?fgﬁ ; (2.70d)
Bza=0 = T ()55 =T5 (s = Tos" = 110 () paX ™
T5" = 1—10(%)5&2(6@ (2.70e)

along with their barred versions. The last factor can be removed by redefining the Ramond-
Ramond bispinor S?; then as another conventional constraint, we fix X*® = 0 above.
In addition to these, we have B, 3&5 = 0, which decomposes as

1 C k C\€
Ba,@fya =0 = ZR(aﬂcd<7 Gl)'y)(S = _TOXA/,e(’YC)a,B(’Y ) ’ (aBv) > (2'713‘)
1 C k e €
Baﬂﬁé =0 = §R(Oﬁcd(7 d)ﬁ)(s = _T0(7 )aﬁ(’?’e)(s Xy, (2.71b)
Bg" =0 = 0=0, (2.71c)
Biz"=0 — 0=0 (2.71d)

Combining (2.70d) with (2.71b) implies that X5 3 = 0. Combining (2.70a) with (2.71a)
implies that X, g is purely vectorial. We can set this to zero as a conventional constraint
by redefining QPp,. In summary,

Toie = T,57 =0 (2.72)

These constraints are consistent with the vanishing of all lower dimensional torsion tensors
except for T, fe- We also have found that the curvature tensors at this dimension vanish
as well,

Ripeqg=Raseg =0 (2.73)

aﬁ afcd
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Dimension 3/2. The torsion tensors at dimension 3/2 consist of 7;15@ and 775[&“7. We can
use Q477 and its barred version to fix 73?7 = T3%7 = 0. We can also use Q7,;, and its
barred version to fix Ta,? = 7‘%*7 = 0. Finally, we can take €5,,” and its barred version
to fix

1 - 1 5
W7 = )y, T = o0 s (2.74)

The Bianchi identities Baéé i=0 lead to

Ba@ =0 = Ra[ﬁ] =0, (275&)
Baba =0 = Raba =0, (275b)
k
BaEcd =0 = Ragcd = _g(’)/cd)oc'yxg’,y; (2750)
Bapea =0 = Ra[bcd] =0 (275(1)
Next, we have B, BCS = 0. The first batch is
1
Baﬁc(s =0 = Raﬁc(s = i(vde)(aénﬁ)cde’ (2763)
L o a
Bagc(s =0 = Raﬁcd = Z("Y b>a6Rﬁcabv (276b)
k a €
B’ =0 = Rz =15 (0)ap(%)" X - (2.76¢)

Each of these expressions is traceless when contracted with (7¢)s. The first two, combined
with (2.75a) and (2.75d), imply that only the irreducible hook representations of Ra1,cq are
present, but these are eliminated using the constraint (2.62a). The third equation, being
~-traceless on the left-hand side but pure trace on the right, is solved only by R@ C5 =
Tap? = 0. The remaining identities are

a k a
Boge' =0 = (7"")(0"Rppzab = 5 (1")as(70)" Xz, (2.76d)
B =0 =  (pFh’=0 = T.7=0, (2.76e)
BOTBC(S =0 = (70)?(&7%)75 =0 — 7‘557 =0 (276f)

Combining (2.75¢) and (2.76d) tells us X5 5 = 0.
The upshot is that we have eliminated all torsions and curvatures at dimension 3/2,

A_ AA_ . S_
T =T =0,  Rye=Rass =0 (2.77)

abé

Dimension 2. Let’s start with B As in the bosonic case, this reads

abed
Babcd =0 = R[abcd] = O, (278&)
Babca =0 = Ra[c ab] — 0, (278b)
Baba =0 = Raba = _,R’aab (278C)
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along with their barred versions. Using (2.62b)—(2.62d), we fix

Rabed = Zlg)na[cﬁd]bR Ropea = 4*15%[6773@7% (2.79a)

Rabed = %na[cReBed} v Ripaa = *%775[67%@5]6» (2.79b)

Reroq =0, R =0. (2.79¢)

Recall (2.65) fixes Rape” = 0. Next, we use

Bllua=0 = RSLu= _i(’Yab)aﬂRcdab = _%(VCd)aﬁRv (2.80a)
B, 3=0 = R5./= i(’yab)aﬁRCHab = R,3. =Rg.,=0, (2.80b)
B3=0 = RS 5= —i(yab)aﬂnaab — R.’5=0, (2.80c)
B g=0 = R, 3= lko(%)aw(’m@?f o= Rg =X5=0, (280d)
Bl =0 =— R Pu= g ('ch)a’yXB'y — RSPy = 0, (2.80e)
Bf—=0 = Ro’—=-2 Ramg — R,S3=0. (2.80f)

After that, we can use B, Bﬂé' These involve

Boy” =0 — R = *i(vab)(a(ﬁ('yCd)y)é)Rabcd = *i('yab)(a(ﬂ(’Yab)y)é)Rv (2.81a)
Bo/’ =0 = 0=0, (2.81b)
Bar =0 = Roy =0, (2.81c)
BoP =0 = 0=0, (2.81d)
B7"=0 = R =0. (2.81e)

The superfield R remains unfixed at this stage. To determine it, we need to invoke
the Lorentz curvature Bianchi identity. The dimension 3/2 part of this vanishes given the
conditions already imposed. The non-trivial dimension 2 part reads

k
Raﬁ<K)c|de - 7Zoz,BfIR’fc) de — §Raﬁ’y$(’y[d)'y5ne]0 (282)
and this is solved by taking
R=0, Rap(K)ejge =0 . (2.83)

The upshot is that all dimension 2 curvatures vanish.

2.7 Dilatonic torsion Bianchi identities

The dilatonic torsion Bianchi identities are (2.67b) and (2.67c). These hold when the
dilatonic torsion T4 is given in terms of a superdilaton ®. However, we would like to
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show that as a consequence of the constraints imposed already on the torsion T4pc and
curvatures, one can choose 74 so that these hold without supposing the existence of ®.
This is relevant because the resulting type II supergeometry must correspond then to that
of [30].

The starting point is to suppose 74 = 0. Then the dimension 1 Bianchi identities B i
amount to

Bag = TagTec + Rayp” + Rpya” = k(v)apTe (2.84)

B.5=Rav5 + R’ =0 (2.85)

and similarly for B@. These vanish if we fix 7; = 0. Remember that we could have chosen
this instead as a conventional constraint to fix QPy,; then this Bianchi identity would have
been responsible for eliminating the purely vectorial part of X, g in 7g,7.

The dimension 3/2 identities are

Bab = - ab’le’y + Racbc + ,R'()fyb’y - ,R/bvozfy = k(’Yb)avT’y 5 (286)

Bag = ROCEBC + Roﬁg’y B RE«/av =0, (287)
and their barred versions. The first vanishes if 7% = 0 and the second vanishes automati-
cally. So already we have concluded all components of the dilaton torsion vanish, 74 = 0.
The dimension 2 conditions are quite similar and lead to either identities or definitions of
the dilatonic curvatures. Specifically,

Bab = —Rap, Bp=0, B, = —%fzab(yab)aﬁ, B.,”=0. (2.88)
These vanish simply by choosing Rap = 7%% = 0. In like fashion, (2.67¢) is easily found to
satisfy B = 0.

We have not analyzed torsions and curvatures beyond dimension two, but it seems
plausible that the remaining Bianchi identities B4p at dimensions 5/2 and 3 similarly hold
as a consequence of Bygep = 0. We leave the question of the higher dimension torsions
and curvatures to future work.

3 OSp(D, D|2s) spinors and the Ramond-Ramond sector

A key difference between type I and type II double field theory is the presence of the
Ramond-Ramond sector. In bosonic double field theory, the Ramond-Ramond sector is
described either by an O(D, D) spinor [7, 8] or an O(D—1, 1), xO(1, D—1)g bispinor [9, 10].
These two descriptions can be related using the spinorial vielbein [19]. Our goal in this
section is to give the superspace lift of these relations. That is, we will describe how the
Ramond-Ramond super p-forms of type II superspace fit into a spinor of OSp(D, D|2s),
and we will give the prescription for identifying a spinorial supervielbein in this framework.
Much of this material follows naturally from the bosonic case, so we will be brief where the
analogies are clear. Key initial elements of this discussion were already given by Cederwall
some time ago [28].
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3.1 The Clifford superalgebra

A natural starting point for defining OSp(D, D|2s) spinors is via their associated Clifford
superalgebra. We introduce gamma matrices '™ that obey the Clifford superalgebra,

{TM TN} = 2N | (3.1)
In the standard toroidal basis,
0, 0 0 0 4, 0 0
nMN _ om™ 0 0 O ’ DAL = 6’gn 8 8 (501/ ’ (3.2)

wherem =1---Dand it = 1---s. We include a hat on the spinor index as its flat analogue
will be denoted & = («,@). The Clifford algebra Clif(D, D|2s) consists of all products of
the I'-matrices, combined with the unit element 1:

Clif(D, D|2s) = span ({1, TM  TMV ... pMioMp .y (3.3)

This is an infinite dimensional algebra, as the spinor-valued I'-matrices are commuting and
therefore not nilpotent. It is convenient to decompose it into an infinite set of copies of the
standard Clifford algebra Clif(D, D) tensored with the fermionic gamma matrices, i.e.

Clif(D, D|2s) = Y Clif(D, D), q (3.4)

p.q

where Clif(D, D), 4 consists of all elements of Clif(D, D) multiplied by I/ fr;, . .

3.2 Orthosymplectic spinors

The natural definition of an orthosymplectic spinor follows quite analogously from the
bosonic case. In the toroidal basis, we define '™ and T'y; via

™ = (M 1y), (3.5)

and take gM = %FM and By = %FM as graded raising and lowering operators. These
obey

{BY, Bu} = (=)™ {Bur, B = ou™ (3.6)

This is a graded anticommutator, so that 5 and 3, furnish a fermionic oscillator algebra,
and S and B a bosonic one, i.e.

(B B} = {B™, Bu} =6, [B",Bs] = —[Bs, ] = 6" . (3.7)

In order to choose M to be raising operators and (s to be lowering operators, we build
spinors by acting with M to the left on a vacuum bra state (0|. This may seem a bizarre
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choice, but it leads to the convenient identification of an OSp(D, D|2s) spinor with the
standard expansion of a superspace differential form, i.e.

€=y

1 1
E<O|BM1 B, & €= Hdle cedeM Copengy - (3.8)
p p &

Because superspace forms are typically written in this fashion with other related changes
(e.g. the de Rham differential acting from the right), it is natural to define an orthosymplec-
tic spinor as a bra rather than a ket. This will lead us to transpose a number of equations
relative to the bosonic case. While this mirroring of bosonic formulae is inconvenient at
first glance, it has the practical effect of eliminating a number of minus signs that would
otherwise occur.

A key feature of orthosymplectic spinors is that because the Clifford algebra is infinite
dimensional, spinors will necessarily also be infinite dimensional. This corresponds to
the notion that a superform can be of arbitrary rank as there is no upper bound on the
number of fermionic legs d##. Following what we did with the Clifford algebra, it will be
convenient to decompose an orthosymplectic spinor depending on how many # oscillators
they involve. That is, we take

o)

<C| = Z<C|pa (3.9)
p=0
where (C|, involves g1 ... gh».
The natural action for an OSp(D, D|2s) rotation is 0(C| = %(C|FMNANM. For a

)nm.

generalized diffeomorphism, the parameter A is given by A N = BMfN —oN Em(—
This suggests that we define the generalized diffeomorphism of C in analogy to the bosonic
case as

501 = ¥ n(Cl + HCITY Vo + 3 (Clome™ ()
= Now(el + HerMMV oyt (3.10)

The relative normalization of the R™ term in the first line is chosen so they combine in
the second line, similar to (but mirrored from) the bosonic case. This ensures that both

P
(C| and (F| := (C|@ transform as spinors, where @ = M. Further, upon solving the
section condition as & = 0, we recover the expected transformation of the complex C of
super-p-forms,

5(C| = eNan(C| + (C|BuBNONEM + (C|BMBNONEM = IC=LeCHCAAE. (3.11)

3.3 Flat orthosymplectic bispinors

Let us briefly recall how flat O(D, D) bispinors arise in the bosonic case. We follow the
same conventions as [19], but transposing the Fock space so that bras become kets, etc.
Thus, we introduce the spinorial version of the double vielbein |V') which obeys

V) =|V) - T* V™ . (3.12)
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Here |V) is a bispinor-valued ket. For D = 10, this ket decomposes as
|Vaa> ’Vaa>
|V> = ( ao « (313)
V) [Vag)

where a and @ are 16-component Weyl spinor indices of SO(9,1) and SO(1,9). The flat
gamma matrix I'% acts to the left on |V) (and similarly on any bispinor)

V)T =9"V), V) T"=%lV)7", (3.14)

where v* and 4 are gamma matrices of SO(9,1) and SO(1,9) respectively.’
The flattened bispinor €' is then built from (C| as

«
¢ =t (CV) = (g‘;a ggz) : (3.15)
The relations (3.14) lead to ¢ -Te = 'ya@ and ¢ -T? = 7*@'75.

While flat O(D, D) spinors are finite dimensional bispinors, flat orthosymplectic spinors
must be infinite dimensional. In the flat basis, we treat I'* and I'® differently; the former
lead to a finite dimensional Fock space and can be described by matrices, as before, while
the latter are infinite dimensional and so we will retain a Fock space structure for the
spinorial indices. A flat orthosymplectic spinor is then written, similar to (3.9), as

(€] =S (o™ - b% ¢4 s, (3.16)

p

where b% = (b%,b%) are bosonic raising operators, acting to the left on a spinor vacuum
state (o], so that they obey

[b&,bﬁ] = (5Bd, <O b@ =0. (3.17)

The quantity ¢ap---d1 is a bispinor carrying additional symmetric spinor indices; we can
write it as

~ A ap.
¢@p..ﬁlz<9‘i‘?“"i‘1’a CAP"'O‘l’Z‘“> (3.18)

with @&; including both barred and unbarred indices. The action of T4 on (@ | is defined as
(@] 1% =%¢l, (¢1-T* = (@™,
(¢

T = \/§V*<¢W* ba? <¢‘ Tg = \/§V*<¢W* ba - (3-19)
The various factors of v, and 7. are necessary to reproduce the flat Clifford algebra. The

- action above is to the left on any bispinor-valued Fock space and not just (¢| itself, so

"Because the action of I'® is defined to the left on any bispinor, we have e.g. |V) - T°T° = (+*|V)) - I'® =
*ybfy“W), and so the order of the left-handed gamma matrices gets reversed. This is in contrast to the
discussion in [19], where the Fock space structure was transposed and so the action of right-handed gamma
matrices was reversed.
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for example, (¢| - T*TP = (7a ¢ |) TP = 4P42(¢|, leading to a reversal of ordering on the
left-handed spinor sector. R
We introduce the bispinorial operator ¥ that converts to the spinor Fock space, so that

(@] := o2 (C|p. (3.20)
The action of the T matrices on )Aﬁ is defined as
[Mp = y.pAp,M (3.21)

where TA acts to the left on }77 just as on <a| in (3.19).

The specific dictionary between the curved and flat Fock vacuum states follows when
taking 1/2 to be that associated with the identity supervielbein; for shorthand, we denote
this as 1. Then we have

0 =1 (o] = 2571/2 (&f(‘)(o! 5QS<O|> , (3.22)

3.4 The Ramond-Ramond sector and its curvature constraints

Now suppose that (C| describes the complex of Ramond-Ramond p-forms. In addition to
diffeomorphisms (3.10), it transforms under abelian gauge transformations as

1

\/?<A|FM I (3.23)

5(C) = (A@=

—

so that the field strength (F| = (C|@ is invariant. As is typical in superspace formulations,
we impose constraints on the covariant field strengths — that is, constraints on the flat
components of the field strength tensor flattened with the supervielbein, e.g. Fa,..4,-
For the Ramond-Ramond sector, the analogous constraints must then be imposed on the
flattened bispinor

(F|:= o V2FP . (3.24)

A remarkable simplification occurs here. In type II supergravities, there are only three
nonzero components of Fa,..4,: these are F B a1--ay_s (which is constant and given by
y-matrices), Faq;.--a,_, (Which is given by the dilatino), and Fy,...q, (which is the covariant
field strength). We have already claimed that the covariant field strengths and the dilatino
will be encoded in the supervielbein; since these will have non-tensorial transformations
under superdiffeomorphisms, we cannot use them to build (F|. This suggests that the
only natural choice for (F| is a constant! Structurally, there is only one way to do this.
Because the fermionic oscillators b% carry the same type of index as those on the bispinor,
it is possible to write down one constant bispinor which involves no dynamical information

aside from the structure of the flat fermionic Fock space:

5 0 0
(F| = —4k <<o|bab°‘ 0) . (3.25)

~ 98 —



We choose the normalization to involve the constant k, which is the same that appears in the
torsion tensor constraint (2.33); this will lead to standard normalization conventions for the
Ramond-Ramond sector in type II supergravity. This coincides with the expansion (3.18)
if we identify the sole non-vanishing component as

~

Foomy, M = —4k 60, 05,% . (3.26)
This is a rather simple expression, and we should perform a few sanity checks. First,

the field strength must be closed. In covariant notation, this condition reads

1
V2

The only non-vanishing torsion is 7; far SO only the second term contributes:

5 1 1
0 (F| (FA VA DB o+ 2PATA) . (3.27)

12

0 = 7 (FIDb® () g + 7o FITVH? ()5 (3.28)

The first term is proportional to

c c ¢ o o
((,yco)a,@ (73a5> X <<o|z?ﬂba g) X BB (e)ys = <<°(’y Jagb 871) (Ye),5 8) (3.29)

but this vanishes using the fundamental 10D gamma matrix identity (fy“)a(ﬁ (’Yc)ws) =0. A
similar cancellation occurs for the second term. This identifies <}' | as a preferred covariantly
closed and constant orthosymplectic spinor.

As a second check, we can verify that (F| is Lorentz covariant. This is more or less
obvious when we interpret it as (3.26), but it is useful to understand how this works in ket
language. An infinitesimal left-handed Lorentz transformation acts as

o2 1o /1 1 1 - -

nFI = {F1( 5T =TT Y e = han (17 (F + (Floab? (1)) = 0. (3.30)
The term in parentheses is the embedding of the SO(9, 1) generator M,y into the orthosym-
plectic group: it consists of the piece that rotates vectors and the piece rotating spinors.
Together these cancel out when the explicit form of (F| is used. The same occurs for the
right-handed sector. In fact, (| can be seen to be invariant under the full Hy, x Hp group.
We leave this as an instructive exercise.

To confirm this result, we will verify in due course that it correctly reproduces the
supersymmetry transformation of component Ramond-Ramond bispinor given in [10]. We
will also show that it leads to the correct Ramond-Ramond polyform in conventional type I1

superspace.

4 Component fields and SUSY transformations of type II DFT

The component structure of type II DFT was given by Jeon et al. in [10], where the action
and supersymmetry transformations were laid out in detail. Our goal in this section is
to recover their results for the supersymmetry transformations from superspace. We will
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not address the construction of the action for two reasons. First, as with any on-shell
component theory, this can be tricky because on-shell supersymmetry necessarily implies
equations of motion. Second, we have not yet discovered a generic schema for constructing
invariant actions in OSp(D, D|2s) superspace; this is in contrast to GL(D|s) superspace
where invariant actions are associated with closed super D-forms [31-34]. Nevertheless, one
could still derive the equations of motion from superspace; for the sake of brevity, we will
not exhaustively analyze these here, as this would mostly mirror the type I analysis [20],
and would necessarily lead to the results in [10] (since those equations of motion are implied
by closure of the algebra).

4.1 Decomposing the supervielbein

In order to derive the physical component fields, we must first arrange the supervielbein
in a specific way. The generators of OSp(10,10|64) can be decomposed with respect to
0O(10,10) x Sp(64,R) and assigned levels as

) T 1
/Y K ALY A Tpn Tao . (4.1)
~ ~ ——— ~— ~—
level -2 level -1 level 0 level +1 level +2

The level corresponds to the difference between the number of lowered and raised fermionic
indices. Then the DFT supervielbein V4 can be arranged in factors of increasing lev-
els, i.e.

V=V 2V_1VoVi1Vis. (4.2)

One consequence is that the fields and generators assigned to Vi1 and Vio will be more
naturally written with tangent space indices. We enumerate the fields in table 4. This
arrangement is rather different from the superspace decomposition given in (2.9). That
parametrization (and its generalization in section 5) is more useful to recover type II
superspace after solving the section condition, while the one here is useful for component
DFT analysis. We will spell this connection out more clearly in section 5.7.

Let’s briefly explain the field content in table 4. The component fields lie in the first
three lines. The bosonic double vielbein is Vj;,%. The fermionic fields \I'aB consist of the
gravitini \1133 and ¥5® and the dilatini pg, which we define as

Po = \I/aﬁ(7a)6a7 Pa ‘= \I’EB (’_75)57@ . (43)

The spin-3/2 pieces of ¥,” and \I/gB are pure gauge artifacts, as are S®¥ and SoB. §aB
encodes the covariantized Ramond-Ramond field strengths.

The remaining fields turn out to be gauge artifacts of a different type: the lowest com-
ponents of their 6 expansions can be removed by #-dependent diffeomorphisms. These are
related (at leading order) to corresponding fields in conventional superspace. For example,
¢ﬂd corresponds to the supervielbein component Eﬂd. The two pieces of Eﬂm = ("™, Zam)
correspond respectively to E;% and Bp, in conventional superspace. Finally, B, corre-
sponds to the fermionic legs of the super 2-form Bjsn.

— 30 —



field generator level

S48 T.5 +2
Wl Ty +1
Vin? Ty" 0
¢ T," 0
= Tyt —1
B T —2

Table 4. Constituent fields of the supervielbein. Positive level fields are written with Lorentz
indices.

Let’s work out the explicit expressions for the supervielbein. The fields at nonzero levels
are normalized so that they fill out a graded symmetric element Axn of OSp(10,10(64),

0 Epp TP
AM/\[ = —EAﬂ Bﬂp OA . (4.4)
o TR R

This notation is somewhat sloppy, as we are using flat indices for positive elements and
curved indices for negative ones, but we trust this will not be confusing. Exponentiating
the above generators using V = exp(.A Y ) for each level gives

100 10 0 )
Vio=|010], Vo=101-B|, B=B, S=8%,
051 00 1
1 o0 )
Vii=| 0 1 of, =07, vl = () = wh
—uT 20Ty 1
1 0 -Z
Vo=|-gT14=T= |, E=Zms, =l =E")"=2", (45)
00 1

At level 0, there are two distinct commuting pieces, which we denote

V@00 10 0
Vo=1 0 10], Vo=10¢% 0 | . (4.6)
0 01 0 0 ¢at

Vi@ is the component DFT vielbein and we presume gbﬂé‘ to be invertible with inverse ¢4
Then a generic orthosymplectic element can be decomposed as

V=V oV Vs xVo X Vi1V = V= X Vg X Vy (4.7)
—_——— —_———
VE V\Il
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We emphasize that V| contains the bosonic double vielbein, Vg involves the gravitini,
dilatini, and Ramond-Ramond bispinor, and V= involves fields with no component ana-
logues since their § = 0 parts can be eliminated. Note that )y denotes a generic el-
ement of O(D,D) C OSp(D,D|2s) while V_2V4V,9 is a (nearly) generic element of
Sp(2s,R) € OSp(D, D|2s).

The organization of elements ensures that all flat indices above transform straight-
forwardly under the double Lorentz group. Meanwhile, the higher A transformations are
entirely soaked up in Vg = V41V42. The fields there transform as

00, =27, 005" =), (4.8)

588 = X geloy B 680 = A% L gFENP), (4.9)
— 1 — 1 = =

087 = JWFA 4 JUeNT, (4.10)

with all other fields invariant. Note that we can define a shifted version of SQ‘B,

20 z 1 z 1 - 3
SoB .— gab _ ixpcaqfcﬁ + 5\1/%1/53 (4.11)
to eliminate its higher A transformation entirely. This will be the covariantized Ramond-
Ramond bispinor that appears in the gravitini transformation.
The transformations (4.8) and (4.9) admit the gauge (which we denote with asterisks)

1 \aB af * aB *
00 g S0, sP 0. (412)

U, = %O(’Ya)“’gpg, U =
We will actually avoid imposing this gauge, so that we can track how gauge invariance
emerges.
In the decomposition (4.7), let us split off the Vy part and denote V= V=), Its
inverse is explicitly

o V' OA . Vil = —¢a’E"s Var = Va"Z
— _ N 4.1
e ) IR T (1.13)
0 0 ¢’aa 1% & j132] 2*—'mw—' v) -

with the bulleted entries given explicitly above. As we will solve the fermionic part of the
section condition by taking 9% = 0, it follows that

Va0, D,
Dy = VAM(?M = | Va0, + qb@ﬂaﬂ = | Dy (4.14)
0 0
This defines D; and Dg. Note that we can build D4 = VMo = (V;I)ABZDDB as
Zo)a/ - ‘yd&b&
D= Vg HaBDs = Dq . (4.15)

\I/Edlc)l; — (Sdé + %\I/é&\lfgé)bﬁ
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It is quite convenient that Dy = lo)@, as this lets us write
o B N N oA 1 _ .4 A
Dy =Ds— "Dy, DY = WD, — (8 - 5\1/%1;&%3)1)3 . (4.16)

The bosonic derivative Dy is now directly analogous to the conventional superspace deriva-
tive, where it is given by the component flat derivative D, modified by a gravitino (and
dilatino) piece. The additional double fermionic derivative is D%: its explicit form will be
useful in subsequent computations. The key property of (4.16) is that the pieces of Vz ap-
pear only implicitly via Dg. These simple expressions crucially follow only upon imposing
0" =0, which we will presume henceforth in this section.

4.2 Generalized diffeomorphisms

There are three types of diffeomorphisms to consider: bosonic generalized diffeomorphisms
of component double field theory and the fermionic and dual fermionic diffeomorphisms.
We treat the fermionic diffeomorphisms as covariantized diffeomorphisms and keep the
bosonic and dual fermionic diffeomorphisms uncovariantized. That means we parametrize
the latter as standard diffeomorphisms with

and encode the former as
A =(0,6%,0) . (4.18)

The parameter £ describes double diffeomorphisms in the component theory, ¢ describes
supersymmetry, and é,;t is a residual dual fermionic symmetry that plays no role for the
physical fields.

Let’s first address the transformations (4.17), as these are quite simple to understand.
Denoting the diffeomorphism as

WVt = N vnt + Kt K = o = V(=) (4.19)

we observe that only non-positive levels contribute to K on account of 9% = 0, and it
follows that

6V= = M0 Vz + (K_o 4+ K_1)V=+ [Ko, V=], Vo = M0V + KoV, 0V = EM05Vy .
(4.20)

It is useful here that the level zero element Ko only involves 9;,£" and not 8ﬂ§’9 or 0”¢;, as
this simplifies the transformation of Vz. Because the Ky piece is just the bosonic O(10,10)
element, V), transforms as a DFT vielbein should, while the gravitino, dilatino, and RR
bispinor are scalar fields. The negative level transformations are completely soaked up by
the fields in V=, which transform as

0Zmo = £"03Zmo + Omo — Ovém + (Omé" — 0"&n)Ean
6Bs = 0B + 0p€o + 9p&p + E™ (1(00&s) — Op)inn) - (4.21)

As in conventional superspace, these fields can be set to zero at lowest level in 6.
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Because the fields in Vg are inert under éﬂ and transform as scalars under £, any
gauge-fixing there is undisturbed by diffeomorphisms. For example, if we have set S* to
zero, it remains so. This means component diffeomorphisms match superspace ones, with
no compensating transformations needed to preserve the gauges (4.12). This will not be
the case for supersymmetry transformations.

4.3 The physical and composite fields of component DFT

We have identified the vielbein, gravitini, and dilatini as components of the supervielbein.
We still need to identify the dilaton and the Ramond-Ramond sector and verify that they
transform sensibly under standard diffeomorphisms (4.17).

The dilaton. Recall the superdilaton ® transforms under diffeomorphisms as
Slog ® = M0y, log ® + 9™ — 0l + OPE, (4.22)

for a completely generic £M. At the component level, the last term can be dropped because
we take 9" = 0, but the second term remains problematic as it will obstruct the construction
of a sensible supersymmetry transformation. This suggests that we define the component
dilaton as

e 2% .= & x det dmd = Mge 2 = 9,M + 2 5ﬂ§~ﬂ . (4.23)

Now the second term drops out when §# = 0 and the component dilaton transforms as a
scalar field.®

The Ramond-Ramond sector. For the Ramond-Ramond sector, we proceed analo-
gously to how superspace p-forms reduce to component p-forms. Recall for these, we have
the notion of a double bar projection, taking both 8# = 0 and df* = 0. Thus we have

1 1., .
c=> Hdle o deMCypag (2,0) = C=C| =) de Lo da™ Cy o,y (2))
p p

(4.24)

where Cry,...my () = Cinypeoomy (2, 0). For the case of an orthosymplectic spinor, the analogous
operation is to project to 8% = 0. That is, we define

(€= cl| = (l (4.25)

Ph=pBA=0

The spinor (C(x)| transforms precisely as a component O(D, D) spinor when ¢M is given
by (4.17) and we set 9 = 0:

5(C| = £"0n(C| + %<C|FmFN8N§m + %<C|rﬂrNaN§ﬂ proj;

5(0] = €0(C] + S (CIT™ T 0n (4.26)

8 Another way of arriving at this same conclusion is to recall that the component DFT dilaton is related

~24 — ¢¢72%, The superdilaton in Siegel’s

to the supergravity dilaton by a factor of e = det em®, that is, e
superspace DFT is similarly related to the conventional (non-density) superspace dilaton by a factor of
E = sdet Ey®, ie. ® = Ee™2%. In conventional superspace, the component and superspace dilatons

coincide (hence both are ¢ above). This implies that e 2% = ® x ¢/E = & x det ¢,“.
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Spin connection. In analogy to (4.14), we define the component spin connection

Wate = V)" Upja = Qaje + ¥a" Qe (4.27)
The motivation for this is two-fold: first, it lets us define the component covariant deriva-
tive as
Dy i= (Va)aBDs = Da + WaPD, = Dy — ~wal®M; (4.28)
a = U )a B = Fa a g — a 9 a eh - .

Second, it gives a very simple prescription for translating torsion constraints in superspace
to torsion constraints in components. As shown in [20], the above definition of the spin
connection implies that the component torsions are given by

Tyo = V0)a™* (Vo) V) Tesa - (4.29)
A similar calculation shows that the component dilaton torsion is

T@ = 7:3 —+ ‘If@@(% + 7}[35) + \I’b'87138& — \I’@d\lfbﬂ']’ﬁd?) + Sﬂﬁ (RB& + \If@aﬁfﬁa) . (430)

Using the superspace constraints on the torsion tensors, we conclude that

Tabc =3k \D[aa(f)/b)aﬂ\l’c]ﬁ ) (4313)
T€bc =2k \IIEOC (’7[b)ozﬁ\1’c]/8 —k \Pba(ﬁi)@\ycﬂ ’ (4'31b)
Ty = kW, %py — kW, %pg + k(7a) 3,87, (4.31c)

and similarly for their barred versions. We could further impose the gauge conditions (4.12),
but it will be enlightening to avoid that here. The above conditions imply that w,p. and
wabe receive additional contributions Aw relative to the expressions w(V') that follow from
the bosonic theory:

Aw[abc] =k \T/[a’Yb‘I’c} 5 (4323)
AwPha = —kVap — kWL + k(7a) 5,87, (4.32D)
Awzne = 2k Uy, Vg — kU350 (4.32¢)

This means that this spin connection is not invariant under the higher A transformations.
This had to be the case from its definition (4.27) and the transformations (2.34a) of Qape,
which imply that
= 2k af
dwabe = —2k \I’a’Y[bAc} - 6 na[b(f}/c])aﬂ)‘ + Aa\bc ) (433)
consistent with the contributions Aw.

The covariant Ramond-Ramond field strength. To uncover the relation between
the component Ramond-Ramond bispinor field strength F and the bispinor component SoB
of the supervielbein, we follow again the conventional supergravity dictionary by projecting
to B = 0. That is, we identify

(F| = (FI| = (FIp~1e12 ] (4.34)
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Now we decompose the spinorial vielbein operator, following (4.7), as
Y =VY= x Yo x Yy (4.35)

The projection to 8# = 0 effectively dispenses with the V= factor except for the piece that
generates ¢;% = exp(a;”)d,%. This factor leads to

)}glhaﬂ:o = exp (;(5;15'9 + 595,1)(1&’2) |przg = exp (;a,}ﬂ> = (det pN)Y2 . (4.36)

We identify the flat bispinor

F=e 4RV = (FV3Y] (437)
Expanding this out using )7251 = exp (%I‘BI‘&\I’&B + %FQFBSB&), we find
0 —1(PU)a (T 7®)a + Spap
175_ Ak 2(’7 a)a( b7 )a+ 3 PaPa
Saa 4 %(,yabqu>a\j[/aa o %\pga(\yg,—ya)a 0
L b T,/ 1 T/ ba L p T, L —/
:—4k<$+§7 Uy, x W) - D0 x U = Do x Ty —|—§p><p> (4.38)

where we have written the result first in 16-component Weyl notation and then in 32-
component Dirac notation. Now employing the redefinition (4.11) of the Ramond-Ramond
bispinor S to the A-invariant S, we find

Fe _ak 0 —%(’Yb‘lfg)a(‘l/b:ﬁ)a + %Paﬁa
ST+ 3 (7 p) W — U (p7)° 0
5, 1 4 = 1 - S w1 —
:—4k<$+77px\IIa—f\Ilg><pfy — =y g x U5y —|—fp><p). (4.39)
2 2 2 2
This expression is clearly invariant under the higher A transformations. We can use it to
identify
Saa 1 et 1 a ya @ 1 o (' \a
S = T 5(7 p) W + 5 Vs (¥*p) (4.40)

We can identify two constraints on F from its Weyl decomposition. The first is 'y*ﬁﬁ* =
A , which constrains the diagonal to vanish. The second constrains the upper right block:

i ok
0=(1+7) <ﬁ X B T x p'> (1-7.) . (4.41)

4.4 Supersymmetry transformations

Now we can compute the supersymmetry transformations arising from a covariant diffeo-
morphism with parameter (4.18). Including a compensating tangent space transformation
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A8 (which will be necessary in this case), the supervielbein transforms as 6§V = V (K — \)
where

KB = VA8 — VBEA(—1)" + 570" . (4.42)

As we are restricting our choice of &4, we should be careful about expressions like V 468 =
D 4€8 —Q 4BC¢c, which might lead to an unexpected contribution when the {2 connection is
not purely Lorentz. Luckily, for &4 = (0,¢®,0), the only contribution is the Lorentz piece
QA 767 = Z(Vbc)
the double Lorentz connection. For the torsion term, only 7; b is non-vanishing. Thus the

75 Qape €. To emphasize this, we replace V with D where D carries only

only nonzero elements of 45 are
KB = 2D P =Dae’, Kaf =Dae®,  Kab = k(1P)ase,
AB I; ~ ~ ~
K =-D Ea, ICOCB = —DBEQ, ICM; = /{7(’}/&)34767, (4.43)
corresponding to levels +2, 4+1, 0, and —1. The possible compensating A transformations
lie at levels +2, +1 and 0. We parametrize an arbitrary variation as J = V716V, so that

V=VxT=VaVoxJ xVeg = J:=WJIVy'. (4.44)

For the case of a supersymmetry transformation, J = KC — A, and we can read off J level-
by-level, using the fact that Vg = exp W exp S = exp(V + S) for fields ¥ at level +1 and S
at level +2:

Fra =Ko = Mz + [0, (0Cox = Asa)] + o[, [0, (Ko — )] + 51, [0, [9, K]
+[S, (Ko — Xo)] s
it = K1 = Ao + (9, (o = 20) + 50, [9,K61]] + (8, K1),
Jo =Ko — o+ [¥,K_1],
J-1=K_1,
JT2=0. (4.45)

From the explicit expressions for V,, we find for the non-negative levels,
()% =689 — walasy, B (7)sf = 60,7
(Jo)a? = Va6V = Tt (Jo)a” = das0,” . (4.46)

These are rather complicated expressions, but only some of them are relevant. For
example, the full expressions for (J)** and (jg)o‘ﬁ tell us about 68% but S* and S°F
are pure gauge degrees of freedom, so are not really relevant; in effect, these transformations
would just identify what X% and A\*# would need to be in order to maintain a specific gauge
choice. And while S*? contains the Ramond-Ramond field strength, we will actually derive
the transformation of the potential directly. The transformation of ¢, isn’t really relevant
either; it involves a leading term Bﬂeé‘ implying that at lowest order in 6 one is free to fix
$p = 0.

That leaves the transformations of the bosonic vielbein and the gravitini and dilatini.
We discuss these below.
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DFT vielbein. For the bosonic DFT vielbein, we find (in Dirac notation)

J5=k(%) — k(@Y. , Jab =2k(7¥p) — Aap, Jp =2k (e’y[gw’a) —Ag -
(4.47)
The expression for J i is exactly as expected from [10]. The nonzero expressions for Jap,
and J indicate that in order to make contact with supersymmetric type II DFT [10]
(where they are taken to vanish) one should choose A appropriately. This is rather natural

to do since these expressions involve W,% and \Ifga, which transform under the higher
A-transformations. Imposing A, and Az to kill these, we find

5Vﬁza —_ kaE(ea(ﬁg)ﬁ\paB _ ea(,ya)aﬁ\:[/gﬂ> , (4483)

Vi =k Vi (¥ (1)ag ¥ = (3775907 . (4.48b)

Gravitini and dilatini. The gravitini and dilatini transformations are a good bit more
complicated. The general expression for both is

5\11@5: D@EB—]{ 65<"y@)5€/ S’Y/B—l-k‘ (E’yb\I/d) \I/i)ﬁ — §]€(E"}/@\I/b) \I/Z;ﬁ — /\d/B—‘r)\&b\I/i)/B—\I/&’yAﬁya.
(4.49)

For the gravitini, we find
SUa® = Dae® — k(@92)5 877 + k (69" Vz) Uy + k (€7°0%) W7
1 = 1 g b b. 1 c\ @
L (€74701) WPF — S (€7a0r) U°F + g — prg(yb )4 Abe - (4.50)

If we apply the redefinition (4.11) for the Ramond-Ramond bispinor and the expressions
for A\up implied by (4.47), the expression becomes

P ko k- 1 ) B
005" = Dye’ — 2 (") (e We) + 5 (€0) Uz — 5 (Pap)e” + 5 (a1 ) (17°)° — k()5 77

(4.51)

or, after a Fierz rearrangement,

. 1 ealk- _ ko ko L
005" = Dac’ + Z(E’Yb )’ (2‘1’5’chp - Qk‘l’ﬂb\l’c) —§(€P)‘l’aﬂ— Z(‘I’EP)GB— k(€7a)7 87
(4.52)

We have arranged the non-gauge invariant ¥,” terms so that they overlap with the con-
tribution of wape from Dge’. It is easy to see that the non-gauge invariant pieces cancel
against those in (4.32¢). Replacing wzpe with w(V)zpe that depends only on the double
vielbein, we find

° 1, _ peg( k= = _ k k- N s
5‘115’8:D5€’8\W(V)+1(6’Yb )5 (2‘I’a7bc,0—k‘1’{ﬂa‘1’é>—2(GP)‘I’Eﬂ—4(‘Pap)€ﬁ—k(€/7a)y3w-

(4.53)
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For the dilatini, we find (after a Fierz rearrangement)
a B 5 1 abc k k d
5poz = (7 )aﬁDaE 4(6'7 ) 48/0'7abcp kq]aﬁbqj + \I/ﬂabcq’
1_. = Bry A0\ (DO
= 5@"a(kWap — k (0)5, S7) + R(ETE}) (1" Ta)a (4.54)
The second and third terms overlap with the contribution of w,p and wPha; again, the

non-gauge-invariant pieces cancel when we trade w for w(V'), giving

1

o _ k k I
0pa = (Va)aﬂpaeﬂw(V) 4(E'Vabc) <48P'7abcp + 0 \I’d'yabc\I’d)

= 5@~ kL) + ET) () (4.59)

Similar equations to \IIaB and pg by adding/removing bars over the indices.

Dilaton. To derive the supersymmetry transformation of the component dilation e=2?,

we first compute
dlogdet ¢;% = ¢a"3¢s% = (J0)a® = Dac® — ke®ps . (4.56)
Combining with the transformation of the superdilaton,
Slog® = EAT 4 + V464 (—1)% = —Dgae® (4.57)
we recover the expected component transformation,
e?d5e72 = —ke%pq . (4.58)

Ramond-Ramond sector. In order to derive a supersymmetry transformation of a p-
form in conventional superspace, one first converts a superdiffeomorphism to a covariant
superdiffeomorphism by subtracting off a local gauge transformation. Explicitly, this reads

556 = Lgc =¢&.dC + d(ﬁ_IC) - 5§0VC =£&1dC = ELF . (4.59)
This generalizes easily for an orthosymplectic spinor. The transformation (3.10) can be
rewritten
NG NG P
(€l = 5 (€Y G YT Men + 5 (T Men )T Ga= (Fig + (A9 (4.60)

where (A = (C|f = % (C|TM¢py is a special parameter for an abelian transformation. This
leads to the definition of a covariant diffeomorphism,

cov< | < ‘FMé‘M (461)

Flg = —=(F

\/>
To proceed to components, it helps to again recall what we do in conventional superspace.
Starting with a 1-form, for example, we write

5§0VCM = EN}—NM = EMBEA]'—AB (4.62)
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keeping Cps with a curved index but rewriting £ and F with flat indices. Subsequently
projecting to df = 0 gives

5§OV m = mBeafozB|0:0 (463)

The steps for an orthosymplectic spinor are similar. The analogous procedure of (4.62) is
to flatten (F|, writing (F| = (F|Y~! ®'/2. This leads to
1 1
V2 V2

Using a very similar computation as that leading to (4.37), we find

5§ (Cl = —=(FP ' TMEM®Y? = — (FITac® Y101/ (4.64)

1
V2

The left-hand side can be rewritten as the variation of @ = ¢(C|V):

e x 0NOIY) = o {FINae V| (4.65)

el x (8 = 6 — God + i@ T (4.66)

where J;. = ngévm@. Let’s evaluate the right-hand side in two steps. First,
1 5 . 0 0
—(F|Tae* = —4k _ _ : (4.67)
V2 (0] (eb™ — b*e™) 0

Next, we evaluate V', Only the level one terms contribute because (4.67) involves only
a single raising operator. This means effectively we have Vg V=14 %FBFd\I/aﬁ + -
Evaluating this leads to

a b ] @ 0
T (5O = /3 [P~ (7T _ 4.68
e x ( 3 |V> V2 0 € pg — \I’ga(f'}’b)a ( )

Employing Dirac notation, we arrive at
_ = 1 =
5@ = —4k\@(p X & —APex Wj +ex p — Up x E"yb) +{'sd — iwa@ab Ve 5 Via
(4.69)

4.5 Comparison to component results

The component supersymmetry transformations for type II DFT were given in different
conventions in [10]. To match those results, we trade their indices p and p for a and a here,
while A there corresponds to m here. The y-matrices are related as

Y=, F=F AM=-n A=-A%. (4.70)

We fix the constant k = i in the constant torsion tensor (2.33), flip the sign for the dilatini,

PILPS = —Pa s PSLPS = —Pa (4.71)
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and rescale the Ramond-Ramond sector fields as

1 1
Cips = ——C7.,  Fyps = ~F7, . 4.72
JLPS 4\/§ i JLPS 1 Y ( )

The factors of v, and /2 are necessary to recover our conventions for the relation between

F and @,

F= \}5 (yaﬁa@ T 7*155@75) , (4.73)
and the overall factor of 1/4 is for normalization of the kinetic terms. Taking into
account these changes as well as the differences in our spin connection versus that
given in [10], one can show that the supersymmetry transformations of the component
fields (4.48), (4.53), (4.55), (4.58), and (4.69) all match precisely.

We should make a final comment about the normalization of the action of Jeon et
al. [10] in comparison to the bosonic action of Hohm et al. [7, 8]. The latter action is
normalized so that

Shkz = / dz d1%z <e—2dR(H, d) + i(F\S|F>>

1

= [ y=glee (R 400 - JHOP) - T LIFVR] @)

where the norm on p-forms includes a factor of 1/p! and we work in the democratic for-
mulation for the Ramond-Ramond sector.” The corresponding action of Jeon et al. is
normalized so that

1 1
SJLPS = /dlox dloi' 6_2d<R(H,d) + 5

—/dlo A0z e~ (R(H d) — itr(fﬁ)—{—fermions)

S tr(F JLPSJEJLPS) + fermions)

gSHKZ + fermions (4.75)

The rescaling in (4 72) is crucial to recover the same normalizations. Note that |H®)|?
and 1 |F 2+ 1 |F )| are typically normalized the same in the IIB duality frame so that

S- duahty takes a simple form.

5 Democratic type II superspace

Our last major task is to recover type II superspace directly from super-DFT. Unlike
the type I situation, type II supergravity is not unique: not only do we have IIA and
1IB supergravities, characterized by even rank or odd rank p-form field strengths in the
Ramond-Ramond sector, but also their timelike T-duals, denoted IIB* and IIA*, whose

In these formulae alone, we use the conventions of Hohm et al. for R and R, which differ from ours by
a sign.
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Ramond-Ramond sector is characterized by the wrong sign kinetic terms.'® Superspace
formulations of any supergravity theory are in 1:1 correspondence with their component
formulations; that is, given the component supersymmetry transformations, one can always
rebuild the superspace and vice-versa. While there are a number of references on type II
superspace, we will focus on the appendices of Wulff [43], which are useful for two reasons:
they are formulated in the string frame, and they treat IIA and IIB very similarly. Both
of these features are natural when we descend from double field theory.

The descent from super-DFT to conventional superspace is a somewhat involved pro-
cedure, with the primary technical hurdle being the parametrization of the supervielbein
in a convenient way. The main result in this section will be to recover a type II superspace
that is fully democratic, meaning not only that it treats Ramond-Ramond potentials and
their duals simultaneously (i.e. democratic in the sense of [44]), but also ITA and IIB (as
well as ITA* and IIB*) rather in parallel. This will match (after a simple rewriting of some
formulae) Wulff’s formulation of type II [43].

5.1 Double vielbein decomposition and the Ramond-Ramond sector in
bosonic DFT

As a first step to understanding how type II superspace emerges, we will review how
conventional gravity emerges from the bosonic double vielbein. In the chiral tangent frame
basis, the double vielbein may always be decomposed as (see e.g. [9, 10])

5 1 (6" b en? en?
Val=—| " | x = , (5.1a
\/i ( 0 4§ n) <nabebn nabebn> )
Vi — i €a" nabenE % 0™ —bpm (5 lb)
¢ \/i éin %énb 0 6nm ' .

2 and €,,® rotate separately under the two Lorentz groups, while

The two vielbeins e,
the Kalb-Ramond two-form b,,, is invariant. This is a rather generic decomposition, and
it follows simply by assuming that V" = %eam and V3™ = %é{” are both invertible
matrices. (This is essentially equivalent to assuming that the component H™" of the gen-
eralized metric is invertible.) The requirement that this be an O(10,10) element amounts

to demanding that e,,® and €,,* both give the same metric,

Gmn = €m>enNap = —émaénbng : (5.2)

Equivalently, (e71€)," is an element of O(1,9).
Using this observation, we may further separate V% into three factors, schematically,
V=V, x V., x Vj:

N 1 (6, b enP enP o2 0
Vma _ - m mn n n ). 5.3
ﬁ ( 0 5mn> X (nabebn nabebn> X ( 0 (6_16)ba> ( )

0Type IIA supergravity was formulated in [35, 36] by dimensional reduction of 11D supergravity [37].

Its massive deformation was introduced in [38]. Type IIB supergravity was formulated in [39, 40]. The
starred cases were proposed by Hull [29]. Type IIA supergravity was discussed in superspace in [41, 42]
and the IIB superspace was already employed in [40].

— 492 —



The last factor is an element of O(1,9) € O(10,10). If the full double Lorentz group is
gauged, then we may always discard this as a gauge choice. However, if only SO(1,9) or
SO™(1,9) are gauged, we must more carefully account for it. As argued in [9, 10, 19],
this factor is crucial for distinguishing between the various duality frames for the Ramond-
Ramond sector.

The spinorial form of the vielbein may also be written as a product of three factors,

V) =Sp x [Ve) x A (5.4)

where Sy is a Fock-space operator (i.e. it carries curved spinor indices on both sides), |V.)
is a bispinor-valued ket (i.e. it carries a single curved spinor index on the left), and A is
spinor Lorentz transformation. We are treating |V,) here as a bispinor-valued ket rather
than a ket with an additional flat spinor index on the right. Thus it is crucial here that V,
is purely a right-handed Lorentz transformation, and so we may write A simply by right
multiplication. In treating the spinorial vielbein asymmetrically in this way, we have to
give prescriptions for how each of these objects behaves. The Kalb-Ramond factor is

1 1
Sy = exp < — 4anbnm> = exp ( — QBmﬁnbnm> (5.5)

and acts as SbﬁmSgl = /™ and SbﬁmSgl = B + B"bnm. The bispinor valued ket acts as

1
V2

1

I"Ve) = 7

(Vo) +%lVeT)ea™,  TalVe) = == (Vo) = %IV )3 ) s em®

(5.6)

The Lorentz transformation acts as
=v=1  _Bx 3 -B/ -1 7
AL =3PAT =P (e e)y? (5.7)

As a sanity check the Lorentz transformation acting on (5.6) from the right gives, for

’V€A> = |Ve>$Aa

PV ) = 5 (e Vo) + V) ).
1

TnlVer) = 5 (em™1alVen) + IV enem™a) (5.8)

as we would expect.
The Ramond-Ramond field strength (F'| decomposes as

1
<F| = Z H<O’/Bml T /Bmmepmml (59)
7 P

where we employ the democratic formulation with every p-form field strength appearing
(with p even or odd depending on the duality frame). The flattened field strength is
generated by contracting with the ket |V/) and multiplying by a factor of the dilaton, e?.
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The effect of the Kalb-Ramond factor Sy is to replace (F| with (F| where F' = Fe~®. The
effect of the ket |V ,) leads to

(OB™ - BV o) = (det €)' /2™ e, ™, (5.10)

P

which follows from (0|T,, = 0 and (0|V.) = 25%(det e)'/2 x 1. The final Lorentz transfor-

mation gives

1 ~
F=e? Z H’yal"'apFal...apZ (5.11)
— p!

where Fy,..a, 1= €3, -+ €2, Fipy .o, and 7= 25%4)( is the flat vacuum.

P

5.2 Decomposing the double supervielbein

We want to repeat the above steps for the supervielbein. The details are given in appendix B
and we just give the results here. The superspace analogue to the parametrization (5.1) is
a product of three factors:

Y= VB X VEA X VS (5.12)

The first is built out of the Kalb-Ramond super two-form,

V)N = (%N Bﬂé%(M_)n) , (5.13)

The second factor Vg, is written, in a chiral decomposition of the indices, as

1 1o 55 &
—FEy? Ep® 0 —=Epn? Ep® 0

(Vea)w = \f M M \? aM M ' (5.14)
LEM 0 BN LEM 0 B ()

The two superfields Ejy;® and Ej® are related by a Lorentz transformation,
En® = EyPALY, (5.15)
a clear generalization of the bosonic condition, and the inverse vielbeins are defined by

EMEN® =67, EMEN® =6, EMEN® =6°, EMEN = E.ME)S =

(5.16)
The Vg factor is given, also in a chiral decomposition, as
5P V28,8 0 0 0
0 5o 0 0 0
—\/28ba gaB _ geag B ge 0 0
(Vs) AP - (5.17)
0 0 0| &P 0
0 0 0 0 0
0 56 0 |—v28Pe 597 — §eash 5o
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It consists of fermionic superfields S, and S5z% as well as the symmetric bosonic superfields
SaB S8 and S8, All these constituents transform as their indices imply under double
Lorentz transformations, while under the additional H;, x Hgi transformations,

1 - |
(5Saa = - Aaaa 55304 = - Agaa 5.18
NG NG (5.18)
559 = X pV25cleN A 5598 = (B 4 /2 5F@NH) (5.18b)

The Lorentz transformation A,P belongs to O(1,9), and so is characterized by two
signs, corresponding to the presence of timelike and/or spacelike orientation reversals. In
the event that it lies in the connected part (with no orientation reversals), it can be gauged
to the identity and then Vg, becomes, in the toroidal decomposition,

A
(VE)MA = (E]g EAM(E)am+a> : (5.19)

This leads to the conventional decomposition (2.9) modulo some redefinitions,

Eh® = Ex® + En®npe S,
Ey™ = Ex™ = Ex"me 7
§'F = §°F 4 52, 5P (5.20)

with the primed fields belonging to (2.9).

When the Lorentz transformation is more general, we encounter a bit of a puzzle.
Normally, we would like to factor out all right-handed Lorentz transformations to define a
physical supervielbein that transforms only under left Lorentz transformations. This would
suggest introducing a spinorial Lorentz transformation Adﬁ and defining a new gravitino
Ey® transforming under the left Lorentz group by

En®™ = ExA;7 (5.21)
We would expect this spinorial A to obey
v (=@ 57 =b a
A" ()5 85" = (3°)z500" - (5.22)

This fails! One obvious reason is that we are employing a chiral basis for the 10D ~-
matrices, which cannot account for Lorentz transformations that flip chirality (i.e. with
an odd number of orientation reversals). However, this fails to be possible even for a
combined time and space orientation reversal, where one would find a minus sign in the
above equation. The reason is that the correct relation for v matrices would read (in Dirac
notation) A55A " = 3PALE. For (5.22) to be satisfied, we need (Afl)g[; = (A)Bg and this
holds only for the connected part, SO (1,9) = OH:+)(1,9).

Luckily, all O(1,9) transformations may be understood as a fixed element A in one of
the four connected sectors times an SO*(1,9) transformation A. We write this as

AP = A,° AP (5.23)
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Then we choose Adﬁ to obey

As7 (585" = (P)aahs" - (5.24)
This leads us to define the following constant quantities:
(g = Pz AT () = =) (AH)F* (5.25)
This is equivalent using the full vector and spinorial A:
(V)ap = AT (P (AT, ()Y = —(")° (AT (AT (Ah;” . (5.26)

The reason we have included an additional sign for (7“)5‘5 is to recover the same Clifford
algebra as the standard ~-matrices

()as () + (1)a5(0)7T = 20" 857 . (5.27)

The four different possibilities correspond to each of the four duality frames IIB, IIA,

1IB*, and ITA*. We are free to make whatever choice we wish for A. The most convenient
choices are as follows:

1 I1B

. Rop..9 1IB*

A= 019 (5.28)
Ri.9 IIA
Ry ITA*

where R, denotes a sign flip of the a direction. Note that R;..9 is equivalent to Rg up to
a constant SO (1,9) transformation, but the former is more convenient for our choice of

~v-matrices. Keeping in mind that (’75)@ = (7")ap and (%)% = —(y2)*?| these lead to

(¥)as 1B ()8 TIB

. —(fyc)a 1IB* G —(70)"‘5 11B*

(1)az = o . (9= . (5.29)
—(y9)*F  1IA —(79)ap A
(fyc)aﬁ ITA* (fyc)ag ITA*

The & index for ITA/ITA* must be understood as the opposite chirality as a. Thus we
denote for the gravitino, for example,

Ey® =

Ey®  1IB/IIB*
{ M / (5.30)

Eve  TIA/IIA

where prime for IIB/IIB* denotes this being the second gravitino.
One way of understanding these expressions for (y%) aj 18 via the supersymmetry
algebra,
k

k
{Qon QB} = _E(VC)aﬁPCy {Qda QB} = _E(Vc)aﬁpc . (5'31)
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For IIB, the second SUSY is just a copy of the first. For ITA, the extra sign factor in (5.29)
is needed so that both chiralities may be combined into a single 32-component super-
charge with

k _ koo
{Q7Q} = EVC’Y*O ! PC = ﬁ’y Clﬁ) Pc7 (532)

which is the natural truncation from the D = 11 supersymmetry algebra. But we are
also allowing here for the possibility of the starred supergravities. In the formulation we
are using, these have the wrong sign in the supersymmetry algebra from their unstarred
analogues. Alternatively, one can multiply all upper/lower tilded spinors by +i (i.e. make
an imaginary similarity transformation) to restore the conventional sign for supersymmetry,
but at the cost of changing the reality condition for tilded spinors (and the Ramond-
Ramond bispinor).

The upshot is that we now can, without any gauge-fixing, split Vg into Vg x V) where
Vg is given in the toroidal basis by (5.19) with

Ex™ = (Ex® Ex®, En®) (5.33)

and V), is given in the chiral basis as

P 0 0l0 o0 0
046° 0|0 0 0
0 0 6%l 0 0 0 .
(Va)aP = — OBAb — | AP = ACAS (5.34)
00 00 A2 0
0 0

00 0 (A7)

Part of this is an SO*(1,9) transformation, which can be eliminated by a gauge transfor-
mation; the remainder can be thought of as a constant similarity transformation on barred
vector indices, converting barred gamma matrices (’?5)@ to (7*)55 in (5.29).

5.3 Gauge-fixing to democratic type II superspace

Let us now analyze the structure of type Il superspace that emerges from double field
theory. This will be a democratic formulation with the constant Lorentz transformation
A defining which duality frame we are part of. Although it is possible to do this analysis
without fixing any gauge, it will be significantly simpler if we impose

i

_ b _ 4
10

Saﬂ — S@ =0 gac _
’ 10

(") Pxp, S =—(7)Pxz,  (5.35)

where x, and yg = AdEXg will be the component dilatini. Note that these can be given
gauge-invariant definitions as

Xa = =18 (Va)ga, X = —iS* (2)gs - (5.36)
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It will also be computationally simpler if we gauge fix V,, fixing A =1, leaving Vp
to just be the constant transformation A on barred vector indices. This means that tilde
spinor indices are identical to barred spinor indices (because AsP = (5(36?), but it will be
useful to keep the tilde notation anyway.

The simplest way of handling the constant A transformation is to simply declare that
we will treat it as a constant similarity transformation on all barred vector indices. Pushing
that through Vg, we find

VMA _ (3—] BM]\;()”) <E](\)[B EBN(()_)bn+b> % (VS)BA (537)

where (Vs)p? has the non-vanishing components (aside from the identity) written in the
chiral basis as

(Vs)b® = V2S5, (Vo)™ = —V2 S,
(Vs)ab — _\/ﬁsba ’ (VS)EB — _\/isba’
(Vs)ocﬁ — _Sbanbcscﬂ ’ (Vs)ai — Sbanbcscg’
(Vs)*? = (Vg)Po = 50 (5.38)
Note that because of the sign choice made in (5.25), the last term in (5.35) picks up an
extra sign,
ad bB /A — a(A— & i a\ap
§°% = SPPAT AT = — 5 (0 - (5.39)
Now imposing the section condition ™ = 0, one can show that
. E Mo
D= (Vs)aBDp = ( Ao M) . (5.40)

Using Vg to define shifted fluxes,
Fesa = (Vs)c® (Vo)B® (Vo) u Fomw (5.41)

these turn out to be given in the toroidal basis as

Fepa=Hepa, (5.42a)
Fopt = Cop™ + 215[0(VS)B]AI(V§1)A/A , (5.42Db)
FeBA = De(Vs)BP(wgh) pl A 4 De(Vs)Blp(vgh) P (—)d, (5.42¢)
FOBA =0 (5.42d)

The H-flux Hopa is given as usual by H = dB = %EAEBECHCBA, and Cop? are the
components of C4 = dE4 = %EBECCCBA. For the dilaton flux we find

Fa= —215A<P + fABB(—)b ) FA = JO'"ABB(—)b (5.43)

where we have related the DFT superdilaton ® to the supergravity dilaton ¢ via & =
e~ 2% sdet(Epd).
Henceforth we drop the ° notation and denote simply Da = E4™ ;.
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5.4 Torsion and H-flux constraints

The analysis of the torsion and H curvatures is straightforward. We proceed by dimension.
It will be useful to write some expressions with DFT fluxes and connections that carry
barred vector indices as intermediate formula. These should be dressed with A. Rather
than clutter formulae with numerous A we will simply write such barred vector indices as
tilded vector indices, i.e. Vz = ]\aBVg-

Dimension < 0. At dimension —% and 0, the H-flux is given by

Hoso=Hg,=0, (5.44a)
1 k
H,g, = ﬁﬂﬁa = ﬁ(%)“’ﬂ’ (5.44Db)
H _ ! = i 5.44
e = /57 pa _ﬁ(%)w (5.44c)
The dimension 0 torsion components are
a 1 a k a
Top" = Cyp" = = F3s" = 75 (1) (5.45a)
Tﬂ_cﬂ_ifié_i( I (5.45Db)
¥ T8 T Rl T RN A :
Tvga = C’YBQ =0 (5.45C)
Dimension 1/2. At dimension 1/2, we find
o 1/ o o o
Hipa = Fava = 5 (Fova + Fyva + Foga + Fiia)
o 1/ o = o o~
Cip® = Fap® = 3 (]_—%a + Fap® + .7'—%& + .7:%3) ,
o 1/ o 1~ o T o T
0= f’?ba _ 5(.F';yba, + f;}/ba + f’yba +.nyba) ) (546)

Making use of the third relation, one can show that

o

Hiba = Fivis = Fagn = Favis = Fapa =0,
Cp = ]i—'yfaa + ]i—’yfaé - _QwBé = Q= QvBa = T =0

Cs" = Fp + P = =09 = Q3" :=0° =  T3" =0 (5.47)
In the second and third lines, we have fixed the supergravity spin connection {25, in terms

of the DFT spin connection so that the corresponding torsion vanishes. It is also useful to
use (5.46) to show that

ikv/2 ikv2
Q'yba + Q,Yf)a = T(’YbaX)'y ) Q’yba + Q:/Ba = _7(7&1){)& . (548)
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The remaining torsion components TWAO‘ can now be computed:

Tip" = Tip% = T5% = Ty = 0, (5.492)
ik
Ty5" = —=(2xX9%)" = (Va)ys (¥ X)) 5.49b
V8 \@( X(:08)” = (a)ys(1X)°) (5.49b)
a ik a a. \&
Tip" = 5(2 X795 " = (7a)55(7*X) ) : (5.49¢)

The spinor derivative of the dilaton follows from (5.43) and is identified as the dilatini,
ik ik
DaSO = Exa 5 D&(p = %Xd . (550)

Dimension 1. At dimension 1, we have

o

ji—cba = Hepg ]:cba = chaa j—cba =0, ]°:-cba =0. (551)

This implies, using Ty, = 0 to compute g,

jr(:ba = 2\1/§ (cha + Cepa — Ceap — Cbac) = 2\1/5 (cha -2 cha) )
ﬁcBé = 2\1/§ (cha — Cepg + Ceap + Cbac) = 2\1@ (cha +2 cha) . (5.52)

This gives the supergravity €2 in terms of the DFT one:

1 o o 1
 (Fir — Fapa) = —
75 Feba = Fem) = 5

cha = c
The other dimension 1 torsion components involve T:ybé‘. First, we compute

(Qeba — Qpz) — ncde’Yerf)g — 0eaST Q51 (5.53)

. 1 1 o o 1
Typ* = \/if'yga - Zchd(’YCd)va = _m(fbe& + ]:Bcd)(’YCd)va = —§Hbcd(76d)vav (5.54)
and similarly
- 1 5
Tfyba = +§Hbcd(70d)’~ya : (5.55)

For the remaining torsion components, we have

Top® = Cp® = V2Fp® = —V2(Vs) P Fyp = kvV25% ()55, (5.56)
and similarly,
Top® = —kv/25% ()5, - (5.57)

We emphasize that the results given here for the torsion and H-flux tensors are actually
gauge-invariant under the higher A\ symmetries and the right Lorentz group (as they must
be, since they are built out of invariant potentials) and could have been derived without
imposing the gauge (5.35).
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5.5 The spinorial supervielbein and Ramond-Ramond field strengths

To completely characterize type II supergravity we must also derive the Ramond-Ramond
field strengths. This will require some knowledge of the spinorial supervielbein. It turns
out to be easy enough to work in a generic gauge here, so we will not impose (5.35).

_ Recall that we had introduced the spinorial supervielbein in section 3.3 as an operator
Y converting the super-Fock space to the spinor Fock space. Just as we decomposed the
bosonic spinorial vielbein in (5.4), we will split up the spinorial supervielbein in a somewhat

asymmetric way, writing
Y =SB xVerxVs . (5.58)

The first factor Sp is a pure Fock space operator:
1 1
Sg :exp(—4FMNBNM> :exp(—QBMﬁNBNM> (5.59)

Next, Vg is an operator converting the Fock space to the spinor Fock space. It acts as
TMYpr = Ve - TAWVEN) A (5.60)

Decomposing this explicitly gives

- 1 .5 1 o
T"Yer = —=7*VYeaEM + —=7Veav* B

V2 V2
+ ﬂV*WEA?*baEaM + \/57*WEA5'*baEEM )
= 1 = 1 = O _
(=)"TmVEr = EEMa'YaWEA + EEM%*WEA%
- \/§EMa ’Y*)//EA’_Y*ba - ﬁEMEV*VEA’_}’*bE . (5-61)

As a sanity check, one can confirm that the Clifford algebra is satisfied. Finally the factor
Vg is given in terms of flat T4 matrices as

5 1 =1 1 — 1 1 —
Vg = exp ( — 5r,lrgsﬂa — 1rarﬁsm — Zrargsﬁa — §J§rarbsba — 2J§rarbsba) .

(5.62)

This must be evaluated acting to the left on a bispinor-valued Fock space.

Now we can analyze the connection between the orthosymplectic Ramond-Ramond
spinor field strength (F| and its flattened version. First, let us recall that (F| is given by
the conventional expansion

(Fl=>_

1
H<O"BM1 ...BMP‘F'MP_“MI ) (5.63)
- p!

We have asserted its flattened version to be given by

<JAf! = (ﬂfﬁ 12 — _4k <<o£%a 8) . (5.64)

~ 51 —



Using the decomposed spinorial vielbein, this can be rewritten as
(FIVs' = (FYpy @'/, (5.65)

where (F| = <]—"|@B is given by (5.63) with F replaced by F = Fe 5.

What has happened here is identical to what occurs in the bosonic analysis: the
polyform F = _ F, that naturally appears in double field theory is a complex of closed
p-forms that transform into each other under the B-field gauge transformations. They are
related to invariant field strengths ]?p by

]?:Zf' :Z}"pe_B:]:e_B. (5.66)
P P

The polyform F is not closed but obeys dF = -F AH.
We are now going to separately analyze the two sides of (5.65). Let’s start with the left:

AF -1 _ibaXa —XaXa
< |WS <O| <baba + Saa ZbOéXa)

=~ (o] (b + ibX' +ix + § — x¥') - (5.67)

In the first line we have written the expression in Weyl notation and in the second line we
have repeated it in Dirac notation. Recall here that in our convention for Dirac notation, a
Majorana fermion 1) decomposes as 1) = (¢q,®) and 1) = pTC = (Y, 1), and similarly
for barred indices, with these spinors denoted by primes. We emphasize that no gauge
fixing was required here; this is a consequence of (5.64) being invariant under Hy, x Hp.

For the right-hand side of (5.65), we will need to do some work. First, we define, here
in this section alone, flattened versions of the Fock space raising operators,

g =M EN, Bt = pVEyT, 5=V E,T (5.68)

Note that we are using Ej/“ rather than Ej;® here. This will be temporary but very
convenient to avoid introducing just yet the Lorentz transformation taking us from tilde
to barred spinor indices. Now we require the following lemmas:

(018 - Yy =y (Z] x BY?, (5.69)
(018 - B2 B4V pp = 1™ M (Z|3ub% x B2, (5.69b)
<0|Ba1 . ﬂapﬁdﬁﬁ)}EA _ ’}/ap".al <Z|bész % E1/2 ] (5.69C)

These expressions involve the flat bispinor vacuum

(2] = (0Ppr =

5573 (o] K (5.70)

where K is the 32-component Dirac bispinor corresponding to the Lorentz transformation
A,P. Note that the vielbein superdeterminant F is given by

E = sdet (EMa,EMa,EMd) — sdet (EMa,EMO‘,EMa) : (5.71)
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and can be equally written with Fp/% in place of Ej®, since A&E lies in the connected
part of the Lorentz group. The proofs of (5.69a)—(5.69¢c) are fairly straightforward. One
can easily show that (5.69c) follows from (5.69b), which follows from (5.69a). The proof
of (5.69a) is inductive. The initial step is

(01¥ea = =75 (0l x BV2. (5.72)

25/2

To show this, we first decompose %EA into the product of )A/}E and }A/}A where Ep 4 =
(Ea®, Epr®, Epr®) lies in the connected part GL*(10[32). Then (0|Vg = EY/? x W(o]l
follows exactly as in the component calculation. Then the action of )ZA decomposes into
two parts: one is the vectorial AaB transformation, which generates the Dirac bilinear A;
the second is the connected spinorial transformation Agﬁ, which generates its determinant
(which is unity) upon acting on the spinorial Fock vacuum. The inductive step follows by

observing

~ 1 ~ —
(O] -+ 5P = w[ap(mwal- B Vpa) + 57 (0181 -+ BV )3 AR

1
E1/2(2 W+ (215 A ‘“"’)

1
_E1/2<2 ap: a1<Z|+ 27 7[ap 1By a”]<Z’>

Now we can apply the lemma (5.69). Let the p-form complex be given in flat indices by

~ 1 A Ap 2
F:ZH«)W L BAP A A, (5.74)
P
where for now we continue to use Epd = (Ey®, Ear®, Ear®) to flatten indices. Comparlng

this expressmn to (5.67), it is clear that the only non-vanishing components are ]-"ap...al,

fa ap_1--a1 > ]:a ap_1-ar> and ]: . This means that we can directly compute

ap—2--al
(FPea®™? = el ) ( R
1 ~ 1 —
+ (p — 1)!'}/3‘?71 alA bafaap_y"al + Mrya}Fl alA bafaap_y--al
1 ~
+ H,}/ap..-alj{ Fap--~a1>~ (575)

The factors of ~, in (5.69) vanish when we account for the chirality of the bispinor vacuum
and the even/odd degree of the p-forms F,. To fully match this to (5.67), it helps signifi-
cantly to first rewrite this expression to use 32-component Dirac indices. We arrange them
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as follows:

<J?‘WEA @—1/2 ﬁew O’Z( ‘,.)/ap 2° a1A ( fap_?.alb)

1 1
-1 -1

1 ap-a T
T f) (5.76)

ap—1- alA (\IJ]: b)+

ap—1--ral

ap—1- alA (b/‘ll/f )

ap—1-ral

where we introduce notation for the Dirac spinors and bispinors here:

Faay 1o
]_- Qap—1---al ]_- ~
\I’/ap 1---a1 = ( pO ) I ‘Ijap 1---a1 = (0 ‘Faap_l---m) 9
- 0 Faaay, o-ar
]:ap72"~a1 = (0 po ) ) (577)

Next we rewrite (5.67) as a sum over y-matrices, using the completeness relation

@ _ 3% ; ;!,yap...alA % Tr (@A_l')/al---ap) (5.78)

where () is a bispinor with a left spinor index on the left and a right spinor index on the
right. Applying this to (5.67) gives

S k 1 - L o N -
<]-“Wsl = -3 Z Eﬁyap"'aljﬁ x Tr ((o\(bb' +ibyY + iyt + 8 — XX/>A lval...ap) (5.79)
— D!

Now comparing terms is straightforward:

~ Eo
fapﬁ...al = —ﬁe Y Kayoap_o (1 — 74) (5.80a)
-7 ik 1
Ul e = -5 XK aray (5.80D)
7 ik _
U e = +ﬁ ? K yaray 1 X (5.80c)
~ k B 1
A . /
Fapay = \/Qe Tr (($ XA fyal...ap) (5.80d)

An explicit Weyl projector is needed in the first field strength to emphasize that only
certain chiralities are present; for the other field strengths, the chirality restriction follows
from the chirality of x and S.

These field strengths are not quite the ones we want, because the barred spinor in-
dices transform under the right-handed Lorentz transformations. If we apply the Lorentz
transformation A to the field strengths (and also to xa), we find that A is replaced by the
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constant A above. Now, what kind of object is K? Tt is a constant spinorial Lorentz trans-
formation corresponding to the vectorial A,P. For the four duality frames, it is given by

m k= (6&5 0 ) , (5.81a)

0 0%

B+ A= (‘5@5 0 ) , (5.81b)
0 —o,

ma A= ( 0 W) , (5.81¢)
Sag 0

ma* K= ( 0 _5dﬂ> . (5.81d)
ds5 O

The overall sign choice for each of these is ambiguous, and corresponds to the Zo ambiguity
in the Ramond-Ramond sector. The choice we have made above is rather simple and lets
us easily make contact with the results of Wulff [43] . In Weyl notation, we find

R I {55@’(%1...%2)% IIB/IIB* (p odd) (5.82)

Fhany gom =~ 56 ° X
2 055 (Varap-2)’a TIA/IIA* (p even)

with the relative sign conventions for starred and unstarred duality frames chosen to
match here. The reversed ordering of the vector indices follows from the construction,
and writing it this way eliminates additional sign factors in [43]. For the dimension 1/2

components, we find

+X3 6”5 (Yay--ap_1 )P« 1IB (p odd)
4 v B B *
- k X50” 5 (Yar-a,_1)’a 1IB* (p odd)
Fay roay = ——e® x {770 PR , (5.83a)
V2 %507 (Yayay 1 )pa TIA (p even)
—Xp50 # (Yay-ap-1)pa  1IA* (p even)
R " 6a% (Yay--a,_1)a’xs 1B/IIB* (p odd)
]:dap71~~-a1 = Le—cp X s . (5.83b)
V2 Sae (Yaroway 1) x5 TIA/TIA* (p even)

Finally, the component with all vector indices, which is often called the supercovariant
field strength, is given by

S 65° (Yar-ap) o — XaX 3 6” 8(Yar—a,)"*  1IB (p 0dd)
2k )80 O et XX 05, ) T (podd) 550
V2 S 555 (Yar-ap) 0 = XaX5 07 (Yay-ay)p®  IIA (p even)
S 555 (Yar--ap) a + XaX5 07 (Yay-ap)s®  IIA* (p even)
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The results for ITA and IIB match the expressions given by Wulff [43] for k = —iv/2 (see

also [30]), up to a redefinition

3 16k .3 3 16k 3

S‘\o;\gﬂff = 2 S, S\g\zﬂﬁ = 2 s (5.85)

Note that the bispinor of [30, 43] is chosen to be antisymmetric as opposed to symmetric.
Although the starred supergravities were not explicitly given in [30], they can be easily

derived by analytic continuation from the unstarred cases. Starting from an unstarred su-

pergravity, one relaxes the reality condition on all fields, then makes an imaginary similarity

transformation in superspace,

Ds — —iDs,  Ey® = iEyn®, Yo — —ixa, S 898 (5.86)

L' The transformation of the dilatini

and then reimposes the original reality condition.
follows because they are the spinor derivative of the dilaton, and the redefinition of .S follows
from its embedding in the DFT supervielbein. Alternatively, both redefinitions arise by
keeping the higher dimension torsion conditions in section 5.4 unchanged. (The dimension 0
torsion has flipped sign as we have mentioned in (5.31), so that the supersymmetry algebra
in the tilde sector has the opposite sign.) But we also must alter the Ramond-Ramond
sector with an imaginary factor, because otherwise the dimension 0 constraint (5.82) would

imply that the field strengths are imaginary. We choose to flip
F —=iF (5.87)

so that the dimension 0 constraint (5.82) is unchanged; this is then responsible for the
well-known sign flip of the Ramond-Ramond Lagrangian. One can then easily check that
the conditions for the starred supergravities in (5.83) and (5.84) follow from their unstarred
analogues.

5.6 Summary of democratic type II superspace

Let us now summarize the results for the democratic type II superspace that emerges from
double field theory. It consists of a supervielbein Ejy4, a Kalb-Ramond super two-form
B, a scalar dilaton e=2%, and a set of Ramond-Ramond super (p — 1)-forms CAMI...M]%1
with p even for ITA/ITA* and p odd for IIB/IIB*.

The supervielbein decomposes into a graviton 1-form Ej/® and two gravitini Fj;% and
Epn® (both Majorana), where the & index is either the same chirality as a or opposite,
depending on the duality frame:

(B, uBjuB
Eyi={0" . (5.88)
Eare  IIA/IIA®

11 Alternatively, one can not make the similarity transformation but simply Wick rotate Ex to now be
imaginary (and all consequences of this). This keeps the the type II formulae, including the supersymmetry
algebra, unchanged.
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We employ tilde y-matrices given by

()ap TIB (v)*¢ 1B
—(7)ap  1IB* | () B
(")ag = 5 . (9= : (5.89)
—(y9)*" 1A —(1)ap HA
(y9)*?  IIA* (19)as TIA*

The supervielbein is subject to local Lorentz transformations

1 - 1 = -
SEM® = —Ev®N", SEN® = _i(SEMﬁ(’Yab),Ba)‘aba 0By = —15EM5(’Yab)/;>a)\ab -
(5.90)

The Lorentz group is restricted to SO (9,1) and gauged by a composite spin connection
Qura®Z. The Kalb-Ramond two-form and Ramond-Ramond p-forms transform as

6B = d¢, (5.91)
8Cp 1 =dNp 2+ Ay aAH . (5.92)

The torsion tensors T4 and field strengths H and ]?p are given by

1
T4 =dEA + EB AQpt = 5EBECTCBA, (5.93)
1
H =dB = gEAEBECHCBA , (5.94)
N ~ ~ 14 I
Fp=dCp1 +Cp3NH = HE o BETPFg Ay - (5.95)

The non-vanishing torsion tensors are given through dimension 1 by

k k
Top® = NG (Y)as T55° = NG (Y)ap (5.96a)
ik 5 ik - "
Ts" =7 (2x039)% = (a)s(r™0)%), Tt = V2 (2x685)" = (0)550"0%)
(5.96b)
Ta__lH (cd)a T~d_1H (cd)~5v (596)
'yb—8bcd'7 ) vb—8bcd7 o) -J0C
T3 = kv25%7 ()55, Tp% = —kv/2.5% ()6, . (5.96d)
The dilatini x, and x4 are given by the spinor derivatives of the dilaton
ik ik
Dap = T5Xa,  Dav=5Xa - (5.97)
The non-vanishing components of the Kalb-Ramond field strength are
k k
Hwﬁa = ﬁ(%)w, H:yﬁa = _E(Va):yga Hape (5-98)
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The non-vanishing components of ]?AI.UAP are given in (5.82), (5.83), and (5.84), which we
do not repeat here. The supercovariant Ramond-Ramond bispinor is defined by

o (S A F () 657 B/TIB (p odd)

-~ pa
S — —  x
16k\/2

(5.99)
S 5 Fara, (Y4 )2 6% TIA/TIA* (p even)
To match conventions with [43], one should take k = —iy/2.

A subtle issue here is that the p-forms in the Ramond-Ramond sector are not only
democratic in the sense of including the dual forms [44], but they also include so-called
“over the top” forms [45], superforms of rank greater than the spacetime dimension. This
can be traced back to our use of the completeness relation for the y-matrices (5.78) in the
expressions for the field strengths. For IIB/IIB*, the odd rank field strengths run from F
to .7?11, where .7?11 has one or two fermionic form indices. The latter is built from a 10-form
C1o [46, 47].12 Similarly, ITA /ITA* runs from ]?0 to ]?12. The superform CAH has no bosonic
part. The O-form field strength Fo (which has no potential in a conventional sense) is the
Romans mass [38].

5.7 Relation between superspace and DFT component parametrizations

As a final step in this section, we will give the dictionary between the type II superspace
and DFT component parametrizations of the DFT supervielbein. Incidentally, this will
also yield as the dictionary between the component fields of type II supergravity and their
DFT analogues.

First, let us give a special decomposition of the square supervielbein Ey4 =
(Ex?®, Epr®) used in (5.12):

om0 enb 77an em” wmd
Eyt=|_  _ |x =1_ ] (5.100)
:ﬂn 5ﬂu 0 ¢ﬁ5 :ﬂnena ¢ﬂa + :ﬂnwna

We presume ¢ and e are invertible, so the inverse E4M is given by

B g i R
’ ) 0a? = e . (5.101)

The field e,,® is the left-handed vielbein. Analogous formulae can be written down with
em® = enPAp? and ¥z = AzPYpY.

The field ¢, appearing here can be identified with the same field in (4.7). For the
bosonic double vielbein in Vy of (4.7), we use the decomposition (5.1). Then e,,* defined in
both formulations coincide, and by, in (5.1) coincides with By, (as we would wish). The

2Note that there are two 10-forms discussed in these references: a doublet and a quadruplet, which
are implied by SU(1,1) covariance, that is taking the full set of S- and T-duality transformations into
account. Similar results are implied by F11 [48]. Here we have only a single (and singlet) 10-form implied
by T-duality.
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remaining dictionary of fields in (4.7) is as follows. The fields that live purely in superspace
(i.e. the components of V_5 and V_; ) are given by

By = By — E(@" By
EMy = ¢p*Ea™ = —5,™,
Bmi = 09" Ea” BN = B — 25" Byn - (5.102)

The constituents of V1 are given by

1 1
\I/aﬁ = ﬁeamwmﬁ + \/isaﬁ ) \Ija - ﬁeamwmﬂ )
_ 1 — — — 1 =
V" = 7€5m¢m’8 + \/555/8 ) \Ilaﬁ = eamwmﬁ (5.103)

V2

The component DFT gravitini lie in the second column. Taking the ~-trace of the first
column gives the dilatini relations

Po = \}iwmﬁ(’ym)/ga +iV2Xa Pa = \}ilbmﬁ(’?m)ga +iV2xz, (5.104)
where 4™ := 7%¢,™ and 3™ = 4%ez™. Finally the components of V. are
SoP = gob 4 geloay, B) - goB — gab | gel@y, B) (5.105)
SoP = goF 4 %Sb%bﬁ + %S@wg“ . (5.106)
The last relation can be rewritten in terms of S as
SoP = goB _ %gmn Do (5.107)

This relates the two component expressions for the Ramond-Ramond bispinor.

It is an interesting exercise to check this relation explicitly using the two different
expressions we have for F. The expression in component DFT is (4.39). To derive the
analogous expression in type Il supergravity requires a bit of work. First, recall that the
polyform Fis given as an expansion in tangent space components, i.e.

N 1 N
F= Z Zj dz™ - da™P Fy oy
P

~

1
— — mi ., .. mp al ., .. ap—2 ap—1 ap
= § o dz dz €my €my_o (emp_1 €m,, Fap-~-a1
oD

~ PN
ap—1 o ap—1 (6% Nl
+p€mp,1 P ¢mp Faap,lwal +p€mp,1 P wmp Qap—1-a1

+ 00 = 1) Yy s Vi, P ) (5.108)
Using the explicit expressions (5.82), (5.83), and (5.84), and then rewriting as a bispinor
using
Ifﬁ ) P al--a 1 ) P al--a
=€ zp: IT!Fay”ap'Y pZ = ﬁe . IT!Fal...apq/ PA (5_109)
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we find

_ 1 _ T -, 1 ., 7 -
F=—4k <$ —xX + 57’”% X + X VA" — 5 ¥m X'+ §7mx U
1 — 1 - _ 1 -
- Z'Ymn'(ljm 7/11/1 + Z¢m ?Z)hm" + 5’7[m¢m 77[)7,1’7”]) (5.110)

This indeed matches the component DFT result (4.39) upon applying the dictionary above.

6 Conclusion and open problems

The goal in this paper was to define the supergeometry of type II double field theory in
superspace and to provide the tools to derive component DFT as well as conventional type
IT superspace, building on the progress made in type I [20]. As in type I, we showed that
one can take all torsion and curvature tensors to vanish through dimension two, except for
the basic dimension zero constant torsion tensor associated with supersymmetry. It was
crucial here that the tangent space group be extended beyond the double Lorentz group.

We further built on the discussion of orthosymplectic spinors in [28], giving a prescrip-
tion for their constant field strength, as well as a complete description for how to transform
between “curved” and “flat” orthosymplectic spinors. An interesting result that came for
free was a unified description of democratic type II superspace in section 5.6.

There are several additional avenues one could pursue. We highlight a few below.

Generalized type II DFT and supergravity. In analyzing the Bianchi identities in
section 5, we took pains to separate the Bianchi identities for 7ap¢ from those of the
dilaton torsion 74. We showed that no data from 74 was necessary to constrain the
dilaton-independent torsion and curvature tensors through dimension two. Moreover, the
constraints imposed on the dilaton torsion and dilaton curvatures (through dimension two
at least) could be deduced purely from their Bianchi identities without supposing the
existence of a superdilaton field.

The reason we organized the analysis in this way is that Tseytlin and Wulff have shown
that if one starts with conventional type II superspace and supposes only the constraints
of k-symmetry, one can show that one arrives at generalized type II supergravity [30] (see
also [49]). This is a formulation of supergravity where the dilatini are not presumed to
arise from the spinor derivative of a dilaton. In addition to the usual supergravity fields,
one finds two vectors at dimension 1, denoted X, and K®. The latter is a Killing vector of
the entire supergravity multiplet. In standard supergravity, K vanishes and X, = Dy¢p.

The constraints we employed for double field theory in superspace are the exact ana-
logues of the x-symmetry constraints, and so if we were to not suppose the existence of
the superdilaton, it is more or less obvious that we should recover the generalized type
IT supergeometry of Tseytlin and Wulff by generalizing the bosonic discussion of [50] to
superspace. The idea is one would replace dxqlog ® in the definition of the dilaton flux
F4 with a more general vector that does not obey the section condition. The dilatini, the
vector field X, and the Killing vector K* should then turn out to be various components
of this quantity. It would be interesting to work this out in detail.
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Green-Schwarz action in double superspace. The work of Tseytlin and Wulff was
inspired by the question of whether k-symmetry of the Green-Schwarz superstring uniquely
selected out the constraints of 10D supergravity. In light of that, it would be natural to
try to formulate a GS-type action using the doubled supergeometry introduced here. Such
a doubled worldsheet was discussed by Park already in a flat space background [51] (see
also the work by Bandos [52]). This was generalized to include fermions to second order
(along with the Ramond-Ramond fields) for more general backgrounds by Sakamoto and
Sakatani [53]. A complete formulation should be possible, and one would expect the k-
symmetry of this action to lead to the constraints we have imposed on T45¢. A very similar
idea (in Hamiltonian language) was the motivation for [26], where constraints on torsion
were motivated also by k-symmetry. This is a topic we are currently exploring.

Non-geometric backgrounds. Recent work has emphasized that conventional super-
gravity backgrounds (i.e. with an invertible metric and two-form) are not the only allowed
generalized metrics in double field theory [54-56] (see also [57] in exceptional field theory).
One such example is the Gomis-Ooguri non-relativistic string background [58], which in
the classification scheme of [54] is a (1, 1) non-Riemannian background. This was already
discussed in the context of the doubled Green-Schwarz superstring some time ago [51].
This should be able to be addressed in type II supersymmetric double field theory, both at

the component level and in superspace.'?

Exceptional superspace. A final fascinating topic is the generalization to exceptional
field theory. It is well-known that the exceptional groups Ep(py possess O(D, D) subgroups,
and so one might consider the embedding of O(10,10) into E1;. In fact, an early discussion
of the Ramond-Ramond sector of double field theory (at least in the ITA duality frame)
was found in a level decomposition [12] of the E1; formulation of West [11, 59] (see also the
recent work on Eqj; [60, 61] and its supersymmetrization [62]). A natural avenue would be
to explore the lower levels of the supersymmetric version of Eq; by attempting to encode
OSp(10,10|64) within it. This would involve geometrizing the abelian (A| transformation
of the Ramond-Ramond sector and encoding the Ramond-Ramond potentials (C| into the
supervielbein itself. Such an approach has already been explored implicitly by Hatsuda,
Kamimura, and Siegel [27], who attempted to geometrize the Ramond-Ramond charges
that appear in the supersymmetry algebra. This could be a fascinating springboard to
formulating Eq1 in superspace.
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A Conventions for spinors and ~y-matrices of SO(9,1)

We summarize below our conventions for SO(9,1). The metric 7% has a mostly positive
signature. The 32-component gamma matrices 7%, charge conjugation matrix C, and
chirality matrix ~, are given by

o 0 (YMap (8P 0 [0 5%
7= ((,ya)aﬁ 0 ) ) Ve = ( 0 _5a5> , C= (50/8 0 ) (A.1)

and obey
(A =20, () T=0y 07, (1) = —CrCt, Ala. . qmol = caraing (A 2)

The matrices (7%)as and (v¢)* are 16-component Weyl sigma matrices in 10D, but we
denote them ~v* for convenience. A 32-component Dirac spinor % is written in terms of

b= (i) (A.3)

For a Majorana spinor, its Dirac conjugate is the same as its Majorana conjugate, with
P =v"C = (p* va) - (A4)

Our ~-matrices are chosen to be Majorana (i.e. real), so that the B-matrix is the

16-component Weyl spinors as

identity. Then the Majorana condition is simply * = 1. An explicit realization of 10D
Majorana ~y-matrices follows from the Majorana representation of SO(8). There one em-
ploys 8-component Weyl matrices (o) o> Where here (and here alone) a and & denote the
8 and 8. of SO(8). All SO(8) vector and spinor indices are raised and lowered with the
identity matrix, and we choose o' (02)T ---67(0®%)” = 1.1* Then for 10D Majorana gamma
matrices, we have in 8 x 8 block notation

=0 = (e )+ s === ()

=0 = (3 5) (A5)

These 10D ~-matrices have a natural lift to 11D, where we identify 7, = ~'° and
C11ip = Cs.
For the right sector of SO(1,9), we take very similar conventions, with

F=nrt = (Pa=0as, GV =-("". (A.6)

When we write SO(1,9) spinors in Dirac form, we prime the spinors following [10]:

(). wmvren (). an

1Gee e.g. [63] for a discussion of SO(8) g-matrices and the connection to the octonions.
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B The general decomposition of the supervielbein

In this appendix, we elaborate on how to construct the general form of the supervielbein in
type II double field theory in a way that is well-adapted to conventional superspace. This
construction in many ways mirrors that of the bosonic case discussed in section 5.1, but
involves key additional elements.

First, we identify some specific components of the generalized vielbein as follows:

1 1 =
= ﬁeaM, VM = EggM . (B.1)

In analogy to the two sets of invertible vielbeins e, and ez™ in the bosonic case, we

Vol =BM, Ve =Eg VY

propose the following two sets of invertible vielbeins:

&M &M
EM=|EM]|, EM=|EM]|, (B.2)
EM E-M

That these should be invertible is a relatively mild assumption; it is true outside of a
measure zero set. However, note that both E,™ and Eg™ appear in E4M and in E4M.
Moreover, they £4M and £4M do not transform uniformly under the Lorentz groups. €4
involves a left vector and both types of spinor, while £4M involves a right vector.

Let their inverses be denoted £y and £y;4. We are going to again give special names
to some of these components:

Ent = (EMa Eur® EMa) . Eut = (EMg En® EME) . (B.3)
Following the bosonic case, we identify a matrix Ap? and its inverse AzP via
Eyv® = EyPAy?,  Eun® = En®As° . (B.4)

The fact that such a simple relation exists follows from the fact that EM =E M and EM =
ExM. The fact that A,? is again a Lorentz transformation follows from the orthosymplectic
structure, which we will show in due course.

The components E that we have identified obey a certain modified orthonormality
condition, which we can write as

EyP 8,0 0 0 0
BB 062 0 0
(B B EM E) E]]Zb =l o o0 &b ad| 55
a a
EpP 0 0 AgP 65

One can think of (E,M, Bz, E,M) as a square matrix whose inverse is (Ea®, Ex®, Ex®).
The same statement holds with the vector index a replaced with a barred vector index a,
because

EM=APEM,  EM=ACEM. (B.6)
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Because of the relations (B.4) and (B.6), it is straightforward to switch between the barred
and unbarred versions of Ey® and E,M.
We want to re-express € and £ in terms of the superfields E. Start by defining

1 _ = 1. =
R _igaMgMﬂ, 58— _igaMgMﬂ . (B.7)

Then one can work out a complete dictionary as follows:

Ev® = En?, g]\/[a:EMa, (B.8a)
EMa:EMa+2EMbSba, g_Ma = Ey®, (B.Sb)
5Ma:EMa, gMa:EMa—i-QEMESEa, (B.SC)

and inverses
M =g M EM=FEM, (B.9a)
gaM - EEM (S‘_EM - EEM 5 (ng)
EM=EM 28 BN &M = BM - 280 BT (B.9c)

The fermionic superfields S22 and 528 are the only additional information encoded in & M
and E4M aside from the Ej* vielbeins (and of course the matrix Aab).
Now, the most general expressions for D,, Dg, and Dj; are

Do = EM0y + VoM | (B.10a)

D = EgM oy + Van oM | (B.10b)
1

D, = —&Moy + Vo OM | B.10
/2 v+ Vamr ( c)
1 -

Dz = —&May + VardM . B.10d
7 M M ( )

Let’s focus first on D,. Using the property that VQMVM[; = 0, one can show that EQMVMg
is symmetric in « and §. This piece can be identified as part of the Kalb-Ramond two-form,
so that

Do = B (00 = Bund™ (-)") . (B.11)
Next using Vo Vp = 0 and VaMVu g, = Nab, one can show that

\}igaM(aM — BunoN (-)") + \}i(—)mgMaaM (B.12)

for the same B-field. Repeating these conditions with barred indices (as well as mixed

D, =

handedness conditions like V,MV v = 0), leads to the conclusion

Ds = Bz (0n — Bund™ (-)"), (B.13)
Ds = \}iéaM (0ar = Barwd™ (=)") + \}E(—)méMaaM , (B.14)
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with the same two-form Bjysy, along with the additional requirement that Apz = —Agzp.
This identifies A as a Lorentz transformation.

This is all quite similar to the bosonic case. The main complications arise when
analyzing D and D®. Without loss of generality, D® can be written

D = (P 4 8°S.P)Dg + ffaBDE + (2P 4 V28" Dy, + (%% + Ey®)0M , (B.15)

in terms of arbitrary % and 2 factors. The additional terms constitute shifts in the generic
factors, and as we will show, almost all of the 2 and % terms vanish.
For two vectors X4 = XMy and Y4 = YaMOr introduce the inner product

notation
(X, Y) = XMV (-0 (B.16)
Then we use
00” = (Do, D?) = EM %" + 6,7, (B.17a)
0= (Dgz, D%) = Ez" %", (B.17b)
1
0= (D,, D) =2, + —&Mm,” B.17
1 -
0= (D, D% = —&Ma,,8 B.17d
( ) 7 M ( )

to conclude that V¢ and Z°P both vanish. Next we use
0= (D% DF) = o 4 geag f_ gba _ geBg e _ggbag B — gglafl (B.18)
to conclude that 277 is symmetric. Similar equations hold for D®. Then we use
0 = (D, DP) = gob _ zbo (B.19)
to prove that % aB — g8 We relabel the remaining Z factors as —S, giving
DY = —(8°% — 587\ Dy — §*° D + V25D, + Ey"0M (B.20a)
D™ = —(8°% — §%78:7) D5 — S D + V2 S Dz + 3, 70M (B.20b)

Next, it will be useful to identify how these objects transform under the Hy x Hpg
gauge transformations. Because all superfields transform in a clear way under the double
Lorentz group, we focus on the infinitesimal A\p¢, )\Ea, AP and A% gauge symmetries.
From 6V, M, §VsM, and 6V,M, we deduce

0EM = 0B =0, &M =V2NSEM, 0&M= V2L EM, 6Byy=0 (B21)

and then it follows that

SEv* =0, SEME =0, (B.22a)
SEM® = —V2E" N, 0EMT =0, (B.22b)
SEMT =0, SEMT = —V2EMP N (B.22¢)
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This can be summed up as follows. The superfields S,* and Sz® simply shift as

1 _ 1 —
— ., 055% = ——=Xz", B.23
7 (B.23)

08,% = —
a \/i
while all the Ej4 factors are invariant,

SEyA =0E,M =0. (B.24)

From 6V and using the explicit expressions in (B.20), we determine that

5598 — _\oB 4 /9 gela) B (B.25a)
5598 — _\9B 4 /2 5@\ ) , (B.25b)
55 =0 (B.25¢)

Finally, we can rewrite the entire inverse supervielbein as a product of three factors
VaM = (Vgh)a® x (Vea)s" x (Vg™ (B.26)

The third term is built out of the Kalb-Ramond super two-form,

N _\n
VehaV = <5Ag B?NNAE ) > 7 (B.27)

The second factor Vg, is written, in a chiral decomposition of the indices, as

LEM LEy,
EM 0
a
(Vea)aM = : " - IEM : (B.28)
sla" sEva
EgM 0
0 Ey©

The Vg factor is given, also in a chiral decomposition, as

5aP —/28,” 0| 0 0 0
0 5o 0| 0 0 0
Veh)b V25Phe _gaB _ geag B g, 07 —saﬁi 0 (B.20)
0 0 0| &P —V255° 0
0 0 0] o 55" 0
0 — 59 0 |V2sha —5of — geags 5o
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