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1 Introduction

The massless sector of the bosonic string can be described in a duality-covariant way in
the language of double field theory (DFT) [1–6]. In this approach, the metric, Kalb-
Ramond field, and dilaton are encoded in a generalized metric that transforms under
generalized diffeomorphisms, which encompass standard diffeomorphisms and abelian B-
field transformations. The generalized metric nominally depends on twice the usual number
of coordinates: the additional coordinates can be understood as dual to winding modes
of strings. Different duality frames correspond to different solutions of a section condition
that determines which coordinates are the physical ones.

For type II superstrings, the above constituents describe only the massless part of
the NS-NS sector. An additional (bosonic) sector, the massless Ramond-Ramond sector,
involves a complex of p-form field strengths that describe either the IIA or IIB superstring
depending on whether p is even or odd. Finally, the massless R-NS sectors involve the
gravitini and dilatini. Since the IIA and IIB superstrings are related by (spacelike) T-
duality, their complete massless sectors ought to also be described within the framework
of double field theory. Indeed, this was shown by Hohm, Kwak, and Zwiebach for the
Ramond-Ramond sector [7, 8], and by Jeon, Lee, Park, and Suh for the Ramond-Ramond
and fermionic sectors as well [9, 10].1

The two approaches [7, 8] and [9, 10] are fascinating in how complementary they are
in their treatment of the Ramond-Ramond sector. Hohm, Kwak, and Zwiebach employ
the metric formulation of double field theory and encode the Ramond-Ramond sector in a
spinor of O(D,D). Since spinors of O(D,D) encode p-form complexes of GL(D), this is a
very natural assignment and it is inspired by earlier approaches involving torus compacti-
fications [13, 14]. No mention is made of the generalized vielbein of DFT since there is no
need for it: as a purely bosonic formulation, one can make do with the generalized metric.

In contrast, the supersymmetric approach of Jeon, Lee, Park, and Suh includes
the gravitini and dilatini and fully analyzes their supersymmetry transformations. The
Ramond-Ramond sector is described not as a spinor of O(D,D) but as a bispinor of
O(D − 1, 1) × O(1, D − 1); in common parlance, it possesses “flat” rather than “curved”
spinor indices, and this in turn bears relation to early work by Hassan [15, 16]. All of
this is quite natural from the perspective of the supersymmetry transformations, of course,
because the complex of Ramond-Ramond p-forms appears there as a flattened bispinor.
(A closely related discussion was given in the context of generalized geometry [17, 18],
which is equivalent to double field theory when the section condition is explicitly solved.)
Very recently, we have discussed in some detail the connection between the spinor and
bispinor formulations of the Ramond-Ramond sector [19], and this permits one to connect
the results of [7, 8] and [9, 10] without any gauge-fixing.

The goal of the present paper is to explore type II double field theory in superspace,
where supersymmetry is geometrized along with the duality symmetry, in a way that allows
us to directly make contact with [7, 8] and [9, 10]. In fact, one of Siegel’s early papers

1The generalized metric and Ramond-Ramond sector also emerge as the lowest two levels in the O(10, 10)
decomposition of E11 [11, 12]. We will return to this point in the conclusion.
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on what we now call type I double field theory couched it in a superspace setting [2]. We
revisited Siegel’s work recently [20]. Let us briefly highlight some of the crucial features of
this superspace approach:

1. The type I supervielbein is an element of the orthosymplectic group OSp(10, 10|32),
which is a straightforward supersymmetrization of O(10, 10). However, the local
tangent space group is not just O(9, 1)L × O(1, 9)R. Nor is it the largest natural
sub-supergroup, which would be OSp(9, 1|32)L × O(1, 9)R. Rather, the left tangent
space symmetry is extended from O(9, 1)L to a proper subgroup HL ⊂ OSp(9, 1|32)L.
(Actually, it is only the connected part, including SO+(9, 1), because we fix the
chirality of supersymmetry.) The Lie algebra of this group was explored and it was
shown how it is precisely what is needed to eliminate from the type I supervielbein
all but the physical fields.

2. In order for a local connection to exist to define the torsion tensor, the local symmetry
group HL must be extended to a new group ĤL (with the additional generators leaving
the supervielbein inert). Notably, the bosonic truncation of this suggested that the
right-handed sector O(1, 9)R should also be extended to a new group Ô(1, 9)R. For ex-
ample, a new local symmetry appears at dimension 1 that gauges the shift symmetry
of the irreducible hook representation of the Lorentz connection. A new connection
is then introduced for this local symmetry, new symmetries must be gauged, and so
on, leading to a (presumably) infinite hierarchy of additional local gauge symmetries
and associated (composite) connections of increasing engineering dimension.

3. The extended group ĤL is dual to the super-Maxwell∞ algebra recently explored
in [21, 22]. Using the Poláček-Siegel framework for gauge symmetries in double field
theory [23] (see also appendix B of [20] for a detailed discussion), this lets one nat-
urally define the torsion and curvature tensors that either vanish or involve only
physical components (i.e. the generalized Ricci tensor and scalar in the Riemann
tensor). After solving the superspace Bianchi identities, the covariant torsion and
curvature tensors lead to the correct supersymmetry transformations of supersym-
metric type I DFT [24, 25]. In addition, it appears possible there may exist higher
curvatures beyond dimension two, although this point has yet to be explored.

The above results each have clear extensions to type II double field theory, and the first
part of this paper will address this. There is past work on type II DFT in superspace by
Hatsuda, Kamimura, and Siegel [26, 27] and by Cederwall [28], elements of which inspire
the work here. In the former approach, only the double Lorentz group is employed and
a number of torsion constraints are imposed on the supervielbein. This appears to be in
contradiction with our results, where the additional connections in ĤL× ĤR are crucial for
constraining the torsion tensors. Presumably the results in [26, 27] could be recoverable
after further constraining our supervielbein (either by hand or by gauge choice); but as
we will see, the extra gauge symmetries are crucial for building invariant torsions and
curvatures and for making sense of the truncations to component DFT and conventional
type II superspace. The work by Cederwall (who also gauged the double Lorentz group)
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introduced a key idea: just as the Ramond-Ramond p-forms of GL(D) lift to super p-
forms of GL(D|s) in conventional type II superspace (for D = 10 and s = 32), Ramond-
Ramond spinors of O(D,D) ought to lift to spinors of OSp(D,D|2s). Understanding this
prescription in detail and how the Ramond-Ramond sector is simultaneously observed in
the DFT supervielbein (as argued in [26–28]) is one of our main results.

The paper is arranged as follows. Section 2 provides a concise discussion of the su-
perspace structure of type II DFT from the perspective of the supervielbein, extended
connections, torsion constraints, and Bianchi identities. Much of this is directly analogous
to the type I situation. We give a complete solution to the Bianchi identities, specifying
torsions and curvatures through dimension two. The new ingredient, the Ramond-Ramond
orthosymplectic spinor, will be introduced in section 3 where we discuss both curved and
flat spinors and the constraints on the Ramond-Ramond spinor field strength. The physi-
cal component fields and their supersymmetry transformations will be derived in section 4,
recovering the results [10] of Jeon et al. Then in section 5, we will explain how conventional
type II superspace can be recovered in a democratic way, encompassing not only IIA and
IIB but also their variants IIA∗ and IIB∗, which arise by timelike T-duality [29]. We offer
some concluding comments and speculate on extensions and open problems in section 6.
Finally, there are two appendices. The first addresses our 10D spinor conventions, while
the second is a technical discussion about decomposing the DFT supervielbein.

2 Supergeometry of double field theory

2.1 Elements of OSp(D,D|2s) and the supervielbein

In analogy to conventional O(D,D) double field theory, let us introduce OSp(D,D|2s)
double field theory with 2D bosonic coordinates and 2s fermionic ones. This approach was
essentially pioneered by Siegel [2], who addressed what we now call type I and heterotic
double field theory, and reintroduced by Hatsuda, Kamimura, and Siegel [26, 27] and
Cederwall [28]. Our previous work [20] addressed type I DFT (D = 10, s = 16) and here
we will be concerned with type II (D = 10, s = 32). The details are essentially the same so
we will be brief. The supercoordinates are collectively denoted zM. Superdiffeomorphisms
have an OSp(D,D|2s)× R+ structure, and act on a supervector WM of weight w as

L(w)
ξ WM = ξN∂NW

M −WN
(
∂N ξ

M − ∂MξN (−1)nm
)

+ w ∂N ξ
N WM (−1)n (2.1)

where the factor (−1)nm is a grading, denoting −1 if both N andM are fermionic and +1
otherwise. IndicesM can be raised or lowered with the canonical orthosymplectic element
η of OSp(D,D|2s), with the usual NW-SE convention, i.e.

WM = ηMNWN , WM = WN ηNM . (2.2)

The metric η itself is graded symmetric, ηMN = ηNM(−1)nm. Because of the grading,
ηMN is not quite the inverse of ηMN ; instead, one finds ηMPηPN = δN

M(−1)nm. Closure
of the algebra of superdiffeomorphisms is ensured by the section condition

ηMN∂N ⊗ ∂M = 0 . (2.3)
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Under the GL(D|s) ⊂ OSp(D,D|2s) subgroup, the coordinates and derivatives decom-
pose as

∂M =
(
∂M , ∂̃

M
)
, zM = (z̃M , zM ) , zM =

(
zM , z̃M (−)m

)
, (2.4)

∂Mz
N = δM

N =⇒ ∂Mz
N = δM

N , ∂̃M z̃N = δN
M (−)nm . (2.5)

The OSp(D,D|2s) metric is

ηMN =
(

0 δMN

δM
N (−)mn 0

)
, ηMN =

(
0 δM

N

δMN (−)mn 0

)
. (2.6)

The section condition becomes ∂̃M ⊗ ∂M = 0 and we solve it by taking ∂̃M = 0 to recover
a conventional GL(D|s) superspace described by coordinates zM . This coordinate further
decomposes into D bosonic coordinates and s fermionic ones, zM = (xm, θµ̂). A similar
statement applies to its dual winding coordinate, z̃M = (x̃m, θ̃µ̂). We have denoted the
fermionic index with a hat for later convenience: in type II superspace, there are two
copies of the fermions and we can further decompose θµ̂ = (θµ, θµ̄).

The supervielbein is naturally taken as a weighted element of OSp(D,D|2s)×R+. As
in the bosonic case, it is more convenient to split the supervielbein into an OSp(D,D|2s)
element, which we denote VMA, and a separate scalar density, the superdilaton Φ, which
we take to have weight 1. These transform respectively as

δVMA = ξN∂NVMA +
(
∂Mξ

N − ∂N ξM(−1)nm
)
VNA , (2.7a)

δΦ = ξN∂NΦ + ∂N ξ
N Φ (−1)n . (2.7b)

The condition that the supervielbein is a group element amounts to

VAM = ηMNVNBηBA (−1)am . (2.8)

The supervielbein admits a conventional level decomposition, with the OSp(D,D|2s)
generator TMN decomposed into the GL(D|s) generator TMN at level 0 and nilpotent gen-
erators TMN and TMN at levels ±1. Exponentiating each of these gives three independent
matrix factors which can be combined in the conventional way2

VMA =
(

1 B
0 1

)
×
(
E 0
0 E−T

)
×
(

1 0
S 1

)
,

B = BMN (−)n, E = EM
A, E−T = EA

M (−1)am+a, S = SAB .

(2.9)

In this expansion, EMA is an invertible supermatrix that can be identified as the superviel-
bein, BMN is the Kalb-Ramond super-two-form, and SAB is an additional scalar superfield,
which will turn out to contain the dilatino and Ramond-Ramond bispinor, as we will discuss

2The field S was denoted C in the context of type I DFT [20] and is typically denoted β in bosonic DFT.
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shortly. Let us presume the section condition to be trivially satisfied with ∂̃M = 0. Then
under generalized diffeomorphisms (2.7) with ξM = (ξ̃M , ξM ), these fields transform as

δBMN = 2 ∂[M ξ̃N ] + ξP∂PBMN + 2 ∂[M |ξ
PBP |N ] , (2.10a)

δEM
A = ξN∂NEM

A + ∂Mξ
NEN

A , (2.10b)
δSAB = ξM∂MS

AB (2.10c)

This decomposition of the supervielbein is the simplest means of identifying the various
type II superfields present, although it is not completely correct: not every orthosymplec-
tic element (or O(D,D) element for that matter) can be put in this form. The above
decomposition really applies to a specific connected component, and this is related to the
topology of the supergroup in ways we will discuss in due course. A key point to mention
is that the topology of a supergroup is determined by its bosonic part, which in the case
of OSp(D,D|2s) is O(D,D) × Sp(2s,R). Since the symplectic groups are connected, the
topology of the orthosymplectic group is determined by the split orthogonal group, and
this decomposes into four pieces O(α,β)(D,D) with α = ±1 and β = ±1 depending on
whether there is an orientation reversal in either factor in the maximal compact subgroup
O(D)×O(D). This has been discussed at length in [19], building off a discussion in [9, 10],
and we will discuss in section 5 how to generalize it.3

The superdilaton meanwhile transforms as a scalar density

δΦ = ξN∂NΦ + ∂Nξ
N Φ (−1)n (2.11)

and one can define the conventional dilaton superfield ϕ by factoring out the superdeter-
minant of EMA,

e−2ϕ = Φ× sdetEMA . (2.12)

Recalling that the conventional dilaton is given in component DFT by e−2ϕ = e−2d ×
det ema, one can see that e−2d differs from Φ by a factor of sdetEMA/ det ema.

2.2 The local tangent space group of the supervielbein: HL ×HR

The DFT supervielbein VMA is acted on by a local symmetry group, whose infinitesimal
form is

δVMA = −VMBλBA (2.13)

for some parameter obeying λBA = −λAB(−)ab. This cannot be a generic element of
OSp(D,D|2s), as then the entire DFT supervielbein could be gauged away. The simplest
possibility, advocated by Hatsuda, Kamimura, and Siegel [26, 27] and Cederwall [28], is
for the local symmetry group to simply be the double Lorentz group. Recall that in the
bosonic case, the local tangent space symmetry group is O(D− 1, 1)×O(1, D− 1) and can

3A slightly different parametrization will be used in section 4 for component DFT, but we will show how
to relate them.
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be defined as a subgroup of O(D,D) that also leaves invariant not just ηâb̂ but also a flat
metric Hâb̂; these are given by

ηâb̂ =
(

0 δa
b

δab 0

)
, Hâb̂ =

(
ηab 0
0 ηab

)
. (2.14)

Then for the bosonic double vielbein, decomposed as in (2.9), one can gauge Sab to zero,
leaving behind the diagonal Lorentz subgroup to be the local symmetry group of the
vielbein em

a. However, in the superspace framework, this is unsatisfactory because it
leaves unphysical components behind in the supervielbein, specifically in whatever is left
unfixed in SAB.

Here is a good opportunity to elaborate on the tangent space vector indices A. In the
bosonic theory, a double vectorW â can be decomposed either toroidally asW â = (W a, W̃a),
or chirally as W â = (W a,W a); these are related by

W a = 1√
2

(W a + ηabW̃b) , W a = 1√
2

(W a − ηabW̃b) . (2.15)

In the chiral decomposition, ηâb̂ and Hâb̂ are given by4

ηâb̂ =
(
ηab 0
0 ηab

)
, Hâb̂ =

(
ηab 0
0 −ηab

)
, ηab = −ηab = −ηab . (2.16)

In the superspace case, one naturally assigns the fermionic components of A to be spinors
of one or the other Lorentz groups. For type I DFT, they carried spinor indices α of the
left Lorentz group. For type II, there will be both left and right spinor indices, α and α.
It will occasionally be useful to group all left indices together. Then the unbarred capital
Roman indices A = (a, α) transform only under the left Lorentz group and the barred
capital Roman indices A = (a, α) transform only under the right, and we write

WA = (WA,WA) = (Wa,Wα,W
α, Wa,Wα,W

α) ,

WA = (WA,WA) = (W a,Wα,−Wα, W
a,Wα,−Wα) , (2.17)

and

ηAB =
(
ηAB 0

0 ηAB

)
=



ηab 0 0 0 0 0
0 0 δα

β 0 0 0
0 −δαβ 0 0 0 0
0 0 0 ηab 0 0
0 0 0 0 0 δα

β

0 0 0 0 −δαβ 0


,

4In our type I DFT paper [20], we took the opposite sign for ηab. The advantage of the choice made
here is that all formulae for the right sector follow from the left sector merely by barring expressions.
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ηAB =
(
ηAB 0

0 ηAB

)
=



ηab 0 0 0 0 0
0 0 δαβ 0 0 0
0 −δαβ 0 0 0 0
0 0 0 ηab 0 0
0 0 0 0 0 δαβ
0 0 0 0 −δαβ 0


. (2.18)

A natural proposal for the tangent space group might seem to be extend the bosonic
case by introducing a flat supermetric HAB. This is not really the right approach. An
easy way to see this is that in conventional superspace, the supervielbein EM

A is the
fundamental geometric object and there is no natural notion of an invertible supermetric.
The closest analogue is GMN = EM

aEN
bηab; however, (i) this is not invertible, and (ii)

does not involve the gravitino one-form EM
α and so it doesn’t completely encode the

relevant physics. Within double field theory, one could address at least the first issue by
constructing an invertible HAB by adding a sign to the right-handed sector of ηAB; this
mirrors the bosonic situation (2.16) and then one could build projectors 1

2(δAB ± HAB)
onto the left and right-handed sectors. However, the relevant local symmetry group is not
the group leaving invariant η and H: this group, OSp(D − 1, 1|s)L ×OSp(1, D − 1|s)R, is
too large.

Instead, we argued in [20] that the original proposal of Siegel [2], inspired by the
Hamiltonian description of the superstring worldsheet, was more sensible. Let’s review
Siegel’s proposal for type I DFT. There the spinors are valued in the left Lorentz group
and this group is extended with the parameters λ subject to the conditions

λα
b = 0 , λα

β = 1
4λ

ab(γab)αβ . (2.19)

with λαβ , λa
b, and λa

β unconstrained except for the symmetry conditions λαβ = λβα

and λab = −λba. The second condition above amounts to the requirement that fermionic
orthosymplectic indices transform as spinors under the SO(9, 1) subgroup of OSp(9, 1|32).
In addition, as we showed in [20], it is natural to include an additional constraint on the
fermionic parameter λa

β ,

(γa)αβλa
β = 0 (2.20)

which eliminates its spin-1/2 part. The upshot is that we have three local symmetries,
generated by λa

b, λa
β , and λαβ . This group, which we denoted HL, is a subgroup (for type

I) of OSp(9, 1|32). It is also precisely the right group to eliminate the unphysical parts of
the tensor SAB of the supervielbein (2.9). For type I, this tensor consists of Sab, Saβ , and
Sαβ , and the λ parameters allow one to eliminate all but the spin-1/2 part of Saβ — this
is the dilatino.

For type II DFT, the obvious proposal is to require the local symmetry group of the
supervielbein to be HL × HR where HR is just a copy of HL. For type II DFT, the tensor
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SAB now consists of

Sαβ Sαβ Sαβ

Saβ Saβ

Sab

We can eliminate Sab, the spin-3/2 pieces of Saβ and Saβ , and Sαβ and Sαβ . The remaining
spin-1/2 pieces of Saβ and Saβ will become the two dilatini, and Sαβ must become the
Ramond-Ramond polyform field strength, written as a bispinor. This identifies all the
physical fields from a superspace perspective.

2.3 Generalized fluxes and torsion and extending HL ×HR

To see how we recover the physical spectrum of type II DFT, we will analyze the possible
constraints on the torsion tensor. The analysis will be extremely similar to the type I
analysis [20], so we will not go into exhaustive detail.

The generalized fluxes FABC and FA are given by

FABC = −3D[AVBM VMC] , FA = DA log Φ + ∂MVAM(−)am+m . (2.21)

These are the only scalars (under diffeomorphisms) that can be built purely from the su-
pervielbein involving a single derivative, and can be alternatively defined as the generalized
Lie derivative of the supervielbein and superdilaton with respect to the supervielbein,

LVAVB
M = −FABCVCM , LVAΦ = FAΦ . (2.22)

The flattened derivatives DA := VAM∂M here obey

[DA, DB] = −FABCDC , DADA = −FADA . (2.23)

These flux tensors in turn obey the following Bianchi identities:

4D[AFBCD] = −3F[AB|
EFE|CD] , (2.24a)

2D[AFB] = −FABCFC −DCFCAB , (2.24b)

DAFA = −1
2F
AFA −

1
12F

ABCFCBA . (2.24c)

We give the various components of the flux tensors in table 1, organized by engineering
dimension. We use hatted indices â = (a, a) and α̂ = (α, α) to denote both left and
right-handed vector and spinorial indices collectively.

The basic definition of engineering dimension is to assign dimensions 1/2, 1, and 3/2
to Dα̂, Dâ, and Dα̂, respectively, and identically for ∂µ̂, ∂m̂, and ∂µ̂. In this way, for
example, Vâm̂ has vanishing engineering dimension. This rule implies that a flux FABC has
dimension −2+∆(A)+∆(B)+∆(C) where ∆(A) denotes the dimension of DA, consistent
with (2.23).5 Similarly, FA has dimension ∆(A).

5The factor of −2 arises because the flux FABC has dimension ∆(A) + ∆(B)−∆(C) and then lowering
the C index with η exchanges ∆(C) with 2−∆(C).
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dimension fluxes

−1
2 Fα̂β̂γ̂ = Tα̂β̂γ̂

0 Fα̂β̂ĉ = Tα̂β̂ĉ
1
2 Fα̂b̂ĉ, Fα̂β̂

γ̂ , Fα̂

1 Fâb̂ĉ, Fâβ̂
γ̂ , Fâ

3
2 Fâb̂

γ̂ , Fα̂β̂γ̂ , F α̂

2 Fâβ̂γ̂

5
2 F α̂β̂γ̂

Table 1. Generalized fluxes in type II super-DFT.

The fluxes themselves are not invariant under the local symmetry group HL × HR.
This group leaves the superdilaton invariant and acts on the supervielbein and fluxes as

δVAM = λA
BVBM , δFABC = −3D[AλBC] + 3λ[A

DFD|BC] , δFA = −DBλBA −FBλBA .
(2.25)

In order to build invariant torsions, we introduce the HL × HR connection ΩABC =
(ΩABC,ΩABC) with non-vanishing components

ΩA bc , ΩAβγ = 1
4ΩA bc (γbc)βγ , ΩA b

γ , ΩA βγ ,

ΩA bc , ΩAβ
γ = 1

4ΩA bc (γbc)β
γ , ΩA b

γ , ΩA βγ . (2.26)

The invariant torsions are then given by

TABC := −3∇[AVBM VMC] = FABC + 3 Ω[ABC] , (2.27)
TA := ∇A log Φ +DMVAM = FA + ΩBBA . (2.28)

These are the covariantizations of the generalized fluxes (2.21) and can be defined as
the covariant generalized Lie derivatives of the supervielbein and superdilaton, similarly
to (2.22). Note that the dimension -1/2 and dimension 0 torsion tensors coincide with the
fluxes, because the Ω connections are dimension +1/2 and higher. (We assign dimension
to Ω so that the torsion and flux dimensions match.)

A conventional HL ×HR connection would transform as

δΩMAB
?= LξΩMAB + ∂MλAB − ΩMACλCB + ΩMBCλCA(−)ab . (2.29)

However, Ω is actually going to transform a bit differently and this is related to an en-
hancement of the local symmetry group. This comes about for two reasons: (i) certain
components of Ω are absent in the torsion, implying an enhanced symmetry that shifts
these components; and (ii) the supersymmetry constraints we wish to impose on the tor-
sion require modifications of the Ω transformations. The upshot is that the local symmetry
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group is enhanced from HL × HR to ĤL × ĤR, but only the subgroup HL × HR actually
acts on the supervielbein.

In our previous work on type I DFT [20], we defined the group ĤL by relating it
to the so-called super-Maxwell∞ algebra, using the framework of Poláček and Siegel [23]
where one doubles not just spacetime but also the local gauge symmetries (e.g. the Lorentz
group). For a detailed discussion of this framework, see appendix B of [20]. In the interests
of being pedagogical, we will first sketch here why such an extended group is necessary by
reviewing how constraints, both physical and conventional, may be imposed on the torsion.

Let us begin with an observation. All components of torsions and curvatures are
covariant objects. However, the only covariant objects in type II double field theory, at
least at the component level, are found at dimension 3/2 and dimension 2: these are the
generalized gravitino curvature and the generalized Riemann tensor, and they are built out
of derivatives of the physical fields (e.g. double vielbein, gravitini, dilatini, dilaton) that lie
at lower dimensions. This means that in order to recover component double field theory, all
components of torsions and curvatures through dimension 1 must vanish. Let us describe
how this comes about by analyzing the constraints we can impose on the various torsion
tensors.

Using the various components of the spin connection Ω, it is possible to impose con-
straints on the torsion tensor:

fixing ΩA bc =⇒ Tα̂bc = Tabc = Tab
γ = 0 , Ta = 0 , (2.30)

fixing ΩA b
γ =⇒ Tα̂b

γ = 1
10Xα̂,β(γb)βγ , Tab

γ = 1
10Xaβ(γb)βγ ,

T αb
γ = 1

10X
α
β(γb)βγ , (2.31)

fixing ΩAβγ =⇒ Tα̂βγ = Tâβγ = T α̂βγ = 0 (2.32)

and similarly for their barred versions. Because ΩAb
γ is γ-traceless, only certain represen-

tations may be eliminated.
The remaining torsion tensors may be organized by dimension. At dimensions -1/2

and dimension 0, no Ω connections appear and so the torsion tensors can be identified with
the flux tensors:

Tα̂β̂γ̂ = 0 , Tαβ c = k (γc)αβ , Tαβ c = k (γ̄c)αβ , Tαβ ĉ = Tαβ c = Tαβ c = 0 . (2.33)

The constant k fixes the normalization of supersymmetry and is imaginary for a Majorana
representation of the γ-matrices. We leave it unspecified, because then we can more easily
compare against results in other papers with different conventions. Finally, we fix Tα̂ to
vanish: this defines Φ as the superdilaton uniquely. We summarize the various torsion
tensors and constraints imposed in table 2.

In using the Ω connections to eliminate various torsion tensors, it happens that the
putative transformation rule (2.29) receives corrections. This happens for two reasons.
First, the naive action of HL ×HL would rotate Tα̂b̂ĉ into Tα̂β̂ĉ, but this is contradicted by
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dimension conventional constraints physical constraints remaining torsions

−1
2 − Tα̂β̂γ̂ = 0 −

0 − Tαβ c = k (γc)αβ Tαβ c = 0 −

Tαβ c = k (γc)αβ Tαβ c = 0

Tαβ ĉ = 0
1
2 Tα̂bc = Tα̂bc = 0 Tα̂ = 0 Tα̂bc, Tα̂β̂

γ̂

1 Tâb̂ĉ = Tâ = 0 − Tα̂b
γ , Tα̂b

γ

Tα̂b
γ = 1

10 Xα̂,β(γb)βγ Xα̂,β̂
Tα̂b

γ = 1
10 Xα̂,β(γb)βγ

3
2 Tab

γ̂ = Tab
γ̂ = 0 − T α̂, Tα̂βγ

Tab
γ = 1

10 Xaβ(γb)γβ Xa β , Xa β

Tab
γ = 1

10 Xaβ(γb)γβ

Tα̂βγ = Tα̂βγ = 0

2 Tâβγ = Tâβγ = 0 − Xαβ , Xαβ
T αb

γ = 1
10X

α
β(γb)βγ

T αb
γ = 1

10X
α
β(γb)βγ

5
2 T α̂β̂γ̂ = 0 − −

Table 2. Conventional and physical constraints on torsion. Conventional constraints arise from
a specific choice of ΩABC . The remaining torsions vanish upon solving the Bianchi identities.
Engineering dimensions follow from the same considerations as for the fluxes.

the former vanishing with the latter non-vanishing (and depending on the constant k). So
there must appear k-dependent corrections to the HL ×HR transformations:

∆λΩMbc = −2k VMα(γ[b)αβλc]
β − 2

9k VM[b(γc])αβλαβ , (2.34a)

∆λΩM b
β = kVMα

(
(γb)αγλγβ −

1
18(γbc)αβ(γc)γδλγδ

)
. (2.34b)

The second complication is that the Ω connections are not uniquely determined by fixing
the torsions. This is well-known in the bosonic sector where there remains unfixed the ir-
reducible hook representation of Ωa bc; it turns out similar ambiguities appear in the other
connections. It is natural to associate these ambiguities with additional local gauge symme-
tries, and indeed we must do so, because the algebra of the HL ×HR transformations only
closes on Ω subject to these new transformations [20]. These additional transformations
involve parameters Λa,b

β and Λα,bβ (which are both γ-traceless in bβ) and Λα|βγ which is
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symmetric in βγ but with vanishing totally symmetric part:

δΛΩM bc = VMaΛa|bc − 2VMαΛ[b,c]
α , (2.35a)

δΛΩM b
β = 1

4VM
α(γcd)αβΛb|cd + VMaΛa,b

β + VMαΛαb
β , (2.35b)

δΛΩMβγ = VMα(γcd)α(βΛc,d
γ) + 2VMaΛ(β

a
γ) + VMαΛα|βγ . (2.35c)

2.4 Interpreting the torsion constraints

Before moving on, we want to address the significance of the remaining torsions — those in
the final column in table 2. We have already alluded to the fact that the Bianchi identities
will tell us that all these torsions vanish. Before getting to that, we should understand just
what these objects correspond to at the component level.

For the dimension 1/2 and dimension 1 torsions, they lead to potential contributions to
the supersymmetry transformations of the vielbein (via Tα̂bc), the gravitini (via Tα̂b

γ , Tα̂b
γ ,

and Tα̂β̂
γ̂) and the dilatini (via Xα̂,β̂). In principle, there could have been new covariant

fields into which these fields transform; that there are not will turn out to be a consequence
of the Bianchi identities at the superspace level. We emphasize that just because T and X
will turn out to vanish does not mean that there are no supersymmetry transformations;
rather, SUSY transformations will arise from the complicated orthosymplectic structure of
the supervielbein.

For dimension 3/2, one can interpret Tα̂βγ similarly as a contribution of new covariant
fields to the SUSY transformation of the Ramond-Ramond bispinor. The fact that there
is no such new contribution is again a consequence of closure. More interesting are T α̂,
Xaβ , Xaβ . From their dimension, they have an obvious interpretation as curvatures for
the dilatini and gravitini. A linearized analysis — see section 4.2 of [20] for the type I
discussion — would reveal that after solving the section condition in components, these
tensors are given by

T α = (γa)αβ ∂aρβ + ∂bΨb
α , Xbα = ∂bρα − (γa)αβ ∂aΨb

β (2.36)

where ρα is the dilatino and Ψb
α is the gravitino. There are two important facts about

these quantities. The first is that they are the equations of motion (in the linearized
theory) for the dilatini and gravitini respectively; the fact that they vanish in superspace
is therefore consistent. The second fact is that when the derivatives are covariantized with
the double Lorentz connection, these are the only invariant curvature tensors that one can
construct. For example, D[aΨb]

β is Lorentz covariant but it involves the irreducible hook
representation of the component Lorentz connection ωa bc; this means it is not truly a
covariant object.

At dimension 2, the only quantities we encounter are Xαβ and its barred version.
(The generalized Ricci tensor and curvature scalar are found elsewhere in the generalized
Riemann curvature.) A linearized analysis would reveal that Xαβ is nothing but the Dirac
operator on the Ramond-Ramond bispinor,

Xαβ ∝ (γb)βα∂bS
αα . (2.37)

which is the linearized equation of motion of the Ramond-Ramond sector.
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dimension generator constraint dual generator dual dimension

1 Pa − P a 1

1/2 Qα − Q̃α 3/2

0 Mab antisymmetric M̃ab 2

−1/2 Mαb γ-traceless M̃aβ 5/2

−1 Mαβ symmetric M̃αβ 3

Ka|bc hook irrep K̃a|bc

−3/2 Ka,bβ γ-traceless on bβ K̃a,bβ 7/2

−2 Kα,bβ γ-traceless on bβ K̃α,bβ 4

Lab,cd pairwise antisymmetric L̃ab,cd

La|b|cd 21000 irrep L̃a|b|cd

...
...

...
...

...

Table 3. Generators of ĤL and their duals. The positive dimension generators make up the super-
Maxwell∞ algebra.

The point we wish to drive home is that the majority of the torsion tensors vanish
purely for conventional reasons — some Ω is being fixed — and involve no dynamical in-
formation. It was crucial here that the Ω connections be extended from the double Lorentz
group to HL×HR so that conventional constraints could be imposed on those torsion com-
ponents (see table 2) that have no component interpretation. For those not constrained
in this way, there is physically meaningful data — a supersymmetry transformation or
an equation of motion — associated with them. This is one reason to believe the results
of [26, 27] should be understandable only after a significant gauge-fixing.

2.5 The extended gauge group ĤL × ĤR, connections, and curvatures

Let’s return to the discussion of the Ω connections. Already we have discussed how con-
straining the torsion tensors leads to an extension of the local symmetry group to ĤL×ĤR.
We have elaborated in [20], for the case of type I DFT, how this group can be seen to come
about by considering successive commutators of the corresponding generators, and gave a
proposal for the connection to the super-Maxwell∞ algebra. For type II DFT, the right-
handed sector is just a copy of the left-handed sector, so we may bring over all of our
results.

We summarize the generators of the left-handed sector in table 3. A simple way of
understanding this set is that the tilde generators Q̃α, M̃ab and so on arise as a free Lie
algebraic extension of the super-Poincaré algebra of Qα and Pa. In the case of a Yang-Mills
superalgebra (a possible extension of super-Poincaré that highlights the various possible
structures), Q̃α can be interpreted as the spinorial gaugino superfield, M̃ab is the bosonic
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field strength, and so on, with higher dimension generators corresponding to covariant
derivatives of these objects and commutators thereof. Their Lorentz representations and en-
gineering dimensions follow from the free Lie algebra construction. The dual generators ly-
ing at non-positive dimensions are implied by extending the free Lie algebra to a double su-
peralgebra; this requires an invariant bilinear form η pairing generators of dimension ∆ and
2−∆ (such as Pa with itself, Qα with Q̃α, and so on). Further details may be found in [20].

Since we will only be working to dimension 2 in curvatures, only a few of these gen-
erators will be relevant for us. The generators corresponding to the λAB parameters we
denote MAB. They are normalized to recover the OSp(9, 1|32) transformation

1
2[λBCMCB, PA] = λA

BPB + · · · (2.38)

where the elided terms correspond to deformations arising from the background k-
dependent SUSY algebra. The Lorentz generator acts in the usual way

[Mcb, Pa] = ηbaPc − ηcaPb , [Mcb, Qα] = −1
2(γcb)αβQβ , [Mcb, Q̃

α] = −1
2(γcb)αβQ̃β

(2.39)

while the other M generators act as

{Mβb, Qα} = k (γc)βαMbc −
1
10k(γbγ

cd)βαMcd , (2.40a)

[Mβb, Pa] = ηbaQβ −
1
10(γbγa)βγQγ , (2.40b)

{Mβb, Q̃
α} = −δβαPb + 1

10(γbγ
c)βαPc , (2.40c)

and

[Mγβ , Qα] = −2k(γb)α(βMγ)b + 1
9k(γb)γβMαb , (2.41a)

[Mγβ , Pa] = 2
9k(γb)γβMba , (2.41b)

[Mγβ , Q̃
α] = 2Q(γ δβ)

α . (2.41c)

The additional generators responsible for the shift symmetries of Ω, are denoted Ka|bc,
Ka,bβ , and Kγ,bβ . Some of their (anti)commutators are given in [20], but we do not
reproduce them here.

We adopt the Poláček-Siegel framework for local gauge symmetries in double field
theory [23] (see also appendix B of [20]). Superspace double field theory can be built
on a rigid double super-Poincaré algebra involving the generators Qα, Pa, and Q̃α in the
left-handed sector and Qα, Pa, and Q̃α in the right. They obey the algebra

{Qα, Qβ} = −k (γc)αβ Pc , [Qα, Pb] = −k (γb)αγQ̃γ , (2.42)

with other (anti-)commutators vanishing. (The right-handed sector follows by adding bars
to all indices.) These relations can be collectively written

[PA, PB] = −fABCPC (2.43)
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where the structure constants with a lowered index, fABC = fAB
DηDC , are (graded) totally

antisymmetric. This rigid algebra is then augmented by additional generators correspond-
ing to ĤL × ĤR. The latter we denote Xa, where the graded index a has no relation
to a vector index, and corresponds to an infinite set of generators lying in increasingly
complicated Lorentz representations. The full extended algebra schematically reads

[PA, PB] = −fABCPC − X̃cfcAB , (2.44a)
[Xa, PB] = −faBCPC − faBcXc , (2.44b)
[Xa, Xb] = −fabcXc , (2.44c)

[X̃a, X̃b] = −X̃c fc
ab , (2.44d)

[PA, X̃b] = −X̃cfcA
b , (2.44e)

[Xa, X̃
b] = −X̃c fca

b − fabCPC − fabcXc . (2.44f)

The generators Xa comprise Lorentz transformations Mab, the additional tangent space
transformations acting on the supervielbein, which we denote Mβa and Mαβ , the new shift
symmetries of Ω involving the Λ parameters (whose generators we denote by K), and a
higher tower of generators that arise when we attempt to build curvatures for Ω. It is
important that Xa furnish a closed algebra — this generates ĤL× ĤR. The generators X̃a

are additional dual generators that are paired with Xa via a non-degenerate η metric, in
the same manner that Pa is paired with itself and Qα is paired with Q̃α.

A more compact form of the above relations is

[XÂ, XB̂] = −fÂB̂
ĈXĈ (2.45)

for XÂ = (Xa, PA, X̃
a) and where fÂB̂Ĉ = fÂB̂

D̂ηD̂Ĉ is totally antisymmetric with ηÂB̂
given by

ηÂB̂ =

 0 0 δa
b

0 ηAB 0
(−1)ab δba 0 0

 . (2.46)

The requirement of a non-degenerate η is one reason to introduce the dual generators X̃a.
Now we want to gauge this formal algebra by introducing a supervielbein, connections,

and so on. Following the discussion in appendix B of [20], we introduce the superdilaton
Φ, the supervielbein VMA, connections HMa, and an additional graded antisymmetric
superfield P ab. These transform under diffeomorphisms and gauge transformations (with
parameter Λa) as6

δΦ = LξΦ , (2.47a)
δVMA = LξVMA + VMBΛcfcBA , (2.47b)
δHM

a = LξHMa + ∂MΛa +HM
bΛcfcba + VMBΛcfcBa , (2.47c)

δP ab = ξM∂MP
ab − Λcfcab − 2 ΛcP d[afcd

b] −HM[a∂MΛb] − ΛcHD[afDc
b] . (2.47d)

6For purposes of legibility, we have suppressed gradings in these and subsequent expressions.
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The connection HMa generalizes ΩMAB and the field P ab generalizes the one introduced
by Poláček and Siegel [23]. One can check that the algebra of ĤL × ĤR closes on these
fields with

[δΛ1 , δΛ2 ] = δΛ12 for Λ12
a = Λ1

bΛ2
cfcb

a (2.48)

With these ingredients, we can construct covariant derivatives

∇A = VAM∂M −HAbXb , ∇̃a = HMa∂M +
(
P ab − 1

2H
MaHM

b
)
Xb . (2.49)

These correspond to the curved extensions of PA and X̃a. Their algebra can again be
written (2.45), but with some of the components of f now becoming structure functions.
These consist of four curvatures TABC , RABc, RAbc, and Rabc, which appear in the curved
algebra as

[∇A,∇B] = −TABC∇C −RABcXc − ∇̃c fcAB , (2.50a)
[Xa,∇B] = −faBC∇C − faBcXc , (2.50b)
[Xa, Xb] = −fabcXc , (2.50c)

[∇̃a, ∇̃b] = −∇̃c fcab −RabC∇C −RabcXc , (2.50d)
[∇A, ∇̃b] = −∇̃c fcAb −RAbC ∇C −RAbcXc , (2.50e)
[Xa, ∇̃b] = −∇̃c fcab − fabC∇C − fabcXc . (2.50f)

The torsion tensor is

TCBA = −3∇[CVBMVMA] , ∇CVBM := DCVBM +HC
dfdB

AVAM . (2.51)

The curvature tensor RCBa is

RCBa = 2D[CHB]
a + FCBDHDa −HBbHCcfcba − 2H[C

dfdB]
a − fCB d

(
P d a + 1

2H
FdHF

a
)
.

(2.52)

The other curvature tensors, particular to double field theory, are RCba, which is the
covariantized derivative of the Poláček-Siegel field,

RCba =
[
−DCP ba − 2HCcP bdfdca − 2P bdfdCa +HDbDCHD

a − 2HDbDDHCa −HCcfcba

+ FCBAHBbHAa −HD bHDd
(
fCd

a +HC
cfcd

a
)]

[ba]
(2.53)

and the curvature Rcba,

Rcba = 3×
[
P cdfd

ba −HCcDCP ba +HCcHBbDCHB
a + 1

3H
CcHBbHAaFCBA

+ P cdP befed
a −HDcHDd

(1
2fd

ba + P befed
a + 1

4H
EbHE

efde
a
)]

[cba]
, (2.54)

which is essentially the covariantized version of ∇̃[cP ba].
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Finally, we include the superdilaton Φ, a scalar density under diffeomorphisms and
invariant under the local symmetry group. With it, one can construct dilaton-dependent
torsion and curvatures

TA = ∇A log Φ +∇MVAM , (2.55a)
Ra = DBHB

a + FBHBa −HBcfcBa + P bcfcb
a , (2.55b)

where FA = DA log Φ + ∂MVAM.
The two sets of torsions and curvatures obey a set of Bianchi identities. The ones most

relevant to us are

0 = 4∇[ATBCD] + 3 T[AB|
ETE|CD] + 6R[AB|

efe|CD] , (2.56)
0 = 3∇[ARBC]d −∇dTABC + 3 T[AB|

ERE|C]d + 3R[AB|
efe|C]

d + 3R[A|
defe|BC] (2.57)

and

0 = 2∇[ATB] + TABCTC +∇CTCAB + 2R[A|
DcfcD|B] +RcfcAB . (2.58)

In terms of these formulae, we can define the following HL ×HR curvatures. In terms
of the naive Ω curvatures,

R(Ω)ABCD := 2D[AΩB]CD − 2 Ω[A|C
EΩ|B]ED + FABEΩECD + 1

2ΩEAB ΩECD , (2.59)

the RABcd are given (through dimension two) by

Rαβ cd = R(Ω)αβ cd + 4 k(γ[c)γ(βΩα)d]
γ , (2.60a)

Rαβ cd = R(Ω)αβ cd + 2 k(γ[c)γβΩαd]
γ , (2.60b)

Rαβ cd = R(Ω)αβ cd , (2.60c)

Rαb cd = R(Ω)αb cd + 2
9k ηb[c(γd])γδΩα

γδ − 2k (γ[c|)αγ Ωb|d]
γ −Hα b|cd (2.60d)

Rαb cd = R(Ω)αb cd − 2k (γ[c)αγ Ωb d]
γ (2.60e)

Rαb cd = R(Ω)αb cd + 2
9k ηb[c(γd])γδΩα

γδ −Hα b|cd (2.60f)

Rαb cd = R(Ω)αb cd (2.60g)

Rab cd = R(Ω)ab cd + 4
9kΩ[a

αβ ηb][c(γd])αβ − 2H[a,b]|cd + Pab cd (2.60h)

Rab cd = R(Ω)ab cd −
2
9k ηa[c(γd])αβΩb

αβ +Hb a|cd (2.60i)

Rab cd = R(Ω)ab cd + Pab cd (2.60j)

Rαβcd = R(Ω)αβcd + 2Hα [c,d]
β + 1

4(γab)αβPab cd , (2.60k)

Rαβcd = R(Ω)αβcd , (2.60l)
Rαβcd = R(Ω)αβcd + 2Hα [c,d]

β , (2.60m)

Rαβcd = R(Ω)αβcd + 1
4(γab)αβPab cd . (2.60n)
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There are additional components of RABcd, namely Rα̂b̂ cd and Rα̂β̂cd, at dimension 5/2
and dimension 3, but we will not need them here. The dilatonic curvature Rab also lies at
dimension 2; it is given by

Rab = (DC + FC)ΩCab −Hc
c|ab + 2

9kΩ[a
γβ(γb])βγ − 2P c

[a,b]c . (2.61)

The additional contributions from the H connections and the Poláček-Siegel field per-
mit a number of constraints to be imposed on these curvatures (similarly for their barred
versions):

Hα̂ b|cd =⇒ Rα̂b cd
∣∣∣
b|cd

= 0 , (2.62a)

Ha b|cd =⇒ Rab cd
∣∣∣
b|cd

= 0 , (2.62b)

Pab cd =⇒ Rab cd = Rcd ab , (2.62c)

Ha,b|cd , Pab cd =⇒ Rab cd = 1
45ηa[cηd]bR+R[ab cd] , (2.62d)

where |b|cd denotes projection to the irreducible hook representation.
There are a few additional curvature tensors through dimension two. First, the curva-

tures

Rαβ c
γ = R(Ω)αβ c

γ − 2k(γc)δ(βΩα)
δγ + 1

9k (γcd)(β
γΩα)

δε (γd)δε −
1
2(γde)(β

γ Hα) c|de ,

(2.63a)

Rαβ c
γ = R(Ω)αβ c

γ − k(γc)δαΩβ
δγ + 1

18k (γcd)αγΩβ
δε (γd)δε −

1
4(γde)αγ Hβ c|de , (2.63b)

Rαβ c
γ = R(Ω)αβ c

γ , (2.63c)

Rαb c
γ = R(Ω)αb c

γ + k (γc)αδΩb
δγ − 1

18k (γcd)αγ (γd)δεΩb
δε + 1

4(γef)αγ Hb c|ef −Hα b,c
γ ,

(2.63d)

Rαb c
γ = R(Ω)αb c

γ + k (γc)αδΩb
δγ − 1

18k (γcd)αγ (γd)δεΩb
δε + 1

4(γef)αγ Hb c|ef , (2.63e)

Rαb c
γ = R(Ω)αb c

γ −Hα b,c
γ , (2.63f)

Rαb c
γ = R(Ω)αb c

γ , (2.63g)

and

Rαβγδ = R(Ω)αβγδ − 2H(α b,c
(γ(γbc)β)

δ) , (2.64a)

Rαβ
γδ = R(Ω)αβ

γδ −Hβ b,c
(γ(γbc)αδ) , (2.64b)

Rαβ
γδ = R(Ω)αβ

γδ (2.64c)

(along with their barred versions) correspond to the covariantizations of the remaining
dimension ≤ 2 pieces of R(Ω)ABCD. Among these curvatures, the only constraint we can
impose is

Hα̂ b,c
γ =⇒ Rα̂b c

γ = 0 . (2.65)
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The only remaining curvatures at dimension two are the lowest dimension pieces of
RAB(K)c|de:

Rαβ(K)c|de = 2D(αHβ) c|de + FαβEHE c|de + 4kΩ(α| c
γ(γd)γδΩ|β) e

δ

+ 4kH(α d,e
γ(γc)β)γ − 4kH(α c,d

γ(γe)β)γ

∣∣∣
proj

, (2.66a)

Rαβ(K)c|de = 2D(αHβ) c|de + Fαβ
EHE c|de + 4kΩ(α| c

γ(γd)γδΩ|β) e
δ

+ 2kHβ d,e
γ(γc)α)γ − 2kHβ c,d

γ(γe)α)γ

∣∣∣
proj

, (2.66b)

Rαβ(K)c|de = 2D(αHβ) c|de + Fαβ
EHE c|de + 4kΩ(α| c

γ(γd)γδΩ|β) e
δ . (2.66c)

The covariant derivative D above carries the double Lorentz connection alone. We denote
these curvatures with a (K) separating the form indices from the indices of the generator
Kc|de, both to distinguish the types of indices and to reduce confusion with RABCD.

2.6 Solving Bianchi identities through dimension 2

Now we turn to solving the Bianchi identities. We will restrict our analysis to dimension
≤ 2. The three Bianchi identities read:

0 = BABCD ≡
[
4∇ATBCD + 3 TABETECD − 6RABCD

]
[ABCD]

, (2.67a)

0 = BAB ≡
[
2∇ATB + TABCTC +∇CTCAB −RADDB +RBDDA −RAB

]
[AB]

, (2.67b)

0 = B ≡ ∇ATA + 1
2T
ATA + 1

12T
ABCTCBA −

1
2R
AB
BA (2.67c)

In our previous work on type I DFT [20], we analyzed all three Bianchi identities simultane-
ously. Here we will take a bit of a different approach and focus only on the first set (2.67a),
which does not involve the superdilaton. The reason for this is that the double superge-
ometry emerging there will naturally correspond to generalized type II supergravity [30],
where a dilaton is not presumed to exist. The analysis of (2.67a) is nearly identical to the
type I discussion, so we will be relatively brief, proceeding by dimension.

Dimension 0. The Bianchi identities Bα̂β̂γ̂δ̂ are all satisfied trivially given the dimension
−1/2 and dimension 0 constraints.

Dimension 1/2. The Bianchi identities at dimension 1/2 read

Bαβγd = 0 =⇒ T(αβ
δ(γd)γ)δ = 0 =⇒ Tαβγ = X(αδβ)

γ − 1
2(γc)αβ(γc)γδXδ , (2.68a)

Bαβγd = 0 =⇒ (γe)(αβTeγ)d = 0 =⇒ Tαbc = (γb)αβWβ
c , (2.68b)

Bαβγd = 0 =⇒ Tγ(α
δ(γd)β)δ = 0 =⇒ Tαβγ = 0 , (2.68c)

Bαβγd = 0 =⇒ Tαβδ(γd)γδ = 0 =⇒ Tαβγ = 0 , (2.68d)

plus their barred versions. The dimension 1/2 torsions that remain even in light of the
Bianchi identities are the fields Xα and Wβ

c (corresponding to parts of Tαβγ and Tαbc).
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Both can be set to zero by redefining the dilatino and the gravitino superfields. In other
words, this is merely another conventional constraint — exactly the DFT analogue of a
gravitino redefinition discussed in [30]. The dimension 1/2 torsions then all vanish,

Tα̂b̂ĉ = 0 , Tα̂β̂
γ̂ = 0 . (2.69)

Dimension 1. Using Ω[cba] and Ωcba, we can set Tâb̂ĉ = 0 as a conventional constraint.
Since we are not addressing the superdilaton curvatures yet, we do not set Tâ = 0, so Ωb

ba
remains unfixed. The other torsion tensors at dimension 1 involve Tâβ̂

γ̂ . Recall we can
use Ωβ̂a

γ to fix Tβ̂a
γ = 1

10(γa)γδXβ̂,δ and its barred version. Then the Bianchi identities
Bα̂β̂ĉd̂ = 0 read:

Bαβcd = 0 =⇒ Rαβ cd = 2k
5 (γcd)(α

γXβ),γ , (2.70a)

Bαβcd = 0 =⇒ Td(α
γ(γc)α)γ = 0 =⇒ Tcβα = 0 , (2.70b)

Bαβcd = 0 =⇒ Rαβ cd = 0 , (2.70c)

Bαβcd = 0 =⇒ Rαβ cd = k

5 (γcd)αγXβ,γ , (2.70d)

Bαβcd = 0 =⇒ Tcα
γ(γd)γβ = Tdβ

γ(γc)γβ =⇒ Tcβ
α = 1

10(γc)βαXαα

Tcβ
α = 1

10(γc)βαX
αα (2.70e)

along with their barred versions. The last factor can be removed by redefining the Ramond-
Ramond bispinor Sαβ ; then as another conventional constraint, we fix Xαα = 0 above.

In addition to these, we have Bα̂β̂γ̂
δ̂ = 0, which decomposes as

Bαβγδ = 0 =⇒ 1
4R(αβ cd(γcd)γ)

δ = − k

10Xγ,ε(γc)αβ(γc)εδ
∣∣∣
(αβγ)

, (2.71a)

Bαβγδ = 0 =⇒ 1
2R(αγ cd(γcd)β)

δ = − k

10(γe)αβ(γe)δεXγ,ε , (2.71b)

Bαβγ
δ = 0 =⇒ 0 = 0 , (2.71c)

Bαβγ
δ = 0 =⇒ 0 = 0 (2.71d)

Combining (2.70d) with (2.71b) implies that Xα,β = 0. Combining (2.70a) with (2.71a)
implies that Xα,β is purely vectorial. We can set this to zero as a conventional constraint
by redefining Ωb

ba. In summary,

Tâb̂ĉ = 0 , Tâβ̂
γ̂ = 0 (2.72)

These constraints are consistent with the vanishing of all lower dimensional torsion tensors
except for Tα̂β̂ĉ. We also have found that the curvature tensors at this dimension vanish
as well,

Rα̂β̂ cd = Rα̂β̂ cd = 0 . (2.73)
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Dimension 3/2. The torsion tensors at dimension 3/2 consist of Tâb̂
γ̂ and Tα̂β̂γ̂ . We can

use Ωα̂
βγ and its barred version to fix Tα̂βγ = Tα̂βγ = 0. We can also use Ωγ̂

ab and its
barred version to fix Tab

γ̂ = Tab
γ̂ = 0. Finally, we can take Ωa b

γ and its barred version
to fix

Tab
γ = 1

10(γb)γδXa,γ , Tab
γ = 1

10(γb)γδXa,γ . (2.74)

The Bianchi identities Bα̂b̂ĉd̂ = 0 lead to

Bαbcd = 0 =⇒ Rα[bcd] = 0 , (2.75a)

Bαbcd = 0 =⇒ Rαb cd = 0 , (2.75b)

Bαbcd = 0 =⇒ Rαb cd = −k5 (γcd)αγXb,γ , (2.75c)

Bαbcd = 0 =⇒ Rα[bcd] = 0 (2.75d)

Next, we have Bα̂β̂c
δ̂ = 0. The first batch is

Bαβc
δ = 0 =⇒ Rαβ c

δ = 1
2(γde)(α

δRβ)c de , (2.76a)

Bαβc
δ = 0 =⇒ Rαβ c

δ = 1
4(γab)αδRβc ab , (2.76b)

Bαβc
δ = 0 =⇒ Rαβ c

δ = k

10 (γa)αβ(γc)δεXa,ε . (2.76c)

Each of these expressions is traceless when contracted with (γc)δγ . The first two, combined
with (2.75a) and (2.75d), imply that only the irreducible hook representations of Rα̂ b cd are
present, but these are eliminated using the constraint (2.62a). The third equation, being
γ-traceless on the left-hand side but pure trace on the right, is solved only by Rαβ c

δ =
Tab

γ = 0. The remaining identities are

Bαβc
δ = 0 =⇒ (γab)(α

δRβ)c ab = k

5 (γa)αβ(γa)δγXc,γ , (2.76d)

Bαβc
δ = 0 =⇒ (γc)βγTα

δγ = 0 =⇒ Tαβγ = 0 , (2.76e)

Bαβc
δ = 0 =⇒ (γc)γ(αTβ)

γδ = 0 =⇒ Tαβγ = 0 (2.76f)

Combining (2.75c) and (2.76d) tells us Xa,β = 0.
The upshot is that we have eliminated all torsions and curvatures at dimension 3/2,

Tâb̂
γ̂ = Tα̂β̂γ̂ = 0 , Rα̂b̂ĉd̂ = Rα̂β̂ ĉ

δ̂ = 0 . (2.77)

Dimension 2. Let’s start with Bâb̂ĉd̂. As in the bosonic case, this reads

Babcd = 0 =⇒ R[ab cd] = 0 , (2.78a)
Babcd = 0 =⇒ Rd[c ab] = 0 , (2.78b)

Babcd = 0 =⇒ Rab cd = −Rcd ab (2.78c)
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along with their barred versions. Using (2.62b)–(2.62d), we fix

Rab cd = 1
45ηa[cηd]bR Rab cd = 1

45ηa[cηd]b R̄ (2.79a)

Rab cd = 2
9 ηa[cRe

b ed] , Rab cd = −2
9ηb[cRae d]

e , (2.79b)

Rab cd = 0 , Rab cd = 0 . (2.79c)

Recall (2.65) fixes Rαb c
γ = 0. Next, we use

Bαβcd = 0 =⇒ Rαβcd = −1
4(γab)αβRcd ab = − 1

180(γcd)αβR , (2.80a)

Bαβcd = 0 =⇒ Rαd c
β = 1

4(γab)αβRcd ab =⇒ Rαd c
β = Rcd ab = 0 , (2.80b)

Bαβcd = 0 =⇒ Rαβcd = −1
4(γab)αβRcd ab =⇒ Rαβcd = 0 , (2.80c)

Bαβcd = 0 =⇒ Rαc d
β = k

10(γc)αγ(γd)βδX γδ =⇒ Rαc d
β = X γδ = 0 , (2.80d)

Bαβcd = 0 =⇒ Rαβcd = k

5 (γcd)αγX βγ =⇒ Rαβcd = 0 , (2.80e)

Bαβcd = 0 =⇒ Rαβcd = −2Rα[c d]
β =⇒ Rαβcd = 0 . (2.80f)

After that, we can use Bα̂β̂
γ̂δ̂. These involve

Bαγβδ = 0 =⇒ Rαγβδ = −1
4(γab)(α

(β(γcd)γ)
δ)Rab cd = −1

4(γab)(α
(β(γab)γ)

δ)R , (2.81a)

Bαγβδ = 0 =⇒ 0 = 0 , (2.81b)

Bαγβδ = 0 =⇒ Rαγβδ = 0 , (2.81c)

Bαγβδ = 0 =⇒ 0 = 0 , (2.81d)
Bαγβδ = 0 =⇒ Rαγβδ = 0 . (2.81e)

The superfield R remains unfixed at this stage. To determine it, we need to invoke
the Lorentz curvature Bianchi identity. The dimension 3/2 part of this vanishes given the
conditions already imposed. The non-trivial dimension 2 part reads

Rαβ(K)c|de = T(αβ
fRfc) de −

k

9Rαβ
γδ(γ[d)γδηe]c (2.82)

and this is solved by taking

R = 0 , Rαβ(K)c|de = 0 . (2.83)

The upshot is that all dimension 2 curvatures vanish.

2.7 Dilatonic torsion Bianchi identities

The dilatonic torsion Bianchi identities are (2.67b) and (2.67c). These hold when the
dilatonic torsion TA is given in terms of a superdilaton Φ. However, we would like to
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show that as a consequence of the constraints imposed already on the torsion TABC and
curvatures, one can choose TA so that these hold without supposing the existence of Φ.
This is relevant because the resulting type II supergeometry must correspond then to that
of [30].

The starting point is to suppose Tα̂ = 0. Then the dimension 1 Bianchi identities Bα̂β̂
amount to

Bαβ = TαβcTc +Rαγβγ +Rβγαγ = k(γc)αβTc , (2.84)
Bαβ = Rαγβ

γ +Rβγα
γ = 0 (2.85)

and similarly for Bαβ . These vanish if we fix Tâ = 0. Remember that we could have chosen
this instead as a conventional constraint to fix Ωb

ba; then this Bianchi identity would have
been responsible for eliminating the purely vectorial part of Xα,β in Tβa

γ .
The dimension 3/2 identities are

Bαb = −TαbγT γ +Rαc b
c +Rαγ b

γ −Rbγα
γ = k(γb)αγT γ , (2.86)

Bαb = Rαc b
c +Rαγ b

γ −Rbγα
γ = 0 , (2.87)

and their barred versions. The first vanishes if T α̂ = 0 and the second vanishes automati-
cally. So already we have concluded all components of the dilaton torsion vanish, TA = 0.
The dimension 2 conditions are quite similar and lead to either identities or definitions of
the dilatonic curvatures. Specifically,

Bab = −R̂ab , Bab = 0 , Bαβ = −1
4R̂ab(γab)αβ , Bαβ = 0 . (2.88)

These vanish simply by choosing R̂ab = R̂ab = 0. In like fashion, (2.67c) is easily found to
satisfy B = 0.

We have not analyzed torsions and curvatures beyond dimension two, but it seems
plausible that the remaining Bianchi identities BAB at dimensions 5/2 and 3 similarly hold
as a consequence of BABCD = 0. We leave the question of the higher dimension torsions
and curvatures to future work.

3 OSp(D,D|2s) spinors and the Ramond-Ramond sector

A key difference between type I and type II double field theory is the presence of the
Ramond-Ramond sector. In bosonic double field theory, the Ramond-Ramond sector is
described either by an O(D,D) spinor [7, 8] or an O(D−1, 1)L×O(1, D−1)R bispinor [9, 10].
These two descriptions can be related using the spinorial vielbein [19]. Our goal in this
section is to give the superspace lift of these relations. That is, we will describe how the
Ramond-Ramond super p-forms of type II superspace fit into a spinor of OSp(D,D|2s),
and we will give the prescription for identifying a spinorial supervielbein in this framework.
Much of this material follows naturally from the bosonic case, so we will be brief where the
analogies are clear. Key initial elements of this discussion were already given by Cederwall
some time ago [28].
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3.1 The Clifford superalgebra

A natural starting point for defining OSp(D,D|2s) spinors is via their associated Clifford
superalgebra. We introduce gamma matrices ΓM that obey the Clifford superalgebra

{ΓM,ΓN } = 2 ηMN . (3.1)

In the standard toroidal basis,

ηMN =


0 δmn 0 0
δm

n 0 0 0
0 0 0 δµ̂ν̂
0 0 −δµ̂ν̂ 0

 , ηMN =


0 δm

n 0 0
δmn 0 0 0

0 0 0 δµ̂
ν̂

0 0 −δµ̂ν̂ 0

 , (3.2)

where m = 1 · · ·D and µ̂ = 1 · · · s. We include a hat on the spinor index as its flat analogue
will be denoted α̂ = (α, α). The Clifford algebra Clif(D,D|2s) consists of all products of
the Γ-matrices, combined with the unit element 1:

Clif(D,D|2s) = span ({1 , ΓM , ΓMN , · · · , ΓM1···Mp , · · · }) . (3.3)

This is an infinite dimensional algebra, as the spinor-valued Γ-matrices are commuting and
therefore not nilpotent. It is convenient to decompose it into an infinite set of copies of the
standard Clifford algebra Clif(D,D) tensored with the fermionic gamma matrices, i.e.

Clif(D,D|2s) =
∑
p,q

Clif(D,D)p,q (3.4)

where Clif(D,D)p,q consists of all elements of Clif(D,D) multiplied by Γµ̂1···µ̂p
ν̂1···ν̂q .

3.2 Orthosymplectic spinors

The natural definition of an orthosymplectic spinor follows quite analogously from the
bosonic case. In the toroidal basis, we define ΓM and ΓM via

ΓM = (ΓM ,ΓM ) , (3.5)

and take βM = 1√
2ΓM and βM = 1√

2ΓM as graded raising and lowering operators. These
obey

{βN , βM} = (−)mn{βM , βN} = δM
N . (3.6)

This is a graded anticommutator, so that βm and βm furnish a fermionic oscillator algebra,
and βµ̂ and βµ̂ a bosonic one, i.e.

{βn, βm} = {βm, βn} = δn
m , [βµ̂, βν̂ ] = −[βν̂ , βµ̂] = −δν̂ µ̂ . (3.7)

In order to choose βM to be raising operators and βM to be lowering operators, we build
spinors by acting with βM to the left on a vacuum bra state 〈0|. This may seem a bizarre
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choice, but it leads to the convenient identification of an OSp(D,D|2s) spinor with the
standard expansion of a superspace differential form, i.e.

〈C| =
∑
p

1
p!〈0|β

M1 · · ·βMp CMp···M1 ⇔ C =
∑
p

1
p!dz

M1 · · · dzMp CMp···M1 . (3.8)

Because superspace forms are typically written in this fashion with other related changes
(e.g. the de Rham differential acting from the right), it is natural to define an orthosymplec-
tic spinor as a bra rather than a ket. This will lead us to transpose a number of equations
relative to the bosonic case. While this mirroring of bosonic formulae is inconvenient at
first glance, it has the practical effect of eliminating a number of minus signs that would
otherwise occur.

A key feature of orthosymplectic spinors is that because the Clifford algebra is infinite
dimensional, spinors will necessarily also be infinite dimensional. This corresponds to
the notion that a superform can be of arbitrary rank as there is no upper bound on the
number of fermionic legs dθµ̂. Following what we did with the Clifford algebra, it will be
convenient to decompose an orthosymplectic spinor depending on how many βµ̂ oscillators
they involve. That is, we take

〈C| =
∞∑
p=0
〈C|p , (3.9)

where 〈C|p involves βµ̂1 · · ·βµ̂p .
The natural action for an OSp(D,D|2s) rotation is δ〈C| = 1

4〈C|Γ
MNΛNM. For a

generalized diffeomorphism, the parameter Λ is given by ΛMN = ∂Mξ
N − ∂N ξM(−)nm.

This suggests that we define the generalized diffeomorphism of C in analogy to the bosonic
case as

δ〈C| = ξN∂N 〈C|+
1
2〈C|Γ

MN∂N ξM + 1
2〈C|∂Mξ

M(−)m

= ξN∂N 〈C|+
1
2〈C|Γ

MΓN∂N ξM . (3.10)

The relative normalization of the R+ term in the first line is chosen so they combine in
the second line, similar to (but mirrored from) the bosonic case. This ensures that both

〈C| and 〈F| := 〈C|
←
/∂ transform as spinors, where /∂ = βM∂M. Further, upon solving the

section condition as ∂̃M = 0, we recover the expected transformation of the complex C of
super-p-forms,

δ〈C| = ξN∂N 〈C|+ 〈C|βMβN∂NξM + 〈C|βMβN∂N ξ̃M =⇒ δC = LξC + C ∧ dξ̃ . (3.11)

3.3 Flat orthosymplectic bispinors

Let us briefly recall how flat O(D,D) bispinors arise in the bosonic case. We follow the
same conventions as [19], but transposing the Fock space so that bras become kets, etc.
Thus, we introduce the spinorial version of the double vielbein | /V 〉 which obeys

Γm̂| /V 〉 = | /V 〉 · Γâ Vâm̂ . (3.12)
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Here | /V 〉 is a bispinor-valued ket. For D = 10, this ket decomposes as

| /V 〉 =
(
|Vαα〉 |Vαα〉
|V αα〉 |V α

α〉

)
(3.13)

where α and α are 16-component Weyl spinor indices of SO(9, 1) and SO(1, 9). The flat
gamma matrix Γâ acts to the left on | /V 〉 (and similarly on any bispinor)

| /V 〉 · Γa = γa| /V 〉 , | /V 〉 · Γa = γ∗| /V 〉γ̄a , (3.14)

where γa and γ̄a are gamma matrices of SO(9, 1) and SO(1, 9) respectively.7

The flattened bispinor /̂C is then built from 〈C| as

/̂C := ed 〈C| /V 〉 =
(
Ĉα

α Ĉαα
Ĉαα Ĉαα

)
. (3.15)

The relations (3.14) lead to /̂C · Γa = γa /̂C and /̂C · Γa = γ∗ /̂Cγ̄
a.

While flat O(D,D) spinors are finite dimensional bispinors, flat orthosymplectic spinors
must be infinite dimensional. In the flat basis, we treat Γâ and Γα̂ differently; the former
lead to a finite dimensional Fock space and can be described by matrices, as before, while
the latter are infinite dimensional and so we will retain a Fock space structure for the
spinorial indices. A flat orthosymplectic spinor is then written, similar to (3.9), as

〈/̂C| =
∑
p

〈0|bα̂1 · · · bα̂p /̂Cα̂p···α̂1 (3.16)

where bα̂ = (bα, bα) are bosonic raising operators, acting to the left on a spinor vacuum
state 〈0|, so that they obey

[bα̂, bβ̂ ] = δβ̂
α̂ , 〈0|bα̂ = 0 . (3.17)

The quantity /̂Cα̂p···α̂1 is a bispinor carrying additional symmetric spinor indices; we can
write it as

/̂Cα̂p···α̂1 =
(
Ĉα̂p···α̂1,α

α Ĉα̂p···α̂1,αα

Ĉα̂p···α̂1,
αα Ĉα̂p···α̂1,

α
α

)
(3.18)

with α̂i including both barred and unbarred indices. The action of ΓA on 〈/̂C| is defined as

〈/̂C| · Γa = γa〈/̂C| , 〈/̂C| · Γa = γ∗〈/̂C|γ̄a ,

〈/̂C| · Γα̂ =
√

2 γ∗〈/̂C|γ̄∗ bα̂ , 〈/̂C| · Γα̂ =
√

2 γ∗〈/̂C|γ̄∗ bα̂ . (3.19)

The various factors of γ∗ and γ̄∗ are necessary to reproduce the flat Clifford algebra. The
· action above is to the left on any bispinor-valued Fock space and not just 〈/̂C| itself, so

7Because the action of Γâ is defined to the left on any bispinor, we have e.g. | /V 〉 ·ΓaΓb = (γa| /V 〉) ·Γb =
γbγa| /V 〉, and so the order of the left-handed gamma matrices gets reversed. This is in contrast to the
discussion in [19], where the Fock space structure was transposed and so the action of right-handed gamma
matrices was reversed.
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for example, 〈/̂C| · ΓaΓb =
(
γa〈/̂C|

)
· Γb = γbγa〈/̂C|, leading to a reversal of ordering on the

left-handed spinor sector.
We introduce the bispinorial operator /̂V that converts to the spinor Fock space, so that

〈/̂C| := Φ−1/2 〈C| /̂V . (3.20)

The action of the ΓM matrices on /̂V is defined as

ΓM /̂V = /̂V · ΓA VAM (3.21)

where ΓA acts to the left on /̂V just as on 〈/̂C| in (3.19).
The specific dictionary between the curved and flat Fock vacuum states follows when

taking /̂V to be that associated with the identity supervielbein; for shorthand, we denote
this as /̂1. Then we have

〈0|/̂1 = 1⊗ 〈0| = 1
25/2

(
δα
α〈0| 0
0 δαα〈0|

)
. (3.22)

3.4 The Ramond-Ramond sector and its curvature constraints

Now suppose that 〈C| describes the complex of Ramond-Ramond p-forms. In addition to
diffeomorphisms (3.10), it transforms under abelian gauge transformations as

δ〈C| = 〈λ|
←
/∂= 1√

2
〈λ|ΓM

←
∂M (3.23)

so that the field strength 〈F| = 〈C|
←
/∂ is invariant. As is typical in superspace formulations,

we impose constraints on the covariant field strengths — that is, constraints on the flat
components of the field strength tensor flattened with the supervielbein, e.g. FA1···Ap .
For the Ramond-Ramond sector, the analogous constraints must then be imposed on the
flattened bispinor

〈 /̂F| := Φ−1/2〈F| /̂V . (3.24)

A remarkable simplification occurs here. In type II supergravities, there are only three
nonzero components of FA1···Ap : these are Fα̂β̂ a1···ap−2

(which is constant and given by
γ-matrices), Fα̂ a1···ap−1 (which is given by the dilatino), and Fa1···ap (which is the covariant
field strength). We have already claimed that the covariant field strengths and the dilatino
will be encoded in the supervielbein; since these will have non-tensorial transformations
under superdiffeomorphisms, we cannot use them to build 〈 /̂F|. This suggests that the
only natural choice for 〈 /̂F| is a constant! Structurally, there is only one way to do this.
Because the fermionic oscillators bα̂ carry the same type of index as those on the bispinor,
it is possible to write down one constant bispinor which involves no dynamical information
aside from the structure of the flat fermionic Fock space:

〈 /̂F| = −4k
(

0 0
〈0|bαbα 0

)
. (3.25)
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We choose the normalization to involve the constant k, which is the same that appears in the
torsion tensor constraint (2.33); this will lead to standard normalization conventions for the
Ramond-Ramond sector in type II supergravity. This coincides with the expansion (3.18)
if we identify the sole non-vanishing component as

F̂α2α1,
αα = −4k δα2

α δα1
α . (3.26)

This is a rather simple expression, and we should perform a few sanity checks. First,
the field strength must be closed. In covariant notation, this condition reads

0 = 1√
2
〈 /̂F|

(
ΓA

←
∇A + 1

12ΓABCTCBA + 1
2ΓATA

)
. (3.27)

The only non-vanishing torsion is Tγ̂β̂â, so only the second term contributes:

0 = γc〈 /̂F|bαbβ(γc)βα + γ∗〈 /̂F|γ̄cbαbβ(γ̄c)βα . (3.28)

The first term is proportional to(
0 (γc)αβ

(γc)αβ 0

)
×
(

0 0
〈0|bβbα 0

)
× bγbδ(γc)γδ =

(
〈0|(γc)αβbβbγbδ(γc)γδbα 0

0 0

)
(3.29)

but this vanishes using the fundamental 10D gamma matrix identity (γc)α(β(γc)γδ) = 0. A
similar cancellation occurs for the second term. This identifies 〈 /̂F| as a preferred covariantly
closed and constant orthosymplectic spinor.

As a second check, we can verify that 〈 /̂F| is Lorentz covariant. This is more or less
obvious when we interpret it as (3.26), but it is useful to understand how this works in ket
language. An infinitesimal left-handed Lorentz transformation acts as

δλ〈 /̂F|=
1
2〈
/̂F|
(1

2Γab − 1
4ΓβΓγ(γab)γβ

)
λba = 1

4λab

(
γab〈 /̂F|+ 〈 /̂F|bβbγ(γab)γβ

)
= 0 . (3.30)

The term in parentheses is the embedding of the SO(9, 1) generatorMab into the orthosym-
plectic group: it consists of the piece that rotates vectors and the piece rotating spinors.
Together these cancel out when the explicit form of 〈 /̂F| is used. The same occurs for the
right-handed sector. In fact, 〈 /̂F| can be seen to be invariant under the full HL×HR group.
We leave this as an instructive exercise.

To confirm this result, we will verify in due course that it correctly reproduces the
supersymmetry transformation of component Ramond-Ramond bispinor given in [10]. We
will also show that it leads to the correct Ramond-Ramond polyform in conventional type II
superspace.

4 Component fields and SUSY transformations of type II DFT

The component structure of type II DFT was given by Jeon et al. in [10], where the action
and supersymmetry transformations were laid out in detail. Our goal in this section is
to recover their results for the supersymmetry transformations from superspace. We will
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not address the construction of the action for two reasons. First, as with any on-shell
component theory, this can be tricky because on-shell supersymmetry necessarily implies
equations of motion. Second, we have not yet discovered a generic schema for constructing
invariant actions in OSp(D,D|2s) superspace; this is in contrast to GL(D|s) superspace
where invariant actions are associated with closed super D-forms [31–34]. Nevertheless, one
could still derive the equations of motion from superspace; for the sake of brevity, we will
not exhaustively analyze these here, as this would mostly mirror the type I analysis [20],
and would necessarily lead to the results in [10] (since those equations of motion are implied
by closure of the algebra).

4.1 Decomposing the supervielbein

In order to derive the physical component fields, we must first arrange the supervielbein
in a specific way. The generators of OSp(10, 10|64) can be decomposed with respect to
O(10, 10)× Sp(64,R) and assigned levels as

T µ̂ν̂︸︷︷︸
level -2

, T µ̂n̂︸︷︷︸
level -1

, T m̂n̂ , Tµ̂
ν̂︸ ︷︷ ︸

level 0

, Tµ̂n̂︸︷︷︸
level +1

, Tµ̂ν̂︸︷︷︸
level +2

. (4.1)

The level corresponds to the difference between the number of lowered and raised fermionic
indices. Then the DFT supervielbein VMA can be arranged in factors of increasing lev-
els, i.e.

V = V−2V−1V0V+1V+2 . (4.2)

One consequence is that the fields and generators assigned to V+1 and V+2 will be more
naturally written with tangent space indices. We enumerate the fields in table 4. This
arrangement is rather different from the superspace decomposition given in (2.9). That
parametrization (and its generalization in section 5) is more useful to recover type II
superspace after solving the section condition, while the one here is useful for component
DFT analysis. We will spell this connection out more clearly in section 5.7.

Let’s briefly explain the field content in table 4. The component fields lie in the first
three lines. The bosonic double vielbein is Vm̂â. The fermionic fields Ψâ

β̂ consist of the
gravitini Ψa

β and Ψa
β and the dilatini ρα̂, which we define as

ρα := Ψa
β(γa)βα , ρα := Ψa

β(γ̄a)βα . (4.3)

The spin-3/2 pieces of Ψa
β and Ψa

β are pure gauge artifacts, as are Sαβ and Sαβ . Sαβ

encodes the covariantized Ramond-Ramond field strengths.
The remaining fields turn out to be gauge artifacts of a different type: the lowest com-

ponents of their θ expansions can be removed by θ-dependent diffeomorphisms. These are
related (at leading order) to corresponding fields in conventional superspace. For example,
φµ̂

α̂ corresponds to the supervielbein component Eµ̂α̂. The two pieces of Ξµ̂m̂ = (Ξµ̂m,Ξµ̂m)
correspond respectively to Eµ̂a and Bµ̂n in conventional superspace. Finally, Bµ̂ν̂ corre-
sponds to the fermionic legs of the super 2-form BMN .
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field generator level

S α̂β̂ Tα̂β̂ +2
Ψâ

β̂ Tβ̂
â +1

Vm̂
â Tm̂

n̂ 0
φµ̂

α̂ Tµ̂
ν̂ 0

Ξµ̂m̂ Tm̂
µ −1

Bµ̂ν̂ T µ̂ν̂ −2

Table 4. Constituent fields of the supervielbein. Positive level fields are written with Lorentz
indices.

Let’s work out the explicit expressions for the supervielbein. The fields at nonzero levels
are normalized so that they fill out a graded symmetric element AMN of OSp(10, 10|64),

AMN =

 0 Ξm̂ν̂ Ψâ
β̂

−Ξn̂µ̂ Bµ̂ν̂ 0
−Ψb̂

α̂ 0 S α̂β̂

 . (4.4)

This notation is somewhat sloppy, as we are using flat indices for positive elements and
curved indices for negative ones, but we trust this will not be confusing. Exponentiating
the above generators using V = exp(AMN ) for each level gives

V+2 =

1 0 0
0 1 0
0 S 1

 , V−2 =

1 0 0
0 1 −B
0 0 1

 , B = Bµ̂ν̂ , S = S α̂β̂ ,

V+1 =

 1 Ψ 0
0 1 0
−ΨT −1

2ΨTΨ 1

 , Ψ = Ψâ
β̂ , ΨT = (ΨT )α̂b̂ = Ψb̂α̂ , ,

V−1 =

 1 0 −Ξ
−ΞT 1 1

2ΞTΞ
0 0 1

 , Ξ = Ξm̂ν̂ , ΞT = (ΞT )µ̂n̂ = Ξn̂µ̂ , (4.5)

At level 0, there are two distinct commuting pieces, which we denote

V0 =

Vm̂
â 0 0

0 1 0
0 0 1

 , Vφ =

1 0 0
0 φµ̂α̂ 0
0 0 φα̂

µ̂

 . (4.6)

Vm̂
â is the component DFT vielbein and we presume φµ̂α̂ to be invertible with inverse φα̂µ̂.
Then a generic orthosymplectic element can be decomposed as

V = V−2V−1Vφ︸ ︷︷ ︸
VΞ

×V0 × V+1V+2︸ ︷︷ ︸
VΨ

= VΞ × V0 × VΨ (4.7)
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We emphasize that V0 contains the bosonic double vielbein, VΨ involves the gravitini,
dilatini, and Ramond-Ramond bispinor, and VΞ involves fields with no component ana-
logues since their θ = 0 parts can be eliminated. Note that V0 denotes a generic el-
ement of O(D,D) ⊂ OSp(D,D|2s) while V−2VφV+2 is a (nearly) generic element of
Sp(2s,R) ⊂ OSp(D,D|2s).

The organization of elements ensures that all flat indices above transform straight-
forwardly under the double Lorentz group. Meanwhile, the higher λ transformations are
entirely soaked up in VΨ = V+1V+2. The fields there transform as

δΨa
β = −λa

β , δΨa
β = −λa

β , (4.8)

δSαβ = −λαβ + Ψc(αλc
β) , δSαβ = −λαβ + Ψc(αλc

β) , (4.9)

δSαβ = 1
2Ψcβλc

α + 1
2Ψcαλc

β , (4.10)

with all other fields invariant. Note that we can define a shifted version of Sαβ ,

S̊αβ := Sαβ − 1
2ΨcαΨc

β + 1
2ΨcαΨc

β (4.11)

to eliminate its higher λ transformation entirely. This will be the covariantized Ramond-
Ramond bispinor that appears in the gravitini transformation.

The transformations (4.8) and (4.9) admit the gauge (which we denote with asterisks)

Ψa
α ∗= 1

10(γa)αβρβ , Ψa
α ∗= 1

10(γa)αβρβ , Sαβ ∗= 0 , Sαβ ∗= 0 . (4.12)

We will actually avoid imposing this gauge, so that we can track how gauge invariance
emerges.

In the decomposition (4.7), let us split off the VΨ part and denote V̊ = VΞV0. Its
inverse is explicitly

(V̊−1)AM =

Vâ
m̂ 0 •
• φα̂

µ̂ •
0 0 φµ̂

α̂

 ,
V̊α̂n̂ = −φα̂ν̂Ξn̂ν̂ , V̊âν̂ = Vâ

m̂Ξm̂ν ,

V̊α̂ν̂ = φα̂
µ̂(Bµ̂ν̂ + 1

2Ξm̂µ̂Ξm̂ν̂) .
(4.13)

with the bulleted entries given explicitly above. As we will solve the fermionic part of the
section condition by taking ∂̃µ̂ = 0, it follows that

D̊A := V̊AM∂M =

 Vâ
m̂∂m̂

V̊α̂m̂∂m̂ + φα̂
µ̂∂µ̂

0

 ≡
D̊â

D̊α̂

0

 . (4.14)

This defines D̊â and D̊α̂. Note that we can build DA = VAM∂M = (V−1
Ψ )ABD̊B as

DA = (V−1
Ψ )ABD̊B =


D̊â −Ψâ

α̂D̊α̂

D̊α̂

Ψb̂α̂D̊b̂ −
(
S α̂β̂ + 1

2Ψĉα̂Ψĉ
β̂
)
D̊β̂

 . (4.15)

– 32 –



J
H
E
P
0
2
(
2
0
2
3
)
1
8
7

It is quite convenient that Dα̂ = D̊α̂, as this lets us write

Dâ = D̊â −Ψâ
β̂Dβ̂ , Dα̂ = Ψb̂α̂Db̂ −

(
S α̂β̂ − 1

2Ψâα̂Ψâ
β̂
)
Dβ̂ . (4.16)

The bosonic derivative Dâ is now directly analogous to the conventional superspace deriva-
tive, where it is given by the component flat derivative D̊â modified by a gravitino (and
dilatino) piece. The additional double fermionic derivative is Dα̂: its explicit form will be
useful in subsequent computations. The key property of (4.16) is that the pieces of VΞ ap-
pear only implicitly via Dα̂. These simple expressions crucially follow only upon imposing
∂µ̂ = 0, which we will presume henceforth in this section.

4.2 Generalized diffeomorphisms

There are three types of diffeomorphisms to consider: bosonic generalized diffeomorphisms
of component double field theory and the fermionic and dual fermionic diffeomorphisms.
We treat the fermionic diffeomorphisms as covariantized diffeomorphisms and keep the
bosonic and dual fermionic diffeomorphisms uncovariantized. That means we parametrize
the latter as standard diffeomorphisms with

ξM = (ξm̂, 0,−ξ̃µ̂) (4.17)

and encode the former as

ξA = (0, εα̂, 0) . (4.18)

The parameter ξm̂ describes double diffeomorphisms in the component theory, εα̂ describes
supersymmetry, and ξ̃µ̂ is a residual dual fermionic symmetry that plays no role for the
physical fields.

Let’s first address the transformations (4.17), as these are quite simple to understand.
Denoting the diffeomorphism as

δVMA = ξN∂NVMA +KMNVNA , KMN = ∂Mξ
N − ∂N ξM(−)nm , (4.19)

we observe that only non-positive levels contribute to K on account of ∂µ̂ = 0, and it
follows that

δVΞ = ξm̂∂m̂VΞ + (K−2 +K−1)VΞ + [K0,VΞ] , δV0 = ξm̂∂m̂V0 +K0V0 , δVΨ = ξm̂∂m̂VΨ .

(4.20)

It is useful here that the level zero element K0 only involves ∂m̂ξn̂ and not ∂µ̂ξν̂ or ∂µ̂ξν̂ , as
this simplifies the transformation of VΞ. Because the K0 piece is just the bosonic O(10, 10)
element, V0 transforms as a DFT vielbein should, while the gravitino, dilatino, and RR
bispinor are scalar fields. The negative level transformations are completely soaked up by
the fields in VΞ, which transform as

δΞm̂ν̂ = ξn̂∂n̂Ξm̂ν̂ + ∂m̂ξ̃ν̂ − ∂νξm̂ + (∂m̂ξn̂ − ∂n̂ξm̂)Ξn̂ν̂ ,
δBµ̂ν̂ = ξn̂∂n̂Bµ̂ν̂ + ∂µ̂ξ̃ν̂ + ∂ν̂ ξ̃µ̂ + Ξm̂(µ̂(∂m̂ξ̃ν̂) − ∂ν̂)ξm̂) . (4.21)

As in conventional superspace, these fields can be set to zero at lowest level in θ.
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Because the fields in VΨ are inert under ξ̃µ̂ and transform as scalars under ξm̂, any
gauge-fixing there is undisturbed by diffeomorphisms. For example, if we have set Sαβ to
zero, it remains so. This means component diffeomorphisms match superspace ones, with
no compensating transformations needed to preserve the gauges (4.12). This will not be
the case for supersymmetry transformations.

4.3 The physical and composite fields of component DFT

We have identified the vielbein, gravitini, and dilatini as components of the supervielbein.
We still need to identify the dilaton and the Ramond-Ramond sector and verify that they
transform sensibly under standard diffeomorphisms (4.17).

The dilaton. Recall the superdilaton Φ transforms under diffeomorphisms as

δ log Φ = ξm̂∂m̂ log Φ + ∂m̂ξ
m̂ − ∂µ̂ξµ̂ + ∂̃µ̂ξ̃µ̂ (4.22)

for a completely generic ξM. At the component level, the last term can be dropped because
we take ∂̃µ̂ = 0, but the second term remains problematic as it will obstruct the construction
of a sensible supersymmetry transformation. This suggests that we define the component
dilaton as

e−2d := Φ× detφµ̂α̂ =⇒ e2dδe−2d = ∂m̂ξ
m̂ + 2 ∂̃µ̂ξ̃µ̂ . (4.23)

Now the second term drops out when ∂̃µ̂ = 0 and the component dilaton transforms as a
scalar field.8

The Ramond-Ramond sector. For the Ramond-Ramond sector, we proceed analo-
gously to how superspace p-forms reduce to component p-forms. Recall for these, we have
the notion of a double bar projection, taking both θµ = 0 and dθµ = 0. Thus we have

C =
∑
p

1
p!dz

M1 · · · dzMpCMp···M1(x, θ) =⇒ C = C|| =
∑
p

1
p!dx

m1 · · · dxmpCmp···m1(x) ,

(4.24)

where Cmp···m1(x) = Cmp···m1(x, 0). For the case of an orthosymplectic spinor, the analogous
operation is to project to βµ̂ = 0. That is, we define

〈C| := 〈C|
∣∣∣∣∣∣ = 〈C|

∣∣∣
θµ̂=βµ̂=0

(4.25)

The spinor 〈C(x)| transforms precisely as a component O(D,D) spinor when ξM is given
by (4.17) and we set ∂̃µ̂ = 0:

δ〈C| = ξn̂∂n̂〈C|+
1
2〈C|Γ

m̂ΓN∂N ξm̂ + 1
2〈C|Γ

µ̂ΓN∂N ξ̃µ̂
proj.=⇒

δ〈C| = ξn̂∂n̂〈C|+
1
2〈C|Γ

m̂Γn̂∂n̂ξm̂ . (4.26)

8Another way of arriving at this same conclusion is to recall that the component DFT dilaton is related
to the supergravity dilaton by a factor of e = det em

a, that is, e−2d = e e−2ϕ. The superdilaton in Siegel’s
superspace DFT is similarly related to the conventional (non-density) superspace dilaton by a factor of
E = sdetEM

A, i.e. Φ = E e−2ϕ. In conventional superspace, the component and superspace dilatons
coincide (hence both are ϕ above). This implies that e−2d = Φ× e/E = Φ× detφµα.
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Spin connection. In analogy to (4.14), we define the component spin connection

ωâ b̂ĉ := (VΨ)âDΩD b̂ĉ = Ωâ b̂ĉ + Ψâ
α̂Ωα̂ b̂ĉ (4.27)

The motivation for this is two-fold: first, it lets us define the component covariant deriva-
tive as

D̊â := (VΨ)âBDB = Dâ + Ψâ
β̂Dβ̂ = D̊â −

1
2ωâ

b̂ĉMĉb̂ . (4.28)

Second, it gives a very simple prescription for translating torsion constraints in superspace
to torsion constraints in components. As shown in [20], the above definition of the spin
connection implies that the component torsions are given by

Tĉb̂â = (VΨ)âA(VΨ)b̂
B(VΨ)ĉCTCBA . (4.29)

A similar calculation shows that the component dilaton torsion is

Tâ = Tâ + Ψâ
α̂(Tα̂ + Tα̂β̂

β̂) + Ψb̂β̂Tβ̂b̂â −Ψâ
α̂Ψb̂β̂Tβ̂α̂b̂ + S β̂γ̂

(
Tγ̂β̂â + Ψâ

αTγ̂β̂â
)
. (4.30)

Using the superspace constraints on the torsion tensors, we conclude that

Tabc = 3kΨ[a
α(γb)αβΨc]

β , (4.31a)

Tabc = 2kΨa
α(γ[b)αβΨc]

β − kΨb
α(γ̄a)αβΨc

β , (4.31b)

Ta = −kΨa
αρα − kΨa

αρα + k(γa)βγSβγ , (4.31c)

and similarly for their barred versions. We could further impose the gauge conditions (4.12),
but it will be enlightening to avoid that here. The above conditions imply that ωabc and
ωabc receive additional contributions ∆ω relative to the expressions ω(V ) that follow from
the bosonic theory:

∆ω[abc] = k Ψ̄[aγbΨc] , (4.32a)
∆ωb

ba = −k Ψ̄aρ− k Ψ̄′aρ′ + k(γa)βγSβγ , (4.32b)
∆ωabc = 2k Ψ̄aγ[bΨc] − kΨ̄′bγ̄aΨ′c . (4.32c)

This means that this spin connection is not invariant under the higher λ transformations.
This had to be the case from its definition (4.27) and the transformations (2.34a) of ΩMbc,
which imply that

δωabc = −2k Ψ̄aγ[bλc] −
2k
9 ηa[b(γc])αβλαβ + Λa|bc , (4.33)

consistent with the contributions ∆ω.

The covariant Ramond-Ramond field strength. To uncover the relation between
the component Ramond-Ramond bispinor field strength /̂F and the bispinor component S̊αβ

of the supervielbein, we follow again the conventional supergravity dictionary by projecting
to βµ̂ = 0. That is, we identify

〈F | := 〈F|
∣∣∣∣∣∣ = 〈 /̂F| /̂V−1Φ1/2

∣∣∣∣∣∣ . (4.34)
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Now we decompose the spinorial vielbein operator, following (4.7), as

/̂V = /̂VΞ × /̂V0 × /̂VΨ (4.35)

The projection to βµ̂ = 0 effectively dispenses with the VΞ factor except for the piece that
generates φµ̂α̂ = exp(aµ̂ν̂)δν̂ α̂. This factor leads to

/̂V−1
φ |βµ̂=0 = exp

(1
2(βµ̂βν̂ + βν̂βµ̂)aν̂ µ̂

)
|βµ̂=0 = exp

(1
2aµ̂

µ̂
)

= (detφµ̂α̂)1/2 . (4.36)

We identify the flat bispinor

/̂F = e−d〈F | /V 〉 = 〈 /̂F| /̂V−1
Ψ

∣∣∣
bα̂=0

(4.37)

Expanding this out using /̂V−1
Ψ = exp

(
1
2Γβ̂ΓâΨâ

β̂ + 1
4Γα̂Γβ̂S

β̂α̂
)
, we find

/̂F = −4k

 0 −1
2(γbΨa)α(Ψbγ̄

a)α + 1
2ραρ̄α

Sαα + 1
2(γabΨb)αΨa

α − 1
2Ψa

α(Ψbγ̄
ba)α 0


= −4k

(
/S + 1

2γ
abΨb × Ψ̄′a −

1
2Ψa × Ψ̄′bγ̄

ba − 1
2γ

bΨa × Ψ̄′bγ̄a + 1
2ρ× ρ̄

′
)

(4.38)

where we have written the result first in 16-component Weyl notation and then in 32-
component Dirac notation. Now employing the redefinition (4.11) of the Ramond-Ramond
bispinor S to the λ-invariant S̊, we find

/̂F = −4k

 0 −1
2(γbΨa)α(Ψbγ̄

a)α + 1
2ραρ̄α

S̊αα + 1
2(γaρ)αΨa

α − 1
2Ψa

α(ργ̄a)α 0


= −4k

(
/̊S + 1

2γ
aρ× Ψ̄′a −

1
2Ψa × ρ̄′γ̄a − 1

2γ
bΨa × Ψ̄′bγ̄a + 1

2ρ× ρ̄
′
)
. (4.39)

This expression is clearly invariant under the higher λ transformations. We can use it to
identify

S̊αα = − 1
4k F̂

αα − 1
2(γaρ)αΨa

α + 1
2Ψa

α (γ̄aρ)α (4.40)

We can identify two constraints on /̂F from its Weyl decomposition. The first is γ∗ /̂F γ̄∗ =
− /̂F , which constrains the diagonal to vanish. The second constrains the upper right block:

0 = (1 + γ∗)
(
/̂F − 4k

2 γbΨa × Ψ̄′bγ̄a + 4k
2 ρ× ρ̄′

)
(1− γ̄∗) . (4.41)

4.4 Supersymmetry transformations

Now we can compute the supersymmetry transformations arising from a covariant diffeo-
morphism with parameter (4.18). Including a compensating tangent space transformation
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λA
B (which will be necessary in this case), the supervielbein transforms as δV = V (K−λ)

where

KAB = ∇AξB −∇BξA(−1)ab + ξCTCAB . (4.42)

As we are restricting our choice of ξA, we should be careful about expressions like ∇AξB =
DAξ

B−ΩABCξC , which might lead to an unexpected contribution when the Ω connection is
not purely Lorentz. Luckily, for ξA = (0, εα̂, 0), the only contribution is the Lorentz piece
ΩAβγεγ = 1

4(γbc)γβΩA bc ε
γ . To emphasize this, we replace ∇ with D where D carries only

the double Lorentz connection. For the torsion term, only Tγ̂β̂â is non-vanishing. Thus the
only nonzero elements of KAB are

Kα̂β̂ = 2D(α̂εβ̂) , Kâβ̂ = Dâεβ̂ , Kα̂β̂ = Dα̂εβ̂ , Kα̂b̂ = k(γ b̂)α̂γ̂εγ̂ ,

Kα̂b̂ = −Db̂εα̂ , Kα̂β̂ = −Dβ̂ε
α̂ , Kâβ̂ = k(γâ)β̂γ̂ε

γ̂ , (4.43)

corresponding to levels +2, +1, 0, and −1. The possible compensating λ transformations
lie at levels +2, +1 and 0. We parametrize an arbitrary variation as J = V−1δV, so that

δV = V × J = VΞV0 × J̊ × VΨ =⇒ J̊ := VΨJV−1
Ψ . (4.44)

For the case of a supersymmetry transformation, J = K− λ, and we can read off J̊ level-
by-level, using the fact that VΨ ≡ exp Ψ expS = exp(Ψ + S) for fields Ψ at level +1 and S
at level +2:

J̊+2 = K+2 − λ+2 + [Ψ, (K+1 − λ+1)] + 1
2! [Ψ, [Ψ, (K0 − λ0)]] + 1

3! [Ψ, [Ψ, [Ψ,K−1]]]

+ [S, (K0 − λ0)] ,

J̊+1 = K+1 − λ+1 + [Ψ, (K0 − λ0)] + 1
2[Ψ, [Ψ,K−1]] + [S,K−1] ,

J̊0 = K0 − λ0 + [Ψ,K−1] ,
J̊−1 = K−1,

J̊−2 = 0 . (4.45)

From the explicit expressions for V`, we find for the non-negative levels,

(J̊2)α̂β̂ = δS α̂β̂ −Ψâ(α̂δΨâ
β̂) , (J̊1)âβ̂ = δΨâ

β̂ ,

(J̊0)âb̂ = Vâ
m̂δVm̂

b̂ ≡ Jâb̂ , (J̊0)α̂β̂ = φα̂
µ̂δφµ̂

β̂ . (4.46)

These are rather complicated expressions, but only some of them are relevant. For
example, the full expressions for (J̊2)αβ and (J̊2)αβ tell us about δS α̂β̂ but Sαβ and Sαβ

are pure gauge degrees of freedom, so are not really relevant; in effect, these transformations
would just identify what λαβ and λαβ would need to be in order to maintain a specific gauge
choice. And while Sαβ contains the Ramond-Ramond field strength, we will actually derive
the transformation of the potential directly. The transformation of φµα isn’t really relevant
either; it involves a leading term ∂µ̂ε

α̂ implying that at lowest order in θ one is free to fix
φµ̂

α̂ = δµ̂
α̂.

That leaves the transformations of the bosonic vielbein and the gravitini and dilatini.
We discuss these below.
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DFT vielbein. For the bosonic DFT vielbein, we find (in Dirac notation)

Jab = k (ε̄γaΨb)− k (ε̄′γ̄bΨ′a) , Jab = 2k (ε̄γaΨb)− λab , Jab = 2k (ε̄′γ[aΨ′b])− λab .

(4.47)

The expression for Jab is exactly as expected from [10]. The nonzero expressions for Jab
and Jab indicate that in order to make contact with supersymmetric type II DFT [10]
(where they are taken to vanish) one should choose λ appropriately. This is rather natural
to do since these expressions involve Ψb

α and Ψb
α, which transform under the higher

λ-transformations. Imposing λab and λab to kill these, we find

δVm̂
a = k Vm̂

b
(
εα(γ̄b)αβΨaβ − εα(γa)αβΨb

β
)
, (4.48a)

δVm̂
a = k Vm̂

b
(
εα(γb)αβΨaβ − εα(γ̄a)αβΨb

β
)
. (4.48b)

Gravitini and dilatini. The gravitini and dilatini transformations are a good bit more
complicated. The general expression for both is

δΨâ
β̂= D̊âεβ̂−k εδ̂(γâ)δ̂γ̂ S

γ̂β̂+k (ε̄γ b̂Ψâ) Ψb̂
β̂ − 1

2k(ε̄γâΨb̂) Ψb̂
β̂ − λâβ̂+λâb̂Ψb̂

β̂−Ψâ
γ̂λγ̂

α̂.

(4.49)

For the gravitini, we find

δΨa
β = D̊aε

β − k(ε̄′γ̄a)γ Sγβ + k (ε̄γbΨa) Ψb
β + k (ε̄′γ̄bΨ′a) Ψb

β

− 1
2k (ε̄′γ̄aΨ̄′b) Ψbβ − 1

2k (ε̄′γ̄aΨ′b) Ψbβ + λa
bΨb

β − 1
4Ψa

γ(γbc)γα λbc . (4.50)

If we apply the redefinition (4.11) for the Ramond-Ramond bispinor and the expressions
for λab implied by (4.47), the expression becomes

δΨa
β= D̊aε

β− k2 (ε̄γbc)β(Ψ̄aγbΨc)+ k

2 (ε̄ρ)Ψa
β− k2 (Ψ̄aρ)εβ+ 1

2(ε̄γbΨa)(ρ̄γb)β−k(ε̄γ̄a)γ S̊γβ

(4.51)

or, after a Fierz rearrangement,

δΨa
β= D̊aε

β+ 1
4(ε̄γbc)β

(
k

2 Ψ̄aγbcρ− 2kΨ̄aγbΨc

)
− k2 (ε̄ρ)Ψa

β− k

4 (Ψ̄aρ)εβ− k(ε̄′γa)γ S̊γβ .

(4.52)

We have arranged the non-gauge invariant Ψa
β terms so that they overlap with the con-

tribution of ωabc from D̊aε
β . It is easy to see that the non-gauge invariant pieces cancel

against those in (4.32c). Replacing ωabc with ω(V )abc that depends only on the double
vielbein, we find

δΨa
β=D̊aε

β |ω(V )+ 1
4(ε̄γbc)β

(
k

2 Ψ̄aγbcρ−kΨ̄′bγ̄aΨ′c
)
− k2 (ε̄ρ)Ψa

β− k4 (Ψ̄aρ)εβ−k(ε̄′γa)γ S̊γβ .

(4.53)
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For the dilatini, we find (after a Fierz rearrangement)

δρα = (γa)αβD̊aε
β + 1

4(ε̄γabc)α
(
k

48 ρ̄γabcρ− kΨ̄aγbΨc + k

12Ψ̄dγabcΨd
)

− 1
2(ε̄γa)α

(
k Ψ̄aρ− k (γa)βγ Sβγ

)
+ k(ε̄′γ̄aΨ′b) (γbΨa)α (4.54)

The second and third terms overlap with the contribution of ω[abc] and ωb
ba; again, the

non-gauge-invariant pieces cancel when we trade ω for ω(V ), giving

δρα = (γa)αβD̊aε
β |ω(V ) + 1

4(ε̄γabc)α
(
k

48 ρ̄γabcρ+ k

12Ψ̄dγabcΨd
)

− 1
2(ε̄γa)α

(
− k Ψ̄′aρ′

)
+ k(ε̄′γ̄aΨ′b) (γbΨa)α . (4.55)

Similar equations to Ψa
β and ρα by adding/removing bars over the indices.

Dilaton. To derive the supersymmetry transformation of the component dilation e−2d,
we first compute

δ log detφµ̂α̂ = φα̂
µ̂δφµ̂

α̂ = (J̊0)α̂α̂ = Dα̂εα̂ − k εα̂ρα̂ . (4.56)

Combining with the transformation of the superdilaton,

δ log Φ = ξATA +∇AξA (−1)a = −Dα̂εα̂ (4.57)

we recover the expected component transformation,

e2dδe−2d = −k εα̂ρα̂ . (4.58)

Ramond-Ramond sector. In order to derive a supersymmetry transformation of a p-
form in conventional superspace, one first converts a superdiffeomorphism to a covariant
superdiffeomorphism by subtracting off a local gauge transformation. Explicitly, this reads

δξC = LξC = ξydC + d(ξyC) =⇒ δcov
ξ C = ξydC = ξyF . (4.59)

This generalizes easily for an orthosymplectic spinor. The transformation (3.10) can be
rewritten

δξ〈C| =
1
2
(
〈C|ΓN

←
∂N

)
ΓMξM + 1

2
(
〈C|ΓMξM

)
ΓN

←
∂N= 〈F|/ξ + 〈λ|

←
/∂ (4.60)

where 〈λ| = 〈C|/ξ = 1√
2〈C|Γ

MξM is a special parameter for an abelian transformation. This
leads to the definition of a covariant diffeomorphism,

δcov
ξ 〈C| = 〈F|/ξ = 1√

2
〈F|ΓMξM . (4.61)

To proceed to components, it helps to again recall what we do in conventional superspace.
Starting with a 1-form, for example, we write

δcov
ξ CM = ξNFNM = EM

BξAFAB (4.62)
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keeping CM with a curved index but rewriting ξ and F with flat indices. Subsequently
projecting to dθ = 0 gives

δcov
ξ Cm = Em

BεαFαB|θ=0 (4.63)

The steps for an orthosymplectic spinor are similar. The analogous procedure of (4.62) is
to flatten 〈F|, writing 〈F| = 〈 /̂F| /̂V−1 Φ1/2. This leads to

δcov
ξ 〈C| =

1√
2
〈 /̂F| /̂V−1ΓMξMΦ1/2 = 1√

2
〈 /̂F|Γα̂εα̂ /̂V−1Φ1/2 (4.64)

Using a very similar computation as that leading to (4.37), we find

ed × 〈δcov
ξ C| /V 〉 = 1√

2
〈 /̂F|Γα̂εα̂ /̂V−1

Ψ

∣∣∣∣∣∣ . (4.65)

The left-hand side can be rewritten as the variation of /̂C = ed〈C| /V 〉:

ed × 〈δcov
ξ C| /V 〉 = δ /̂C − /̂Cδd+ 1

4
/̂C · Γâb̂Jb̂â (4.66)

where Jb̂â = Vb̂
m̂δVm̂â. Let’s evaluate the right-hand side in two steps. First,

1√
2
〈 /̂F|Γα̂εα̂ = −4k

 0 0

〈0|(εαbα − bαεα) 0

 . (4.67)

Next, we evaluate V−1
Ψ . Only the level one terms contribute because (4.67) involves only

a single raising operator. This means effectively we have V−1
Ψ = 1 + 1

2Γβ̂ΓâΨâ
β̂ + · · · .

Evaluating this leads to

ed × 〈δcov
ξ C| /V 〉 = −4k

√
2
(
ραε

α − (γbε)α Ψb
α 0

0 εαρα −Ψb
α(εγb)α

)
(4.68)

Employing Dirac notation, we arrive at

δ /̂C = −4k
√

2
(
ρ× ε̄′ − γbε× Ψ̄′b + ε× ρ̄′ −Ψb × ε̄

′γb
)

+ /̂Cδd− 1
2γ∗γ

a /̂Cγ̄b Vb
m̂δVm̂a

(4.69)

4.5 Comparison to component results

The component supersymmetry transformations for type II DFT were given in different
conventions in [10]. To match those results, we trade their indices p and p̄ for a and a here,
while A there corresponds to m̂ here. The γ-matrices are related as

γp = γa , γ̄p̄ = γ̄a , γ11 = −γ∗ , γ̄11 = −γ̄∗ . (4.70)

We fix the constant k = i in the constant torsion tensor (2.33), flip the sign for the dilatini,

ρJLPS = −ρα , ρ′JLPS = −ρα (4.71)
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and rescale the Ramond-Ramond sector fields as

CJLPS = 1
4
√

2
/̂Cγ̄∗ , FJLPS = 1

4
/̂F γ̄∗ . (4.72)

The factors of γ∗ and
√

2 are necessary to recover our conventions for the relation between
/̂F and /̂C,

/̂F = 1√
2

(
γaD̊a /̂C + γ∗D̊a /̂Cγ

a
)
, (4.73)

and the overall factor of 1/4 is for normalization of the kinetic terms. Taking into
account these changes as well as the differences in our spin connection versus that
given in [10], one can show that the supersymmetry transformations of the component
fields (4.48), (4.53), (4.55), (4.58), and (4.69) all match precisely.

We should make a final comment about the normalization of the action of Jeon et
al. [10] in comparison to the bosonic action of Hohm et al. [7, 8]. The latter action is
normalized so that

SHKZ =
∫

d10x d10x̃

(
e−2dR(H, d) + 1

4〈F |S|F 〉
)

=
∫

d10x
√
−g
[
e−2ϕ

(
R+ 4(∂φ)2 − 1

2 |H
(3)|2

)
− 1

4
∑
p

|F̂ (p)|2
]

(4.74)

where the norm on p-forms includes a factor of 1/p! and we work in the democratic for-
mulation for the Ramond-Ramond sector.9 The corresponding action of Jeon et al. is
normalized so that

SJLPS =
∫

d10x d10x̃ e−2d
(1

8R(H, d) + 1
2 tr(FJLPSF̄JLPS) + fermions

)
=
∫

d10x d10x̃ e−2d 1
8

(
R(H, d)− 1

4 tr( /̂F /̂F ) + fermions
)

= 1
8SHKZ + fermions (4.75)

The rescaling in (4.72) is crucial to recover the same normalizations. Note that |H(3)|2

and 1
2 |F̂

(3)|2 + 1
2 |F̂

(7)|2 are typically normalized the same in the IIB duality frame so that
S-duality takes a simple form.

5 Democratic type II superspace

Our last major task is to recover type II superspace directly from super-DFT. Unlike
the type I situation, type II supergravity is not unique: not only do we have IIA and
IIB supergravities, characterized by even rank or odd rank p-form field strengths in the
Ramond-Ramond sector, but also their timelike T-duals, denoted IIB∗ and IIA∗, whose

9In these formulae alone, we use the conventions of Hohm et al. for R and R, which differ from ours by
a sign.
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Ramond-Ramond sector is characterized by the wrong sign kinetic terms.10 Superspace
formulations of any supergravity theory are in 1:1 correspondence with their component
formulations; that is, given the component supersymmetry transformations, one can always
rebuild the superspace and vice-versa. While there are a number of references on type II
superspace, we will focus on the appendices of Wulff [43], which are useful for two reasons:
they are formulated in the string frame, and they treat IIA and IIB very similarly. Both
of these features are natural when we descend from double field theory.

The descent from super-DFT to conventional superspace is a somewhat involved pro-
cedure, with the primary technical hurdle being the parametrization of the supervielbein
in a convenient way. The main result in this section will be to recover a type II superspace
that is fully democratic, meaning not only that it treats Ramond-Ramond potentials and
their duals simultaneously (i.e. democratic in the sense of [44]), but also IIA and IIB (as
well as IIA∗ and IIB∗) rather in parallel. This will match (after a simple rewriting of some
formulae) Wulff’s formulation of type II [43].

5.1 Double vielbein decomposition and the Ramond-Ramond sector in
bosonic DFT

As a first step to understanding how type II superspace emerges, we will review how
conventional gravity emerges from the bosonic double vielbein. In the chiral tangent frame
basis, the double vielbein may always be decomposed as (see e.g. [9, 10])

Vm̂
â = 1√

2

(
δm

n bmn
0 δmn

)
×
(

en
a ēn

a

ηabeb
n ηabēb

n

)
, (5.1a)

Vâ
m̂ = 1√

2

(
ea
n ηaben

b

ēa
n ηabēn

b

)
×
(
δn
m −bnm

0 δnm

)
. (5.1b)

The two vielbeins ema and ēm
a rotate separately under the two Lorentz groups, while

the Kalb-Ramond two-form bmn is invariant. This is a rather generic decomposition, and
it follows simply by assuming that Va

m = 1√
2ea

m and Va
m = 1√

2 ēa
m are both invertible

matrices. (This is essentially equivalent to assuming that the component Hm̂n̂ of the gen-
eralized metric is invertible.) The requirement that this be an O(10, 10) element amounts
to demanding that ema and ēma both give the same metric,

gmn = em
aen

bηab = −ēmaēn
bηab . (5.2)

Equivalently, (e−1ē)a
b is an element of O(1, 9).

Using this observation, we may further separate Vm̂â into three factors, schematically,
V = Vb × Ve × VΛ:

Vm̂
â = 1√

2

(
δm

n bmn
0 δmn

)
×
(

en
b en

b

ηabeb
n −ηabeb

n

)
×
(
δb

a 0
0 (e−1ē)b

a

)
. (5.3)

10Type IIA supergravity was formulated in [35, 36] by dimensional reduction of 11D supergravity [37].
Its massive deformation was introduced in [38]. Type IIB supergravity was formulated in [39, 40]. The
starred cases were proposed by Hull [29]. Type IIA supergravity was discussed in superspace in [41, 42]
and the IIB superspace was already employed in [40].
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The last factor is an element of O(1, 9) ⊂ O(10, 10). If the full double Lorentz group is
gauged, then we may always discard this as a gauge choice. However, if only SO(1, 9) or
SO+(1, 9) are gauged, we must more carefully account for it. As argued in [9, 10, 19],
this factor is crucial for distinguishing between the various duality frames for the Ramond-
Ramond sector.

The spinorial form of the vielbein may also be written as a product of three factors,

| /V 〉 = Sb × | /V e〉 × /Λ (5.4)

where Sb is a Fock-space operator (i.e. it carries curved spinor indices on both sides), | /V e〉
is a bispinor-valued ket (i.e. it carries a single curved spinor index on the left), and /Λ is
spinor Lorentz transformation. We are treating | /V e〉 here as a bispinor-valued ket rather
than a ket with an additional flat spinor index on the right. Thus it is crucial here that VΛ
is purely a right-handed Lorentz transformation, and so we may write /Λ simply by right
multiplication. In treating the spinorial vielbein asymmetrically in this way, we have to
give prescriptions for how each of these objects behaves. The Kalb-Ramond factor is

Sb = exp
(
− 1

4Γmnbnm
)

= exp
(
− 1

2β
mβnbnm

)
(5.5)

and acts as SbβmS−1
b = βm and SbβmS−1

b = βm + βnbnm. The bispinor valued ket acts as

Γm| /V e〉 = 1√
2

(
γa| /V e〉+ γ∗| /V e〉γ̄a

)
ea
m , Γm| /V e〉 = 1√

2

(
γa| /V e〉 − γ∗| /V e〉γ̄a

)
ηab em

b .

(5.6)

The Lorentz transformation acts as

/Λγ̄a /Λ−1 = γ̄bΛb
a = γ̄b(e−1ē)b

a (5.7)

As a sanity check the Lorentz transformation acting on (5.6) from the right gives, for
| /V eΛ〉 = | /V e〉/SΛ,

Γm| /V eΛ〉 = 1√
2

(
γaea

m| /V eΛ〉+ γ∗| /V eΛ〉γ̄aēa
m
)
,

Γm| /V eΛ〉 = 1√
2

(
em

aγa| /V eΛ〉+ γ∗| /V eΛ〉emaγ̄a
)
, (5.8)

as we would expect.
The Ramond-Ramond field strength 〈F | decomposes as

〈F | =
∑
p

1
p!〈0|β

m1 · · ·βmpFmp···m1 (5.9)

where we employ the democratic formulation with every p-form field strength appearing
(with p even or odd depending on the duality frame). The flattened field strength is
generated by contracting with the ket | /V 〉 and multiplying by a factor of the dilaton, ed.
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The effect of the Kalb-Ramond factor Sb is to replace 〈F | with 〈F̂ | where F̂ = Fe−b. The
effect of the ket | /V e〉 leads to

〈0|βmp · · ·βm1 | /V e〉 = (det e)1/2 γa1···apea1
m1 · · · eapmp (5.10)

which follows from 〈0|Γm = 0 and 〈0| /V e〉 = 1
25/2 (det e)1/2 × 1. The final Lorentz transfor-

mation gives

/̂F = eϕ
∑
p

1
p!γ

a1···apF̂a1···ap /Z (5.11)

where F̂a1···ap := ea1
m1 · · · eap

mpF̂m1···mp and /Z = 1
25/2 /Λ is the flat vacuum.

5.2 Decomposing the double supervielbein

We want to repeat the above steps for the supervielbein. The details are given in appendix B
and we just give the results here. The superspace analogue to the parametrization (5.1) is
a product of three factors:

V = VB × VEΛ × VS (5.12)

The first is built out of the Kalb-Ramond super two-form,

(VB)MN =
(
δM

N BMN (−)n

0 δNM

)
, (5.13)

The second factor VEΛ is written, in a chiral decomposition of the indices, as

(VEΛ)MA =

 1√
2EM

a EM
α 0 1√

2EM
a EM

α 0
1√
2E

aM 0 −EαM (−)m 1√
2E

aM 0 −EαM (−)m

 . (5.14)

The two superfields EM a and EM a are related by a Lorentz transformation,

EM
a = EM

bΛb
a , (5.15)

a clear generalization of the bosonic condition, and the inverse vielbeins are defined by

Eα̂
MEM

β̂ = δα̂
β̂ , Ea

MEM
b = δa

b , Ea
MEM

b = δa
b , Eα̂

MEM
b̂ = Eâ

MEM
β̂ = 0 .

(5.16)

The VS factor is given, also in a chiral decomposition, as

(VS)AB =



δa
b √

2Sa
β 0 0 0 0

0 δα
β 0 0 0 0

−
√

2Sbα Sαβ − ScαSc
β δαβ 0 Sαβ 0

0 0 0 δa
b √

2Sa
β 0

0 0 0 0 δα
β 0

0 Sαβ 0 −
√

2Sbα Sαβ − ScαSc
β δαβ


. (5.17)
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It consists of fermionic superfields Sa
α and Sa

α as well as the symmetric bosonic superfields
Sαβ , Sαβ , and Sαβ . All these constituents transform as their indices imply under double
Lorentz transformations, while under the additional HL ×HR transformations,

δSa
α = − 1√

2
λa

α , δSa
α = − 1√

2
λa

α , (5.18a)

δSαβ = −λαβ +
√

2Sc(αλc
β) , δSαβ = −λαβ +

√
2Sc(αλc

β) . (5.18b)

The Lorentz transformation Λa
b belongs to O(1, 9), and so is characterized by two

signs, corresponding to the presence of timelike and/or spacelike orientation reversals. In
the event that it lies in the connected part (with no orientation reversals), it can be gauged
to the identity and then VEΛ becomes, in the toroidal decomposition,

(VE)MA =
(
EM

A 0
0 EA

M (−)am+a

)
. (5.19)

This leads to the conventional decomposition (2.9) modulo some redefinitions,

E′M
α = EM

α + EM
bηbc S

cα ,

E′M
α = EM

α − EMbηbc S
cα ,

S′αβ = Sαβ + Saαηab S
bβ , (5.20)

with the primed fields belonging to (2.9).
When the Lorentz transformation is more general, we encounter a bit of a puzzle.

Normally, we would like to factor out all right-handed Lorentz transformations to define a
physical supervielbein that transforms only under left Lorentz transformations. This would
suggest introducing a spinorial Lorentz transformation Λα̃β and defining a new gravitino
EM

α̃ transforming under the left Lorentz group by

EM
α = EM

β̃Λβ̃
α . (5.21)

We would expect this spinorial Λ to obey

Λα̃γ (γ̄a)γδ Λβ̃
δ ?= (γ̄b)αβΛb

a . (5.22)

This fails! One obvious reason is that we are employing a chiral basis for the 10D γ-
matrices, which cannot account for Lorentz transformations that flip chirality (i.e. with
an odd number of orientation reversals). However, this fails to be possible even for a
combined time and space orientation reversal, where one would find a minus sign in the
above equation. The reason is that the correct relation for γ matrices would read (in Dirac
notation) /Λγ̄a /Λ−1 = γ̄bΛb

a. For (5.22) to be satisfied, we need (/Λ−1)δβ̃ = (/Λ)β̃δ and this
holds only for the connected part, SO+(1, 9) = O(+,+)(1, 9).

Luckily, all O(1, 9) transformations may be understood as a fixed element Λ̊ in one of
the four connected sectors times an SO+(1, 9) transformation Λ̇. We write this as

Λa
b = Λ̊a

c Λ̇c
b (5.23)
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Then we choose Λ̇α̃β to obey

Λ̇α̃γ (γ̄a)γδ Λ̇β̃
δ = (γ̄b)αβΛ̇b

a . (5.24)

This leads us to define the following constant quantities:

(γa)α̃β̃ := (γb)αβ (Λ̊−1)b
a , (γa)α̃β̃ := −(γb)αβ (Λ̊−1)b

a . (5.25)

This is equivalent using the full vector and spinorial Λ:

(γa)α̃β̃ = Λ̇α̃γΛ̇β̃
δ (γb)γδ (Λ−1)b

a , (γa)α̃β̃ = −(γb)γδ (Λ−1)b
a (Λ̇−1)γα̃(Λ̇−1)δ

β̃ . (5.26)

The reason we have included an additional sign for (γa)α̃β̃ is to recover the same Clifford
algebra as the standard γ-matrices

(γa)α̃β̃(γb)β̃γ̃ + (γb)α̃β̃(γa)β̃γ̃ = 2 ηab δα̃γ̃ . (5.27)

The four different possibilities correspond to each of the four duality frames IIB, IIA,
IIB∗, and IIA∗. We are free to make whatever choice we wish for Λ̊. The most convenient
choices are as follows:

Λ̊ =



1 IIB
R01···9 IIB∗

R1···9 IIA
R0 IIA∗

(5.28)

where Ra denotes a sign flip of the a direction. Note that R1···9 is equivalent to R9 up to
a constant SO+(1, 9) transformation, but the former is more convenient for our choice of
γ-matrices. Keeping in mind that (γ̄a)αβ = (γa)αβ and (γ̄a)αβ = −(γa)αβ , these lead to

(γc)α̃β̃ =



(γc)αβ IIB
−(γc)αβ IIB∗

−(γc)αβ IIA
(γc)αβ IIA∗

, (γc)α̃β̃ =



(γc)αβ IIB
−(γc)αβ IIB∗

−(γc)αβ IIA
(γc)αβ IIA∗

. (5.29)

The α̃ index for IIA/IIA∗ must be understood as the opposite chirality as α. Thus we
denote for the gravitino, for example,

EM
α̃ =

EMα′ IIB/IIB∗

EMα IIA/IIA∗
(5.30)

where prime for IIB/IIB∗ denotes this being the second gravitino.
One way of understanding these expressions for (γa)α̃β̃ is via the supersymmetry

algebra,

{Qα, Qβ} = − k√
2

(γc)αβPc , {Qα̃, Qβ̃} = − k√
2

(γc)α̃β̃Pc . (5.31)
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For IIB, the second SUSY is just a copy of the first. For IIA, the extra sign factor in (5.29)
is needed so that both chiralities may be combined into a single 32-component super-
charge with

{Q,Q} = k√
2
γcγ∗C

−1 Pc = k√
2
γcC−1

11D Pc , (5.32)

which is the natural truncation from the D = 11 supersymmetry algebra. But we are
also allowing here for the possibility of the starred supergravities. In the formulation we
are using, these have the wrong sign in the supersymmetry algebra from their unstarred
analogues. Alternatively, one can multiply all upper/lower tilded spinors by ±i (i.e. make
an imaginary similarity transformation) to restore the conventional sign for supersymmetry,
but at the cost of changing the reality condition for tilded spinors (and the Ramond-
Ramond bispinor).

The upshot is that we now can, without any gauge-fixing, split VEΛ into VE×VΛ where
VE is given in the toroidal basis by (5.19) with

EM
A = (EM a, EM

α, EM
α̃) (5.33)

and VΛ is given in the chiral basis as

(VΛ)AB =



δa
b 0 0 0 0 0

0 δα
β 0 0 0 0

0 0 δαβ 0 0 0

0 0 0 Λa
b 0 0

0 0 0 0 Λ̇α̃β 0

0 0 0 0 0 (Λ̇−T )α̃β


, Λa

b = Λ̊a
cΛ̇c

b (5.34)

Part of this is an SO+(1, 9) transformation, which can be eliminated by a gauge transfor-
mation; the remainder can be thought of as a constant similarity transformation on barred
vector indices, converting barred gamma matrices (γ̄a)αβ to (γa)α̃β̃ in (5.29).

5.3 Gauge-fixing to democratic type II superspace

Let us now analyze the structure of type II superspace that emerges from double field
theory. This will be a democratic formulation with the constant Lorentz transformation
Λ̊ defining which duality frame we are part of. Although it is possible to do this analysis
without fixing any gauge, it will be significantly simpler if we impose

Sαβ = Sαβ = 0 , Saα = i

10(γa)αβχβ , Saα = i

10(γ̄a)αβχβ , (5.35)

where χα and χα̃ = Λα̃βχβ will be the component dilatini. Note that these can be given
gauge-invariant definitions as

χα := −iSaβ(γa)βα , χα := −iSaβ(γa)βα . (5.36)
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It will also be computationally simpler if we gauge fix VΛ, fixing Λ̇ = 1, leaving VΛ
to just be the constant transformation Λ̊ on barred vector indices. This means that tilde
spinor indices are identical to barred spinor indices (because Λ̇α̃β = δα̃

β), but it will be
useful to keep the tilde notation anyway.

The simplest way of handling the constant Λ̊ transformation is to simply declare that
we will treat it as a constant similarity transformation on all barred vector indices. Pushing
that through VS , we find

VMA =
(

1 BMN (−)n

0 1

)(
EN

B 0
0 EB

N (−)bn+b

)
× (VS)BA (5.37)

where (VS)BA has the non-vanishing components (aside from the identity) written in the
chiral basis as

(VS)b
α =
√

2 ηbcScα , (VS)b
α = −

√
2 ηbcScα ,

(VS)αb = −
√

2Sbα , (VS)αb = −
√

2Sbα ,

(VS)αβ = −SbαηbcScβ , (VS)αβ = SbαηbcS
cβ ,

(VS)αβ = (VS)βα = Sαβ . (5.38)

Note that because of the sign choice made in (5.25), the last term in (5.35) picks up an
extra sign,

Saα̃ := Sbβ(Λ−1)b
a(Λ−1)β

α̃ = − i

10(γa)α̃β̃χβ̃ . (5.39)

Now imposing the section condition ∂̃M = 0, one can show that

D̊A := (VS)ABDB =
(
EA

M∂M
0

)
. (5.40)

Using VS to define shifted fluxes,

F̊CBA = (VS)CC
′(VS)BB

′(VS)AA
′FC′B′A′ , (5.41)

these turn out to be given in the toroidal basis as

F̊CBA = HCBA , (5.42a)

F̊CBA = CCB
A + 2D̊[C(VS)B]

A′(V−1
S )A′A , (5.42b)

F̊CBA = D̊C(VS)[B|D(V−1
S )D |A] + D̊C(VS)[B|

D(V−1
S )D|A](−)d , (5.42c)

F̊CBA = 0 . (5.42d)

The H-flux HCBA is given as usual by H = dB = 1
3!E

AEBECHCBA, and CCBA are the
components of CA = dEA = 1

2E
BECCCB

A. For the dilaton flux we find

F̊A = −2D̊Aϕ+ F̊ABB(−)b , F̊A = F̊ABB(−)b (5.43)

where we have related the DFT superdilaton Φ to the supergravity dilaton ϕ via Φ =
e−2ϕ sdet(EMA).

Henceforth we drop the˚notation and denote simply DA = EA
M∂M .
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5.4 Torsion and H-flux constraints

The analysis of the torsion and H curvatures is straightforward. We proceed by dimension.
It will be useful to write some expressions with DFT fluxes and connections that carry
barred vector indices as intermediate formula. These should be dressed with Λ̊. Rather
than clutter formulae with numerous Λ̊ we will simply write such barred vector indices as
tilded vector indices, i.e. Vã = Λ̊ã

bVb.

Dimension ≤ 0. At dimension −1
2 and 0, the H-flux is given by

Hγ̂β̂α̂ = Hγβ̃a = 0 , (5.44a)

Hγβa = 1√
2
Fγβa = k√

2
(γa)γβ , (5.44b)

Hγ̃β̃a = 1√
2
Fγβã = − k√

2
(γa)γ̃β̃ . (5.44c)

The dimension 0 torsion components are

Tγβ
a = Cγβ

a = 1√
2
Fγβa = k√

2
(γa)γβ , (5.45a)

Tγ̃β̃
a = Cγ̃β̃

a = 1√
2
Fγβ

ã = k√
2

(γa)γ̃β̃ , (5.45b)

Tγβ̃
a = Cγβ̃

a = 0 (5.45c)

Dimension 1/2. At dimension 1/2, we find

Hγ̂ba = F̊γ̂ba = 1
2
(
F̊γ̂ba + F̊γ̂bã + F̊γ̂b̃a + F̊γ̂b̃ã

)
,

Cγ̂b
a = F̊γ̂ba = 1

2
(
F̊γ̂b

a + F̊γ̂b
ã + F̊γ̂b̃

a + F̊γ̂b̃
ã
)
,

0 = F̊γ̂ ba = 1
2
(
F̊γ̂ba + F̊γ̂bã + F̊γ̂ b̃a + F̊γ̂ b̃ã

)
. (5.46)

Making use of the third relation, one can show that

Hγ̂ba = F̊γ̂bã − F̊γ̂b̃a = Fγ̂bã −Fγ̂b̃a = 0 ,

Cγb
a = F̊γb̃

a + F̊γb̃
ã = −Ωγb̃

ã =⇒ Ωγb
a := Ωγb̃

ã =⇒ Tγb
a = 0

Cγ̃b
a = F̊γb

a + F̊γb
ã = −Ωγb

a =⇒ Ωγ̃b
a := Ωγb

a =⇒ Tγ̃b
a = 0 (5.47)

In the second and third lines, we have fixed the supergravity spin connection Ωγ̂b
a in terms

of the DFT spin connection so that the corresponding torsion vanishes. It is also useful to
use (5.46) to show that

Ωγba + Ωγb̃ã = ik
√

2
5 (γbaχ)γ , Ωγ̃ba + Ωγ̃b̃ã = − ik

√
2

5 (γbaχ)γ̃ . (5.48)
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The remaining torsion components Tγ̂β̂
α̂ can now be computed:

Tγ̃β
α = Tγ̃β̃

α = Tγβ̃
α̃ = Tγβ

α̃ = 0 , (5.49a)

Tγβ
α = ik√

2

(
2χ(γδβ)

α − (γa)γβ(γaχ)α
)
, (5.49b)

Tγ̃β̃
α̃ = ik√

2

(
2χ(γ̃δβ̃)

α̃ − (γa)γ̃β̃(γaχ)α̃
)
. (5.49c)

The spinor derivative of the dilaton follows from (5.43) and is identified as the dilatini,

Dαϕ = ik√
2
χα , Dα̃ϕ = ik√

2
χα̃ . (5.50)

Dimension 1. At dimension 1, we have

F̊cba = Hcba , F̊cba = Ccb
a , F̊cba = 0 , F̊cba = 0 . (5.51)

This implies, using Tcba = 0 to compute Ωcba,

F̊c̃ba = 1
2
√

2

(
Hcba + Ccba − Ccab − Cbac

)
= 1

2
√

2

(
Hcba − 2 Ωcba

)
,

F̊cb̃ã = 1
2
√

2

(
Hcba − Ccba + Ccab + Cbac

)
= 1

2
√

2

(
Hcba + 2 Ωcba

)
. (5.52)

This gives the supergravity Ω in terms of the DFT one:

Ωcba = 1√
2

(F̊cb̃ã − F̊c̃ba) = 1√
2

(Ωc̃ba − Ωcb̃ã)− ηcdSdγΩγb̃ã − ηcdS
dγ̃Ωγ̃ba (5.53)

The other dimension 1 torsion components involve Tγ̂bα̂. First, we compute

Tγb
α =
√

2F̊γb̃
α − 1

4Ωbcd(γcd)γα = − 1
4
√

2
(F̊bc̃d̃ + F̊b̃cd)(γcd)γα = −1

8Hbcd(γcd)γα , (5.54)

and similarly

Tγ̃b
α̃ = +1

8Hbcd(γcd)γ̃ α̃ . (5.55)

For the remaining torsion components, we have

Tγ̃b
α = Cγ̃b

α =
√

2F̊γb̃
α = −

√
2(VS)αβFβγb̃ = k

√
2Sαβ̃(γb)β̃γ̃ , (5.56)

and similarly,

Tγb
α̃ = −k

√
2Sα̃β(γb)βγ . (5.57)

We emphasize that the results given here for the torsion and H-flux tensors are actually
gauge-invariant under the higher λ symmetries and the right Lorentz group (as they must
be, since they are built out of invariant potentials) and could have been derived without
imposing the gauge (5.35).
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5.5 The spinorial supervielbein and Ramond-Ramond field strengths

To completely characterize type II supergravity we must also derive the Ramond-Ramond
field strengths. This will require some knowledge of the spinorial supervielbein. It turns
out to be easy enough to work in a generic gauge here, so we will not impose (5.35).

Recall that we had introduced the spinorial supervielbein in section 3.3 as an operator
/̂V converting the super-Fock space to the spinor Fock space. Just as we decomposed the
bosonic spinorial vielbein in (5.4), we will split up the spinorial supervielbein in a somewhat
asymmetric way, writing

/̂V = SB × /̂VEΛ × /̂VS . (5.58)

The first factor SB is a pure Fock space operator:

SB = exp
(
− 1

4ΓMNBNM

)
= exp

(
− 1

2β
MβNBNM

)
(5.59)

Next, /̂VEΛ is an operator converting the Fock space to the spinor Fock space. It acts as

ΓM /̂VEΛ = /̂VEΛ · ΓA(VEΛ)AM . (5.60)

Decomposing this explicitly gives

ΓM /̂VEΛ = 1√
2
γa /̂VEΛEa

M + 1√
2
γ∗ /̂VEΛγ̄

aEa
M

+
√

2 γ∗ /̂VEΛγ̄∗b
αEα

M +
√

2 γ∗ /̂VEΛγ̄∗b
αEα

M ,

(−)mΓM /̂VEΛ = 1√
2
EM

aγa /̂VEΛ + 1√
2
EM

aγ∗ /̂VEΛγ̄a

−
√

2EMα γ∗ /̂VEΛγ̄∗bα −
√

2EMα γ∗ /̂VEΛγ̄∗bα . (5.61)

As a sanity check, one can confirm that the Clifford algebra is satisfied. Finally the factor
/̂VS is given in terms of flat ΓA matrices as

/̂VS = exp
(
− 1

2ΓαΓβS
βα − 1

4ΓαΓβSβα −
1
4ΓαΓβS

βα − 1
2
√

2ΓαΓbS
bα − 1

2
√

2ΓαΓbS
bα
)
.

(5.62)

This must be evaluated acting to the left on a bispinor-valued Fock space.
Now we can analyze the connection between the orthosymplectic Ramond-Ramond

spinor field strength 〈F| and its flattened version. First, let us recall that 〈F| is given by
the conventional expansion

〈F| =
∑
p

1
p!〈0|β

M1 · · ·βMpFMp···M1 . (5.63)

We have asserted its flattened version to be given by

〈 /̂F| = 〈F| /̂V Φ−1/2 = −4k
(

0 0
〈0|bαbα 0

)
. (5.64)
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Using the decomposed spinorial vielbein, this can be rewritten as

〈 /̂F| /̂V−1
S = 〈F̂ | /̂VEΛ Φ−1/2 , (5.65)

where 〈F̂ | = 〈F| /̂VB is given by (5.63) with F replaced by F̂ = Fe−B.
What has happened here is identical to what occurs in the bosonic analysis: the

polyform F =
∑
pFp that naturally appears in double field theory is a complex of closed

p-forms that transform into each other under the B-field gauge transformations. They are
related to invariant field strengths F̂p by

F̂ =
∑
p

F̂p =
∑
p

Fp e−B = F e−B . (5.66)

The polyform F̂ is not closed but obeys dF̂ = −F̂ ∧H.
We are now going to separately analyze the two sides of (5.65). Let’s start with the left:

〈 /̂F|/V−1
S = −4k 〈0|

(
−ibαχα −χαχα

bαbα + Sαα ibαχα

)
= −4k 〈0|

(
bb̄′ + ibχ̄′ + iχb̄′ + /S − χχ̄′

)
. (5.67)

In the first line we have written the expression in Weyl notation and in the second line we
have repeated it in Dirac notation. Recall here that in our convention for Dirac notation, a
Majorana fermion ψ decomposes as ψ = (ψα, ψα) and ψ̄ = ψTC = (ψα, ψα), and similarly
for barred indices, with these spinors denoted by primes. We emphasize that no gauge
fixing was required here; this is a consequence of (5.64) being invariant under HL ×HR.

For the right-hand side of (5.65), we will need to do some work. First, we define, here
in this section alone, flattened versions of the Fock space raising operators,

βa := βMEM
a , βα := βMEM

α , βα := βMEM
α . (5.68)

Note that we are using EM
α rather than EM

α̃ here. This will be temporary but very
convenient to avoid introducing just yet the Lorentz transformation taking us from tilde
to barred spinor indices. Now we require the following lemmas:

〈0|βa1 · · ·βap /̂VEΛ = γap···a1〈/Z| × E1/2 , (5.69a)

〈0|βa1 · · ·βapβα̂ /̂VEΛ = γ∗γ
ap···a1〈/Z|γ̄∗bα̂ × E1/2 , (5.69b)

〈0|βa1 · · ·βapβα̂ββ̂ /̂VEΛ = γap···a1〈/Z|bα̂bβ̂ × E1/2 . (5.69c)

These expressions involve the flat bispinor vacuum

〈/Z| := 〈0| /̂VEΛ = 1
25/2 〈0|/Λ (5.70)

where /Λ is the 32-component Dirac bispinor corresponding to the Lorentz transformation
Λa

b. Note that the vielbein superdeterminant E is given by

E = sdet
(
EM

a, EM
α, EM

α̃
)

= sdet
(
EM

a, EM
α, EM

α
)
, (5.71)
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and can be equally written with EM
α̃ in place of EMα, since Λα̃β lies in the connected

part of the Lorentz group. The proofs of (5.69a)–(5.69c) are fairly straightforward. One
can easily show that (5.69c) follows from (5.69b), which follows from (5.69a). The proof
of (5.69a) is inductive. The initial step is

〈0| /̂VEΛ = 1
25/2 〈0|/Λ× E

1/2 . (5.72)

To show this, we first decompose /̂VEΛ into the product of /̂VE and /̂VΛ where EMA =
(EMa, EM

α, EM
α̃) lies in the connected part GL+(10|32). Then 〈0| /̂VE = E1/2 × 1

25/2 〈0|1
follows exactly as in the component calculation. Then the action of /̂VΛ decomposes into
two parts: one is the vectorial Λa

b transformation, which generates the Dirac bilinear /Λ;
the second is the connected spinorial transformation Λ̇α̃β , which generates its determinant
(which is unity) upon acting on the spinorial Fock vacuum. The inductive step follows by
observing

〈0|β[a1 · · ·βap] /̂VEΛ = 1
2γ

[ap
(
〈0|βa1 · · ·βap−1] /̂VEΛ

)
+ 1

2γ∗
(
〈0|β[a1 · · ·βap−1 /̂VEΛ

)
γ̄bΛb

ap]

= E1/2
(1

2γ
ap···a1〈/Z|+ 1

2γ∗γ
[ap−1···a1〈/Z|γ̄bΛb

ap]
)

= E1/2
(1

2γ
ap···a1〈/Z|+ 1

2γ∗γ
[ap−1···a1γ∗γ

ap]〈/Z|
)

= E1/2γap···a1〈/Z| . (5.73)

Now we can apply the lemma (5.69). Let the p-form complex be given in flat indices by

F̂ =
∑
p

1
p!〈0|β

A1 · · ·βAP F̂AP ···A1 (5.74)

where for now we continue to use EMA = (EMa, EM
α, EM

α) to flatten indices. Comparing
this expression to (5.67), it is clear that the only non-vanishing components are F̂aP ···a1 ,
F̂α ap−1···a1 , F̂α ap−1···a1 , and F̂αβ ap−2···a1

. This means that we can directly compute

〈F̂ | /̂VEΛ Φ−1/2 = 1
25/2 e

ϕ〈0|
∑
p

( 1
(p− 2)!γ

ap−2···a1 /Λ bαbβF̂βα ap−2···a1

+ 1
(p− 1)!γ

ap−1···a1 /Λ bαF̂α ap−1···a1 + 1
(p− 1)!γ

ap−1···a1 /Λ bαF̂α ap−1···a1

+ 1
p!γ

ap···a1 /Λ F̂ap···a1

)
. (5.75)

The factors of γ∗ in (5.69) vanish when we account for the chirality of the bispinor vacuum
and the even/odd degree of the p-forms Fp. To fully match this to (5.67), it helps signifi-
cantly to first rewrite this expression to use 32-component Dirac indices. We arrange them
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as follows:

〈F̂ | /̂VEΛ Φ−1/2 = 1
25/2 e

ϕ〈0|
∑
p

( 1
(p− 2)!γ

ap−2···a1 /Λ (b̄′ /̂Fap−2···a1b)

− 1
(p− 1)!γ

ap−1···a1 /Λ (Ψ̄F̂ap−1···a1b) + 1
(p− 1)!γ

ap−1···a1 /Λ (b̄′Ψ′F̂ap−1···a1)

+ 1
p!γ

ap···a1 /Λ F̂ap···a1

)
(5.76)

where we introduce notation for the Dirac spinors and bispinors here:

Ψ′F̂ap−1···a1 =

F̂α ap−1···a1

0

 , Ψ̄F̂ap−1···a1 =
(
0 F̂α ap−1···a1

)
,

/̂Fap−2···a1 =

0 F̂αα ap−2···a1

0 0

 , (5.77)

Next we rewrite (5.67) as a sum over γ-matrices, using the completeness relation

/O = 1
32
∑
p

1
p!γ

ap···a1 /Λ× Tr
(
/O/Λ−1

γa1···ap

)
(5.78)

where /O is a bispinor with a left spinor index on the left and a right spinor index on the
right. Applying this to (5.67) gives

〈 /̂F|/V−1
S = −k8

∑
p

1
p!γ

ap···a1 /Λ× Tr
(
〈0|(bb̄′ + ibχ̄′ + iχb̄′ + /S − χχ̄′

)
/Λ−1

γa1···ap

)
(5.79)

Now comparing terms is straightforward:

/̂Fap−2···a1 = − k

2
√

2
e−ϕ /Λγa1···ap−2(1− γ∗) (5.80a)

Ψ̄F̂ap−1···a1 = − ik√
2
e−ϕ χ̄′/Λ−1

γa1···ap−1 (5.80b)

Ψ′F̂ap−1···a1 = + ik√
2
e−ϕ /Λ−1

γa1···ap−1χ (5.80c)

F̂ap···a1 = − k√
2
e−ϕ Tr

(
(/S − χχ̄′)/Λ−1

γa1···ap

)
(5.80d)

An explicit Weyl projector is needed in the first field strength to emphasize that only
certain chiralities are present; for the other field strengths, the chirality restriction follows
from the chirality of χ and S.

These field strengths are not quite the ones we want, because the barred spinor in-
dices transform under the right-handed Lorentz transformations. If we apply the Lorentz
transformation Λ̇ to the field strengths (and also to χα), we find that Λ is replaced by the
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constant Λ̊ above. Now, what kind of object is /̊Λ? It is a constant spinorial Lorentz trans-
formation corresponding to the vectorial Λ̊a

b. For the four duality frames, it is given by

IIB /̊Λ
−1

=
(
δα̃
β 0

0 δα̃β

)
, (5.81a)

IIB∗ /̊Λ
−1

=
(
δα̃
β 0

0 −δα̃β

)
, (5.81b)

IIA /̊Λ
−1

=
(

0 δα̃β

δα̃β 0

)
, (5.81c)

IIA∗ /̊Λ
−1

=
(

0 −δα̃β

δα̃β 0

)
. (5.81d)

The overall sign choice for each of these is ambiguous, and corresponds to the Z2 ambiguity
in the Ramond-Ramond sector. The choice we have made above is rather simple and lets
us easily make contact with the results of Wulff [43] . In Weyl notation, we find

F̂β̃α ap−2···a1
= − k√

2
e−ϕ ×

δβ̃β(γa1···ap−2)βα IIB/IIB∗ (p odd)
δβ̃β(γa1···ap−2)βα IIA/IIA∗ (p even)

(5.82)

with the relative sign conventions for starred and unstarred duality frames chosen to
match here. The reversed ordering of the vector indices follows from the construction,
and writing it this way eliminates additional sign factors in [43]. For the dimension 1/2
components, we find

F̂αap−1···a1 = − ik√
2
e−ϕ ×



+χβ̃ δβ̃β (γa1···ap−1)βα IIB (p odd)

−χβ̃ δβ̃β (γa1···ap−1)βα IIB∗ (p odd)

+χβ̃ δβ̃β (γa1···ap−1)βα IIA (p even)

−χβ̃ δβ̃β (γa1···ap−1)βα IIA∗ (p even)

, (5.83a)

F̂α̃ ap−1···a1 = ik√
2
e−ϕ ×


δα̃
α (γa1···ap−1)αβχβ IIB/IIB∗ (p odd)

δα̃α (γa1···ap−1)αβ χβ IIA/IIA∗ (p even)
. (5.83b)

Finally, the component with all vector indices, which is often called the supercovariant
field strength, is given by

F̂ap···a1 = − k√
2
e−ϕ ×



Sαβ̃ δβ̃
β(γa1···ap)βα − χαχβ̃ δβ̃β(γa1···ap)βα IIB (p odd)

Sαβ̃ δβ̃
β(γa1···ap)βα + χαχβ̃ δ

β̃
β(γa1···ap)βα IIB∗ (p odd)

Sαβ̃ δβ̃β(γa1···ap)βα − χαχβ̃ δβ̃β(γa1···ap)βα IIA (p even)

Sαβ̃ δβ̃β(γa1···ap)βα + χαχβ̃ δ
β̃β(γa1···ap)βα IIA∗ (p even)

(5.84)
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The results for IIA and IIB match the expressions given by Wulff [43] for k = −i
√

2 (see
also [30]), up to a redefinition

Sαβ̃Wulff = 16k√
2
Sαβ̃ , Sβ̃αWulff = −16k√

2
Sβ̃α . (5.85)

Note that the bispinor of [30, 43] is chosen to be antisymmetric as opposed to symmetric.
Although the starred supergravities were not explicitly given in [30], they can be easily

derived by analytic continuation from the unstarred cases. Starting from an unstarred su-
pergravity, one relaxes the reality condition on all fields, then makes an imaginary similarity
transformation in superspace,

Dα̃ → −iDα̃ , EM
α̃ → iEM

α̃ , χα̃ → −iχα̃ , Sαβ̃ → iSαβ̃ . (5.86)

and then reimposes the original reality condition.11 The transformation of the dilatini
follows because they are the spinor derivative of the dilaton, and the redefinition of S follows
from its embedding in the DFT supervielbein. Alternatively, both redefinitions arise by
keeping the higher dimension torsion conditions in section 5.4 unchanged. (The dimension 0
torsion has flipped sign as we have mentioned in (5.31), so that the supersymmetry algebra
in the tilde sector has the opposite sign.) But we also must alter the Ramond-Ramond
sector with an imaginary factor, because otherwise the dimension 0 constraint (5.82) would
imply that the field strengths are imaginary. We choose to flip

F → iF (5.87)

so that the dimension 0 constraint (5.82) is unchanged; this is then responsible for the
well-known sign flip of the Ramond-Ramond Lagrangian. One can then easily check that
the conditions for the starred supergravities in (5.83) and (5.84) follow from their unstarred
analogues.

5.6 Summary of democratic type II superspace

Let us now summarize the results for the democratic type II superspace that emerges from
double field theory. It consists of a supervielbein EM

A, a Kalb-Ramond super two-form
BMN , a scalar dilaton e−2ϕ, and a set of Ramond-Ramond super (p− 1)-forms ĈM1···Mp−1

with p even for IIA/IIA∗ and p odd for IIB/IIB∗.
The supervielbein decomposes into a graviton 1-form EM

a and two gravitini EMα and
EM

α̃ (both Majorana), where the α̃ index is either the same chirality as α or opposite,
depending on the duality frame:

EM
α̃ =


E′M

α IIB/IIB∗

EMα IIA/IIA∗
. (5.88)

11Alternatively, one can not make the similarity transformation but simply Wick rotate EMα̃ to now be
imaginary (and all consequences of this). This keeps the the type II formulae, including the supersymmetry
algebra, unchanged.
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We employ tilde γ-matrices given by

(γc)α̃β̃ =



(γc)αβ IIB

−(γc)αβ IIB∗

−(γc)αβ IIA

(γc)αβ IIA∗

, (γc)α̃β̃ =



(γc)αβ IIB

−(γc)αβ IIB∗

−(γc)αβ IIA

(γc)αβ IIA∗

. (5.89)

The supervielbein is subject to local Lorentz transformations

δEM
a = −EMbλb

a , δEM
α = −1

4δEM
β(γab)βαλab , δEM

α̃ = −1
4δEM

β̃(γab)β̃
α̃λab .

(5.90)

The Lorentz group is restricted to SO+(9, 1) and gauged by a composite spin connection
ΩMA

B. The Kalb-Ramond two-form and Ramond-Ramond p-forms transform as

δB = dξ̃ , (5.91)

δĈp−1 = dλ̂p−2 + λ̂p−4 ∧H . (5.92)

The torsion tensors TA and field strengths H and F̂p are given by

TA = dEA + EB ∧ ΩB
A = 1

2E
BECTCB

A , (5.93)

H = dB = 1
3!E

AEBECHCBA , (5.94)

F̂p = dĈp−1 + Ĉp−3 ∧H = 1
p!E

A1 · · ·EApF̂Ap···A1 . (5.95)

The non-vanishing torsion tensors are given through dimension 1 by

Tαβ
c = k√

2
(γc)αβ , Tα̃β̃

c = k√
2

(γc)α̃β̃ , (5.96a)

Tγβ
α = ik√

2

(
2χ(γδβ)

α − (γa)γβ(γaχ)α
)
, Tγ̃β̃

α̃ = ik√
2

(
2χ(γ̃δβ̃)

α̃ − (γa)γ̃β̃(γaχ)α̃
)
,

(5.96b)

Tγb
α = −1

8Hbcd (γcd)γα , Tγ̃b
α̃ = 1

8Hbcd (γcd)γ̃ α̃ , (5.96c)

Tγ̃b
α = k

√
2Sαβ̃ (γb)β̃γ̃ , Tγb

α̃ = −k
√

2Sα̃β (γb)βγ . (5.96d)

The dilatini χα and χα̃ are given by the spinor derivatives of the dilaton

Dαϕ = ik√
2
χα , Dα̃ϕ = ik√

2
χα̃ . (5.97)

The non-vanishing components of the Kalb-Ramond field strength are

Hγβa = k√
2

(γa)γβ , Hγ̃β̃a = − k√
2

(γa)γ̃β̃ , Habc . (5.98)
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The non-vanishing components of F̂A1···Ap are given in (5.82), (5.83), and (5.84), which we
do not repeat here. The supercovariant Ramond-Ramond bispinor is defined by

Sαβ̃ = − eϕ

16k
√

2
×


∑
p

1
p! F̂a1···ap(γa1···ap)αβ δββ̃ IIB/IIB∗ (p odd)

∑
p

1
p! F̂a1···ap(γa1···ap)αβ δββ̃ IIA/IIA∗ (p even)

(5.99)

To match conventions with [43], one should take k = −i
√

2.
A subtle issue here is that the p-forms in the Ramond-Ramond sector are not only

democratic in the sense of including the dual forms [44], but they also include so-called
“over the top” forms [45], superforms of rank greater than the spacetime dimension. This
can be traced back to our use of the completeness relation for the γ-matrices (5.78) in the
expressions for the field strengths. For IIB/IIB∗, the odd rank field strengths run from F̂1
to F̂11, where F̂11 has one or two fermionic form indices. The latter is built from a 10-form
C10 [46, 47].12 Similarly, IIA/IIA∗ runs from F̂0 to F̂12. The superform Ĉ11 has no bosonic
part. The 0-form field strength F̂0 (which has no potential in a conventional sense) is the
Romans mass [38].

5.7 Relation between superspace and DFT component parametrizations

As a final step in this section, we will give the dictionary between the type II superspace
and DFT component parametrizations of the DFT supervielbein. Incidentally, this will
also yield as the dictionary between the component fields of type II supergravity and their
DFT analogues.

First, let us give a special decomposition of the square supervielbein EM
A =

(EM a, EM
α̂) used in (5.12):

EM
A =

δmn 0

Ξµ̂n δµ̂ν̂

×
enb ψn

β̂

0 φν̂
β̂

 =

 em
a ψm

α̂

Ξµ̂nena φµ̂
α̂ + Ξµ̂nψnα̂

 . (5.100)

We presume φ and e are invertible, so the inverse EAM is given by

EA
M =

ea
m + ψa

β̂φβ̂
ν̂Ξν̂m −ψa

β̂φβ̂
µ̂

−φα̂ν̂Ξν̂n φα̂
µ̂

 , ψa
β̂ := ea

mψm
β̂ . (5.101)

The field em
a is the left-handed vielbein. Analogous formulae can be written down with

em
a = em

bΛb
a and ψa

α̂ = Λa
bψb

α̂.
The field φµ̂

α̂ appearing here can be identified with the same field in (4.7). For the
bosonic double vielbein in V0 of (4.7), we use the decomposition (5.1). Then ema defined in
both formulations coincide, and bmn in (5.1) coincides with Bmn (as we would wish). The

12Note that there are two 10-forms discussed in these references: a doublet and a quadruplet, which
are implied by SU(1, 1) covariance, that is taking the full set of S- and T-duality transformations into
account. Similar results are implied by E11 [48]. Here we have only a single (and singlet) 10-form implied
by T-duality.

– 58 –



J
H
E
P
0
2
(
2
0
2
3
)
1
8
7

remaining dictionary of fields in (4.7) is as follows. The fields that live purely in superspace
(i.e. the components of V−2 and V−1 ) are given by

Bµ̂ν̂ = Bµ̂ν̂ − Ξ(µ̂
mBmν̂) ,

Ξmν̂ = φν̂
α̂Eα̂

m = −Ξν̂m ,
Ξmν̂ = φν̂

α̂Eα̂
NBmN = Bmν̂ − Ξν̂nBmn . (5.102)

The constituents of V+1 are given by

Ψa
β = 1√

2
ea
mψm

β +
√

2Sa
β , Ψa

β = 1√
2
ea
mψm

β ,

Ψa
β = 1√

2
ea
mψm

β +
√

2Sa
β , Ψa

β = 1√
2
ea
mψm

β (5.103)

The component DFT gravitini lie in the second column. Taking the γ-trace of the first
column gives the dilatini relations

ρα = 1√
2
ψm

β(γm)βα + i
√

2χα , ρα = 1√
2
ψm

β(γ̄m)βα + i
√

2χα , (5.104)

where γm := γaea
m and γ̄m = γ̄aea

m. Finally the components of V+2 are

Sαβ = Sαβ + Sc(αψc
β) , Sαβ = Sαβ + Sc(αψc

β) , (5.105)

Sαβ = Sαβ + 1
2S

bαψb
β + 1

2S
bβψb

α . (5.106)

The last relation can be rewritten in terms of S̊ as

S̊αβ = Sαβ − 1
2g

mn ψm
αψn

β . (5.107)

This relates the two component expressions for the Ramond-Ramond bispinor.
It is an interesting exercise to check this relation explicitly using the two different

expressions we have for /̂F . The expression in component DFT is (4.39). To derive the
analogous expression in type II supergravity requires a bit of work. First, recall that the
polyform F̂ is given as an expansion in tangent space components, i.e.

F̂ =
∑
p

1
p! dxm1 · · · dxmpF̂mp···m1

=
∑
p

1
p! dxm1 · · · dxmp em1

a1 · · · emp−2
ap−2

(
emp−1

ap−1emp
apF̂ap···a1

+ p emp−1
ap−1ψmp

αF̂α ap−1···a1 + p emp−1
ap−1ψmp

αF̂α ap−1···a1

+ p(p− 1)ψmp−1
αψmp

βF̂βα ap−1···a1

)
. (5.108)

Using the explicit expressions (5.82), (5.83), and (5.84), and then rewriting as a bispinor
using

/̂F = eϕ
∑
p

1
p! F̂a1···apγ

a1···ap /Z = 1
25/2 e

ϕ
∑
p

1
p! F̂a1···apγ

a1···ap /Λ (5.109)
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we find

/̂F = −4k
(
/S − χ χ̄′ + i

2γ
mψm χ̄

′ + i

2χ ψ̄
′
mγ̄

m − i

2ψm χ̄
′γ̄m + i

2γ
mχ ψ̄′m

− 1
4γ

mnψm ψ̄
′
n + 1

4ψm ψ̄
′
nγ̄

mn + 1
2γ

[mψm ψ̄
′
nγ̄

n]
)

(5.110)

This indeed matches the component DFT result (4.39) upon applying the dictionary above.

6 Conclusion and open problems

The goal in this paper was to define the supergeometry of type II double field theory in
superspace and to provide the tools to derive component DFT as well as conventional type
II superspace, building on the progress made in type I [20]. As in type I, we showed that
one can take all torsion and curvature tensors to vanish through dimension two, except for
the basic dimension zero constant torsion tensor associated with supersymmetry. It was
crucial here that the tangent space group be extended beyond the double Lorentz group.

We further built on the discussion of orthosymplectic spinors in [28], giving a prescrip-
tion for their constant field strength, as well as a complete description for how to transform
between “curved” and “flat” orthosymplectic spinors. An interesting result that came for
free was a unified description of democratic type II superspace in section 5.6.

There are several additional avenues one could pursue. We highlight a few below.

Generalized type II DFT and supergravity. In analyzing the Bianchi identities in
section 5, we took pains to separate the Bianchi identities for TABC from those of the
dilaton torsion TA. We showed that no data from TA was necessary to constrain the
dilaton-independent torsion and curvature tensors through dimension two. Moreover, the
constraints imposed on the dilaton torsion and dilaton curvatures (through dimension two
at least) could be deduced purely from their Bianchi identities without supposing the
existence of a superdilaton field.

The reason we organized the analysis in this way is that Tseytlin and Wulff have shown
that if one starts with conventional type II superspace and supposes only the constraints
of κ-symmetry, one can show that one arrives at generalized type II supergravity [30] (see
also [49]). This is a formulation of supergravity where the dilatini are not presumed to
arise from the spinor derivative of a dilaton. In addition to the usual supergravity fields,
one finds two vectors at dimension 1, denoted Xa and Ka. The latter is a Killing vector of
the entire supergravity multiplet. In standard supergravity, Ka vanishes and Xa = Daϕ.

The constraints we employed for double field theory in superspace are the exact ana-
logues of the κ-symmetry constraints, and so if we were to not suppose the existence of
the superdilaton, it is more or less obvious that we should recover the generalized type
II supergeometry of Tseytlin and Wulff by generalizing the bosonic discussion of [50] to
superspace. The idea is one would replace ∂M log Φ in the definition of the dilaton flux
FA with a more general vector that does not obey the section condition. The dilatini, the
vector field Xa, and the Killing vector Ka should then turn out to be various components
of this quantity. It would be interesting to work this out in detail.
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Green-Schwarz action in double superspace. The work of Tseytlin and Wulff was
inspired by the question of whether κ-symmetry of the Green-Schwarz superstring uniquely
selected out the constraints of 10D supergravity. In light of that, it would be natural to
try to formulate a GS-type action using the doubled supergeometry introduced here. Such
a doubled worldsheet was discussed by Park already in a flat space background [51] (see
also the work by Bandos [52]). This was generalized to include fermions to second order
(along with the Ramond-Ramond fields) for more general backgrounds by Sakamoto and
Sakatani [53]. A complete formulation should be possible, and one would expect the κ-
symmetry of this action to lead to the constraints we have imposed on TABC . A very similar
idea (in Hamiltonian language) was the motivation for [26], where constraints on torsion
were motivated also by κ-symmetry. This is a topic we are currently exploring.

Non-geometric backgrounds. Recent work has emphasized that conventional super-
gravity backgrounds (i.e. with an invertible metric and two-form) are not the only allowed
generalized metrics in double field theory [54–56] (see also [57] in exceptional field theory).
One such example is the Gomis-Ooguri non-relativistic string background [58], which in
the classification scheme of [54] is a (1, 1) non-Riemannian background. This was already
discussed in the context of the doubled Green-Schwarz superstring some time ago [51].
This should be able to be addressed in type II supersymmetric double field theory, both at
the component level and in superspace.13

Exceptional superspace. A final fascinating topic is the generalization to exceptional
field theory. It is well-known that the exceptional groups ED(D) possess O(D,D) subgroups,
and so one might consider the embedding of O(10, 10) into E11. In fact, an early discussion
of the Ramond-Ramond sector of double field theory (at least in the IIA duality frame)
was found in a level decomposition [12] of the E11 formulation of West [11, 59] (see also the
recent work on E11 [60, 61] and its supersymmetrization [62]). A natural avenue would be
to explore the lower levels of the supersymmetric version of E11 by attempting to encode
OSp(10, 10|64) within it. This would involve geometrizing the abelian 〈λ| transformation
of the Ramond-Ramond sector and encoding the Ramond-Ramond potentials 〈C| into the
supervielbein itself. Such an approach has already been explored implicitly by Hatsuda,
Kamimura, and Siegel [27], who attempted to geometrize the Ramond-Ramond charges
that appear in the supersymmetry algebra. This could be a fascinating springboard to
formulating E11 in superspace.

Acknowledgments

It is a pleasure to thank Falk Hassler and Jeong-Hyuck Park for discussions related to
this work, and especially Yuho Sakatani for alerting me to [53]. This work was partially
supported by the NSF under grant NSF-2112859 and the Mitchell Institute for Fundamental
Physics and Astronomy at Texas A&M University.

13We thank Jeong-Hyuck Park for discussions on this point.

– 61 –



J
H
E
P
0
2
(
2
0
2
3
)
1
8
7

A Conventions for spinors and γ-matrices of SO(9, 1)

We summarize below our conventions for SO(9, 1). The metric ηab has a mostly positive
signature. The 32-component gamma matrices γa, charge conjugation matrix C, and
chirality matrix γ∗ are given by

γa =
(

0 (γa)αβ
(γa)αβ 0

)
, γ∗ =

(
δα
β 0

0 −δαβ

)
, C =

(
0 δαβ
δα
β 0

)
(A.1)

and obey

{γa, γb} = 2 ηab , (γa)T = CγaC−1 , (γ∗)T = −Cγ∗C−1 , γ[a1 · · · γa10] = εa1···a10γ∗ (A.2)

The matrices (γa)αβ and (γa)αβ are 16-component Weyl sigma matrices in 10D, but we
denote them γa for convenience. A 32-component Dirac spinor ψ is written in terms of
16-component Weyl spinors as

ψ =
(
ψα
ψα

)
(A.3)

For a Majorana spinor, its Dirac conjugate is the same as its Majorana conjugate, with

ψ̄ = ψTC =
(
ψα ψα

)
. (A.4)

Our γ-matrices are chosen to be Majorana (i.e. real), so that the B-matrix is the
identity. Then the Majorana condition is simply ψ∗ = ψ. An explicit realization of 10D
Majorana γ-matrices follows from the Majorana representation of SO(8). There one em-
ploys 8-component Weyl matrices (σi)αβ̇ , where here (and here alone) α and α̇ denote the
8s and 8c of SO(8). All SO(8) vector and spinor indices are raised and lowered with the
identity matrix, and we choose σ1(σ2)T · · ·σ7(σ8)T = 1.14 Then for 10D Majorana gamma
matrices, we have in 8× 8 block notation

(γi)αβ = (γi)αβ =
(

0 σi

(σi)T 0

)
, (γ0)αβ = −(γ0)αβ =

(
1 0
0 1

)
,

(γ9)αβ = (γ9)αβ =
(

1 0
0 −1

)
. (A.5)

These 10D γ-matrices have a natural lift to 11D, where we identify γ∗ = γ10 and
C11D = Cγ∗.

For the right sector of SO(1, 9), we take very similar conventions, with

γ̄a = γ∗γ
a =⇒ (γ̄a)αβ = (γa)αβ , (γ̄a)αβ = −(γa)αβ . (A.6)

When we write SO(1, 9) spinors in Dirac form, we prime the spinors following [10]:

ψ′ =
(
ψα
ψα

)
, ψ̄′ = ψ′TC =

(
ψα ψα

)
. (A.7)

14See e.g. [63] for a discussion of SO(8) σ-matrices and the connection to the octonions.
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B The general decomposition of the supervielbein

In this appendix, we elaborate on how to construct the general form of the supervielbein in
type II double field theory in a way that is well-adapted to conventional superspace. This
construction in many ways mirrors that of the bosonic case discussed in section 5.1, but
involves key additional elements.

First, we identify some specific components of the generalized vielbein as follows:

VαM = Eα
M , VαM = Eα

M , Va
M = 1√

2
Ea
M , Va

M = 1√
2
Ēa
M . (B.1)

In analogy to the two sets of invertible vielbeins ea
m and ēa

m in the bosonic case, we
propose the following two sets of invertible vielbeins:

EAM =

Ea
M

Eα
M

Eα
M

 , ĒAM =

Ea
M

Eα
M

Eα
M

 , (B.2)

That these should be invertible is a relatively mild assumption; it is true outside of a
measure zero set. However, note that both Eα

M and Eα
M appear in EAM and in ĒAM .

Moreover, they EAM and ĒAM do not transform uniformly under the Lorentz groups. EAM

involves a left vector and both types of spinor, while ĒAM involves a right vector.
Let their inverses be denoted EMA and ĒMA. We are going to again give special names

to some of these components:

EMA =
(
EM

a EMα EM
α
)
, ĒMA =

(
EM

a EM
α ĒMα

)
. (B.3)

Following the bosonic case, we identify a matrix Λb
a and its inverse Λa

b via

EM
a = EM

bΛb
a , EM

b = EM
aΛa

b . (B.4)

The fact that such a simple relation exists follows from the fact that EαM = ĒαM and EαM =
ĒαM . The fact that Λb

a is again a Lorentz transformation follows from the orthosymplectic
structure, which we will show in due course.

The components E that we have identified obey a certain modified orthonormality
condition, which we can write as

(
Eα

M Eα
M Ea

M Ea
M
)

EM

β

EM
β

EM
b

EM
b

 =


δα
β 0 0 0

0 δα
β 0 0

0 0 δa
b Λa

b

0 0 Λa
b δa

b

 . (B.5)

One can think of (EαM , EαM , Ea
M ) as a square matrix whose inverse is (EMα, EM

α, EM
a).

The same statement holds with the vector index a replaced with a barred vector index a,
because

Ea
M = Λa

bEb
M , Ea

M = Λa
bEb

M . (B.6)
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Because of the relations (B.4) and (B.6), it is straightforward to switch between the barred
and unbarred versions of EM a and Ea

M .
We want to re-express E and Ē in terms of the superfields E. Start by defining

Saβ := −1
2E

aM ĒMβ , S̄aβ := −1
2 Ē

aMEMβ . (B.7)

Then one can work out a complete dictionary as follows:

EM a = EM
a , ĒM a = EM

a , (B.8a)
EMα = EM

α + 2EMbSb
α , ĒMα = EM

α , (B.8b)

EMα = EM
α , ĒMα = EM

α + 2EMbSb
α , (B.8c)

and inverses

EαM = Eα
M ĒαM = Eα

M , (B.9a)
EαM = Eα

M ĒαM = Eα
M , (B.9b)

Ea
M = Ea

M − 2Sa
βEβ

M Ea
M = Ea

M − 2Sa
βEβ

M . (B.9c)

The fermionic superfields Saβ and Saβ are the only additional information encoded in EAM

and ĒAM aside from the EMA vielbeins (and of course the matrix Λa
b).

Now, the most general expressions for Dα, Dα, and Dâ are

Dα = Eα
M∂M + VαM∂M , (B.10a)

Dα = Eα
M∂M + VαM∂M , (B.10b)

Da = 1√
2
Ea
M∂M + VaM∂

M , (B.10c)

Da = 1√
2
Ēa
M∂M + VaM∂

M . (B.10d)

Let’s focus first on Dα. Using the property that VαMVMβ = 0, one can show that EαMVMβ

is symmetric in α and β. This piece can be identified as part of the Kalb-Ramond two-form,
so that

Dα = Eα
M
(
∂M −BMN∂

N (−)n
)
. (B.11)

Next using VαMVMb = 0 and Va
MVMb = ηab, one can show that

Da = 1√
2
Ea
M
(
∂M −BMN∂

N (−)n
)

+ 1√
2

(−)mEM a∂
M (B.12)

for the same B-field. Repeating these conditions with barred indices (as well as mixed
handedness conditions like Va

MVMb = 0), leads to the conclusion

Dα = Eα
M
(
∂M −BMN∂

N (−)n
)
, (B.13)

Da = 1√
2
Ēa
M
(
∂M −BMN∂

N (−)n
)

+ 1√
2

(−)mĒM a∂
M , (B.14)
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with the same two-form BMN , along with the additional requirement that Λba = −Λab.
This identifies Λ as a Lorentz transformation.

This is all quite similar to the bosonic case. The main complications arise when
analyzing Dα and Dα. Without loss of generality, Dα can be written

Dα = (Z αβ + ScαSc
β)Dβ + Z αβDβ + (Z αb +

√
2Sbα)Db + (YMα + EM

α)∂M , (B.15)

in terms of arbitrary Y and Z factors. The additional terms constitute shifts in the generic
factors, and as we will show, almost all of the Z and Y terms vanish.

For two vectors XA = XA
M∂M and YA = YA

M∂M introduce the inner product
notation

〈XA, YB〉 = XA
MYB

N ηNM(−)bm . (B.16)

Then we use

δα
β = 〈Dα, D

β〉 = Eα
MYM

β + δα
β , (B.17a)

0 = 〈Dα, D
β〉 = Eα

MYM
β , (B.17b)

0 = 〈Da, D
β〉 = Zβa + 1√

2
Ea
MYM

β , (B.17c)

0 = 〈Da, D
β〉 = 1√

2
Ēa
MYM

β (B.17d)

to conclude that YMα and Zαb both vanish. Next we use

0 = 〈Dα, Dβ〉 = Z αβ + ScαSc
β −Z βα − ScβSc

α − 2SbαSb
β = 2Z [αβ] (B.18)

to conclude that Z αβ is symmetric. Similar equations hold for Dα. Then we use

0 = 〈Dα, Dβ〉 = Z αβ −Z βα (B.19)

to prove that Z αβ = Z βα. We relabel the remaining Z factors as −S, giving

Dα = −(Sαβ − ScαSc
β)Dβ − SαβDβ +

√
2ScαDc + ĒMα∂M , (B.20a)

Dα = −(Sαβ − ScαSc
β)Dβ − S

αβDβ +
√

2ScαDc + EMα∂M . (B.20b)

Next, it will be useful to identify how these objects transform under the HL × HR

gauge transformations. Because all superfields transform in a clear way under the double
Lorentz group, we focus on the infinitesimal λb

α, λb
α, λαβ , and λαβ gauge symmetries.

From δVαM, δVαM, and δVâM, we deduce

δEα
M = δEα

M = 0 , δEa
M =

√
2λa

βEβ
M , δEa

M =
√

2λa
βEβ

M , δBMN = 0 (B.21)

and then it follows that

δEM a = 0 , δEM a = 0, (B.22a)
δEMα = −

√
2 EMbλb

α , δĒMα = 0 , (B.22b)

δEMα = 0 , δĒMα = −
√

2 ĒMbλb
α . (B.22c)
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This can be summed up as follows. The superfields Sa
α and Sa

α simply shift as

δSa
α = − 1√

2
λa

α , δSa
α = − 1√

2
λa

α , (B.23)

while all the EMA factors are invariant,

δEM
A = δEA

M = 0 . (B.24)

From δV α̂M and using the explicit expressions in (B.20), we determine that

δSαβ = −λαβ +
√

2Sc(αλc
β) , (B.25a)

δSαβ = −λαβ +
√

2Sc(αλc
β) , (B.25b)

δSαβ = 0 (B.25c)

Finally, we can rewrite the entire inverse supervielbein as a product of three factors

VAM = (V−1
S )AB × (VEΛ)BN × (V−1

B )NM (B.26)

The third term is built out of the Kalb-Ramond super two-form,

(V−1
B )MN =

(
δM

N −BMN (−)n

0 δNM

)
, (B.27)

The second factor VEΛ is written, in a chiral decomposition of the indices, as

(VEΛ)AM =



1√
2Ea

M 1√
2EMa

Eα
M 0

0 EM
α

1√
2Ea

M 1√
2EMa

Eα
M 0

0 EM
α


. (B.28)

The VS factor is given, also in a chiral decomposition, as

(V−1
S )AB =



δa
b −

√
2Sa

β 0 0 0 0

0 δα
β 0 0 0 0

√
2Sbα −Sαβ − ScαSc

β δαβ 0 −Sαβ 0

0 0 0 δa
b −

√
2Sa

β 0

0 0 0 0 δα
β 0

0 −Sαβ 0
√

2Sbα −Sαβ − ScαSc
β δαβ


. (B.29)
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