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1 Introduction

Symmetric orbifold CFTs are widely used in AdS3/CFT2 as boundary theories to understand
the bulk physics [1–8]. Consider a seed CFT with target space M . The symmetric orbifold
CFT has the target space

MN/SN (1.1)

where N is the number of copies of the seed CFT and SN is the permutation group of N
elements.

Due to the SN orbifold, there exist twist operators. If we circle the insertion of a
twist operator, different copies of the seed CFT permute into each other. The traditional
way to compute correlation functions of twist operators is to map the 2-d base space to
the covering space [9–13]. On this covering space, the ramification caused by the twist
operator in the base space is resolved, such that the target space becomes a single copy
of M . The correlation functions on the base space can be computed from a combination
of the correlation functions in the covering space and a Liouville factor which takes into
account the covering map.

The effect of a twist operator can be studied by using the covering map [14–18]. To
be specific, take two copies of the seed CFT of a free boson, such that M = R. Suppose
around z = 0 that the state is in the untwisted sector as shown in figure 1. Around this
point, there are two separate copies of the seed CFT. Let us put a twist operator σ2 at z0,
which is the unique twist operator for two copies. This twist operator generates a branch
cut from z0 to infinity. The two separate copies join into a single doubly wound copy for
|z| > |z0|. If an initial state is given at z = 0 for the two separate copies, what is the state
after the twist operator, e.g. the state at infinity? The result of this question tells us all the
three-point functions involving a twist operator σ2.

It has been observed that the effect of a twist operator is in the form of a Bogoliubov
transformation between the modes before and after the twist operator. From the covering
space method point of view, the map from the base space to the covering space leads to
this linear transformation of modes. The effect of a twist operator is encoded in this linear
transformation. This can be derived from the covering map or by matching the modes just
before and after the twist [19, 20]. In the covering map method, it seems that the details of
the map are necessary. In the latter method, the covering map is not needed but in practice
not all effects can be obtained since it requires one to invert an infinite-dimensional matrix.

In this paper, we will develop a method that does not involve the covering map and
can obtain the effects completely. To do that, we will use the ‘weak’ Bogoliubov ansatz1

and conformal symmetry

Weak Bogoliubov ansatz + Conformal symmetry⇒ Effect of a twist operator (1.2)

1‘Weak’ means that we don’t require some relations among the coefficients in the original Bogoliubov
ansatz. For more details, see section 4. These relations come out naturally. As a result, this method does
not involve the inversion of infinite-dimensional matrices.
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1

z = 0
<latexit sha1_base64="jkctqMxzlMhHqnvvaR6biqKbIME=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexKQD0IQS8eI5oHJEuYnXSSIbOzy8ysEJd8ghcPinj1i7z5N06SPWhiQUNR1U13VxALro3rfju5ldW19Y38ZmFre2d3r7h/0NBRohjWWSQi1QqoRsEl1g03AluxQhoGApvB6GbqNx9RaR7JBzOO0Q/pQPI+Z9RY6f7pyu0WS27ZnYEsEy8jJchQ6xa/Or2IJSFKwwTVuu25sfFTqgxnAieFTqIxpmxEB9i2VNIQtZ/OTp2QE6v0SD9StqQhM/X3REpDrcdhYDtDaoZ60ZuK/3ntxPQv/JTLODEo2XxRPxHERGT6N+lxhcyIsSWUKW5vJWxIFWXGplOwIXiLLy+TxlnZq5Qv7yql6nUWRx6O4BhOwYNzqMIt1KAODAbwDK/w5gjnxXl3PuatOSebOYQ/cD5/AN1fjYs=</latexit>

�2(z0)
<latexit sha1_base64="mhrJU61+2uE/4X/4y2kh2mYzhH4=">AAAB9XicbVBNSwMxEJ31s9avqkcvwSLUS9ktBfVW9OKxgv2Adl2yabYNTbJLklVq6f/w4kERr/4Xb/4b03YP2vpg4PHeDDPzwoQzbVz321lZXVvf2Mxt5bd3dvf2CweHTR2nitAGiXms2iHWlDNJG4YZTtuJoliEnLbC4fXUbz1QpVks78woob7AfckiRrCx0n1Xs77AQQWVngL3LCgU3bI7A1omXkaKkKEeFL66vZikgkpDONa647mJ8cdYGUY4neS7qaYJJkPcpx1LJRZU++PZ1RN0apUeimJlSxo0U39PjLHQeiRC2ymwGehFbyr+53VSE134YyaT1FBJ5ouilCMTo2kEqMcUJYaPLMFEMXsrIgOsMDE2qLwNwVt8eZk0K2WvWr68rRZrV1kcOTiGEyiBB+dQgxuoQwMIKHiGV3hzHp0X5935mLeuONnMEfyB8/kD+5iRig==</latexit>

state after the twist
initial state

Figure 1. The effect of a twist operator. The red and green circles represent the states living on
two separate copies located before the twist operator. The twist operator produces a branch cut
from z0 to infinity. The dashed circle represents the state living on the joined copy with two sheets.

For earlier work in this direction see [21] which incorporates the use of the covering map
and conformal symmetry. There have also been works to compute correlation functions of
twist operators using conformal symmetry, see e.g. [7, 22–24]. For recent work, see [25].

The plan of the paper is as follows: in section 2 we outline the orbifold CFT of one
boson. In section 3 we describe the effect of the twist operator. In section 4 we discuss the
Bogoliubov transformation. In section 5 we bootstrap the effect of the twist operator using
the weak Bogoliubov ansatz and conformal symmetry. In section 6 we discuss our results
and future work.

2 Orbifold CFT of one boson

Symmetric orbifold CFTs are obtained by orbifolding N copies of a seed CFT by the
permutation group SN , which results in the target space

MN/SN (2.1)

where M is the target space of the seed CFT. In this paper, we will consider the simplest
case where the seed CFT is a free boson with target space M = R. The base space is the
complex z plane.

The N copies of the free boson are labeled by X(i) with i = 1, . . . , N . In the untwisted
sector, the fields have the boundary condition

X(i) → X(i), z → ze2πi (2.2)

There also exist twist sectors where the N copies can join into many linked copies in all
possible ways. For example, a k-wound linked copy has the boundary condition

X(1) → X(2) → . . .→ X(k) → X(1), z → ze2πi (2.3)

– 2 –
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It is convenient to define a single field X living on the k-wound copy. On the i-th segment
of the k-wound copy, the field X equals to X(i), such that the field X has the boundary
condition

X → X, z → ze2πki (2.4)

Notice that the field X is multi-valued in the base space and should be thought of as a
single-valued field living on a Riemann surface with k sheets.

In radial quantization, the modes of the holomorphic part in the untwisted sector are
defined as

α(i)
n = 1

2π

∮
C0
dz zn∂X(i)(z) (2.5)

where C0 is a contour centered around z = 0. The n is an integer as required by the
boundary condition (2.2). The commutation relation is

[α(i)
m , α

(j)
n ] = mδijδm+n,0 (2.6)

We also define
α(i)†
n = α

(i)
−n (2.7)

The vacuum |0〉(i) of copy i is defined by the condition

α(i)
n |0〉(i) = 0, n ≥ 0 (2.8)

The Virasoro generators can be expanded in terms of a sum over bilinears of the modes

Lm = 1
2
∑
i

∑
n

α(i)
n α

(i)
m−n (2.9)

with implicit normal-ordering. Using the commutation relation (2.6), we have

[Lm, α(i)
n ] = −nα(i)

m+n (2.10)

For the field X living on the k-wound copy, the modes are defined as

αn = 1
2π

∮
C

(2πk)
0

dz zn∂X(z) (2.11)

where the contour of the integral C(2πk)
0 is again centered around z = 0 but now from angle

0 to 2πk. The boundary condition for the field X requires that n = m/k where m is an
integer. The commutation relation is given by

[αm, αn] = kmδm+n,0 (2.12)

We also define
α†n = α−n (2.13)

The vacuum |0k〉 of the k-wound copy is defined by the condition

αn|0k〉 = 0, n ≥ 0 (2.14)

– 3 –
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The Virasoro generators can be expanded in terms of a sum over bilinears of modes

Lm = 1
2k
∑
n

αnαm−n (2.15)

again with implicit normal-ordering. Using the commutation relation (2.12), we have

[Lm, αn] = −nαm+n (2.16)

The k-wound copy can be produced by applying the twist operator σk to the untwisted
sector. The twist operator σk has dimension [10]

h(σk) = c

24

(
k − 1

k

)
(2.17)

For a single free boson, c = 1.

3 The effect of a twist operator

In this section, we will briefly review the effect of a twist operator. In this paper, we restrict
ourselves to the simplest case where there are only two copies of the seed CFT, such that
N = 2. Suppose at z = 0 an initial state in the untwisted sector is given by

α
(i1)
−n1α

(i2)
−n2 . . . α

(im)
−nm |0〉

(1)|0〉(2) (3.1)

where nk > 0 and ik = 1, 2 is the copy label. Let us apply the twist operator σ2 at z0. The
question is to find out the state φ at |z| > |z0| which is after the twist operator. The state
φ is defined as

|φ〉 = σ2(z0)α(i1)
−n1α

(i2)
−n2 . . . α

(ik)
−nk |0〉

(1)|0〉(2) (3.2)

which lives on a doubly wound copy since the twist operator has joined the two singly wound
copies in the initial state. This question has been addressed completely by the covering
map method, which will be reproduced for a single boson in appendix A. The effect of a
twist operator can be summarized by the following three basic rules:

(i) Contraction: two modes α(i)
−m and α(j)

−n in the initial state (3.1) can ‘Wick contract’,
giving a number

Cij [m,n] ≡ C[α(i)
−mα

(j)
−n] (3.3)

For the process of Wick contraction, we consider all possible pairs of modes. For each
such pair, we get a term where the pair contracts to the above number, and a term
where the pair does not contract but will pass through the twist as shown in step (ii)
below.

(ii) Propagation: any modes left after the contraction will pass through the twist and
become modes after the twist operator, which are modes on the doubly wound copy.

α
(i)
−n −→

∑
p>0

fi[−n,−p]α−p, i = 1, 2 (3.4)

– 4 –
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where α−p is a mode on the doubly wound copy and p = m/2 where m is a positive
integer. In section 5.1, we will show that the nontrivial fi’s are

fi[−n,−n] = 1/2
fi[−n,−p] 6= 0, when p 6= n and p is a positive half integer (3.5)

(iii) Pair creation: after the previous two steps, the modes in the initial state have either
been contracted or passed through the twist. We are left with the twist operator
acting on the untwisted vacuum

|χ〉 ≡ σ2(z0)|0〉(1)|0〉(2) = exp

 ∑
m,n>0

γmnα−mα−n

 |02〉 (3.6)

where the dimension of the twist operator σ2 is (2.17)

h = h(σ2) = 1/16 (3.7)

which takes into account the difference of dimensions between the vacuum of doubly
wound copy |02〉 and the vacuum of two singly wound copies |0〉(1)|0〉(2). In section 5.1,
we will show that

γmn 6= 0 only if m,n are positive half integers (3.8)

The above rules are shown in figure 2. To better understand these rules, let us consider
an example with one initial mode

σ2(z0)α(i)
−n|0〉(1)|0〉(2) =

∑
p>0

fi[−n,−p]α−p exp

 ∑
m,n>0

γmnα−mα−n

 |02〉 (3.9)

We first use the propagation rule (3.4) to pass the initial mode through the twist. Then the
twist operator acts on the untwisted vacuum to produce pairs using the rule (3.6). Let us
now consider an example of two initial modes

σ2(z0)α(i)
−n1α

(j)
−n2 |0〉

(1)|0〉(2) =

∑
p1>0

fi[−n1,−p1]α−p1

∑
p2>0

fj [−n2,−p2]α−p2 + Cij [n1, n2]


× exp

 ∑
m,n>0

γmnα−mα−n

 |02〉 (3.10)

The first term in the parentheses comes from the propagation of the two initial modes while
the second term is from the contraction. The exponent in the last line comes from the
pair creation.

If the effect of an operator satisfies the above three rules but with independent and
undetermined coefficients fi, Cij , and γ, we call it the weak Bogoliubov form. As will be
explained in the next section, in the ‘normal’ Bogoliubov transformation these coefficients
are not independent of each other.

– 5 –
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1

state after the twist

initial state

propagation

contraction

pair creation

σ2(z0)

Figure 2. The three basic rules to compute the effect of a twist operator.

4 Bogoliubov transformation

The Bogoliubov transformation is a linear transformation that mixes creation and annihila-
tion operators

â = α b̂+ β b̂†

â† = α∗ b̂† + β∗ b̂ (4.1)

where |α|2 − |β|2 = 1 to make both sets of operators canonical

[â, â†] = 1, [b̂, b̂†] = 1 (4.2)

The ‘a’ vacuum and ‘b’ vacuum are defined by the conditions

â|0〉a = 0, b̂|0〉b = 0 (4.3)

Since the Bogoliubov transformation mixes the creation and annihilation operators, the ‘a’
vacuum is no longer the ‘b’ vacuum

â|0〉a = (α b̂+ β b̂†)|0〉a = 0 −→ |0〉a = e
1
2γ b̂

†b̂† |0〉b (4.4)

where
γ = −β

α
(4.5)

Consider an example with two initial modes on the ‘a’ vacuum

â†â†|0〉a = (α∗ b̂† + β∗ b̂)(α∗ b̂† + β∗ b̂)e
1
2γ b̂

†b̂† |0〉b
=
[
(α∗ + β∗ γ)b̂†(α∗ + β∗ γ)b̂† + β∗α∗

]
e

1
2γ b̂

†b̂† |0〉b (4.6)

It is similar to the effect of a twist operator with two initial modes (3.10). The first term in
the bracket comes from the propagation of the two initial modes while the second term is

– 6 –
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from their contraction. The exponent in the last line comes from the pair creation. Similarly,
we can compute the case with multiple initial modes

â† . . . â†|0〉a (4.7)

using the following three rules that are similar to the rules in section 3.

(i) Contraction:
C[â†, â†] = β∗α∗ (4.8)

(ii) Propagation:
â† → (α∗ + β∗ γ)b̂† (4.9)

(iii) Pair creation:
â|0〉a = e

1
2γ b̂

†b̂† |0〉b (4.10)

The coefficients in these expressions are not independent of each other. They are related
through (4.5). We will call the above three rules with the constraint (4.5) the ‘normal’
Bogoliubov ansatz and the same rules without the constraint the ‘weak’ Bogoliubov ansatz.

In [19], it has been shown that the effect of a twist operator explained in section 3 satisfies
the ‘normal’ Bogoliubov ansatz with the generalization: the creation and annihilation
operators are generalized to infinite-dimensional vectors, i.e. â becomes âi; the coefficients α,
β, γ are generalized to infinite-dimensional matrices, i.e. α becomes αij . In [19], by matching
the modes before and after the twist, they obtained the matrices α and β. However, there
is no systematic way to invert the infinite-dimensional matrices α to obtain γ through the
constraint (4.5). In this paper, we will take the weak Bogoliubov ansatz which is without
the constraint. We will show that it is enough to determine all the coefficients without
inverting any infinite-dimensional matrices. The constraint (4.5) is satisfied automatically.

5 Bootstrapping the effect of a twist operator

In this section, we will take the weak Bogoliubov ansatz and apply the Virasoro generators
to obtain recursion relations for all the coefficients in the ansatz. The solutions to these
recursion relations match the results from the covering map method.

5.1 Global modes

In this section we will show (3.5) and (3.8). Let us start with

αnσ2(z0)− σ2(z0)(α(1)
n + α(2)

n ) = 1
2π

∮
C

(4π)
z0

dz zn∂X(z)σ2(z0)

= zn0
1

2π

∮
C

(4π)
z0

dz
(
1 + (z − z0)/z0

)n
∂X(z)σ2(z0)

= zn0
(
α

(z0)
0 + nα

(z0)
1 /z0 + . . .

)
σ2(z0) (5.1)

where n is an integer. To obtain the first equality, we join the two contours, one before and
one after the twist operator, into a single contour centered around the twist operator. We

– 7 –
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note that modes with superscript (z0), i.e. α(z0)
0 , are the modes centered around z0, while

modes without it, i.e. αn and α(i)
n , are the modes centered around z = 0. Since the twist

operator σ2 is defined as the lowest dimension operator that produces the twisted sector,
we have

α(z0)
n σ2(z0) = 0, n ≥ 0 (5.2)

Thus (5.1) becomes
αnσ2(z0)− σ2(z0)(α(1)

n + α(2)
n ) = 0 (5.3)

Consider the following state where m and n are positive integers

〈02|αmσ2(z0)α(i)
−n|0〉(1)|0〉(2) = 〈02|σ2(z0)(α(1)

m + α(2)
m )α(i)

−n|0〉(1)|0〉(2)

= δmnn (5.4)

which is nonzero only if m and n are equal. From 〈02|αnα−n|02〉 = 2n, we find

σ2(z0)α(i)
−n|0〉(1)|0〉(2) =

(1
2α−n + half integer modes

)
|02〉 (5.5)

which is (3.5). To show (3.8), consider the following state where m is a positive integer

αm|χ〉 = αmσ2(z0)|0〉(1)|0〉(2) = σ2(z0)(α(1)
m + α(2)

m )|0〉(1)|0〉(2) = 0 (5.6)

Thus the state from the pair creation χ can not have any excitations of integer modes,
which is stated in (3.8).

5.2 Pair creation

In this subsection, we will derive the pair creation coefficients γmn.

5.2.1 Relations from L−1

Starting with
L−1|0〉(1)|0〉(2) = 0 (5.7)

where we have used (2.8) and (2.9), we have

0 = σ2(z0)L−1|0〉(1)|0〉(2)

=
(
L−1σ2(z0)− [L−1, σ2(z0)]

)
|0〉(1)|0〉(2) (5.8)

Let’s compute the commutator. We have

[L−1, σ2(z0)] =
∮
C

(4π)
z0

dz

2πi T (z)σ2(z0) = L
(z0)
−1 σ2(z0) = ∂σ2(z0) (5.9)

The mode L(z0)
−1 with superscript (z0) is the mode centered around z0, while the mode

without it, i.e. L−1, is the mode centered around z = 0. Therefore (5.8) becomes

0 = (L−1 − ∂)σ2(z0)|0〉(1)|0〉(2)

= (L−1 − ∂)exp

 ∑
m,n≥0

γm+1/2,n+1/2 α−(m+1/2)α−(n+1/2)

 |02〉 (5.10)

Here we have relabeled m → m+ 1/2 and n → n+ 1/2 in (3.6) where m and n are now
integers. Our aim is to find relations which will help us solve for γm+1/2,n+1/2. There are
four cases we will look at it.

– 8 –
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m, n > 0. The first case is m,n > 0. We will look for ways to obtain terms propotional
to

α−(m+1/2)α−(n+1/2)|02〉 (5.11)

There are three ways to get this. From (5.10) we obtain

0 = γm−1/2,n+1/2
[
L−1, α−(m−1/2)

]
α−(n+1/2) + γm+1/2,n−1/2α−(m+1/2)

[
L−1, α−(n+1/2)

]
− ∂ γm+1/2,n+1/2α−(m+1/2)α−(n+1/2) (5.12)

Using (2.10) we find the relation

γm−1/2,n+1/2(m− 1/2) + γm+1/2,n−1/2(n− 1/2) = ∂ γm+1/2,n+1/2 (5.13)

m = 0, n > 0. Next we consider the case where m = 0, n > 0. We need terms
proportional to

α−1/2α−(n+1/2)|02〉 (5.14)

Looking at (5.10) we get

0 = γ1/2,n−1/2α−1/2[L−1, α−(n−1/2)]− ∂ γ1/2,n+1/2α−1/2α−(n+1/2) (5.15)

Again using (2.10) we obtain the relation

γ1/2,n−1/2(n− 1/2) = ∂ γ1/2,n+1/2 (5.16)

m > 0, n = 0. Similar to the previous case, for m > 0, n = 0 we obtain the relation

γm−1/2,1/2(m− 1/2) = ∂ γm+1/2,1/2 (5.17)

m = n = 0. For m = n = 0 we need terms proportional to

α−1/2α−1/2|02〉 (5.18)

For this we use (2.15) with k = 2 where

L−1|02〉 = 1
4α−1/2α−1/2|02〉 (5.19)

Using this in (5.10) we find the relation

1
4 = ∂ γ1/2,1/2 (5.20)

5.2.2 The solution

To find the initial condition for these differential equations, we consider

|02〉 = σ2(z0 = 0)|0〉(1)|0〉(2)

= exp

 ∑
m,n≥0

γm+1/2,n+1/2(z0 = 0)α−(m+1/2)α−(n+1/2)

 |02〉 (5.21)
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The first line comes from the definition of the twist operator σ2 which is the lowest dimension
operator that changes the untwisted sector to the twisted sector. Thus we have

γm+1/2,n+1/2(z0 = 0) = 0 (5.22)

Using these initial conditions, we can solve the differential equations. The solution to (5.20) is

γ1/2,1/2 = 1
4z0 (5.23)

We can find all other γm+1/2,n+1/2’s by using the relations (5.13), (5.16), and (5.17). You
can think of the γm+1/2,n+1/2’s as forming an inverted triangle with integer lattice spacing
with γ1/2,1/2 as the bottom lattice point. The relation (5.16) moves you along the right
edge, (5.17) moves you along the left edge and (5.13) moves you within the interior.

γ1/2,5/2 γ3/2,3/2 γ5/2,1/2

γ1/2,3/2 γ3/2,1/2

γ1/2,1/2

(5.24)

The solution is

γm+1/2,n+1/2 =
zm+n+1

0 Γ[3
2 +m]Γ[3

2 + n]
(2m+ 1)(2n+ 1)(1 +m+ n)πΓ[m+ 1]Γ[n+ 1] (5.25)

where m and n are non-negative integers.

5.3 Propagation

Here we derive the propagation coefficients fi[−n,−p] which correspond to a mode passing
through the twist.

5.3.1 Relations from L0

Here we use the generator L0 to derive a relation for f1[−1,−p]. We begin with

σ2(z0)α(1)
−1|0〉(1)|0〉(2) = σ2(z0)L0α

(1)
−1|0〉(1)|0〉(2)

= (L0σ2(z0)− [L0, σ2(z0)])α(1)
−1|0〉(1)|0〉(2) (5.26)

where the initial mode is on the first copy. Let us compute the commutator. We have

[L0, σ2(z0)] =
∮
C

(4π)
z0

dz

2πi z T (z)σ2(z0)

=
∮
C

(4π)
z0

dz

2πi (z0 + z − z0)T (z)σ2(z0)

= (z0L
(z0)
−1 + L

(z0)
0 )σ2(z0)

= (z0∂ + h)σ2(z0) (5.27)
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Therefore
σ2(z0)α(1)

−1|0〉(1)|0〉(2) = (L0 − (z0∂ + h))σ2(z0)α(1)
−1|0〉(1)|0〉(2) (5.28)

which gives ∑
p>0

f1[−1,−p]α−p|χ〉 = (L0 − (z0∂ + h))
∑
p>0

f1[−1,−p]α−p|χ〉 (5.29)

where χ is state (3.6) from pair creation. Taking the term proportional to α−p|02〉 with p
being a positive half integer, we have

f1[−1,−p]α−p|02〉 = (L0 − (z0∂ + h))f1[−1,−p]α−p|02〉 (5.30)

which gives
f1[−1,−p] = (p− z0∂)f1[−1,−p] (5.31)

The solution is
f1[−1,−p] ∝ zp−1

0 (5.32)

where p is a positive half integer.

5.3.2 Relations from L1

Here we use L1 to determine the proportional coefficients in (5.32). Since

α
(1)
0 |0〉(1) = 0 (5.33)

we begin with the following relation

0 = σ2(z0)L1α
(1)
−1|0〉(1)|0〉(2) (5.34)

Bringing L1 through the twist we obtain

0 = (L1σ2(z0)− [L1, σ2(z0)])α(1)
−1|0〉(1)|0〉(2) (5.35)

Let us compute the commutator. We have

[L1, σ2(z0)] =
∮
C

(4π)
z0

dz

2πi z
2 T (z)σ2(z0)

=
∮
C

(4π)
z0

dz

2πi (z0 + z − z0)2T (z)σ2(z0)

= (z2
0L

(z0)
−1 + 2z0L

(z0)
0 + L

(z0)
1 )σ2(z0)

= z0(z0∂ + 2h)σ2(z0) (5.36)

Inserting this into (5.35) yields

0 = (L1−z0(z0∂+2h))σ2(z0)α(1)
−1|0〉(1)|0〉(2)

= (L1−z0(z0∂+2h))
∑
p>0

f1[−1,−p]α−pexp

 ∑
m,n≥0

γm+1/2,n+1/2α−(m+1/2)α−(n+1/2)

 |02〉

(5.37)
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We again match terms to obtain relations which one solves to find f1[−1,−p]. We want to
keep terms which are α−(m+1/2)|02〉 with m > 0. The terms which contribute are

0 = 2f1[−1,−1/2]γm+1/2,1/2α−(m+1/2)[[L1,α−1/2],α−1/2]
+f1[−1,−(m+1/2)]γ1/2,1/2α−(m+1/2)[[L1,α−1/2],α−1/2]
+f1[−1,−(m+3/2)][L1,α−(m+3/2)]−z0(z0∂+2h)f1[−1,−(m+1/2)]α−(m+1/2) (5.38)

Using the commutation relation (2.16), this gives a recursion relation for m > 0

(m+ 3/2)f1[−1,−(m+ 3/2)]

=
[
z0(z0∂ + 2h)− 1

2γ1/2,1/2

]
f1[−1,−(m+ 1/2)]− f1[−1,−1/2]γm+1/2,1/2 (5.39)

Now we need to find a relation for f1[−1,−3/2]. In order to do so we will need terms which
are proportional to α−1/2|02〉. From (5.37) we get

0 = 3f1[−1,−1/2]γ1/2,1/2[[L1, α−1/2], α−1/2]α−1/2

+ f1[−1,−3/2][L1, α−3/2]− z0(z0∂ + 2h)f1[−1,−1/2]α−1/2 (5.40)

where we have collected terms coming from appropriate commutators in order to leave only
one α−1/2. Again using commutation relations we obtain the relation

3
2f1[−1,−3/2] = z0(z0∂ + 2h)f1[−1,−1/2]− 3

2f1[−1,−1/2]γ1/2,1/2 (5.41)

Therefore all f1[−1,−p] can be determined from f1[−1,−1/2].

5.3.3 The solution

The solution satisfying the recursion relations (5.39) and (5.41) is

f1[−1,−p] = C
Γ[p− 1]

Γ[p+ 1/2]z
p−1
0 (5.42)

where p is a positive half integer. The constant C will be derived in (5.61)

C = ± i

4
√
π

(5.43)

To obtain f2[−1,−p] for an excitation on copy 2, we change the location of the twist
by z0 → z0e

2πi. It interchanges copy 1 and copy 2. Since p is a half integer, we have
zp−1

0 → −zp−1
0 . Therefore, we have

f2[−1,−p] = −C Γ[p− 1]
Γ[p+ 1/2]z

p−1
0 (5.44)

Thus the two possible signs of (5.43) correspond to two possible conventions of labeling
copy 1 and copy 2. By applying L−1 repeatedly, we can compute fi[−n,−p] for n > 1,
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which will be shown in appendix B. The final expressions are given by

f1[−n,−p] = 1
2δn,p

f1[−n,−p] =
izp−n0 Γ(1

2 + n)Γ(p)
π(2p− 2n)Γ(n)Γ(p+ 1

2)
, n 6= p

f2[−n,−p] = 1
2δn,p

f2[−n,−p] = −f1[−n,−p], n 6= p (5.45)

5.4 Contraction

Here we derive the expression for the contraction of two modes in the initial state under
the effect of the twist.

5.4.1 Relations from L1

Let’s start with the following state with n > 1

σ2(z0)α(i)
−1α

(j)
−(n−1)|0〉

(1)|0〉(2) = 1
n
σ2(z0)L1α

(i)
−1α

(j)
−n|0〉(1)|0〉(2)

= 1
n

[
L1 − z0(z0∂ + 2h)

]
σ2(z0)α(i)

−1α
(j)
−n|0〉(1)|0〉(2) (5.46)

where we remind the reader that i, j = 1, 2 are copy labels. So we have the relation

[L1 − z0(z0∂ + 2h)]σ2(z0)α(i)
−1α

(j)
−n|0〉(1)|0〉(2) = nσ2(z0)α(i)

−1α
(j)
−(n−1)|0〉

(1)|0〉(2) (5.47)

which becomes

[L1 − z0(z0∂ + 2h)]

∑
p>0

fi[−1,−p]α−p
∑
p′>0

fj [−n,−p′]α−p′ + Cij [1, n]

 |χ〉
= n

∑
p>0

fi[−1,−p]α−p
∑
p′>0

fj [−(n− 1),−p′]α−p′ + Cij [1, n− 1]

 |χ〉 (5.48)

We collect terms which carry no bosonic modes in order to easily isolate Cij . Terms of this
kind are given by(

fi[−1,−1/2]fj [−n,−1/2] + Cij [1, n]γ1/2,1/2
)
[[L1, α−1/2], α−1/2]

− z0(z0∂ + 2h)Cij [1, n] = nCij [1, n− 1] (5.49)

Using the commutation relations yield for n > 1

1
2fi[−1,−1/2]fj [−n,−1/2] + z0

8 C
ij [1, n]− z0(z0∂ + 2h)Cij [1, n] = nCij [1, n− 1] (5.50)

Setting h = 1/16 (the dimension of the twist operator), the relation becomes

1
2fi[−1,−1/2]fj [−n,−1/2]− z2

0∂C
ij [1, n] = nCij [1, n− 1] (5.51)
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where n > 1. To find Cij [1, 1], notice that in (5.47) if n = 1, the r.h.s. vanishes. Thus the
r.h.s. of (5.51) vanishes if n = 1, which gives

1
2fi[−1,−1/2]fj [−1,−1/2] = z2

0∂C
ij [1, 1] (5.52)

The solution is
Cij [1, 1] = −(−1)i+jπC2z−2

0 (5.53)

where we have used (5.42) and (5.44).

5.4.2 Relations from L−2

Here we will derive the constant C which appears in (5.42), (5.44), and (5.53). Start with

σ2(z0)L−2|0〉(1)|0〉(2) = σ2(z0)1
2
(
α

(1)
−1α

(1)
−1 + α

(2)
−1α

(2)
−1
)
|0〉(1)|0〉(2) (5.54)

Using the contraction (5.53), the term without any modes on the r.h.s. is
1
2
(
C11[1, 1] + C22[1, 1]

)
|02〉 = −πC2z−2

0 |02〉 (5.55)

Let us compute the l.h.s. of (5.54) in another way. We have

σ2(z0)L−2 = L−2σ2(z0)− [L−2, σ2(z0)] (5.56)

where

[L−2, σ2(z0)] =
∮
C

(4π)
z0

dz

2πiz
−1T (z)σ2(z0)

= z−1
0

∮
C

(4π)
z0

dz

2πi

(
1 + z − z0

z0

)−1
T (z)σ2(z0)

= z−1
0

∮
C

(4π)
z0

dz

2πi

(
1− z − z0

z0
+ . . .

)
T (z)σ2(z0)

= z−1
0
(
L

(z0)
−1 − z

−1
0 L

(z0)
0
)
σ2(z0)

= z−1
0
(
∂ − z−1

0 h
)
σ2(z0) (5.57)

Thus we have
σ2(z0)L−2|0〉(1)|0〉(2) =

[
L−2 − z−1

0 (∂ − z−1
0 h)

]
|χ〉 (5.58)

The term without any modes is

z−2
0 h|02〉 = z−2

0
16 |0

2〉 (5.59)

where we have used h = 1/16. Comparing to (5.55), we obtain

− πC2 = 1
16 (5.60)

which gives
C = ± i

4
√
π

(5.61)

As explained in section 5.3.3, the two signs correspond to the two different conventions of
labeling the copies.
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5.4.3 The solution

Using (5.61), the contraction (5.53) becomes

Cij [1, 1] = −(−1)i+jπC2z−2
0 = (−1)i+j 1

16z
−2
0 (5.62)

Solving (5.51) recursively we find the following solution

Cij [1, n] = (−1)i+j
z
−(1+n)
0 Γ(1

2 + n)
4(1 + n)

√
πΓ(n) (5.63)

The contractions Cij [n1, n2] with n1, n2 > 0 are computed in appendix C. The final
expressions are

Cij [n1, n2] = (−1)i+j z
−(n1+n2)
0

2(n1 + n2)π
Γ(1

2 + n1)Γ(1
2 + n2)

Γ(n1)Γ(n2) (5.64)

where i, j = 1, 2 are copy labels.

6 Discussion

The traditional way to compute the effect of a twist operator is by using the covering map
method. In this paper, we have developed a new method using the Bogoliubov ansatz and
conformal symmetry. The Bogoliubov ansatz includes three quantities which characterize
the final state uniquely. These three quantities correspond to three effects produced by the
twist operator. One effect is pair creation in which the twist, when acting on the vacuum
in the initial state, produces pairs of modes in the final state. This effect is encoded in the
coefficients γmn which are computed in (5.25). Another effect, which arises by applying the
twist operator to a single mode in the initial state, is propagation. This effect is encoded in
the functions fi[−n,−p] which are computed in (5.45). The third effect produced by the
twist is the contraction of two modes in the initial state. This process is encoded in the
functions Cij [n1, n2]. These expressions were computed in (5.64). Each of these quantities
agrees with the results from the covering map method in appendix A. Using the Bogoliubov
ansatz along with conformal symmetry we have derived a new method for computing effects
of the twist operator in orbifold CFTs.

Our results also answer an important question about the nature of the effect of a twist
operator. From the general idea of the covering map, we know that the twist operator
generates a Bogoliubov transformation. This raises the following question: if we know that
the effect of a twist is a Bogoliubov transformation what else do we need to completely
determine the coefficients in this transformation? From the covering map method, it seems
that the answer is the covering map. The covering map is essential to determine the effect
of a twist operator. However, our results show that with conformal symmetry we do not
need other input to determine its effect. The nature of the effect of a twist operator is
captured by the form of the Bogoliubov transformation and conformal symmetry.

In the study of the perturbative D1D5 CFT, twist operators and their effects carry a
wide variety of applications since a class of marginal deformations of the theory contain
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twist operators [26–44]. The D1D5 CFT is realized by four free bosons and four free
fermions. Our results, which are for one boson, can be simply generalized to four bosons
where each boson has its own propagation, contraction and pair creation. These effects for
each of the four bosons of the D1D5 CFT are the same as those of one free boson computed
in this paper, thus yielding the same expressions for the three relevant quantities. The
generalization to free fermions is straight forward but will contain some additional features.
We will present these results in a future work. Furthermore, to compute higher order effects
in the D1D5 CFT, which is relevant for holography, it is necessary to compute higher order
twist correlation functions [45–49]. In the covering map method, these computations become
more challenging due to the growing complexity of the covering maps themselves. The
method developed in this paper provides tools to possibly compute these higher order effects.
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A Covering space method

In this appendix we review the covering space method which is traditionally used to compute
the effect of a twist operator. We will compute the coefficients of the three rules in section 3.
In [14, 15], these coefficients are computed for the D1D5 CFT with N = 4 superconformal
symmetry, which is realized by four free bosons and four free fermions. In this appendix,
we will focus on the theory of one free boson. The results are similar to the boson in the
supersymmetric case with some normalization differences.

A.1 Mode definitions

Let us first define the bosonic modes on the z-plane as in section 2. Imagine we place the
twist operator at a point z0. Before the twist which corresponds to the point, |z| < |z0|, we
have two singly wound copies. They are defined as follows

α(i)
m = 1

2π

∮
C0
dzzm∂X(i)(z), i = 1, 2 (A.1)

Here m is an integer. The commutation relations before the twist is given by

[α(i)
m , α

(j)
n ] = mδijδm+n,0 (A.2)

After the twist where |z| > |z0|, we have a doubly wound copy and the modes are defined
as follows

αm = 1
2π

∮
C

(4π)
0

dzzm∂X(z) (A.3)

Here m can be integer or half integer since these are modes defined on a doubly wound
copy (we will indeed show that only half integer modes are nontrivially affected by the twist
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operator). The commutation relation after the twist is given by

[αm, αn] = 2mδm+n,0 (A.4)

where the factor of two comes from the fact that the theory is defined on a doubly wound
copy. Next we discuss the covering map.

A.2 Covering map

In order to compute these quantities we use the covering space method. In the z-plane, the
effect of the twist introduces a branch cut. To resolve this branch cut, one can pass to the
covering space t defined as

z = z0 + t2 (A.5)
where

z0 = a2 (A.6)
For |z| > |z0| we have a doubly wound copy. In the t-plane, |z| → ∞ corresponds to t→∞.
In the z-plane we have two single copies in the initial state located at the origin, z = 0.
The location of these states gets mapped to two different points in the t-plane. In our
convention, they are

Copy 1 : t = ia, Copy 2 : t = −ia (A.7)
One can also use the other convention where the copy labels are interchanged. The location
of the twist operator is at z0 = a2. It maps to the location t = 0 in the t-plane. Here the
covering map is of order 2 and is therefore the location where one crosses from one branch
to the other. Now that we have analyzed the covering map let us compute the various
ansatz quantities by mapping them to the t-plane. In the following sections we will compute
the quantities, γ, fi, Cij , which determine the twisted state in the theory of one free boson.

A.3 Pair creation

In this subsection we compute the Bogoliubov coefficient γ by using the covering map (A.5).
We start with the state (3.6). Let us first compute the amplitude

〈02|αmαnσ2(z0)|0〉(1)|0〉(2) = 〈02|αmαn|χ〉 (A.8)

Using the expression (3.6) we obtain the following

γmn = 1
8mn〈0

2|αmαnσ2(z0)|0〉(1)|0〉(2) (A.9)

In order to remove the twist we map our result to the t-plane. This gives the relation

γmn = 1
8mn t〈0|α′mα′n|0〉t (A.10)

The primes denote modes which have been mapped to the t-plane and the subscript t
denotes t-plane states. The state |0〉t is the vacuum at the origin and the conjugate state
t〈0| is the vacuum at t = ∞. We see that the insertion of the twist is removed since it’s
action is encoded in the covering map. The problem is then simplified to computing a wick
contraction between terms within the t-plane. To do so we must define modes which are
natural to the t-plane. For γmn we will only need modes defined after the twist but for the
other coefficients we’ll need modes before the twist. We therefore record both types below.
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Modes before the twist. Modes natural to the t-plane which correspond to initial states
are given by

Copy 1: α̃t→iam = 1
2π

∮
Cia

dt(t− ia)m∂X(t)

Copy 2: α̃t→−iam = 1
2π

∮
C−ia

dt(t+ ia)m∂X(t) (A.11)

Here m is an integer. We have the commutation relations

[α̃t→iam , α̃t→ian ] = mδm+n,0

[α̃t→−iam , α̃t→−ian ] = mδm+n,0 (A.12)

Modes after the twist. Modes natural to the t-plane corresponding to the image of the
location of final states in the z-plane are given by

α̃t→∞m = 1
2π

∮
C∞

dt tm∂X(t) (A.13)

Here m is an integer. Also we have the commutation relation

[α̃t→∞m , α̃t→∞n ] = mδm+n,0 (A.14)

Modes defined after the twist in the z-plane map to

αm → α′m = 1
2π

∮
C∞

dt(z0 + t2)m∂X(t) (A.15)

Let’s expand this mode around t =∞. The integrand is

(z0 + t2)m = t2m(1 + z0t
−2)m =

∑
k≥0

mCk z
k
0 t

2m−2k (A.16)

Inserting this expansion into (A.15) and using (A.13) gives

α′m =
∑
k≥0

mCk z
k
0 α̃

t→∞
2m−2k (A.17)

Inserting this into (A.10) gives

γmn = 1
8mn

∑
k,k′≥0

mCk
nCk′z

k+k′
0 [α̃t→∞2m−2k, α̃

t→∞
2n−2k′ ] (A.18)

In order to have a nonzero contraction we require

m > k and n < k′ (A.19)

Using commutation relation (A.14) gives

γmn = 1
4mn

dm−1e∑
k=0

(m− k)mCk nCm+n−k z
m+n
0 (A.20)
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For m,n ∈ Z, γmn is zero. For the case where m,n are half-integers we take

m = m′ + 1/2
n = n′ + 1/2 (A.21)

and we obtain

γm′+1/2,n′+1/2 =
zm
′+n′+1

0 Γ(3
2 +m′)Γ(3

2 + n′)
(2m′ + 1)(2n′ + 1)(1 +m′ + n′)πΓ(1 +m′)Γ(1 + n′) (A.22)

where m′, n′ ∈ Z+.

A.4 Propagation

In this subsection we compute fi[−n,−p] which describes the propagation of a mode through
the twist operator where i = 1, 2 is the copy label of the initial mode. Let us start with
the state

σ2(z0)α(i)
−n|0〉(1)|0〉(2) =

∑
p>0

fi[−n,−p]α−p|χ〉 (A.23)

The propagation fi can be computed from

fi[−n,−p] = 1
2p〈0

2|αpσ2(z0)α(i)
−n|0〉(1)|0〉(2) (A.24)

where we have used the commutation relation (A.4).
Again, mapping to the t-plane gives

fi[−n,−p] = 1
2p t〈0|α

′
pα
′(i)
−n|0〉t (A.25)

In order to compute the Wick contraction we will first expand the mode α′(i)−n around it’s
t-plane image corresponding to a mode in the initial state. We will then expand these
modes at t =∞ enabling us to perform the Wick contraction with the mode in the final
state. We first write the mode α′(1)

−n which maps to the image t = ia

α
′(1)
−n = 1

2π

∮
Cia

dt(a2 + t2)−n∂X(t) (A.26)

We expand the integrand around t = ia as follows

(a2 + t2)−n = (t− ia)−n(2ia+ t− ia)−n

=
∑
k≥0

−nCk (2ia)−(n+k)(t− ia)k−n (A.27)

Inserting this expansion into (A.26) and using the definition in (A.11) gives

α
′(1)
−n =

∑
k≥0

−nCk (2ia)−(n+k)α̃t→iak−n (A.28)
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We note that for copy 2 we simply take a→ −a which gives the expansion

α
′(2)
−n =

∑
k≥0

−nCk(−2ia)−(n+k)α̃t→−iak−n (A.29)

If there is no other operator which maps to the inside of the contour, the requirement to
obtain a nonzero result imposed by acting αt→iak−n on the vacuum defined at t = ia,

αt→iak−n |0〉 6= 0 (A.30)

is that
k − n < 0 =⇒ k < n (A.31)

This gives

α
′(1)
−n =

n−1∑
k=0

−nCk (2ia)−(n+k)α̃t→iak−n (A.32)

and similarly for copy 2

α
′(2)
−n =

n−1∑
k=0

−nCk (−2ia)−(n+k)α̃t→−iak−n (A.33)

These modes obey the commutation relations (A.12). Next we expand the mode sitting at
t = ia to t =∞. To do so we first write the mode on the r.h.s. of (A.32)

α̃t→iak−n = 1
2π

∮
Cia

dt(t− ia)k−n∂X(t) (A.34)

Let’s expand the integrand at t =∞

(t− ia)k−n = tk−n(1− iat−1)k−n

=
∑
k′≥0

k−nCk′(−ia)k′tk−n−k′ (A.35)

Inserting (A.35) into (A.34) and using (A.13) yields

α̃t→iak−n =
∑
k′≥0

k−nCk′(−ia)k′α̃t→∞k−n−k′ (A.36)

Inserting this into (A.32) gives

α
′(1)
−n =

n−1∑
k=0

∑
k′≥0

−nCk
k−nCk′ (2ia)−(n+k)(−ia)k′α̃t→∞k−n−k′ (A.37)

Again, if there is no other operator which maps to the inside of the contour, to obtain a
nonzero result we require that

α̃t→∞k−n−k′ |0〉t 6= 0 (A.38)

which implies that
q = k − n− k′ < 0 =⇒ k′ = k − n− q (A.39)
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Since k′ ≥ 0 we find that
k − n− q ≥ 0 =⇒ k ≥ n+ q (A.40)

For the sum over k we have the following ranges

n+ q ≤ 0 : 0 ≤ k ≤ n− 1
n+ q ≥ 0 : n+ q ≤ k ≤ n− 1 (A.41)

The mode in (A.37) can thus be written as

α
′(1)
−n =

∑
q≤−1

 n−1∑
k=max[0,n+q]

−nCk
k−nCk−n−q(2ia)−(n+k)(−ia)k−n−q

 α̃t→∞q (A.42)

Performing the sum in parenthesis gives

α
′(1)
−n =

∑
q≤−1

(−1)ni−qa−2n−qΓ(− q
2)

2Γ(n)Γ(1− (n+ q
2)) α̃t→∞q (A.43)

Inserting (A.17) and (A.43) into (A.25) for copy 1 gives

f1[−n,−p] = 1
2p t〈0|α

′
pα
′(1)
−n |0〉t

= 1
2p

∑
q≤−1

(−1)ni−qa−2n−qΓ(− q
2)

2Γ(n)Γ(1− (n+ q
2))

∑
j≥0

pCjz
j
0
[
α̃t→∞2p−2j , α̃

t→∞
q

]
= 1

2p
∑
q≤−1

(−1)ni−qa−2n−qΓ(− q
2)

2Γ(n)Γ(1− (n+ q
2))

∑
j≥0

pCjz
j
0(2p− 2j)δ2p−2j+q,0 (A.44)

The delta function constraint gives

0 = 2p− 2j + q =⇒ j = p+ q

2
j ≥ 0 =⇒ p+ q

2 ≥ 0 =⇒ q ≥ −2p (A.45)

Making these substitutions give

f1[−n,−p] = a2p−2n

2p

−1∑
q=−2p

(−1)ni−qΓ(− q
2)(− q

2)
Γ(n)Γ(1− (n+ q

2))
pCp+ q

2
(A.46)

Since the index j must be an integer (A.45) indicates that if p is an integer then q is required
to be an even integer and if p is half integer then q is required to be an odd integer. We
first consider the case where p is an integer and q is an even integer.

p = p′, q = 2q′, p′, q′ ∈ Z (A.47)

Our result becomes

f1[−n,−p′] = a2p′−2n

2p′
−1∑

q′=−p′

(−1)ni−2q′Γ(−q′ + 1)
Γ(n)Γ(1− (n+ q′))

p′Cp′+q′ = 1
2δn,p

′ (A.48)
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Now consider when p is half integer which also requires q to be odd

p = p′ − 1
2 , q = 2q′ + 1 (A.49)

Inserting this into the above and simplifying gives

f1

[
−n,−p′ + 1

2

]
= −ia2p′−2n−1

−1∑
q′=−p′

(−1)n+q′Γ(−1
2 + p′)

2Γ(n)Γ(1
2 − (n+ q′))Γ(1 + q′ + p′)

=
ia2p′−2n−1Γ(1

2 + n)Γ(−1
2 + p′)

π(−1− 2n+ 2p′)Γ(n)Γ(p′) (A.50)

which is

f1[−n,−p] =
ia2p−2nΓ(1

2 + n)Γ(p)
π(2p− 2n)Γ(n)Γ(p+ 1

2)
(A.51)

For copy 2 we simply take a→ −a. For integer p the result is the same as (A.48)

f2[−n,−p] = 1
2δn,p (A.52)

for half integer p the result changes by a minus sign

f2[−n,−p] = −
ia2p−2nΓ(1

2 + n)Γ(p)
π(2p− 2n)Γ(n)Γ(p+ 1

2)
(A.53)

A.5 Contraction

Here we compute the contraction terms Cij using the covering map. We start with two
modes on copy 1 in the initial state and compute the following amplitude

C11[n1, n2] = 〈02|σ2(z0)α(1)
−n1α

(1)
−n2 |0〉

(1)|0〉(2) (A.54)

Mapping to the t-plane using (A.5) gives

C11[n1, n2] = t〈0|α′(1)
−n1α

′(1)
−n2 |0〉t (A.55)

where the primed modes are defined in (A.32) and (A.33). The contour of the mode labeled
by n1 is mapped to the outside of the contour of the mode labeled by n2. To obtain a
contraction, the inside contour should give negative modes and the outside contour should
give positive modes. Our expression becomes

C11[n1, n2] =
∑
j>n1

n2−1∑
k=0

−n1Cj
−n2Ck(2ia)−(n1+j)(2ia)−(n2+k)

t〈0|α̃t→iaj−n1 α̃
t→ia
k−n2 |0〉t (A.56)

Using commutation relations (A.12) we find that

C11[n1, n2] = −
n2−1∑
k=0

−n1Cn1+n2−k
−n2Ck(2ia)−(2n1+n2−k)(2ia)−(n2+k)(k − n2) (A.57)
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Performing the sum gives

C11[n1, n2] = a−2(n1+n2)

2(n1 + n2)π
Γ(1

2 + n1)Γ(1
2 + n2)

Γ(n1)Γ(n2) (A.58)

Notice that this expression is symmetric between n1 and n2. By switching a→ −a, we find

C22[n1, n2] = C11[n1, n2] (A.59)

Let’s compute the contraction C12. We start with

C12[n1,n2] = t〈0|α′(1)
−n1α

′(2)
−n2 |0〉t

=
n1−1∑
j=0

n2−1∑
k=0

−n1Cj
−n2Ck(2ia)−(n1+j)(2ia)−(n2+k)

t〈0|α̃t→iaj−n1 α̃
t→−ia
k−n2

|0〉t (A.60)

On the t-plane, the contour of copy 1 is located at t = ia and the contour of copy 2 is
located at t = −ia. Both contours should be left with negative modes. To compute the
expectation value, we expand the contour of the mode located at t = ia around the point
t = −ia. To do this we start with a mode defined at t = ia

α̃t→iam = 1
2π

∮
Cia

dt(t− ia)m∂X(t) (A.61)

We expand the integrand in the following way

(t− ia)m = (−2ia+ t+ ia)m =
∑
p≥0

mCp(−2ia)m−p(t+ ia)p (A.62)

Inserting this into (A.61) gives

α̃t→iam = (−1)
∑
p≥0

mCp(−2ia)m−pα̃t→−iap (A.63)

where we have used the modes defined around t = −ia in (A.11). Using commutation
relations (A.12), the expectation value of a mode at t = ia and a mode at t = −ia becomes

t〈0|α̃t→iam α̃t→−ian |0〉t = (−1)
∑
p≥0

mCp(−2ia)m−ppδp+n,0 = mC−n(−2ia)m+nn (A.64)

Using this expression in (A.60) gives

C12[n1, n2] = (2a)−2(n1+n2)
n1−1∑
j=0

n2−1∑
k=0

−n1Cj
−n2Ck

j−n1Cn2−k(−1)j+k(k − n2) (A.65)

Performing the sums give

C12[n1, n2] = − a−2(n1+n2)

2(n1 + n2)π
Γ(1

2 + n1)Γ(1
2 + n2)

Γ(n1)Γ(n2) (A.66)

Notice that this expression is symmetric between n1 and n2. By switching a→ −a, we find

C12[n1, n2] = C21[n1, n2] (A.67)

Therefore, all the contractions can be written as

Cij [n1, n2] = (−1)i+j a
−2(n1+n2)

2(n1 + n2)π
Γ(1

2 + n1)Γ(1
2 + n2)

Γ(n1)Γ(n2) (A.68)

where i, j = 1, 2 are copy labels.
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B Propagation: higher modes

In this appendix we will derive the propagation fi[−n,−p] with n > 1 from fi[−1,−p] by
applying L−1 repeatedly. For copy 1 we begin with following expression

σ2(z0)α(1)
−n|0〉(1)|0〉(2) = 1

Γ(n)σ2(z0)(L−1)n−1α
(1)
−1|0〉(1)|0〉(2) (B.1)

Using relation (5.9) we obtain

σ2(z0)α(1)
−n|0〉(1)|0〉(2) = 1

Γ(n)(L−1 − ∂)n−1σ2(z0)α(1)
−1|0〉(1)|0〉(2) (B.2)

Using (3.9) we pass the bosonic mode through the twist on both sides and only keep the
terms with a single mode. This gives∑

p>0
f1[−n,−p]α−p|02〉 = 1

Γ(n)(L−1 − ∂)n−1 ∑
p′>0

f1[−1,−p′]α−p′ |02〉 (B.3)

Let’s compute the r.h.s. We look at the term

(L−1 − ∂)n−1f1[−1,−p′]α−p′ =
∑
k≥0

(L−1)kα−p′n−1Ck(−1)n−k−1∂ n−k−1f1[−1,−p′] (B.4)

We only keep terms where L−1 acts on α−p′ since this leaves us with just one mode. Only
keeping terms which will leave us with one mode and using the expression in (5.42) and (5.44)
we have

(L−1 − ∂)n−1f1[−1,−p′]α−p′

= f1[−1,−p′]z0=1

n−1∑
k=0

(L−1)kα−p′ n−1Ck(−1)n−k−1∂ n−k−1zp
′−1

0

= f1[−1,−p′]z0=1

n−1∑
k=0

Γ(p′ + k)
Γ(p′)

n−1Ck(−1)n−k−1 Γ(p′)
Γ(p′ − (n− k − 1))z

p′+k−n
0 α−(p′+k) + . . .

=
n−1∑
k=0

f1[−1,−p′]z0=1
Γ(p′ + k)

Γ(p′ − (n− k − 1))
n−1Ck(−1)n−k−1zp

′+k−n
0 α−(p′+k) + . . . (B.5)

Inserting this expression back into (B.3) we find

∑
p>0

f1[−n,−p]α−p|02〉 = 1
Γ(n)

n−1∑
k=0

∑
p′>0

f1[−1,−p′]z0=1
Γ(p′ + k)

Γ(p′ − (n− k − 1))
n−1Ck(−1)n−k−1

× zp
′+k−n

0 α−(p′+k)|02〉+ . . . (B.6)

In order to compare the terms on the left and right hand sides we take p′ + k = p which
allows us to compare the following terms

f1[−n,−p] = Czp−n0
Γ(p)

Γ(n)Γ(p− (n− 1))

n−1∑
k=0

Γ(p− k − 1)
Γ(p− k + 1/2)

n−1Ck(−1)n−k−1

= Czp−n0 2(−1)n
√
π

csc(πp)Γ(p)Γ(1
2 + n)

Γ(n)Γ(1− n+ p)Γ(1 + n− p)Γ(1
2 + p)

(B.7)

– 24 –



J
H
E
P
0
2
(
2
0
2
3
)
1
8
4

Since p is a half integer, using the expression for C, (5.61), we obtain

f1[−n,−p] =
izp−n0 Γ(p)Γ(1

2 + n)
π(2p− 2n)Γ(p+ 1

2)Γ(n)
(B.8)

where n is an integer and p is a half integer. To obtain f2[−n,−p] for an excitation on copy
2, we change the location of the twist by z0 → z0e

2πi. It interchanges copy 1 and copy 2.
Since p− n is a half integer, we have zp−1

0 → −zp−1
0 , which gives

f2[−n,−p] = −f1[−n,−p] (B.9)

Notice that if we take z0 = a2 this result agrees with the result from the covering map
method (A.51) and (A.53).

C Contraction: higher modes

Here we derive Cij [n1, n2]. We do this by looking at the following relation

σ2(z0)α(i)
−n1α

(j)
−n2 |0〉

(1)|0〉(2) = 1
Γ(n2)σ2(z0)α(i)

−n1(L−1)n2−1α
(j)
−1|0〉(1)|0〉(2) (C.1)

To compute the r.h.s., notice that

α
(i)
−n1L−1 = (L−1 − L−1◦)α(i)

−n1 (C.2)

where
L−1 ◦O−n = [L−1, O−n] (C.3)

Thus, we have

α
(i)
−n1L

n2−1
−1 = (L−1 − L−1◦)n2−1α

(i)
−n1

=
n2−1∑
k=0

n2−1Ck(−1)n2−1−k(L−1)k(L−1◦)n2−1−kα
(i)
−n1 (C.4)

where we have used the fact that L−1 ◦ L−1 = 0. Therefore, we obtain

σ2(z0)α(i)
−n1α

(j)
−n2 |0〉

(1)|0〉(2) = 1
Γ(n2)

n2−1∑
k=0

n2−1Ck
Γ(n1 + n2 − 1− k)

Γ(n1) (−1)n2−1−k

× σ2(z0)(L−1)kα(i)
−(n1+n2−1−k)α

(j)
−1|0〉(1)|0〉(2) (C.5)

Using the relation (5.9) we have

σ2(z0)α(i)
−n1α

(j)
−n2 |0〉

(1)|0〉(2) = 1
Γ(n1)Γ(n2)

n2−1∑
k=0

n2−1CkΓ(n1 + n2 − 1− k)(−1)n2−1−k

× (L−1 − ∂)kσ2(z0)α(i)
−(n1+n2−1−k)α

(j)
−1|0〉(1)|0〉(2) (C.6)
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Keeping the terms which contain no modes on both the l.h.s. and r.h.s. we find

Cij [n1, n2] = 1
Γ(n1)Γ(n2)

n2−1∑
k=0

n2−1CkΓ(n1 + n2 − 1− k)(−1)n2−1−k

× (−∂)kCij [n1 + n2 − 1− k, 1] (C.7)

Notice that Cij [1, n] = Cji[n, 1] since the contraction is between two bosonic modes whose
order can be changed. Using the expression in (5.63) we find that (C.7) becomes

Cij [n1, n2] = (−1)i+j(−1)n2−1

4
√
πΓ(n1)Γ(n2)

n2−1∑
k=0

n2−1Ck
Γ(−1

2 + n1 + n2 − k)
(n1 + n2 − k) ∂kz

−(n1+n2−k)
0 (C.8)

which gives

Cij [n1, n2] = (−1)i+j z
−(n1+n2)
0

2(n1 + n2)π
Γ(1

2 + n1)Γ(1
2 + n2)

Γ(n1)Γ(n2) (C.9)

where i, j = 1, 2 are copy labels.
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