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1 Introduction

Topology change is an interesting and characteristic feature of string theory which has been
studied for some time [1–3], mostly in the context of string compactifications on Calabi-
Yau (CY) threefolds. There are two main types of topology changing transitions for CY
threefolds: a milder form known as flop transitions and a more severe form, the conifold
transitions. In the paper, we will be interested in the former.

Flop transitions of CY threefolds X are known to leave the Hodge numbers h :=
h1,1(X) and h2,1(X) unchanged but they can change more refined topological invariants,
such as the intersection form and the second Chern class of the tangent bundle. Recently,
it has been noted [4, 5] that topology-preserving flop transition X → X ′ between two
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isomorphic CY threefolds X and X ′ are by no means rare. Such isomorphic flops, as we
will call them, and their implications are the main topic of this paper.

Suppose an isomorphic flop arises at a boundary facet of the Kähler cone K of X.
Then, there is an involution, which, relative to a suitable basis (Di) of divisor classes, can be
described by an h×hmatrix M̃ (satisfying M̃2 = 1h×h). If two divisorsD = kiDi andD′ =
k′iDi are related by this involution, that is, k′ = M̃k, then it turns out that their associated
linear systems have the same dimension [6], so h0(OX(D)) = h0(OX(D′)). Isomorphic
flops can arise across more than one facet of the Kähler cone boundary. In this case,
we have multiple involutions and corresponding matrices M̃1, . . . ,M̃k with M̃2

1 = · · · =
M̃2

k = 1h×h, generating groups G̃. Such groups generated by reflections were introduced
by Coxeter [7] and further studied by Tits and Vinberg [8]. Especially the latter studies
reflections along the walls of polyhedral cones, and shows that these correspond to Coxeter
groups. This structure gives rise to infinite sequences of isomorphic flops generated by
repeatedly reflecting the Kähler cone along a flop wall and its reflection images under M̃i.
The union Kext = ∪αKα of their Kähler cones is referred to as the extended Kähler cone and
is mirror-dual to the complex structure moduli space of the mirror of X [2]. It turns out, the
zeroth cohomology of line bundles on X is invariant under the entire group G̃ and this fact
can be immensely helpful for deriving formulae for cohomology [6]. In the context of infinite
flop chains acting on divisors, the authors of [9] recently studied Euclidean D3 branes and
noted that theta functions also appear in the non-perturbative superpotential of Type IIB.

In the present paper we are interested in the implications of this symmetry for
Gopakumar-Vafa (GV) invariants [10, 11] and the instanton prepotential for Kähler mod-
uli. To this end, we introduce a (dual) basis (Ci) of curve classes and represent arbitrary
classes C by h-dimensional integer vectors d such that C = diC

i. Their GV invariants are
denoted by nd. On these curve classes, the involutions act via the matricesMa = M̃T

a and
the entire group via the dual G of G̃, generated by the matricesMa. Our main observation
is that classes d which do not flop at any of the facets of the (possibly infinite sequence of)
CYs Xα, the GV invariants are unchanged under the action of G, so nd = ngd for all g ∈ G.
This implies that a part of the instanton prepotential for the Kähler moduli (specifically,
the part associated to non-flopping curve classes) is G̃-invariant and can be expressed in
terms of G̃-invariant functions

ψGd (T ) =
∑
g∈G

e2πi(gd)·T =
∑
g̃∈G̃

e2πid·(g̃T ) ⇒ ψGd (g̃T ) = ψGd (T ) ∀ g̃ ∈ G̃ , (1.1)

where T = χ + it are the complexifications of the Kähler parameters ti. As far as we are
aware, these functions, invariant under certain representations of Coxeter groups, have not
been introduced and studied in this context. We will show that, for certain special cases,
depending on the underlying CY manifold X, they can be expressed in terms of Jacobi
theta functions whose appearance can be traced to an elliptic fibration structure of X. For
explicit examples, we will work with complete intersection CYs in products of projective
spaces (CICYs) [12].

Note added. On the day we submitted our paper to arxiv, a revised version of [13]
appeared on the arxiv, which included a discussion of Coxeter groups in the context of the
Hulek-Verrill manifold [14].
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The plan of the paper is as follows. In section 2, we start with a simple warm-up
example, a CY manifold with h1,1(X) = 2 and only a single flop boundary, leading to a
finite symmetry G̃ = 〈M̃1〉 ∼= Z2. The insight from this example is used in section 3 to
study CY manifolds with h1,1(X) = 2 and two flop boundaries, with the associated groups
G̃ = 〈M̃1, M̃2〉 isomorphic to universal Coxeter groups with two generators. In section 4
we generalize the discussion to manifolds with h1,1(X) > 2 but still with two isomorphic
flop boundaries and group G̃ = 〈M̃1, M̃2〉. As we will show, this case exhibits new features,
compared to the h1,1(X) = 2 case, and, in particular, we find that the G̃ invariant functions
ψGd can sometimes be expressed in terms of Jacobi theta functions. The general case with
arbitrary h1,1(X) and arbitrary number of flop boundaries, and its relation to Coxeter
groups, is discussed in section 5. We present our conclusions in section 6. Appendix A
contains details about the relation of CYs with infinitely many flops, the occurrence of
Jacobi theta functions in the prepotential, and the presence of elliptic fibrations.

2 A simple warm-up example

We are mostly interested in cases where the group G is of infinite order. However, there are
two complications, related to the structure of G, in analyzing such cases. First, it is diffi-
cult to express elements of Coxeter groups with more than two generators in a sufficiently
systematic way in terms of the generators, which we rely on to facilitate computations such
as working out the sums in (1.1). Secondly, even for Coxeter groups with only two gener-
ators, where writing group elements in terms of generators is relatively simple, the actual
matrices in G become complicated. For this reason, we start our discussion with the simple
single-flop case where G ∼= Z2, thereby cutting out the above-mentioned complications, and
leaving us to focus on other issues, such as the relevant cone structures and properties of GV
invariants. Cases with infinite order groups G will be discussed in the subsequent sections.

2.1 Single-flop cases with Picard rank two

Consider a CY manifold X with h := h1,1(X) = 2, a basis (D1, D2) of divisor classes
generating the Kähler cone, corresponding Kähler parameters t = (t1, t2) and Kähler forms
JX = tiDi, where ti ≥ 0. So, relative to our chosen divisor basis, the Kähler cone is
then the positive quadrant, K = {t1e1 + t2e2 | ti ≥ 0} (where ei denote the standard unit
vectors). We assume that {t2 = 0} is a boundary of the effective cone1 while {t1 = 0} is a
boundary with an isomorphic flop. Such a structure can be easily detected from the triple
intersection numbers λijk = Di ·Dj ·Dk by introducing the quantities

m1 = 2λ122
λ222

, m2 = 2λ112
λ111

. (2.1)

An isomorphic flop at {t1 = 0} occurs (for generic complex structure choice) if m1 is finite
and integral, and {t2 = 0} ends the effective cone if m2 does not satisfy these requirements.
In this case, passing through t1 = 0 leads to an isomorphic CY X ′ and an involution,

1The discussion would not change if it was just the boundary of the extended Kähler cone.
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G̃ = 〈M̃1〉 ∼= Z2 generated by

M̃1 =

−1 0
m1 1

 . (2.2)

We reserve the symbol M for the 2× 2 reflection matrix and later, when h1,1(X) > 2, use
the symbolM for higher-dimensional matrices.

The Kähler cone K′ = R+(ṽ1, ṽ2) of X ′ is generated by

ṽ1 = M̃1e1 =

−1
m1

 , ṽ2 = M̃1e2 = e2 , (2.3)

and the two Kähler cones are exchanged by the involution, K′ = M̃1K. In particular, since
the boundary along e1 is mapped into the one along v1 the latter just as the former must
be a boundary of the effective cone, so that Keff = K ∪ K′ = {teff1 ṽ1 + teff2 e2 | teff

i ≥ 0}.
Homology classes C = d1C

1 +d2C
2 are labeled by integer vectors d = (d1, d2), relative

to a dual basis (Ci), so Ci · Dj = δij , and their GV invariants are denoted by nd. Curve
classes are acted on by the dual group G = 〈M1〉 ∼= Z2, with generator

M1 = M̃T
1 =

−1 m1

0 1

 , (2.4)

and the dual (Mori) cones2

M= {c1e1 +c2e2 |ci≥ 0} , M′= {c′1v1 +c′2v2 |c′i≥ 0} , v1 =

m1

1

 , v2 =−e1

(2.5)
are exchanged by the action of M1. We call their intersection Mrestr = M ∩ M′ =
{crestr1 v1 + crestr2 e2 | crestr

i ≥ 0} the restricted cone.
To discuss what happens to GV invariants under the action of G, we should distinguish

between flopping and non-flopping curve classes.
Non-flopping curve classes are those for which all curves retain a finite volume under a

flop transition, that is, all curve classes that are not in the codimension 1 facet of the Mori
cone dual to the flop wall of the Kähler cone. These must have G-invariant GV invariants,
ngd = nd for all g ∈ G, since the number of curves in such a class is not affected by the
flop. Non-flopping classes split into two groups, namely those in the restricted coneMrestr
and those outside. Under the action of G, non-flopping classes in d ∈ M \ Mrestr are
mapped outside the Mori cone of X and consequently their GV invariants must vanish. In
other words, all non-flopping classes with positive GV invariants reside in the (G-invariant)
restricted cone. Within the restricted cone, we can identify a fundamental region of the G-
action,Mf ⊂Mrestr. For the present case, this can be chosen as Kf = {cf1w+cf2e2 | cfi ≥ 0}.
We illustrate this cone structure for the example (to be discussed in more detail in the
following sub-section) in figure 1.

2The Mori cones are denoted by M, M′, etc., while reflections are denoted by M1, M2, etc. Despite
this slight clash of notation, it should hopefully be clear which object is meant in any given context.
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Flopping curve classes are classes with nd > 0 that contain curves shrinking to zero
volume, diti → 0, at the flop locus. In the present case, the flop wall is {t1 = 0}, so they
must be of the form d = (d1, 0). In fact, among those, the only classes which can have non-
zero GV invariants [4] are (1, 0) and (2, 0), so n(d1,0) = 0 for d1 > 2. We collect all flopping
classes in a set B, which in this example is simply B ⊂ {(1, 0), (2, 0)}. The GV invariants
for these flopping classes are not G-invariant: the image of a curve class d with nd 6= 0 is
M1(d1, 0)T = (−d1, 0)T , which is outside the cone of effective curvesM and, hence, its GV
should vanish. Of course, from the point of view of the manifold X ′ with Kähler parameter
t′1 = −t1 the situation is reversed and its GV invariants satisfy n′(d1,0) = 0 for all d1 > 0
and n′(−d1,0) > 0 for d1 ∈ {1, 2}.

Now we have enough information to discuss the implications of the symmetry G for
the instanton prepotential [15]

Finst =
∑
d

nd Li3(e2πid·T ) . (2.6)

Splitting the sum into flopping and non-flopping classes and introducing G-orbits for the
latter we have

Finst =

∑
d∈B

nd +
∑

d∈Mrestr

nd

 Li3(e2πid·T ) =
∑
d∈B

nd Li3(e2πid·T ) +
∑
d∈Mf

ndΨG
d (T ) (2.7)

where we have introduced the G-invariant functions

ΨG
d (T ) =

∑
g∈G

Li3(e2πi(gd)·T ) = Li3(e2πid·T ) + Li3(e2πi(M1d)·T ) . (2.8)

While the first term in eq. (2.7) for the flopping classes is not invariant3 under the action
of G̃ on T , the second term for the non-flopping classes is, thanks to the functions Ψd

satisfying
ΨG
d (g̃T ) = ΨG

d (T ) for all g̃ ∈ G̃ . (2.9)

Of course, the present situation with a finite group G̃ ∼= Z2 is relatively simple and the
resulting constraints on the prepotential rather mild. Things will become significantly
more restrictive (and the functions ΨG

d will become more interesting) for the cases with
symmetries G̃ of infinite order. Before we move on to this we illustrate the single-flop case
with an explicit example.

2.2 Example for a single flop

As an example for the single flop case, we discuss the h1,1(X) = 2 complete intersection
Calabi-Yau manifolds X given as hypersurfaces of degree (2, 4) in the ambient space P1×P3

(CICY 7887 in the list of ref. [12]). Choosing the divisors (D1, D2) as the Poincare duals
of the standard Kähler forms of the ambient projective factors restricted to X, the Kähler
cone relative to this basis is indeed given by the positive quadrant, K = {t1e1+t2e2 | ti ≥ 0}.

3This part can be made G-invariant by extending Finst to the entire effective cone which amounts to
replacing the first sum in eq. (2.7) by

∑
d∈B nd

(
θ(t1)Li3(e2πid·T ) + θ(−t1)Li3(e2πi(M1d)·T ).
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Figure 1. Kähler and Mori cone for CICY 7887. Left: Kähler cones K (blue) and K′ (orange). The
extended cone is Kext = K∪K′. Center : the (dual) Mori conesM of K (blue and green) andM′ of
K′ (orange and green). Note that the cones overlap in the restricted coneMrestr =M∩M′ (green).
Right: similar to the center figure, but we have included the GV invariants as dots. Green dots
indicate non-zero GV invariants, red dots indicate zero GV invariants, and yellow dots indicate
(non-zero) GV invariants in curve classes that are flopped. A choice for the fundamental cone
Mf ⊂Mrestr is the hatched region between the two purple lines.

The non-zero intersection numbers λijk = Di ·Dj ·Dk are λ122 = 4 and λ222 = 2. Inserting
these numbers into eqs. (2.1) gives m1 = 4 while m2 6∈ Z, which indicates we have indeed
a flop boundary at {t1 = 0} while {t2 = 0} is a boundary of the effective cone. As a
consequence, we have

M1 =

−1 4
0 1

 , G = 〈M1 | M2
1 = 12×2〉 . (2.10)

The resulting Kähler cone structure

K = {t1e1 + t2e2 | ti ≥ 0} , K′ = {t′1ṽ1 + t′2e2 | t′i ≥ 0} , Keff = {teff
1 e1 + teff

2 ṽ1 | teff
i ≥ 0} ,

(2.11)
where ṽ1 = (−1, 4)T , is shown in figure 1 on the left. For the dual cones this means

M = {c1e1 + c2e2 | ci ≥ 0} M′ = {c′1v1 − c′2e1 | c′i ≥ 0}

Mrestr = {crestr
1 v1 + crestr

2 e2 | crestr
i ≥ 0} Mf = {cf1w + cf1e2 | cfi ≥ 0}

, (2.12)

where v1 = (4, 1)T and w = (2, 1)T . The dual cones and the restricted cones are illustrated
in figure 1 in the middle. The structure of GV invariants is indicated in figure 1 on the
right. Flopping classes correspond to yellow dots, so for this example there is only a single
flopping class, B = {(1, 0)}, with GV invariant n(1,0) = 64. Red points indicate classes
with vanishing GV invariants while the GV invariants for the green points, contained in the
restricted cone, can be positive. The green, hatched region is the fundamental region Kf .
Inserting this into eq. (2.7) with ΨG

d defined in eq. (2.8), we get the instanton prepotential

Finst =64Li3
(
e2πiT1

)
+
∑
d∈Kf

ndΨG
d (T )=64Li3

(
e2πiT1

)
+

∑
d∈Kf

nd
∑

g∈{1,M1}
Li3
(
e2πi(gd)·T

) ,
(2.13)

where the summation range Kf is as in eq. (2.12).
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Out of the 36 manifolds with h1,1(X) = 2, defined as complete intersections in product
of projective spaces, there are 20, including the above example, with a single flop, as can
be seen from the appendix A of [5]. There are also 36 Kreuzer-Skarke CY manifolds with
h1,1(X) = 2 and appendix B of [5] shows at least 16 of those are single-flop cases. All of
these manifolds have a prepotential with a structure similar to eq. (2.13).

3 Infinitely many flops for Picard rank two

We now turn to manifolds with h1,1(X) = 2 that admit infinitely many flops. For these
manifolds, there exists an infinite symmetry group G and, correspondingly, the orbits of
homology classes with identical GV invariants are infinite and the definition of the G-
invariant functions ΨG

d will involve an infinite sum.
The basic set-up and conventions are exactly as in section 2.1 but, unlike for the

single-flop case, we now assume that both m1 and m2 in (2.1) are integers. In this case,
the Kähler cone K has two flop boundaries at {t1 = 0} and {t2 = 0} with corresponding
involutions generated by

M̃1 =

−1 0
m1 1

 , M̃2 =

 1 m2

0 −1

 . (3.1)

These matrices do not commute and lead to a group G̃ = 〈M̃1, M̃2〉 as well as its dual
G = 〈M1,M2〉 generated by

M1 = M̃T
1 =

−1 m1

0 1

 , M2 = M̃T
2 =

 1 0
m2 −1

 . (3.2)

The structure of G depends on the values of m1 and m2 or, more precisely, on the product
m1m2. There are three cases which lead to qualitatively different results for G, namely
m1m2 < 4, m1m2 > 4 and the limiting case m1m2 = 4. It turns out only the second case
is realized for CY manifolds with h1,1(X) = 2. In the first case, the effective Kähler cone
would not be convex, while in the last case, it would be rational polyhedral, that is, it would
end with its final wall still containing integral divisors, whose dual curve would, however,
not be floppable. Since these inconsistencies do not necessarily occur for h1,1(X) > 2, it is
nevertheless useful to cover all cases.

3.1 Group structure

To uncover the structure of G, it is convenient to introduce the matrices

S = M1 , Q = M1M2 ⇒ Q−1 = SQS = M2M1 . (3.3)

Then, every group element can be written in the form QkSα, where α ∈ {0, 1} and k ∈ Z.
Clearly, S has order two and generates a sub-group of G isomorphic to Z2. On the other
hand, the order N of Q can be finite or infinite, depending on the value of m1m2, and
the group ZN (with Z∞ = Z) it generates is normal in G. So in conclusion, we have
G ∼= ZN o Z2. It remains to determine the order N and the precise form of the matrices
QkSα and to do this we need to distinguish the three cases mentioned above.

– 7 –
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(m1,m2) order N of Q G ∼=
(1, 1) 3 Z3 oZ2

(1, 2) 4 Z4 oZ2

(1, 3) 6 Z6 oZ2

Table 1. Choices for (m1,m2) with m1m2 < 4 and the resulting group structure.

The case m1m2 < 4. In these cases the order N of Q is finite, so G ∼= ZN o Z2, and
every group element can be written uniquely as QkSα, where k ∈ {0, . . . , N − 1} and
α ∈ {0, 1}. Specifically, we have the three sub-cases listed in table 1. As mentioned, this
case is not realized for CY manifolds with h1,1(X) = 2, but can occur for h1,1(X) > 2. We
will see an example in section 4.3.2.

The case m1m2 > 4. In these cases, the matrix Q has infinite order so that G ∼= ZoZ2
and every element of G can be uniquely written in the form QkSα, where k ∈ Z and
α ∈ {0, 1}. The powers of the matrix Q can be computed explicitly and are given by

Qk =

 a(k) b(k)
c(k) d(k)

 (3.4)

where

a(k) =
k∑
i=0

(−1)k+i

 k + i

2i

 (m1m2)i , d(k) = −a(k − 1) ,

b(k) =
k∑
i=1

(−1)k+i+1

 k + i− 1
k − i

mi
1m

i−1
2 , c(k) = −m2

m1
b(k) ,

(3.5)

and d(0) = 1 by definition. Note that the entries of Qk are power series in mi whose
exponents grow with k.

The case m1m2 = 4. The boundary case m1m2 = 4 is, in a sense, the most interesting
one. The order of Q is still infinite, so G ∼= Z o Z2 and every group element can be
uniquely written as QkSα, where k ∈ Z and α ∈ {0, 1}. However, the matrices Qk behave
very differently compared to the case m1m2 > 4. Their entries, rather than being power
series with exponents growing with k, are linear polynomials in k. Concretely, for the three
possible choices of (m1,m2) we find

(m1,m2) = (2, 2) : Qk =

 2k + 1 −2k
2k 1− 2k


(m1,m2) = (1, 4) : Qk =

 2k + 1 −k
4k 1− 2k


(m1,m2) = (4, 1) : Qk =

 2k + 1 −4k
k 1− 2k

 .

(3.6)
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As mentioned, this case is only realized for h1,1(X) > 2. As we will see later, the simple
form of Qk for m1m2 = 4 and its linear growth with k allows re-writing the G-invariant
functions ΨG

d in terms of Jacobi theta functions.

3.2 Cones

For the remainder of this section, we will focus on the case m1m2 > 4, the only one actually
realized for h1,1(X) = 2. The group G consists of elements QkSα, where k ∈ Z and α ∈
{0, 1}, with the matrices S and Q from eq. (3.3) and it is isomorphic to ZoZ2. In addition
to the “central” Kähler cone K of X we have an infinite number of isomorphic CYs with ad-
jacent Kähler cones Kg̃ = g̃K to either side of K. The union of these forms the effective cone

Keff =
⋃
g̃∈G̃

Kg̃ = {teff1 ṽ1 + teff2 ṽ2 | teff
i > 0} , ṽ1 =

 µ2

−1

 , ṽ2 =

−1
µ1

 , (3.7)

where

µi = mi

2

(
1 +

√
1− 4

m1m2

)
. (3.8)

Note that for the case m1m2 > 4 the closure of this cone is irrational. For a specific
example, the extended cone is shown in figure 2 on the left. The Mori cones dual of the
Kähler cones Kg̃ are denoted by Mg = gM and their intersection, which is the dual of
the effective cone, forms the restricted cone

Mrestr =
⋂
g∈G
Mg = Ǩeff = {crestr1 v1 + crestr2 v2 | ci ≥ 0} , v1 =

 1
µ2

 , v2 =

 µ1

1

 .

(3.9)
An example of a restricted cone is shown in figure 2, in the middle.

In our discussion of the GV invariants we will distinguish again between flopping and
non-flopping classes. The flopping classes B of the original manifold X are contained in
B ⊂ {(1, 0), (2, 0), (0, 1), (0, 2)}, straightforwardly generalizing what we have seen in the
single-flop case. As before, for a flopping class d ∈ B of X, its images gd under the group
G are also flopping classes, but rather for one of the isomorphic manifolds X ′ instead of
X. Hence, for every flopping class d ∈ B of X we have an entire infinite G-orbit of flopping
classes (while, for the single flop case where G ∼= Z2 the orbits only had length two). We
have already seen that GV invariants are not constant along these orbits. Rather, for a
flopping class d ∈ B of X we have

ngd =

 nd for gd ∈M
0 for gd /∈M

. (3.10)

As before, non-flopping classes d outside the restricted cone always have vanishing GV
invariants, nd = 0. The restricted cone is G-invariant and it splits into G-orbits on which
the GV invariants are constant, so ngd = nd for d ∈ Mrestr and all g ∈ G. Within the
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restricted cone we can choose a fundamental region for the G-action as

Mf = {cf1w1 + cf2w2 | cfi ≥ 0} , w1 =

 2
µ2

 , v2 =

 µ1

2

 . (3.11)

For our example, the structure of the various cones and the GV invariants is indicated in
figure 2, on the right.

3.3 The prepotential

Now we have everything in place to write down an expression for the instanton prepotential.
As before, we split the sum into flopping and non-flopping classes, using (3.10) for the
former and G-invariance of the GV invariants for the latter. This leads to

Finst =
∑
d∈B

nd
∑
g∈G
gd∈M

Li3
(
e2πi(gd)·T

)
+
∑
d∈Kf

ndΨG
d (T ) (3.12)

with the G-invariant functions

ΨG
d (T ) =

∑
g∈G

Li3
(
e2πi(dg)·T

)
=
∑
k∈Z

(
Li3

(
e2πi(Qkd)·T

)
+ Li3

(
e2πi(QkSd)·T

))
. (3.13)

The functions (3.13) contain the matrix powers Qk from (3.4) in their exponents and,
hence, these exponents increase with powers of k. Functions that behave in this way are
not modular — the exponents for modular functions depend quadratically on k. To the
best of our knowledge, the functions ΨG

d in eq. (3.13) have not been studied before and
they do not have an established name. It would be interesting to analyze their properties
in more detail.

3.4 Example with infinitely many flops

We would like to illustrate the above structure with a specific example, the complete
intersection CY manifold described by the configuration matrix

X ∈

 P3 2 1 1
P3 2 1 1

2,66

−128

. (3.14)

This is CICY 7863 in the standard list of ref. [12] and it has Hodge numbers (h1,1, h2,1) =
(2, 68). The above configuration matrix indicates that the manifold X is defined as the
common zero locus of three polynomials in P3 × P3 with bi-degrees (2, 2), (1, 1) and (1, 1).
The Kähler cone K (relative to the standard divisor basis (D1, D2) associated to pullbacks
of the hyperplane classes of the ambient space P3 factors) is the positive quadrant and
the non-zero intersection numbers are given by λ111 = λ222 = 2 and λ112 = λ122 = 6.
Equation (2.1) implies that m1 = m2 = 6 and hence both boundaries, {t1 = 0} and
{t2 = 0}, exhibit isomorphic flops, resulting in an infinite flop sequence. The various cones
are shown in figure 2.
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Figure 2. Kähler and Mori cone for CICY 7863. Left: Kähler cone K (blue) of X and the extended
Kähler cone Kext (blue and orange). Center : the (dual) Mori cone M of K (blue and green) and
the union of all Mori conesM′ of K′ (orange, blue, green).The restricted cone isMrestr =M∩M′

(green). Right: we included GV invariants. Green dots indicate non-zero GV invariants, red dots
indicate zero GV invariants, and yellow dots indicate (non-zero) GV invariants in curve classes that
are flopped. A choice for the fundamental cone Mf ⊂ Mrestr is the hatched region between the
two purple lines.

The flopping classes of X are given by B = {(1, 0), (2, 0), (0, 1), (0, 2)} (indicated by
yellow dots in figure 2 on the right) with n(1,0) = n(0,1) = 80 and n(2,0) = n(0,2) = 4. Hence,
the first sum in (3.12) runs over four (partial) G-orbits. For the elements of G we have

Qk =

 δ+αk+−δ−α
k
−

4
√

2
αk−−αk+

4
√

2
αk+−α

k
−

4
√

2
δ+αk−−δ−αk+

4
√

2

 , QkS =

 δ−αk−−δ+αk+
4
√

2
αk+1

+ −αk+1
−

4
√

2
αk−−αk+

4
√

2
δ+αk+−δ−α

k
−

4
√

2

 , (3.15)

where we have defined

α± = 17± 12
√

2 , β± = 4± 3
√

2 , γ± = 24± 17
√

2 , δ± = 3± 2
√

2 . (3.16)

Inserting this into (3.13), we get the G-invariant functions ΨG
d

ΨG
d (T )=

∑
k∈Z

Li3
(
e

1
4 iπ(αk−(d2(β+T2+

√
2T1)−d1(

√
2T2−β−T1))+αk+(d1(β+T1+

√
2T2)−d2(

√
2T1−β−T2)))

)
+
∑
k∈Z

Li3
(
e

1
4 iπ(αk−(d2(β−T2+γ−T1)+d1(

√
2T2−β−T1))+αk+(d2(β+T2+γ+T1)−d1(β+T1+

√
2T2)))

)
(3.17)

As can be seen from appendix A of ref. [5], among the h1,1(X) = 2 CICYs, there are six
manifolds with infinite flop sequences (including the above example) which realize the values

(m1,m2) ∈ {(4, 4), (3, 8), (5, 8), (6, 6), (7, 7)} . (3.18)

They can be analyzed along the same lines as the example above.

4 Manifolds with h1,1(X) > 2 and two symmetry generators

We would now like to generalize our discussion to manifolds with Picard number h =
h1,1(X) > 2. As usual, we introduce a basis (D1, . . . , Dh) of divisor classes generating
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the Kähler cone (assuming, for simplicity, that the Kähler cone is simplicial) and we write
Kähler forms as JX = tiDi, with Kähler parameters ti ≥ 0. The presence of isomorphic
flop boundaries can then be detected from the intersection numbers λijk = Di ·Dj ·Dk as
follows. An isomorphic flop across the Kähler cone boundary {ti = 0} occurs iff there is
an integer vector ui with components uai , a = 1, 2, . . . , h, that satisfies

uii = 2 , uai ≤ 0 for a 6= i , dabcu
a
i = 0 for all b, c 6= i . (4.1)

If such a vector exists then we have an involution acting “across” the boundary {ti = 0}
which is generated by

M̃i = 1h − (~0, . . . ,~0, ui,~0, . . . ,~0) , ⇒ Mi = M̃T
i = 1h −



~0T
...
~0T

ui

~0T
...


(4.2)

where the vector ui in the second h × h matrix appears in the ith row. The symmetry
group G̃ is then generated by all such matrices, G̃ = 〈M̃i〉, while the matricesMi generate
the dual G = 〈Mi〉. It can be shown that matrices of the type (4.2) are indeed reflections,
that is, they satisfy M̃2

i = 1h×h and they have precisely one eigenvector with eigenvalue
−1 and (h− 1) eigenvectors with eigenvalues +1, such that detM̃i = −1. The integers m1
and m2 introduced previously are given by m1 = −u2

1 and m2 = −u1
2.

For a manifold with Picard number h (and a simplicial Kähler cone) we can have at
most h isomorphic flop boundaries and corresponding involutions. They are all isomorphic
to Coxeter groups as we will discuss in section 5. In this section, we will focus on the
case of just two involutions. This can arise either because the manifold in question only
has two isomorphic flop boundaries or, if there are three or more, because we focus on the
Coxeter subgroup generated by just two involutions. It might seem that this situation is
not significantly different from the two generator case for h1,1(X) = 2 we have discussed
in the previous section. However, it turns out interesting new features do arise since all
of the cases for m1m2 listed in section 3.1 can actually be realized for appropriate choices
of manifolds. In particular, there are examples for the interesting limiting case m1m2 = 4
where the elements of G have a particularly simple form, cf. eq. (3.6). As we will see, for
such cases the G-invariant functions ΨG

d can be expressed in terms of Jacobi theta functions.
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4.1 Group structure

We can assume that the two flop boundaries are {t1 = 0} and {t2 = 0}, so that the
corresponding generators can be written as

M1 =

M1 U1

0 1(h−2)×(h−2)

 M2 =

M2 U2

0 1(h−2)×(h−2)


U1 =

 u1

~0T

 U2 =

~0T
u2

 . (4.3)

These (h×h) matricesMi are block matrices consisting of a 2×2 blockMi from eq. (3.2), a
2×(h−2) block Ui, an (h−2)×2 block with the zero-matrix, and a (h−2)×(h−2) identity
matrix. The 1×(h−2)-dimensional row vectors u1 and u2 are defined in terms of the GLSM
charges as explained in ref. [4] and reviewed in appendix A. If we define new generators

S =M1 , Q =M1M2 =

Q U

0 1(h−2)×(h−2)

 , U = M1U2 + U1 =

 u1 +m1u2

u2


(4.4)

the elements of G = 〈M1, M2〉 can be uniquely written as QkSα, where k ∈ Z and
α ∈ {0, 1}. More explicitly, these matrices are

Qk =

Qk RkU

0 1(h−2)×(h−2)

 , QkS =

QkS QkU1 +RkU

0 1(h−2)×(h−2)

 , (4.5)

where

Rk =


∑k−1
j=0 Q

j for k ≥ 0
−
∑−1
j=kQ

j for k < 0
, Q = M1M2 , S = M1 , (4.6)

and the powers Qk of Q have already been computed in section 3.1. For the k < 0 case,
note that Miui = −ui and M2

i = 12×2. The interesting observation is that the qualitative
behavior of these matrices with k is controlled by the behavior of the 2 × 2 matrices M1,
M2 and, hence, by the product m1m2. This means we can essentially use the classification
from section 3.1.

The case m1m2 = 0. One can show that m1 = 1 iff m2 = 0. Then Q as well as Q are
of order two, so that G ∼= Z2 oZ2. This can only happen for direct product manifolds.

The case 0 < m1m2 < 4. We have the choices (m1,m2) ∈
{(1, 1), (1, 2), (1, 3), (2, 1), (3, 1)} and it can be checked by explicit computation of
the matrices Rk, that the order of Q remains the same as the order of Q for all cases.
This means we obtain the same groups as in table 1. As we explain in appendix A, the
cases (1, 2) and (1, 3) are not realized, at least not by complete intersections in projective
spaces.
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The case m1m2 > 4. We know that the order of Q is infinite for this case, which implies
the same is true for Q. This means that the group structure is G ∼= Z o Z2. Further, it is
clear that (at least some of) the entries of Q increase as powers of k so that the associated
G-invariant functions ΨG

d are complicated, non-modular functions analogous to the example
in (3.17).

The case m1m2 = 4. In this case, the order of Q is infinite so that G ∼= Z o Z2, but
we know from (3.6) that the matrix elements of Qk only grow linearly with k. Computing
the matrices Rk,

(m1,m2) = (2, 2) : Qk =

 2k + 1 −2k
2k 1− 2k

 , Rk =

 k2 k(1− k)
k(k − 1) k(2− k)

 ,

(m1,m2) = (1, 4) : Qk =

 2k + 1 −k
4k 1− 2k

 , Rk =

 k2 k
2 (1− k)

2k(k − 1) k(2− k)

 ,

(m1,m2) = (4, 1) : Qk =

 2k + 1 −4k
k 1− 2k

 , Rk =

 k2 2k(1− k)
k
2 (k − 1) k(2− k)

 ,

(4.7)

we see that the entries of Qk are at most quadratic polynomials in k. This feature means
that the functions ΨG

d can be expressed in terms of theta functions, as we will show below.

4.2 The prepotential

The general structure of the prepotential is given by the same equation (3.12) as for Picard
number two, with the obvious generalizations of the various quantities involved. The cases
0 ≤ m1m2 < 4 lead to a finite symmetry group G (at least when focusing on a rank
2 subgroup), so that the functions ΨG

d are given by a finite sum of exponential terms
similar to (2.7). Likewise, we will not discuss the case m1m2 > 4 explicitly — we have
already encountered this case for h1,1(X) = 2 and it leads to complicated functions ΨG

d

similar to (3.17). Instead, we focus on the structure of the G-invariant functions ΨG
d for

mimj = 4. In this case, the group G ∼= Z2 oZ is infinite and the matrices in G depend (at
most) quadratically on k, as eq. (4.7) shows.

In general, expanding the tri-logarithm and using eq. (1.1), the G-invariant functions
can be written as

Ψ(T ) =
∞∑
l=1

1
l3
ψGld(T ) , ψGld(T ) =

∑
g∈G

e2πil(gd)·T =
∑
k∈Z

(
e2πil(Qkd)·T + e2πil(QkSd)·T

)
.

(4.8)
Of course, the functions ψGd are also G̃-invariant, that is, they satisfy ψGd (g̃T ) = ψGd (T ) for
all g̃ ∈ G̃. To re-write these expressions, we split all vectors into directions parallel and
perpendicular to the two flop directions i = 1, 2, so we write

T =

 T‖
T⊥

 with T‖ =

 T1

T2

 , d =

 d‖
d⊥

 with d‖ =

 d1

d2

 . (4.9)
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From (4.5), the exponents in (4.8) can then be written as

(Qkd) · T = (Qkd‖ +RkUd⊥) · T‖ + d⊥ · T⊥
(QkSd) · T = (QkSd‖ + (RkU +QkU1)d⊥) · T‖ + d⊥ · T⊥

(4.10)

Defining δi := ui·d⊥ and using the matrices from (4.7), we find for the case (m1,m2) = (2, 2)

(Qkd) · T = 1
2k

2τ + kz + d · T , (QkSd) · T = 1
2k

2τ + kz̃ + y + d · T , (4.11)

where
τ = 2(δ1 + δ2)(T1 + T2)
z = 2(d1 − d2)(T1 + T2) + δ2T1 − δ1T2

z̃ = −z + 2(δ1 + δ2)T1

y = (δ1 − 2d1 + 2d2)T1 .

(4.12)

Using these results in eq. (4.8), we find that the G-invariant functions ψGd can be re-written
as

ψGd (T ) = e2πid·Tϑ(z; τ) + e2πi(d·T+y)ϑ(z̃; τ) . (4.13)

where
ϑ(z; τ) :=

∑
k∈Z

eπik
2τ+2πikz . (4.14)

is the Jacobi theta function.
A similar calculation for (m1,m2) = (1, 4), using the appropriate matrices from

eq. (3.6), gives a result with the same structure as in (4.11) and (4.13), but with

τ = (2δ1 + δ2)(T1 + 2T2) ,

z = (2d1 − d2)(T1 + 2T2) + 1
2δ2T1 − 2δ1T2 ,

z̃ = −z + (2δ1 + δ2)T1 ,

y = (−2d1 + d2 + δ1)T1 .

(4.15)

Of course, the case (m1,m2) = (4, 1) leads to a similar result as the present case (m1,m2) =
(1, 4), but with the exchange 1↔ 2 of indices on all quantities. Hence, for groups G with
two generators and m1m2 = 4, we have shown that the G-invariant functions which make
up the prepotential can be expressed in terms of Jacobi theta functions.

In order to get a better understanding for why the invariants ψGd can be written in
terms of the Jacobi theta function it is useful to translate the action of G̃ = 〈S̃, Q̃〉 on T to
our new variables τ , z, z̃, y and d ·T defined above, in eqs. (4.12) and (4.15). In particular,
we would like to know how the G̃ action relates to the symmetry properties of the theta
function, that is, to SL(2,Z) transformations and quasi-periodicity. Writing S̃ = M̃1 and
Q̃ = M̃1M̃2, where M̃i =MT

i with the matrices (4.3), leads for all cases where m1m2 = 4
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to the S̃ and Q̃ actions

S̃ :



d · T 7→ d · T + y

τ 7→ τ

z 7→ −z̃
z̃ 7→ −z
y 7→ −y

, Q̃ :



d · T 7→ d · T + 1
2τ − z

τ 7→ τ

z 7→ z − τ
z̃ 7→ z̃ − τ
y 7→ y + z − z̃ .

(4.16)

This shows that the S̃ invariance of ψGd arises by a swap of the two theta function terms
in eq. (4.13) accompanied by the SL(2,Z) transformation −12. Hence, the Z2 subgroup
of G̃ generated by S̃ is identified with the center of SL(2,Z), that is, precisely the part
of SL(2,Z) which leads to a linear action on τ , z and z̃. This was to be expected, given
that the G̃ action on T is linear. The action of Q̃, on the other hand, involves a “lattice
shift”: the prefactor that arises from the quasi-periodicity of the theta function with index
1/2 is canceled by the non-trivial transformation of the exponential pre-factors e2πid·T and
e2πid·T+y in a way that leaves either theta function term in eq. (4.13) invariant separately.

Finally, let us speculate on the reason for why the theta functions appear. The only
non-trivial SL(2,Z) transformation which originates from the group G̃ is −12. Once we
accept the pre-factors e2πid·T and e2πid·T+y, the appearance of the Jacobi ϑ-function in the
G̃ invariant prepotential is not too surprising. We know that the prepotential has to be
holomorphic, and invariance under Q̃ made use of quasi-periodicity (with index m = 1/2)
of this holomorphic function. Using the theta decomposition (see, for example [16]) for a
holomorphic function ξ(z, τ),

ξ(z, τ) =
∑

r mod 2m
hr(τ)θm,r(z, τ) with θm,r(z, τ) =

∑
k∈Z

e2πi[(2km+r)z+ 1
4m (2km+r)2τ ] ,

(4.17)
and setting m = 1/2, we find that ξ(z, τ) is ϑ(z, τ) times a function h(τ) of the modular
parameter. Since no group element in G̃ induces a non-trivial transformation in τ , we
cannot fix h(τ) from such a symmetry argument, but we know from our calculation that it
comes out to be trivial. From a completely different point of view, it was argued in ref. [17]
that the topological string partition function of elliptically fibered Calabi-Yau manifolds
can be expressed in terms of (a quotient of) even weak Jacobi forms. As we argue in
appendix A, for the class of models we study, that is, complete intersections in products of
projective ambient spaces which have a GLSM charge matrix that ensures the existence of
infinitely many flops as worked out in [4], the cases with m1m2 ≤ 4 always lead to Calabi-
Yau manifolds that have an elliptic fibration (with a section or a multi-section). In the
appendix, we also explain how to find the Kollar divisor in each case. Therefore, we can find
a basis change of the Kähler cone generators that makes the base and fiber classes (which
are a divisor and a curve class given as a complete intersection, respectively) more apparent.
By carrying out this base change, it should be possible to match our expressions to the ones
given in ref. [17]. The details of this match are, however, beyond the scope of this paper.

We give an overview of how many CICYs (up to h1,1 = 7) realize the various cases
discussed above in table 2. The table shows larger values of m1m2 become rarer as h1,1(X)
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h1,1(X) # CICYs ≥ 2 involutions m1m2 < 4 m1m2 = 4 m1m2 > 4
3 155 81 38 23 20
4 425 186 90 96 0
5 837 179 124 55 0
6 1140 74 74 0 0
7 1112 38 38 0 0

Table 2. The number of CICYs, CICYs with at least two involutions and numbers which realize
the three cases for m1m2 for Picard numbers h1,1(X) ≤ 7.

increases, to the extent that h1,1(X) = 7 CICYs with at least two flop boundaries all satisfy
m1m2 < 4 and, hence, lead to finite symmetry groups only. We do not know if this “decline”
of the group order with increasing h1,1(X) is a feature of the CICY construction or a feature
of CY manifolds more generally. In this context, it would be interesting to analyze other
classes of CY manifolds, such as those obtained from the Kreuzer-Skarke classification.

4.3 Examples

4.3.1 Example with three Kähler moduli and two isomorphic flops

We would like to discuss some example manifolds with two symmetry generators and
modularity. The smallest Picard rank which allows for such examples is three and a relevant
example at h1,1(X) = 3 is the degree (2, 2, 3) hypersurface in P1 × P1 × P2, which is the
CICY with number 7880. Its Kähler cone is the positive octant, K = {(t1, t2, t3) | ti ≥ 0}
and its intersection form

κ = λijkt
itjtk = 18t1t2t3 + 6t1t32 + 6t2t32 (4.18)

indicates the presence of two isomorphic flop boundaries at {t1 = 0} and {t2 = 0} (while
{t3 = 0} is the end of the effective cone) with associated involutions generated by

M1 =


−1 2 3
0 1 0
0 0 1

 , M2 =


1 0 0
2 −1 3
0 0 1

 . (4.19)

These shows that (m1,m2) = (2, 2), so this is indeed a case which leads to modularity.
Comparison with the general form (4.3) of the matrices further shows that U1 = (3, 0)T ,
U2 = (0, 3)T , which means δ1 = δ2 = 3d3. Hence, the G-invariant functions ψGd are of the
form (4.13) with

τ = 12d3(T1 + T2)
z = 2(d1 − d2)(T1 + T2) + 3d3(T1 − T2)
z̃ = z − 12d3T1

y = (−2d1 + 2d2 + 3d3)T1 .

(4.20)

We present the Coxeter diagram for this example in figure 3 on the left.
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4.3.2 Example with five Kähler moduli and five isomorphic flops

As another example we discuss the complete intersection CY defined by two equations of
multi-degree (1, 1, 1, 1, 1) inside (P1)5, which is the CICY with number 7447. This is the
mirror dual [13] of the Hulek-Verrill manifold [14], which has recently received attention
in the context of the study of rank two attractor points [18] and its relation to Feynman
loop integrals [19]. Using the techniques from appendix A, we see that it has isomorphic
flops along all five Kähler cone boundaries, and all corresponding Mi have mi = 1. Hence,
the subgroup G of the full symmetry group that is generated by any two of the reflections
G = 〈Mi,Mj〉 with i 6= j is finite and the prepotential is not modular. In fact, from
table 1 we see that Q3 = (MiMj)3 = 1. In particular, we can easily write down all the
words of G and the sum over the group elements in (1.1) explicitly.

However, if we consider the subgroup generated by three of the Mi, say G =
〈M1,M2,M3〉, we can write down infinitely many words, e.g. of the type (M1M2M3)k.
These contain entries that are quadratic, linear, and constant in k and could hence also
lead to modular behavior. A detailed study of this is beyond the scope of the current
paper, which focuses on the subgroups generated by two involutions, but it would be very
interesting to understand the implications of the involutions and the resulting extended
Kähler cone structure for the mirror. The Coxeter diagram corresponding to this case is
given in figure 3 on the right.

5 Coxeter groups, triangle groups, and reflection symmetries

A Coxeter group is defined as a group with presentation

W = 〈M1, M2, . . . ,Mr | (MiMj)cij = 1〉 . (5.1)

Here, Mi are generators, cij = cji, cii = 1, and cij ≥ 2 for i 6= j. The condition cii = 1
implies that (MiMi)1 = 1, so all generators Mi are involutions. If there is no relation
of the form (MiMj)cij , one sets cij = ∞. The symmetric matrix C with entries cij is
called the Coxeter matrix. Conversely, any symmetric matrix with ones on the diagonal
and entries 2, 3, . . . ,∞ otherwise defines a Coxeter group. The pair (W,Γ) where W is the
Coxeter group and Γ = {M1,M2, . . . ,Mr} are the generators is called a Coxeter system.

A Coxeter group can be represented by its Coxeter diagram which is constructed from
the Coxeter matrix as follows. First, each generator is represented by a node. Each two
nodes i and j are connected with an edge labeled by cij if cij ≥ 3; in the case where cij = 3
the edge label is omitted. The Coxeter matrix Cij is closely related to the Schläfli matrix S
with entries sij = −2 cos(π/cij). If the eigenvalues of S are all positive, the Coxeter group
is finite. If all eigenvalues are non-negative (and at least one zero), the Coxeter group is
affine. Otherwise, the Coxeter group is of indefinite type. Indefinite Coxeter groups with
1 negative and r − 1 positive eigenvalue are sometimes called hyperbolic Coxeter groups.

Coxeter [7] studied these groups originally in the context where the involutions Mi

are reflections along hyperplanes. A canonical representation of a Coxeter group is then
in terms of reflection matrices. This representation is constructed by associating to Mi a

– 18 –



J
H
E
P
0
2
(
2
0
2
3
)
1
7
5

Figure 3. Coxeter graphs of the groups G for the examples discussed in this paper. Left: Coxeter
diagram of CICY 7863 from the example in section 3.4 and CICY 7880 from the example in
section 4.3.1. Right: Coxeter diagram of CICY 7447, the mirror of the Hulek-Verrill manifold, from
the example in section 4.3.2.

basis Mi 7→ ei of Rn and by defining a bi-linear form I and reflections σi in Rn via the
Schläfli matrix

Sij := I(ei, ej) = −2 cos π

cij
= sij , σi(v) = v − sijei . (5.2)

If cij =∞, we set sij = −2. Then, the representation W → GL(n,R) defined byMi 7→ σi
is faithful. Moreover, it can be checked that the reflections σi are isometries of the bi-linear
form I, so I(σi(v), σj(w)) = S(v, w) for all v, w ∈ Rn.

The question of when a group generated by involutions that are not necessarily reflec-
tions along hyperplanes) is a Coxeter group is more difficult, but criteria (like the exchange
condition) that describe the behavior of reduced words, are known. Vinberg generalized
the concept of reflecting along hyperplanes to involutions across polyhedral cones [8]. This
is precisely the setup we need for our discussion.

Vinberg starts from involutions Mi of the form (4.1) and shows that the Cartan
matrix4 A, whose columns are given by the vectors ui in (4.1), satisfies uij = 0 if uji = 0.
This has been used in section 4.1 to argue that the case m1m2 = 0 implies m1 = m2 = 0.
Vinberg also shows that either uij ≥ 4 (in which case the entry cij in the Coxeter matrix
is cij =∞) or uijuji = sijsji. This precisely reproduces table 1. From this discussion, we
see that the groups G (or G̃) acting on the Mori cone (or Kähler cone) are Coxeter groups
with generatorsMi. Their rank r corresponds to the number of facets of the Kähler cone
across which isomorphic flops occur.

The boundary case mimj = 4 has a geometric realization as reflections along hyper-
planes as studied by Coxeter, while mimj > 4 corresponds to more general reflections as
considered by Vinberg. In either case, we have cij = ∞ for i 6= j and the Schläfli matrix
has only entries of 2 (positive on the diagonal, negative elsewhere). The eigenvalues of this
matrix are λ1 = λ2 = . . . = λr−1 = 4 and λr = r − 2. Hence, the case r = 2, corresponds
to an affine Coxeter algebra called Ĩ1 (see left part of figure 3), while the cases with r > 2
are hyperbolic Coxeter groups. Thus, in these cases, the Coxeter groups are given by fully

4The matrices constructed this way are the Cartan matrices of semisimple Lie algebras, where the
reflections are those along the simple roots that generate the Weyl group.
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Figure 4. The triangle group (∞,∞,∞) on the Poincaré disk, which corresponds to the universal
Coxeter group of rank 3. In the context of the infinite flop examples for Picard rank 3 CYs discussed
here, each arc corresponds to a flop wall. Arcs with the same color are reflection images of one
another.

connected graphs where each edge carries the label ∞. These are precisely the universal
Coxeter groups, given by the free product of r Z2 factors. For the examples with two and
five generators studied earlier, the Coxeter graphs are shown in figure 3. In this paper, we
have focused on (sub-)groups G̃ with two generators, so all the infinite reflection groups in
this paper are isomorphic to the affine case Ĩ1. For such cases, terminology for CY moduli
spaces can be translated into terminology for Coxeter groups. Specifically, under the group
isomorphism G̃ → Ĩ1, the Kähler cone is identified with the fundamental chamber, the
Kähler cone walls that admit flops to isomorphic CYs are identified with the walls of the
fundamental chamber, and the extended Kähler cone is identified with the Tits cone.

Next, we want to briefly study the group elements of a Coxeter group. In general,
two or more words can represent the same group element (irrespective of their lengths).
This is even true for reduced words, which means that consecutive inverses are deleted. In
the context of Coxeter groups, each generator is self-inverse, which means that in reduced
words, the same letter does not appear more than once consecutively. For universal Coxeter
groups, each reduced word corresponds to a unique group element. Hence, each word w cor-
responding to a g ∈W can be written asMi1Mi2 · · ·Min with ik 6= ik+1. This is reflected
(no pun intended) in our choice of generators S =M1 and Q =M1M2 for the group G.

Finally, let us briefly comment on the relation to triangle groups. Triangle groups are
groups which are realized by reflections along the sides of a triangle. They are specified in
terms of three integers (l,m, n) which correspond to angles π/l, π/m, π/n of the triangle.
If 1/l+ 1/m+ 1/n = 1, the triangles tessellate the Euclidean plane, if 1/l+ 1/m+ 1/n > 1
they tessellate the unit sphere, and if 1/l + 1/m + 1/n < 1 they tessellate the hyperbolic
plane. As mentioned above, the non-finite cases with mamb ≥ 4 and r ≥ 3 correspond to
hyperbolic Coxeter groups. These are related to the hyperbolic triangle groups (for r = 3)
and their generalizations: the integers (k, l,m) correspond to the entries c1,2, c1,3 and c2,3
of the Coxeter matrix. This means that the general case, which leads to universal Coxeter
groups, corresponds to the triangle group (∞,∞,∞).
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As can be seen from the examples discussed in section 4, or just by noting how (QT )k

behaves, the G̃-images of the original CICY Kähler cone become thinner and thinner
slivers (in the cohomology basis of the CICY Kähler cone, which is the positive octant),
accumulating towards the boundaries of the extended Kähler cone. They can be resolved
better in hyperbolic space, for example by plotting them on the Poincaré disk, whose
boundary represents infinity and where straight lines are arcs (or diameters of the disk).
We plot the triangle group (∞,∞,∞) in figure 4. Under the isomorphism between Coxeter
groups and reflections along flop walls of the Kähler cone, each arc corresponds to one
Kähler cone wall. Walls that are identified under the group G̃ are plotted in the same color.

6 Conclusions

In this paper, we have studied CY three-folds with isomorphic flops, the resulting reflection
symmetries and their implications for the Gopakumar-Vafa (GV) invariants and the Kähler
moduli prepotential. We have seen that such isomorphic flops lead to symmetry groups
G̃ on the Kähler moduli space, and dual symmetry groups G acting on curves, which are
isomorphic to Coxeter groups. These groups can be of finite or infinite order, depending
on the manifold, and the rank of the Coxeter group is given by the number of Kähler
cone facets across which flops occur. The key observation is that GV invariants nd for
non-flopping curve classes d are G-invariant, that is, ngd = nd for all g ∈ G. This means
the (non-flopping part of the) instanton prepotential can be written in terms of suitable G̃
invariant functions, as defined in eq. (1.1). To our knowledge, these functions, which are
invariant under certain representations of Coxeter groups, have not been studied before.

We have analyzed in some detail the case of h1,1(X) = 2 and isomorphic flops across
both facets of the Kähler cone which leads to a symmetry group G controlled by two
integers m1 and m2. These integers can be computed from the triple intersection numbers
via eq. (2.1). For Picard rank two these numbers always satisfy m1m2 > 4 and this leads
to a symmetry group G̃ ∼= Z2 oZ, isomorphic to a universal Coxeter group of rank two. In
this case, the associated G̃ invariant functions are non-modular.

It turns out, for Picard rank h1,1(X) > 2 and two isomorphic flop boundaries, all three
cases, m1m2 < 4, m1m2 = 4 and m1m2 > 4 can be realized by appropriate CY manifolds.
Cases with m1m2 < 4 lead to a finite Coxeter group G̃, while for m1m2 ≥ 4 the group
G̃ is a universal Coxeter group of rank two. If m1m2 > 4 the G̃ invariant functions are
non-modular, as they were for Picard rank two. The interesting new case is the limiting
one, m1m2 = 4, where the G̃ invariant functions can be expressed in terms of Jacobi theta
functions. We also argued that the appearance of theta functions is related to the presence
of elliptic fibrations in the underlying CYs of the type studied in ref. [4].

For manifolds with more than two isomorphic flop boundaries the structure is more
complicated. While the group G is isomorphic to a Coxeter group, it is not clear how
to write down the group elements systematically. It is, therefore, difficult to work out
the form of the G̃ invariant functions more explicitly. However, we have argued, for the
example of the Hulek-Verrill manifold, that modularity can arise for (sub-)groups G̃ with
more than two generators. Moreover, the example of the Hulek-Verrill manifold illustrates
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that the full symmetry group can have infinitely many elements even though the rank two
subgroup has m1 = m2 = 1 and is thus finite. The detailed analysis of manifolds with such
larger symmetry groups and their prepotentials is an interesting direction for future work.

It has been argued in ref. [20] that the symmetry G needs to be gauged in order to avoid
a conflict with the swampland distance conjecture. (The infinite-length geodesic connecting
the points g̃t, where g̃ ∈ G̃, is not associated with a tower of massless particles.) Hence,
the low-energy theory is based on the moduli space Kext/G̃ and G̃ does not actually appear
as a symmetry of this theory. Nevertheless, we can think about the “upstairs” effective
theory defined on Kext which we expect to be G̃ invariant. A G̃ invariant scalar potential
in this theory has stationary points at the fixed loci of the G̃ action and we know from our
discussion that these fixed loci are precisely the boundaries of the Kähler cone, that is, the
flop loci. This observation might well have implications for moduli stabilisation, although
more precise statements require further study, for example in the context of type II models
with D-branes and flux. This is beyond the scope of the present paper but it may be an
interesting avenue for further study.
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A Special symmetry groups and elliptic fibrations

In this appendix we would like to study the CICYs with m1m2 ≤ 4 somewhat more
systematically and we will argue that these cases lead to elliptic fibrations. To do so, we
distinguish the two types of CICYs that lead to infinitely many isomorphic flops, as identi-
fied in ref. [4], separately. As we will show, type 1 CICYs lead to (m1,m2) ∈ {(1, 1), (2, 2)}
only, while type 2 CICYs allow for (m1,m2) ∈ {(1, 4), (4, 1), (2, 2)}. The cases
(m1,m2) ∈ {(1, 2), (1, 3)}, which also appear in table 1, are not realized by CICYs.
One example of this is the mirror dual of the Hulek-Verrill manifold as discussed in
section (4.3.2). It is intriguing that theta functions also appear for this manifold, albeit
only once three or more reflections are considered.

A.1 Type 1

For type 1 CICYs, the configuration matrix is of the formPn 1 1 . . . 1 0 . . .

~P ~q ~q . . . ~q ~qn+1 . . .

 (A.1)

The reflection matrixM1 is given by (4.2) with

u = (2,−n~q T ) . (A.2)
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Now we want this row to contain an entry m1 ≤ 4, such that, when combined with the
second flop that will generate the infinite flop chain, we can have m1m2 ≤ 4. Since n is the
dimension of the ambient space Pn factor, we know that n ≥ 1. Since all ~q have to be the
same in type 1 flops, they actually cannot be combined with a type 2 flop in a sensible way:
in a type 2 flop, the entries that occur more than once are 0’s and 1’s. If all ~q contain a zero
row, this means that the configuration matrix is block-diagonal and hence the complete
intersection is a direct product. More precisely, we would get two linear equations in P1

times the CICY defined by [~P | ~qn+1 . . .], which has no solution for generic CS, or just
reproduces the original CICY over special points in CS space. Either one is not interesting.
If the ~q contain a row with 1’s, we already get an entry m2 that is at least m2 = 2+2 ·2 = 6
according to (A.5). So we can focus on the case where the second flop is of the same type
as the first flop.

In such a setup, because of (A.2), we can focus on 1 ≤ n ≤ 3, and possible configuration
matrices are of the form

P1 1 1 0 . . .

P1 1 1 0 . . .

~P ~q ~q ~q3 . . .

 ,

P2 1 1 1 0 . . .

P2 1 1 1 0 . . .

~P ~q ~q ~q ~q4 . . .

 , (A.3)

giving rise to (m1,m2) = (1, 1) and (m1,m2) = (2, 2), respectively.
We can argue next that CICYs of the type (A.3) are always elliptically fibered. To do so,

we use a criterion due to Oguiso and Kollar. This comes down to showing that there exists
an effective divisor D∗ such that D∗.C ≥ 0, D∗.D∗ 6= 0, andD∗.D∗.D∗ = 0 for any algebraic
curve C ⊂ X. So in essence we get a basis of divisors by pullbacks from the ambient
space, compute their triple intersection numbers, and look for a positive linear combination
D∗ =

∑h11
i=1 aiDi such that D2

∗ 6= 0 and D3
∗ = 0 (D.C ≥ 0 is automatic for effective divisors

and curves). For CICYs of the first form, the divisors D1 and D2 corresponding to the
two ambient space P1 factors are good candidates. They automatically have D3 = 0.
However, they also have D2 = 0. This can be easily cured by taking the linear combination
D∗ = D1+D2. NowD2

∗ = (D1+D2)2 = 2D1.D2 fixes a point in P1×P1 on the CY, and will
intersect some other effective divisor with non-zero intersection number, i.e., we have an
elliptic fibration. For CICY’s of the last type, either of the divisors D1 andD2 satisfiesD2

i 6=
0 and D3

i = 0 on dimensional grounds. The other cases cannot be treated in generality.

A.2 Type 2

For type 2 CICYs, the configuration matrix is of the formPn 2 1 . . . 1 0 . . .

~P ~q1 ~q2 . . . ~qn ~qn+1 . . .

 (A.4)

The reflection matrixM1 along the Pn direction will be given by (4.2) with

u =
(

2, −~q T1 − 2
n∑
i=2

~q Ti

)
. (A.5)
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In fact, since we want infinitely many flops, we need a second direction along which we can
flop (say the second ambient space factor. That means the configuration matrix is of the
form 

Pn 2 1 . . . 1 0 . . .

Pñ q1 q2 . . . qn qn+1 . . .

~P ~q
′

1 ~q
′

2 . . . ~q
′
n ~q

′
n+1 . . .

 (A.6)

The part with ~P is irrelevant for our subsequent discussion, so we will focus on the first
two rows. We want to find entries q1, q2, . . . such that the resulting rows have entries m1
and m2 with m1m2 ≤ 4. In principle we can choose q1, q2, . . . such that we get a type 1
or a type 2 flop. For a type 1 flop, we need the qi to be either 1 or 0. If they are 1, then
the rest of the matrix has to be the same for all positions where a 1 occurs. This means in
particular that q1 = 0, since there is only a single entry 2 in the first row. Similarly, since
the m1 and the m2 should not “miss” each other, we cannot use the entries qn+1, qn+2,
etc. and can set these to zero as well. In other words, we can choose a subset of q2 to qn
to be 1, and the rest is zero. However, as we can see from (A.5), the entries q2, q3, . . .,
qn come with a factor of 2, so m1m2 ≤ 4 would require only one of these being non-zero,
which would mean an ambient space P0. So we cannot generate an infinite flop chain with
m1m2 ≤ 4 by using types 1 and types 2. This leaves us with choosing the qi of the second
row to be of type 2, i.e., a single two, and a bunch of ones and zeros. By choosing the qi
appropriately, we can engineer examples with m1m2 = 4 in three different ways: the first
way is to set q1 = 2, qi = 0 for i = 2, . . . , n, and choosing the remaining qi for i ≥ n+ 1 to
be either 1 or 0 (to obtain a type 2 flop). This gives (m1,m2) = (2, 2) and a configuration
matrix of the form 

Pn 2 1 . . . 1 0 . . .

Pñ 2 0 . . . 0 qn+1 . . .

~P ~q
′

1 ~q
′

2 . . . ~q
′
n ~q

′
n+1 . . .

 (A.7)

The second way is to set q1 = 1, qi = 0 for i = 2, . . . , n, and choosing one of the
remaining qi for i ≥ n + 1 to be 2 and all others to be either 1 or 0 (to obtain a type 2
flop). This gives (m1,m2) = (1, 4) and a configuration matrix of the form

Pn 2 1 . . . 1 0 0 . . .

Pñ 1 0 . . . 0 2 qn+2 . . .

~P ~q
′

1 ~q
′

2 . . . ~q
′
n ~q

′
n+1 ~q

′
n+2 . . .

 (A.8)

The third way is to set q1 = 0, precisely one of the qi, i = 2, . . . , n to one, and choosing
one of the remaining qi for i ≥ n + 1 to be 2 and all others to be either 1 or 0 (to obtain
a type 2 flop). This also gives (m1,m2) = (2, 2) and a configuration matrix of the form

Pn 2 1 1 . . . 1 0 0 . . .

Pñ 0 1 0 . . . 0 2 qn+2 . . .

~P ~q
′

1 ~q
′

2 ~q
′

3 . . . ~q
′
n ~q

′
n+1 ~q

′
n+2 . . .

 (A.9)
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As examples for CICYs that realize these three possibilities, we can take the tetra-
quadric, CICY 5299 (these even have flops along all ambient space factors), and CICY
6971, respectively.

XTQ ∼


P1 2
P1 2
P1 2
P1 2

 , X5299 ∼


P2 2 1 0
P2 1 0 2
P2 0 2 1

 , X6971 ∼


P2 2 1 0
P2 0 1 2
P2 1 1 1

 . (A.10)

Note that for all three possibilities, we get (n + ñ − 1) equations that involve the
ambient spaces Pn × Pñ. This is because there are n (resp. ñ) non-zero entries in the
first (resp. second) row, and precisely in one column, both the first and second row have
a non-zero entry. Hence we get (n+ ñ− 1) equations inside Pn × Pñ, i.e., a CY one-fold.
This is what the authors of ref. [21] call an “obvious elliptic fibration”.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
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