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1 Introduction

Flux compactifications of Type IIB string theory provide some of the best understood sce-
narios that can yield minimally supersymmetric or non-supersymmetric four-dimensional
effective actions with partially or fully stabilized moduli [1, 2]. These scenarios use the fact
that background R-R and NS-NS three-form fluxes introduce a non-trivial superpotential
that depends on the complex structure deformations of the internal compactification space
and the axio-dilaton. Remarkably, the backreaction of these fluxes on the geometry yields
at leading order only a warp factor and the requirement to consider a conformal Calabi-
Yau background combined with an orientifold projection. The effective theories can thus
be studied by appropriately extending the techniques used to describe the geometry of
Calabi-Yau threefolds and their moduli spaces. This has lead to the suggestion of concrete
moduli stabilization scenarios in [3–5]. The search for explicit realizations of these scenar-
ios still tests our understanding of string compactifications and pushes the boundaries of
what is possible or impossible within string theory.

In this work we will investigate the stabilization of complex structure moduli after in-
troducing background fluxes. Following the well-known dimensional reduction on a Calabi-
Yau orientifold [1–3, 6], we recall that the effective theory is an N = 1 supergravity theory.
The for us relevant part of the N = 1 superpotential and Kähler potential can be evaluated
by determining how the (up to rescaling) unique (3, 0)-form Ω on the Calabi-Yau threefold
Y3 varies with a change of the complex structure. This dependence can be captured by
so-called period integrals, or periods for short, which are obtained by integrating Ω over
a basis of three-cycles of Y3. There are a number of techniques available to derive these
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period integrals. While most of them require the explicit construction of the Calabi-Yau
manifold, it was recently shown in [7] that general models for the asymptotic periods can be
constructed by asymptotic Hodge theory. In a nutshell, this mathematical formalism uses
the existence of monodromy symmetry, the requirement of positivity and orthogonality,
and a notion of completeness. It then allows for the construction of the compatible peri-
ods with these properties in an algorithmic way without resorting to any specific geometric
examples. With these powerful techniques at hand we aim to understand how certain prop-
erties of the effective theory, such as the vacuum expectation value of the superpotential
and mass hierarchies of the stabilized moduli can be engineered algorithmically.

One of the most prominent moduli stabilization scenarios, the KKLT scenario [4],
requires to find vacua in complex structure moduli space, such that the vacuum superpo-
tential is taking a very small, non-zero value. It was recently suggested in [8] and further
explored in [9–14] that, in fact, exponentially small vacuum superpotentials can be found
near certain boundaries in moduli space.1 It was argued that the construction proceeds by
introducing fluxes that preserve a continuous version of the monodromy symmetry at some
leading order with a vanishing superpotential, while then including instanton corrections
generates an exponentially small superpotential. We will explain how this construction is
understood in asymptotic Hodge theory and how it can be generalized to other boundaries
that have not been consider in the literature before. This will be done both in a hands-on
way by considering explicit examples as well as by explaining how the abstract mathe-
matical methods are useful. We will then see that our powerful techniques also allow us
to control the moduli masses and identify alternative scenarios to the ones of [8, 9]. In
our constructions the scaling of the masses is polynomial, rather than exponential, in the
vacuum expectation values of the moduli. In general, the Hodge theory methods enable us
to highlight conceptual features of these moduli stabilization scenarios and show how to
implement them as a building block on general moduli spaces. In the mathematical litera-
ture, the vacua with exponentially small superpotential are a special case of the so-called
extended locus of Hodge classes [17].

To highlight some key aspects of our construction let us first point out that asymptotic
Hodge theory gives a general way of modeling the asymptotic periods of Ω. Firstly, there
is the famous result [18] that ensures that the leading polynomial part of the periods is
captured by the monodromy symmetry and some data associated to the asymptotic regime.
For example, in the large complex structure regime of a one-dimensional moduli space the
asymptotic periods can be written as Πpol = etNa0, where t is the complex structure
modulus with t = i∞ being the large complex structure point, N is the logarithm of the
monodromy matrix and nilpotent N4 = 0, and a0 is a vector associated to the limit. This
form naturally generalizes to all limits in complex structure moduli space in one or more
directions. Secondly, it was shown in [7] that away from the large complex structure regime
exponential corrections to Πpol are needed both for mathematical consistency as well as for
the physical effective theory to be well-defined. We will thus split the asymptotic periods
as Πpol + Πess and refer to the corrections Πess as essential instantons. This name can be

1See [15, 16] for statistical arguments about the abundance of vacua in these regions.
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motivated by mirror symmetry, where at the large complex structure point exponential
corrections actually map to instanton corrections in the mirror theory. The necessity
of these corrections can be seen, for example, when the metric derived solely from Πpol
degenerates. Remarkably, the asymptotic Hodge theory techniques introduced in [18–20]
can then be used to determine the general form of the needed exponentially suppressed
corrections Πess to exactly avoid such inconsistencies.

With these insights about the structure of the periods we search for flux vacua that
admit exponentially small vacuum superpotentials. Using the classification of asymptotic
regimes [21–23] we are able to identify a specific class of regions that generally admits
essential instanton corrections that can set the scale of the vacuum superpotential. We
find that a large class of such regions arise near boundaries containing Seiberg-Witten
points. These special loci occur in the moduli space of Calabi-Yau geometries that are
used to embed Seiberg-Witten theory into type IIB string theory [24, 25]. Among the set
of essential instantons in the flux superpotential we then identify a subset that enters the
scalar potential already at polynomial order. These are precisely the instanton corrections
that are required to ensure a non-degenerate moduli metric and induce the polynomial
behavior of the moduli masses in the vacuum. We refer to these corrections as metric-
essential instantons in this paper. Furthermore, we then find that in these vacua the
canonically normalized masses of the axio-dilaton and complex structure moduli can be
parametrically heavier compared to the mass of the Kähler moduli.

In order to illustrate our method, we then specialize our analysis to one and two
moduli settings. General models for the asymptotic periods of these low-dimensional set-
tings have recently been constructed in [7] and we will use them here to perform explicit
computations. It turns out that these concrete realizations lead to additional intriguing
observations about the hierarchies among moduli masses and the minimal scale of the vac-
uum superpotential. While we are not providing any general proofs on these findings, they
are suggestive of a deeper structure and provide additional motivation for an explicit study
of higher dimensional examples. Finally, we should mention that the period models used
in this work are given in a real rather than a rational symplectic basis. Our vacua do not
require any fine-tuning of the flux quanta in contrast to e.g. a racetrack potential, so we do
not expect any technical issues to arise here. Nevertheless it would be interesting to work
out the quantization of the fluxes in the future.

The paper is organized as follows. In section 2 we review some basic aspects of Type IIB
flux compactifications, and outline our strategy for constructing vacua with exponentially
small superpotentials. Particularly, we review how essential instantons can play a crucial
role in e.g. the Kähler metric, and explain how to carefully deal with these corrections in
the context of moduli stabilization. In section 3, to illustrate this story further, we then
consider two simple examples, where we show how to stabilize the moduli explicitly such
that we engineer an exponentially small vacuum superpotential. In section 4 we present
our conclusions and give promising directions for future research.
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2 Type IIB flux compactifications and small superpotentials

In this section we stepwise explain the general construction of flux vacua with small vacuum
superpotentials. We start by briefly reviewing the basics of four-dimensional supergravities
arising from type IIB orientifold compactifications. Then we recall some of the main
findings of [7], namely that exponential corrections to the asymptotic periods are required
away from the large complex structure regime and how these can contribute at polynomial
level to the scalar potential. Using this knowledge, we outline a method to construct a
set of flux vacua with exponentially small vacuum superpotential near a given asymptotic
regime. The reader interested only in concrete examples can safely skip to section 3.

2.1 Review: flux vacua in Type IIB orientifold compactifications

Let us begin with a brief review of some generalities on Type IIB flux compactifications,
see e.g. [1, 2] for a more complete overview. We consider compactifications of Type IIB
string theory on a Calabi-Yau threefold Y3, which is subjected to an orientifold involution.
We focus on the complex structure and axio-dilaton sectors of the four-dimensional N = 1
supergravity theories arising from these compactifications, where the orientifold projection
might freeze out some of the h2,1(Y3) complex structure moduli. For the purposes of our
work we can ignore the Kähler moduli, so let us write the Kähler potential as

K = − log[i(τ̄ − τ)]− log
[
i

∫
Y3

Ω̄(t̄i) ∧ Ω(ti)
]
, (2.1)

where Ω is the (up to rescaling) unique (3, 0)-form of Y3, and we denoted the axio-dilaton
and complex structure moduli respectively by

τ = c+ is , ti = xi + iyi , i = 1, . . . , h2,1
− (Y3) , (2.2)

where h2,1
− (Y3) is the number of complex structure moduli that survived the orientifold

projection. As will become more clear later we refer throughout this work to the real part
of the moduli c, xi as the physical axions, while we identify their imaginary counterparts
s, yi as the saxions.

In order to make the story more explicit, it proves to be convenient to write out Ω
in terms of its periods. For this purpose let us introduce a basis γI ∈ H3

−(Y3,R) for the
orientifold-odd threefold cohomology. We can expand Ω in this basis in its periods ΠI as

Ω = ΠIγI , I = 0 , . . . , 2h2,1
− (Y3) + 2 . (2.3)

This allows us to write the Kähler potential for the complex structure moduli in terms of
the periods as

Kcs = − log
[
iΠ̄T ηΠ

]
= − log

[
i〈Π̄,Π〉

]
, (2.4)

where we introduced the symplectic pairing

〈u, v〉 =
∫
Y3
u ∧ v = uT η v , η =

(
0 I
−I 0

)
, (2.5)
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with I the (h2,1
− + 1)-dimensional identity matrix. The standard Kähler metric is conve-

niently expressed in terms of the Kähler potential (2.1) as

KIJ̄ = ∂I ∂̄J̄K , (2.6)

where the indices I, J run over the axio-dilaton τ and the complex structure moduli ti.
Turning on R-R and NS-NS fluxes F3 and H3, we then induce a superpotential in the
four-dimensional N = 1 effective theory. This flux superpotential can be written in terms
of Ω as [26]

W =
∫
Y3
G3 ∧ Ω = 〈G3 ,Π〉 , G3 = F3 − τH3 . (2.7)

By means of standard N = 1 identities one can then write the scalar potential in terms of
this superpotential. Using the no-scale property of the Kähler moduli, see for instance [6]
for the details, we can write this scalar potential out as

V = 1
V2 e

KKIJ̄DIWDJ̄W̄ = 1
4V2 s

(
〈Ḡ3 , ∗G3〉 − i〈Ḡ3 , G3〉

)
, (2.8)

where KIJ̄ denotes the inverse of the Kähler metric, and DIW = ∂IW+KIW . We denoted
the volume factor depending on the Kähler moduli of Y3 by V, which will not be relevant
to our work.

One can now study the minima of this flux potential in two equivalent ways [3, 6].
The standard N = 1 supergravity approach is to solve for vanishing F-terms, yielding as
constraints

DIW = ∂IW +KIW = 0 . (2.9)

Alternatively one considers the imaginary self-duality condition for the three-form flux G3,
which reads

∗G3 = iG3 . (2.10)

From both approaches one sees that the scalar potential (2.8) vanishes at the minimum,
giving rise to a Minkowski-type vacuum. In our construction of flux vacua in section 2.3
and 3 we choose to work mostly with the vanishing F-term conditions (2.9). However, as
becomes clear from our discussion of exponential corrections in section 2.2, it is instructive
to consider the self-duality condition (2.10) as well as a complementary perspective.

As a final remark, we recall that the three-form fluxes F3, H3 contribute to the D3-
brane tadpole. This contribution due to the fluxes is given by

Qflux = 1
2〈F3, H3〉 . (2.11)

The cancellation condition for the D3-brane tadpole then puts an upper bound on the
allowed flux Qflux.

2.2 Near-boundary asymptotics and exponential corrections

In this section we discuss the characteristic features of these four-dimensional effective the-
ories near boundaries in complex structure moduli space. To be more precise, we consider
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the asymptotic behavior of the Kähler potential (2.4), flux superpotential (2.7) and scalar
potential (2.8) in these regimes. We in particular explain why near certain boundaries some
exponentially small corrections cannot be dropped in the former two ((2.4) and (2.7)), while
a polynomial approximation for the scalar potential (2.8) is sufficient. This discussion of
exponential corrections is based on our recent observations in [7], which we refer to for
a more detailed treatment of these subtleties. In the following we formulate these main
findings in a general setting, and in sections 3.1 and 3.2 we discuss them in practice for
two explicit examples. For closely related applications of these asymptotic Hodge theory
techniques in the context of string compactifications we refer the reader to [22, 27–41].

Let us begin by establishing how we parametrize the complex structure moduli space
and its boundaries. In this work we will employ two coordinate patches to describe bound-
aries. The first patch defines a codimension n boundary as the normal intersection of n loci
of the form zi = 0, such that locally the boundary is given by z1 = . . . = zn = 0. In these
coordinates circling the boundaries corresponds to multiplying by a phase as zi → e2πizi.
Often one finds that the Kähler potential does not depend on the phase of the zi near these
boundaries, so it proves to be useful to introduce another set of coordinates to exploit this
feature. We already mentioned these coordinates briefly in (2.2), and the precise relation
between these patches is given by

zi = e2πiti = e2πi(xi+iyi) . (2.12)

From a physical perspective one can interpret the xi that parametrize the phase of zi as
axions, where circling the boundary now corresponds to a discrete shift symmetry xi →
xi + 1. Their counterparts yi are then referred to as saxions, which are the fields we make
large as yi →∞ in order to approach the near-boundary region.

The asymptotic behavior of the Kähler potential and flux superpotential is then best
understood by expanding the periods (2.3) around a boundary in complex structure moduli
space. The nilpotent orbit theorem [18] tells us that this period vector admits an expansion

Im ti = yi � 1 : Π(ti) = et
iNi

(
a0 +

∑
ri

e2πirit
i
ar1···rn

)
, (2.13)

where the Ni denote a set of mutually commuting matrices whose form depends on the
monodromy behavior when circling the boundary and the terms ar1...rn are independent
of the coordinates t1, . . . , tn taken close to the boundary. The first term a0 will give rise
to polynomial terms in yi in the Kähler potential (2.4) and superpotential (2.7), while
the other ar1...rn lead to exponentially suppressed terms. Borrowing the nomenclature
familiar from large complex structure and applying it to any boundary in complex structure
moduli space, we loosely refer to a0 as the perturbative term, while the other exponentially
suppressed terms resemble the instanton expansion.

A remarkable feature of asymptotic Hodge Theory is that is provides an exhaustive
classification of all possible boundaries that can occur in complex structure moduli space.
In this work, we only need the broad lines of this classification and refer the reader to [21–
23] for more details. In the case of Calabi-Yau threefolds, there are four main types of
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boundaries which are conventionally labeled by the Greek numerals I, II, III and IV. Each
of these has a finite number of subtypes that we usually label by a subscript. However,
this level of detail is not required in what follows, so we suppress this additional label and
work only with the main types. These can be assigned to each co-dimension n boundary
by studying the associated monodromy properties of the period vector in more detail. For
our study of flux vacua we can limit ourselves simply to the types associated with the
co-dimension h2,1 boundary, i.e. points where all the moduli have been sent to the limit.
Given a co-dimension h2,1 locus, we can characterize the different types by the action of
the operator N = N1 + · · ·+Nh2,1 on a0 as follows

Type I : Na0 = 0 ,
Type II : N2a0 = 0 ,

Type III : N3a0 = 0 ,
Type IV : N4a0 = 0 , (2.14)

where it is understood that N•−1a0 6= 0 for a given type. Let us make some general
remarks to give the reader a better feeling for the different cases. The type I are the
class of finite distance boundaries, while the others are an infinite distance away when
measuring in the moduli space metric. The most famous example of a type I boundary is
the conifold point [42–44]. The type II boundaries signal the presence of a K3 fibration in
the mirror geometry [45] and are thus relevant for the geometric engineering of Seiberg-
Witten theories [24, 25]. Type III boundaries signal the presence of an elliptic fibration at
large complex structure, but cannot occur in other regions in moduli space for h2,1 < 3.
Consequently, they remain less well studied (at least in the context of flux vacua) due to
the increased complexity of even the simplest occurrence away from LCS. The remaining
type IV boundaries can be further separated into two groups. On one side there are the
well known large complex structure (LCS) points, which are the most studied due to their
relatively simple form of their periods and the relevance for mirror symmetry. On the
other side there is the group of the so called coni-LCS boundaries, which have recently
been studied by [9, 10] in the context of flux compactification.

One of the main findings in [7] is that asymptotic Hodge theory requires the presence of
instanton terms ar1...rn when considering boundaries that are not of large complex structure
type. This argument uses the fact that the derivatives of the period vector of Ω should
span the complete three-form cohomology H3(Y3,C). At large complex structure it suffices
to consider the descendants a0, Nia0, NiNja0, NiNjNka0 of the perturbative term, but for
other boundaries it was shown that this set of vectors does not span a 2(h2,1+1)-dimensional
space. To reconcile this issue we have to include a finite number of terms ar1···rn in the
expansion (2.13), which we therefore refer to as essential instantons.

In order to make the necessity of these essential instantons clear from a physical per-
spective, it is instructive to study the Kähler metric. In this context one needs the Käh-
ler metric to be non-degenerate in order to have properly defined kinetic terms in the
four-dimensional effective action. By inserting the expansion (2.13) back into the Kähler

– 7 –



J
H
E
P
0
2
(
2
0
2
3
)
1
4
9

potential (2.4), we can split the contributions from the periods into two parts

Kcs = − log[Kpol +Kinst] , (2.15)

with

Kpol = i〈ā0, e
2iyiNia0〉 , Kinst =

∑
ri,si≥0

e−2π[yi(si+ri)+ixi(si−ri)]i〈ār1...rn , e
2iyiNias1...sn〉 ,

where the sum runs over integers ri, si ≥ 0 with either ri 6= 0 or si 6= 0. This parti-
tion separates the purely polynomial terms in the Kähler potential from the exponentially
suppressed terms. The crucial observation is now that the perturbative metric resulting
from the polynomial part Kpol can be degenerate, i.e. it has a vanishing eigenvalue. For
example at the conifold point one finds that Kpol is simply a constant, and therefore the
Kähler potential depends on the complex structure moduli only through the exponentially
suppressed part Kinst. Furthermore, this degeneracy of the perturbative Kähler metric is
not restricted to such finite distance boundaries, but also arises at certain infinite distance
boundaries, e.g. the class of Seiberg-Witten points we consider in section 3.2. For these
infinite distance class boundaries one finds that Kpol is at most linear in the saxions, and
one can straightforwardly show that this linear behavior results in a degenerate Kähler
metric for two or more moduli, as demonstrated below with (2.17).

One important sidenote we should make is that a non-degenerate Kähler metric only
requires the first derivatives of Ω to span a h2,1-dimensional space for H2,1(Y3,C), but
higher-order derivatives relevant for H1,2(Y3,C) and H0,3(Y3,C) are not needed. Therefore
the mathematical notion of completeness that requires the derivatives of Ω to span the
three-form cohomologyH3(Y3,C) leads to a larger set of essential instantons than just those
required by the Kähler metric. In other words, the Kähler metric generically only explains
the presence of a subset of the essential instantons, which we will refer to as metric-essential.

To illustrate this discussion on metric-essential instantons, let us consider a simple
two-moduli example. We borrow the Kähler potential (3.12) that describes the asymptotic
regime near a type II point, which will be studied in more detail later. Its polynomial part
reads

Kcs
pol = − logKpol = − log[y1 + n2y2] . (2.16)

By making a holomorphic change of variables (t′1, t′2) = (t1 + n2t2, n2t1 − t2) one easily
checks that the dependence on y′2 drops out. We can equivalently see this degeneracy by
explicitly computing the Kähler metric

Kij̄ = 1
(y1 + n2y2)2

(
1 n2
n2 (n2)2

)
. (2.17)

Its determinant vanishes, so taking just (2.16) as Kähler potential leads to ill-defined kinetic
terms for the complex structure moduli in this asymptotic regime. To be more precise, the
eigenvector (1, n2) has a polynomial eigenvalue, while (n2,−1) has a vanishing eigenvalue.
By requiring the presence of exponential corrections to (2.16) we can cure this degeneracy,
resulting in an exponentially small eigenvalue for (n2,−1) instead. These corrections are
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precisely the metric-essential instantons which are included in the Kähler potential by Kinst
in (3.12).

We next turn to the flux superpotential (2.7). Similar to the Kähler potential we can
use the expansion (2.13) for the periods, and separate the terms in the superpotential into
two parts

W = Wpol +Winst ,

Wpol = 〈G3 , e
tiNia0〉 , Winst =

∑
ri

e2πirit
i〈G3 , e

tiNiar1···rn〉 ,
(2.18)

where the sum over ri runs over at least one ri 6= 0. Similar to the expansion of the
Kähler potential (2.15), essential instantons in the periods can play an important role for
the superpotential, meaning one cannot drop all terms in Winst near the boundary. For
instance, one can find that some flux quanta only enter the superpotential through Winst,
as is the case for the class of Seiberg-Witten boundaries considered in section 3.2.

Finally, let us get to the asymptotic behavior of the scalar potential (2.8). This is most
easily understood by using the formulation in terms of the Hodge star operator, since its
near-boundary behavior is relatively simple compared to the F-terms of the above super-
potential. By performing a near-boundary expansion for the Hodge star one finds a leading
polynomial piece and subleading exponential corrections, similar to our previous approxi-
mations. However, a crucial observation about this asymptotic behavior is that the polyno-
mial part of the Hodge star operator is already non-degenerate. In contrast to Kähler poten-
tial (2.15), one can therefore safely drop exponential corrections to the Hodge star without
losing essential information. Furthermore, the non-degeneracy of the polynomial Hodge
star means that all fluxes will enter in the scalar potential already at polynomial order.

This last observation appears to be in contradiction with our study of the superpoten-
tial (2.18) at first sight, since from this perspective we found some fluxes that only appears
at exponential order. In order to resolve this seeming conundrum it is instructive to recall
that the scalar potential (2.8) is computed by contracting the inverse Kähler metric KIJ̄

with covariant derivatives of the superpotential DIW and its conjugate. Now if the poly-
nomial Kähler metric is degenerate, then essential corrections in Kinst resolve this singular
behavior, yielding exponentially small eigenvalues. Conversely, one finds that the inverse
Kähler metric must have some exponentially large eigenvalues. For the scalar potential
this means that the scaling of essential exponential corrections in DIWinst is cancelled
off by these eigenvalues of the inverse Kähler metric KIJ̄ , such that all fluxes appear at
polynomial order. In other words, these exponential terms in the superpotential produce
polynomial terms in the scalar potential, so these essential corrections in Winst cannot be
dropped at the leading perturbative level.2

2Similar to the sidenote on the Kähler metric, only metric-essential corrections needed to span
H2,1(Y3,C) with derivatives of Ω are relevant for the superpotential. Other essential instantons do produce
exponentially suppressed terms in the scalar potential, and can therefore be ignored at the perturbative level.
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2.3 Engineering vacua with small W0

We now lay out our strategy for engineering vacua with a small flux superpotential. This
construction relies on first searching for solutions to the F-term equations coming from the
polynomial periods Πpol and supplementing them accordingly with constraints involving es-
sential instantons in order to stabilize all moduli. As a result we will haveWpol = 0 and con-
sequently an exponentially small vacuum superpotential W0. This procedure is then explic-
itly applied to the one- and two-moduli type II models in sections 3.1 and 3.2 respectively.

Let us begin by writing down the relevant extremization conditions at polynomial level
for our flux vacua. As we want to engineer vacua with an exponentially small superpoten-
tial, we require the polynomial part in the expansion of the superpotential (2.18) to vanish

Wpol
∣∣
∗ = 0 , (2.19)

where we used a star to denote the evaluation of moduli at their vevs. At the polynomial
level of the superpotential the vanishing F-term constraints (2.9) can then be written as

〈F3 − τ∗H3, e
ti∗NiNaa0〉 = 0 , 〈H3, e

ti∗Nia0〉 = 0 , 〈F3, e
ti∗Nia0〉 = 0 . (2.20)

The first set of equations follows from ∂aWpol
∣∣
∗ = 0, while the latter two follow from

∂τWpol
∣∣
∗ = 0. Note that we replaced the covariant derivative by a partial derivative for all

constraints since Wpol
∣∣
∗ = 0 for the flux vacua we are interested in.

It is important to stress that these polynomial level conditions (2.20) do not suffice to
obtain the vacua of the scalar potential. The vectors Naa0 can be parallel or even vanishing
resulting in a insufficient set of F-term conditions at the polynomial level. Another way to
observe this is by looking at the scalar potential Vpol obtained from the complete V defined
in (2.8) by dropping all exponentially suppressed corrections in the final expression. We
now look for a combination φ of moduli that is not constrained by the condition (2.20). If
such an unfixed direction φ exists, two possibilities can occur:

(1) The direction φ is a flat direction of the polynomial scalar potential Vpol. This implies
that φ is massless at polynomial order, but might obtain an exponentially small mass
upon including either essential or non-essential instanton corrections.

(2) The direction φ is not a flat direction of the polynomial scalar potential Vpol, but
rather has a mass term already at polynomial order. This implies that their mass
term must arise from metric-essential instantons correcting the periods.

Let us comment on these two cases in turn. First, note that for case (1) the field t∗ not
appearing in Vpol might still be stabilized after including instanton corrections. If non-
essential instantons are used in order to ensure the stabilization one needs to check if
such corrections are actually present for a given Calabi-Yau geometry and implement an
appropriate stabilization scheme, such as a racetrack potential. To make this concrete in
explicit examples was one of the successes of [8–10]. In particular, it was shown that this
can be done at large complex structure point in [8]. While there are no essential instantons
in this asymptotic limit, it is well-known that generically instanton corrections arise and
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contribute to the superpotential. Second, we note that realization of case (2) is primarily
dependent only on the type of asymptotic regime, since we have a systematic classification
in which asymptotic regime certain essential instanton corrections have to be present. One
has thus a stabilization mechanism that is independent of the actual Calabi-Yau geometry
that realizes this limit. In the following we will focus on case (2) and explain in detail how
such situations can be engineered.

To gain a better understanding of what happens in case (2), let us note that such
vacua exactly arise if the polynomial part of the Kähler potential Kpol yields a degenerate
Kähler metric, i.e. when the full Kähler metric has exponential eigenvalues. To see this
we recall from the discussion below (2.18) that such a Kähler metric allows exponentially
suppressed contributions in the F-terms to enter the scalar potential (2.8) at polynomial
order. Hence, the stabilization of the moduli at polynomial order requires a more careful
treatment of the complete F-terms supplementing (2.20) by additional constraints coming
from metric-essential instantons.

Let us outline an approach to read off these additional constraints by a more careful
treatment of the F-terms. The exponentially suppressed contributions in the F-terms
appear in the polynomial scalar potential through exponential eigenvalues of the Kähler
metric, so it is convenient to expand DIW in an eigenbasis for the Kähler metric. The
eigenvectors relevant for the supplementary constraints then have a vanishing eigenvalue
under the polynomial part of the Kähler metric

(∂i∂̄̄ logKpol)V j = 0 , (2.21)

For boundaries with a linear Kpol such as in section 3.2 these eigenvectors V i will always
be independent of the saxions, but for more general boundaries this need not be the case.
Letting ar1···rn denote the essential instanton term corresponding to a given eigenvector
V i, then the relevant F-term constraint can be written as

V iDiW = V i∂iWinst = e2πirit
i〈F3 − τ∗H3, V

i(2πiri +Ni)et
i
∗Niar1···rn〉 = 0 , (2.22)

where we used that V i∂iWpol = 0, and replaced the covariant derivative by a partial
derivative because V iKcs

i Winst is subleading in the instanton expansion. Furthermore, note
that we dropped correction terms subleading compared to the essential instanton ar1···rn .
The complete set of extremization conditions to stabilize the moduli at polynomial order
of the scalar potential is then given by (2.20) and as many equations of the form (2.22) as
there are metric-essential instantons. Since the exponential factor in (2.22) is simply an
overall factor, this yields a system of polynomial equations in the moduli.3

An interesting feature of the vacua constructed according to the above scheme is a
natural hierarchy of mass scales. All moduli are stabilized by the polynomial part of the
scalar potential, so the eigenvalues of the hessian ∂I∂JV will be polynomial as well. Recall
that the inverse Kähler metric either has polynomial or exponentially large eigenvalues, and

3This polynomial structure of the extremization conditions is natural from the perspective of the self-
duality condition (2.10). The dependence on the complex structure moduli then enters through the Hodge
star operator, whose polynomial part is already non-degenerate as discussed below (2.18).
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that the canonically normalized masses are then computed as the eigenvalues ofKIC∂C∂JV .
This means that the moduli masses take polynomial or exponentially large values in the vevs
of the saxions. Either way, this separates the mass scale of the complex structure moduli
and the axio-dilaton from the exponentially small scale of |W0|2. This hierarchy makes
our flux vacua particularly attractive from the perspective of the KKLT scenario [4], since
it allows one to consistently integrate out the complex structure and axio-dilaton sector
before dealing with the Kähler moduli. This point separates our construction from other
findings [8–10], where the mass of the lightest complex structure modulus was of the same
scale then |W0|2, requiring a more refined analysis.

We end this general discussion by commenting on the application of our procedure
near the different types of boundary points.

• Given a type I point our method does not work. Roughly speaking, this is due to the
fact that there is too little information contained in the polynomial piece of the period
vector and as a consequence there is not enough freedom in the fluxes to stabilize all
moduli at the polynomial level of the scalar potential as a result. We elaborate on
this point in appendix A.

• Near type II points, we have a polynomial Kähler potential that is at most linear in the
complex structure moduli, which makes it the simplest and most natural candidate
for our procedure. In section 3.1 and 3.2, we explicitly apply our method to the one
and two moduli cases respectively.

• A type III point does not occur in complex structure moduli spaces of dimension less
than three. As the models developed in [7] only had a maximum of two moduli, we
did not have an explicit realization of this scenario at our disposal. There is, however,
no obvious reason for which the construction should not go through in that case.

• For a type IV there are two possibilities. The first is that it is a large complex
structure point: in this case there are no essential exponential corrections, so our
method would not work. At two moduli and higher, however, there are also type IV
points of coni-LCS type, where one modulus is sent to a conifold locus in the moduli
space instead. For two moduli our method still does not work however, because there
is only one LCS modulus. The reason is that this single LCS modulus should be
stabilized first with a vanishing superpotential (up to exponential corrections), but
this is only possible for two LCS moduli or more, cf. [8]. It would be interesting
to investigate three-moduli models with two complex structure moduli at LCS, and
compare our methods with the constructions of [9, 10] at coni-LCS boundaries.

3 Explicit models

In this section we illustrate our method for finding flux vacua with exponentially small
superpotentials by studying one- and two-moduli boundaries in complex structure moduli
space. Our search uses asymptotic models for the periods near these boundaries constructed
in [7], and we refer the reader to this work for more details about their construction and

– 12 –



J
H
E
P
0
2
(
2
0
2
3
)
1
4
9

conventions. We emphasize that, since all possible one- and two-moduli boundaries have
been classified [7, 21, 22], this construction yielded an exhaustive set of asymptotic periods.
For completeness let us recall some aspects of this classification. For one modulus, we can
have three main types I, II, IV at point-like boundaries. In the two-dimensional case the
picture already becomes richer, since two one-dimensional boundaries can intersect in a
point. At this intersection point again only the three types I, II, IV can occur. If this type
is IV, then there are two classes of intersections: (1) the familiar large complex structure
cases, (2) the so-called coni-LCS cases. Near both of these intersections exponentially small
superpotentials have already been constructed by considering specific geometric examples
in [8–10]. We refer to these works for a detailed treatment. This leaves us with the
intersections where one encounters the types I or II at the intersection point. The Type I
boundaries are at finite distance and we will discuss in appendix A that one cannot stabilize
all moduli at the level of the polynomial scalar potential in these situations. This implies
that we would need to include further non-essential instanton corrections to stabilize a
remaining polynomially flat direction. This leaves us with the class of II boundaries,
and we investigate how to engineer exponentially small vacuum superpotentials near these
boundaries in the following.

3.1 One-modulus asymptotic region near a type II point

We start with the simplest case, namely the one-modulus asymptotic regions that are
near type II boundaries. These have already been systematically studied in the math
literature [46], and such boundaries correspond to so-called Tyurin degenerations. The
period vectors near these boundaries have been computed for an explicit example in the
physics literature in [47], and general models for these periods including essential instantons
have been constructed in [7]. Using the results from the latter, we find that the Kähler
potential (2.15) takes the form

Kpol = 4y , Kinst = 4a2(1 + πy)
π

e−4πy , (3.1)

where a ∈ R 6=0 is some model-dependent coefficient that controls the essential instanton
term and we have dropped all the non-essential instanton corrections. The polynomial and
exponential parts of the flux superpotential take the respective forms

Wpol = −g3 − ig4 + (g1 + ig2)t ,

Winst = a e2πit
(
t− 1

πi

)
(g1 − ig2)− a e2πit(g3 − ig4) ,

(3.2)

where the gi = fi − τhi are the components of the three-form fluxes with τ = c + is

being the axio-dilaton. We now proceed to stabilizing the moduli at the polynomial level.
The vanishing F-term conditions for the polynomial part of the flux superpotential can
conveniently be written as

yDtWpol − sDτWpol = (f1 + if2)y − (h3 + ih4)s = 0 ,
yDtWpol + sDτWpol = −i(f3 + if4)− i(h1 + ih2)sy = 0 ,

(3.3)
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where we dropped exponentially suppressed terms and set the axions to zero, i.e. c = x = 0.
We chose not to impose Wpol = 0 at first, leaving us with the full covariant derivatives at
polynomial level in the above extremization conditions. The solution to these constraints
is given by

s =
√
− f1f3
h1h3

, y =
√
−f3h3
f1h1

, f2h3 = f1h4 , f4h1 = f3h2 , (3.4)

where we require f1/h3 > 0 and f3/h1 < 0 in order to get positive values for the saxions.
Plugging this solution back into the superpotential (3.2) we find that Wpol = 0 holds when

h2 = −f1

√
−h1h3
f1f3

, h4 = −f3

√
−h1h3
f1f3

. (3.5)

Implementing the constraints (3.4) and (3.5), we obtain flux vacua that have Wpol = 0.
Thus, the scale of the superpotential is set by

|W0| ∼ |eKpol/2Winst| ∼ e−2πy = exp
(
− 2π

√
−f3h3
f1h1

)
. (3.6)

We want to emphasize that the exponentially small scale of the superpotential is set by an
essential instanton term that is required by consistency of the theory, i.e. the coefficient
a cannot vanish for any geometric example. Furthermore, we can now relate the saxion
masses and their vevs to the tadpole. The latter takes the form

QD3 = f1h3 − f3h1 . (3.7)

Computing the masses from the scalar potential as the eigenvalues of Kac∂c∂bV we find
that they are given by the compact expression

m2
t = m2

τ = 1
V2 (f1h3 − f3h1) = QD3

V2 , (3.8)

where m2
t ,m

2
τ denote the canonically normalized moduli masses associated with the com-

plex structure modulus and the axio-dilaton respectively. Let us also stress that this one-
modulus case is rather non-generic as there are no metric-essential instantons required,
which have to be present in the multi-moduli case as we will see below. Furthermore, the
saxion vev y is bounded from above by the tadpole as

y ≤ 2(f1h3 − f3h1) = 2QD3 , (3.9)

which is saturated for f3 = h3 and f1 = h1 = 1. As the scale of |W0| is set by e−2πy, we
cannot make it arbitrarily small by tuning the vev of the saxion y, i.e.

|W0| & e−2πQD3 . (3.10)

To be more concrete, we consider a specific set of fluxes that satisfy the above equations.
Given H3 = (−1,−2, 4,−2) and F3 = (8,−4, 8, 16), we find that

s = 4 , y = 2 , |W0| ∼ e−4π , m2
t = m2

τ = QD3 = 40 , (3.11)

where we dropped the volume factor 1/V2 in the masses for convenience.
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3.2 Two-moduli asymptotic region near a type II point

Next we consider the more involved class of two-moduli boundaries that intersect on a
type II point. Such asymptotic regions are realized, for example, in the moduli space
of the Calabi-Yau threefold in P1,1,2,2,6

4 [12] near a Seiberg-Witten point [24, 25, 48, 49].
Using the asymptotic model from [7], we find that the Kähler potential (2.15) near these
boundaries takes the form

Kpol = 4(y1 + n2y2) ,

Kinst = −2a2e−4πy2

(
n1y1 + y2 + 1− n1n2

2π

)
− 2n2b

2e−4πy1

(
n2(n1y1 + y2)− 1− n1n2

2π

)
− 4abe−2πy1−2πy2

(
n2(n1y1 + y2)− (1− n2)(1− n1n2)

4π

)
cos(2π(x1 − x2))

+ 4|c|2e−4π(m1y1+m2y2)
(
y1 + n2y2 + 1/m1π

)
, (3.12)

where a, b ∈ R, c ∈ C (with a, b 6= 0 or a, c 6= 0) and n1, n2 ∈ Q≥0 are model-dependent
parameters that control the essential instanton terms. The instanton orders m1,m2 are
furthermore fixed to be the smallest integers satisfying m2 = n2m1, with m1 ≥ 0. The
polynomial and exponential parts of the flux superpotential take the respective forms

Wpol = (g1 + ig2)(t1 + n2t2)− (g4 + ig5) ,

Winst = −a e2πit2
(
g3

(
n1t1 + t2 −

1− n1n2
2πi

)
+ g6

)
− b e2πit1

(
g3

(
n2(n1t1 + t2) + 1− n1n2

2πi

)
+ n2g6

)
(3.13)

+ c e2πim1t1e2πim2t2

((
t1 + n2t2 + i

m1π

)
(g1 − ig2)− (g4 − ig5)

)
+O(e−4πy) ,

Let us already point out that the polynomial part of the Kähler potential and flux superpo-
tential is very similar to those of the one-modulus II0 boundaries given in (3.1) and (3.2),
for which we only need to replace t by t1 +n2t2 and relabel some of the fluxes. By comput-
ing the Kähler metric for (3.12) one sees that Kpol yields a degenerate polynomial metric,
as elaborated upon below (2.17) . This degeneracy is cured by the exponentially sup-
pressed term involving a2 in Kinst, which therefore is a metric-essential instanton. Note
that the essential instanton term involving b can also cure this degeneracy unless n2 = 0.
The instanton term involving c it is never essential for the metric, and we will find that it
therefore drops out of our search for flux vacua in the following.

Now let us turn to the extremization conditions that have to be solved. The vanishing
F-term conditions can conveniently be written as

(y1 + n2y2)Dt1W − sDτW = (y1 + n2y2)(f1 + if2)− s(h4 + ih5) = 0 ,
(y1 + n2y2)Dt1W + sDτW = −if4 + f5 + s(y1 + n2y2)(−ih1 + h2) = 0 ,

n2Dt1W −Dt2W

2π(ae−2πy2 − n2
2be
−2πy1) = if6 + sh6 − (n1y1 + y2)(f3 − ish3) = 0 .

(3.14)
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The first two conditions take a similar form as (3.3) found near one-modulus II boundaries,
where the saxion y is now replaced by the linear combination y1 +n2y2 and some fluxes are
relabeled. Proceeding in the same fashion as the one-modulus setup, these two equations
fix the saxions y1 + n2y2 and s, and furthermore impose two relations on the fluxes that
ensure their axionic partners have vanishing vevs

y1 + n2y2 =
√
−f4h4
f1h1

, s =
√
− f1f4
h1h4

, f2h4 = f1h5 , f5h1 = f4h2 , (3.15)

where we require f1/h4 > 0 and f4/h1 < 0 in order to get sensible values for the saxions.
The relevance of the third equation in (3.14) is a bit more subtle. While this F-

term is exponentially suppressed, it does contribute to the polynomial part of the scalar
potential, in line with our discussion at the end of section 2.2. This can be seen by carefully
inspecting the Kähler potential (3.12), which yields a Kähler metric with an exponentially
small eigenvalue for the eigenvector (n2,−1). This scaling then cancels against the scaling
of the F-term when computing the scalar potential through (2.8), hence contributing at
polynomial order. Therefore we must require the third F-term given in (3.14) to vanish as
well, which is solved by

n1y1 + y2 =
√
−f6h6
f3h3

, f3f6h1h4 = f1f4h3h6 . (3.16)

where we must require f3/h6 > 0 and f6/h3 < 0 to have positive saxion vevs compatible
with the positivity conditions given below (3.15).

Together (3.15) and (3.16) specify all vacua (with vanishing axion vevs) of the poly-
nomial scalar potential arising from the flux superpotential (3.13). We are interested in
constructing vacua with Wpol = 0, which amounts to additionally imposing

h2 = −f1

√
−h1h4
f1f4

, h5 = −f4

√
−h1h4
f1f4

. (3.17)

It is now instructive to compare the scale of the moduli masses and the vacuum superpo-
tential again with the D3-brane tadpole. The tadpole contribution due to the fluxes can
be split into two parts as

QD3 = f1h4 − f4h1︸ ︷︷ ︸
Qpol

D3

+ 1
2(f3h6 − f6h3)︸ ︷︷ ︸

Qinst
D3

, (3.18)

where we separated the fluxes that appear in the superpotential (3.13) at polynomial order
from the fluxes that enter at exponential order. From the positivity conditions on the
fluxes given below (3.15) and (3.16) we see that all terms in the contributions Qpol

D3 and
Qinst

D3 are positive. For the canonically normalized masses of the moduli we then compute
the eigenvalues of Kac∂c∂bV and find that

m2
τ = m2

t1+n2t2 = f1h4 − f4h1
V2 = Qpol

D3
V2 ≤

QD3
V2 , (3.19)
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where we dropped the overall volume factor 1/V2 for convenience. We do not write down
the mass associated with the modulus n2t1−t2 here, but note that it takes an exponentially
large value in the fluxes, since this field corresponds to an exponential eigenvalue of the
Kähler metric.

For the scale of the vacuum superpotential we need to study the saxion vevs. By
using (3.15) and (3.16) we find the following two bounds through the D3-brane tadpole

y1 + n2y2 ≤
1
2Q

pol
D3 , n1y1 + y2 ≤ Qinst

D3 (3.20)

which are saturated for f1 = h1 = 1, f4 = −h4 and f3 = h3 = 1, f6 = −h6 respectively.
The vacuum superpotential is then set by the smallest saxion vev as

|W0| ∼ e−2πmin(y1,y2) ≥ e−2πQD3 . (3.21)

Given both this bound on the vacuum superpotential and (3.10) in the one-modulus setup,
it is tempting to speculate that |W0| can be bounded from below by the D3-brane tadpole
near any type II point, also in higher-dimensional moduli spaces. In light of the tadpole
conjecture [50, 51] this hints at an interesting tradeoff. Recall that the allowed tadpole
charge QD3 grows linearly with the number of moduli, as can be seen straightforwardly in
the F-theory setup, cf. [50]. For a geometry with large h2,1 this would indicate that smaller
values for |W0| can be achieved. On the other hand, the tadpole conjecture suggests that
for such geometries one cannot stabilize all moduli while satisfying the tadpole bound.
The catch would thus be that, while a larger h2,1 would increase QD3 and thereby decrease
|W0|, the tadpole conjecture predicts that there remain some flat directions.

To make the above story more concrete, let us consider the Seiberg-Witten point in
the moduli space of the Calabi-Yau threefold in P1,1,2,2,6

4 [12] as an example. Following [7],
we find that this boundary corresponds to the monodromy data n1 = 0, n2 = 1/4. As flux
quanta we pick

F3 = (−4,−8, 10, 16,−8,−8) , H3 = (−2, 1, 1,−2,−4, 5) . (3.22)

The scalar potential then has a minimum at

s = 4 , y1 = 1.5 , y2 = 2 , |W0| = 7.3 · 10−5 , (3.23)

where we used that b = −4Γ(3/4)4/(
√

3π2) and c = 0, and ignored the coefficient a in the
expansion of the superpotential (3.13) since e−2πy1 � e−2πy2 . The canonically normalized
moduli masses are then computed to be

m2
n2t1−t2 = 1.3 · 1010 , m2

t1+n2t2 = m2
τ = 40 = Qpol

D3 , (3.24)

where we dropped the volume factor 1/V2 in the moduli masses for convenience. Note in
particular that there is one exponentially large mass, which corresponds to the eigenvector
of the Kähler metric with an exponential eigenvalue. Furthermore, all moduli masses are
orders of magnitude larger than the exponentially small |W0|2.
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4 Conclusions

In this paper, we described the systematic construction of Type IIB flux vacua with an
exponentially small vacuum superpotential using recent insights from asymptotic Hodge
theory. It is based on the fact that all asymptotic regions in complex structure moduli
space can be classified [21] and that general models for asymptotic period vectors can be
constructed in each of these regions [7]. Crucially, this can be done without reference to a
specific geometric realization and therefore gives a powerful tool to do model-building by di-
rectly manipulating the geometry of the moduli space. A crucial aspect of this construction
is that the inclusion of what we called essential instantons is important in most asymptotic
regimes. These appear as exponential corrections to the polynomial part of the periods
and are required by the general statements of asymptotic Hodge theory. Their presence is
also of physical significance, since they ensure, for example, that the kinetic terms of the
complex structure moduli are non-degenerate and positive. In this work we have shown
how essential instanton corrections can be the crucial ingredient in obtaining vacua with
an exponentially small superpotentials and a hierarchy in the mass matrix of the moduli.

A first takeaway of our approach to constructing flux vacua is that there is a concep-
tual difference in whether the exponentially small value of the superpotential is induced by
essential or non-essential instantons. Non-essential instantons are not required by consis-
tency, but are well-known to arise in most known explicit geometric examples. They have
been central in the flux superpotential constructions of [8–10] and lead to mass matrices
with exponentially small eigenvalues. In contrast, we showed that the exponential terms
induced by essential instantons in the superpotential and Kähler potential can combine
to contributions to the scalar potential that enter at polynomial level. In fact, a special
subset of these instantons, which we termed metric-essential since they ensure the non-
degeneracy of the moduli metric, necessarily leads to such polynomial corrections in the
scalar potential. Remarkably, we were thus able to study moduli stabilization at polyno-
mial level and an exponentially small vacuum superpotential with the control provided by
asymptotic Hodge theory.

To concretely demonstrate how our method works we explicitly applied it to one- and
two-dimensional complex structure moduli spaces by singling out a certain set of boundaries
and associated asymptotic regions within in the classification of all occurring possibilities
of [21]. The considered asymptotic regions were close to a Type II point in both the one- and
two-dimensional moduli spaces, i.e. we assumed that boundary of the highest co-dimension
is of this specific type. We showed that in one- and two-dimensional moduli spaces this
is a sufficient condition for implementing an exponentially small vacuum superpotential
controlled by essential instantons and suspect that this conclusion also generalizes to higher-
dimensional moduli spaces. In the considered low-dimensional examples we have already
observed some interesting features of these models. Firstly, we have seen that starting
at dimension two the moduli metric always has exponentially small eigenvalues, while the
scalar potential can still depend polynomially on the same field. This universal feature of
Type II points in moduli space is only absent for the one-dimensional moduli spaces, which
are known to be special also from other perspectives [27]. Secondly, for both one- and two-
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dimensional moduli spaces, we have found that one complex structure modulus and the
axio-dilaton are stabilized at polynomial order and have a mass of the same order. Thirdly,
we have shown that in the considered cases there is a simple bound on how small |W0| can be
made. It is expected that such a bound exists due to the finiteness of flux vacua [34, 52],
but it is interesting that one can show that this bound is set by the exponential of the
negative tadpole charge. Concluding this summary, let us note that we expect that most
of these observations can also be established for higher-dimensional moduli spaces.

Let us stress that our approach is of particular use in the realization of certain moduli
stabilization scenarios, such as the KKLT scenario. The metric-essential instantons pro-
vide mass to the complex structure moduli that is naturally larger than the mass scale of
the non-perturbatively stabilized Kähler structure moduli. This avoids the complications
arising from dealing with a very light complex structure modulus. However, we note that
it is a general feature of the outlined scenario in moduli spaces with h2,1 > 1 that one finds
at least one complex structure modulus that gains an exponentially large mass after canon-
ical normalization. This is due to the fact that the moduli metric admits an exponentially
small eigenvalue set by the metric-essential instantons. It needs to be ensured that the
mass of this field is still sufficiently below the Kaluza-Klein scale to make our considera-
tions self-consistent. One can then aim at implementing an exponentially small vacuum
superpotential by including the outlined stabilization scheme as a building block in a more
extensive setting. For example, one can stabilize a number of the complex structure moduli
near a Type II boundary and use the essential instantons to control the superpotential.
We expect that this can be done for explicit geometric Calabi-Yau examples or abstractly
by using Hodge theory techniques. In either approach the described building block can be
part of a general asymptotic moduli stabilization scheme put forward in [31, 53].

There are numerous interesting questions for future research that might be answered
using the general understanding of the asymptotic complex structure moduli space. Most
immediate is to explore how our construction of flux vacua near Type II points extends
to higher-dimensional moduli spaces and more involved boundary configurations. In par-
ticular, while we have presented arguments that our construction does not work for finite
distance boundaries, there are more possibilities for infinite distance boundaries other than
Type II and the large complex structure boundaries. For example, in higher-dimensional
moduli spaces one can find novel Type III boundaries that cannot occur in complex struc-
ture moduli spaces of dimension less than three. Furthermore, there are also so-called
coni-LCS boundaries, which roughly speaking arise when a finite distance boundary meets
an infinite distance boundary. For those our method requires also at least three moduli in
order to have enough freedom to stabilize moduli at the polynomial level. This fact ties
nicely together with the recent construction of flux vacua near such boundaries in the three
moduli setting that have been proposed in [9, 10]. The most direct way to make progress
on more general configurations is to extend the construction of asymptotic periods in [7]
and then use them to study flux vacua. Alternatively one can aim to apply the asymptotic
Hodge theory techniques directly to the scalar potential as in [31, 53], but this requires one
to develop an efficient strategy to gain information about the superpotential.
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Let us close by stressing that the constructions of this work were carried out for
Calabi-Yau threefolds with an understanding that an orientifold involution still needs to
be implemented to obtain a minimally supersymmetric effective theory. A more elegant way
to directly obtain an N = 1 effective theory is to consider F-theory compactifications on
elliptically fibered Calabi-Yau fourfolds. Remarkably, the used asymptotic Hodge theory
methods are equally applicable to these higher-dimensional manifolds. In fact, we expect
that these methods open the way to study interesting moduli stabilization schemes for
F-theory as recently demonstrated in [31, 37] and [54]. We believe that this novel way of
studying F-theory flux vacua sets us on the track to understand the structure of the flux
landscape, sidetracking the fact that only a sparse number of explicit period computations
for Calabi-Yau fourfolds has been performed.
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A Flux vacua near finite distance points

In this appendix we study flux vacua with exponentially small superpotentials near finite
distance boundaries in complex structure moduli space, i.e. type I points. We explain
that the strategy laid out in section 2.3 does not stabilize all moduli for such boundaries,
and exponential corrections to the polynomial scalar potential Vpol are needed to lift flat
directions.

Let us begin by inspecting the constraints put by the vanishing of the polynomial
superpotential and the F-term of the axio-dilaton τ at the vacuum. These conditions
together can be conveniently rewritten as

〈F3, Πpol
∣∣
∗〉 = 0 , 〈H3, Πpol

∣∣
∗〉 = 0 . (A.1)

Recall now that we can expand these polynomial periods as Πpol = et
iNia0, and subse-

quently use that Nia0 = 0 for type I points, giving Πpol = a0. It then follows that the
polynomial part of the superpotential vanishes identically, i.e. for any values of the axio-
dilaton and the complex structure moduli we must have

Wpol = 〈F3 − τH3, a0〉 = 0 , (A.2)

since both 〈F3, a0〉 = 0 and 〈H3, a0〉 = 0. Note that requiring DτWpol = 0 for these vacua
thus only imposes a constraint on the fluxes F3 and H3, and in particular does not fix any of
the moduli. Furthermore, corrections to this F-term through DτWinst only enter the scalar
potential (2.8) at exponential order, since Kτ τ̄ is polynomial in the fields. In contrast,
metric-essential instantons cause the inverse Kähler metric Kij̄ to have h2,1 exponentially
large eigenvalues for finite distance boundaries, so the complex structure moduli F-terms
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DiWinst do contribute to the polynomial scalar potential. The polynomial scalar potential
therefore reduces to

Vpol = 1
V2 e

KKij̄DiWinstDj̄W̄inst , (A.3)

where the indices i, j run only over complex structure moduli. The crucial observation is
now that the polynomial scalar potential is minimized by imposing DiWinst = 0. This yields
only h2,1 constraints on the complex structure moduli and axio-dilaton, leaving us with one
free modulus. In principle one can lift this flat direction by including exponential correc-
tions to the polynomial scalar potential Vpol. In fact, to some extent we have control over
these corrections, since non-metric essential instantons and DτWinst enter the scalar poten-
tial at exponential order. However, one might find that for instance non-essential instantons
compete with these corrections to the scalar potential. Furthermore, even if the effective
potential for this polynomially flat direction can be determined, the resulting extremization
conditions will be of a much more complicated form than the algebraic equations (2.20)
and (2.22) we encountered previously. For this reason we leave the search for flux vacua
with exponentially small superpotentials near finite distance boundaries to future work.
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