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Abstract: We study the expansion near roots of unity of the superconformal index of
4d SU(N) N = 4 SYM. In such an expansion, middle-dimensional walls of non-analyticity
are shown to emerge in the complex analytic extension of the integrand. These walls intersect
the integration contour at infinitesimal vicinities and come from both, the vector and chiral
multiplet contributions, and combinations thereof. We will call these intersections vector
and chiral bits, and the complementary region bulk, and show that, in the corresponding
limit, the integrals along the infinitesimal bits include, among other contributions, factorized
products of either Chern-Simons and 3d topologically twisted partition functions.

In particular, we find that the leading asymptotic contribution to the index, which comes
from collecting all contributions coming from vector bits, reduces to an average over a set of N
copies of three-dimensional SU(N) Chern-Simons partition functions in Lens spaces L(m, 1)
with m > 1, in the presence of background ZN−1

m flat connections. The average is taken over
the background connections, which are the positions of individual vector bits along the con-
tour. We also find there are other subleading contributions, a finite number of them at finite
N , which include averages over products of Chern-Simons and/or topologically A-twisted
Chern-Simons-matter partition functions in three-dimensional manifolds. This shows how in
certain limits the index of 4d SU(N) N = 4 SYM organizes, via an unambiguously defined
coarse graining procedure, into averages over a finite number of lower dimensional theories.
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1 Introduction and summary of results

In recent years, superconformal and topologically twisted indices [1–4] have been useful
tools to understand the statistical meaning of the Bekenstein-Hawking entropy of BPS
black holes in AdS4 [5] and AdS5 [6–8]. In AdS5/CFT4, an unrefined superconformal index,
denoted as I(q), has been useful to uncover many zero-temperature phases of SU(N) N = 4
SYM [9, 10]. These phases are detected in the so-called generalized Cardy or Cardy-like
limits of I(q) [9, 11, 12].

The index I(q) is a (−1)F graded (and protected) trace over a Hilbert space [1, 2]
only receiving contributions from states in the cohomology of two complex conjugated
supercharges. I(q) can be also recast as a multi-dimensional integral depending on a single
parameter q = e2πiτ [1–3]

I(q) =
∫ 1

0
dv1 . . .

∫ 1

0
dvN−1

N∏
i<j=1

I(vij , q) (1.1)

where vij := vi − vj , i, j = 1, . . . , N and vN := −∑N1
i=1 vi.1 There are two ways to

implement the generalized Cardy limits on I(q)

1) expand the integrand and integrate the result [7, 11, 13–19].

2) integrate and expand the result [9, 12, 20–22].2

Both approaches agree at very leading order in the expansions near roots of unity i.e.
both 1) [11] and 2) [24]3 predict a universal leading asymptotic expansion of the form

e
−(N2−1)

(
πi

27mτ̃2 + 2πi
9mτ̃

+πic0(m,n)+ 8πi
27m τ̃

)
K , τ̃ ≡ mτ + n , (1.2)

as τ → − n
m .4,5 The c-number K is a τ -independent contribution that in some cases,

e.g. m = 1 n = 0, is known to equal N .
We expect that there exists a relation between 1) and 2) beyond their matching at leading

order (1.2). Our expectation is that exponentially subleading corrections to (1.2) from ap-
proach 1) could turn out to be helpful in identifying previously unnoticed Bethe roots of (1.2)

1It is also a zero-temperature limit of a refined thermal partition function [10] which means that any
phase detected with it is expected to be detected as well in a specific zero-temperature limit of a refined
thermal partition function on which, simultaneously, the chemical τ is taken to a rational number. This has
been explained in details in [10].

2Many of these references focus on a single limit τ → 0. The generic limits τ → − n
m

have been studied
in [9, 11, 12, 23, 24]. Related discussions and results can be found in [25–35].

3See also the analysis presented in [10].
4This paper focuses on the limits τ → − n

m
for which m > 1, τ2 > 0, and mτ1 + n > 0. In these limits

the absolute value of e
− πi

27mτ̃2
− 2πi

9mτ̃ grows. This choice of limits corresponds to the selection of M -wings, in
the language of [22]. For the limits in the W -wings our conclusions would need to be modified. For example,
in such cases there could be logarithmic corrections of the form log(mτ + n) to the effective action as shown
in [22], and recently argued in [36]. In the Cardy-like limits we are studying such corrections are not present
in the leading exponential order (1.2) (They could be present in subleading exponential contributions, see
the following subsection). We thank A.A. Ardehali for a useful conversation regarding this point.

5The c0 is a real parameter depending on N , m, and n.
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at finite N , with a possible relevance in the holographically dual perspective. As a necessary
intermediate and less ambitious step, this project improves our understanding on exponen-
tially subleading contributions to the superconformal index from the perspective of 1).

1.1 Summary of the main results

Our main result is the definition of a coarse-graining procedure that reduces the supercon-
formal index to an expansion in averages over lower dimensional theories. We represent
such a reduction as

I(q) 7−→
τ→− n

m

∑
α

e
−πiP

(3)
α (m,n;τ)
m(mτ+n)2 ×N × (δ|mτ + n|)d1α × Z(α)

, (1.3)

where α labels families of 3d partition functions obtained by gluing 3d blocks. These
families include well known examples, such as Chern-Simons theories over Lens spaces L(p, 1)
with p ≥ 1, and topologically twisted theories in oriented circle bundles of degree p over
closed Riemann surfaces Σg of genus g [37, 38]. These families also include other more exotic
partition functions that correspond to coupled and decoupled products of 3d Chern-Simons
and topologically twisted partition functions. The study of these more general cases is
left for future work. Formula (1.3) together with (1.20) and (1.21) below, will be called
the master formula(s).

These sectors α should have a holographic or string-theory dual interpretation. For
instance one could say that in the limit τ̃ → 0 the SU(N) N = 4 SYM flows or coarse
grains into an effective theory associated to the leading sector α. If holography predicts the
existence of a semiclassical gravitational dual realization of the corresponding limit τ̃ → 0
at large N , then it is natural to expect that at large N the effective theory of subleading
contributions Zα could correspond to the effective theory of gravitational fluctuations
around the dual gravitational background. In the future, it would be very interesting
to interpret the topological degrees of freedom associated to the effective theory α as
gravitational or string-theory excitations around the large black holes that are known to
dominate the gravitational picture in the large-N expansion around τ ∼ 0. Doing so, lies
beyond the scope of this work.

The asymptotic map (1.3), which we will call coarse graining procedure from now on,
follows from the existence of an infinite set of identities of the form

I(vij) =
∏

∆∈
{

2τ, 2τ−n0
3 ,

2τ−n0
3 ,

2τ−n0
3

}
∆∼∆+1 and n0=−1,0,1 mod 3

e
−πi

R(3)(m,n)(vij+∆)
m(mτ+n)2

+L(m,n)
Γe (vij+∆) (1.4)

that can be applied to each one of the factors in the integrand of the index (1.1). These
identities are labelled by two integer co-primes m ≥ 1 and n.

The function R(3)(m,n)(z + ∆) is a piecewise third-order polynomial function of z,
and the L(m,n)

Γe (z + ∆) is a transcendental function that vanishes exponentially fast in the
expansion τ → − n

m for almost every complex z except for at a discrete set of middle-
dimensional sections in the z-complex plane. Although at such sections LΓe develops

– 2 –
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different limits from the left and right when τ → − n
m , the limit of LΓe at the sections is

well-defined and non-vanishing. The sections across which the discontinuities in the limit
τ → − n

m of LΓe emerge will be called walls.6
It should be noted that these discontinuities are cancelled by those coming from the

piecewise polynomial part R(3) as it follows from the fact that I(z) is not discontinuous in
the z-complex plane.7

The non-vanishing value of LΓe at the walls (when τ → − n
m) is recovered by the

semi-sums of its lateral limits, which we denote as L±Γe below, i.e.,

LΓe(wall + ∆) =
L+

Γe(wall + ∆) + L−Γe(wall + ∆)
2 . (1.5)

We remark that these ± limits are double limits in the sense that they include τ → − n
m and

one of the two limits z → wall±. We will show that these lateral limits are well-defined and
non-vanishing. In the particular cases ∆ = 2τmod1, which corresponds to contributions to
the integrand of the index coming from the N = 1 vector multiplet, a drastic simplification
happens. So, given this simplification we will branch the definition of walls in two: those
walls for which ∆ = 2τmod1, will be called vector walls, and those for which ∆ 6= 2τmod1s,
will be called chiral walls. The intersection of the vector and chiral walls with the contour of
integration [0, 1)rk(G) will be called vector (v) and chiral bits (c) or simply bits, respectively,
and the complementary region8 will be called bulk.

1.1.1 A contour decomposition and definitions

The coarse-graining procedure denoted with the symbol 7−→
τ→− n

m

in (1.3) can be understood

in various steps.
The first step is to define convenient m and n-dependent contour decompositions of

the superconformal index

I =
N−1∑
Nb=0

∑
λ̃∈Par(N−Nb−1)

λ∈Par(Nb)

symm(λ̃, λ)
∫
Mε(λ̃)

dx
( ∏
vij ’s in bits

I(vij)
)

×

∫
Mb(λ)

dy
∏

vij ’s in bulk
I(vij)

 .
(1.6)

For N = 3, this contour decomposition (1.6) is derived from scratch in appendix B.
The λ, λ̃ are ordered partitions of Nb < N and N −Nb − 1, respectively. The integer

symmetry factor
symm(λ, λ̃) 6= 0 if |l(λ)− l(λ̃)| ≤ 1 , (1.7)

will be computed only in a case by case basis. l(λ) is the length of the partition λ.9
6Their existence generates Chern-Simons classical corrections to the effective action associated to a

sector α.
7That will be proven in section 2.3.
8. . . except for another set of infinitesimally small subdomains that will be called auxiliary bits (b′). . .
9Choices of partitions (λ′, λ̃′) for which |l(λ′)− l(λ̃′)| > 1 turn out to be equivalent to a given choice (λ, λ̃)

with |l(λ) − l(λ̃)| ≤ 1. Thus, the contribution of the former subcontour integrals can be counted in the
symmetry factor symm(λ, λ̃) of the latter without loss of generality.
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The variables vij ’s in (1.6) are sums of subsets of the N−1 integration variables x = {xk}
and y = {yk}, more precisely

vij = vij(x, y) =
j∑
k=i

vk,k+1 =
bx∑

k=ax
xk +

by∑
k=ay

yk , (1.8)

where 1 ≤ ax ≤ bx ≤
∑
i λ̃i and 1 ≤ ay ≤ by ≤

∑
i λi are positive integers that depend on

i and j.
The vij ’s that do not depend on the variables y are said to be located in bits. The vij ’s

that are not in bits are said to be in the bulk.

The bulk domains. The bulk domainsMb(λ) are products of subregions that we call
simple

Mb(λ) = ⊗
i
sM(λi)

b , with λi = i− th element of λ. (1.9)

The simple bulk region sM(λi)
b is defined as a λi-dimensional region with coordinates

ya := va0+a − va0+a+1 ∈ [−1, 1], a = 1, . . . , λi,
for some 0 ≤ a0 < N − λi ,

such that the following λi(λi + 1)/2 linear combinations among the ya’s

b∑
k≥ a

yk , a = 1 , . . . , λi , b = a , . . . , λi , (1.10)

do not equal the position of any bit, this is,∣∣∣∣∣
b∑

k≥ a
yk − choice of bit position

∣∣∣∣∣ > (b− a) ε := (b− a) δ|mτ + n| '
τ→− n

m

0+ , (1.11)

for every possible choice of bit position in the table 1 below. δ is a positive real number,
independent of τ . This quantity δ will be called cut-off and it will play a relevant role in
the following sections.

The coordinates of simple bulk spaces are in one-to-one relation with Cartan generators
of simple subgroups of SU(N). The corresponding subgroup being included in the gauge
symmetry transformations broken by the theory associated to the sector α in (1.3). There
is a related symmetry-breaking classification of the sectors α that will be briefly introduced
in subsection 1.2.

The bit domains. The bit domainsMε(λ) are unions of products of subregions that we
call simple

Mε(λ̃) =
∑

choices of bits
⊗
i
sM(λ̃i)

ε , with λ̃i = i− th element of λ̃. (1.12)
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The simple bit region sM(λ̃i)
ε is defined as a λ̃i-dimensional ε-infinitesimal region with

coordinates

xa := va0+a − va0+a+1 ∈ [−1, 1], a = 1, . . . , λ̃i,
for some 0 ≤ a0 < N − λ̃i ,

such that the following λ̃i(λ̃i + 1)/2 linear combinations among the xa’s

b∑
k≥ a

xk , a = 1 , . . . , λ̃i , b = a , . . . , λ̃i (1.13)

belong to an infinitesimal ε-vicinity of bits. This latter set of conditions on (1.13) follow
from the λ̃i conditions ∣∣∣∣∣xa − choice of bit position

∣∣∣∣∣ < ε '
τ→− n

m

0+. (1.14)

That is because the total set of bit positions, — as summarized in table 1 below –, is closed
under the operation of addition. Consistently, this also implies, together with (1.11), that
the vij(x, y)’s (j > i) that depend non-trivially on y, which we have advanced to be located
in the bulk, are such that∣∣∣∣∣vij(x, y)− choice of bit position

∣∣∣∣∣ > (j − i) ε '
τ→− n

m

0+, (1.15)

for every possible choice of bit position, as it should be.
The simple vector bit domains are in one-to-one relation with Cartan generators of

simple subgroups of SU(N). The corresponding total subgroup contains the gauge symmetry
preserved by a theory associated to the sector α in (1.3) as a subgroup.

1.1.2 Integrating out bulk variables in Cardy-like limit

Recall that if a vij is in the bulk, the transcendental contribution LΓe vanishes exponentially
fast in Cardy-like limit. Then, given a partition λ, the integral over theMb(λ)∫

Mb(λ)
dy

∏
vij ’s in the bulk

I(vij) (1.16)

reduces, in Cardy-like limit τ → − n
m , to the integral of a deformed integrand obtained after

dropping the transcendental contribution LΓe in each of the relevant blocks (1.4). This
integral is Gaussian and it can be solved exactly.10

Indeed, independently of the choice of bits∫
Mb(λ)

dy
∏

vij ’s in the bulk
I(vij) '

τ→− n
m

e
−πiP

(3)(m,n)(τ)
m(mτ+n)2 C(δ|mτ + n|)d1 (1.17)

10At least in the limit δ � 1, which is enough.
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where C is a constant (to be absorbed in the Casimir pre-factor) that does not depend
on the unintegrated variables x. The d1 is an integer number that we only know how to
determine in a case by case basis: it comes from counting contributions of |mτ + n| out of
constant pre-factors and Jacobian contributions (in integrations over the bulk variables)
(Examples are given in section 3.3).11

1.1.3 The integral over bit variables in Cardy-like limit:
subleading 3d ensembles

After evaluating (1.17), it remains to study the integral over the infinitesimally small bits∫
Mε(λ̃)

dx
( ∏
vij ’s in bits

I(vij)
)
. (1.18)

For ε := δ|mτ + n| = 0+ this integral would vanish, if the integrand would have an analytic
limit within Mε(λ̃). However, as it will be shown in section 2, the integrand develops
non-analyticites in these infinitesimally small domains Mε(λ̃), and it does not vanish
trivially at ε := δ|mτ + n| = 0+.

Indeed, in the limit τ → − n
m integral (1.18) reduces to an integration along walls (this

will be explained in section 2). Let uij be the coordinates along the wall coming from a
bit vij(x). Walls sharing the same Casimir pre-factor form a sector α in (1.3). Different α’s
are fixed by a choice of partitions (λ̃;λ) and by a partial fixing of the ambiguity in the
choice of bit positions in the definition (1.14) ofMε(λ̃). In the following subsection 1.2 we
will expand on this classification of sectors α. In this subsection we focus on explaining how
they are in one-to-one relation with ensembles over 3d gauge theory-like partition functions.

The evaluation of R(3)’s at the corresponding bits vij = vij(x, y), and the contributions C
coming from the integration over bulk regions, define the third order polynomial term P

(3)
α

in (1.3).12 The non-vanishing value of the LΓe ’s at each of the walls in the set of bits
denoted as α, (1.5), and quadratic terms in the variables vbits coming from the R(3)’s in
the factors ∏

vij ’s in the bulk
I(vij) (1.19)

define the 3d theories to average over in order to obtain the N × Z(α) in (1.3).
We find that Zα equates to

Z
(α) :=

m−1∑
` , ˜̀, ˜̀′=0

eπiΦα[`,˜̀,˜̀′] zα(`, ˜̀, ˜̀′) , 13 (1.20)

which, in many cases, corresponds to an average over products of 3d Chern Simons or Chern-
Simons-matter partition functions. The three sets of N − 1 indices ` := {`i,i+1}i=1,...,N−1,

11In this expression the symbol '
τ→− n

m

means equal up to exponentially suppressed contributions in the

limit τ → − n
m
.

12Other contributions could come from integrating out trivial U(1) modes, as we will explain next.
13We know how to compute the real phase Φα(`, ˜̀, ˜̀′) in a case-by-case basis. For our present goal the

important observation to keep in mind is that Φα(`, ˜̀, ˜̀′) only depends on α and the averaging Zm-variables.
We leave for the future the derivation of a closed analytic expression for this phase.
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˜̀ := {˜̀i,i+1}i=1,...,N−1, and ˜̀′ := {˜̀′i,i+1}i=1,...,N−1 parameterize the positions of a set of v, c,
and b′ bits denoted as α.

In summary, one obtains

zα(`, ˜̀, ˜̀′) := Cα
∫

Γα
du

( ∏
(i,j)v

Vm[uij , `ij ]
)( ∏

(i,j)c

Cm[uij , ˜̀ij ])( ∏
(i,j)b′

B′m[uij , ˜̀′ij ]) , 14
(1.21)

where

`ij =
j∑
k=i

`k,k+1 , ˜̀
ij =

j∑
k=i

˜̀
k,k+1 , ˜̀′

ij =
j∑
k=i

˜̀′
k,k+1 . (1.22)

The factors Vm, Cm, and B′ come from the v, c and b′ types of bit in the group α,
respectively. (i, j)v, (i, j)c, (i, j)b′ denote the set of indices i and j for which the original
variables vij(x) are ε-infinitesimally close to the set of v, c and b′ bits defining the sector α,
respectively. The definition of the contour Γα and the new integration variables u = {ui}
will be given towards the end of this subsection. The integrand is defined in terms of the
building blocks15

Vm[x, `] = eπimx
2V+

m[x, `]V−m[x, `] ,

Cm[x, `] = e−
πim

2 x2C+
m[x, `] C−m[x, `],

B′m[x, ˜̀′] = e−
πim

2 x2
,

(1.23)

where the quantities with superindices ± are defined as

V±m[u, `] := e∓πi(x+ `
m

)−Ω±(x+ `
m

) ,

C±m[u, `] := e3πi(g−1)Ω±(x+ r+`
m

)
(
G±m

2

(
x+ r + `

m

))3
,

(1.24)

and

e2πiΩ+(x) := eLi1(e+2πi(x)) ,

e2πiΩ−(x) = eLi1(e−2πi(x)) = e−2πi(x− 1
2 )e2πiΩ+(x) ,

G+
m(x) := e

m
2πi Li2(e+2πi(x))−mxLi1(e+2πi(x)) ,

G−m(x) := e−
m
2πi Li2(e−2πi(x))−mxLi1(e−2πi(x)) = e

πi
6 −πimx

2G+
m(x) .

(1.25)

These expressions follow from the results obtained in section 2.3. The variable r = 2
3 is the

superconformal R-charge of the three N = 1 chiral multiplets within 4d N = 4 SYM.
At this point it should be noted that G+

m(x) happens to be the fibering operator GΦ
1,m of

a 3d chiral multiplet as defined by Closset, Kim, and Willet (Please refer to the definition
given in equation (4.64) of [38]). The quantities Ω± can be understood as contributions

14The undetermined constant Cα, which could depend on τ can be absorbed in the Casimir prefac-

tor e−πi
P

(3)
α (m,n;τ)
m(mτ+n)2 , but for later convenience we have chosen to leave it in this expression. The Cα’s come

from the collection of the C’s in (1.17).
15. . . assuming a parameter that will be defined below as n0 equals to −1 and m+ n = 1mod 3. . .
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to a dilaton profile in the framework of [38], and the polynomial contributions in the
exponents are essentially classical Chern-Simons contributions to both, the dilaton and
twisted superpotentials [38].16 A more detailed comparison with the framework and
conventions of [38] will be given elsewhere.

Some of the sectors α in (1.3) correspond to a coupled set of theories at different
genus 1 < g = g(`) = ` + 2 ≤ m + 1.17 In some other cases the component theories
decouple. In that case the theory α is interpreted as a product of independent theories.
By decoupling we mean that the integral Γα factorizes in products of integrals that are
partition functions of theories living on a 3d spacetime characterized by a single value for
the genus parameter g.

Interestingly, the functions with ± superindex in (1.23) emerge from the exponentials
of the left and right limits in (1.5). Namely, from the contributions

e
L+

Γe
(wall+∆)

2 , e
L−Γe

(wall+∆)

2 (1.26)

that can arise in the lateral limits τ → − n
m of any of the N(N−1)/2 factors in the integrand

of the index
I(vij) , (1.27)

when the vij hits a wall. The discontinuities in the limit τ → − n
m of the LΓe ’s, which can

be related to exponentials of quadratic and linear functions of the coordinate along the wall,
translate into mixed and unmixed classical Chern-Simons contributions to the effective
action that underlies the integral (1.21).

The integration variables u in (1.21), which can be fewer than or equal to the rank
of the gauge group, are a deformation of the bit variables x. The latter lie along the
original contour of integration, the former are supported over an integration contour Γα
which is an unbounded multi-dimensional domain: an infinitesimal deformation of the real
contour (−∞,∞)dimΓα≤rk(G). The infinitesimal deformation is determined by requiring the
integral (1.21) to be convergent. As the asymptotic of the integrand of (1.21) is dominated
by the Gaussian term coming from classical Chern-Simons contributions, the infinitesimal
deformation must be such that the deformed contour extends up to the infinitely far regions
on which the leading Gaussian term vanishes. We have only constructed Γα for very simple
examples of α. For generic α we expect the prescription that defines Γα to be similar to
the Jeffrey-Kirwan recipe, or more precisely, to the variations of the latter that have been
previously proposed and studied by Closset, Kim, and Willet, for 3d topological twisted
theories over a large variety of three dimensional manifolds [37, 38]. Section 4.2 formulates
the initial steps that hint at a general prescription. The completion of that analysis is left
for the future.

A couple of examples of sectors α. A sector α is defined by a selection of two
partitions λ and λ̃ and a distribution of vector (v), chiral (c) , and auxiliary (b′) bit
positions in the definitions of bit domains, (1.14). For instance, one can take the trivial

16Although we have only checked this is some particular examples, we expect it to be true for generic α’s.
17Or at g = 0 as it is the case of the contributions coming from vector bits.
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partition λ = 0, which imply λ̃ = N − 1, and then take only vector bits v. Such sector α
is called the maximally-symmetric sector. This is the sector with the leading exponential
Casimir pre-factor, the one corresponding to the exponential of the entropy function of the
dual black hole, (1.2). Subsection 1.3 will study this example.

Another possibility is to assign a vector bit position v to a single seed, say to the v1,2
and let every other seed vij to be in the bulk, which corresponds to assuming two partitions
of unit length, λ = N − 2 and λ̃ = 1. This last sector α corresponds to an ensemble
over SU(2) Chern-Simons partition functions at quantum corrected level k = 2, as follows
from the master formula (1.21). Non maximally symmetric α’s like the latter will be
called symmetry-breaking sectors.

1.2 Symmetry-breaking classification of sectors α

This subsection introduces a classification of contributions to sectors α in terms of the
amount of gauge symmetry they preserve and the type of bits or walls that contribute
to zα(`, ˜̀, ˜̀′). The SU(N) index (1.1) can be written as

∫ 1

0
dv1 . . .

∫ 1

0
dvN

N∏
i<j=1

I(vij , q) δ
(

1
N

∑
i

vi

)
. (1.28)

There are N − 1 linearly independent positions among the N(N − 1) vij ’s in the
integrand of (1.28) and without loss of generality they can be defined to be

vi,i+1 := vi − vi+1 ∈ [−1, 1] , i = 1 , . . . , N − 1 . (1.29)

These variables will be called seeds from now on. This is, linear combinations of the seeds
generate all the other vij ’s

vij =
j−1∑
k=i

vk,k+1 . (1.30)

We find convenient to change variables in the integral (1.28) from

{vi} → {vi,i+1} ∪
{

1
N

∑
i

vi

}
. (1.31)

This transformation has trivial Jacobian. The only dependence of the integrand on the
center of mass variable 1

N

∑
i vi comes from the Dirac delta. Thus, integrating the center of

mass variable one obtains

(1.28) =
∫ 1

−1
dv12 . . .

∫ 1

−1
dvN−1,N

N∏
i<j=1

I(vij , q) . (1.32)

In virtue of (1.30), the positions of the bits and bulk along the contour of integration
in the right-hand side of (1.32) are defined by N − 1 conditions

vi,i+1 = v
(0)
i , (1.33)
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Figure 1. The element indicated by the head of an arrow can be obtained from the sum of the two
elements in the initial and middle points of the corresponding broken arrows. That relation, (1.30),
implies that any element outside of the main diagonal can be written as a linear combination of the
ones in the main diagonal: the seeds.

v
(0)
i

vector bits (v) n`i,i+1
m mod 1

chiral bits (c) − (mn0−n)
m

1
3 + n˜̀i,i+1

m mod 1
where (mn0 − n) can not be a multiple of 3

bulk (b) ∈Mb(λ) for some λ

auxiliary bits (b′) − (mn0−n)
m

2
3 + n˜̀′i,i+1

m mod 1

Table 1. The positions of vector, chiral, auxiliary bits and the bulk. The seeds in positions b are to
be integrated over the bulk of the original integration contour. They define the integration variables
entering, for instance, in the integrals (1.17). The factors of I(vij) that enter in (1.17) are defined
by the relations depicted in figure 1, the sum-rules (1.34) and (1.35). They are the ones labelled
by the (i, j) that are assigned to the letter b. These factors I(vij) do not contribute to the bit
integral (1.21).

where the possible values of v(0)
i are classified in table 1, where `i,i+1, ˜̀i,i+1 , ˜̀′i,i+1 =

0, . . . , m− 1. The positions b are integrated over the bulk of the contour, namely they are
integrated out in the initial step (1.17).

Once the position of each of the N − 1 seeds (1.33) is fixed to either “v” = vector
bits, “c” = chiral bits, “b” = bulk, or “b′” = auxiliary bits, the positions of the other vi,j ’s
with j 6= i+ 1 follow from the relations depicted in figure 1, or equivalently (1.30), and the
commutative (closed set of) sum rules

v + v → v , v + c→ c , v + b′ → b′ ,

c+ c→ b′ , b′ + b′ → c , c+ b′ → v ,
(1.34)

which follow from taking linear combinations of elements in table 1, and at last,

v + b→ b , c+ b→ b , b′ + b→ b , b+ b→ b. (1.35)
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The rules (1.35) follow from the definition of Mb(λ) given in (1.9), and the previous
rules (1.34). The contributions coming from the factors corresponding to bits, can then be
collected in the form given in the integrand of (1.21).

On the simple bulk M(λ)
b and bit M(λ̃)

ε regions. Placing seeds at the bulk b breaks
the SU(N) gauge symmetry into smaller subgroups. Fixing one seed in the middle of the
diagonal to b and the remaining ones as vector bits v, generates a number of off-diagonal b’s
that splits the net of vi,j ’s into two disconnected subsets of vector bits, isomorphic to
the set of weights of SU(λ̃1) and SU(λ̃2), respectively. We say then that this sector α
preserves SU(λ̃1)× SU(λ̃2). The seed that generates the bulk contributions b belongs to
a simple bit domain Mb(λ = 1). The seeds that generate the two disconnected subsets
of vij ’s belong to simple bit domains sM(λ̃i)

ε with i = 1, 2. The coordinates in the Cartan
torus of SU(λ̃1)× SU(λ̃2) are in one-to-one relation with the coordinates of the simple bit
domains sM(λ̃i)

ε .
More general symmetry breaking patterns are possible. For example, if we locate the

pink variable v3,4 in the diagram 2 at the bulk, i.e. v3,4 ∈ Mb(λ = 1), then the possible
symmetry-breaking patterns are SU(6)→ SU(3)×SU(3) or SU(6)→ SU(3)×SU(2)×SU(2)
or SU(2)4. If both, green and yellow elements are located at vector bits, then integrating
out the seed variable in the bulk v3,4 leaves a factorized partition function (1.21) with two
decoupled SU(3) Chern-Simons partition functions on Lens spaces out of the integral (1.21).

On the other hand, if the green and yellow factors in the diagonal correspond to vector v
and chiral bits c, respectively, still the integral (1.21) factorizes in two pieces, but now the
corresponding α is slightly less gauge symmetric as it preserves an SU(3)×SU(2)×SU(2) sym-
metry. This further symmetry-suppression is due to the fact that the rule c+c = b′ 6= c breaks
gauge invariance, i.e., to the fact that some of the gauge transformations within the SU(3)
ones that map the yellow elements among themselves map the two diagonal chiral seeds into
off-diagonal auxiliary seeds; in this way only an SU(2)× SU(2) ⊂ SU(3) remains unbroken.
At last, if both, yellow and green seeds are located at chiral bits then the corresponding inte-
gral (1.21) factorizes in two factors, both of them being the partition function of A-twisted
theories with gauge group SU(2)2 and matter charged with respect to the two SU(2) factors.

If the seed variable v56 is the one assigned to the bulk and integrated out, then if
green and yellow seeds are assigned to vector bits, the integral (1.21) reduces to the
partition function of SU(5)k=5 Chern-Simons theory over Lens spaces up to spurious factors
that contribute to the Casimir pre-factor. On the other hand if the green and yellow
seeds correspond to vector and chiral bits, respectively, then the integral (1.21) does not
factorize. In that case, we say that the corresponding theory is a coupled product of an SU(3)
Chern-Simons theory and an A-twisted model.

Summarizing, there are various possibilities for α, but only a finite number of them at a
fixed N . They can include, for instance, the partition function of multiple decoupled copies
of three-dimensional Chern-Simons, and topologically twisted theories. More generally, there
are also sectors in which the multiple copies of Chern-Simons and the A-twisted theories
do not decouple. Meaning, that the integral over Γα does not factorize into products of
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Figure 2. Two symmetry-breaking patterns. The v′s denote variables in the bulk b which are
integrated out trivially in the limits to root of unity. The u’s denote variables along either vector,
chiral, or auxiliary bits. Once a distribution of colours is given to the seed elements in the diagonal
the colours of the elements in the off-diagonal are implied by the relations (1.34). Chiral and
auxiliary walls, which are inverse elements to each other are represented with the same colour.

partition functions of Chern-Simons (the Vm blocks) and/or Chern-Simons-matter theories
(the Cm blocks). We leave for the future a more detailed study and of such α’s.18

1.3 An example: the maximally symmetric sector α

As mentioned before, the maximally symmetric sector α corresponds to selecting elements
only in the first row of table 1. In that case the conditions (1.33) take the form

vi j =
(
n

m
`ij

)
mod 1 , (1.36)

where

`ij =
j∑
k=i

`i,i+1 . (1.37)

In the expansion near-roots of unity these bits contribute to the index as follows

e
−(N2−1)

(
πi

27mτ̃2 + 2πi
9mτ̃

+πic0(m,n)+ 8πi
27m τ̃

)
×N × Zα , (1.38)

where from the master formulas (1.20) and (1.21), it follows that Z(α) equals the average
m−1∑

`1 , ... , `N−1=0
eπik

∑N−1
i=1 Φ(`i,i+1) Z

L(m,1)
SU(N) (k, `) , (1.39)

with (1.39)

Z
L(m,1)
SU(N) (k, `) :=

∫ N−1∏
i=1

dui e
πik
∑N−1

i=1 mu2
i+2`iui

N∏
i>j=1

(
2 sin π(uij) 2 sin π(uij)

)
, (1.40)

18It would be also interesting to explore whether this symmetry-breaking classification relates to the
classification of vacua of N = 1∗ on R3,1 of [39, 40], which has been conjectured to correspond to Bethe
roots of the SU(N) N = 4 index [14, 41].
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where uij = ∑j
k=i uk,k+1 and ui and `i variables are defined by the relations

For 1 ≤ i < N − 1 : ui,i+1 =: ui − ui+1 , `i,i+1 =: `i − `i+1

For i = N − 1 : ui,i+1 =: 2uN−1 +
N−2∑
k=1

uk , `i,i+1 =: 2`N−1 +
N−2∑
k=1

`k .
(1.41)

(1.40) is the Chern-Simons partition function over Lens spaces L(m, 1) (in some normal-
ization), in the presence of background ZN−1

m flat connections `i ∼ `i +m, and quantum
corrected level k such that |k| = N [42, 43].

1.4 Outline of the remaining part of the paper

The remaining part of the paper deepens into the details of the conclusions just presented.
Subsection 2.1 introduces the representations (1.4). Subsection 2.2 introduces the

concept of vector walls. Subsection 2.3 introduces and develops the concept of chiral walls
(which we recall include the vector walls as limiting cases). Section 2.3 computes all the
elements summarized in equation (1.25), which are, essentially, the main technical insight
in this paper, the one that leads to the master formula (1.3).

Subsection 3.1 studies the maximally symmetric sector α for SU(2) gauge group.
Subsection 3.2 computes the maximally-symmetric bit contributions (`i = 0) for gauge
group SU(N): this is a particular case of the general result presented in subsection (1.40).

Subsection 3.3 studies particular examples of symmetry-breaking sectors α with only
vector bit contributions. In particular, it details how the integration over bulk variables does
not backreact the integration over bits. Section 4 studies examples of chiral bit contributions
and explains how they reduce to sum over vacua of an underlying A-model.

In section 5 some prospective open questions and observations are presented. Further
supporting material can be found in the appendices.

2 The index near roots of unity

In this section we show how the non-analytic walls emerge in the limits to roots of unity of
the index I. The goal is to introduce from scratch the concept of bit and bulk.

2.1 The index and useful representations

The SU(N) superconformal index can be represented as the following integral

I ≡ κ
∮
|ζ|=1

rk(G)∏
i=1

dζi
ζi
e−Seff ≡ κ

∮
|ζ|=1

rk(G)∏
i=1

dζi
ζi
Iv Ic . (2.1)

The pre-factor κ is defined as

κ ≡ (p; p)rk(G)(q; q)rk(G)

N !

( 3∏
I=1

Γell(tI ; p, q)
)rk(G)

. (2.2)
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Moreover

Iv(v) ≡
N∏

i<j=1
θell

(
ζi
ζj

; p
)
θell

(
ζj
ζi

; q
)
, Ic(v) ≡

N∏
i,j=1
i 6=j

3∏
I=1

Γell

(
ζi
ζj
tI ; p, q

)
. (2.3)

At some points we will use G = U(N) but our scope is SU(N). For G = SU(N)

ζ−1
N =

N−1∏
i=1

ζi , ζi = e(vi) . (2.4)

To recover the SU(N) index from the U(N) one we use the identity

ISU(N) = IU(N)/IU(1) , (2.5)

where

IU(1) ≡ (p; p) (q; q)
( 3∏
I=1

Γell(tI ; p, q)
)
. (2.6)

At some points we will assume p = q = e(τ), t1 = t2 = t3 = q
2
3 e
(
−n0

3
)
,19 and n0 =

−1, 0, 1.20 In that case the index is a function of q and n0. Eventually we will fix n0 = −1.
Let us also define

θ0(z; τ) ≡ θell(ζ; q) , Γe(z; τ) ≡ Γell(ζ; q, q) , ζ = e(z) . (2.7)

The usual representations of θell and Γe are given in (A.3) and (A.5). Here we will rely on
the following set of representations that were originally put forward in [9]

log θ0(z) ≡ π i
m−1∑
`=0

B2,2(ξ`|τ̃ ,−1) + Lθ0(z) , (2.8)

and

log Γe(z; τ) =
2(m−1)∑
`=0

πi

3 (m− |`−m+ 1|)B3,3(ξ`|τ̃ , τ̃ ,−1) + LΓe(z) , 21 (2.9)

where
τ̃ ≡ mτ + n , (2.10)

and
ξ` = ξ`(z; τ) = ξ`(z) ≡ z − Integer + `τ . (2.11)

The definition of the Integer will be given below. These representations are convenient to
study the expansion around roots of unity.

19In this paper e(x) := e 2πix.
20But many more general cases p 6= q can be recovered from our discussion.
21The first term in the right-hand side of this equation equals the term −πiR

(3)(m,n)(z)
m(mτ+n)2 in the exponent

of (1.4).
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The objects Lθ0 and LΓe , which will play an important role, are defined as

L(z) ≡ Lθ0(z) = i
∞∑
j=1

1
j sin πj

τ̃

m−1∑
`=0

cos
(
πj

2ξ` + 1
τ̃

)
,

LΓe(z) ≡
2(m−1)∑
`=0

i (m− |`−m+ 1|)
( ∞∑
j=1

−2 τ̃ + 2ξ` + 1
2 j τ̃ sin

(
πj
τ̃

)
× cos πj(2ξ` + 1)

τ̃
−
πj cot

(
πj
τ̃

)
+ τ̃

2π j2 τ̃ sin
(
πj
τ̃

) sin πj(2ξ` + 1)
τ̃

)
.

(2.12)

We will assume m > 0 and gcd(m,n) = 1. In particular, that implies that if n = 0, there is
a single choice m > 0, which is m = 1. For other values of n there are other choices of m.

The integer in (2.11) is selected by the condition

− 1 < ξ`⊥τ̃ < 0 . (2.13)

The real numbers ξ`|| ≡ ξ`||τ̃ , and ξ`⊥ ≡ ξ`⊥τ̃ , are the components of the complex number ξ`
in the basis of the complex plane defined by 1 and τ̃ , i.e. ξ` = ξ`⊥ + τ̃ ξ`||.

Representations (2.8) (figure 3) and (2.9) are absolutely convergent, and thus uniformly
convergent, for generic z ∈ C, except for:

1) At the z’s for which ξ`⊥ hits the boundaries of the region (2.13). These regions are
lines in the complex z-plane that we will call walls. As we will see below, the lateral
limits of both L(z) and LΓe(z), to the walls (2.13), converge, except for at isolated
points. For L(z), the lateral limits, when they exist, coincide. That is not the case
for LΓe(z), where the lateral limits, when they exist, are different.

2) At the z’s that correspond to the zeros of θ0, and the zeroes and poles of Γe, where
the series diverges.

The divergences are always at positions z’s for which ξ`⊥ hits the boundaries of (2.13).
They are the points in the walls where both lateral limits diverge. Thus, in a sense, 2) is
included in 1).

For generic complex ζ away from the walls, both L and LΓe vanish exponentially fast
in the limit τ → − n

m . In such a limit, only the piece-wise polynomial part coming from
the B2,2’s and B3,3’s is relevant. In contradistinction, for complex z infinitesimally close to
the walls, the series contributions do not vanish as τ → − n

m , producing a finite non-piece-
wise polynomial and non-analytic O(1) correction to the effective action as function of z.
Such a correction diverges only at the zeroes of θ0, and at the zeroes and the poles of Γe.
In the case of Γe, besides the zeroes and poles, a branch cut opens up for LΓe along the
walls; however, as expected, the jump is cancelled by an opposite branch cut contribution
coming from the piece-wise polynomial pre-factor. We will prove this last statement below.
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Figure 3. The plot of Real and Imaginary parts of θ0( 1
2 (2τ+1)+z; τ) for z ∈ [−1, 1] and τ = i. The

blue dots come from the representation (2.8) for m = 2 and n = 1, truncated at the element j = 100.
The red dots come from the product representation (A.3) truncated at the element j = 20.

2.2 θ0(z) for q near roots of unity: (vector) walls of non-analyticity

Let us study θ0(z) at a generic point in the complex z-plane, when q approaches a root of
unity. For this it is convenient to use the representation (2.8). Specifically

L(z) ≡ i
∞∑
j=1

1
j sin πj

τ̃

m−1∑
`=0

cos
(
πj

2ξ` + 1
τ̃

)
, (2.14)

with
ξ`(z) = z + `τ − bz⊥ − `

n

m
c − 1 . (2.15)

For generic complex z we define the real components z⊥, ||, as the two real numbers defined
by the condition

z = z|| τ̃ + z⊥ . (2.16)

Using these definitions, one finds that

ξ`||(z) = z|| +
`

m
, ξ⊥(z) = z⊥ − n

`

m
− k0 , (2.17)

where for z⊥ − n `
m /∈ Z

k0 ≡ bz⊥ − n
`

m
c − 1 . (2.18)

A computation shows that for generic complex z

exp(L(z)) −→
τ→− n

m

1 . (2.19)

However, for z⊥ = 0, for example, (2.19) does not hold. The technical reason being the
presence of the ` = 0 term in the exponent of (2.14).

In that case, the contribution of eL(z) to the even product θell(ζ) θell(1
ζ ) reduces to

log
(
(−1)

(
2 sin π(z||)

) (
2 sin π(−z||)

))
, (2.20)

where z|| is the distance from the origin to a point whose radial vector is parallel to τ̃ .
For τ ≈ − n

m the long-range potential (2.20) only arises in a very narrow region of the
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Figure 4. An example of a wall of non-analyticity in Cardy-like limit τ → − 1
3 .

direction defined by the radial vector associated to τ̃ . The width of the region vanishes in
the strict limit τ → − n

m . This is saying that the continuity (and thus analyticity) of

L+(z) ≡ L(z) + L(−z) (2.21)

in the complex z-plane is broken in the Cardy-like expansion at order O(1). The breaking
occurs at the lines where a one-dimensional logarithmic profile (2.20) arises (See plot 4).

In appendix F we demonstrate that there are many other such lines of non-analyticity
emerging in Cardy-like limit. Their positions are fixed by the condition

χ`(z) ≡ 2ξ`⊥(z) + 1 = ± 1 (2.22)

with ` = 0 , 1 , . . . , m− 1 . We call them (vector) walls, where the p labels the position of
the point at which they intersect the real axis. That point of intersection will be called bit.
The classification of bits for generic co-primes m and n can be found in appendix F. The
contributions of bits to the original integral (2.1) includes the ones argued in [11] for the
cases with n = 1. Figure 4 plots Re(L(z) + L(−z)) for (m,n) = (3, 1), and τ ≈ −1

3 .
The horizontal axes correspond to the real coordinates 0 < x1 < 1 and −0.1 < x2 < 0.1
in z-plane, with z = (x1 + 1

3)(3τ + 1) + x2. We fixed τ = 0.0005 (i− 1)− 1/3, which is close
to the Cardy-like limit τ → −1

3 . To produce the orange plot we truncated the series in the
right-hand side of (2.8) at j = 1000, and evaluated it at square lattice with 100× 100 points
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within the domain (x1, x2) covered by the plot. There are three points to remark. First,
notice that the function vanishes almost everywhere, except for, at a thin strip located
at x2 = 0. The width of the strip is of order |3τ + 1| for τ close enough to −1

3 . Second,
the profile of the limiting function along x2 = 0 i.e. along the ray z = (x1 + 1

3)(3τ + 1),
is the one of the function Re log

(
2 sin π(x1 + 1/3) 2 sin

(
−π(x1 + 1/3)

))
. The profile of

the red strip is the plot of the latter function. Third, note that the original contour of
integration, which extends along the ray x1 = −1

3 , only intersects the non-vanishing region
at a small segment around z = x2 = 0 that becomes a point in Cardy-like limit. At the
intersection point the function diverges Re

(
L(z) + L(−z)

))
to −∞. That was known a

priori because θ0(z) θ0(−z) has a double zero at z = 0. One could naively expect that as the
latter region becomes infinitesimally small in Cardy-like limit it is possible to approximate
the theta functions with the exponential of the first piecewise-polynomial factor in (2.8),
and ignore the series contribution above plotted. This naive expectation turns out to be
incorrect, because the integral along the infinitesimal region where that series contribution
cannot be discarded, turns out to give a finite and non-vanishing contribution in Cardy-like
limit. Such contributions, i.e. contributions coming from the intersection points between non-
analyticities and the contour of integration (the bits) will be called localized contributions.

2.3 Γe(z) for q near roots of unity: (chiral) walls of non-analyticity

There is another sort of localized contribution. These emerge in the Cardy-like limit of
the elliptic Gamma functions Γe and include the residues associated with the poles of the
analytic continuation of the integrand of (2.1).

Let us use the following decomposition of LΓe

LΓe =
2(m−1)∑
`=0

i (m− |`−m+ 1|)L`Γe ,

=
m−1∑
`=0

i
(
(`+ 1)L`Γe + (m− `− 1)L`+mΓe

)

≡
m−1∑
`=0

L̃`Γe ,

(2.23)

where
L`Γe ≡ L

`(1)
Γe + L

`(2)
Γe + L

`(3)
Γe + L

`(4)
Γe , (2.24)

and

L
`(1)
Γe =

∞∑
j=1

−1
j sin

(
πj
τ̃

) cos πj(2ξ` + 1)
τ̃

L
`(2)
Γe =

∞∑
j=1

2ξ` + 1
2 j τ̃ sin

(
πj
τ̃

) cos πj(2ξ` + 1)
τ̃

L
`(3)
Γe =

∞∑
j=1

−πj cot
(
πj
τ̃

)
2π j2 τ̃ sin

(
πj
τ̃

) sin πj(2ξ` + 1)
τ̃

L
`(4)
Γe =

∞∑
j=1

−1
2π j2 sin

(
πj
τ̃

) sin πj(2ξ` + 1)
τ̃

.

(2.25)
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As for L, in the limit of q to roots of unity, these functions vanish exponentially fast almost
everywhere in the complex ξ`-plane except for at infinitesimally thin walls centred at the
positions fixed by the condition

χ`(z) ≡ 2ξ`⊥(z) + 1 = ± 1 . (2.26)

For later convenience, we note that assuming the integration variables vi’s to be real,
i.e., v2i = 0, the condition (2.26) translates, essentially, to requiring ρ(v) = ∑

i ρ
ivi,22 to

approximate specific values, that we will quoted below in equation (2.45).
To extract the contribution of LΓe along the chiral walls, in Cardy-like limit, one needs

to zoom into an infinitesimal region around the walls defined by (2.26). In particular, we
need to understand the details of a double limit: the limit τ → − n

m , together with each one
of the lateral limits to the walls (2.27)

χ`(z) ≡ 2ξ`⊥(z) + 1→ ±1∓ . (2.27)

In contradistinction to the case of Lθ0 , in the case of LΓe , the lateral limits to the walls do
not match.

A computation shows that the lateral double limits of L`(1)
Γe , L`(2)

Γe , L`(3)
Γe are

L
`(1)
Γe −→

τ→− n
m

−i
∞∑
j=1

e(±jξ`||)
j

,

L
`(2)
Γe '

τ→− n
m

i ξ`||
∞∑
j=1

e(±jξ`||)
j

+ L
`(τ̃)
Γe ,

L
`(3)
Γe '

τ→− n
m

−L`(τ̃)
Γe , ,

L
`(4)
Γe −→

τ→− n
m

∓
∞∑
j=1

e(∓jξ`||)
2πj2

(2.28)

where

L
`(τ̃)
Γe = ± i

τ̃

∞∑
j=1

e
(
± jξ`||

)
2j . (2.29)

Notice that for L`(2)
Γe and L`(3)

Γe the expressions in (2.28) are asymptotic expansions not really
limits, however, for L`(2)

Γe +L
`(3)
Γe , which is what we need to move forward, the limit τ → − n

m

is well-defined.

Cancellation of the branch cut. Let us prove that the branch cuts of L`Γe are cancelled
by branch cuts of the piece-wise polynomial contributions (figure 5). Define

W (ξ`||) ≡W1(ξ`||) +W2(ξ`||) +W3(ξ`||) , (2.30)

22. . . with ρ = {ρi} being a given gauge charge (a weight vector).
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-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

Figure 5. The blue points represent log Γe(ξ⊥ + 0.2τ, τ, τ) for −0.1 < ξ⊥ < 0.1 and τ = i−1
10 . We

have used a truncation of (2.9) at j = 1000. The red points represent the piece-wise polynomial
part πi

3 B3,3(ξ⊥−bξ⊥c+0.2τ |τ, τ,−1). The branch cut of the piece-wise polynomial part is cancelled
by the corresponding series LΓe in such a way that Γe(ξ⊥ + 0.2τ, τ, τ) has no branch cut.

where

−iW1(ξ`||) ≡ L
`(1)+
Γe − L`(1)−

Γe = −2π B1per(ξ`||)

−iW2(ξ`||) ≡ L
`(2)+
Γe + L

`(3)+
Γe − L`(2)−

Γe − L`(3)−
Γe = 2π ξ`||B1per(ξ`||)

−iW3(ξ`||) ≡ L
`(4)+
Γe − L`(4)−

Γe = −π B2per(ξ`||) ,

(2.31)

and for n ≥ 1

Bnper(ζ) ≡ − n!
(2πi)n

∞∑
j=−∞
j 6= 0

e2πij ζ

jn
. (2.32)

The W (ξ`||) is the jump of L`Γe across the branch cut at ξ`⊥ = 0 ∼ −1, and it is a function
of ξ`||.

For later convenience we note that for 0 < ξ`|| < 1

− iW (ξ`||) = π ξ2
`|| − 2πξ`|| + π

5
6 . (2.33)

To reconstruct the function W (ξ`||) outside the domain 0 < ξ`|| < 1 we just need to use the
periodicity property

eW (ξ`||+1)−W (ξ`||) = e2πiB1per(ξ`||) = e2πiB1(ξ`||) . (2.34)

Notice that the periodic Bernoulli polynomial B1per can be substituted by the ordinary
Bernoulli polynomial B1 because the difference between the two exponentiates to the unity.

Next, define

W̃ (ξ`||) ≡
πi
3 B3,3

(
ξ`||τ̃ + ξ`⊥ , τ̃ , τ̃ , −1

)∣∣∣ξ`⊥=0

ξ`⊥=−1
, (2.35)
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which is, by the definition, the jump of the piece-wise polynomial factor πi
3 B3,3(ξ`|τ̃ , τ̃ ,−1)

in (2.9) across the branch cut located at ξ`⊥ = 0 ∼ −1 at the point at the cut fixed by a
specific value of the coordinate ξ`||. Two computations show that

W̃ (ξ`||) = −πi ξ2
`|| + 2πiξ`|| − πi 5

6 , (2.36)

and that
eW̃ (ξ`||+1)−W̃ (ξ`||) = e−2πiB1(ξ`||) . (2.37)

Thus, after comparing (2.33) and (2.34) with (2.36) and (2.37), respectively, one concludes
that for every real ξ`||

eW̃ (ξ`||)+W (ξ`||) = 1 . (2.38)

This proves that in Cardy-like expansion, the branch cuts of LΓe along the walls of non-
analyticities are cancelled by the ones of the piece-wise polynomial contribution in (2.9), up
to an irrelevant addition of an integer multiple of 2πi. Note that the jump of the piece-wise
polynomial part across the branch cut is independent of τ .23

In summary, effectively, along the walls we can use

L`Γe(χ` = ±1) ∼
τ→− n

m

L`Γe(χ` → 1−) + L`Γe(χ` → −1+)
2 + tbc , (2.39)

where tbc (to be cancelled) stands for the branch-cut contributions that are cancelled by
the piece-wise polynomial part of (2.9). We have substituted the limit symbol → by ∼ to
make clear that the correspondence is not quite a limit of L`Γe(χ` = ±1).

Putting all the pieces together one gets

L`Γe(χ` =±1) ∼
τ→− n

m

−
(
ξ`||−1

) ∞∑
j=1

cos
(
2πjξ`||

)
j

+
∞∑
j=1

sin(2πjξ`||)
2πj2

+tbc

=
(
ξ`||−1

)
log
(
2 |sin

(
πξ`||

)
|
)
− i

4π
(
Li2(e2πiξ`||)−Li2(e−2πiξ`||)

)
+tbc .

(2.40)

The first term carries the information about the poles and zeroes of the elliptic Gamma
functions.

Using ξ`+m|| = ξ`|| + 1 and (2.40) in the definition of L̃`Γe given in (2.23), one obtains

L̃`Γe(χ` = ±1) ∼
τ→− n

m(
m
(
ξ`|| − 1

)
+ (m− `− 1)

)
log
(
2| sin

(
π ξ`||

)
|
)

−m i
4π
(
Li2(e2πiξ`||)− Li2(e−2πiξ`||)

)
+ tbc .

(2.41)

23Indeed, the jump of LΓe across the branch cut is independent of the value of τ . That can be proven
directly from definitions (2.25).
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For a chiral multiplet with weights ρ = {ρi}, the relation between the variable z and the
Cartan components of the hermitian eigenvalues vi is

z = ρ(v) + ∆ , ∆ = ∆2 τ + ∆1 , (2.42)

where
ρ(v) =

∑
i

ρi vi , ∆1 = −n0
r

2 , ∆2 = r . (2.43)

Equation (2.42) implies that along chiral walls

ξ`|| = ρ(u) + ∆2 + `

m
, (2.44)

and ξ`⊥ is determined by condition (2.27). The classification of positions of chiral walls out
the conditions (2.27) is equivalent to the one of vector walls, which has been reported in
appendix F. The difference is an extra shift in the positions which is linear in the R-charge r.
This is, the chiral walls intersect the real locus vi ∈ R at the positions defined by

ρ(v) = −n ∆2 + `

m
+ ∆1 mod 1 .

=
(
−n ∆2

m
+ ∆1 + `∗

m

)
mod 1 , 24

(2.45)

where ρ can be any non-vanishing adjoint weight and

`∗ = (n `)modm = 0, 1, . . . ,m− 1, (2.46)

is a label that we can use, as an alternative to `, in order to enumerate set of chiral walls or
bits that intersect the original domain of integration (See more around (F.17)).

On the solutions to (2.45). There is an observation regarding equation (2.45) that
we discuss for later convenience. To fix a solution vi0 with i = 1, . . . , N out of the set
of equations (2.45) one needs to fix N − 1 roots ρ’s. The ansatz vi0 does not necessarily
solve (2.45) for the remaining non-vanishing roots ρ. For instance, there are chiral bit
solutions for the following sets of U(N) roots

R =
{
ρ := ei − ei−1

}
i=1,...,N , (2.47)

where e0 := eN . This set of weights defines the seeds introduced in section 1.2. In this
definition ei is the N -vector with a single non-vanishing — and unit — component, the i-th
one. For generic values of m, n, ∆1 and ∆2, the set of weights R and permutations thereof
form the largest set of ρ’s that can allow for (2.45) to be solvable.

Generically, for the values of v that solve (2.45) with ρ ∈ R, the weights ρ′ /∈ R are
such that ρ′(v) does not belong nor to chiral nor to vector walls. Note that this assumption
does not hold if

(−n∆2 +m∆1)× l ∈ Z (2.48)
24Whereas for the vector walls p = n `

m
mod1 and ` = 0, . . . ,m− 1.
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for some integer 0 ≤ l < N . We highlight this point because (2.48) is satisfied by the usual
choice for ∆1 and ∆2, ∆1 = −n0

r
2 , ∆2 = r = 2

3 for large enough values of N , more
precisely, for N > 3. The important thing to recall, is that in these cases there will be some
of the roots ρ′ for which contributions from vector bits mix with chiral bits as summarized
in the section 1.2, and in virtue of the sum-rules (1.34).

For example the chiral bit defined by the choices

m = n+ 1 = 1 , ` = `? = 0 and ρ ∈ R , (2.49)

is located at the position dicated by the vi ∈ R that solve the equations

vij = ∆1 mod 1, j = i+ 1 i = 1, . . . , N − 1 , (2.50)

which can be parametrized in the form

vi = i (∆1)mod 1 + constant. (2.51)

The constant can be fixed by demanding the tracelessness constraint ∑N
j=1 vi = 0 mod 1.

Partial summary. Along the chiral walls defined by the condition (2.26), in the limit
τ → − n

m , the profile of LΓe takes the form(
m
(
ξ`|| − 1

)
+ (m− `− 1)

)
log
(
2| sin

(
π ξ`||

)
|
)

−m i
4π
(
Li2(e2πiξ`||)− Li2(e−2πiξ`||)

)
+ tbc

(2.52)

with
ξ`|| = ρ(u) + ∆2 + `

m
. (2.53)

The real variable ρ(u) = (ρ(v)−ρ(v(0)))/τ̃ runs along the wall that intersects the contour of
integration at the position ρ(v) = ρ(v(0)) that solves the linear condition (2.45), not along
the original integration contour. Equivalently, for ξ`⊥ not in a small enough vicinity of a
wall, i.e. for ρ(v) 6≈ ρ(v(0)) the series LΓe vanishes exponentially fast in the limit τ → − n

m .
Note that (2.52) contains information about the poles of the Γe’s in the integrand of (2.1),
that is, for negative enough ξ`|| the exponential of (2.52) has poles coming from the term in
the first line.

Although the chiral walls intersect the contour of integration at infinitesimal segments
(the bits), the integral along such segments gives a finite and non-vanishing contribution in
Cardy-like expansion. How this happens will be explained in the following section with an
explicit example of vector bits. The analysis for chiral bits is analogous.

Chiral wall contributions are suppressed. The profile of the integrand I(q) along
the vector and chiral walls receives piece-wise polynomial contributions that must be added
to L, and LΓe , respectively. The exponential of such contribution divided by the Casimir
pre-factor of the maximally symmetric secto α, is, for G = SU(N)

e
−
(∑

ρ>0 2F(m,n)
)

+ (dimG−rkG)
2 2F(m,n)(0)

(2.54)
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where
F (m,n) = F (m,n)(x) ≡

∑
a∈{V, I=1,2,3}

F (m,n)
a (za(x)) . (2.55)

The object FV is defined in (D.15) and the FI in (D.20) for rI = 2
3 . The computation

of (2.54) for vector walls will be reviewed in appendix E and F.2, here we note that the answer
is of order O(1) in the expansion near roots of unity (The part of the O(1) contributions
that depend on x can be read from equation (E.2)). On the contrary, generically, the
contribution of chiral walls is exponentially suppressed in such limits. Along chiral walls

ρ(v) =: x = ρ(u)τ̃ +
(
−n ∆2 + `

m
+ ∆1

)
, (2.56)

where for the integrand of I(q), there is only one possible choice

∆1 = −n0
r

2 , ∆2 = r = 2
3 , (2.57)

and a computation then shows that for a given gauge charge ρ

e
2
(
−F(m,n)(x)+F(m,n)(0)

)
'

τ→− n
m

e

V2

(
−n ∆2+`

m +∆1

)
τ̃2 +

V1

(
−n ∆2+`

m +∆1

)
τ̃ eO(1) , (2.58)

where V1 and V2 are periodic pure imaginary even functions of period 1
m . The function V1

and V2 are piecewise linear and quadratic, respectively, and their imaginary parts are either
semipositive or seminegative-definite in dependence of the value of m, n and n0. Both
functions have zeroes at the 1/m-periodic images of 0, and away from the zeroes, their
imaginary part has a definite signature

Sign(−iV1,2) = −n0χ1(m− n0n) .25 (2.59)

This signature is such that in the Cardy-like limits,26 the pre-factor (2.54) vanishes expo-
nentially fast, unless

m∆1 − n∆2 ∈ Z . (2.60)

This is the condition that defines the positions of the zeroes in the exponent of the first
exponential in the right-hand side of (2.58). For values of m and n that solve (2.60), the
factor |e−F(m,n)(0)| does not grow as τ → − n

m . Thus, the corresponding (m,n) limits do not
define one of the Cardy-like limits studied in this paper.

In conclusion, in the expansions near roots of unity and for generic choices of ∆1 and ∆2,
the contribution from chiral walls is exponentially suppressed with respect to the vector one.

25χ1 is defined in (3.14).
26. . . for which the absolute value of the leading background contribution grows exponentially fast. . .
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A remark about chiral wall contributions at N = 2. In this paragraph we show
that the Casimir pre-factor of chiral wall contributions to the SU(2) index I(q), is finite in
the limit τ → − n

m . The absence of such exponential growth, which is also a defining property
of one of the three eigenvalue distributions entering in the Bethe ansatz representation of
the SU(2) index, indicates that chiral wall contributions could be related to such eigenvalue
distribution. The conclusion for SU(N) is more involved.

For n0 = −1 and the Cardy-like limit τ → − n
m ,

V1

(
−n ∆2 + `

m
+ ∆1

)
= V1

(
∆1
)

= V1

(1
3

)
= 2πi

3 ,

V2

(
−n ∆2 + `

m
+ ∆1

)
= V2

(
∆1
)

= V2

(1
3

)
= πi

9 .

(2.61)

To evaluate the last equality in each of the two lines, we used the definition of the potentials V1
and V2 which will be presented in the next section. For N = 2 the values (2.61) imply that the
leading behaviour of chiral non-analyticities in the expansion τ → − n

m is of order O(1) i.e.

e
−
∑

ρ>0 2F(m,n)(ρ(v))− rkG
2 2F(m,n)(0) = e−2F(m,n)(2v)−F(m,n)(0)

= e−3F(m,n)(0)−2
(
F(m,n)(2v)−F(m,n)(0)

)
'

τ→− n
m

e
−3F(m,n)(0)+V2(∆1)

τ̃2 +V1(∆1)
τ̃

+2πiO(1)

'
τ→− n

m

e
−3F(m,n)(0)+ πi

9τ̃2 + 2πi
3τ̃

+2πiO(1)

'
τ→− n

m

e
−3
(

πi
27τ̃2 + 2πi

9τ̃

)
+ πi

9τ̃2 + 2πi
3τ̃

+2πiO(1)
'

τ→− n
m

e2πiO(1) .

(2.62)

In these steps we used equations (2.58) and (2.61). We also used the expression for F (m,n)(0)
reported in equation (E.4) with n0 = −1.

An independent computation shows that (2.62) is also the leading behaviour of one
of the three contributions in the SU(2) Bethe ansatz formula studied in [22, 41]. The one
coming from the Bethe root (0, 1)

ρ(v) = 2v = 1
2 . (2.63)

Indeed out of the three relevant roots there is only one that has order O(1) behaviour for
every Cardy-like limit τ → − n

m , which is (2.63). This matching indicates that chiral bits are
related to the Bethe root (2.63). It would be interesting to explore this relation in more depth.

3 Bulk and vector bit contributions: some examples

This section starts by studying the SU(2) index from scratch and makes explicit contact
with the main concepts enunciated in the introduction.
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In the case of SU(2) there are only two possible choices of partitions in the contour
decomposition (1.6), (λ = 1, λ̃ = 0) (pure bit regions, which can be vector, or chiral or
auxiliary chiral27) and (λ = 0, λ̃ = 1) (a pure bulk region).

The main focus is to show from scratch how the maximally symmetric contribution (λ̃ =
1) dominates the total integral in Cardy-like index, even if the integration domainMε(λ = 1)
is ε-infinitesimally small. Secondly, it is shown in detail how the process of integrating
over the bulk domainMb(λ = 1) reduces to the computation of a trivial Gaussian integral.
Moreover, contributions from chiral bits to the integral (1.6) are shown to be exponentially
suppressed with respect to the leading maximally symmetric α.

Subsection 3.2 computes a specific maximally-symmetric bit (`i = 0) for gauge group
SU(N): a particular contribution to the general result summarized in (1.40). Subsection 3.3
studies bulk contributions in the case N = 3.

3.1 Bulk and vector bit contributions

Let us study the SU(2) index:

I = κ

∫ 1

0
dv Iv Ic . (3.1)

The two factors in the integrand are defined as

Iv = θ0(2v; τ) θ0(−2v; τ) ,

Ic =
(

Γe(2v + 2τ − n0
3 ; τ) Γe(−2v + 2τ − n0

3 ; τ)
)3
.

(3.2)

Let us define the zero-dimensional effective action as (with some convenient choice of branch
for the logarithm)

Seff ≡ − log Iv Ic . (3.3)

Thinking on taking a Cardy-like limit τ → − n
m , it is possible to split the integral I into

two pieces that we call bulk and localized

I = Ibulk + Ibit . (3.4)

This follows obviously from the particularization of the decomposition (1.6) to the caseN = 2.
The bulk contribution is

Ibulk = κ

∫ ′ 1
0

dv IvIc . (3.5)

This variable v is 1
2 the seed variable v12 defined in the Introduction, thus it runs in a

period of length one instead of two as the latter. The prime means integration over the
segment (0, 1) excluding the segments (p− δ|τ̃ |, p+ δ|τ̃ |), with p being the location of a bit,
and δ|τ̃ | being small enough. Notice that in Cardy-like expansion, these isolated regions
have an infinitesimal width of order |τ̃ | for any finite δ. By definition, the value of the
integral is independent of δ.

27In the case of SU(2) the contribution of auxiliary chiral bits vanishes for ε = 0+. So, it will be ignored
from now on.
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As already mentioned, and contrary to the naive intuition, the contribution of infinites-
imal bit regions, Ibit, is not subleading in the Cardy-like limit. Among such infinitesimal
regions, one finds the neighbourhoods

|2v − p| < ε = δ |τ̃ | −→
τ→− n

m

0 , (δ = finite ∈ R) (3.6)

of the points

2v = p = `∗

m
+ integers , `∗ = 0, 1, . . . , m− 1 . (3.7)

The localized contribution can be arranged as follows

Ibit =
m−1∑
`∗=0

w × I`∗ , (3.8)

where the positive integer w = 2 is the number of times that the integration cycle (0, 1)
wraps the smallest period of Iv Ic, which is (0, 1

2). Let us explain this. The sum over `∗, and
the factor w = 2 come from the original sum over the bits intersected by the integration
contour 2v ∈ (0, 2). The total number of such vicinities is wm = 2m, i.e. these are the w(= 2)
groups of m bits (3.7). Namely, w is the number of integer choices Z in (3.7) for which 2v
is intersected by the integration contour. In the present case, those choices are 0 and 1, and
consequently, w = 2.

The object I`∗ is defined as an integral over a bit intersected by (0, 1) (this is one of
the components in the integral overMε(λ̃ = 1) (1.18)),

I`∗ ≡ κ
∫ p+δ|τ̃ |

p−δ|τ̃ |
dv IvIc . (3.9)

Notice that in the limits τ → − n
m the factor of |τ̃ | is infinitesimal. In appendix F.3 (see

also the preliminary argument given in the caption of figure 6) we will show that

I`∗ '
τ→− n

m

∫
Dpm,n

dv IvIc , (3.10)

where the new contour
Dpm,n =

(
p− δ τ̃ , p+ δ τ̃

)
, (3.11)

is a segment lying (almost) along the τ̃ direction in the complex v-plane, and running
between the points p ± δ τ̃ . In (3.11) we have substituted δ → δ cos Φm,n where the
angle Φm,n is defined from

ei(Φm,n+ε) ≡ lim
τ→− n

m

|τ̃ |
τ̃
, (3.12)

where ε = O(|τ̃ |>0) is an infinitesimal tilt needed for convergence in the eventual limit δ →∞.
The angle Φm,n is part of the ambiguity one has in defining the Cardy-like limit. In particular,
not every value of Φm,n defines a well-behaved Cardy-like limit (See equation (3.15) below).
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Figure 6. The integral along the diagonal bit matches the one along the horizontal bit. Before
assuming the Cardy-like expansion, we can slightly deform the real contour (avoiding crossing poles)
so that in a complex vicinity of the bit, the deformed contour matches the diagonal piece in the
figure and not the horizontal one. Then to compute contributions of bits, one can do the integral
along the diagonal contour instead of the horizontal one. To further justify the previous argument,
one would need to prove that contributions from dashed contours cancel in Cardy-like limit: this
will be proven in the appendix F.3.

Bulk contributions. Using representations (2.8) and (2.9), a computation shows that
in the bulk of the contour of integration (0, 1), the integrand takes the form

κ IvIc '
τ→− n

m

κ× e−2S(m,n)+πiO(1) × eV (2v) , 28 (3.13)

where
S(m,n) ≡

πi
27m

(2τ̃ − n0χ1(m− n0n))3

τ̃2 , (3.14)

and χ1(x) = −1, 0, or 1 if x = −1, 0 or −1 mod 3. This term and the imaginary
constant πiO(1) in (3.13) come from the B2,2 and B3,3 that arise from substituting (D.20)
in the definition of effective action (3.3), and evaluating the result at v = 0 (Further details
are given around (E.4)).

Note that |e−S(m,n) | grows (exponentially fast) iff τ → − n
m along the directions

π

2 < −Φm,n < π for (m− n0n) = −1mod 3

0 < −Φm,n <
π

2 for (m− n0n) = 1mod 3
. (3.15)

These are the limits we will focus on. The potential V in (3.13) has the form

V (v) ≡ V2(2v)
τ̃2 + V1(2v)

τ̃
+ V0(2v) , (3.16)

where V2, V1 and V0 are piece-wise polynomial functions of ν = 2v. The V2, V1 and V0 are
periodic in ν with period 1, and independent of τ . To simplify the presentation, let us
assume n0 = −1 and χ1(m− n0n) = 1. The other cases are analogous.

28In the limit τ → − n
m

in which the absolute value of e−S(m,n) grows to +∞. See equation (3.15).
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Figure 7. The portions of parabolas and cusps in the dominant and subdominant regions for m = 3.
The figure to the left shows a plot of V2(ν) as a function of ν. The figure to the right shows a plot
of V1(ν) as a function of ν. In both plots ν ranges from zero to one. The blue portions correspond
to the dominant regions. The red portions correspond to the subdominant regions.

The function V2(ν = 2v) is made of a collection of two portions of parabolas, one of
the two collections corresponds to

V2(ν)
τ̃2 = (πim)

τ̃2 (ν − ν0)2 (3.17)

with domain in segments centered at the positions

ν0 = ν0(`) ≡ `

m
, ` ∈ Z (3.18)

and of length 2
3m . The union of the latter segments will be called dominant region. The

second collection corresponds to

V2(ν)
τ̃2 = πi

6m2τ̃2 −
2πi
τ̃2 (ν − ν0)2 (3.19)

with domain segments centered at the positions

ν̃0 = ν̃0(`) ≡ 2`+ 1
2m , ` ∈ Z , (3.20)

and having length 1
3m . The union of the latter segments will be called subdominant region.

We have plotted one concrete case in figure 7.
For later reference, we note that in the limits τ → − n

m , for which |e−S(m,n) | grows,

e
V2(ν)
τ̃2 −→ 0 . (3.21)

Thus after extraction of the factor e−2S(m,n) , the remaining integrand vanishes in the strict
Cardy-like limit. This is not the end of the story, though.

The function V1(ν = 2v) is made of a collection of cusps and constant pieces. The
cusps fill the dominant region. Precisely, they correspond to

V1(ν)
τ̃

= ± 2πi
τ̃

(ν − ν0) , (3.22)
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where the + corresponds to the subregions

ν ∈
(
ν0, ν0 + 1

3m

)
(3.23)

and the − corresponds to the subregions

ν ∈
(
ν0 −

1
3m , ν0

)
. (3.24)

The collection of constant values fills the subdominant region, and corresponds to

V1(ν)
τ̃

= 2πi
3mτ̃ . (3.25)

The V0(ν) is a piece-wise constant and imaginary function.29 The exponential of V0(ν)

eV0(ν) (3.26)

remains constant within both the dominant and the subdominant regions, although generi-
cally, it changes when one moves from the dominant to subdominant region or vice versa.
Let eiΦdom (resp. eiΦsubdom) denote the value of eV0(ν) in the dominant (resp. subdominant)
region. The explicit expression for the phases eiΦ’s can be recovered by following the
previous explanations.

Focus on the integral∫ ′ 1
0

du e
V2(2v)
τ̃2 +V1(2v)

τ̃
+V0(2v) =

∫ ′1
0
dν e

V2(ν)
τ̃2 +V1(ν)

τ̃
+V0(ν)

= eiΦdom
m−1∑
`=0
I` + eiΦsubdom

m−1∑
`=0
Ĩ` ,

(3.27)

where

I`(τ) ≡
∫ ′ ν0(`)+ 1

3m

ν0(`)− 1
3m

dν eπim (ν−ν0(`))2

τ̃2 + 2πi
τ̃
|ν−ν0(`)| .

Ĩ`(τ) ≡
∫ ′ ν̃0(`)+ 1

6m

ν̃0(`)− 1
6m

dν e
πi

6mτ̃2−
2πi
τ̃2 (ν−ν̃0(`))2

,

(3.28)

and ∫ ′x+y

x−y
≡
∫ ′x−δ|τ̃ |
x−y

+
∫ ′x+y

x+δ|τ̃ |
. (3.29)

The integrals I` and Ĩ` do not depend on `. Thus,

m−1∑
`=0
I` = m I`=0 ,

m−1∑
`=0
Ĩ` = m Ĩ`=0 . (3.30)

29The jumps happen within the dominant region and also from the dominant to the subdominant region.
However, jumps within the dominant region are always an integer multiple of 2πi, and thus are spurious.
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A computation shows that in the limits (3.15) , which include those for which the quo-
tient τ2

mτ1+n remains finite, with τ2 > 0 and mτ1 + n < 0 ,

I` ∼ O(τ̃1) , Ĩ` ∼ O
(
e
π(n+mτ1)τ2

3|̃τ |4 τ̃1
)
. (3.31)

Thus, in such limits both I` and Ĩ` vanish. The former vanishes as a linear function of τ̃ ,
and the latter vanishes exponentially fast. As it will be shown next, this does not mean
that Ibulk does not contribute to the index in the Cardy-like limit. So far, we have ignored
the factor of κ in (3.1). In Cardy-like limit

κ −→ 1
2
e−S(m,n)

(i τ̃) eπiO(1) . (3.32)

Collecting results one concludes that

Ibulk '
τ→− n

m

meiΦdom

2i × e−3S(m,n)+πiO(1) × I`=0
τ̃

. (3.33)

Solving the Gaussian integral I`=0 and writing the result in terms of the error-function
we obtain

I`=0
τ̃

=

4√−1e− iπm
erf

 (−1)3/4√π
(

1+δ |̃τ |
τ̃

)
√
m

− erf
(

(−1)3/4√π(3τ̃+1)
3
√
mτ̃

)
√
m

'
τ→− n

m

4√−1e− iπm
erf

 (−1)3/4√π
(

1+δ |̃τ |
τ̃

)
√
m

− 1


√
m

,

(3.34)

where in the second line, we have taken the Cardy-like limit.30 This result shows that
the bulk contributions Ibulk are not necessarily subleading in Cardy-like expansion. Their
contribution depends on the value of the parameter δ, which is independent of τ .

Because δ is a parametrization of the contour-decomposition (1.6), the total integral
can not depend on δ.31 Consequently, it is safe to assume δ � 1 and finite as τ̃ , ε→ 0. In
this second limit δ →∞, after the Cardy-like one, the bulk contributions are exponentially
suppressed. We will keep δ finite in many equations, but in the very end it will be convenient
to assume δ � 1.

30To recover the result in the limit τ → n
m

= 0, for instance, we recall that for n = 0, the only possible
value of m > 0 is m = 1. That is an implicit assumption that we have used in the intermediate steps that
lead to (3.34). Analogously, for generic values of n, m > 0 can run over the set of relative primes of n only.

31During the completion of the first version of this paper we became aware of the results of [36], which used
a similar decomposition of the contour of integration. It would be interesting to compare and complement the
approaches and tools here used with those of [36]. We thank A.A.Ardehali for conversations on this point.
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Remark 2. Before leaving behind the exponentially suppressed contributions Ĩ`=0 (in
Cardy-like limit) there is an observation to make. Focus on the Cardy-like limit τ → 0. A
computation shows that in such limit

e−3S(1,0) × Ĩ`=0
τ

'
τ→0

e
1
18

πi
τ2 +O( 1

τ
) . (3.35)

(3.35) is the same leading behaviour in the expansion around τ = 0 of the contribution to
the SU(2) Bethe ansatz formula studied in [22, 41] coming from the Bethe root (1, 1)

ρ(v) = 2v = 1 + τ

2 , (3.36)

which is given by
e
−
∑

ρ>0 2F(m,n)(ρ(v))−F(m,n)(0) = e
1
18

πi
τ2 +O( 1

τ
) , (3.37)

where F (m,n)(ρ(v)) was defined in (E.1). This matching at very leading order suggests that
in the expansion τ → 0, the bulk integrals Ĩ` could be related to the Bethe root (3.36).32

Bit contributions. Let us now focus on the infinitesimal bits. Using representations (2.8)
and (2.9), a computation shows that along the tilted bit Dpm,n, the integrand takes the form

κ IvIc '
τ→− n

m

κ× e−2S(m,n)+πiO(1) × eV (2v) e−2πiϕ(m,n)
p , (3.38)

where ϕ(m,n)
p is a constant phase that depends on the discrete variable p. ϕ(m,n)

p has been
defined in (F.25), for example ϕ(m,n)

p=0 = 0. Along the bit Dpm,n, for which,

ν = 2v = 2uτ̃ + p, u ∈ R , (3.39)

the potential takes the form (which is different from (3.16))

V = 4πimu2 + log
(

2 sin π
(

2u+ `

m

)
2 sin π

(
−2u− `

m

))
+ log(−1) . (3.40)

The integer ` ranges from 0 to m− 1 and it is determined in terms of `∗ by the condition

`∗ = n` mod m.33 (3.41)

Using (3.40) one obtains

wI`∗ = w

2iτ̃ × e
−3S(m,n)+πiO(1) e−2πiϕ(m,n)

p

∫
Dm,n

dv eV

= e−3S(m,n)+πiO(1) J`∗ ,
(3.42)

32One point that makes us cautious of drawing a conclusion is that the next subleading corrections do not
match: this remains a puzzle that we leave for the future to explain.

33Recall that we are assuming gcd(m,n) = 1. For example, if n = 0 then m = 1, and thus ` = `∗ = 0.
If n = 1 then m can be any positive integer and ` = `∗ = 0, . . . ,m− 1. If n > 1, generically, `∗ 6= `.
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where

J`∗ ≡
w

2 × e
−2πiϕ(m,n)

p ×
∫

Γm,n

du
i
eπim(2u)2

∣∣∣2 sin π
(

2u+ `

m

)∣∣∣2
= w

2 × e
−2πiϕ(m,n)

p ×
∫ δ eiε

−δe iε

du
i
eπim(2u)2

∣∣∣2 sin π
(

2u+ `

m

)∣∣∣2 . (3.43)

The domain Γm,n is defined as

Γm,n ≡
Dp=0
m,n

τ̃
= (−δe iε, δe iε) . (3.44)

After taking τ → − n
m , we take the splitting parameter δ to be very large. To obtain a finite

result in such double limit, one must take the infinitesimal tilt

ε = 0− . (3.45)

The tilt can be non-infinitesimal as long as the deformed integral remains convergent. The
convergent result in the limit δ →∞ is independent of the magnitude of the tilting.

After changing variables to σ = 2πiu and taking the double limit, J ∗` becomes (up to a
constant phase that does not depend on p)

w

2 × e
−2πiϕ(m,n)

p ×
∫

Γ

dσ
2π e

− im (σ)2
π

(
2 sinh

(
σ + πi`

m

))(
2 sinh

(
−σ − πi`

m

))
, (3.46)

where Γ is a generic straight segment with its two extrema going to ∞ in the second and
fourth quadrants of the σ-complex plane (This will be explained around figure 8 below).
For generic m and ` = `∗ = 0 the integral (3.46) is, up to a phase, w(= 2) times the SU(2)
Chern-Simons path integral (For more details on this, see around equation (C.1)). The total
contribution from vector bits to the SU(2) index can be recovered from (3.46) and (3.8).

Remark 3. A computation shows that the leading exponential factor of the vector bit
contributions, e−3S(1,0) , matches, in the expansion τ → 0, the contribution of the root (1, 0)

ρ(u) = 2u = τ

2 , (3.47)

to the SU(2) Bethe ansatz formula studied in [22, 41] up to corrections of order O(1).
This matching suggests that in the expansion τ → 0, the vector bit integrals are related
to one of the three contributions that compose the SU(2) Bethe ansatz formula, the one
corresponding to the Bethe root (3.47).

3.2 An example of maximally symmetric bit for SU(N)

Let us compute the 0-bit contribution to the SU(N) index, for any τ → − n
m limit along

the directions (3.15) followed by the limit δ → ∞.34 The result we obtain after analo-
gous computations for generic maximally symmetric bits has been already reported in
equation (1.40).

34The final answer completes a formula of [11] for the limits τ → − n
m

with n = 1, and generalizes it to
the case n 6= 1.
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Focus on

IU(N)`∗=0 = κ τ̃N
∫

ΓNm,n

N∏
i=1

dui Iv Ic . (3.48)

To recover the SU(N) bit integral I`∗=0 from the U(N) one we use

I`∗=0 = 1
2δ
IU(N)`∗=0
IU(1)

. (3.49)

The factor of 2δ is the value of the integral of the center-of-mass mode, which equals the
length of the segment Γm,n.

Using the Cardy-like expansion of the integrand along the 0-th wall (See appendix E
equation (E.6)), and after some algebraic manipulations, one obtains

IU(N)`∗=0 '
τ→− n

m

e−N
2S(m,n)+πiO(1) JU(N)`∗=0 , (3.50)

where

JU(N)`∗=0 ≡
1
N !

∫
Γm,n

N∏
i=1

dui
i
eV , (3.51)

and [17]

V ≡ πi k
N∑
i=1

ui − 1
N

N∑
j=1

uj

2

+
∑
i 6= j

log 2| sin πuij | . (3.52)

The integer k takes the values

k ≡ n0mNχ1(m− n0n) . (3.53)

In reaching (3.50) we have used

κ '
τ→− n

m

e−rk(G)×S(m,n)

N ! (i τ̃)rk(G) eπiO(1) , IU(1) '
τ→− n

m

e−S(m,n)

(i τ̃) eπiO(1) , (3.54)

to obtain
κ τ̃N e−(N2−N)S(m,n) = 1

iN e−N
2 S(m,n)+πiO(1) . (3.55)

This last equation illustrates how the potential logarithmic contributions in τ̃ to the effective
action completely cancel out.

The expansions (3.54) were obtained from the definition (2.6) and identity (D.14). To
recover the SU(N) 0-th bit of integral J`∗=0, we use the asymptotic identity

∫
Γm,n

N∏
i=1

duieV '
δ→∞

2δ ×N ×
∫

Γm,n

N−1∏
i=1

duieV , (3.56)

where in the integrand of the right-hand side uN = −∑N
i=1 ui. The proof of (3.56) is

reported in (E.12). From (3.56) and (3.49) one obtains

J`∗=0 = N × 1
N ! ×

∫
Γm,n

N−1∏
i=1

dui
i eV . (3.57)

– 34 –



J
H
E
P
0
2
(
2
0
2
3
)
1
3
4

k < 0 k > 0

(r , ϕ) (r , ϕ)

Figure 8. Any connected contour with two endings going to the opposite asymptotic regions in
white can be used as integration contour for the Chern-Simons integral (C.1) in variables ui = σi

2πi : k
is the Chern-Simons level.

Defining σi ≡ 2πiui and noting that iff σN = −∑N
i=1 σ

i

V = −SCS,k(σ) + πiO(1) , (3.58)

we conclude that

J`∗=0 = N × eπiO(1) × ZΓ , ZΓ =
∫

Γ

N−1∏
i=1

dσi
2π e−SCS,k(σ) . (3.59)

SCS,k, as defined in (C.1), is the effective action of SU(N)k Chern-Simons matrix integral
on S3, and ZΓ is, up to a normalization factor, the SU(N)k Chern-Simons integral on S3.
The relation between ZΓ and the U(N)k Chern-Simons integral (which was reviewed in
appendix C) is

ZΓ = sign(−k)
( ik
N

) 1
2
Z
U(N)
Γ .35 (3.60)

3.3 Symmetry-breaking sectors: integrating out bulk variables

This section shows how the integration over seed variables in the bulk generates further
suppressions of the Casimir pre-factor and it does not affect the effective action for the
remaining seed variables, which we assume to be of vector type v.

We will focus on a particular example, but the general analysis is the same. Let us
start from the U(3) index in the particular limit τ → 0 i.e. choose n = 0 and m = 1. To

35Notice that the original U(N) integral (3.51) is not equal to the U(N)k Chern-Simons integral ZU(N)
Γ that

was defined in appendix C . In particular, the former is invariant under rigid center-of-mass translations ui →
ui + c, and the latter is not. However, the latter can be interpreted as a Chern-Simons integral with
non-diagonal Chern-Simons matrix-level. The matrix-level having integer eigenvalues.
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obtain the contributions to the SU(3) index we use formula (2.5). Let the three Cartan
potentials of U(3) be

{vi} = {v1, v2, v3} . (3.61)

There are three types of symmetry-preserving bit integrals: SU(3), SU(2) and 0-symmetry-
preserving bit integrals. These correspond to the choices λ̃ = 2, 1 and 0 respectively.

One of the SU(2)-preserving bits of the U(3) index is specified by the domain of
integration

|v12| < δ|τ̃ | , v13 = v23 ≡ Φ ∈ [−1, 1]′ . (3.62)

To keep the discussion close to the presentation given in subsection 3.2, we restrict the
center-of-mass mode to range over the contour D(p=0)

1,0 defined in equation (3.11), just as v12.
Let ρ denote the non-vanishing adjoint weights of U(3) which are

ρ(v) = {v12, v23, v31,−v12,−v23,−v31} . (3.63)

As shown before, the integral over the small contour D(p=0)
(1,0) equals the integral over the

tilted contour sketched in figure 6. If we define

v12 = 2ξ τ (3.64)

then, along the tilted contour, ξ is real and runs along the small real contour Γm,n defined
in F (1,0)(ρ(v)) given in (E.2) for ρ(v) = {v12,−v12}, one obtains

F (1,0)
(
ρ(v)→ 2ξτ

)
= F (1,0)(0)− 4πiξ2 . (3.65)

Similarly, for the pieces in the effective action that come from v23 or v13 ranging over the
bulk [0, 1]′, one obtains

F (1,0)
(
ρ(v)→ Φ

)
= + V2(Φ)

τ2 + V1(Φ)
τ

+ piecewise constant , (3.66)

where V2 and V1 are the ones defined in (3.16) with m = 1 and n = 0. Placing all the pieces
together one obtains

VN=3(v) ≡ 4πi ξ2 + 2V2(Φ)
τ2 + 2V1(Φ)

τ
+ piecewise constant ,

+ log
(
2 sin π(2ξ) 2 sin π(−2ξ)

)
+ log(−1) .

(3.67)

The factor of 2 in the potentials that depend on Φ comes from the two possible choices
of ρ(v) = Φ, the ones coming from v31 and v23, respectively. The SU(2)-preserving bit
integral within the total U(3) integral is

∝ δ

τ3−1

(∫ 2′

0
dΦ e

2V2(Φ)
τ2 + 2V1(Φ)

τ
+2V0(Φ)

)
× (SU(2) CS) (3.68)

The SU(2) CS stands for SU(2) Chern-Simons matrix integral, which is just the integral over
the variable ζ. This latter integral factorizes out from the integrals over the variable v23 = Φ;
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there is also a bit integral over the center-of-mass mode which gives the factor of δ in the
numerator. As we previously showed, reaching the SU(2) Chern-Simons integral takes one
of the factors of τ in the denominator, and shifts the total power of τ from 3 to 2.

The bulk integral between parenthesis in (3.68) is rather similar to the one studied in
subsection 3.1. Indeed, as for the latter

∫ 2′

0
= 2

∫ 1′

0
'
τ→0

2
∫ 1

3
′

− 1
3

= 2
(∫ −δΦ|τ |
− 1

3

+
∫ 1

3

δΦ|τ |

)
, (3.69)

where we choose δΦ ∝ δ. Moreover, doing an analogous computation to the one reported in
subsection 3.1 (see around equation (3.34)), one proves the identity

1
τ1

(∫ 1
3
′

− 1
3

dΦ e
2V2(Φ)
τ2 + 2V1(Φ)

τ
+2V0(Φ)

)
'
τ→0

O(1) −→
δ→∞

0 . (3.70)

In this reduced domain [−1/3, 1/3]′, the V0(Φ) is a constant,36 not just a piecewise constant
that could depend on the seed variable ζ := u1,2. This observation implies that the integral
over the bulk seed can be factored out the integral over the vector wall (See (3.71) below).

To go from the U(3) to the SU(3) integral we use the relation (3.49). Doing so, cancels
another factor of τ in the denominator of (3.68) and the δ in the numerator. Collecting
all the pieces, and using (3.70) one obtains that the SU(2)-preserving bit contributions
(λ̃ = λ = 1) to the SU(3) index are exponentially suppressed in the double limit in question,
i.e., that

1
τ3−2

(∫ 2′

0
dΦ e

2V2(Φ)
τ2 + 2V1(Φ)

τ
+2V0(Φ)

)
× (SU(2) CS) '

τ→0
O(1) −→

δ→∞
0 . (3.71)

This is, the SU(2)-preserving contribution has a subleading Casimir contribution, as ex-
plained in the Introduction.

The same conclusion holds for generic N > 3 and for any symmetry-breaking bit. As
explained in the Introduction, in the generic case the integration over bulk seed variables
implies a factorization such as (3.71), i.e., with an exponentially suppressed factor coming
from the integration over the seed variables located at the bulk.

4 Minimal chiral bit contribution

In this section we present a study of the sector α for which N − 2 seeds are integrated over
the bulk regionMb(λ = N − 2) and one over a chiral bitMε(λ̃ = 1). As said before, this
is a subleading sector.

36This naive observation, which was explained around (3.26), is essential. As noted there the function eV0(x)

is constant, in connected regions where the piecewise polynomial contribution coming from the contributions
of the piecewise polynomial part of identities (1.4), the R(3), is strictly polynomial i.e. infinitely smooth. The
contribution of the integral over any such regions comes with a different leading exponential pre-factor in
the expansion near roots of unity. In the case of m > 1 the region around a bit with the leading exponential
pre-factor corresponds to the subdomain x ∈ [p− 1

3m , p+ 1
3m ].
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4.1 Lower dimensional A-models

The exponential of the chiral wall profile (2.52) can be written in the form

e2πi(g−1)Ω(1)
ρ +2πip

(
W(1)
ρ −ρ(u) ∂ρ(u)W

(1)
ρ −γ2 ∂γ2W

(1)
ρ

)
, (4.1)

where γ2 = γ2(m, `) := ∆2+`
m and ` ∈ Zm can depend on ρ with

Ω(1)
ρ := 1

2πi
(
−πi(ρ(u) + γ2) + Li1

(
e2πi(ρ(u)+γ2)) ) .

W(1)
ρ := 1

4
(
ρ(u) + γ2

)2
+ 1

(2πi)2 Li2
(
e2πi(ρ(u)+γ2)) . (4.2)

The positive integer parameters p and g in (4.1) are defined as

p := m ≥ 1 , g − 1 := `? + 1 (4.3)

where `? = 0, . . . ,m−1 , and the bound m ≥ 1 imply that the integer g ≥ 2. We recall that
given a set of vi = v

(0)
i ’s parametrizing the position of chiral bits, the contribution of a given ρ

to the effective action along such chiral bit takes the form (4.1) iff ρ(v) hits a chiral bit.
Let us briefly explain how (2.52) can be recast in the form of the exponent of (4.1). First,

the quadratic term in the twisted superpotential 2πimWI
ρ is the unique choice that gets

mapped into a quadratic term of the form −πi
2 m(ρ(u) + γ2)2 after being acted upon by the

linear diferential operator 1− (ρ(u)+γ2)∂ρ(u). Precisely, a quadratic term −πi
2 m(ρ(u)+γ2)2

arises in (2.52) after applying the identity below-given upon the second Li2 in the second
line of (2.52)

− Li2
(1
z

)
= Li2(z) + π2

6 + 1
2(log(−z))2 , (4.4)

and combining the result with another quadratic contribution coming from the first term
in equation (2.52). The remainder polylogarithmic contributions can be straightforwardly
checked to match in between the two expressions.

One extra contribution to the twisted superpotential. There is an extra quadratic
contribution to the twisted superpotential coming from the piecewise polynomial pre-
factor R(3). For instance, assuming n0 = −1 and (m + n) mod 3 6= 0 the contribution
coming from the latter pre-factor is

−
2F (m,n)(0−+(−n ∆2+`

m +∆1)+ρ(u) τ̃
)
+2F (m,n)(0++(−n ∆2+`

m +∆1)+ρ(u) τ̃
)

2

= χ1(m+n)
2 πim(ρ(u))2+. . . .

(4.5)

where the . . . denotes `-dependent imaginary constants that are collected in the phases Φα

in (1.20). We recall that the correct value at the walls is obtained by evaluating the
semi-sum of the lateral limits, as illustrated by the limits 0± of the pre-factor F (m,n) in (4.5).
This polynomial contribution comes from factors I(vij) that hit chiral bits c. The very
same contribution is there for the factors that hit auxiliary chiral bits b′.
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Note that the quadratic term in the second line of (4.5) is −1
2 times the analogous

result obtained for vector walls, (E.2) (E.3) (assuming n0 = −1). For convenience, and
without losing generality, we can assume m+ n =

mod3
1. The exponential of (4.5) can be

written in the form
e2πip

(
W(2)
ρ −ρ(u) ∂ρ(u)W

(2)
ρ −γ2 ∂γ2W

(2)
ρ

)
, (4.6)

with the choice
W̃(2)
ρ = −ρ(u)2

4 . (4.7)

Then multiplying the three contributions (4.1) and (4.6) we conclude that the total contri-
bution of a charge vector ρ along a chiral wall takes the form

e2πi(g−1)Ωρ+2πip
(
Wρ−ρ(u) ∂ρ(u)Wρ−γ2 ∂γ2Wρ

)
,

= Cm[ρ(u), `]× (constant phase)
(4.8)

with
Ωρ = 3Ω(1)

ρ

Wρ = 3W(1)
ρ + W̃(1)

ρ

=

(
ρ(u)

)2

2 + 3
2γ(2)ρ(u) + 3

4 γ
2
2 + 3

(2πi)2 Li2
(
e2πi(ρ(u)+γ2)) .

(4.9)

We recall that the chiral building block Cm[x, `] was defined in (1.23).
The expression for Ωρ, (4.2), and Wρ, (4.9), can be interpreted as the dilaton and

twisted superpotentials of a 3d N = 2 A-twisted SU(2) Chern-Simons theory in a 3d
manifoldMg,p an oriented circle bundle of degree p over a closed Riemann surface Σg, as
defined in [37]. The polynomial terms in (4.2) are contributions coming from the mixed
gauge-R Chern-Simons terms to both the dilaton and twisted superpotential.

4.2 Reaching a sum over vacua of the A-model

At last, we explain how the reduction of the remainning bit integrals∫
Γα
du Cm[u, `] (4.10)

to a sum over Bethe vacua occurs. As we are focusing on a single ρ, it is fine to substi-
tute ρ(u)→ 2u and drop the subindex ρ. The integrand of a chiral bit takes the form

Cm[u, `] ∝ e2πi (g−1) Ω+2πi p
(
W−u ∂uW−γ2 ∂γ2W

)
(4.11)

This integrand is quasi-periodic under translations

Cm(u+ 1) = Cm(u)Q(u) (4.12)

where the quasiperiodicity factor takes the form

Qm(u) := e−2πi (4mu)

(1− e2πi(2u+γ2))2

= e−2πim∂uW
(4.13)
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and it is periodic
Qk(u+ 1) = Qk(u) . (4.14)

Just as for the case of pure vector bits, convergence of the chiral bit integral∫
Γα
du C(u) (4.15)

is determined by the Gaussian factor i.e. by the classical Chern-Simons contributions
in Cm[u, `]. The contour Γα can then be taken to be an infinitesimal deformation of (−∞,∞)
that makes the integral (4.15) convergent. One can then use the quasi-periodicity conditions
to express that integral as an integral contour over the contour Γ0 in the figure 9 which
can then be evaluated by computing residues of the solutions to the Bethe-ansatz equation

Qm(u) = 1 (4.16)

in the fundamental domain −1
2 < Re(u) < 1

2 . The details of this analysis, which are
analogous, if not identical, to an approach studied by Closset, Kim and Willet in [37], will
be presented in forthcoming work.

5 Questions/problems for the future

Aside from some technical problems that has been left to address in forthcoming work,
following the summary of main results given in the section 1.1, there are relevant conceptual
problems that we find interesting to start thinking about in the near future.

• Is there a clear relation to approach 2) and to the observations made in [10]? In the
particular case of m = n+ 1 = 1, for instance, there is no average to perform. If we
focus on the maximally symmetric bit contribution, then the corresponding partition
function is SU(N) Chern-Simons theory, at quantum corrected level k = N on S3,
which equals 1 (in some convention). So, broadly speaking this individual SU(N)
Chern-Simons integrals are counting single conformal blocks of the universal SU(N)
WZNW at classical level k = 1 of [10]. It is possible that a clear relation between
these two perspectives exists, in the same way as it is possible that a clear relation in
between approaches 1) and 2) exist. It is also interesting to ask how are the averages
over products of Zm’s is interpreted from the perspectives of approach 2) and [10]?

• Can the coarse-grained expansion in sectors α be interpreted as an expansion of a
partition function of a (topological) string theory? The sum over sectors α can be
organized in a sum over interacting or entangled topologically twisted theories that can
be interpreted as two-dimensional theories — with infinite degrees of freedom — over
Riemann surfaces of genus g which could be hinting at a string-theory interpretation.37

• The so-called coupled sectors α can involve coupled contributions coming from Rie-
mann surfaces at different genus. Is this gluing of contributions from different Riemann
surfaces related to a geometrical operation among the underlying Riemann surfaces?

37The hints of existence of a Gopakumar-Vafa duality [44](as summarized, for instance, in [42]) for Lens
spaces L(p, 1) are encouraging, given the fact that their open string theory description is related to the
sector `i = 0 of the maximally symmetric sector (1.39).
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Figure 9. First, one defines a contour that goes to infinity in the quadrants that make integral (4.15)
finite, an infinitesimal deformation of the (−∞,∞). Then the integral is divided in subintegrals Γp∈Z
that can be pushed to the fundamental domain Reu ∈ [− 1

2 ,
1
2 ] by using the quasi-periodicity

properties (4.12). In particular the integral along the deformed Γp has extra p-powers of the
function Q inserted. As the deformation is infinitesimal the addition of all the subintegrals can be
recast as an integral over the contour Γ0 with the insertion of a geometric series in Q resulting in
denominator (1−Q). The residues that compute the latter integral come from the denominator.
There are many details that go into this analysis and they will be revisited elsewhere.
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A Definitions and identities

We use the following relations between the fugacities ζ, p, q and the chemical potentials z, σ, τ

ζ ≡ e(z) , p = e(σ) , q = e(τ) . (A.1)

We also define e(x) ≡ e2πix . The q-Pochammer symbol (ζ; q) ≡ (ζ; q)∞ has the following
product representation

(ζ; q) =
∞∏
j=0

(1− qj ζ) . (A.2)

The quasi-elliptic function θ0(z) = θ0(z; τ) has the following product representation

θell(ζ; q) = θ0(z; τ) = (1− ζ)
∞∏
j=1

(1− qjζ) (1− qjζ−1) . (A.3)

For latter use we note the following relation

(q; q)2 = lim
ζ→1

θell(ζ; q)
(1− ζ) . (A.4)

The elliptic Gamma functions are defined out of the following product representation

Γell(ζ; p, q) = Γe(z;σ, τ) =
∞∏

j, k=0

1− ζ−1pj+1qj+1

1− ζ pj qk . (A.5)

The first three Bernoulli polynomials are

B1(z) = z − 1
2 , (A.6)

B2(z) = z2 − z + 1
6 , (A.7)

B3(z) = z3 − 3 z2

2 + z

2 . (A.8)

B1per(z) ≡ B1({z}) =
{
B1(z − bzc) for z /∈ Z

0 for z ∈ Z
, (A.9)

B2per(z) ≡ B2({z}) ≡ B2(z − bzc) , (A.10)
B3per(z) ≡ B3({z}) = B3(z − bzc) . (A.11)

B1,1(z − 1 | − 1) = −B1(z) , (A.12)

B2,2(z − 1 | τ,−1) = −1
τ
B2(z) +B1(z)− τ

6 , (A.13)

B3,3(z − 1 |σ, τ,−1) = − 1
τ σ

B3(z) + 3 (τ + σ)
2 τ σ B2(z)

− 1
2

(
τ

σ
+ σ

τ
+ 3

)
B1(z) + τ + σ

4 . (A.14)

Next we quote a couple of identities that could be useful for the reader to reproduce
some of the results given below. Define

z(y) = y τ̃ + ∆ , ∆ ∈ C , (A.15)
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then

∆B2,2(u,∆) ≡ B2,2(z(y)|τ̃ ,−1) +B2,2(z(−y)|τ̃ ,−1)− 2B2,2(z(0)|τ̃ ,−1)
= −2 y2 T ,

∆B3,3(y,∆) ≡ B3,3(z(y)|τ̃ , τ̃ ,−1) +B3,3(z(−y)|τ̃ , τ̃ ,−1)− 2B3,3(z(0)|τ̃ , τ̃ ,−1)
= 6 y2B1(T −∆) .

(A.16)

At last, assume

∆ = ∆̃ + `τ ≡ (∆̃2 + `) τ + ∆̃1(`) , (A.17)

then using identities

2(m−1)∑
`=0

(m− |`−m+ 1|)(m− `) =
2(m−1)∑
`=0

(m− |`−m+ 1|) = m2 , (A.18)

one obtains

2(m−1)∑
`=0

(m−|`−m+1|)∆B3,3(y,∆̃+`τ) = 6m2y2
(

(1−∆̃2) τ̃
m

+n∆̃2−
1
2

)

−6y2

2(m−1)∑
`=0

(m−|`−m+1|)∆̃1(`)

 .
(A.19)

B The contour decomposition at N = 3

Given two co-prime integers m and n and n0 = ±1, and the set of bit positions summarized
in table 1 is (` ∈ Z)

v(`) := n`

m
mod1 , c(`) := −(mn0 − n)

m

1
3 + n`

m
mod1 , b′(`) := −(mn0 − n)

m

2
3 + n`

m
mod1 .

(B.1)
The goal is to derive the particularization of the contour integral (1.6) for N = 3. Let us
define the integration variables in I as

{wi} := {v12, v23} , (B.2)

then the arguments in the factors I(vij) in the integrand are

{vij} = {w1, w2, w1 + w2 = v13} . (B.3)
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Then the integral decomposition∫ 1

−1
dw1

∫ 1

−1
dw2 =

∫
D(2)

dw1dw2

+
2(m−1)∑
`1=0

∑
f1∈{v,c,b′}

(∫
D(1,1)

dw1dw2+
∫
D(1,2)

dw1dw2+
∫
D(1,3)

dw1dw2

)

+
2(m−1)∑
`1,`2=0

∑
f1,f2∈{v,c,b′}

∫
D(0)

dw1dw2

(B.4)

=
ε=0+

∫
D(2)

dw1dw2+3×
2(m−1)∑
`1=0

∑
f1∈{v,c,b′}

∫
D(1,1)

dw1dw2

+
2(m−1)∑
`1,`2=0

∑
f1,f2∈{v,c,b′}

∫
D(0)

dw1dw2

(B.5)

follows from the definition of the domains

D2 := {x1 6=ε all bits , x2 6=ε all bits , x1 + x2 6=2ε all bits}
D1,1 = D1,1(f1, `1) := {x1 =ε f1(`1) , x2 6=ε all bits , x1 + x2 6=2ε all bits}
D1,2 = D1,2(f1, `1) := {x1 6=ε all bits , x2 =ε f1(`1) , x1 + x2 6=2ε all bits}
D1,3 = D1,3(f1, `1) := {x1 6=ε all bits , x2 6=ε all bits , x1 + x2 =2ε f1(`1)}
D0 = D0(f1,2, `1,2) := {x1 =ε f1(`1) , x2 =ε f2(`2) , x1 + x2 =2ε f1(`1) + f2(`2)},

(B.6)

which obey

D2 ∪D1,1 ∪D1,2 ∪D1,3 ∪D0 = [−1, 1]2 , DI ∩ DJ = 0 if I 6= J , (B.7)

The x 6=ε y means |x − y| > ε = 0+ and x =ε y means |x − y| ≤ ε = 0+ (ε should be
thought of as an infinitesimally small number). The equality (B.5) follows from the fact
that at ε = 0+ the D1,1, D1,2, D1,3 are isomorphic,38 and that their corresponding integrals
are identified upon a redefinition of variables. At last, we note that

D2 =Mb(λ = 2) ,
D1,1, D1,2, D1,3 =

ε=0+
Mε(λ̃ = 1)⊗Mb(λ = 1) ,

D0 =Mε(λ̃ = 2) ,

(B.8)

38At finite ε one can almost transform a D1,3 into a D1,1 using the change of variables

x1 = −y2 , x1 + x2 = y1 .

The boundaries of the transformed domain do not remain the ones that we have used in the definition
of D1,1 though, but the difference is irrelevant in the limit ε = 0+. This is, the integral along the bits is
independent on how fast the width of the bit is shrinked to zero.
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which implies that

∫ 1

−1
dw1

∫ 1

−1
dw2 =

∫
Mb(λ=2)

dy + 3
2(m−1)∑
`1=0

∑
f1∈{v,c,b′}

∫
Mε(λ̃=1)

dx

∫
Mb(λ=1)

dy

+
2(m−1)∑
`1,`2=0

∑
f1,f2∈{v,c,b′}

∫
Mε(λ̃=2)

dx.

(B.9)

(B.9) is the particularization of the contour decomposition in (1.6) for N = 3.

C Chern-Simons partition function on S3

In this appendix, we compute the integral

Z
U(N)
Γ ≡ 1

N !

∫
ΓN

dNσ

(2π)N e−SCS, k(σ) = 1
N !

∫
ΓN

dNσ

(2π)N

(
N∏
s=1

fk,ξ(σs)
)

∆N (σ) (C.1)

where
fk,ξ(σ) ≡ e−

i k
4π σ

2−i ξ2 σ , ∆N (σ) ≡
∏
i 6=j

2 sinh σi − σj2 . (C.2)

The contour ΓN will be defined below. Starting from the Weyl denominator formula∏
i<j

2 sinh σi − σj2 = det
i,j

(
eσi(j−

N+1
2 )
)

(C.3)

we obtain
∆N (σ) = det

i,j

(
eσij

)
× det

k,`

(
e−σk`

)
. (C.4)

From (C.4) and identity

∫
dxi

 N∏
p=1

h(xp)

(det
i,j
g1i(xj)

) (
det
i,j
g2i(xj)

)
= N ! det

i,j

(∫
dxh(x) g1i(x)g2j(x)

)
, (C.5)

with i and j = 1, . . . , N , and g1i(σ)→ eσi and g2j(σ)→ e−σj , we obtain

Z
U(N)
Γ = det

ij

(∫
Γ

dσ
2π fk,ξ e

σ (i−j)
)
. (C.6)

If the boundary ∂Γ is composed by two points in the complex u-plane at polar coor-
dinates ± r eiφ, with r � 1 and 0 < φ < π then the single-variable integral in the
determinant (C.6) is convergent iff{

0 < φ < π
2 for k < 0 ,

π
2 < φ < π for k > 0 . (C.7)

In those cases, one obtains

∫
Γ

dσ

2π fk,ξ(σ) eσ (i−j) = sign(−k) e
− iπ (−i+j+iξ)2

k

√
i k

+ . . . , (C.8)
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assuming Γ runs from −reiφ to reiφ, namely, from the lower half-plane to the upper half-
plane. The . . . in (C.8) stand for non-pertubative corrections in the 1

r expansion, that can be
exactly computed. Finally, combining (C.6) with (C.8), and after algebraic manipulations
we obtain

Z
U(N)
Γ −→

r→∞
sign(−k)N e−

πi
6 k N (N+1) (N−1)

(i k)N2

N−1∏
L=1

(
2 i sin πL

k

)N−L
. (C.9)

This result is up to a normalization the U(N) Chern-Simons partition function on S3.

D The θ0 and Γe along the 0-th wall

In reproducing many of the results below given, the reader may come across quantities that
hit a discontinuity coming from the use of floor and ceiling functions. Below, we will deal
with these technical difficulties by introducing ad hoc deformations and then taking limits.
There is a simpler way though to recover the correct answer:

Rule. Each time a discontinuity is encountered in computing a function f , the value of f
at the discontinuity matches the semi-sum of its lateral limits.

Recall that for θ0 the (m,n)-representations are

log θ0(z) ≡ π i
m−1∑
`=0

B2,2(ξ`|τ̃ ,−1) + i
∞∑
j=1

1
j sin πj

τ̃

m−1∑
`=0

cos
(
πj

2ξ` + 1
τ̃

)
, (D.1)

where
τ̃ ≡ mτ + n , (D.2)

and
ξ` = ξ`(z; τ) = ξ`(z) ≡ z − Integer + ` τ . (D.3)

The Integer is selected by the condition

− 1 < ξ`⊥ < 0 (D.4)

where the real numbers ξ`⊥, and its dual ξ`||, are components of the complex number ξ` in
the basis of the complex plane given by 1 and τ̃ , i.e. ξ` = ξ`⊥ + τ̃ ξ`||. For later convenience
we define

v = uτ̃ ≡ z = z(u) (D.5)

and assume, for the moment,

u = z(u)
τ̃
∈ R± . (D.6)

Generically, in an expansion around τ = − n
m the second term in the right-hand side

of (D.1) is exponentially suppressed. Only for values of ` for which ξ` is infinitesimally
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close to, either 0 (from below) or −1 (from above), the latter term becomes relevant. Let
us assume that only ζ`=0⊥ is infinitesimally close to 0 or −1, then

log θ0(z) −→
τ→− n

m

π i
m−1∑
`=0

B2,2(ξ`(z)|τ̃ ,−1)

+ i
∞∑
j=1

1
j sin πj

τ̃

cos
(
πj

2ζ`=0(z) + 1
τ̃

)
+ . . . ,

= π i
m−1∑
`=0

B2,2(ξ`(z)|τ̃ ,−1)−
∞∑
j=1

cos
(
2πju

)
j

+ . . . . (D.7)

A computation shows that

log θ0(z) −→
τ→− n

m

π i
m−1∑
`=0

B2,2(ξ`(z)|τ̃ ,−1) + log
(
2 | sin πu|

)
+ . . . . (D.8)

The . . . denote corrections that are odd under u → −u. Note that the logarithm term
does not depend on m and n. To resum the series in (D.7) to a logarithm, we have also
assumed u /∈ Z. We have also assumed

ζ`=0(τ) =
{
u τ̃ + 0− ≡ u− ,
u τ̃ − 1+ .

(D.9)

and moreover, that every other ξ`(τ), with ` 6= 0 is such that ξ` is not infinitesimally close
to either 0− or −1+. Later on we will relax the latter assumption, and find there can be
contributions coming from other values of ` 6= 0.

From the identity

sin(π|u|)2 = (−1)× sin(πu) sin(π(−u)) (D.10)

it follows that one can drop the absolute value in the argument of the logarithm in (D.8),
and use instead

log θ0(z)θ0(−z) −→
τ→− n

m

π i
m−1∑
`=0

B2,2(ξ`(z)|τ̃ ,−1) + (z → −z)

+ log
(
2 sin πu

)(
2 sin π(−u)

)
+ log(−1) .

(D.11)

As we will further explain in subsection F.1, the equation (D.11) can be used in a thin
ribbon of the complex plane parallel to the rays u ∈ R. More precisely, it can be extended to

u = v = v|| +
v⊥
τ̃
∈ C , (D.12)

where v|| is an arbitrary real number and

− |τ̃ | δ < v⊥ < |τ̃ | δ. (D.13)

The δ ∈ R is to be identified with the splitting parameter of the contour of integration. δ
is independent of τ .
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Expansion of the q-Pochhammer symbol. Assuming z lies in the domain defined by
equations (D.5) and (D.6), and using the expansion for log θ0 given in (D.8), together with
identity (A.4) we obtain

log (q; q) = 1
2 lim
z→0

log θ0(z)
(2πiz)

−→
τ→− n

m

π i
2

m−1∑
`=0

B2,2(ξ`(z → 0)|τ̃ ,−1)− 1
2 log

(
i τ̃
)
.

The derivation of the relation in the first line above can be found, for instance, in equa-
tion (1.11) of [3]. We have left the limit z → 0 in the second line because the result
obtained by naively substituting z by 0 does not match the limits. Due to condition (D.9),
we are interested in the result of the limit z → 0+ which up to exponentially suppressed
contributions is

log (q; q) −→
τ→− n

m

− πi
12mτ̃ −

πiτ̃
12m

+ πi
m−1∑
`=0

(m− 2`)B1
(
{` nm + 0+}

)
2m − 1

2 log
(
i τ̃
)
.

(D.14)

Contribution from vector multiplets.39 This contribution comes from using the
following definition

− 2F (m,n)
V (x) = π i

(m−1)∑
`=0

(
B2,2

(
ξ`(z(x))|τ̃ ,−1

)
+ (x→ −x)

)
, (D.15)

and x ∈ C. In this appendix we are interested in the specialization x = u−. A computation
shows that40

− 2 F (m,n)
V (u) + 2F (m,n)

V (0) + 2πim2 τ u2 = κV πiu2 . (D.16)

In this equation κV = −2mn ∈ Z and

−F (m,n)
V (0) = − π i

6m
1
τ̃

+ 2π i
m−1∑
l=0

`

m
B1

({`n
m

})
− π i

6m τ̃ . (D.17)

39Our treatment of the vector multiplet contribution will not require the use of the regulator ε used in [9].
The difference one obtains by using the ε-regularization of [9] arises at order O(1) in the large-N expansion,
more precisely, in the pure imaginary constant ϕ that was left undetermined in such a reference, and later
on fixed in [24]. For the same reason, should one used the ε-regularization, for instance for (m,n) = (1, 0)
one obtains kv + 3kI = 0 as one can check from the data reported in tables 3, 4, and equation (C.41) of [9].
For the approach here taken, we obtain the exact result, which is different from zero i.e. kv + 3kI 6= 0. The
approach here presented fixes this error, which was introduced by the use of the ε regularization in [9].

40This result also follows from the naive use of (A.16).

– 48 –



J
H
E
P
0
2
(
2
0
2
3
)
1
3
4

D.1 The expansions of Γe along the 0-th wall

To compute chiral multiplet contributions we use the representations

log Γe(z; τ, τ) =
2(m−1)∑
`=0

πi

3 (m− |`−m+ 1|)B3,3(ξ`|τ̃ , τ̃ ,−1)

+
2(m−1)∑
`=0

i (m− |`−m+ 1|)
( ∞∑
j=1

−2 τ̃ + 2ξ` + 1
2 j τ̃ sin

(
πj
τ̃

)
× cos πj(2ξ` + 1)

τ̃
−
πj cot

(
πj
τ̃

)
+ τ̃

2π j2 τ̃ sin
(
πj
τ̃

) sin πj(2ξ` + 1)
τ̃

)
.

(D.18)

For coprimes m and n, complex z = uτ̃ and u real, the ξ` was defined in (D.3).

a) For m and n such that for every 0 ≤ ` ≤ 2(m− 1) none of the ξ` is of the form (D.9),
thus

log Γe(z; τ, τ) '
τ→− n

m

2(m−1)∑
`=0

πi

3 (m− |`−m+ 1|) B3,3(ξ`|τ̃ , τ̃ ,−1) , (D.19)

up to exponentially suppressed contributions. In this last expression z and u can be generic
complex numbers. For the cases we will study, condition a) will be always satisfied.

For convenience we define, for x ∈ C,

−2F (m,n)
I (x)≡ π i

3

2(m−1)∑
`=0

(m−|`−m+1|)
(
B3,3

(
ξ`(zI(x);τ)|τ̃ , τ̃ ,−1

)
+(x→−x)

)
. (D.20)

The label I refers to the I-th N = 1 chiral multiplet with U(1) R-charge rI and

zI(v) ≡ v + rI
2 (2τ − n0) = uτ̃ + rI

2 (2τ − n0) . (D.21)

As noted in [9]41

− 2 F (m,n)
I (zI(v)) + 2F (m,n)

I (zI(0)) + 2πim2 τ u2 (rI − 1) = κI πiu2 , (D.22)

where the real number κI is

κI ≡
2(m−1)∑
`=0

(m− |`−m+ 1|)
(
2mB1

({
n(`+rI)

m + n0rI
2

})
− 2n(`+ rI −m)

)
m

. (D.23)

E The integrand of I(q) along the 0-th wall

For the R-charge of a chiral multiplet in N = 4 SYM rI = 2
3 , the kI is an integer multiple

of 1
3 . In N = 1 language the theory is built out of three chiral multiplets of R-charge rI = 2

3
labeled as I = 1, 2, 3, and a vector multiplet labeled as V . If one defines

F (m,n)(ρ(v)) ≡
∑

a∈{V, I=1, 2, 3}
F (m,n)
a (z(ρ(v))) , (E.1)

41This can be shown using (A.17) with y = ρ(u), ∆̃2 = rI and ∆̃1 = −
(
n0rI

2 − bn(`+rI )
m

+ n0rI
2 c
)
.
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and uses definitions (D.15) and (D.20), one obtains

− 2F (m,n)(ρ(v)) = −2F (m,n)(0) + κm,n πi ρ(u)2 , (E.2)

where
κm,n ≡ κV + 3κI = mχ1(m− n0 n) , (E.3)

and χ1(x) ≡ {−1, 0, 1} if xmod 3 = {2, 0, 1}, respectively. Using (D.20) a computation
shows that [9]

F (m,n)(0) = S(m,n) + πiO(τ0) , (E.4)

where
S(m,n) ≡

πi
27m

(2τ̃ − n0χ1(m− n0n))3

τ̃2 . (E.5)

The constant phase in (E.4) can be explicitly evaluated from (D.15) and (D.20).

E.1 The effective action along a vector wall

Let us write down the profile of the effective action along the contour Γp=0
m,n i.e. for real u = v

τ̃
.

This is the profile that will be relevant to compute the contribution of the p = 0 bit and its
other N − 1 replica images.

Collecting previous results we obtain

Seff p=0(u) '
τ→− n

m

∑
ρ 6= 0

(
F (m,n)(ρ(v))− log 2 sin ρ(u)

)
+O(1) . (E.6)

Plugging the adjoint weights, and using the relations [17]

1
2
∑
ρ

(ρ(u))2 = 1
2

N∑
i,j=1
i 6=j

(ui − uj)2 = N
N∑
i=1

ui − 1
N

N∑
j=1

uj

2

(E.7)

we obtain∫
Γm,n

N∏
i=1

dui e
−Seff p=0(u) '

τ→− n
m

e−(N2−N)S(m,n)+πiO(1)
∫

Γm,n

N∏
i=1

dui eV (u) , (E.8)

where the constant phase is under control, although we do not report it’s analytic expression,
and

V (u) = πi k
N∑
i=1

ui − 1
N

N∑
j=1

uj

2

+
∑
i 6= j

log 2 sin πuij , (E.9)

with
k ≡ n0Nmχ1(m− n0n) . (E.10)

Note that for limits (m,n) such that χ1(m− n0m) = 0 there is no exponential growth of
the integrand of the index, as |e−S(m,n) | is of order one, and moreover there is no polynomial
contribution in u. At last, we prove the identity∫

Γm,n

N∏
i=1

duie
V (u) '

δ→∞
2δ ×N

∫
Γm,n

N−1∏
i=1

duie
V (u) , (E.11)
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where in the right-hand side uN = −∑N−1
i=1 ui. Proof:∫

Γm,n

N∏
i=1

duieV (u) =
∫

Γm,n

N∏
i=1

duie
πi k
∑N

i=1

(
ui− 1

N

∑N

j=1 uj

)2 ∏
i 6=j

2 sin πuij

=
∫

Γm,n

N∏
i=1

duie
πi k
∑N

i=1

(
ui− 1

N

∑N

j=1 uj

)2 ∏
i 6=j

2 sin πuij

×

1 −→
∫

Γm,n
dC δ

C − 1
N

N∑
j=1

uj


=
∫

Γm,n
dC

∫
Γm,n

N∏
i=1

duie
πi k
∑N

i=1

(
ui−C

)2 ∏
i 6=j

2 sin πuij

× δ

C − 1
N

N∑
j=1

uj


=
∫

Γm,n
dC

∫
Γm,n+C

N∏
i=1

dũi eπi k
∑N

i=1 ũ
i2 ∏
i 6=j

2 sin πũij

× δ

 1
N

N∑
j=1

ũj


= N

∫
Γm,n

dC
∫

Γm,n+C

N−1∏
i=1

dũi eπi k
∑N

i=1 ũ
i2 ∏
i 6=j

2 sin πũij

'
δ→∞

N

∫
Γm,n

dC
∫

Γm,n

N−1∏
i=1

dũi eπi k
∑N

i=1 ũ
i2 ∏
i 6=j

2 sin πũij

(E.12)

'
δ→∞

2δ ×N
∫

Γm,n

N−1∏
i=1

dũi eπi k
∑N

i=1 ũ
i2 ∏
i 6=j

2 sin πũij

'
δ→∞

2δ ×N
∫

Γm,n

N−1∏
i=1

duieV (u) .

(E.13)

In the second line we have used that for every uj ∈ Γm,n, and from the fact Γm,n is a
straight segment, it follows that∫

Γm,n
dC δ

C − 1
N

N∑
j=1

uj

 = 1 . (E.14)

In the sixth step we have used that the integrals over Γm,n and Γm,n + h, with |h| arbitrary
and finite, are equal in the limit δ → ∞. Thus in the limit δ → ∞, one can safely
deform Γm,n + C into Γm,n, and the integral of C becomes 2δ. See plot 10.

F The integrand of I(q) along vector walls

So far we have mainly focused on the rays z = v = u τ̃ with u ∈ R. However, the original
integration contour lies along v ∈ R. Before starting, let us recall that, for fixed m and n,
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Figure 10. Numerical plot of the absolute value (Abs) and argument(Arg) of the quotient between
the left and right-hand sides of equation (E.11) in the case N = k = 2 and 1

2δ = re
2πi

3 with r = | 1
2δ |.

Note that for 1
2δ −→ 0 the result tends to one, as predicted by (E.11).

we associate the two real numbers x⊥ and x|| defined by the relation

x = x|| τ̃ + x⊥ , (F.1)

to the complex number complex x.

F.1 Other walls in complex z-plane

We have already shown that the analytic extension of the vector multiplet contribution
to the integrand of the superconformal index gives, in Cardy-like limits, a logarithmic
contribution along the 0-th wall v

τ̃
= u ∈ R (See around (D.11)). Can there be other

such non-analyticities? This section classifies all such possible walls of non-analyticities,42
namely, those coming from

log θ0(z) θ0(−z) , (F.2)

specifically from the series in the right-hand side of the (m,n) representations in (D.1) (See
equation (F.10) below). In the following subsection we will complete the analysis for the
piecewise polynomial contributions.

Recall the definition

ξ`(τ) = z + `τ − k0 =
(
z|| +

1
m
`

)
τ̃ + z⊥ −

n

m
`− k0 , (F.3)

where k0 = bz⊥τ̃ −
n
m`c − 1. Before, we were assuming z|| = u ∈ R and z⊥ = 0, now there

are two cases we want to explore
42Chiral multiplets can also give logarithmic contributions. These contributions are of a different nature

though, as they come from poles of the elliptic Gamma functions associated to chiral multiplets. Those
contributions will be analyzed in deeper detail elsewhere.

– 52 –



J
H
E
P
0
2
(
2
0
2
3
)
1
3
4

Case 1):
z|| = 0 , z⊥ − p� 1 , (F.4)

Case 2):
z|| = u ∈ R , z⊥ − p� 1 , (F.5)

for some real number p that will be fixed by requiring convergence.
Let us start with Case 1). Specifically, we assume that

z⊥ − p
|τ̃ |

'
τ→− n

m

y , (F.6)

where y is an arbitrary and finite real number i.e. |y| < δ. δ is to be identified with the
splitting parameter used to divide the original contour of integration.

For small enough z⊥ − p
k0 = bp− n

m
`c − 1 , (F.7)

and
ξ`(τ) =

(
y eiΦm,n + 1

m
`

)
τ̃ +

{
p− n

m
`

}
− 1 , (F.8)

where {x} ≡ x− bxc and

eiΦm,n ≡ lim
τ→− n

m

|τ̃ |
τ̃
. (F.9)

The condition for the series

L(`)(z) ≡ i
∞∑
j=1

1
j sin πj

τ̃

cos
(
πj

2ξ`(z) + 1
τ̃

)
(F.10)

to be absolutely convergent is

|Im
(2ξ`(z) + 1

τ̃

)
| < |Im

(1
τ̃

)
|

|y sin Φm,n + Im
(

2 {p− n
m `} − 1
τ̃

)
| < |Im

(1
τ̃

)
| .

(F.11)

In the asymptotic Cardy-like limit τ → − n
m the conditions reduce to

|2
{
p− n

m
`

}
− 1| < 1 . (F.12)

This condition is satisfied for generic real p, but not for those values that make the left-hand
side equal 1. Those are also the solutions to{

p− n

m
`

}
= 0 or 1 (F.13)

which are
p(`)mod 1 = n

m
` . (F.14)
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In these cases

L(`)(z) '
τ→− n

m

∑
p(`)

P(z⊥ − p) log 2 | sin π
(
y cos Φm,n + `

m

)
|+ . . .

=
∑
p(`)

P(z⊥ − p) log 2 | sin π
(
z⊥ − p
|τ̃ |

cos Φm,n + `

m

)
|+ . . .

=
∑
j̃ ∈Z

P
(
z⊥ −

`∗

m
+ j̃

)
log 2 | sin π

(
Re
(
z⊥ − `∗

m + j̃

τ̃

)
+ `

m

)
|+ . . . ,

(F.15)

The meaning of . . . will be given below.
In these equations the projectors P(x) is defined as

P(x) = 1 (F.16)

in the infinitesimal domain |x| < |τ̃ | δ '
τ→− n

m

0, and vanishes exponentially fast outside

that region. Thus, multiplying P(z⊥ − p) by a function f(z) projects the function to zero
outside the infinitesimal ribbon located at z⊥ = p, and leaves it unchanged within the
ribbon. These ribbons are the walls.

The integer `∗ = 0, . . . ,m− 1, which is a function of `, is determined by the condition
`∗(`)
m

= p(`) mod Z . (F.17)

The . . . in (F.15) denote plus terms that cancel after adding the contribution with z⊥ →
−z⊥, and summing over ` and j̃; this conclusion can be understood to follow from the
following observation. For each ` = 0, 1, . . . ,m− 1 there exists the inverse m− ` mod m =
0, 1, . . . ,m− 1. For these pairs

p(`) = −p(m− `) mod Z . (F.18)

Thus, two mutually inverse values of `’s are mapped to mutually inverse values of `∗’s by
the map p = p(`). That implies that the sum in the second line of the right-hand side
of (F.15) is invariant under the simultaneous substitution of p→ −p and `→ −`, and thus
(because of the presence of the absolute value) it is also invariant under z⊥ → −z⊥.

At last, the previous invariances imply that the sum in the first line in the right-hand
side of (F.15) is invariant under the transformations y → −y, `→ −`, and consequently,
odd terms under such transformation cancel out, after summing over `.

In summary, defining

L+(z) ≡
m−1∑
`=0

(
L(`)(z) + L(`)(−z)

)
, (F.19)

one obtains

L+(z) '
τ→− n

m

m−1∑
`=0

∑
j̃ ∈Z

P
(
z⊥ −

`∗

m
+ j̃

)(
log
(
2 sin π

(
y cos Φm,n + `

m

)
× 2 sin π

(
−y cos Φm,n −

`

m

))
+ log (−1)

)
.

(F.20)
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In this equation

y = z⊥ − p
|τ̃ |

=
z⊥ − `∗

m + j̃

|τ̃ |
. (F.21)

Due to the multiplication by the projector P(z⊥ − `∗

m + j̃), a given value of p picks up a
unique ` ∈ Z mod m, and vice versa. That implies that at a vicinity of z ≈ p there is a
single logarithmic term in the potential, the one associated to the value of ` corresponding
to p via the inverse map p−1. By p−1 we mean the inverse map of the operation p : ` 7→ p(`)
where p(`) was defined in equation (F.14).

Repeating the same steps one can reach a similar formula for the Case 2. If in this case
we assume y = 0,43 the result is

L+(z) '
τ→− n

m

m−1∑
`=0

∑
j̃∈Z

P
(
z⊥−

`∗

m
+j̃
)(

log2 sinπ
(
u+ `

m

)
2 sinπ

(
−u− `

m

)
+log(−1)

)
.

(F.22)
This formula will be used to compute the bits of integral for N = 2 (these results can
be used at any value of N though): it is the profile of the (limit of the) series along the
corresponding wall.

F.2 The polynomial part along a generic vector wall

For z = z|| τ̃ + z⊥ and

z⊥ − p
τ̃

= y <∞ , with pmod 1 ≡ `∗

m
, (F.23)

a computation shows that

− 2F (m,n)(z) = −2F (m,n)(z = p) + κm,n πi z2
|| , (F.24)

where κm,n was defined in (E.3).
In the main body of the paper we will use the following definition

− 2πiϕ(m,n)
p ≡ −2F (m,n)(z = p) + 2F (m,n)(z = 0) . (F.25)

ϕ
(m,n)
p is a real constant that depends only on the choice of the wall. The piece-wise

polynomial function F (m,n)(z) was defined in (E.3).

F.3 From the horizontal to the diagonal contour

To justify the use of the diagonal contour in figure 6 instead of the horizontal one, we build
upon an observation about L+(z) when y 6= 0 and u 6= 0.

Consider
z =

(
y eiΦm,n + u

)
τ̃ , (F.26)

with y ∈ R and u ∈ R. With (F.26), the new version of (F.22) can be obtained from the
latter after substituting

u −→
(
y eiΦm,n + u

)
. (F.27)

43As explained before this introduces an error that is exponentially suppressed in the Cardy-like expansion.
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Everything else remains the same e.g. the positions of the walls, etc. Now, from prop-
erty L+(z) = L+(−z), it follows that

L+(z = p+ δp) = L+(z = −p− δp) (F.28)

where again, p = `∗

m + integers ∈ R and δp ∈ C is a complex number with small enough abso-
lute value. As the integrand is even in the integration variable z, the same property (F.28)
applies to the full integrand of the index, not just for the contributions coming from the
exponential of L+.

In Cardy-like limit the previous statement implies that the integral along the dashed
vertical line to the right (resp. left) in figure 6, in a vicinity of the bit z = pmod 1, cancels the
integral along the dashed vertical line to the left (resp. right), but this time in a vicinity of the
bit z = −pmod 1. As one must sum over all bits intersected by the original contour of integra-
tion, and these always include both, the p and−p bits, it follows that to compute the localized
contributions we can use the diagonal contour in figure 6 instead of the horizontal one.

Some comments about K in (1.2). For generic m and n the approach 2) predicts that

K =
∑

I∈fixed points leading at τ → − n
m

e2πiφI = N +
∑

I∈Other possible fixed points
leading in the limit τ → − n

m

e2πiφI , (F.29)

where the factor of N counts certain configurations that we call fixed points or Bethe roots,
indistinctly. For the Cardy-like limits that we study, and for N = 2 [22, 41] it has been
already shown that ∑ I∈Other possible fixed points

leading in the limit τ → − n
m

e2πiφI = 0 . This was also argued to hold in
the limit τ → 0, for generic N [11, 17–19], and our conclusions confirm so (See also the
discussion in [10]). In the gravitational side of the duality these N should correspond to a
subset of the Euclidean configurations considered in [45].

These solutions are conjectured to be related to massive vacua of N = 1∗ theory
on R1,3 [39, 41, 46]. The set of solutions corresponding to the second factor in (F.29) should
correspond to continuum sets of Bethe roots [28] and are expected to correspond to vacua
of the N = 1∗ theory containing massless photons [28, 39–41]. It would be interesting to
explore whether the symmetry-breaking classification introduced in section 1.2 relates to
the classification of vacua of N = 1∗ on R3,1 of [39, 40]. The latter have been conjectured
to correspond to Bethe roots of the SU(N) N = 4 index [14, 41].
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