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1 Introduction

An intriguing question in cosmological physics is the existence of gravitational solitons that
can describe various dark and ultra-compact objects which, from afar, are indistinguishable
from black holes in general relativity. Recently, the authors have developed a framework
for constructing and studying large classes of gravitational solitons that are described by
smooth horizonless solutions with arbitrary mass and charges in supergravity [1–6]. These
are thought of as coherent states of quantum gravity that admit classical descriptions. The
main novelty of our work is that it provides systematic tools for obtaining generically non-
supersymmetric solutions, thereby allowing for a compelling case for gravitational solitons
in the real world.

There are various interesting questions relating to gravitational solitons.1 The main
question that motivates this paper is how to understand them more precisely as coherent
states of quantum gravity. Holography and the AdS/CFT correspondence provide the best
definition of a quantum theory of gravity via conformal field theories.

The main objective of this paper is to derive a construction mechanism that allows
us to systematically build non-supersymmetric asymptotically-AdS solutions that contain

1The necessary conditions for their existence in theories of gravity were discussed in [7]. There are
questions on their production mechanics and their stability, whose study has been initiated in [8].
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various gravitational solitons in the bulk. In this point of view, the solitons can be char-
acterized by non-supersymmetric CFT operators under the AdS/CFT dictionary. This
provides a more precise definition of the solitons as states of a quantum theory. This
perspective has been very fruitful in the context of BPS states in various AdS/CFT con-
texts. For instance, the classification and matching of 1

2 -BPS states in AdS5/CFT4 by the
Lin-Lunin-Maldacena (LLM) geometries with their CFT duals has allowed for a precision
test of the duality in N = 4 Super-Yang-Mills [9]. Similar success can be reported for the
fuzzball and microstate geometry program where 1

4 - and
1
8 -BPS states have been classified,

and precision holography tests have been carried out for the AdS3/CFT2 duality in the
context of the D1-D5 CFT [10–15], and for the less understood AdS2/CFT1 duality [16].

However, much less is known beyond the comfortable frontiers of supersymmetry and
about the holographic descriptions of non-BPS states. The first challenge is to construct,
from Einstein’s equations in supergravity frameworks, large families of smooth non-BPS
geometries that are asymptotic to AdSD × C where C describes a compact space. The
second challenge is to develop holographic dictionaries beyond supersymmetry. In the
former case, only a few atypical sets of non-BPS smooth geometries [17–23] were known
until recently.2 Some promising breakthroughs have been achieved first from a consistent
S3 truncation of six-dimensional supergravity [26–28] and second from the “charged Weyl
formalism” established by the authors [1–6]. In all of these solutions, only a small subset
admits field theory descriptions in the context of AdS3/CFT2 in type IIB supergravity:
the JMaRT geometry [29] and the microstrata [30]. This was done by describing them as
non-BPS descendants of well-understood BPS configurations, using spectral flow for the
former and relating them perturbatively to known BPS solutions for the latter.

This article contributes to bridging the gap towards non-BPS holography. The initial
goal is to adapt the formalism of [1–6] for a systematic construction of regular non-BPS
geometries that are asymptotic to AdSD × C and that can be considered as non-BPS
deformations on known BPS backgrounds. These deformations regularly backreact by
inducing geometric transitions where compact directions in C degenerate in the spacetime.
These form a chain of bolts along which the geometries smoothly cap off. In this paper, we
focus on AdS3×S3×T4 in type IIB supergravity which is dual to the D1-D5 CFT,3 but the
formalism can be generalized to other AdS frameworks as AdS2×S3×T6 in M-theory [31].

Another motivation for this paper is the development of solution-generating techniques
for asymptotically-AdS spacetimes. In asymptotically-flat spaces, numerous approaches
from the Ernst formalism, inverse scattering, Bäcklund transformations, or monodromy
methods have been successfully applied to generate a variety of geometries.4 These usually
rely on the action of the Geroch group in gravity [39, 40] which arises from geometries with

2There are other interesting constructions as [24, 25] in AdS3, but being constructed from Einstein
gravity in three dimensions, they do not admit UV description within a quantum gravity theory.

3Note that some solutions in this paper require a KKm charge, k, such that the asymptotic is
AdS3×S3/Zk×T4. The holographic dictionary of such a system is much less understood than that of
the D1-D5 system already at the level of BPS states.

4See [32–38] as a non-exhaustive list of techniques used to generate solutions in four-dimensional General
Relativity in vacuum of with gauge fields.
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d − 2 commuting Killing vectors, where d is the dimension of the spacetime. This latter
assumption reduces Einstein equations for the d-dimensional spacetime to an integrable
system on a two-dimensional plane, usually parametrized by (ρ, z) in the cylindrical Weyl
coordinate system. Generic solutions are generated by rod sources, which are segments on
the z-axis, and that induce spacelike or timelike coordinate degeneracies in the spacetime.

In backgrounds with cosmological constants, these powerful solution-generating tech-
niques fail to apply since Einstein equations no longer reduce to a two-dimensional problem.
We overcome this issue by considering geometries of the form AdSD ×C with suitable flux
in supergravity. The curvature of the AdS spacetime can be balanced off with that of the
internal space C, and the action of the Geroch group still applies on the overall space when
assuming d − 2 commuting Killing vector. Thus, we show for the first time how powerful
solution-generating techniques in general relativity can be used to generate AdS solutions
in supergravity. This has been an open problem for many generations.

In this paper, we focus on the D1-D5 system of type IIB on T4×S1, and highlight
the integrable structure of the equations of motion for backgrounds with eight commuting
Killing vectors. We show that inverse scattering or monodromy methods can be generically
used to construct regular geometries, supported by D1-D5 flux, that are asymptotic to
AdS3×S3×T4 and admit a chain of regular rod sources in the interior. These rods generate
regular horizons of non-BPS D1-D5 black holes or smooth bolts that correspond to regions
where circles from any of the three asymptotic components of AdS3×S3×T4 degenerate.

In the charged Weyl formalism [2–5], the integrable structure allows to restrict to
a class of solutions that relies on a linear structure of the cylindrical axially-symmetric
Laplace problem with non-BPS sources. Moreover, we reparametrize the two-dimensional
system by considering the AdS3 radial distance and the backbone angle of the S3, (r, θ).
In this perspective, global AdS3 is generated by a single rod source where the S1 in AdS3
degenerates at r = 0. This geometry on its own preserves supersymmetry. Our construc-
tion allows for additional rod sources where circles in the T4 or S3 can also degenerate.
These deformations explicitly break supersymmetry and thereby correspond to non-BPS
solutions. They induce bolts that all sit at the center of AdS3, r = 0, and along segments
on the sphere as depicted in table 1. The regularity conditions at the bolts lead to “non-
BPS bubble equations” which fix their size in terms of the asymptotic data: the radii of
the T4 and S1, and the D1-D5 charges.

We have the freedom to independently dial the total charges with respect to the sizes
of the T4 and S1. Therefore, we can explore a multi-parameter family of solutions where
the sizes of the extra rod sources can be small and treated as non-BPS perturbations on
a global AdS3×S3×T4 spacetime. This is essential for deriving dual descriptions of these
states and for understanding the dual operators that lead to these geometries. Unlike any
previously known asymptotically-AdS3 smooth geometries, these new deformations are the
first ones that break the rigidity and symmetry of the T4 or the S3, and that do not rely
on a four-dimensional hyper-Khäler base.

We can also consider rod sources where the timelike Killing vector degenerates, these
will induce horizons of non-extremal D1-D5 black holes, which are BTZ black holes. With
that regard, we construct static bound states of non-extremal BTZ black holes in type
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IIB that are separated by smooth bolts where either the S1, S3 or T4 degenerates (see
table 2). They could be interesting solutions for the study of final states of black strings
in Gregory-Laflamme instability in a similar fashion as in [41, 42].

Our constructions provide a new perspective for exploring non-BPS smooth deforma-
tions of BPS black-hole microstates in string theory. In the specific case of this paper,
these are smooth non-BPS geometries in the D1-D5 system. An important success of the
microstate geometry program in supersymmetric settings has been that many black-hole
microstates are coherent enough to admit classical descriptions. The result in this paper
also demonstrates that large classes of non-BPS excitations and their associated degrees of
freedom can generate coherent configurations that admit descriptions in terms of smooth
geometries in AdS. This is surprising and unexpected since it is usually believed that super-
symmetry is a crucial ingredient to allow for smooth topological structure and to prevent
gravitational collapse. Characterizing these states as CFT operators, and the mechanism
by which they can decay will be important in understanding the fate of black-hole mi-
crostates and their associated geometries as they radiate away various excitations. We
hope to initiate a program to explore non-BPS structures in holography and AdS/CFT by
providing explicit examples in string theory and supergravity.

In this paper, we focus on the construction of non-BPS AdS3 solutions and discuss
their bulk description. In upcoming work, we would like to study their physical aspects in
holography and provide systematic methods that allow for a study in D1-D5 CFT.

Before proceeding, we provide a summary of results and a roadmap for the paper.
The sections 2 and 3 consist in the derivation of the solution-generating technique to
systematically construct non-BPS states in AdS3×S3×T4 in type IIB, and which can a
priori apply to other AdSD × C frameworks. The reader particularly interested in the
smooth non-BPS geometries in AdS3 can jump to the self-contained sections 4 and 5. The
reader interested in the non-extremal BTZ bound states can directly go to section 6.

1.1 Summary of results

In section 2, we derive the equations of motion for static D1-D5 solutions with eight com-
muting Killing vectors and discuss their integrable structure and relation to Ernst equa-
tions. We derive generically the internal and asymptotic boundary conditions to impose for
the construction of geometries that are asymptotic to AdS3×S3×T4 and generated by rod
sources. These correspond to regions where a spacelike or timelike coordinate degenerates.

In section 3, we summarize the linear branch of solutions obtained from the charged
Weyl formalism [2–5], and we adapt to asymptotically-AdS3 solutions in type IIB. We show
that one can construct a large variety of smooth bubbling geometries or D1-D5 black hole
bound states in this ansatz. They are asymptotic to AdS3×S3×T4 and terminate as a chain
of rod sources where either a spacelike Killing vector degenerates, defining a smooth bolt,
or the timelike Killing vector inducing a horizon. The degenerating circle can either come
from the T4 direction, parametrized by (x1, x2, x3, x4), or from the Hopf fiber of the S3, ψ,
or the S1 inside the AdS3 part, denoted in this paper as the y-circle. The T4 bolts carry
a D5 charge, the S1 bolts and the horizons induce D1 and D5 charges, while the S3 bolts
have no charges. Thus, since D1 and D5 charges are required to have asymptotically-AdS3

– 4 –



J
H
E
P
0
2
(
2
0
2
3
)
1
3
3

solutions in type IIB, smooth horizonless solutions require at least one-rod source that
forces the S1 to degenerate.

In section 4, we construct simple smooth geometries obtained with our solution-
generating technique, and we discuss their physics. The solutions depend on two variables
that we choose to be the radial distance in AdS3 and the angular position on the S3, (r, θ).
The simplest solution is sourced by a single rod that forces the degeneracy of the S1 (see
the first line of table 1). We show that it corresponds to a rigid S3×T4 fibration over a
global AdS3 spacetime as depicted on the right-hand side of the figure. Thus, our ansatz
contains the BPS bulk dual of the NS-NS ground state of the D1-D5 CFT. We then dec-
orate this solution by adding a rod that forces either a circle in T4 to degenerate (see the
second line of table 1) or the S3 Hopf fiber (see third line). The spacetimes still cap off
at r = 0 where the rod sources are localized, but the S3 splits now into two regions given
by two ranges of θ: a first region where the S1 shrinks as for the global AdS3 solution
and a second region that corresponds to the smooth T4 or S3 degeneracy. We argue that
these deformations break all supersymmetry and that their sizes are fixed by regularity in
terms of the asymptotic quantities: the total D1-D5 charges and the radii of the internal
directions. Moreover, the S3 deformation requires imposing a smooth orbifold action on
the S3 such that the solution is asymptotic to AdS3×S3/Zk×T4. Finally, we show that
by either considering the volume of T4 much smaller than the total D5-brane charge or
by imposing k � 1, these deformations are much smaller than the S1 bolt such that they
can be considered as non-BPS perturbations on global AdS3×S3×T4 that have induced
non-trivial smooth topological transformations at the center of AdS3.

In section 5, we derive more generic smooth geometries obtained from an arbitrary
number of rod sources as depicted in the last line of table 2. They consist of an arbitrary
number of non-BPS T4 and S3 deformations such that the spacetimes terminate smoothly
at r = 0 as a chain of bolts that split the S3 into different regions with non-trivial topology.
Similarly, all rod sizes are fixed in terms of the asymptotic quantities and, for the same
regime of parameters, the deformations can be treated as smooth perturbations on global
AdS3. Thus, the only free parameters that are not asymptotic quantities are the number
of rods which can be understood as the “quantum bits” to be included in the geometries,
and the nature of the rods, which would correspond to the exact nature of the “bits” in
this analogy. The absence of moduli is related to the non-supersymmetric nature of these
solutions which will be important to understand in the dual CFT.

In section 6, we allow the geometries to have rod sources that force the timelike co-
ordinate to degenerate and induce horizons. We first consider the solution that consists
of a single rod of this kind (see the first line of table 2). We show that it corresponds
to a rigid S3×T4 fibration over a static non-extremal BTZ black hole. We then consider
bound states of non-extremal black holes by having chains of such rods with bolts where
the S1 shrinks (see the second line of table 2) or chains with generic bolts (see the third
line of table 2). The former has the advantage to involve AdS3 directions only such that
the S3×T4 do not change topology in the IR. For both types of solutions, the spacetimes
are regular for r > 0, and r = 0 corresponds to the bound state of non-extremal black holes
separated by bubbles. One moves along these different objects by shifting θ, that is by
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Sol. Rod-source diagram Geometry and topology
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𝑟 𝑟 = 0

𝜃 = 0

𝜃 = 𝜋/2

𝜃 = 0 𝜃 = 0

𝜃 = 𝜋/2 𝜃 = 𝜋/2

S3 at 𝑟=0 S1 at 𝑟=0 T4 at 𝑟=0

Table 1. Description of the static axially-symmetric smooth solutions constructed in this paper
that are asymptotic to AdS3×S3×T4 in type IIB with a potential orbifold on the S3. The left-hand
sides depict the rod sources that force a direction to degenerate on the symmetry axis. The S1 (y)
is the internal circle of the AdS3 region, ϕ1 and ϕ2 are spherical angles of the S3 while ψ is its Hopf
fibration angle, and the T4 is parametrized by xa. The right-hand sides show the geometries as a
function of r and θ giving the position on the AdS3 and S3 respectively. We depicted the topology
of the S3, S1, and T4 at the end-to-spacetime locus, r = 0, where the S3 splits into different regions
corresponding to the locus of each rod source.
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Sol. Rod-source diagram Geometry and Topology
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Table 2. Description of the axially-symmetric static non-extremal BTZ bound states constructed
in this paper. We used the same conventions as in table 1.

moving along the S3. The black holes are in thermal equilibrium and the bolts are regular
if all sizes are fixed in terms of the asymptotic quantities and the temperature. Each type
of rod can be considered as small perturbations by assuming some hierarchy of scales in
between different asymptotic quantities and temperature.

2 Integrable structure for non-BPS geometries in AdS3

In this section, we derive the equations of motion obtained from type IIB supergravity and
analyze their integrable structure. We restrict to axially-symmetric and static backgrounds
on T4×S1×S1 with D1-D5 flux [2–5]. More precisely, we consider geometries that depend
on two variables and have seven U(1) isometries and a time translation symmetry. Finally,
we will have specific attention to boundary conditions that lead to regular geometries that
are asymptotic to AdS3×S3×T4.

2.1 Einstein equations for the D1-D5 system

We consider static and axially-symmetric solutions of type IIB supergravity that depend
on two variables. In the Weyl formalism, we can freely choose these coordinates, denoted
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as (ρ, z), such that the induced metric on the two-dimensional space is conformally flat and
that the induced metric on the remaining eight-dimensional spacetime satisfies dethE =
−ρ2, where hE is the metric in the Einstein frame [43, 44]. Moreover, one can consider
one of the U(1) isometry, denoted as φ, to have a metric coefficient proportional to ρ2 such
that the (ρ, z, φ) space defines a three-dimensional base in the Weyl cylindrical coordinate
system, and z plays the role of the axis of symmetry [2, 5, 44].

The solutions are constructed on a T4×S1×S1 and are supported by D1-D5 flux. The
common S1 direction of the D1 and D5 branes is parametrized by y, while the T4 wrapped
by the D5 branes is parametrized by (x1, x2, x3, x4). Finally, we consider the remaining S1,
parametrized by an angle ψ, as a Hopf fibration over the (ρ, z, φ) base.

An ansatz of metric and fields that suits the spacetime symmetries and flux is given,
in the string frame,5 by

ds2
10 =

√
W0
Z1Z5

[
−dt

2

W1
+W1 dy

2
]

+
√
Z1
Z5

4∑
a=1

Wa+1 dx
2
a

+
√
W0 Z1Z5

[ 1
Z0

(dψ +H0 dφ)2 + Z0
(
e2ν

(
dρ2 + dz2

)
+ ρ2dφ2

)]
, (2.1)

C(2) = H5 dφ ∧ dψ − T1 dt ∧ dy , eΦ =
√
Z1
Z5

W0 , C(0) = C(4) = B2 = 0 .

where C(p), B2, and Φ are the R-R gauge fields, the NS-NS gauge field, and dilaton
respectively. The warp factors and gauge potentials are functions of (ρ, z). Moreover,
dethE = −ρ2 requires

5∏
i=2

Wi = 1 =⇒ W5 = 1
W2W3W4

. (2.2)

We refer the reader interested in the derivation of the equations of motion to [5] or to
appendix A for a more direct calculation.

There are an electric gauge potential, T1, induced by the D1 branes and two magnetic
gauge potentials, H0 for the KKm vector and H5 for the D5 branes. We have introduced
three warp factors, {ZI}I=0,1,5, which couple naturally with each gauge potential. In
addition, we have five independent warp factors, {WΛ}Λ=0,1,2,3,4, which are associated
with the T4×S1 deformations. Finally, e2ν determines the nature of the three-dimensional
base. We introduce the cylindrical Laplacian operator of a flat three-dimensional base for
axisymmetric functions:

∆ ≡ 1
ρ
∂ρ (ρ ∂ρ) + ∂2

z . (2.3)

The Einstein equations can be written down in a uniform way if one defines electric duals
of the magnetic D5 and KK gauge potentials and decompose ν such that

dT5 ≡
−1
ρZ2

5
?2 dH5 , dT0 ≡

−1
ρZ2

0
?2 dH0 , ν = νZ1 + νZ5 + νZ0 +

5∑
i=0

νWi , (2.4)

5The relation between the metric in the string frame and Einstein frame is g = e
Φ
2 gE .
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where ?2 is the Hodge star operator in the (ρ, z) flat space and νX are the individual
contributions of the warp factors in ν. The equations of motion decompose into 9 sectors:

• Six vacuum sectors for Λ = 0, 1, 2, 3, 4, 5:

∆ logWΛ = 0 , (2.5)
2
ρ
∂zνWΛ = εΛ ∂ρ logWΛ ∂z logWΛ ,

4
ρ
∂ρνWΛ = εΛ

[
(∂ρ logWΛ)2 − (∂z logWΛ)2

]
,

where εΛ = 1 for Λ = 1 and εΛ = 1/2 otherwise. Note that the equation for Λ = 5
is not independent of the others due to the constraint (2.2). However, it still gives a
non-trivial contribution νW5 .

• Three Maxwell sectors for I = 0, 1, 5:

∆ logZI = −Z2
I

[
(∂ρTI)2 + (∂zTI)2

]
, ∂ρ

(
ρZ2

I ∂ρTI
)

+ ∂z
(
ρZ2

I ∂zTI
)

= 0 ,
2
ρ
∂zνZI = ∂ρ logZI ∂z logZI − Z2

I ∂ρTI∂zTI , (2.6)

4
ρ
∂ρνZI = (∂ρ logZI)2 − (∂z logZI)2 − Z2

I

(
(∂ρTI)2 − (∂zTI)2

)
.

The equations for the T4×S1 deformations, WΛ, and their associated νW form a linear
system of equations. They are identical to vacuum Weyl equations [43, 44]. The logarithms
of WΛ are harmonic functions for which solutions sourced by segments, i.e. rods, on the
z-axis are explicitly known.

The equations in the Maxwell sectors are coupled non-linear equations and admit an
interesting structure which we discuss next.

2.2 Integrable structure and linear solutions

A remarkable feature of the three Maxwell sectors (2.6) is that they are identical to equa-
tions obtained from four-dimensional axially-symmetric static geometries with a single
one-form gauge field. More precisely, a background given by

ds2
4 = −dt

2

Z2
I

+ Z2
I

[
e8νZI

(
dρ2 + dz2

)
+ ρ2dφ2

]
, F = −2dTI ∧ dt , (2.7)

leads to the exact same equations as for the three Maxwell sectors (2.6).6
The equations of motion of this system admit integrable structures that are well estab-

lished from the Ernst formalism and inverse scattering. These integrable structures follow
the fact that the ansatz in (2.7) admit an action from the Geroch group [39, 40]. Our
general system above will inherit all of these structures that can allow for a large phase

6We have considered the four-dimensional Einstein-Maxwell action

(16πG4)S4 =
∫
d4x
√
g
(
R− 1

4FµνF
µν
)
.
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of solutions. Indeed, monodromy methods and Bäcklund transformations can be used to
extract solutions [34–38]. In particular, they can be used as solution-generating methods
for non-BPS AdS solutions.

In this paper, we focus on a specific linear class of solutions of the Maxwell system which
can be obtained from the integrable structure of the Ernst formalism.7 The gravitational
potential of the spacetime in (2.7) is the redshift factor ZI . We can consider an ansatz
where the electric potential is a function of the gravitational potential TI(ZI). By plugging
into the equations of motion of (ZI , TI) in (2.6), we found that both potentials are expressed
in terms of a function for which the logarithm is harmonic and three complex constants:

Z = ebL− e−bL−1

2a , T =
√

1 + a2Z2

Z
+ c , ∆ logL = 0 (2.8)

where (a, b, c) ∈ C and we have dropped the I index for clarity.
The key ingredient is the potential L for which the logarithm satisfies the three-

dimensional axially-symmetric Laplace equation. Arbitrary solutions can be obtained by
considering arbitrary sources to this linear equation in a similar fashion as for vacuum
Weyl solutions [43, 44], but with now non-trivial electromagnetic flux turned on. This is
the reason why this branch of solutions has been denoted as “the charged Weyl formal-
ism” in [1–5]. This is an explicit realization of the integrable structure which exists for the
four-dimensional system in (2.7), and thus inherited by the type IIB D1-D5 system in (2.1).

Note that the electric potential T does not simply reduce to the BPS branch where
it counterbalances the gravitational potential T = 1

Z . Thus, the structure in (2.8) can be
taken as a non-BPS but still linear generalization of BPS multicenter solutions [16, 45–50].
This has composed much of the recent progress in constructing asymptotically-flat non-
BPS smooth horizonless solutions in [1–5], while [6] exploits inverse scattering methods.
One of the main goals of this paper is to show how this linear structure can be adapted to
construct large families of non-BPS asymptotically-AdS3 smooth geometries.

2.3 Boundary conditions

In [1–6], the ansatz (2.1) has been used to generate non-BPS bubbling geometries that
are either asymptotic to R1,3×S1×S1×T4 or R1,4×S1×T4. In this section, we introduce
new boundary conditions for asymptotically AdS3×S3×T4 geometries. Moreover, several
solutions will require that the asymptotic S3 has a smooth orbifold action. Thus, we will
more generically consider boundary conditions leading to AdS3×S3/Zk×T4.

For the solutions constructed in [1–6], the spacetimes end as a chain of smooth bubbles.
The internal bubbles are induced by rods on the z-axis, which are finite segments where
a spacelike Killing vector degenerates smoothly. They correspond to bolts where one of
the compact circles degenerates on the symmetry axis. The local geometry at each bolt is
R2 × CBubble where CBubble is a compact space defining the topology of the bubble. Such
a geometric transition can be produced by imposing appropriate singular behaviors on the
warp factors (WΛ, ZI , ν) at the rods so that all metric components but one are finite.

7See section 18.6.3 of [38].
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2.3.1 Asymptotic boundary conditions

We introduce the asymptotic spherical coordinates

ρ ≡ r2

4 sin 2θ , z ≡ r2

4 cos 2θ . (2.9)

We consider the following asymptotic behaviors at large r, that are compatible with the
equations of motion,

WΛ, e
2ν ∼ 1 , Z1 ∼

Q1
r2 , Z5 ∼

Q5
r2 , Z0 ∼

4k
r2 ,

H0 ∼ k cos 2θ , H5 ∼
Q5
4 cos 2θ , T1 ∼

r2

Q1
. (2.10)

The metric and fields (2.1) are asymptotic to

ds2
10 ∼ k

√
Q1Q5

[
r2

kQ1Q5
(−dt2 + dy2) + dr2

r2 + dΩ2
3

]
+
√
Q1
Q5

4∑
a=1

dx2
a ,

C(2) ∼ Q5
4 cos 2θ dφ ∧ dψ − r2

Q1
dt ∧ dy , eΦ ∼

√
Q1
Q5

,

(2.11)

where Q1 and Q5 are the supergravity D1 and D5 brane charges and dΩ2
3 is the line element

of the S3,
dΩ2

3 = dθ2 + cos2 θ dϕ2
1 + sin2 θ dϕ2

2 . (2.12)

We have defined the spherical angles of the S3 from the Hopf fibration angles such as

ϕ1 ≡
1
2

(
φ+ ψ

k

)
, ϕ2 ≡

1
2

(
φ− ψ

k

)
⇔ φ = ϕ1+ϕ2 , ψ = k (ϕ1−ϕ2) . (2.13)

We define the periodicity of the compact directions such that

(ψ, φ) = (ψ, φ) + (4π, 0) , (ψ, φ) = (ψ, φ) + (2π, 2π) ,
y = y + 2πRy , xa = xa + 2πRxa , a = 1, 2, 3, 4 ,

(2.14)

where Ry and Rxa correspond to the radii of the S1 and the T4 directions. Thus, the
geometries are asymptotic to AdS3×S3/Zk×T4 for which the AdS3 and S3 radii are equal
to (k2Q1Q5) 1

4 . One can restrict to solutions without orbifold asymptotically by simply
considering k = 1 in the above expressions.

To conclude, one can obtain asymptotically AdS3 solutions if the warp factors ZI
vanish at a large distance as r−2. This requires sourcing them internally, such that they
have a singular behavior. These singularities must be carefully tuned to correspond to
regular coordinate degeneracies.

2.3.2 Internal boundary conditions

As previously argued by the author in [1–6], the type IIB ansatz (2.1) allows for the
construction of non-BPS smooth bubbling geometries by generating bolts on the z-axis.
These are obtained when the warp factors are sourced at segments of the z-axis and have
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αν αZ0 αZ1 αZ5 αW0 αW1 αW2 αW3 αW4

Horizon 1 1
2

1
2

1
2 0 1

2 0 0 0
ψ degeneracy 1 1 0 0 0 0 0 0 0
y degeneracy 1 1

2
1
2

1
2 0 −1

2 0 0 0
x1 degeneracy 1 1

2 0 1
2

1
2 0 −3

4
1
4

1
4

x2 degeneracy 1 1
2 0 1

2
1
2 0 1

4 −3
4

1
4

x3 degeneracy 1 1
2 0 1

2
1
2 0 1

4
1
4 −3

4

x4 degeneracy 1 1
2 0 1

2
1
2 0 1

4
1
4

1
4

Table 3. The seven choices of boundary conditions at a rod source (2.15) leading to a regular
coordinate degeneracy of the timelike direction or a compact spacelike direction.

suitable singular behaviors. We consider a source in between z− ≤ z ≤ z+ at ρ = 0 and
introduce the following behavior as we approach ρ→ 0,

ZI ∝ ρ−2αZI , WΛ ∝ ρ−2αWΛ , e2ν ∝ ρ2αν , (2.15)

where αX are constants.
Therefore, there are only 7 non-trivial combinations for which the rod corresponds to

a regular coordinate degeneracy on the z-axis such that the local metric behaves as

ds2
10 ∝ dρ2 − ρ2

κ2
t

dt2 + ds(horizon)2 , or ds2
10 ∝ dρ2 + ρ2

κ2
x

dx2 − gttdt2 + ds(bubble)2 ,

(2.16)
where x is one of the compact direction (ψ, y, x1, x2, x3, x4), and κ is a constant. Moreover,
ds(horizon) or ds(bubble) is the line element of the compact space that corresponds to
either a horizon if the rod induces the degeneracy of the timelike direction or a bubble
if it is a spacelike direction. In addition, κ must be fixed by regularity in terms of the
periodicity of the compact direction, generically denoted as x → x + 2πRx, or the black
hole temperature, T :

κt = 1
2πT , or κx = Rx . (2.17)

The 7 values of αX that lead to these local geometries are summarized in table 3.
Note that αν is not an independent parameter a priori since the first derivatives of ν are
quadratically sourced by ZI and WΛ. However, by studying the local behavior of the
equations for ν, (2.5) and (2.6), one can show that

αν = α2
Z0 + α2

Z1 + α2
Z5 +

4∑
i=1

α2
Wi

+
α2
W0

2 + αW2αW3 + αW2αW4 + αW3αW4 , (2.18)

and the internal boundary conditions in table 3 are consistent.
If αX = 0 then the corresponding warp factor is not sourced at the rod. Moreover, if

αZ1 or αZ5 6= 0, the associated gauge potential, T1 or H5, is also sourced at the rod and
carries a charge. More precisely, a rod corresponding to a horizon leads to a D1-D5 black
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hole, a rod corresponding to the degeneracy of the ψ-circle induces a bolt without D1 and
D5 charges, a rod obtained from the degeneracy of a T4 direction carries a D5 charge while
a rod making the y-circle degenerate corresponds to a D1-D5 bolt.

3 A linear branch of solutions

In this section, we summarize the charged Weyl formalism that has been used in [2–
5] to construct smooth asymptotically-flat non-BPS geometries in various supergravity
frameworks. They satisfy the same equations as the ones derived in section 2.1 and are
based on the linear branch of solutions that we introduced in section 2.2. We will adapt
the formalism in the context of building asymptotically-AdS3 non-BPS geometries in type
IIB supergravity.

3.1 Charged Weyl formalism

As introduced in section 2.2, the eight independent sectors of coupled differential equa-
tions (2.5) and (2.6) can be solved by considering eight functions for which their logarithms
are harmonic functions:

∆ logLI = ∆ logWΛ = 0 , I = 0, 5, p , Λ = 0, 1, . . . , 4, (3.1)

where ∆ is the flat Laplacian (2.3). Then, the type IIB fields of (2.1) are given by (2.8)

ZI = ebI LI − e−bI L−1
I

2aI
, TI =

√
1 + a2

IZ
2
I

ZI
, ?2dHI = ρ

aI
d(logLI) , (3.2)

where aI and bI are positive arbitrary constants, and the base warp factor ν can be obtained
by integrating (2.5) and (2.6).8

By axisymmetry, the harmonic functions can be sourced on the z-axis by an arbitrary
number of rods. We assume for the scope of this paper that they have a finite length and are
connected.9 Thus, we consider n connected rod sources such that the origin of the z-axis is
located at the extremity of the first rod. We depicted a generic rod configuration in figure 1.
The rod lengths are denoted as `2i /4, i = 1, . . . , n, while the overall length is `2/4 such that

`2 ≡
n∑
i=1

`2i . (3.3)

8The equation for the νZI simplifies in terms of the LI such that it takes the same form as the vacuum
equations for νWΛ :

2
ρ
∂zνZI = ∂ρ logLI ∂z logLI ,

4
ρ
∂ρνZI = (∂ρ logLI)2 − (∂z logLI)2 .

9Inspired by the results of [2–6, 51], we assume that the rod sources are connected to prevent from struts
in between two disconnected rods. A strut is a string with negative tension that manifests itself as a conical
excess along a segment where a compact coordinate degenerates and that cannot be resolved classically in
supergravity.
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Figure 1. Schematic description of connected rod sources on the z-axis. We depict the local
spherical coordinates on the first rod, (r1, θ1) (3.4), and the global spherical coordinates on the
whole configuration, (r, θ) (3.5).

We introduce the local spherical coordinates around the ith rod, (ri, θi), given by

r2
i ≡ 2


√√√√√ρ2 +

z − 1
4

i∑
j=1

`2j

2

+

√√√√√ρ2 +

z − 1
4

i−1∑
j=1

`2j

2

− `2i
4

 ,

cos 2θi ≡
4
`2i


√√√√√ρ2 +

z − 1
4

i−1∑
j=1

`2j

2

−

√√√√√ρ2 +

z − 1
4

i∑
j=1

`2j

2
 ,

(3.4)

where 0 ≤ θi ≤ π
2 and ri ≥ 0. The coordinate ri measures the radial distance to the rod.

Indeed, taking ri = 0 and varying θi from 0 to π/2 is equivalent to a shift along the ith rod
such that ρ = 0 with z varying from 1

4
∑i−1
j=1 `

2
j to 1

4
∑i
j=1 `

2
j .

Moreover, it will be convenient to express the solutions in terms of the global spherical
coordinates (r, θ),

r2 ≡ 2

√ρ2 +
(
z − `2

4

)2
+
√
ρ2 + z2 − `2

4

 ,
cos 2θ ≡ 4

`2

√ρ2 + z2 −

√
ρ2 +

(
z − `2

4

)2
 ,

(3.5)

which implies

ρ = r
√
r + `2

4 sin 2θ , z = 2r2 + `2

8 cos 2θ + `2

8 . (3.6)

They are the spherical coordinates centered on the whole rod configuration such that the
rod sources are located at r2 = 0 and varying θ from 0 to π/2 moves from the first rod to
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the very last. In this coordinate system, the local spherical coordinates (ri, θi), given in
terms of ρ and z in (3.4), are given by

4r2
i =

√√√√√(2r2 + `2) cos 2θ + `2 − 2
i−1∑
j=1

`2j

2

+ 4r2(r2 + `2) sin2 2θ

+

√√√√√(2r2 + `2) cos 2θ + `2 − 2
i∑

j=1
`2j

2

+ 4r2(r2 + `2) sin2 2θ − 2`2i ,

4`2i cos2 θi =

√√√√√(2r2 + `2) cos 2θ + `2 − 2
i−1∑
j=1

`2j

2

+ 4r2(r2 + `2) sin2 2θ (3.7)

−

√√√√√(2r2 + `2) cos 2θ + `2 − 2
i∑

j=1
`2j

2

+ 4r2(r2 + `2) sin2 2θ + 2`2i , .

The eight functions (LI ,WΛ) are sourced at the rods with specific weights (P (I)
i , G

(Λ)
i ):

LI =
n∏
i=1

(
1 + `2i

r2
i

)P (I)
i

, WΛ =
n∏
i=1

(
1 + `2i

r2
i

)G(Λ)
i

, I = 0, 5, p , Λ = 0, 1, . . . , 4. (3.8)

The warp factors (Z0, Z1, Z5) and the gauge potential T1 can be directly derived from (3.2),
and we have in addition

H0 = 1
4a0

n∑
i=1

`2iP
(0)
i cos 2θi , H5 = 1

4a5

n∑
i=1

`2iP
(5)
i cos 2θi ,

e2ν =
n∏

i,j=1


((
r2
i + `2i

)
cos2 θi +

(
r2
j + `2j

)
sin2 θj

) (
r2
i cos2 θi + r2

j sin2 θj
)

((
r2
i + `2i

)
cos2 θi + r2

j sin2 θj
) (
r2
i cos2 θi +

(
r2
j + `2j

)
sin2 θj

)
αij , (3.9)

where we have defined

αij ≡
∑

I=0,1,5
P

(I)
i P

(I)
j + 1

2

 4∑
Λ=0

G
(Λ)
i G

(Λ)
j +

4∑
Λ,Σ=2

G
(Λ)
i G

(Σ)
j +G

(1)
i G

(1)
j

 . (3.10)

The magnetic dual of the electric D1 gauge potential has exactly the same form as H5
by replacing a5 → a1 and P

(5)
i → P

(1)
i . By considering the asymptotic spherical coordi-

nates (2.9), we have cos 2θi ∼ cos 2θ at large distance. Therefore, the solutions correspond
to D1-D5 geometries in type IIB with potential KKm charges, k, along ψ such that the
supergravity charges are given, in unit of volume, by

Q1 = 1
a1

n∑
i=1

`2iP
(1)
i , Q5 = 1

a5

n∑
i=1

`2iP
(5)
i , k = 1

4a0

n∑
i=1

`2iP
(0)
i . (3.11)

One can use these expressions to directly fix the constants aI in terms of the net charges
and the rod parameters.
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The charged Weyl formalism allows to extract large families of geometries that solve
Einstein equations of the D1-D5 system in type IIB (2.1). They are given by an arbitrary
number, n, of rod sources on the z-axis. Each rod has nine associated parameters: eight
weights (P (I)

i , G
(Λ)
i ) and a length parameter `2i . Moreover, we have six other independent

parameters that fix the asymptotic of the solutions which are the D1-D5 charges, the
orbifold parameter k, and the constant parameter bI .

In [3–5], asymptotically-flat regular geometries have been extracted from these solu-
tions. All weights are fixed such that they correspond to bolts or horizons. By computing
the ADM mass and comparing it to the D1-D5 charges, the solutions have been shown to
be non-BPS as soon as the rods do not degenerate to point sources `2i 6= 0.

We will adapt the solutions to construct geometries asymptotic to AdS3×S3/Zk×T4

in type IIB by applying the internal and asymptotic boundary conditions introduced in
section 2.3. As their asymptotically-flat cousins, the solutions will be internally sourced by
rods leading to a chain of regular bolts and/or black holes. The difference in the asymptotic
constraints however will change the constants bI and modify the geometries globally.

Before doing so, we point out some useful expressions between the local and global
spherical coordinates:

r2
i cos2 θi = (r2

i+1 + `2i+1) cos2 θi+1 , r2
i+1 sin2 θi+1 = (r2

i + `2i ) sin2 θi ,
n∏
i=1

(
1 + `2i

r2
i

)
= 1 + `2

r2 ,
n∑
i=1

`2i cos 2θi = `2 cos 2θ ,

n∏
i,j=1

((
r2
i + `2i

)
cos2 θi +

(
r2
j + `2j

)
sin2 θj

) (
r2
i cos2 θi + r2

j sin2 θj
)

((
r2
i + `2i

)
cos2 θi + r2

j sin2 θj
) (
r2
i cos2 θi +

(
r2
j + `2j

)
sin2 θj

) (3.12)

= r2(r2 + `2)
(r2 + `2 sin2 θ)(r2 + `2 cos2 θ) .

3.2 Asymptotically-AdS3 solutions

We first derive the constraints on the asymptotics before discussing the internal boundary
conditions at the rods.

3.2.1 Asymptotic boundary conditions
We expand the warp factors and gauge potentials at large distance by considering the
asymptotic spherical coordinates (2.9). We find that WΛ, e2ν , H0 and H5 have already the
right behavior given by (2.10) and we have

Z0 ∼
4k sinh b0∑n
i=1 `

2
iP

(0)
i

+ 4k cosh b0
r2 , Z1,5 ∼

Q1,5 sinh b1,5∑n
i=1 `

2
iP

(1,5)
i

+ Q1,5 cosh b1,5
r2 . (3.13)

Thus, from the result in section 2.3.1, we find that the solutions are asymptotic to
AdS3×S3/Zk ×T4 if one imposes

b0 = b1 = b5 = 0 . (3.14)

Moreover, one can consider solutions that are asymptotic to AdS3×S3×T4 without orbifold
action on the S3 by simply considering k = 1.
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P
(0)
i P

(1)
i P

(5)
i G

(0)
i G

(1)
i G

(2)
i G

(3)
i G

(4)
i

Horizon 1
2

1
2

1
2 0 1

2 0 0 0
ψ degeneracy 1 0 0 0 0 0 0 0
y degeneracy 1

2
1
2

1
2 0 −1

2 0 0 0
x1 degeneracy 1

2 0 1
2

1
2 0 −3

4
1
4

1
4

x2 degeneracy 1
2 0 1

2
1
2 0 1

4 −3
4

1
4

x3 degeneracy 1
2 0 1

2
1
2 0 1

4
1
4 −3

4

x4 degeneracy 1
2 0 1

2
1
2 0 1

4
1
4

1
4

Table 4. The seven possible weights at the ith rod leading to a regular coordinate degeneracy of
the timelike direction or a compact spacelike direction.

3.2.2 Internal boundary conditions

Each rod locus, ρ = 0 and 1
4
∑i−1
j=1 `

2
j ≤ z ≤ 1

4
∑i
j=1 `

2
j , corresponds to ri = 0 and 0 ≤ θi ≤

π/2 in the local spherical coordinates (3.4). Thus, the eight functions (LI ,WΛ) (3.8) are
either blowing or vanishing if P (I)

i or G(Λ)
i are non-zero. The warp factors have the same

behavior as the generic one given in (2.15), and the exponents αZI and αWΛ can be related
to the weights at the ith rod such as

αZI = |P (I)
i | , αWΛ = G

(Λ)
i , (3.15)

Therefore, we transpose the seven possible choices of regular internal boundary condi-
tions summarized in table 3 in terms of rod weights in table 4.

Moreover, there are additional constraints given by (2.17) such that the rods define
smooth bolts or horizons. These will give a set of n algebraic equations that constrain the
rod lengths in terms of the charges, temperature, and radii of the compact dimensions. For
smooth solutions without horizons, these equations will be denoted as bubble equations.

Interestingly, for regular sources, the exponents αij (3.10) simplify to

αij =

1 if the ith and jth rods are of the same nature,
1
2 otherwise,

(3.16)

where “same nature” means that the same coordinate degenerates at both rods.
Note that a necessary condition for having asymptotically-AdS3 solutions is to have

Q1, Q5, k 6= 0 (3.11). Moreover, a non-zero charge Q1 requires at least one P (1)
i turned on.

However, only two types of rods can have P (1)
i 6= 0: the ones corresponding to a horizon

or to a degeneracy of the S1 parametrized by y. Thus, horizonless configurations with D1-
brane charge necessarily require rods where the S1 shrinks. In other words, asymptotically-
AdS3 smooth horizonless geometries must force the common S1 of the D1 and D5 branes
to degenerate somewhere in the spacetime.
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3.3 Final form of the solutions

We remind that the type IIB fields are

ds2
10 =

√
W0
Z1Z5

[
−dt

2

W1
+W1 dy

2
]

+
√
Z1
Z5

(
W2dx

2
2 +W3dx

2
2 +W4dx

2
3 + dx2

4
W2W3W4

)

+
√
W0 Z1Z5

[ 1
Z0

(dψ +H0 dφ)2 + Z0
(
e2ν

(
dρ2 + dz2

)
+ ρ2dφ2

)]
, (3.17)

C(2) = H5 dφ ∧ dψ − T1 dt ∧ dy , eΦ =
√
Z1
Z5

W0 , C(0) = C(4) = B2 = 0 .

The geometries obtained from the linear branch of solutions of the equations (2.5) and (2.6)
that are asymptotic to AdS3×S3/Zk×T4 are sourced by n connected rods on the z-axis of
length `2i /4. The main fields are given by eight functions such that their logarithms are
harmonic functions sourced at the rods

LI =
n∏
i=1

(
1 + `2i

r2
i

)P (I)
i

, WΛ =
n∏
i=1

(
1 + `2i

r2
i

)G(Λ)
i

, I = 0, 5, p , Λ = 0, 1, . . . , 4,

(3.18)
and we have

Z1 = Q1
L1 − L−1

1

2∑n
i=1 `

2
iP

(1)
i

, T1 =
∑n
i=1 `

2
iP

(1)
i

Q1

L2
1 + 1

L2
1 − 1 ,

Z5 = Q5
L5 − L−1

5

2∑n
i=1 `

2
iP

(5)
i

, H5 = Q5

4∑n
i=1 `

2
iP

(5)
i

n∑
i=1

`2iP
(5)
i cos 2θi ,

Z0 = 2k L0 − L−1
0∑n

i=1 `
2
i P

(0)
i

, H0 = k∑n
i=1 `

2
i P

(0)
i

n∑
i=1

`2iP
(0)
i cos 2θi , (3.19)

e2ν =
n∏

i,j=1


((
r2
i + `2i

)
cos2 θi +

(
r2
j + `2j

)
sin2 θj

) (
r2
i cos2 θi + r2

j sin2 θj
)

((
r2
i + `2i

)
cos2 θi + r2

j sin2 θj
) (
r2
i cos2 θi +

(
r2
j + `2j

)
sin2 θj

)
αij ,

where the local spherical coordinates at each rod (ri, θi) are given in terms of Weyl cylin-
drical coordinates, (ρ, z), in (3.4) and in terms of the global spherical coordinates, (r, θ),
in (3.7). The exponents αij are given in (3.16).

The weights (P (I)
i , G

(Λ)
i ) at each rod take one of the seven possible values in table 4

depending on the coordinate that degenerates at this location. The weights (P (1)
i , P

(5)
i )

are associated to the local D1-D5 brane charges at the rod (q(i)
D1, q

(i)
D5) given by

q
(i)
D1 = `2i P

(1)
i∑n

j=1 `
2
j P

(1)
j

Q1 , q
(i)
D5 = `2i P

(5)
i∑n

j=1 `
2
j P

(5)
j

Q5 . (3.20)

Moreover, the solutions are constrained by n regularity equations that must be de-
rived in a case-by-case manner (2.17). They will fix all rod lengths, `2i , in terms of the
asymptotic quantities that are the D1 and D5 charges, the radii of the compact directions,
the asymptotic orbifold parameter k, and possibly the temperature if the solutions have
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horizons. Thus, the solutions have no moduli after regularity. The only free parameters
that are not asymptotic quantities are the number of rods, n, which can be understood as
the “quantum bits” to be included in the geometries, and the nature of the rods, which
would correspond to the exact nature of the “bits” in this analogy.

4 Examples of non-BPS bubbling deformations in AdS3×S3×T4

In this section, we construct geometries that are asymptotic to AdS3×S3×T4 or
AdS3×S3/Zk ×T4 using the linear branch of solutions. We restrict to simple examples
with the least number of rods to illustrate the physics of the solutions, and we focus on
smooth bubbling geometries without horizons.

As previously argued in section 3.2.2, one needs at least one rod that forces the degen-
eracy of the S1 (the y-circle). This generates the necessary D1 and D5 brane charges to be
asymptotic to AdS3 in type IIB. Thus, we first construct the solution obtained from such
a single rod. We obtain a global AdS3×S3×T4 spacetime with a conical defect on the S3

that can be tuned. The rod inducing the degeneracy of the S1 is located at the center of
AdS3, that is at r = 0 in the global spherical coordinates (3.5).

Then, we show that the linear branch of solutions allows decorating this solution by
rods that lead to smooth non-BPS T4 or S3 deformations in type IIB. We focus on two
examples with different physics:

• First, we construct solutions that correspond to global AdS3×S3×T4 but with an
extra rod that forces a T4 coordinate to degenerate. The spacetime still caps off
smoothly at r = 0 but, the S3 splits into two regions there: a region where the S1

degenerates and a region where the T4 direction pinches off. We will show that these
new smooth bubbling solutions break supersymmetry, they break the rigidity of the
T4, and the symmetry of the S3 and AdS3 parts. Moreover, we will show that when
Rx1 �

√
Q5, where Rx1 is the radius of the T4 direction that shrinks, the solutions

can be seen as a small non-BPS perturbation on a global AdS3 background in type
IIB. The backreaction has forced the T4 to degenerate smoothly at the center of AdS3
and at a specific locus on the S3.

• Second, we do the exact same analysis with a rod that now forces the Hopf fibration
angle of the S3, ψ, to degenerate. We will show that the smoothness of the solutions
requires to impose an asymptotic conical defect k on the S3 such that the solutions
are asymptotic to AdS3×S3/Zk×T4. Otherwise, the physics is relatively similar, the
solutions cap off smoothly at r = 0 as a degeneracy of the S1 or the S3 depending on
the position on the S3. We show that such deformation breaks supersymmetry of the
unperturbed global AdS3 spacetime by breaking the symmetry on the S3 and AdS3
parts. However, the solutions still preserve the rigidity of the T4. Furthermore, we
argue that, in the large orbifold limit k � 1, the extra rod becomes a small non-BPS
perturbation on a global AdS3 background for which the backreaction has forced the
S3 to degenerate smoothly at the center of AdS3.
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Global AdS3×S 3×T 4

S3

S1

T4

ϕ1

ϕ2

y

xa

z0 `2
1
4

Figure 2. Rod diagram of the shrinking directions on the z-axis after sourcing the solutions with
one rod that forces the degeneracy of the y-circle. We took the figures of [52] as models.

4.1 Global AdS3 as a single rod solution

We consider a single rod source, n = 1, such that it forces the S1 (y-circle) to degenerate,
i.e. P (0)

1 = P
(1)
1 = P

(5)
1 = −G(1)

1 = 1/2 while all other weights are taken to be zero (see
table 4). The rod profile has been depicted in figure 2.

The metric warp factors are (3.19)

Z0 = 4k
r1
√
r2

1 + `21

, Z1 = Q1

r1
√
r2

1 + `21

, Z5 = Q5

r1
√
r2

1 + `21

, (4.1)

W1 =
(

1 + `21
r2

1

)− 1
2

, W0 = W2 = W3 = W4 = 1 , e2ν = r2
1(r2

1 + `21)
(r2

1 + `21 sin2 θ1)(r2
1 + `21 cos2 θ1) ,

while the gauge potentials give

H0 = k cos 2θ1, T1 =
`21
2 + r2

1
Q1

, H5 = Q5
4 cos 2θ1. (4.2)

With a single rod in the configuration, the global spherical coordinates, (r, θ) (3.5),
are identical to the coordinates centered on the rod, (r1, θ1), and we have `2 = `21. Thus,
it is more convenient to change coordinates from the Weyl coordinates to these spherical
coordinates and from the Hopf coordinates of the S3 to the spherical coordinates (2.13).
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Figure 3. Schematic description of the spacetime built from a single rod inducing the degeneracy
of the S1. On the left-hand side, we depict the overall geometry in terms of the radius r. On the
right-hand side, we describe the behavior of the S3, S1, and T4 at r = 0 and as a function of θ, the
S3 coordinate. Global AdS3×S3×T4 ends smoothly as a coordinate degeneracy of the S1 at r = 0
and the T4 is rigid.

The type IIB solution (3.17) gives10

ds2
10 = 1√

Q1Q5

[
−(r2 + `2) dt2 + r2 dy2

]
+
√
Q1
Q5

4∑
a=1

dx2
a (4.4)

+ k
√
Q1Q5

[
dr2

r2 + `2
+ dθ2 + cos2 θ dϕ2

1 + sin2 θ dϕ2
2

]
,

C(2) = k Q5 cos2 θ dϕ2 ∧ dϕ1 −
r2 + `2

Q1
dt ∧ dy , eΦ =

√
Q1
Q5

.

Therefore, it corresponds to global AdS3×S 3/Zk×T 4, with Q1 and Q5 D1 and D5 charges.11

At the unique rod, that is at the center of the global AdS3 spacetime r = 0, the y-circle
degenerates. It corresponds to a smooth origin of R2 if and only if

Ry =
√
k Q1Q5
`

, (4.5)

where Ry is the radius of the y-circle (2.14). We retrieve the usual regularity condition for
a global AdS3×S3×T4 without orbifold by considering k = 1.

In figure 3, we introduce our conventions for illustrating the geometries by applying
them to the present global AdS3×S3/Zk×T4 spacetime. On the left-hand side, we describe
the geometries in terms of the radius r. Then, on the right-hand side, we specify the

10We have also performed a global gauge transformation on C(2), and use, as a consequence of the change
of coordinates (3.5),

dρ2 + dz2 =
(
r2 + `2 cos2 θ

) (
r2 + `2 sin2 θ

)
4

(
dr2

r2 + `2
+ dθ2

)
. (4.3)

11Even if the gauge field has a magnetic contribution, kQ5 cos2 θdϕ2 ∧ dϕ1, the net D5 charge is still
Q5 since the periodicity of (ϕ1, ϕ2) is 2π and 2π/k (2.13). One can simply use the Hopf coordinates,
C(2) = Q5

2 cos2 θdφ ∧ dψ, and use the periodicities (2.14) for the integration.
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Global AdS3×S 3×T 4 with a T 4 deformation

S3

S1

T4

ϕ1

ϕ2

y

x1

xa

z0 `2
1
4

`2
1+`2

2
4 = `2

4

Figure 4. Rod diagram of the shrinking directions on the z-axis after sourcing the solutions with
two connected rods that force the degeneracy of the y and x1 circles respectively.

topology of the S3, S1, and T4 at r = 0 as a function of θ, giving the position on the S3.
The spacetime ends at r = 0 where the S1 shrinks for arbitrary θ while the T4 is rigid.

4.2 T4 deformation at the center of AdS3 and at a pole of the S3

We consider two connected rod sources (see figure 4). The first one is identical to the
previous section while the second one induces the degeneracy of x1, a T4 direction. From
table 4, the weights at the second rod are fixed such that P (0)

2 = P
(5)
2 = G

(0)
2 = −2

3G
(2)
2 =

2G(3)
2 = 2G(4)

2 = 1/2 while all its other weights are zero. Moreover, we will assume that
the S3 has no conical defect asymptotically: k = 1.

4.2.1 The solution

We refer the reader interested in the derivation of the type IIB fields to appendix B.1.1.
The solution (3.17), obtained from (3.19) with the rod configuration considered in this
section, gives

ds2
10 =

√
Q1Q5F1

[
F2

4 (dρ2 + dz2)
(r2 + `2 cos2 θ)

(
r2 + `2 sin2 θ

) + cos2 θ dϕ2
1 + sin2 θ dϕ2

2

]

+ 1√
Q1Q5F1

[
−(r2 + `2) dt2 + r2F3 dy

2
]

+
√
Q1
Q5
F1

(
dx2

1
F3

+
4∑

a=2
dx2

a

)
, (4.6)

C(2) = Q5 cos2 θ dϕ2 ∧ dϕ1 −
r2 + `2

Q1F1
dt ∧ dy , eΦ =

√
Q1
Q5
F1 ,

where we have defined three deformation factors

F1 ≡
`2

`2 − `22

(
1− `22 r

2

`2 r2
2

)
, F2 ≡

r2
2(r2

2 + `22)
(r2

2 + `22 cos2 θ2)(r2
2 + `22 sin2 θ1) , F3 ≡ 1+ `22

r2
2
, (4.7)

that are trivial in the limit where the extra rod vanishes `2 → 0. We remind that (r, θ)
are the global spherical coordinates of the two-rod configuration (3.5), while (ri, θi) are the
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local spherical coordinates centered at the ith rod, given in terms of (ρ, z) in (3.4) and of
(r, θ) in (3.7).

The role of the second rod as a deformation on top of a global AdS3×S3×T4 background
can be highlighted by changing from the Weyl coordinates (ρ, z) to the global spherical
coordinates (r, θ):

ds2
10 =

√
Q1Q5F1

[
F2

(
dr2

r2 + `2
+ dθ2

)
+ cos2 θ dϕ2

1 + sin2 θ dϕ2
2

]

+ 1√
Q1Q5F1

[
−(r2 + `2) dt2 + r2F3 dy

2
]

+
√
Q1
Q5
F1

(
dx2

1
F3

+
4∑

a=2
dx2

a

)
, (4.8)

The solutions are asymptotic to AdS3×S3×T4 as in (2.11) since all FI goes to 1 at large
r. The second rod does not only break the rigidity of the T4 but also deforms the S3 and
AdS3 spaces. This deformation can be made regular as a smooth coordinate degeneracy of
the x1-circle at the second rod. We analyze the topology at the rod sources and derive the
regularity conditions in the upcoming section. We will also show that the T4 deformation
breaks the supersymmetry of the unperturbed global AdS3 background.

4.2.2 Regularity conditions and topology

The rod sources are located at ρ = 0 and 0 ≤ z ≤ `2/4. In the (r, θ) coordinate system (3.5),
they are at r = 0 and

0 ≤ θ ≤ θc ⇒ Locus of the 2nd rod
∣∣ θc ≤ θ ≤

π

2 ⇒ Locus of the 1st rod, (4.9)

where

cos2 θc ≡
`21

`21 + `22
≡ 1− `22

`2
. (4.10)

First, at r > 0, one can check that ri > 0 and all FI are finite and positive. Therefore,
all metric components (4.8) are finite and the geometries are regular there for θ 6= 0, π/2.
The loci r > 0 and θ = 0, π/2 correspond to the two semi-infinite segments above and
below the rod sources on the z-axis depicted in figure 4. They define the North and South
poles of the S3 where ϕ2 and ϕ1 degenerate respectively. One can check that F2 = 1 at
these loci and the angles degenerate smoothly without conical singularities at the poles:
ds(S3) ∼ dθ2 + cos2 θdϕ2

1 + sin2 θdϕ2
2. The spacetime is therefore regular outside the rod

sources at r > 0 and has a S3×S1×T4 topology.
At the sources, r = 0, the y-circle degenerates at the first rod, θc ≤ θ ≤ π/2 where

r1 = 0 and r2 > 0, while the x1-circle degenerates at the second rod, 0 ≤ θ ≤ θc where
r2 = 0 and r1 > 0. The local geometries are better described in terms of the local spherical
coordinates, i = 1 or 2,

ρ =
ri
√
r2
i + `2i

4 sin 2θi , z = 2r2
i + `2i
8 cos 2θi + 1

4

i∑
j=1

`2j −
`2i
8 , (4.11)
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which implies

dρ2 + dz2 =
(
r2
i + `2i cos2 θi

) (
r2
i + `2i sin2 θi

)
4

(
dr2
i

r2
i + `2i

+ dθ2
i

)
. (4.12)

Therefore, at the first rod r1 → 0,12 the time slices of the metric (4.6) give

ds10 ∼
√
Q1Q5
`1 `

[(
dr2

1 + `2

Q1Q5
r2

1 dy
2
)

+ (`22 + `21 sin2 θ1) dϕ2
2

]
+
√
Q1
Q5

4∑
a=2

dx2
a

+ `1
√
Q1Q5
`

[
dθ2

1 + cos2 θ1 dϕ
2
1 + `2

Q5(`22 + `21 sin2 θ1) sin2 θ1 dx
2
1

]
. (4.13)

At the second rod, r2 → 0,13 we have

ds10 ∼
`1√

`21 + `22 cos2 θ2

[√
Q1Q5
`1 `

[(
dr2

2 + `2

Q5 `22
r2

2 dx
2
1

)
+ (`21 + `22 cos2 θ2)2dϕ2

1

]
(4.14)

+
√
Q1
Q5

4∑
a=2

dx2
a + `22

√
Q1Q5
`1 `

[
dθ2

2 + `2

Q1Q5
cos2 θ2 dy

2 + sin2 θ2 dϕ
2
2

]
.

Both geometries correspond to regular S3×T4 fibrations over an origin of a R2 space if14

Ry =
√
Q1Q5
`

, Rx1 = `2
√
Q5
`

, (4.15)

which implies

`1 =

√
Q1(Q5 −R2

x1)
Ry

, `2 = Rx1

√
Q1

Ry
⇒ `2 = `21 + `22 = Q1Q5

R2
y

. (4.16)

The three-form flux, F3 = dC(2), is regular at the rods since the components along the
shrinking directions vanish. Moreover, the first rod carries D1 and D5 brane charges while
the second rod carries a D5 brane charge given by (3.20)

q
(1)
D1 = Q1 , q

(1)
D5 = Q5 −R2

x1 , and q
(2)
D1 = 0 , q

(2)
D5 = R2

x1 . (4.17)

The presence of the second rod has modified the regularity condition of the global
AdS3×S3×T4 background (4.5). The total length of the sources, `2, is still given by
Q1Q5/R

2
y but it has been now distributed on both sources.

12When r1 → 0, we have

r2
2 ∼ `21 sin2 θ1 , cos θ2 ∼

r1 cos θ1√
`22 + `21 sin2 θ1

, r2 ∼ `2 sin2 θ1

`22 + `21 sin2 θ1
r2
1 , `2 cos2 θ ∼ `21 cos2 θ1.

13When r2 → 0, we have

r2
1 ∼ `22 cos2 θ2 , sin θ1 ∼

r2 sin θ2√
`21 + `22 cos2 θ2

, r2 ∼ `2 cos2 θ2

`21 + `22 cos2 θ2
r2
2 , `2 sin2 θ ∼ `22 sin2 θ2 .

14We remind that Ry and Rx1 are the radius of the y and x1 circles, defined by their periodicities
y = y + 2πRy and x1 = x1 + 2πRx1 (2.14).
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Figure 5. Schematic description of the spacetime induced by a chain of two rods, inducing the
degeneracy of the S1 (y) and a T4 direction (x1). On the left-hand side, we depict the overall
geometry in terms of the radius r. On the right-hand side, we describe the behavior of the S3, S1,
and T4 at r = 0 and as a function of θ, giving the position on the S3. At r = 0, the spacetime ends
smoothly as a coordinate degeneracy of either the S1 or the T4 depending on the position on the S3.

Moreover, the deformation has also drastically changed the topology at the center of
the spacetime r = 0. Indeed, the S3 is parametrized by (θ, ϕ1, ϕ2) in the unperturbed
geometry (4.4), and the (x1, x2, x3, x4) define a rigid T4. The role of ϕ2 and x1 has been
interchanged after perturbation at r1 = 0 (4.13), i.e. r = 0 and θc ≤ θ ≤ π/2, and the local
S3 is now parametrized by (θ1, ϕ1, x1). At the second rod, r = 0 and 0 ≤ θ ≤ θc, the local
S3 is given by (θ2, y, ϕ2), and since both rods and S3 are connected we have an overall S3

given by (θ, ϕ1, ϕ2) at r = 0.
Thus, we obtained regular geometries that are asymptotic to AdS3×S3×T4. The space-

time ends smoothly at r = 0 as a chain of two bolts where the S1 and one of the T4

coordinates degenerate alternately. We have depicted the geometries and the behavior of
the S3, S1, and T4 at the end-of-spacetime point in figure 5. At this locus, the two bolts
split the S3 into two regions such that the T4 shrinks in the Northern Hemisphere while
the S1 degenerates in the Southern Hemisphere. The intersection is set to θ = θc (4.10)
such that

cos2 θc = 1−
R2
x1

Q5
. (4.18)

Therefore, one of the regions can be very small relative to the other if there is a hierarchy
of scales between `21 and `22, i.e. R2

x1 and Q5.

4.2.3 Supersymmetry breaking

We now give arguments suggesting that the solution does not preserve any supersymmetry.
First, the solution necessarily breaks the supersymmetry of the undeformed global

AdS3 spacetime in type IIB. Supersymmetric solutions in ten-dimensional supergravity are
characterized by the existence of a Killing vector that can be either time-like or null [53, 54].
Global AdS3 and all superstratum excitations [14, 16, 55–59] are 1

4 - and
1
8 - BPS solutions

in type IIB respectively that are based on a null Killing spinor defining a null direction
in the spacetime. Thus, they can be generically decomposed into a (u, v) = (t − y, t + y)
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null fibration over an eight-dimensional space, which, in the case of those spacetimes, is
composed of a rigid T4 fibration over a four-dimensional almost hyper-Khäler base [54].
This structure can be made manifest for the global AdS3 metric (4.4) by performing a
spectral flow from the NS-NS sector to the R-R sector,

ϕ1 → ϕ1 −
y

Ry
, ϕ2 → ϕ2 −

t

Ry
, (4.19)

such that a null direction appears and the four-dimensional base is the flat metric. However,
there are no spectral flows, boosts along y and shifts of coordinates with the T4 directions
that can produce a globally null direction in the T4 deformation metric (4.6). This is a
consequence of the non-trivial deformation factors, F1, and F3, that cannot be compensated
by constant shifts. Thus, the deformed solution cannot preserve the same Killing spinors as
the global AdS3×S3×T4 spacetime in type IIB and necessarily breaks all its supersymmetry.

Second, it is still possible that new supersymmetries emerge when the T4 deformation
is included. This necessarily requires the existence of a timelike Killing spinor. To disprove
that, one should a priori derive Killing spinor equations for our generic ansatz (3.17) and
show that the solution at hand does not satisfy some of them. Since this computation is
rather tedious and requires a project on its own we postpone it for future work. We just
give a few arguments that suggest that the solution does not preserve any supersymmetries:

• First, if one reduces to five dimensions along the T4 and a generic direction, y +
αt+ βϕ1 + γϕ2, one can show that the solution does not satisfy the supersymmetric
conditions of N = 1 five-dimensional supergravity derived in [60]. Indeed, one cannot
generate a four-dimensional hyper-Khäler base in five dimensions by performing a
change of variables and boosts on the S3 angles (ϕ1, ϕ2).

• Second, one can construct the “unbounded” solution of our bound state of two rods
by considering the same rod configuration as in figure 4 but with disconnected rods.
The rods will then be separated by a segment that does not source the warp factors
but still induces the degeneracy of a compact direction given as a linear combination
of the ϕ1 and ϕ2 angles. However, this degeneracy has necessarily a conical excess
which means that the sources are separated by a strut. A strut corresponds to a string
with negative tension that accounts for the repulsive force needed to compensate for
the self-attraction between both sources [3, 61, 62]. Thus, both sources are not
in equilibrium at a finite distance as it is usually the case between BPS sources.
In asymptotically-flat spacetimes, the rods are non-supersymmetric such that their
inherent mass was larger than their charges and the electromagnetic force does not
compensate for their gravitational attraction. A similar phenomenon appears here
which greatly suggests that the solution is non-supersymmetric.

It would be interesting to have a precise idea on how the T4 deformation breaks all
supersymmetry as it has been done for other new smooth type IIB geometries in AdS3 [28,
30]. Those “microstrata” are non-BPS extensions of superstrata where supersymmetry is
broken by superposing both left-moving and right-moving excitations in AdS3 while keeping
a rigid T4.
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4.2.4 Two interesting limits

The regularity condition (4.16) requires

R2
x1 ≤ Q5 , (4.20)

and there are two interesting limits whether R2
x1 � Q5 or R2

x1 ∼ Q5.

• A regular non-BPS perturbation on global AdS3×S3×T4:

we first assume that R2
x1 � Q5 which makes the second rod infinitesimally small compared

to the first, `2 � `1. Moreover, Rx1 can be related to the volume of T4, Vol(T4) = (2π)4V4,
by assuming that all T4 directions have the same radii: Rx1 = V

1/4
4 . Therefore, we have

to assume √
V4 � Q5 ⇒ `2 � `1. (4.21)

All terms proportional to `22 are then perturbations. Since θc ∼ 0 (4.18), this is valid
up to a small region around the North pole of the S3 and around the center of spacetime,
r ∼ 0 and θ ∼ 0, where r2 ∼ 0. The perturbation is localized there and has a large effect
such that the x1 coordinate degenerates. Outside this small region, FI = 1 +O(

√
V4/Q5)

and the solution corresponds to a small non-BPS excitation on a global AdS3×S3×T4

background. It is localized at the North pole of the S3 and at the center of AdS3 such that
it forces the smooth degeneracy of a T4 circle.

• Singular D1 branes on a D5 bubble:

at the other side of the parameter space, `1 can be made strictly zero by considering

Q5 = R2
x1 =

√
V4 ⇒ `1 = 0 . (4.22)

This does not eliminate all effects of the rod as it shrinks to a point source that has zero
size but still carries a D1 brane charge. From figure 5, the point source is located at the
South pole of the S3, θ = π/2, at r = 0. The type IIB solution (4.8) becomes

ds2
10 =

√
Q1Q5

√
r2 +`2

r2 +`2 cos2 θ

[
dr2

r2 +`2
+dθ2 +cos2 θdϕ2

1 +sin2 θdϕ2
2

]
(4.23)

+
√

(r2 +`2)(r2 +`2 cos2 θ)
Q1Q5

[
−dt2 +dy2

]
+
√

Q1(r2 +`2)
Q5(r2 +`2 cos2 θ)

(
r2dx2

1
r2 +`2

+
4∑

a=2
dx2

a

)
,

C(2) =Q5 cos2 θdϕ2∧dϕ1−
r2 +`2 cos2 θ

Q1
dt∧dy , eΦ =

√
Q1
Q5

√
r2 +`2

r2 +`2 cos2 θ
.

The solutions are regular for r > 0. Moreover, there is still a bolt where x1 degenerates
smoothly at r = 0 and θ 6= π/2, which is the locus of the second rod, and it carries Q5
D5 brane charge. However, the first rod has now degenerated to a singular horizon at
r = 0 and θ = π/2. At this locus, we have a blowing T4 parametrized by (x2, x3, x4, ϕ2)
while (θ1, ϕ1, x1) describes a shrinking S3 and the time and y fiber degenerate. Thus, the
solutions correspond to singular D1 branes at the South pole of a D5 bubble.
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Global AdS3×S 3×T 4 with a T 4 deformation
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Figure 6. Rod diagram of the shrinking directions on the z-axis after sourcing the solutions with
three connected rods that force the degeneracy of the y and x1 circles.

Moreover, the singularity is resolved by considering Q5 . R2
x1 , i.e. `1 � `2. A geometric

transition occurs that transforms the singular point source into a small bolt where the y
circle degenerates smoothly at the vicinity of the South pole of the S3 and at the center of
spacetime r = 0.

4.3 T4 deformation at the center of AdS3

In the previous section, the non-BPS T4 deformation was naturally centered around the
North pole of the S3 and at the center of the AdS3. In this section, we show that the
deformation can be localized elsewhere on the S3.

We consider three rod sources (see figure 6). The first two are identical to the previous
section while the last one is chosen such that it induces the degeneracy of the y coordinate.
From table 4, it requires fixing the weights at the third rod such that P (0)

3 = P
(1)
3 = P

(5)
3 =

−G(1)
3 = 1/2 while all its other weights are taken to be zero. We still consider that k = 1

such that the S3 has no conical defect asymptotically.

4.3.1 The solution

We refer the reader interested in the derivation of the type IIB fields to appendix B.1.2.
The solution (3.17), obtained from (3.19) with the rod configuration considered in this
section, gives

ds2
10 =

√
Q1Q5F1

[
F̃2

(
dr2

r2 + `2
+ dθ2

)
+ cos2 θ dϕ2

1 + sin2 θ dϕ2
2

]

+ 1√
Q1Q5F1

[
−(r2 + `2) dt2 + r2F3 dy

2
]

+
√
Q1
Q5
F1

(
dx2

1
F3

+
4∑

a=2
dx2

a

)
, (4.24)

C(2) = Q5 cos2 θ dϕ2 ∧ dϕ1 −
r2 + `2

Q1F1
dt ∧ dy , eΦ =

√
Q1
Q5
F1 ,
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Figure 7. Schematic description of the spacetime induced by a chain of three rods, two inducing
the degeneracy of the S1 (y) with one in the middle inducing the degeneracy of a T4 direction (x1).
On the left-hand side, we depict the overall geometry in terms of r. On the right-hand side, we
describe the behavior of the S3, S1, and T4 at r = 0 and as a function of θ.

where we have defined, in addition to the deformation factors introduced in (4.7),15

F̃2 ≡
r4

2(r2
2 + `22)2

(r2
2 + `22 cos2 θ2)(r2

2 + `22 sin2 θ2)(r2
2 + `22 sin2 θ1)(r2

2 + `22 cos2 θ3) . (4.25)

We remind that (r, θ) are the global spherical coordinates of the three-rod configura-
tion (3.5), while (ri, θi) are the local spherical coordinates centered at the ith rod, given in
terms of (ρ, z) in (3.4) and of (r, θ) in (3.7).

The details of the regularity analysis and the description of the topology can be found
in appendix B.1.2 which we summarize here. The solutions are regular for r > 0 with a
S1×S3×T4 topology and are asymptotic to AdS3×S3×T4 since FI ∼ F̃2 ∼ 1 at large r.
The rod sources are located at r = 0 with θ from 0 to π/2 such that

0 ≤ θ ≤ θ(2)
c ⇒ 3rd rod

∣∣ θ(2)
c ≤ θ ≤ θ(1)

c ⇒ 2nd rod
∣∣ θ(1)

c ≤ θ ≤
π

2 ⇒ 1st rod,
(4.26)

where we have defined

cos2 θ(1)
c ≡

`21
`2
, cos2 θ(2)

c ≡
`21 + `22
`2

. (4.27)

The rods correspond to bolts where either y or x1 degenerates defining an origin of a R2

space. The transverse spaces are S3
θ1x1ϕ1

×T4
ϕ2x2x3x4 at the first rod, S2

θ2y
×T5

ϕ1ϕ2x2x3x4 at

15The deformation factors F1 and F3, given in (4.7), give different values for the present configuration
since `2 = `21 + `22 + `23 and (r2, θ2) are different.
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the second rod and S3
θ3x1ϕ2

×T4
ϕ1x2x3x4 at the third rod. The bolts are regular if

`21 = `23 = Q1Q5
2R2

y

(
1− Rx1√

Q5

)
, `22 = Q1

√
Q5Rx1

2R2
y

⇒ `2 = Q1Q5
R2
y

(
1− Rx1

2
√
Q5

)
.

(4.28)
The regularity still requires that Rx1 ≤

√
Q5. Note that, unlike the previous T4 deforma-

tion, the overall length of the configuration is not anymore given by Q1Q5/R
2
y.

Moreover, the rods where the y coordinate degenerates carry the same D1 and D5
brane charges (3.20)

q
(1)
D1 = q

(3)
D1 = Q1

2 , q
(1)
D5 = q

(3)
D5 = Q5

√
Q5 −Rx1

2
√
Q5 −Rx1

, (4.29)

while the rod where the x1 degenerates has a D5 brane charge

q
(2)
D1 = 0 , q

(2)
D5 = Q5Rx1

2
√
Q5 −Rx1

. (4.30)

We have depicted the geometries in figure 7. The solutions are smooth and end at
r = 0 as a chain of bolts. More precisely, at r = 0, we have a S3 that can be decomposed
into three regions. For 0 ≤ θ ≤ θ

(2)
c and θ

(1)
c = π/2 − θ(2)

c ≤ θ ≤ π/2, the y coordinate
degenerates as the usual S1 degeneracy at the center of a global AdS3 spacetime where
cos2 θ

(2)
c = (2 − Rx1/

√
Q5)−1. However, for θ(2)

c ≤ θ ≤ π/2 − θ(2)
c , this degeneracy has

been replaced by the degeneracy of a T4 direction. Therefore, the T4 deformation is now
centered around the equator of the S3. Moreover, by allowing a conical defect at one of the
rods where the y-circle shrinks, the deformation can be centered around any θ between 0
and π/2 (see appendix B.1.2 for more details).

Moreover, for the same arguments as in section 4.2.3, the deformation breaks the super-
symmetry of the global AdS3×S3×T4 solution, and most likely breaks all supersymmetry
such that it corresponds to a non-BPS asymptotically-AdS3 solution in type IIB.

As for the previous solution, we have two interesting limits. First, when Rx1 �√
Q5, the T4 deformation can be treated as a non-BPS smooth perturbation on a global

AdS3×S3×T4 background. Indeed, we have `22 � `21 = `23 and the deformation factors, F̃1,
F̃2 and F3 are equal to 1 plus correction of order `22 as soon as we are not too close to the
middle rod. Since θ(1)

c ∼ θ(2)
c ∼ π/4 in this limit, the perturbation is localized at the center

of the global AdS3 spacetime, r = 0, and at the equator of the S3. The small perturbation
has induced a non-trivial degeneracy of the T4 there for which the backreaction has broken
the symmetry of the AdS3, S3, and T4.

Second, if one considers Rx1 =
√
Q5, the two bolts where the S1 degenerates shrink to

a point leading to singular D1 brane sources. The solutions are similar to (4.23) but we
now have a singular horizon at each pole of the bolt where the x1 circle shrinks. This limit
corresponds to a non-BPS D5 bubble with two singular stacks of D1 branes at its poles. The
singularities can be resolved by considering Rx1 .

√
Q5 where the point sources undergo a

geometric transition into small bolts where the y coordinate degenerates smoothly.
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Global AdS3×S 3×T 4 with a S 3 deformation
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Figure 8. Rod diagram of the shrinking directions on the z-axis after sourcing the solutions with
two connected rods that force the degeneracy of y and ψ = k(ϕ1 − ϕ2).

4.4 S3 deformation at the center of AdS3

In this section, we consider two rod sources such that the first rod still induces the degen-
eracy of the S1 while the second one corresponds to a coordinate degeneracy of the Hopf
angle of the S3, ψ = k(ϕ1 −ϕ2) (2.13) (see figure 8). From table 4, this requires fixing the
weights of the second rod such that P (0)

2 = 1 while all its other weights are zero.

4.4.1 The solution

We refer the reader interested in the derivation of the type IIB fields to the appendix B.2.
The solution (3.17), obtained from (3.19) with the rod configuration considered here, gives16

ds2
10 = 1√

Q1Q5F1

[
−(r2 + `2) dt2 + r2F3 dy

2
]

+
√
Q1
Q5

4∑
a=1

dx2
a

+ k
√
Q1Q5F1

[
F2F4
F3

(
dr2

r2 + `2
+ dθ2

)
+ F4
F3

cos2 θ sin2 θ dφ2

+ 1
4k2F4

(
dψ + k

(
2F5 cos2 θ − 1

)
dφ
)2
]
, (4.31)

C(2) = Q5
2 F1 cos2 θ dφ ∧ dψ − r2 + `2

Q1F1
dt ∧ dy , eΦ =

√
Q1
Q5

,

where we used the same deformation factors as in (4.7), and introduced new ones

F4 ≡
`2

`2 + `22

(
1 + `22(r2 + `2)

`2r2
2

)
, F5 ≡

`2

`2 + `22

(
1 + `22r

2

`2r2
2

)
, (4.32)

16The metric can be written with the cylindrical Weyl coordinate, (ρ, z), as the main coordinate system
by considering (3.5),

dr2

r2 + `2
+ dθ2 = 4

(r2 + `2 cos2 θ) (r2 + `2 sin2 θ)
(
dρ2 + dz2) .
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that all become trivial when the extra rod is turned off, `2 = 0. We remind that (ψ, φ)
are the angles of the Hopf fibration of the S3 that are related to the spherical angles,
(ϕ1, ϕ2) in (2.13). Moreover, (r, θ) are the global spherical coordinates of the three-rod
configuration (3.5), while (ri, θi) are the local spherical coordinates centered at the ith rod,
given in terms of (ρ, z) in (3.4) and of (r, θ) in (3.7).

The solution is asymptotic to AdS3×S3/Zk×T4 since FI → 1 at large r. As we will
see later on, the orbifold action on the S3 is necessary to have smooth geometries.

The extra rod source preserves the rigidity of the T4 but non-trivially deforms the
AdS3 part and has broken the symmetry of the S3 by forcing the Hopf angle to degenerate.
As for the previous examples, the rod sources, located at ρ = 0 and 0 ≤ z ≤ `2/4, are
localized at r = 0 and 0 ≤ θ ≤ π/2 in the global spherical coordinate system. We will study
the topology and the regularity condition, and we will show that the solution corresponds
to a regular non-BPS geometry in AdS3 that caps off smoothly at r = 0 as a chain of two
bolts.

4.4.2 Regularity conditions and topology

First, when r > 0, one has ri > 0 (3.7), and all FI are finite and positive. Therefore, the
metric components (4.31) are finite and the geometries are regular there for θ 6= 0, π/2.
The loci r > 0 and θ = 0, π/2, that are the two semi-infinite segments above and below the
rod sources on the z-axis depicted in figure 8, correspond to the North and South poles of
the S3 where ϕ2 and ϕ1 degenerate respectively. One can check that F2 = 1 and F5 = 1
in this region. Therefore, the poles are regular such that the angles degenerate with the
same conical defect as the one imposes asymptotically. The spacetime is therefore regular
outside the rod sources and has a S3/Zk×S1×T4 topology.

Both rod sources are located at r = 0 such that the first rod corresponds to θc ≤ θ ≤
π/2 and the second rod is at 0 ≤ θ ≤ θc as given in (4.9) and (4.10). At the rods, either the
y or the ψ coordinate degenerates defining a bolt. The local geometries are best described
in the local spherical coordinates (ri, θi) (4.11) with ri → 0. We find that the time slices
of the metric (4.31) are given by17

ds2
6∼

`2 k
√
Q1Q5

`21
(
`2 +`22

) [dr2
1 + `21(`2 +`22)

`2 kQ1Q5
r2

1 dy
2 +`21 dΩ̃2

3

]
, (4.33)

dΩ̃2
3 = dθ2

1 + `21 sin2 θ1 +`22
`2

cos2 θ1 dφ
2 + (`2 +`22)2 sin2 θ1

4`2 (`21 sin2 θ1 +`22)k2

(
dψ+k

`21 cos2θ1−2`22
`2 +`22

dφ

)2

,

at the first rod, r1 → 0, while at the second rod, r2 → 0, we have

ds2
6∼

`2 k
√
Q1Q5

(`2 +`22)(`21 +`22 cos2 θ2)

dr2
2 + (`2 +`22)2

4`2`22k2 r2
2

(
dψ+k

`21 +2`22 cos2θ2
`2 +`22

dφ

)2

+`22 dΩ̃2
3

 ,
dΩ̃2

3 = dθ2
2 + `21 +`22 cos2 θ2

`2

(
sin2 θ2 dφ

2 + `2 +`22
kQ1Q5

cos2 θ2 dy
2
)
. (4.34)

17We wrote the six-dimensional metric only by omitting the T4 part which is trivially rigid in the whole
spacetime.
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Therefore the rods correspond to smooth S3×T4 fibrations over an origin of R2 if one
imposes

Ry =
√
kQ1Q5
`1

(
1 + `22

`2

)− 1
2

k = `2 + `22
` `2

, (4.35)

where we remind that `2 = `21 + `22. One can invert these expressions such that the rod
lengths are fixed to be

`21 = k +
√
k2 − 4
2

Q1Q5
R2
y

, `22 = 1√
k2 − 4

Q1Q5
R2
y

, `2 = (k +
√
k2 − 4)2

4
√
k2 − 4

Q1Q5
R2
y

. (4.36)

The lengths are well defined if k ≥ 3. Therefore, having an orbifolded S3/Zk asymp-
totically is indeed necessary to have a smooth geometry. Without this, the solution would
have a conical excess at the second rod of order `2+`22

``2
> 1. This would correspond to a

strut, which is a singular string with negative tension [3, 61].
Both rod lengths are generically of order kQ1Q5/R

2
y and bounded by

0.87 kQ1Q5
R2
y

< `21 <
kQ1Q5
R2
y

, 0 < `2 < 0.14 kQ1Q5
R2
y

. (4.37)

The total length, `2, is not strictly equal to kQ1Q5/R
2
y, but the ratio between both quan-

tities varies between 1.02 at k = 3 and 1 at k � 1.
Moreover, one can check that the three-form flux, F3 = dC(2), is regular and carries no

charges at the second rod while it carries D1 and D5 brane charges, Q1 and Q5 respectively,
at the first rod (3.20).

The geometry has been depicted in figure 9 with the same conventions as before. The
spacetime caps off smoothly at r = 0 where the S1 (y) degenerates for θc ≤ θ ≤ π/2 and
the S3 (ψ) degenerates for 0 ≤ θ ≤ θc such that the critical angle, θc (4.10), is given by

cos θc = 2
k +
√
k2 − 4

. (4.38)

Thus, the S3 deformation that has replaced the S1 degeneracy at the center of a global
AdS3×S3/Zk×T4 spacetime is centered on the Northern hemisphere of the S3. Moreover,
in the limit k � 1, one has `2 � `1 and the second rod is a small smooth perturbation on a
global AdS3×S3/Zk×T4 spacetime. Since θc ∼ 0, the perturbation is localized at the center
of the global AdS3 space and at the North pole of the S3, and forces the Hopf fibration
angle to shrink smoothly here. The solution is given by (4.31) such that all deformation
factors give 1 +O(k−2) that have large values around the source of the perturbation.

Moreover, the S3 deformation breaks the supersymmetry of the global AdS3×S3×T4

solution since there is no null Killing spinor associated with the geometry. Moreover, for
the same arguments as in section 4.2.3, it most likely breaks all supersymmetry such that
it corresponds to a non-BPS asymptotically-AdS3 solution in type IIB. Interestingly, the
T4 remains rigid, it would be then interesting to have a precise idea of how the degeneracy
of the S3 at the center of AdS3 has effectively broken all supersymmetry. We postpone
such an analysis for future projects.
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Figure 9. Schematic description of the spacetime induced by a chain of two rods, forcing the
degeneracy of the S1 and the S3 Hopf angle ψ = k(ϕ1 −ϕ2) respectively. On the left-hand side, we
depict the overall geometry in terms of r. On the right-hand side, we describe the behavior of the
S3, S1, and T4 at r = 0 and as a function of θ.

In a similar manner as for the T4 deformations, nothing forces the S3 deformation
to be localized at the North pole of the S3 and one can change its locus by considering a
three-rod configuration as in section 4.3. As these solutions are of no particular interest, we
ignore them in this paper, and in the next section we construct generic bubbling geometries
with an arbitrary number of rods.

5 Generic non-BPS bubbling deformations in AdS3×S3×T4

In this section, we derive more generic bubbling geometries obtained from the linear branch
of D1-D5 solutions in section 3.3. Generic solutions are induced by an arbitrary number of
rods that force the degeneracy of either the S1 or a T4 direction or the Hopf angle of the
S3. They will correspond to bubbling geometry with a S1×S3/Zk×T4 topology at r > 0
that are asymptotic to AdS3×S3/Zk×T4 and that cap off smoothly at r = 0. The solutions
terminate in a chain of bolts, and each bolt spans a region of the S3.

First, we will focus on solutions with T4 deformations only since it allows for smooth
non-BPS geometries that are asymptotic to AdS3×S3×T4 without orbifold action on the
S3. Then, we will construct the most generic solutions with S3 deformations too.

5.1 Conventions

We consider solutions that are induced by at least one rod that forces the degeneracy of
the y-circle and by an arbitrary number of connected rods, forcing either the degeneracy
of a T4 direction or the Hopf angle of the S3. We have depicted a typical rod configuration
in figure 10.

– 34 –



J
H
E
P
0
2
(
2
0
2
3
)
1
3
3

Global AdS3×S 3×T 4 with T 4 and S 3 deformations
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Figure 10. Rod diagram of the shrinking directions on the z-axis after sourcing the solutions with
n connected rods that induce the degeneracy of either the S1 or a T4 direction or the S3 Hopf angle.

The expressions of the type IIB fields from the linear branch of solutions are given
by (3.19). The eight weights at each rod, (P (I)

i , G
(Λ)
i ), are fixed depending on which

coordinate shrinks at the rod following table 4. We define six sets of labels, Uy, Uxa with
a = 1, 2, 3, 4, and Uψ:

i ∈ Uw ⇒ the w direction shrinks smoothly at the ith rod. (5.1)

For instance, the example in figure 10 corresponds to

Uy = {3, 6, . . .} , Ux1 = {5, . . .} , Ux2 = {1, . . .} , (5.2)
Ux3 = {. . . , n} , Ux4 = {4, 7, . . .} , Uψ = {2, . . .} .

The weights at the rods can then be read from table 4. For instance,

i ∈ Ux4 ⇒ P
(0)
i = P

(5)
i = G

(0)
i = 2G(2)

i = 2G(3)
i = 2G(4)

i = 1
2 , P

(1)
i = G

(1)
i = 0.

Note that αij , the exponent in the base warp factor e2ν (3.10), takes simple values for
regular rod sources (3.16). Therefore, we define the following exponent for the present
configurations,

ᾱij =

 1 , i, j ∈ Uw ,
0 , i ∈ Uw , j ∈ Uw′ , w 6= w′.

(5.3)

5.2 Chain of T4 deformations

We consider configurations that have no rod sources where the Hopf angle of the S3 de-
generates: Uψ = ∅. This allows the geometry to be asymptotic to AdS3×S3×T4 without
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Global AdS3×S 3×T 4 with T 4 deformations
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Figure 11. Rod diagram of the shrinking directions on the z-axis after sourcing the solutions with
n connected rods that force the degeneracy of the S1 or a T4 direction.

orbifold on the S3. Therefore, we consider k = 1 from now on. A generic rod configuration
has been depicted in figure 11.

5.2.1 The solutions

We refer the reader interested in the derivation of the type IIB fields from (3.19) to the
appendix B.3. The solutions are given by18

ds2
10 = 1√

Q1Q5K1

[
−(r2 + `2)dt2 + r2Kx1Kx2Kx3Kx4 dy

2
]

+
√
Q1
Q5
K1

4∑
a=1

dx2
a

Kxa

+
√
Q1Q5K1

[
K2

(
dr2

r2 + `2
+ dθ2

)
+ cos2 θ dϕ2

1 + sin2 θ dϕ2
2

]
, (5.4)

C(2) = Q5 cos2 θ dϕ2 ∧ dϕ1 −
r2 + `2

Q1K1
dt ∧ dy , eΦ =

√
Q1
Q5
K1 ,

18The metric in the Weyl cylindrical coordinate system is obtained by replacing

dr2

r2 + `2
+ dθ2 = 4

(r2 + `2 cos2 θ) (r2 + `2 sin2 θ)
(
dρ2 + dz2) ,

and the component along y can be written as (3.12): r2Kx1Kx2Kx3Kx4 = (r2 + `2)
∏
i∈Uy

(
1 + `2i

r2
i

)−1
.
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where we have defined

K1 ≡
r2 + `2∑
i∈Uy `

2
i

1−
∏
i∈Uy

(
1 + `2i

r2
i

)−1
 , Kxa =

∏
i∈Uxa

(
1 + `2i

r2
i

)
, (5.5)

K2 ≡
n∏

i,j=1
j>i


((
r2
i + `2i

)
cos2 θi +

(
r2
j + `2j

)
sin2 θj

) (
r2
i cos2 θi + r2

j sin2 θj
)

((
r2
i + `2i

)
cos2 θi + r2

j sin2 θj
) (
r2
i cos2 θi +

(
r2
j + `2j

)
sin2 θj

)
ᾱij−1

.

We remind that (r, θ) are the global spherical coordinates of the n-rod configuration (3.5),
while (ri, θi) are the local spherical coordinates centered at the ith rod, given in terms of
(ρ, z) in (3.4) and of (r, θ) in (3.7).

The two solutions induced by a single T4 deformation in AdS3 and derived in section 4.2
and 4.3 can be retrieved by considering19

n = 2, Uy = {1} Ux1 = {2}, Ux2 = Ux3 = Ux4 = ∅ ,
n = 3, Uy = {1, 3} Ux1 = {2}, Ux2 = Ux3 = Ux4 = ∅ ,

(5.6)

The T4 degeneracies do not only modify the T4 but also deform the S3 and AdS3
spacetime. From this perspective, the warp factors KI are deformation factors that are
trivial if one turns off the deformations, that is `i → 0 for i /∈ Uy. In the (ρ, z) Weyl
coordinate system, the deformations are induced by the rod sources i /∈ Uy and are located
in the z-axis, ρ = 0 and in the segment 0 ≤ z ≤ `2/4. In the (r, θ) coordinate system, the
sources are localized at r = 0 and one moves along the chain of rods by moving along the
S3, varying θ from 0 to π/2.

5.2.2 Regularity conditions and topology

At large distance, r → ∞, the metric is asymptotic to AdS3×S3×T4 as in (2.11) since
KI → 1. At r > 0 and outside the poles of the S3, θ 6= 0, π/2, the metric components are
finite and non-zero, so the solutions are regular there, and have a S1×S3×T4 topology.

The poles of the S3 correspond to θ = 0 and π/2 at r > 0 where the ϕ2 and ϕ1 angles
degenerate respectively. One can check that θi = 0 and θi = π/2, i = 1, . . . , n, at these
locii respectively (3.7). Thus K2 = 1, and the metric of the S3 at its poles is smooth such
that ds(S3)2 ∼ dθ2 + cos2 θ dϕ2

1 + sin2 θ dϕ2
2

At r = 0, we have a unique ri that vanishes depending on the value of θ while all
others rj are non-zero (3.7). More precisely we have

r = 0 , θ(i)
c < θ < θ(i−1)

c ⇔ ri = 0 , rj > 0, j 6= i , (5.7)

where we have defined the critical angles

cos2 θ(i)
c = 1

`2

i∑
j=1

`2j , θ(n)
c = 0 , θ(0)

c = π

2 . (5.8)

19The simplification relations (3.12) are required to match the solutions.
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Figure 12. Schematic description of the spacetime sourced by 5 connected rods, inducing the
degeneracy of either the S1 (y) or a T4 direction. On the left-hand side, we depict the overall
geometry in terms of r. On the right-hand side, we describe the behavior of the S3, S1, and T4

at r = 0 and as a function of θ, giving the position along the S3. At r = 0, the spacetime ends
smoothly as a coordinate degeneracy of either the S1 or the T4 depending on the position on the S3.

Thus, we are moving along the chain of rod sources by varying θ from 0 to π/2 at r = 0.
From the form of the metric (5.4), one can see that a spacelike coordinate degenerates at
each section θ(i)

c < θ < θ
(i−1)
c . The local geometry corresponds to a bolt with a R2×CBubble

topology where CBubble is a compact space defining the topology of the smooth bubble at
the bolt. Having a regular bolt at each segment θ(i)

c < θ < θ
(i−1)
c will impose n bubble

equations that fix all rod lengths `2i in terms of the asymptotic quantities.
Then, r = 0 corresponds to a smooth locus where the spacetime ends as a chain of bolts.

Each bolt makes either the S1 or the T4 degenerate smoothly. It defines a compact bubble
that is localized on a specific region of the S3, given by the critical angles, θ(i)

c . Moreover,
for the same arguments as in section 4.2.3, the deformations break the supersymmetry of
the global AdS3×S3×T4 solution, and most likely break all supersymmetry. Therefore, the
solutions correspond to asymptotically-AdS3 non-BPS smooth bubbling geometries without
horizon. We have depicted the profile of the geometries in the same way as the previous
examples in figure 12.

We divide the regularity analysis depending on whether i ∈ Uy or i ∈ Uxa .

• Regularity at the ith rod with i ∈ Uy: we consider a segment such that i ∈ Uy,

r = 0 , θ(i)
c < θ < θ(i−1)

c ⇔ ri = 0 , 0 < θi <
π

2 . (5.9)

Since r = 0 and Kxa > 0, one can check from (5.4) that the y coordinate degenerates.
To derive the local geometry at this segment, one needs to consider (ri, θi) as the
main coordinates and take ri → 0, that is to express all other (rj , θj) and (r, θ) in
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terms of (ri, θi) and expand the metric and fields.20 We refer the interested reader to
previous work of the author [2, 3, 5] for more details about this derivation. We find
that the time slices of the type IIB metric (5.4) converge towards

ds2
10|dt=0 ∝ dr2

i + r2
i

C2
i

dy2 + ds(C(i)
Bubble)

2 , (5.10)

with21

C2
i = Q1Q5 `

2
i

`2
∑
p∈Uy `

2
p

i−1∏
p=1

n∏
q=i+1


1 + `2q∑q−1

k=p `
2
k

1 + `2q∑q−1
k=p+1 `

2
k


ᾱpq

×
i−1∏
p=1

(
1 +

`2p∑i
k=p+1 `

2
k

)ᾱip n∏
p=i+1

(
1 +

`2p∑p−1
k=i `

2
k

)ᾱip
.

(5.11)

The (ri, y) subspace describes a smooth origin of a R2, if we impose

Ry = Ci. (5.12)

The line element, ds(C(i)
Bubble), describes the topology of the bubble at the bolt. As

discussed in [2, 3, 5], it can be either a S3×T4 or a S2×T5 depending on the near
environment of the rod. More precisely, if the adjacent rods are of the same category,
let’s say they correspond to the degeneracy of the x1 coordinate, then it is a S2×T5

where the S2 and T5 are described by (θi, x1) and (ϕ1, ϕ2, x2, x3, x4). If they are
of different nature, let’s say they correspond to the degeneracy of the x1 and x2
coordinates, then we have a S3×T4 where the S3 and T4 are described by (θi, x1, x2)
and (ϕ1, ϕ2, x3, x4). The rod endpoints, θi = 0 or π/2, correspond to the poles of
either the S2 or the S3. The regularity at these poles is guaranteed by the regularity
at the adjacent rods.22

Moreover, one can show that the three-form field strength, F3 = dC(2), is regular
such that the component along y vanishes. Moreover, the rod carries D1 and D5
charges given by (3.20)

q
(i)
D1 = `2i∑

j∈Uy `
2
j

Q1 , q
(i)
D5 = `2i

`2
Q5 . (5.13)

• Regularity at the ith rod with i ∈ Uxa: we consider a segment such that i ∈ Uxa ,

r = 0 , θ(i)
c < θ < θ(i−1)

c ⇔ ri = 0 , 0 < θi <
π

2 . (5.14)

The torus direction xa degenerates. Indeed, if i ∈ Uxa , then Kxa →∞ and r2Kxa > 0,
so the metric component along xa vanishes at the rod. The time slices of the type

20This is achieved by going first in the Weyl cylindrical coordinates (ρ, z), using (3.4) and (3.5), and then
by changing coordinates with (4.11) and (4.12).

21We consider that
∏b

i=a . . . = 1 if a > b.
22see [2, 3, 5] for more details.
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IIB metric (5.4) converge towards

ds2
10|dt=0 ∝ dr2

i + r2
i

C2
i

dx2
a + ds(C(i)

Bubble)
2 , (5.15)

with

C2
i = Q5 `

2
i

`2

i−1∏
p=1

n∏
q=i+1


1 + `2q∑q−1

k=p `
2
k

1 + `2q∑q−1
k=p+1 `

2
k


ᾱpq

×
i−1∏
p=1

(
1 +

`2p∑i
k=p+1 `

2
k

)ᾱip n∏
p=i+1

(
1 +

`2p∑p−1
k=i `

2
k

)ᾱip
.

(5.16)

The (ri, xa) subspace describes a smooth bolt, if we impose

Rxa = Ci. (5.17)

As for the rods i ∈ Uy, ds(C(i)
Bubble)2 describes a S3×T4 or S2×T5 bubble depending

on whether the rod is connected to two rods of the same nature or not.

Moreover, the rod carries a D5 charge given by (3.20)

q
(i)
D1 = 0 , q

(i)
D5 = `2i

`2
Q5 . (5.18)

To summarize, at r = 0, the solutions correspond to a chain of n bolts where the S1

or a T4 direction smoothly degenerates if n algebraic bubble equations are satisfied:

Ry√
Q1Q5

= `i di

`
√∑

p∈Uy `
2
p

, if i ∈ Uy ,
Rxa√
Q5

= `i di
`

, if i ∈ Uxa ,

where we have defined the aspect ratios, di,

di ≡
i−1∏
p=1

n∏
q=i+1


1 + `2q∑q−1

k=p `
2
k

1 + `2q∑q−1
k=p+1 `

2
k


ᾱpq

2
i−1∏
p=1

(
1 +

`2p∑i
k=p+1 `

2
k

) ᾱip
2 n∏

p=i+1

(
1 +

`2p∑p−1
k=i `

2
k

) ᾱip
2

.

(5.19)
These equations fix all rod lengths, `2i , in terms of the boundary quantities, namely the
charges of the D1-D5 branes and the radii of the S1 and T4. The solutions are therefore
completely fixed and the only changeable parameters are the nature of the rods and their
total number. The latter can be varied by adding “deformation quanta” as we increase n.
This will non-trivially modify the geometries by changing the bubble equations.

Remarkably, the bubble equations can be expressed in terms of the local D1 and D5
brane charges at the rods (5.13) and (5.18) such that

Ry =

√
q

(i)
D1q

(i)
D5

`i
di , if i ∈ Uy , Rxa =

√
q

(i)
D5 di , if i ∈ Uxa . (5.20)
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Thus, the regularity constraint for the rods corresponding to the degeneracy of the S1,
i ∈ Uy, is similar to the constraint for a global AdS3×S3×T4 (4.5) in terms of the local
charges. However, they have an extra deformation factor di that accounts for interactions
between the rods of the same nature. Indeed, di depends on the exponent ᾱpq which is non-
zero only when the pth and qth rods are of the same kind (5.3). Similarly, the constraints
for the rods where a T4 direction shrinks, i ∈ Uxa , is comparable to the regularity when
there is only a single T4 deformation (4.15) with the additional di factor.

Moreover, the bubble equations do not have analytic solutions in general, except for
small values of n. However, an approximation can be performed considering a large number
of bolts, and the equations can be solved at leading order in n [4].

As for the examples constructed in section 4.2 and 4.3, the bolts where a T4 direction
degenerates can be considered as small perturbations on top of a global AdS3×S3×T4

background if one imposes a hierarchy of scale in between the T4 and the D5 charge.
Indeed, we have

(Rx1 , Rx2 , Rx3 , Rx4) �
√
Q5

(√
Vol(T 4) � Q5

)
⇒ `2j � `2i , j ∈ Uxa , i ∈ Uy .

(5.21)
Then we have KI = 1 +O(`2j ) as soon as we are not too close to the rod sources and the
metric (5.4) corresponds to a global AdS3×S3×T4 background with small perturbations
that break the rigidity of the T4 and the symmetry of the S3.

Note that the bubble equations simplify if we consider that only the first rod forces
the degeneracy of the S1 as in section 4.2, i.e. Uy = {1}. It corresponds to solutions where
all the T4 deformations are centered around a pole of the S3. The bubble equation for the
first rod gives

Q1Q5
R2
y

= `2 =
n∑
i=1

`2i . (5.22)

Thus, we have the same quantization as the undeformed global AdS3×S3×T4 back-
ground (4.5), but Q1Q5

R2
y

is now distributed along all rods.

5.3 Chain of T4 and S3 deformations

We now consider generic solutions where the angle of the Hopf fibration of the S3 can
also degenerates: Uψ 6= ∅. For such configurations, one needs to impose the geometries
to be asymptotic to AdS3×S3/Zk×T4 for regularity. A generic rod configuration has been
depicted in figure 10.

We refer the reader interested in the derivation of the type IIB fields to appendix B.4.
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The metric and fields are given by

ds2
10 = 1√

Q1Q5K1K−

[
−(r2 + `2)dt2 + r2Kx1Kx2Kx3Kx4Kψ dy2

]
+
√
Q1K1
Q5K−

4∑
a=1

dx2
a

Kxa

+ k
√
Q1Q5K1K−

[
K2K+

(
dr2

r2 + `2
+ dθ2

)
+K+ cos2 θ sin2 θ dφ2

+ 1
4k2K+Kψ

(dψ + kA+dφ)2
]
, (5.23)

C(2) = Q5
4 A−dφ ∧ dψ −

r2 + `2

Q1K1
dt ∧ dy , eΦ =

√
Q1K1
Q5K−

,

where we have defined in addition to the deformation factors (5.5)

K± ≡
r2

`2 ±
∑
i∈Uψ `

2
i

1 + `2

r2 −
∏
i∈Uψ

(
1 + `2i

r2
i

)∓1
 , Kψ =

∏
i∈Uψ

(
1 + `2i

r2
i

)
,

A± ≡
1

`2 ±
∑
i∈Uψ `

2
i

`2 cos 2θ ±
∑
i∈Uψ

`2i cos 2θi

 . (5.24)

We will be brief in the analysis of the geometry and the regularity conditions since they
are similar to the previous constructions. First, the geometries are regular at r > 0 and
θ 6= 0 or π/2, and one can check that the geometry is indeed asymptotic to AdS3×S3/Zk×T4

since all KI → 1 and A± → cos 2θ.
The three loci r = 0, θ = 0 and θ = π/2 correspond to the z-axis where spacelike

coordinates degenerate as depicted in figure 10. First, one can check that the ϕ2 and ϕ1
angle degenerates regularly at θ = 0 and θ = π/2 respectively for r > 0. They define the
North and South poles of a S3/Zk. Second, there is a chain of bolts at the rod sources,
r = 0, where one coordinate degenerates smoothly defining an origin of R2 as in (2.16).
The ith rod makes either the S1 shrink if i ∈ Uy or the T4 if i ∈ Uxa or the S3 if i ∈ Uψ. The
regularity at each bolt fixes all rod lengths `2i in terms of the boundary quantities such as

Ry√
kQ1Q5

= ``i di√∑
p∈Uy `

2
p×
(
`4−

(∑
p∈Uψ `

2
p

)2
) , if i∈Uy ,

Rxa√
kQ5

= ``i di√
`4−

(∑
p∈Uψ `

2
p

)2
, if i∈Uxa ,

1
k

= ``i di
`2 +∑i∈Uψ `

2
i

, if i∈Uψ. (5.25)

where di is defined in (5.19). One retrieves the solutions of the previous section by simply
taking Uψ = ∅ or the simple solutions constructed in section 4.4 by considering n = 2,
Uy = {1} and Uψ = {2}.

Once the bubble equations are satisfied the solutions correspond to asymptotically-
AdS3 smooth bubbling geometries without horizons that are T4 and S3 deformations of a
global AdS3×S3/Zk×T4 background in type IIB. Moreover, for the same arguments as
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Figure 13. Schematic description of the spacetime induced by a chain of 5 rods, inducing the
degeneracy of either the S1 (y) or a T4 direction or the Hopf angle of the S3. On the left-hand side,
we depict the overall geometry in terms of r. On the right-hand side, we describe the behavior of
the S3, S1, and T4 at r = 0 and as a function of θ. At r = 0, the spacetime ends smoothly as a
coordinate degeneracy of either the S1 or the T4 or the S3.

in section 4.2.3, the deformations break the supersymmetry of the global AdS3×S3×T4

solution, and most likely break all supersymmetry such that they correspond to non-BPS
states. We depicted generic geometries in the global spherical coordinates in figure 13.
The spacetime ends smoothly at r = 0 as a chain of bolts delimited in sections of θ as
in (5.7) and where one of the spacelike directions smoothly degenerates. Depending on
their nature, the bolts may induce D1 and D5 brane charges (3.20). The bolts where the
S1 degenerates have non-zero D1 and D5 charges, while the bolts where a T4 direction
shrinks carry a D5 charge only, and the bolts where ψ degenerates have no D1-D5 charges.
More precisely,

q
(i)
D1 = `2i∑

j∈Uy `
2
j

Q1 , q
(i)
D5 = `2i

`2 −
∑
i∈Uψ `

2
i

Q5 , i ∈ Uy ,

q
(i)
D1 = 0 , q

(i)
D5 = `2i

`2 −
∑
i∈Uψ `

2
i

Q5 , i ∈ Uxa ,

q
(i)
D1 = q

(i)
D5 = 0 , i ∈ Uψ .

(5.26)

Moreover, one can consider the T4 and S3 deformations as small perturbations by as-
suming (5.21) and k � 1. Then, the solutions are almost identical to a global AdS3×S3/Zk
×T4 plus corrections that are induced by degeneracies of the T4 and S3 on localized posi-
tions of the S3 at r = 0, θ ∼ θ(i)

c (5.8).
One can rewrite the bubble equations (5.25) in terms of the local charges. They will

then be comparable to the constraints obtained for the simple T4 and S3 deformations in
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BTZ×S 3×T 4

S3

S1

T4

ϕ1

ϕ2

y

xa

t

z0 `2
1
4

Figure 14. Rod diagram of the shrinking directions on the z-axis after sourcing the solutions with
a rod that forces the degeneracy of the timelike coordinate.

section 4 with an extra factor di which accounts for interactions in between rods of the
same nature.

6 Regular bound states of non-extremal BTZ black holes

In previous sections, we have restricted the constructions to regular geometries in AdS3
without horizons. We will now build bound states of non-extremal two-charge black holes
using similar techniques. We will first derive the solution obtained from a single rod
inducing the degeneracy of the timelike direction. It will correspond to a S3×T4 or a
S3/Zk×T4 fibration over a static non-extremal BTZ black hole. Then, we will construct
chains of these two-charge black holes separated by regular bolts.

6.1 Static BTZ black hole as a single rod solution

We consider a single rod source, n = 1, such that it forces the degeneracy of the timelike
coordinate and induces a horizon. The rod profile has been depicted in figure 14. From
table 4, only G(1)

0 differs from the single-rod solution constructed in section 4.1 that led
to a global AdS3×S3/Zk×T4 spacetime. One can take the same solutions as in (4.1) and
replace W1 → W−1

1 or equivalently perform a Wick interchange (t, y) → (i y, i t) in (4.4).
The type IIB fields for such a rod configuration are then given by

ds2
10 = 1√

Q1Q5

[
−r2 dt2 + (r2 + `2) dy2

]
+
√
Q1
Q5

4∑
a=1

dx2
a (6.1)

+ k
√
Q1Q5

[
dr2

r2 + `2
+ dθ2 + cos2 θ dϕ2

1 + sin2 θ dϕ2
2

]
,

C(2) = k Q5 cos2 θ dϕ2 ∧ dϕ1 −
r2 + `2

Q1
dt ∧ dy , eΦ =

√
Q1
Q5

,
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Chain of BTZ black holes without T4 and S3 deformations

S3

S1

T4

ϕ1

ϕ2

y

x1

t

z0 `2
1
4

`2
1+`2

2
4

∑n−1
i=1

`2
i

4

∑n

i=1
`2

i
4 = `2

4

Figure 15. Rod diagram of the shrinking directions on the z-axis after sourcing the solutions with
n connected rods that induce alternatively horizons and bolts where the S1 shrinks.

The solution corresponds to a non-extremal static BTZ black hole with a S 3/Zk×T 4. The
black hole carries Q1 and Q5 D1 and D5 charges, and the S3×T5 horizon is located at the
rod, r = 0. The temperature can be derived from (2.17)

T = `

2π
√
kQ1Q5

, (6.2)

while the Bekenstein-Hawking entropy is given by23

S = π2√kQ1Q5 `

2G5
. (6.3)

One can restrict to solutions where the S3 has no conical defect by simply considering
k = 1 in the above expressions. The extremal limit is obtained by considering ` = 0, that
is T = S = 0. This corresponds to a BPS D1-D5 black hole that is simply AdS3×S3/Zk×T4

in the Poincaré patch.

6.2 Black hole bound states without T4 and S3 deformations

We construct regular bound states of the non-extremal black holes built in the previous
section. As a first example, we consider a chain of n rods such that the odd rods will
correspond to a horizon while the even rod will induce the degeneracy of the y circle.
Moreover, we consider for simplicity that n is an odd number. The rod profile has been
depicted in figure 15. We also restrict to solutions such that the S3 has no conical defect
asymptotically, that is k = 1.

23The area of the horizon must be derived with the metric in the Einstein frame gE = e−Φ/2g and we
have introduced the five-dimensional Newton constant G5 = G10

(2π)5RyRx1Rx2Rx3Rx4
.
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Figure 16. Schematic description of the spacetime induced by a chain of 5 rods, inducing either
horizons or the degeneracy of the S1 (y). On the left-hand side, we depict the overall geometry
in terms of r. On the right-hand side, we describe the behavior of the S3, S1, and T4 at r = 0
depending on the position on the S3 given by θ.

The solution (3.17), obtained from (3.19) with the rod configuration considered, gives

ds2
10 = 1√

Q1Q5

[
−r

2 + `2

Kt
dt2 + r2Kt dy2

]
+
√
Q1
Q5

4∑
a=1

dx2
a

+
√
Q1Q5

[
K2

(
dr2

r2 + `2
+ dθ2

)
+ cos2 θ dϕ2

1 + sin2 θ dϕ2
2

]
, (6.4)

C(2) = Q5 cos2 θ dϕ2 ∧ dϕ1 −
r2 + `2

Q1
dt ∧ dy , eΦ =

√
Q1
Q5

,

where K2 is given in (5.5) and Kt indicates the loci of the horizons by diverging at the odd
rods:24

Kt ≡
n∏
i=1
i odd

(
1 + `2i

r2
i

)
. (6.5)

The sources are all localized at r = 0 and one moves along the chain of rods by changing
θ from 0 to π/2.

6.2.1 Regularity conditions and topology

The geometry at r > 0 is regular for the same arguments as given in section 5.2.2. It has
a S1×S3×T4 topology in this region and is asymptotic to AdS3×S3×T4.

The rod sources on the z-axis are located at r = 0. More precisely the ith rod is at
r = 0 and in the S3 region, θ(i)

c < θ < θ
(i−1)
c (5.8), such that r = ri = 0 and rj > 0, j 6= i.

The S1, parametrized by the y coordinate, degenerates at the even rods, r = 0 and
θ

(2i)
c < θ < θ

(2i−1)
c , while the odd rods, r = 0 and θ(2i−1)

c < θ < θ
(2i)
c , correspond to horizons.

The local geometry at an even rod corresponds to a bolt with a R2×CBubble topology where
CBubble defines the topology of the smooth bubble at the bolt. Having regular bolts and

24The metric can be written in the Weyl cylindrical coordinate system with (4.3), and the component

along y can be written as r2Kt = (r2 + `2)
∏n

i=1
i even

(
1 + `2i

r2
i

)−1
using (3.12).
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black holes in thermal equilibrium will impose n algebraic bubble and thermal-equilibrium
equations (2.17) that fix all rod lengths `2i in terms of the asymptotic quantities.

Then, r = 0 will correspond to a chain of bolts and non-extremal black holes, each of
them carrying D1-D5 brane charges given by (3.20)

q
(i)
D1 = `2i

`2
Q1 , q

(i)
D5 = `2i

`2
Q5 . (6.6)

We have depicted the profile of the geometries in figure 16.
We divide the derivation of the bubble and thermal-equilibrium equations depending

on whether the rod corresponds to a horizon or a bolt.

• Regularity of the ith black hole, at the (2i− 1)th rod: we consider the segment

r = 0 , θ(2i−1)
c < θ < θ(2i)

c ⇔ r = r2i−1 = 0 , 0 < θ2i−1 <
π

2 . (6.7)

Since r = 0 and r2Kt > 0, one can check from (6.4) that the time coordinate degen-
erates defining a horizon. To derive the local geometry at this segment, one needs to
consider (r2i−1, θ2i−1) as the main coordinates and take r2i−1 → 0. We find that the
type IIB metric (6.4) converge towards

ds2
10 ∝ dr2

2i−1 −
r2

2i−1
C2

2i−1
dt2 + ds(C(2i−1)

Hor )2 , (6.8)

with

C2
2i−1 =

Q1Q5 `
2
2i−1 d

2
2i−1

`4
= q

(2i−1)
D1 q

(2i−1)
D5

`22i−1
d2

2i−1 , (6.9)

and d2i−1 is the aspect ratio defined in (5.19). The black hole is in thermal equilibrium
if T = (2πC2i−1)−1, where T is the temperature of the solution. Moreover, one can
show that the three-form field strength is regular such that the component along t
vanishes. Moreover, since `2 cos2 θ ∼ `22i cos2 θ2i + ∑2i−1

i=1 `2j , the black hole carries
D1-D5 brane charges given by (6.6).
The line element, ds(C(2i−1)

Hor ), describes the topology of the horizon. We have two
scenarios. For the black holes at the extremity of the chain (see figure 15), two
different spacelike directions shrink at their poles (ϕ1 and y for the first rod and y

and ϕ2 for the last), thus defining S3×T5 horizons. For the black holes in the middle
of the chain, only y is degenerating at their poles, thereby defining S2×T6 horizons.
The area of the horizon can be derived following [2, 3] and the Bekenstein-Hawking
entropy of the ith black hole on the chain is given by

Si =
π2
√
q

(2i−1)
D1 q

(2i−1)
D5 `2i−1 d2i−1

2G5
=
π `22i−1
4T G5

, (6.10)

where G5 is the five-dimensional Newton constant introduced in (6.3).
Note that the temperature and entropy resemble the temperature and entropy of a
single BTZ black hole (6.2) and (6.3) in terms of the local D1 and D5 brane charges.
The only difference arises from the aspect ratio d2i−1 that accounts for the interaction
in between the rods.
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• Regularity of the ith bolt at the (2i)th rod: we consider the segment

r = 0 , θ(2i)
c < θ < θ(2i−1)

c ⇔ r = r2i = 0 , 0 < θ2i <
π

2 . (6.11)

Since r = 0 and Kt > 0, the y coordinate degenerates. The time slices of the
metric (6.4) converge towards

ds2
10|dt=0 ∝ dr2

2i + r2
2i
C2

2i
dy2 + ds(C(2i)

Bubble)
2 , (6.12)

with

C2
2i = Q1Q5 `

2
2i d

2
2i

`4
= q

(2i)
D1 q

(2i)
D5

`22i
d2

2i . (6.13)

The (r2i, y) subspace describes a smooth origin of a R2 if we impose Ry = C2i.

The line element, ds(C(2i)
Bubble), describes the topology of the bubble at the bolt. Since

the bolt is connected to horizons, no spacelike direction shrinks at its extremity,
θ2i = 0 and π/2. Then, ds(C(i)

Bubble) describes a T7 space.
Moreover, the three-form field strength is regular such that the component along y
vanishes, and it carries D1-D5 brane charges given by (6.6).

To summarize, at r = 0, the solutions correspond to a static chain of D1-D5 bolts
where the S1 direction smoothly degenerates and non-extremal D1-D5 black holes if n
algebraic equations are satisfied:

Ry =
√
Q1Q5 `i di

`2
=

√
q

(i)
D1q

(i)
D5

`i
di , if i is even , (6.14)

T = `2

2π
√
Q1Q5 `i di

= `i

2π
√
q

(i)
D1q

(i)
D5 di

, if i is odd.

These equations fix all rod lengths, `2i , in terms of the boundary quantities, namely the
charges, the radius of the S1, and the temperature. The solutions are therefore entirely
fixed by regularity and the only changeable parameter is the total number of rods.

The bubble and thermal-equilibrium equations do not have analytic solutions in gen-
eral, except for small values of n and in the large n limit. However, an approximation can
be performed considering RyT small or large. Indeed, one has `22i

`22i−1
= O(RyT ). Thus,

in the limit RyT � 1, the rods where the S1 degenerates are much larger than the black
hole rods and the solutions can be considered as small black hole perturbations on a global
AdS3×S3×T4 spacetime that are localized at the center of the global AdS3 and spread
along the S3. Moreover, when RyT � 1, the black hole rods are much larger, and the
solutions correspond to small regular perturbations on a static non-extremal BTZ black
hole in type IIB that split the horizon into several pieces separated by small bubbles.

The way the horizon splits into different segments where the S1 pinches is reminiscent
of the effect of Gregory-Laflamme instability on black strings or black branes [63, 64].
Indeed, one expects the Gregory-Laflamme instability to make a compact circle grow or

– 48 –



J
H
E
P
0
2
(
2
0
2
3
)
1
3
3

Generic static axisymmetric solutions in AdS3 with horizons, S1, T 4 and S 3 deformations

S3

S1

T4

ϕ1

ϕ2

ψ

y

x1

x2

x3

x4

t

z0 `2
1
4

`2
1+`2

2
4

`2
1+`2

2+`2
3

4 ∑4
i=1

`2
i

4

∑n−1
i=1

`2
i

4∑n

i=1
`2

i
4 = `2

4

Figure 17. Rod diagram of the shrinking directions on the z-axis after sourcing the solutions with
n connected rods that correspond to regular coordinate degeneracies.

shrink depending on the position as in [41, 42]. Thus, one may wonder whether the present
bound state may be a candidate for a final or intermediate state of unstable black strings
and black branes.

6.3 Generic black hole bound states

In this section, we construct the most generic static axially-symmetric solutions one can
construct within our linear framework in type IIB. They consist of the same solutions as in
section 5.3 with additional rods that force the timelike coordinate to degenerate inducing
horizons on the z-axis. A generic rod configuration has been depicted in figure 17. We have
n connected rod sources, each one corresponding to one of the seven possible loci detailed

In addition to the conventions of section 5.1, we have an extra set of rod labels, Ut, such
that i ∈ Ut implies that the ith rod corresponds to a horizon. More precisely, the weights
associated with this rod, which fix the type IIB fields in the linear branch of solutions are
given by (see table 4): P (0)

i = P
(1)
i = P

(5)
i = G

(1)
i = 1

2 and G(0)
i = G

(2)
i = G

(3)
i = G

(4)
i = 0 .
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Figure 18. Schematic description of the spacetime induced by a chain of 5 rods, inducing a horizon
or the degeneracy of either the S1 (y) or a T4 direction or the Hopf angle of the S3. On the left-hand
side, we depict the overall geometry in terms of r. On the right-hand side, we describe the behavior
of the S3, S1, and T4 at r = 0 and as a function of θ.

The type IIB metric and fields (3.17), obtained from (3.19), gives25

ds2
10 = 1√

Q1Q5K1K−

[
−r

2 + `2

Kt
dt2 + r2KtKx1Kx2Kx3Kx4Kψ dy2

]
+
√
Q1K1
Q5K−

4∑
a=1

dx2
a

Kxa

+ k
√
Q1Q5K1K−

[
K2K+

(
dr2

r2 + `2
+ dθ2

)
+K+ cos2 θ sin2 θ dφ2

+ 1
4k2K+Kψ

(dψ + kA+dφ)2
]
, (6.15)

C(2) = Q5
4 A−dφ ∧ dψ −

r2 + `2

Q1K1
dt ∧ dy , eΦ =

√
Q1K1
Q5K−

,

where the deformation factors have been defined in (5.5) and (5.24), but Kt and K1 are
now given by

K1 = r2 + `2∑
i∈Uy∪Ut `

2
i

1−
∏

i∈Uy∪Ut

(
1 + `2i

r2
i

)−1
 , Kt =

∏
i∈Ut

(
1 + `2i

r2
i

)
. (6.16)

As for the previous geometries, the solutions are regular for r > 0 and are asymptotic
to AdS3×S3/Zk×T4. The chain of rods is located at r = 0 and divided into different
sections of θ delimited by the critical angles θ(i)

c (5.8). The locus of each rod is given by
25The metric can be written in the Weyl cylindrical coordinate system with (4.3), and the component

along y can be written as r2KtKx1Kx2Kx3Kx4Kψ = (r2 + `2)
∏
i∈Uy

(
1 + `2i

r2
i

)−1
using (3.12).
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r = 0 and θ(i−1)
c < θ < θ

(i)
c where ri = r = 0 and rj > 0 for j 6= i. Depending if the rod

induces the degeneracy of the Hopf angle ψ, or a T4 direction or the S1 or the timelike
direction, the regularity condition imposes

Ry√
kQ1Q5

= ``i di√∑
p∈Uy∪Ut `

2
p×
(
`4−

(∑
p∈Uψ `

2
p

)2
) , if i∈Uy , (6.17)

√
kQ1Q5T =

√∑
p∈Uy∪Ut `

2
p×
(
`4−

(∑
p∈Uψ `

2
p

)2
)

2π``i di
, if i∈Ut ,

Rxa√
kQ5

= ``i di√
`4−

(∑
p∈Uψ `

2
p

)2
, if i∈Uxa ,

1
k

= ``i di
`2 +∑i∈Uψ `

2
i

, if i∈Uψ,

where di is defined in (5.19). We depicted generic geometries in the global spherical co-
ordinates in figure 18. The spacetime ends at r = 0 as a chain of bolts and horizons of
non-extremal black holes delimited in sections of θ.

Depending on their nature, the bolts and black holes may carry D1 and D5 brane
charges. The black holes and the bolts where the S1 degenerates have non-zero D1 and D5
charges, while the bolts where a T4 direction shrinks carry a D5 charge only, and the bolts
where ψ degenerates have no charges. More precisely, we have (3.20)

q
(i)
D1 = `2i∑

j∈Uy∪Ut `
2
j

Q1 , q
(i)
D5 = `2i

`2 −
∑
i∈Uψ `

2
i

Q5 , i ∈ Uy or Ut ,

q
(i)
D1 = 0 , q

(i)
D5 = `2i

`2 −
∑
i∈Uψ `

2
i

Q5 , i ∈ Uxa ,

q
(i)
D1 = q

(i)
D5 = 0 , i ∈ Uψ .

(6.18)

Moreover, the areas of the horizons in the chain are integrable and we find that the
black hole Bekenstein-Hawking entropies are given by

Si =
π2
√
k q

(i)
D1q

(i)
D5 `i` di

2G5
√
`2 +∑

p∈Uψ `
2
p

= π `2i
4T G5

. (6.19)

The regularity constraints (6.17) are not solvable for generic n. However, assuming
large or small values for RyT , Rxa√

kQ5
and k induces discrepancy in scales in between the rods

of different nature, and the geometries can be considered as small regular perturbations on
a simpler asymptotically-AdS3 background.
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A Einstein-Maxwell equations for the static D1-D5-P system

In this section, we derive the equations of motion for static D1-D5-P backgrounds in type
IIB supergravity. In [5], the equations of motion for static M2-M2-M2 solutions in M-
theory have been derived. By performing a series of T-dualities (see section 3.3 of [5]), one
can find the equations given in (2.5) and (2.6) after a field redefinition. However, here we
perform a more direct calculation by working directly in the type IIB framework.

A.1 Type IIB action and equations

The bosonic pseudo-action of type IIB supergravity in the Einstein frame is given by [65–
68],

SIIB = SNS + SRR + SCS ,

(16πG10)SNS ≡
∫
R ? I− 1

2dΦ ∧ ?dΦ− e−Φ

2 H3 ∧ ?H3 , (A.1)

(16πG10)SRR ≡ −
1
2

∫
e2Φ F1 ∧ ?F1 + eΦF3 ∧ ?F3 + 1

2F5 ∧ ?F5 ,

(16πG10)SCS ≡ −
1
2

∫
C(4) ∧H3 ∧ F3 .

where G10 is the ten-dimensional Newton constant, R is the Ricci stalar, Φ is the dilaton,
H3 = dB2 is the NS-NS three-form field strength, and Fp are the R-R p-form field strengths
given in terms of gauge potentials as

F1 = dC(0) , F3 = dC(2)−C0H3 , F5 = dC(4)− 1
2H3 ∧C(2)− 1

2B2 ∧ dC(2) . (A.2)

First, the dilaton and Maxwell equations are generically

d
(
e2Φ ? F1

)
= −eΦH3 ∧ ?F3 , d ? F5 = H3 ∧ F3 , d

(
eΦ ? F3

)
= −H3 ∧ ?F5 ,

d
(
e−Φ ? H3

)
= F3 ∧ ?F5 + eΦ F1 ∧ ?F3 , (A.3)

d ? dΦ = −e
−Φ

2 H3 ∧ ?H3 + e2Φ F1 ∧ ?F1 + eΦ

2 F3 ∧ ?F3 .

Moreover, one has to impose the self-duality equation of F5 and the Bianchi identities:

? F5 = F5 , dH3 = dF1 = 0 , dF3 = H3 ∧ F1 , dF5 = H3 ∧ F3 . (A.4)

Finally, the Einstein equations are given by

2Rµν =
[
T (dΦ) + e−Φ T (H3) + e2Φ T (F1) + eΦ T (F3) + T (F5)

]
µν

− gµν
8
[
T (dΦ) + e−Φ T (H3) + e2Φ T (F1) + eΦ T (F3) + T (F5)

] σ

σ
,

(A.5)

where T (F) is the stress tensor of the p-form F given by

T (F)µν ≡
1

(p− 1)!

[
Fµα2...αpF α2...αp

ν − 1
2pgµν Fα1...αpFα1...αp

]
. (A.6)
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A.2 Equations for static axially-symmetric D1-D5-P backgrounds

We aim to derive equations of motion for static D1-D5-P solutions with eight commuting
Killing vectors. We therefore consider a T4 and a S1, parametrized by (x1, x2, x3, x4)
and y respectively. The T4×S1 and the S1 are wrapped by D5 branes and D1 branes
respectively, and one allows for P momentum charges along the S1. The remaining four
spacelike directions are expressed as a S1 fibration over a three-dimensional base space.
We parametrize the S1 by an angle ψ while the base is given in cylindrical coordinates,
(ρ, z, φ), such that all functions depend on ρ and z. A generic ansatz of metric and field is
therefore given by

ds2
10 = −dt

2

Vt
+ (dy−Tpdt)2

Vy
+

4∑
i=1

dx2
i

Vxi
+VB

[
(dψ+H0dφ)2

Z0
+Z0

(
e2ν
(
dρ2 +dz2

)
+ρ2dφ2

)]
C(2) =H5 dφ∧dψ−T1 dt∧dy , eΦ =VΦ , C(0) =C(4) =B2 = 0 , (A.7)

where (T1, H5, Tp) are the gauge potentials for the D1-D5-P flux, H0 is a KK gauge poten-
tial, and (Vt, Vy, Vxi , VB, Z0, e

2ν) are metric scalars.

A.2.1 Maxwell and dilaton equations

First, we notice that the Bianchi identities (A.4) are directly satisfied while the Maxwell
and dilaton equations (A.3) lead to

∂a

(
VΦ

ρVtVy
∏4
i=1 Vxi

∂aH5

)
= 0 , ∂a (ρVtVyVΦ ∂

aT1) = 0 ,

GΦ ≡
2
VΦ

∂a (ρ ∂a log VΦ) + ρVtVy (∂aT1)2 − 1
ρVtVy

∏4
i=1 Vxi

(∂aH5)2 = 0 ,
(A.8)

where the label a runs over the flat two-dimensional (ρ, z) space.

A.2.2 Ricci tensor

We derive the Ricci tensor in the tetrad frame by successively computing the tetrad one-
forms, EM , the spin connection, dEM = EN ∧ ωMN , the curvature two-form, RMN =
dωMN + ωMO ∧ ωON , and finally the Ricci tensor, RMN = ROMON . We introduce

V0 ≡
√
− det g

e2νVBZ0
= ρVB√

VtVy
∏4
i=1 Vx1

, (A.9)
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and we find

2
√
−detgRtt=−∂a(V0∂

alogVt)−
V0Vt
Vy

(∂aTp)2,

2
√
−detgRyy=∂a(V0∂

alogVy)−
V0Vt
Vy

(∂aTp)2,

2
√
−detgRxixi=∂a(V0∂

alogVxi), i=1,2,3,4, (A.10)

2
√
−detgRψψ=−∂a

(
V0∂

alogVB
Z0

)
+ V0
ρ2Z2

0
(∂aH0)2,

2
√
−detgRφφ=−∂a

(
V0∂

alog(ρ2VBZ0)
)
− V0
ρ2Z2

0
(∂aH0)2,

2
√
−detgRty=

√
Vy
Vt
∂a

(
V0Vt
Vy

∂aTp

)
, 2

√
−detgRφψ=−ρZ0∂a

(
V0
ρ2Z2

0
∂aH0

)
,

2e2νVBZ0Rab=−2∂a∂blogV0−
1
2

∑
w=t,y,xi

∂alogVw∂blogVw−
1
2∂alogVB

Z0
∂blogVB

Z0

−1
2∂alog(ρ2VBZ0)∂blog(ρ2VBZ0)− 1

ρ2Z2
0
∂aH0∂bH0+ Vt

Vy
∂aTp,∂bTp

+∂(alog(e2νVBZ0)∂b)logV0−δab
[
∂c∂

c(e2νVBZ0)+∂clog(e2νVBZ0)∂clogV0
]
,

where the labels a, b, c run over the flat two-dimensional (ρ, z) space.

A.2.3 Stress tensors

We compute the stress tensors of the dilaton and the three-form field strength in the tetrad
frame and find

2
√
− det g T (dΦ)MN = −V0

(
∂a log VΦ ∂

a log VΦ ηMN − 2∂a log VΦ ∂
b log VΦ δaMδbN

)
,

2
√
− det g T (F3)MN = V0

[
VtVy ∂aT1 ∂

aT1 (ηMN + 2δMtδNt − 2δMyδNy) (A.11)

− 1
ρ2V 2

B

∂aH5 ∂
aH5 (ηMN − 2δMφδNφ − 2δMψδNψ)

− 2
(
VtVy ∂

aT1 ∂
bT1 −

1
ρ2V 2

B

∂aH5 ∂
bH5

)
δaMδbN

]
.

A.2.4 Einstein equations and field redefinition

We now simplify the equations obtained from (A.5). For that purpose, we introduce

GMN ≡
√
− det g

(
RMN −

1
2
[
T (dΦ) + eΦ T (F3)

]
MN

+ gMN

16
[
T (dΦ) + eΦ T (F3)

] P

P

)
,

(A.12)
which vanish for on-shell solutions. First, we notice that

Gtt − Gyy − Gφφ − Gψψ −
4∑
i=1
Gxixi = ∂a∂

aV0 = 0 . (A.13)
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As explained in [44], one can consider V0 = ρ without restriction. This is equivalent
to performing a conformal transformation of the (ρ, z) coordinate system. These new
coordinates are referred to as Weyl’s canonical coordinates and imply:

VB =

√√√√VtVy 4∏
i=1

Vxi . (A.14)

Thus all components in the Ricci tensor ∂a(V0 ∂
a . . .) give ρ∆(. . .) where ∆ is the Laplacian

operator of a flat three-dimensional base for axisymmetric functions (2.3).
Then, by mixing the Einstein equations with the dilaton equation (A.8), we find 4

harmonic constraints such that
VΦ GΦ

2 + 4Gx1x1 = ρ∆ log(VΦV
2
x1) = 0 , 2(Gx1x1 − Gxixi) = ρ∆ log Vxi

Vx1
= 0 , i = 2, 3, 4 .

(A.15)
We have four additional combinations that encompass the interaction between the metric
and the gauge potentials:

−1
ρ

(Gtt+Gyy) = ∆log
√
Vt
Vy

+ Vt
Vy
∂aTp∂

aTp = 0 ,

1
ρ

(
−Gtt+Gyy+ VΦGΦ

4

)
= ∆

√
VΦVtVy+VΦVtVy ∂aT1∂

aT1 = 0 ,

1
ρ

(Gtt−Gyy−
4∑
i=1
Gxixi−Gψψ) = ∆logZ0 + 1

ρ2Z2
0
∂aH0∂

aH0 = 0 ,

1
ρ

(
Gyy−Gtt+

4∑
i=1
Gxixi−

VΦGΦ
4

)
= ∆log

√
VtVy

∏4
i=1Vxi

VΦ
+ VΦ

ρ2VtVy
∏4
i=1Vxi

∂aH5∂
aH5 = 0.

They are accompanied by the Maxwell equations for (H5, T1) (A.8) and we find for (H0, Tp):

−2
ρZ0
Gφψ = ∂a

( 1
ρZ2

0
∂aH0

)
= 0 , 2

√
Vt
Vy
Gty = ∂a

(
ρ
Vt
Vy

∂aTp

)
= 0 , (A.16)

At this level, the seven metric functions, (Vt, Vy, Vxi , Z0), the dilaton function VΦ, and
the four gauge potentials (H0, H5, T1, Tp) are entirely constrained by the twelve equations
given above. Three equations, obtained from (Gρρ,Gρz,Gzz), fix the base warp factor e2ν

by constraining ∂ρν and ∂zν. However, before simplifying those last equations, one can
redefine appropriately the metric functions:

Vt =Zp

(
Z3

1Z5
W0

) 1
4

, Vy = 1
Zp

(
Z3

1Z5
W0

) 1
4

, Vxi = 1
Wi+1

(
Z5W0
Z1

) 1
4
, i= 1,2,3 ,

Vx4 =W2W3W4

(
Z5W0
Z1

) 1
4
, VΦ =

√
Z1W0
Z5

. (A.17)

By plugging into the equations above we find that the logarithms of WΛ are harmonic
functions,

∆ logWΛ = 0, Λ = 0, 2, 3, 4 ,
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and the ZI couples to the gauge potentials such that

∆ logZI + Z2
I ∂aTI ∂

aTI = 0 , ∂a (ρZI ∂aTI) = 0 , I = 1, p , (A.18)

∆ logZI + 1
ρ2Z2

I

∂aHI ∂
aHI = 0 , ∂a

( 1
ρZI

∂aHI

)
= 0 . I = 0, 5 , .

Moreover, the ansatz of metric and dilaton (A.7) becomes

ds2
10 = e−

Φ
2

[√
W0
Z1Z5

[
−Zp dt2 + (dy−Tpdt)2

Zp

]
+
√
Z1
Z5

[ 3∑
i=1

Wa+1 dx
2
a+ dx2

4
W2W3W4

]

+
√
W0Z1Z5

[ 1
Z0

(dψ+H0 dφ)2 +Z0
(
e2ν
(
dρ2 +dz2

)
+ρ2dφ2

)]]
, eΦ =

√
Z1
Z5

W0 ,

and the metric in the string frame is obtained by multiplying by eΦ
2 . We recover the D1-D5

ansatz (2.1) by imposing Tp = 0 and Zp = 1
W1

, and we obtain the same set of equations
as (2.5) and (2.6) by considering the electric duals of the magnetic gauge potentials (2.4).

Finally, three equations remain from (Gρρ,Gρz,Gzz). However, they are not independent
and we derive the equations for ν by simplifying Gρρ −Gzz and Gρz and by splitting ν into
different contributions as in (2.4):

ν = νZ1 + νZ5 + νZp + νZ0 + νW0 +
5∑
i=2

νWi . (A.19)

The equations for each contribution are identical to (2.5) and (2.6) with W5 =
(W2W3W4)−1.

B Non-BPS bubbling deformations in AdS3×S3×T4

We detail the derivations of the smooth geometries constructed in the sections 4 and 5.
They are derived from the linear branch (3.19) of type IIB asymptotically-AdS3 solu-
tions (3.17) and are sourced by connected rods of different nature.

B.1 Single T4 deformation

We discuss the solutions of the sections 4.2 and 4.3. They are obtained from adding sources
that only force the T4 to degenerate on a global AdS3×S3×T4 background.

B.1.1 Single deformation at the pole of the S3

We consider two connected rod sources on the z-axis as depicted in figure 4. The first
induces the degeneracy of the y-circle while the other forces the x1-circle to shrink. From
table 4, the associated weights that fix the type IIB fields are

P
(0)
1 = P

(1)
1 = P

(5)
1 = −G(1)

1 = 1/2 , G
(0)
1 = G

(2)
1 = G

(3)
1 = G

(4)
1 = 0 ,

P
(0)
2 = P

(5)
2 = G

(0)
2 = −2

3G
(2)
2 = 2G(3)

2 = 2G(4)
2 = 1

2 , P
(1)
2 = G

(1)
2 = 0 . (B.1)
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By plugging into the expressions (3.19), we find

Z0 = 4k
r
√
r2 + `2

, Z1 = Q1F1

r
√
r2 + `2

√
F3
, Z5 = Q5

r
√
r2 + `2

,

W0 = W
− 2

3
2 = W 2

3 = W 2
4 =

√
F3 , W1 = r

√
F3√

r2 + `2
, T1 = r2 + `2

Q1F1
− `2 − `22

2Q1
,

e2ν = r2(r2 + `2)F2
(r2 + `2 cos2 θ)

(
r2 + `2 sin2 θ

) , H0 = k cos 2θ , H5 = Q5
4 cos 2θ , (B.2)

where we have used the deformation factors FI (4.7) and have introduced the global spher-
ical coordinates, (r, θ) (3.5), using (3.12). The type IIB metric and fields (3.17) are given
in (4.6) after having performed a gauge transformation to simplify the gauge field and
having considered that the S3 has no conical defect asymptotically k = 1.

Note that one has
1
Z0

(dψ +H0dφ)2 + ρ2Z0dφ
2 = r

√
r2 + `2

(
cos2 θ dϕ2

1 + sin2 θ dϕ2
2

)
, (B.3)

which allows going simply from the Hopf coordinates of the S3 to the spherical coordi-
nates (2.13).

B.1.2 Single deformation with an arbitrary position on the S3

We now consider the three-rod configuration in figure 6. The associated weights are

P
(0)
i = P

(1)
i = P

(5)
i = −G(1)

i = 1/2 , G
(0)
i = G

(2)
i = G

(3)
i = G

(4)
i = 0 , i = 1, 3,

P
(0)
2 = P

(5)
2 = G

(0)
2 = −2

3G
(2)
2 = 2G(3)

2 = 2G(4)
2 = 1

2 , P
(1)
2 = G

(1)
2 = 0 . (B.4)

Thus, the linear branch of solutions (3.19) gives the same expressions as in (B.2) except
that `2 = `21 + `22 + `23, the functions (ri, θi) have not the same dependence in (ρ, z) (3.4)
and (r, θ) (3.7) due to the third rod, and e2ν is now given by

e2ν = r2(r2 + `2) F̃2
(r2 + `2 cos2 θ)

(
r2 + `2 sin2 θ

) , (B.5)

where F̃2 is defined in (4.25).

• Regularity and topology:

the type IIB solutions, given by (4.24), are regular at r > 0 since ri > 0 there (3.7) and
all FI are finite and positive. Moreover, we have F̃2 = 1 at r > 0 and θ = 0, π/2. Thus,
the poles of the S3 are regular and the solutions have a S3×S1×T4 topology outside the
sources at r = 0.

At r = 0, one of the ri vanishes depending on the range of θ given by (4.26). This
locus corresponds to the three rod sources that are located at ρ = 0 and 0 ≤ z ≤ `2/4 in
the (ρ, z) coordinate system. To study the local geometry at each rod, one needs to change
to the associated local coordinates (ri, θi) (4.11) and take the limit ri → 0.
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At the first rod, r1 → 0, we have

r2
2 ∼ r2

3 − `22 ∼ `21 sin2 θ1 , `2 cos2 θ ∼ `21 cos2 θ1 , r2 ∼ `2 sin2 θ

`2 − `21 cos2 θ1
r2

1 ,

cos2 θ2 ∼
r2

1 cos2 θ1
`22 + `21 sin2 θ1

, cos2 θ3 ∼
r2

1 `
2
1 cos2 θ1 sin2 θ1

(`2 − `21 cos2 θ1)(`22 + `21 sin2 θ1) . (B.6)

Thus, the time slices of the type IIB metric (4.24) converge towards

ds10|dt=0 ∼
`
√
Q1Q5 (`22 + `21 sin2 θ1)

(`2 − `23)
√
`2 − `22(`2 − `21 cos2 θ1)

[
dr2

1 + (`2 − `23)(`2 − `22)
Q1Q5 `21

r2
1 dy

2 + `21 dΩ(1)
3

2
]

+ `√
`2 − `22

√
Q1
Q5

(
dx2

2 + dx2
3 + dx2

4

)
+
√
Q1Q5 (`2 − `21 cos2 θ1)

`
√
`2 − `22

dϕ2
2 , (B.7)

dΩ(1)
3

2
≡ dθ2

1 + (`2 − `23)(`2 − `21 cos2 θ1)
`2(`22 + `21 sin2 θ1)

[
cos2 θ1 dϕ

2
1 + `2 sin2 θ1

Q5 (`22 + `21 sin2 θ1) dx
2
1

]
.

At the second rod, r2 → 0, we have

r2
1 ∼ `22 cos2 θ2, r2

3 ∼ `22 sin2 θ2 , `2 cos2 θ∼ `21 +`22 cos2 θ2 , sin2 θ1∼
r2

2 sin2 θ2
`21 +`22 cos2 θ2

,

cos2 θ3∼
r2

2 cos2 θ2
`23 +`22 sin2 θ2

, r2∼ r2
2 `

2`22 cos2 θ2 sin2 θ2
(`23 +`22 sin2 θ2)(`21 +`22 cos2 θ2) , (B.8)

and the time slices of the type IIB metric (4.24) converge towards

ds10|dt=0 ∝
``22
√
Q1Q5

(`2 − `23)(`2 − `21)
√
`2 − `22

[
dr2

2 + (`2 − `23)(`2 − `21)
Q5 `42

r2
2 dx

2
1 + `22 dΩ(2)

2
2
]

+ `√
`2 − `22

√
Q1
Q5

(
dx2

2 + dx2
3 + dx2

4

)

+
√
Q1Q5

`
√
`2 − `22

[
(`21 + `22 cos2 θ2)dϕ2

1 + (`23 + `22 sin2 θ2)dϕ2
2

]
, (B.9)

dΩ(2)
2

2
≡ dθ2

2 + (`2 − `21)(`2 − `22)(`2 − `23)
4Q1Q5(`21`23 + `22(`23 cos2 θ2 + `21 sin2 θ2)) sin2(2θ2) dy2 .

Finally, at the third rod, r3 → 0, we have

r2
2 ∼ r2

1 − `22 ∼ `23 cos2 θ3 , `2 sin2 θ ∼ `23 sin2 θ3 , r2 ∼ `2 cos2 θ3
`2 − `23 sin2 θ3

r2
3 ,

sin2 θ2 ∼
r2

3 sin2 θ3
`22 + `23 cos2 θ3

, sin2 θ1 ∼
r2

3 `
2
3 cos2 θ3 sin2 θ3

(`2 − `23 sin2 θ3)(`22 + `23 cos2 θ3) . (B.10)
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Thus, the time slices of the type IIB metric (4.24) converge towards

ds10|dt=0 ∼
`
√
Q1Q5 (`22 + `23 cos2 θ3)

(`2 − `21)
√
`2 − `22(`2 − `23 sin2 θ3)

[
dr2

3 + (`2 − `21)(`2 − `22)
Q1Q5 `23

r2
3 dy

2 + `23 dΩ(3)
3

2
]

+ `√
`2 − `22

√
Q1
Q5

(
dx2

2 + dx2
3 + dx2

4

)
+
√
Q1Q5 (`2 − `23 sin2 θ3)

`
√
`2 − `22

dϕ2
1 , (B.11)

dΩ(3)
3

2
≡ dθ2

3 + (`2 − `21)(`2 − `23 sin2 θ3)
`2(`22 + `23 cos2 θ3)

[
sin2 θ3 dϕ

2
2 + `2 cos2 θ3

Q5 (`22 + `23 cos2 θ3) dx
2
1

]
.

Therefore, the local geometries correspond to regular S3×T4 or S2×T5 fibration over
an origin of R2 if one imposes

R2
y = Q1Q5 `

2
3

(`2 − `21)(`2 − `22) = Q1Q5 `
2
1

(`2 − `23)(`2 − `22) , R2
x1 = Q5 `

4
2

(`2 − `23)(`2 − `21) , (B.12)

which gives (4.28) when we invert these constraints in terms of (`21, `22, `23). Moreover, one
can also show that the gauge field is regular there such that the components of the field
strength along the shrinking direction vanish.

Thus, the locus r = 0 corresponds to a smooth end to spacetime where either the
y-circle or the x1-circle degenerates depending on the value of θ, and the overall geometries
are depicted in figure 7.

Moreover, one can introduce conical defects at the R2 by replacing Ry → k1Ry, Ry →
k3Ry and Rx1 → k2Rx1 in the three constraints above with ki ∈ N. This allows changing
the position where the T4 direction shrinks. Without defect, this region is localized around
the equator of the S3 as depicted in figure 7. Let us assume now that k1 = k2 = 1 but k3
is non-trivial. Then, we have

`21 = Q1Q5
2R2

y

1−
k2

3 − 1 + 2R2
x1

Q5√
(k2

3 − 1)2 + 4k2
3R

2
x1

Q5

 , `22 =
Q1R

2
x1

R2
y

√
(k2

3 − 1)2 + 4k2
3R

2
x1

Q5

,

`23 = Q1Q5
2R2

y

1 +
k2

3 − 1− 2R2
x1

Q5√
(k2

3 − 1)2 + 4k2
3R

2
x1

Q5

 ,

(B.13)

which is well-defined as soon as Q5 ≥ R2
x1 .

One can check that the zone of the S3 where the T4 degenerates, delimited by the
critical angles, θ(1)

c and θ(2)
c (4.27), is indeed centered around the equator for k3 = 1 such

that θ(1)
c = π/2 − θ(2)

c with cos2 θ
(2)
c = (2 − Rx1/

√
Q5)−1. However, both angles increase

with k3 such that

cos2 θ(1)
c ∼

R2
x1(Q5 −R2

x1)
k2

3Q
2
5

, cos2 θ(2)
c ∼

R2
x1

Q5
, k3 � 1 . (B.14)

Thus, the region of the S3 where the T4 degenerates can indeed move from the equator to
one of the hemispheres by forcing conical defects at the rods.
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B.2 Single S3 deformation

We consider two connected rod sources on the z-axis as depicted in figure 8. One induces
the degeneracy of the y-circle while the other forces the ψ-circle to shrink. From table 4,
the associated weights that fix the type IIB fields are

P
(0)
1 = P

(1)
1 = P

(5)
1 = −G(1)

1 = 1/2 , G
(0)
1 = G

(2)
1 = G

(3)
1 = G

(4)
1 = 0 ,

P
(0)
2 = 1 , P

(1)
2 = P

(5)
2 = G

(0)
2 = G

(1)
2 = G

(2)
2 = G

(3)
2 = G

(4)
2 = 0 .

(B.15)

Using the generic expressions (3.19), we find

Z0 = 4kF4

r
√
r2 + `2

√
F3
,

Z1
Q1

= Z5
Q5

== F1

r
√
r2 + `2

√
F3

, (B.16)

W0 = W2 = W3 = W4 = 1 , W1 = r
√
F3√

r2 + `2
, e2ν = r2(r2 + `2)F2

(r2 + `2 cos2 θ)
(
r2 + `2 sin2 θ

) ,
T1 = r2 + `2

Q1F1
− `2 − `22

2Q1
, H0 = k

(
2F5 cos2 θ − 1

)
, H5 = Q5

4
(
2F1 cos2 θ − 1

)
,

where we have used the deformation factors FI (4.7) and (4.32) and have introduced the
global spherical coordinates, (r, θ) (3.5), using (3.12). The type IIB metric and fields (3.17)
are given in (4.6) after having performed a gauge transformation to simplify the gauge field.

B.3 Solutions with an arbitrary number of T4 deformations

We consider n connected rod sources on the z-axis, as depicted in figure 11, that induce
the degeneracy of either the y-circle or a T4 direction. From table 4, the associated weights
that fix the type IIB fields are

P
(0)
i =P

(1)
i =P

(5)
i =−G(1)

i = 1/2 , G
(0)
i =G

(2)
i =G

(3)
i =G

(4)
i = 0 , i∈Uy ,

P
(0)
i =P

(5)
i =G

(0)
i =−2

3G
(2)
i = 2G(3)

i = 2G(4)
i = 1

2 , P
(1)
i =G

(1)
i = 0 , i∈Ux1 ,

P
(0)
i =P

(5)
i =G

(0)
i =−2

3G
(3)
i = 2G(2)

i = 2G(4)
i = 1

2 , P
(1)
i =G

(1)
i = 0 , i∈Ux2 ,

P
(0)
i =P

(5)
i =G

(0)
i =−2

3G
(4)
i = 2G(2)

i = 2G(3)
i = 1

2 , P
(1)
i =G

(1)
i = 0 , i∈Ux3 ,

P
(0)
i =P

(5)
i =G

(0)
i = 2G(2)

i = 2G(3)
i = 2G(4)

i = 1
2 , P

(1)
i =G

(1)
i = 0 , i∈Ux4 ,

(B.17)

where Uy and Uxa are the set of labels defined in (5.1). Using the generic expressions (3.19),
we find

Z0 = 4k
r
√
r2 + `2

, Z1 = Q1K1

r
√
r2 + `2

√∏4
a=1Kxa

, Z5 = Q5

r
√
r2 + `2

,

W0 = K2
x1W

2
2 = K2

x2W
2
3 = K2

x3W
2
4 =

√√√√ 4∏
a=1
Kxa , W1 =

r
√∏4

a=1Kxa√
r2 + `2

,

e2ν = r2(r2 + `2)K2
(r2 + `2 cos2 θ)

(
r2 + `2 sin2 θ

) , (B.18)

T1 = r2 + `2

Q1K1
−
∑
i∈Uy `

2
i

2Q1
, H0 = k cos 2θ , H5 = Q5

4 cos 2θ ,
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where we have used the deformation factors KI (5.5) and have introduced the global spher-
ical coordinates, (r, θ) (3.5), using (3.12). The type IIB metric and fields (3.17) are given
in (5.4) after having performed a gauge transformation to simplify the gauge field and
having considered that the S3 has no conical defect asymptotically k = 1.

Note that one has
1
Z0

(dψ +H0dφ)2 + ρ2Z0dφ
2 = r

√
r2 + `2

(
cos2 θ dϕ2

1 + sin2 θ dϕ2
2

)
, (B.19)

which allows going simply from the Hopf coordinates of the S3 to the spherical coordi-
nates (2.13).

B.4 Solutions with an arbitrary number of T4 and S3 deformations

We consider the same rod configuration as the previous section but we allow some rods
to force the degeneracy of the Hopf angle of the S3, ψ. A generic configuration has been
depicted in figure 10. In addition to (B.17), we have

P
(0)
i = 1 , P

(1)
i = P

(5)
i = G

(0)
i = G

(1)
i = G

(2)
i = G

(3)
i = G

(4)
i = 0 , i ∈ Uψ . (B.20)

Using the generic expressions (3.19), we find

Z0 = 4k
√
Kψ K+

r
√
r2 + `2

, Z1 = Q1K1

r
√
r2 + `2

√
Kψ

∏4
a=1Kxa

, Z5 = Q5K−
r
√
r2 + `2

√
Kψ

,

W0 = K2
x1W

2
2 = K2

x2W
2
3 = K2

x3W
2
4 =

√√√√ 4∏
a=1
Kxa , W1 =

r
√
Kψ

∏4
a=1Kxa√

r2 + `2
,

e2ν = r2(r2 + `2)K2
(r2 + `2 cos2 θ)

(
r2 + `2 sin2 θ

) , (B.21)

T1 = r2 + `2

Q1K1
−
∑
i∈Uy `

2
i

2Q1
, H0 = kA+ , H5 = Q5

4 A− ,

where we have used the deformation factors and the gauge potentials KI and A± from (5.5)
and (5.24), and have introduced the global spherical coordinates, (r, θ) (3.5), using (3.12).
The type IIB metric and fields (3.17) are given in (5.23) after having performed a gauge
transformation to simplify the gauge field.
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