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1 Introduction and main results

Gravitational instantons, i.e. classical solutions of Euclidean gravity and supergravity, have
been known for a long time to play a crucial role in the gravitational path integral and
the thermodynamic understanding of black holes, see [3]. Under the mild assumption for
the existence of at least one continuous symmetry, Gibbons and Hawking further showed
the appeal of classifying such solutions in terms of the fixed point set of this isometry, [4],
with fixed points referred to as “nuts” and fixed two-submanifolds as “bolts”. They showed
that the description in terms of nuts and bolts not only allows for the simple evaluation of
purely topological invariants such as the Euler characteristic and the signature, but also
facilitates the calculation of physical observables such as the on-shell action. Negatively
curved solutions were originally not investigated as they were considered unphysical at the
time, but the development of the AdS/CFT correspondence prompted renewed interest in
the subject, see [5–9]. These investigations ultimately allowed the direct evaluation of the
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on-shell action of all supersymmetry-preserving asymptotically locally AdS backgrounds
in terms of their nuts and bolts, as shown in [10] in minimal (two derivative) gauged 4d
N = 2 supergravity.1

In an a priori far removed (both in time and in scope) development, observables in
conformal and supersymmetric (non-gravitational) field theories have been shown to fac-
torize in terms of basic building blocks in many cases, see [11–15] and references thereof,
as often shown via supersymmetric localization [16, 17]. Based on the AdS/CFT corre-
spondence, the 3d SCFT factorization in terms of holomorphic blocks, [14], inspired the
construction of gravitational blocks in (two derivative) 4d N = 2 supergravity coupled to
matter, [18], applied to supersymmetric black hole backgrounds. At this stage the relation
to the original classification of Gibbons-Hawking becomes rather obvious, given the fact
that the gravitational blocks can be seen to appear precisely at fixed points of the spacetime
isometry following from supersymmetry. The additional process of gluing of these blocks,
which (in field theory language) is the identification of the Coulomb branch parameters
on the different fixed points of the given background, can be seen as an effect from the
generalization of the Gibbons-Hawking construction to theories with extra matter.

In the present work we try to bridge the remaining gap between these two pictures
by considering the simplest backgrounds exhibiting a single nut, i.e. we deform in a
supersymmetry-preserving way the maximally symmetric Euclidean backgrounds R4 and
H4 (or Euclidean AdS4). As we show explicitly, keeping the same background metric still
allows the addition of a non-trivial self-dual or anti-self-dual two-form field and a cor-
responding set of gauge fields (which do break some of the underlying isometries of the
metric but importanltly keep a U(1) × U(1) invariance). In field theory language this is
known as Ω-deformation [12], and the corresponding background (denoted here as ΩR4)
was first introduced by Nekrasov-Okounkov in [19]. At the same time we are interested
in holographic application and are therefore driven to put further emphasis on the direct
generalization of this deformation on H4, which was first constructed in minimal Euclidean
supergravity by Martelli-Passias-Sparks2 as the gravity dual of the U(1) × U(1)-invariant
squashed sphere, [22]. For reasons that will become clear in due course,3 we refer to this
background (which we consider in global spherical coordinates) as ΩH4.

While keeping in mind the above discussion, we should add that another major reason
for the present analysis is the plan of systematically addressing and ultimately proving the
conjecture in [1] about the form of the action for all supersymmetric backgrounds in the
presence of infinite classes of higher derivative terms. We are able to make some important
steps towards this goal, while still leaving a number of unfinished tasks for the future, as
commented later. Due to our scope we need to use the off-shell superconformal gravity

1The preservation of supersymmetry guarantees a continuous isometry for all backgrounds, automatically
fulfilling the original assumption of Gibbons and Hawking.

2This background can be obtained by Wick rotation of the Plebanski-Demianski metric [20] after im-
posing the supersymmetry limit discussed in [21].

3Let us emphasize that the general Nekrasov-Okounkov deformation [19], or twist, goes beyond flat space
and generalizes the Donaldson-Witten twist on four-manifolds with continuous isometries. This deformation
is not possible on H4 in supergravity (as opposed to rigid supersymmetry following from a frozen gravity
multiplet, see [23]) due to the need for SU(2) R-symmetry that is broken by the gauging.
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formalism, see [24] for a review, in Euclidean signature [25]. On top of the standard gauged
supergravity at two derivatives, we allow for the Weyl-squared [26] (here denoted as W)
and T-log [27] (here denoted as T) infinite towers of higher derivative terms. Technically,
our analysis of the supersymmetry variations in the presence of hypermultiplets and vector
multiplets is to a large extent analogous to the one in [28] for maximally supersymmetric
spacetimes. Note that (both Lorentzian and Euclidean) supersymmetric backgrounds in 4d
N = 2 conformal supergravity were classified in [23] specifically at the level of the gravity
multiplet, with ΩR4 written down explicitly based on the results in [29].4 The explicit
supersymmetry analysis of the Martelli-Passias-Sparks background seems to appear for
first time here in the superconformal setting. In turn our evaluation of the corresponding
background actions, using also holographic renormalization, [4, 5, 31], is in line with the four
derivative computations in [32–34] with some important technical differences we describe
along the way, most notably the fact that we do not impose the equations of motion until the
very end (supersymmetry does impose many of them automatically), keeping the action
off-shell. We then arrive at the on-shell action for H4 and ΩH4 by simply extremizing
the off-shell action with respect to a remaining set of constant scalars, in analogy to F -
extremization in the holographically dual field theory, [35, 36].5

We can already present some of our main results in a simplified fashion, leaving most
of the technical details for the main sections below. If we focus only on the bosonic fields
that remain in the on-shell formalism, we have the metric gµν and the nV +1 ablelian gauge
fieldsW I

µ , I = 0, 1, . . . , nV , along with the same number of complex scalars XI (the on-shell
scalars can be taken as zi = Xi/X0, i 6= 0). In order to introduce the two towers of higher
derivative invariants, we can look at the composite scalars AW and AT (defined in the main
text) corresponding to theW and T invariants, respectively. The supergravity Lagrangian is
then uniquely specified by the choice of gauging and the holomorphic prepotential function
that takes the generic form of a double expansion,6

F (XI ;AW, AT) =
∞∑

m,n=0
F (m,n)(XI) (AW)m (AT)n , (1.1)

with each F (m,n)(XI) a homogeneous function of degree 2(1−m− n).
The ΩR4 background is shown to be a fully-BPS configuration of ungauged supergrav-

ity, given in spherical Hopf coordinates by

ds2 = dr2 + r2
(
dθ2 + cos2 θ dϕ2

1 + sin2 θ dϕ2
2

)
, (1.2)

4It was later pointed out in [30] (pursuing the 5d holographic dual) that this background preserves all
Q and half of the S supercharges.

5Note that we do not consider running scalars as in the background in [37], which is a further gener-
alization of H4 in Euclidean supergravity, but the off-shell formalism allows us to uncover a very similar
process of fixing the values of the scalars. See also [38, 39] for related observations.

6Note that in Euclidean signature one can actually choose two independent prepotential functions,
F +(XI

+; A+
W, A+

T ) and F −(XI
−; A−

W, A−
T ), since the chiral and anti-chiral multiplets that make up a vector

multiplet do not need to be taken in a symmetric way, see [33]. Here we are interested in theories with real
action and do not explore this additional freedom. The two independent chiralities of the composite fields
AW and AT do play a prominent role discussed in the technical sections of this work.
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which is the metric on flat space, together with background gauge fields

W I = XI

8 (ε1 − ε2) (r2 cos2 θ dϕ1 − r2 sin2 θ dϕ2) , (1.3)

for arbitrary constant scalars XI , giving rise to purely anti-self-dual field strengths, F I+µν =
0 (there is an analogous configuration with only non-vanishing self-dual field strengths after
a flip of the relative sign). Note that the field strengths are covariantly constant, and apart
from the set of constant scalars XI we have one additional free deformation parameter,
(ε1− ε2), which we have written in the form chosen in the original references, [23, 29]. This
BPS configuration is shown to automatically be a solution of all equations of motion, but it
turns out that the corresponding on-shell action is not finite and even upon regularization
one cannot extract a meaningful non-vanishing answer. The calculation leading to this
result is however very useful to clarify some particularities of asymptotically flat solutions
and their place in the conjecture of [1], which we discuss in section 4.

The ΩH4 background is instead a half-BPS configuration in gauged supergravity. In
the case of Fayet-Iliopoulos constant gauging parameters (see later for details), labeled by
gI , we again find constant scalars XI with the special linear relation gIX

I = L−1. The
metric is then given by

ds2 = dr2

1 + r2

L2

+ r2
(
dθ2 + cos2 θ dϕ2

1 + sin2 θ dϕ2
2

)
, (1.4)

which is the hyperbolic space H4, with gauge fields

W I = −LXI
(b1 + b2

√
1 + r2

L2 ) dϕ1 + (b2 + b1

√
1 + r2

L2 ) dϕ2

2
√

(b1 + b2

√
1 + r2

L2 )2 sin2 θ + (b2 + b1

√
1 + r2

L2 )2 cos2 θ

. (1.5)

leading again to a purely anti-self-dual field strengths, F I+µν = 0. We again kept the
parametrization of the original references, see [7], but it can be seen that the background
depends only on a single combination of the parameters b1 and b2. As further elaborated
in [7], the background is regular for b1/b2 > 0, or in the special cases of trivial deformation
b1/b2 = ±1 (in which caseW I is a pure gauge). In the limit L→∞, or gI = 0, ∀I, the ΩH4

configuration becomes equal to the ΩR4 solution above, provided the simple identification

ε1,2 = 2 b1,2
L (b1 + b2) . (1.6)

Due to the hyperbolic asymptotics, allowing us to apply holographic renormalization, the
action for ΩH4 is found to be finite. It might be tempting to interpret the ΩH4 background
as the natural way of introducing a UV cut-off to ΩR4, but this is obscured by various
differences between gauged and ungauged supergravity, which we discuss in due course.
We find the off-shell action

Soff-shell|ΩH4(XI , b1, b2) = 4π2

b1b2
F

(
(b1 + b2)L

κ
XI ; (b1 − b2)2, (b1 + b2)2

)
, (1.7)
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after we have restored the Newton constant, κ2 = 8πGN , in a meaningful way.7 The
Einstein and Maxwell equations are automatically solved by the BPS configuration above,
but the scalar equations of motion are only solved upon the extremization of the above
action with respect to the parameters XI under the constraint gIXI = L−1:

∂Soff-shell

∂XI
|X̂I = 0 , Son-shell(b1, b2) = Soff-shell(X̂I , b1, b2) . (1.8)

These results are in precise agreement with the conjecture of [1] and their rigorous deriva-
tion in the coming sections can be regarded as a partial proof of it, as we explain in detail.
We further elaborate on their holographic significance and their extension in a number of
different directions.

The rest of this paper is organized as follows. Our main calculations including all
technical details are presented in the next two sections. In section 2 we introduce the off-
shell multiplets and perform the supersymmetry analysis for the backgrounds we consider.
The full off-shell configurations for all background fields are independent of the chosen
Lagrangian (but do depend on the gauging choice), such that they can be used for possible
newly discovered higher derivative invariants. In section 3 we focus on the Lagrangian that
includes the W and T towers of higher derivatives as dictated by (1.1), and evaluate the
off-shell action for the Omega-deformed backgrounds of interest. We further elaborate on
the holographic renormalization procedure that we need for ΩH4, as well as on the gauge
fixing and resulting on-shell actions. Section 4 is devoted to the detailed relation of the
present results with the conjecture in [1] and its holographic corollary worked out in [2].
We finally conclude in section 5 with a discussion of open problems and the extension of
our results upon the addition of more general hypermultiplet gaugings and the presence of
conical singularities on the considered backgrounds.

2 Supersymmetry analysis

As explained above, we are going to be interested in the off-shell supersymmetry conditions
for the maximally symmetric spaces R4 and H4 and their deformations with (anti-) self-dual
tensors that keep the same metric. Due to this setup, our supersymmetry analysis here
shares many similarities with [28] for maximally supersymmetric Lorentzian configurations,
as well as [33, 40, 41] for supersymmetry in the off-shell formalism in the presence of
gauging.

We strictly follow the notation and conventions of [25] on superconformal gravity in
Euclidean signature. Let us note a few particularities about the formalism. The bosonic
symmetry algebra consists of general coordinate, local Lorentz, dilatation and special con-
formal transformations, as well as SO(1, 1) × SU(2) R-symmetries, while the fermionic
symmetries are the supersymmetry (Q) and special supersymmetry (S) transformations.

7Note that in the formalism of superconformal gravity there are a priori no scales, and only the choices
of background and gauge fixing break the additional conformal and superconformal symmetries. The
introduction of the Newton constant is therefore a matter of choice and there is no unique description. In
the present analysis we stick to the logic outlined in [1] that each higher derivative order in the Lagrangian
is suppressed by a respective power of GN .
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The gauge fields associated with the general coordinate transformations (vielbein eaµ), di-
latations (bµ), R-symmetry (Aµ,Vµij) and Q-supersymmetry (ψiµ), are independent fields,
while the remaining gauge fields are composite. All these fields, together with an additional
number of auxiliary fields, are part of the so-called Weyl multiplet, the superconformal
version of the gravity multiplet. In addition, one needs to include a number of so-called
compensating multiplets in order for the theory to be gauge-equivalent to the Poincaré su-
pergravity. In the present case we include one additional hypermultiplet and one additional
vector multiplet to the ones present in the on-shell theory, which we introduce below. An
extra feature in Euclidean signature is that the fermions of different chiralities are inde-
pendent of each other (in Lorentzian signature they are related via complex conjugation),
which in turn means that each supersymmetry variation can be split into an independent
chiral and anti-chiral part denoted by + and −, respectively.

Before discussing each type of multiplet separately, note that from the start we set all
background fermionic fields to zero, as usual. In addition, we also look for configurations
with vanishing conformal and SO(1, 1) connections,

bµ = Aµ = 0 , (2.1)

since non-trivial vevs for them are not of interest here. See [23] for the role of these fields
in the general supersymmetry classification. Below we consider hypermultiplets, vector
multiplets, and the Weyl multiplet in the presence of abelian gaugings, and introduce all
relevant bosonic fields in the order they appear in the supersymmetry variations.

2.1 Hypermultiplets

We begin looking first at superconformal hypermultiplets, which have been described in [42,
43], since they allow for a gauging of the internal isometries that in turn generates a scalar
potential in supergravity. A very specific feature of hypermultiplets is that, in order to avoid
the introduction of an infinite set of fields, supersymmetry is realized on-shell, differently
to all other multiplets we consider. The field content of each hypermultiplet is four real
scalars qu, packaged inside the pseudo-real local sections Aαi (i = 1, 2 is an SU(2) index,
α = 1, . . . , 2(nH+1) for a total of nH+1 hypermultiplets) and two fermions of each chirality,
ζα±. The superconformal hypermultiplet geometry is that of a hyper-Kähler cone with a
metric that follows from the hyper-Kähler potential,

χH := 1
2ε

ijΩαβAi
αAj

β , (2.2)

which features in the Lagrangian of the theory (see later). The isometries of the underly-
ing geometry can be gauged by the available gauge fields, denoted by W I

µ , in the vector
multiplets, which then naturally must appear in covariant derivatives of hypermultiplet
fields. Supersymmetrization further requires that the complex scalars XI

± (see below for
more details) feature in the hyperino variation,

δζα± = −i /DAiαεi∓ −XI
∓t
α
I βAi

βεi± +Ai
αηi± , (2.3)
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where
DµAi

α = ∂µAi
α − 1

2Vµ
j
iAj

α − 1
2W

I
µ t
α
I βAi

β . (2.4)

The tI above denote the gauge group generators,8 and we remind the reader that Vµij is
the gauge field for the SU(2) R-symmetry. The Q-supersymmetry variation is denoted by
the spinor εi±, while the S-supersymmetry variation by the spinor ηi± where i is an SU(2)
index and ± denotes chirality.

At this stage we can formally write down the supersymmetry conditions that follow
from the assumption of maximal supersymmetry, i.e. that different Q-spinors are indepen-
dent of each other. On the other hand, it is inconsistent to set the sections Aiα to zero,
and therefore it is clear that the S-spinors must be fixed either to zero or in terms of
the Q-variations, and they do not correspond to independent variations. This is precisely
expected to happen in supergravity (as opposed to rigid supersymmetry on curved spaces)
since the S-supersymmetries need to be gauge fixed in the Poincaré frame. We see that
this is automatically achieved here by introducing at least one hypermultiplet (as required
in order to recover Poincaré supergravity). We find that

Ai
α = const , VµjiAjα = −W I

µ t
α
I βAi

β , Ai
αηi± = XI

∓t
α
I βAi

βεi± . (2.5)

However, at this stage these equations are rather abstract since they apply to an arbitrary
geometry and gauging, and cannot be further simplified before some commitment to the
underlying hypermultiplet sector. We are going to discuss more general hypermultiplet
gaugings in section 5.1, but for the time being we are interested in two special cases where
we consider only a single compensating hypermultiplet with a flat hyper-Kähler cone.

No gauging. The simplest case is when we have no gauging at all, i.e. the limit to
ungauged supergravity. In this case we simply have tαI β = 0, and without loss of generality
we can choose

χ
−1/2
H Ai

α = δi
α , (2.6)

leading in turn to solving (2.5) as

Vµji = 0 , ηi± = 0 . (2.7)

In other words, the S-variations are set to zero and the background SU(2) gauge fields
is vanishing such that the original R-symmetry remains intact, as expected in ungauged
supergravity.

FI gauging. The other important case we consider here is when we turn on constant
gauging parameters, known as Fayet-Iliopoulos (FI) gauging. The FI parameters gI are
used to gauge a U(1) subgroup of the SU(2) R-symmetry group. Without loss of generality
we can pick a particular direction (see [41] for a more detailed discussion)

tαI β = i gI σ3
α
β , (2.8)

8Note that we have rescaled the gauge group generators with a factor of 2 in comparison with the
convention in [25].
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where σ3 is the corresponding Pauli matrix, and again fix

χ
−1/2
H Ai

α = δi
α , (2.9)

such that (2.5) leads to
Vµij = −i gIW I

µσ3
i
j , (2.10)

and
ηi± = i gIXI

∓ σ3
i
jε
j
± . (2.11)

From the point of view of the Poincaré theory, we have gauged a U(1) subgroup of the
SU(2) R-symmetry group, and broken the other two generators. The S-variation param-
eters are again fixed, but this time in terms of the Q-variations, effectively producing a
different supersymmetry variation rules between ungauged and gauged supergravity, again
as expected. Note that we can also incorporate the case of ungauged case simply by the
FI parameter choice gI = 0, ∀I.

2.2 Vector multiplets

Now we turn our attention to nV + 1 abelian vector mutliplets with corresponding real
vector fields W I

µ (I labels each different multiplet), pairs of real scalar fields XI
+ and XI

−,
Majorana spinors ΩI,i

± , and triplets of pseudo-real auxiliary scalars Y I,ij . These degrees
of freedom follow from the direct compactification of 5d supergravity along a time-like
direction as in [25], but we should note that it is equally viable to consider a doubling of
the degrees of freedom following from Euclideanization of the Lorentzian 4d multiplets as
used in [37, 44]. From the former point of view we should allow for complex vectors W I

µ ,
two pairs of independent complex scalars XI

±, and a triplet Y I,ij that does not obey any
pseudo-reality condition. Here we follow the conventions of [25], but it will later be evident
that our analysis does not actually need to commit to either of the two pictures, so our
final results allow for both interpretations.

The supersymmetry variation of the gaugini is given by

δΩI,i
± = −2i /∂XI

±ε
i
∓ −

1
2[F Iµν −

1
4X

I
∓Tµν ] γµνεi± + εkjY

I,ikεj± + 2XI
±η

i
± , (2.12)

where the two-form field Tµν is part of the Weyl multiplet (see below). Due to the chirality
properties of the spinors, it is convenient to also split the two-form fields according to the
their self-duality properties,

F±µν := 1
2

(
Fµν ±

1
2εµνρσF

ρσ
)
, (2.13)

where ε1234 = 1 is the totally anti-symmetric symbol. We then find the useful identities

F I,±µν γ
µνεi± = 0 , T±µνγ

µνεi± = 0 . (2.14)

Setting the gaugini variation to zero can again be solved uniquely by the assumption that
the spinors ε are completely generic, such that each term in (2.12) vanishes independently:

XI
± = const , F I,±µν = 1

4X
I
±T
±
µν , (2.15)
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and
εkjY

I,ikεj± = −2XI
±η

i
± . (2.16)

The last equation can only be simplified further if we now specify to the S-variations
determined above by the hypermultiplet gaugings.

No gauging. In this case we saw that ηi± = 0, which leads to the simple condition that

Y I,ij = 0 . (2.17)

FI gauging. Using (2.11), we find

Y I,ij = −2iXI
+(gJXJ

−)εjkσ3
i
k = −2iXI

−(gJXJ
+)εjkσ3

i
k , (2.18)

which relates XI
+ and XI

− upto some overall freedom. It is a gauge choice (see later) to fix

gIX
I
+ = gJX

J
− = 1

L
, (2.19)

leading to
XI

+ = XI
− = XI , ∀I . (2.20)

We can therefore write

Y I,ij = −2 i
L
XIεjkσ3

i
k , Y I

ij = 2 i
L
XIεikσ3

k
j , (2.21)

where in the last identity we used the pseudo-reality condition together with the identity
εikεjk = δij . We also find the identity

Y I
ij Y

J,ij = 8
L2 X

IXJ , (2.22)

that will be useful in the next section.

2.3 The Weyl multiplet

The field content of the Weyl multiplet includes the above mentioned gauge fields for the
various superconformal symmetries: the vielbein eaµ, the SU(2) gauge field Vµij and its
corresponding field strength R(V)µνij , the conformal and U(1) R-symmetry gauge fields
bµ, Aµ (that we already set to zero on the backgrounds of interest), as well as two gravitini
ψiµ. Additionally, we have a number of auxiliary fields: the antisymmetric tensor Tµν
which decomposes into two independent parts as above, T±µν , a scalar D and two symplectic
Majorana fermions χi called dilatini. The weights of each of these fundamental fields under
the various symmetries are gathered in various tables in [25] and references therein, which
are worth a careful look for the unaccustomed reader.

We start with the dilatini variation, given by

δχi± = i
24γ

µν /∇T∓µνεi∓ +D εi± + 1
6R(V)∓µνijγµνε

j
± + 1

24T
∓
µνγ

µνηi± , (2.23)
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where D is the auxiliary scalar and should not be confused with a derivative. If we again
take the approach that different terms vanish separately, we arrive at

γµν /∇T∓µνεi∓ = 0 , D = 0 , (2.24)

as well as
R(V)∓µνijγµνε

j
± = −1

4T
∓
µνγ

µνηi± , (2.25)

which holds automatically both in ungauged and in FI gauged supergravity due to (2.7)
and the combination of (2.10), (2.11) and (2.15), respectively. Notice that in the first
identify in (2.24) we did not strip off the spinorial part, since we re going to solve this in
two different ways below.

The gravitini variation instead reads

1
2δψ

i
µ± = Dµε

i
± −

i
8T
∓
µνγ

νεi∓ −
i
2γµη

i
∓ , (2.26)

where the covariant derivative is defined as

Dµε
i
± :=

(
∂µ −

1
4ωµ

abγab

)
εi± + 1

2Vµ
i
jε
j
± . (2.27)

There are two different strategies to check that the gravitini variation vanishes: either we
find the explicit functional dependence of the Killing spinors εi± on a given background and
check directly that

Dµε
i
± = i

8T
∓
µνγ

νεi∓ + i
2γµη

i
∓ , (2.28)

or we satisfy the integrability conditions that follow from squaring the variations. Here we
resort to the latter strategy, using that the commutator of two covariant derivatives from
the definition (2.27) leads to

[Dµ, Dν ]εi± = −1
4Rµν

ρσγρσε
i
± + 1

2R(V)µνijεj± . (2.29)

The right hand side obtained by the successive application of (2.28) instead depends cru-
cially on the details of the gauging.

No gauging. In this case ηi± = 0 and we find

[Dµ, Dν ]εi± = i
8(∇µT∓νρ)γρεi∓ + 1

64T
∓
µργ

ρT±νσγ
σεi± − (µ↔ ν) . (2.30)

FI gauging. Using (2.11) we find

[Dµ, Dν ]εi± =
[ i

8(∇µT∓νρ)γρεi∓ + 1
64T

∓
µργ

ρT±νσγ
σεi± − (µ↔ ν)

]
− 1

2L2 γµνε
i
± + i

16L [T∓µργργν + T±νργµγ
ρ − (µ↔ ν)]σ3

i
jε
j
± .

(2.31)
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2.4 Omega deformations

Thus far we listed the requirements on the bosonic fields following solely from the re-
quirement of independent Q-variations, as far as this could be pushed (we have kept some
generality in order to also allow for the half-BPS ΩH4, see below). This is however not
enough for us to zoom in on the configurations of interest, since we know that other back-
grounds such as H2×S2 and the pp-wave will solve the same equations, see [28]. Therefore
we now specify our interest only in a metric of maximally symmetric space, and allow for
additional deformations from purely (anti-) self-dual two-forms:

F I,+ ∼ T+ = 0 , or F I,− ∼ T− = 0 . (2.32)

For concreteness (and without loss of generality due to the obvious symmetry) we pick the
first option and only allow for non-vanishing T− and F I,−.

No gauging: the Nekrasov-Okounkov background. In the lack of gauging we simply
have

Rµνρσ = 0 , (2.33)

which also requires
∇µT−νρ = 0 , (2.34)

such that all remaining BPS variations are satisfied in the simplest possible way, i.e. by
the vanishing of each individual term.

The unique background corresponding to these two conditions is the Nekrasov-Okou-
nkov deformation on flat space, ΩR4, given in Cartesian coordinates as:

ds2 = dx2
1 + dx2

2 + dx2
3 + dx2

4 , (2.35)

and
T− = 2(ε1 − ε2) (dx1 ∧ dx2 − dx3 ∧ dx4) , (2.36)

such that the gauge fields are given by

W I = XI

4 (ε1 − ε2) (x[1dx2] − x[3dx4]) . (2.37)

It is instructive for later purposes to change the Cartesian coordinates on each copy of R2

to polar, x1,3 = ρ1,2 cosϕ1,2, x2,4 = ρ1,2 sinϕ1,2:

ds2 = dρ2
1 + ρ2

1 dϕ2
1 + dρ2

2 + ρ2
2 dϕ2

2 , (2.38)

with
T− = 2(ε1 − ε2) (ρ1 dρ1 ∧ dϕ1 − ρ2 dρ2 ∧ dϕ2) , (2.39)

and
W I = XI

8 (ε1 − ε2) (ρ2
1 dϕ1 − ρ2

2 dϕ2) . (2.40)

In turn we can convert to spherical Hopf coordinates, ρ1 = r cos θ, ρ2 = r sin θ:

ds2 = dr2 + r2
(
dθ2 + cos2 θ dϕ2

1 + sin2 θ dϕ2
2

)
, (2.41)
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as well as

T− = 2(ε1 − ε2)
(
r cos2 θ dr ∧ dϕ1 − r2 sin θ cos θ dθ ∧ dϕ1

− r sin2 θ dr ∧ dϕ2 − r2 sin θ cos θ dθ ∧ dϕ2
)
,

(2.42)

and
W I = XI

4 (ε1 − ε2) (r2 cos2 θ dϕ1 − r2 sin2 θ dϕ2) . (2.43)

This form of ΩR4 background, as also presented in the introduction, allows for a direct
comparison with the ΩH4 background to which we turn next.

FI gauging: the Martelli-Passias-Sparks background. In the presence of gauging
we find the hyperbolic space with

Rµνρσ = 1
L2 (gµρgνσ − gµσgνρ) , (2.44)

leading to a constant positive curvature9

Rµν = 3
L2 gµν , R = 12

L2 , (2.45)

with a metric in spherical Hopf coordinates

ds2 = dr2

1 + r2

L2

+ r2
(
dθ2 + cos2 θ dϕ2

1 + sin2 θ dϕ2
2

)
. (2.46)

The remaining equation stemming from the Killing spinor integrability condition in this
case is non-trivial,

R(V)µνijεj± =
[ i

4(∇µT∓νρ)γρεi∓ − (µ↔ ν)
]

+ i
8L

[
T∓µργ

ργν + T±νργµγ
ρ − (µ↔ ν)

]
σ3
i
jε
j
± .

(2.47)

We can further use our assumption that T+ = 0 to find

R(V)µνij = − i
4LT

−
µν σ3

i
j , (2.48)

such that the two different chiralities in (2.47) produce two rather different equations. The
lower chirality gives

T−µν σ3
i
jε
j
− = 1

2
[
T−µργνγ

ρ − T−νργµγρ
]
σ3
i
jε
j
− , (2.49)

while the upper chirality gives

T−µν σ3
i
jε
j
+ = L∇ρT−µνγρεi− −

1
2
[
T−µργ

ργν − T−νργργµ
]
σ3
i
jε
j
+ , (2.50)

9In the present conventions, which differ in this respect to most of the other literature, the hyperbolic
space (as well as anti-de Sitter space) exhibits constant positive curvatuire.
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where we used the Bianchi identity for T− (we already know it is an exact form from the
relation (2.15)). The first equation is identically satisfied using the anti-self-duality of T−
together with the chirality of the spinor, without any further conditions on ε−. The second
equation is however non-trivial, and as shown explicitly in the original reference, [22], one
can solve it uniquely by fixing the degrees of freedom of ε+ entirely in terms of ε−, thus
reducing by half the amount of supersymmetry generators. The non-vanishing components
of the tensor field then take the form

T−θϕ1
= −

2(b21 − b22)(b1 + b2

√
1 + r2

L2 ) r2 sin θ cos θ
LΞ3/2(r, θ)

=
(b1 + b2

√
1 + r2

L2 )

(b2 + b1

√
1 + r2

L2 )
T−θϕ2

,

T−rϕ1 =
2(b21 − b22)(b2 + b1

√
1 + r2

L2 ) r cos2 θ

L
√

1 + r2

L2 Ξ3/2(r, θ)
= −

(b2 + b1

√
1 + r2

L2 ) cos2 θ

(b1 + b2

√
1 + r2

L2 ) sin2 θ
T−rϕ2 ,

(2.51)

where for brevity we defined

Ξ(r, θ) := (b1 + b2

√
1 + r2

L2 )2 sin2 θ + (b2 + b1

√
1 + r2

L2 )2 cos2 θ , (2.52)

leading in turn to the background gauge fields

W I = −LXI
(b1 + b2

√
1 + r2

L2 ) dϕ1 + (b2 + b1

√
1 + r2

L2 ) dϕ2

2
√

Ξ(r, θ)
, (2.53)

as already anticipated. It is then easy to check that ∇µF I,−µν = ∇µT−µν = 0. We thus arrive
at the following relation between the Killing spinors of opposite chiralities,

εi+ = r

LΞ(r, θ)
[
(b21 − b22)

√
1 + r2

L2 sin θ cos θ γ1

−

b1b2
√

1 + r2

L2 + b21 sin2 θ + b22 cos2 θ

 γ2
]
σ3
i
jε
j
− .

(2.54)

We are not going to need here the explicit solution for ε±, see [7, 22], but we reproduce
for completeness the fact that the Killing spinor bilinears produce the so-called canonical
isometry ξ with a fixed point at the centre of H4 at r = 0, where locally

ξ = b1 ∂ϕ1 + b2 ∂ϕ2 , (2.55)

as discussed at length in [10].
Finally, contracting (2.50) with γµν leads to the identity

γµν /∇T−µνεi− = 0 , (2.56)

such that the last remaining supersymmetry constraint, the first equation in (2.24), is
satisfied.

Note that the explicit Killing spinors constructed in [22] not only vary from those on
H4 in the number of free parameters, but also in their functional dependence. In the ΩH4

case the Killing spinors are only functions of r and θ and are independent of the ϕ1 and ϕ2
coordinates. We come back to this remark at the end of the paper when discussing conical
defects.
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2.5 Summary of off-shell configurations

The off-shell backgrounds can be briefly summarized as follows for the benefit of the readers
uninterested in the technical derivation.

ΩR4.

ds2 =
4∑
i=1

dx2
i , XI

± = const , F I,±µν = 1
4X

I
±T
±
µν ,

D = 0 , Vµij = 0 , χ
−1/2
H Ai

α = δi
α , Y I,ij = 0 ,

T+
µν = 0 , T−12 = (ε1 − ε2) T−13 = T−14 = 0 .

(2.57)

ΩH4.

ds2 = dr2

1 + r2

L2

+ r2
(
dθ2 + cos2 θ dϕ2

1 + sin2 θ dϕ2
2

)
, D = 0 ,

Vµij = −i gIW I
µσ3

i
j , χ

−1/2
H Ai

α = δi
α , Y I

ij = 2 i
L
XIεikσ3

k
j ,

XI
+ = XI

− = XI = const , gIX
I = 1

L
, F I,±µν = 1

4X
I
±T
±
µν ,

T+
µν = 0 , T−θϕ1

= −
2(b21 − b22)(b1 + b2

√
1 + r2

L2 ) r2 sin θ cos θ
LΞ3/2(r, θ)

,

T−rθ = 0 , T−rϕ1 =
2(b21 − b22)(b2 + b1

√
1 + r2

L2 ) r cos2 θ

L
√

1 + r2

L2 Ξ3/2(r, θ)
.

(2.58)

3 Off-shell action

So far we introduced all fundamental fields in the superconformal formalism and analysed
the supersymmetry variations of the fermionic fields without the need to write down a
specific Lagrangian for the theory. It is an important consequence of realizing supersym-
metry in an off-shell way that BPS configurations do not depend on the explicit theory,
with the important exception of the gauging choice that we discussed in the hypermultiplet
sector. In order to explicitly evaluate the corresponding action and in turn look at phys-
ical observables on a given background, it is however indispensable that we commit to a
particular theory. As announced in the introduction, we are interested in higher derivative
supergravity with two infinite towers of higher derivative terms labeled by W and T. The
theory of interest coincides with the one in [1], but here we stick to Euclidean signature.
Similarly to many of the fundamental fields we discussed above, this also means there is
a natural split into a chiral and an anti-chiral part of the composite multiplets needed for
the introduction of the higher derivative terms, see again [25] and [33],

Φp
± = {A±p ,Ψ

i,p
± ,B

ij
p,±,G±p,µν ,Λ

i,p
± , Cp,±} , (3.1)

where the index p ∈ {W,T} denotes the multiplet in question. These composite multiplets
can be uniquely specified by defining their lowest components, A±p , in terms of the fun-
damental fields, see below. We can then specify uniquely the Lagrangian by the choice of
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gauging discussed earlier, together with the choice of prepotentials

F±(XI
±;A±W, A

±
T ) :=

∞∑
m,n=0

F
(m,n)
± (XI

±) (A±W)m (A±T )n , (3.2)

whose chiral and anti-chiral components are in principle now completely independent. As
usual also in Poincaré supergravity, derivatives of F w.r.t. XI are denoted by FI and w.r.t.
Ap by FAp . The Lagrangian is then given by

e−1L = e−K
(1

6R−D
)
−DµF

+
I D

µXI
− −DµF

−
I D

µXI
+ + 1

32F
+(T+

ab)
2 + 1

32F
−(T−ab)2

− 1
4 F

+
IJ F

−I
ab F

ab−J − 1
4 F

−
IJ F

+I
ab F

ab+J + 1
8 F

+
I F

+I
ab T

ab+ + 1
8 F

−
I F

−I
ab T

ab−

+ 1
8 NIJ Y

I
ijY

J,ij + 1
2 F

+
Ap
Cp,+ + 1

2 F
−
Ap
Cp,− + 1

4 F
+
ApI
Bijp,+ Y I

ij + 1
4 F

−
ApI
Bijp,− Y I

ij

− 1
2 F

+
ApI
G−p,abF

ab−I − 1
2 F

−
ApI
G+
p,abF

ab+I + 1
8 F

+
ApAq

Bp,ij+Bijq,+

+ 1
8 F

−
ApAq

Bp,ij−Bijq,− −
1
4 F

+
ApAq

G−p,abG
ab−
q − 1

4 F
−
ApAq

G+
p,abG

ab+
q

+ χH

(1
6R+ 1

2D
)
− 1

2 ε
ijΩαβ DµAi

αDµAj
β

+ 1
2 ε

ijΩαβ Ai
α (gIXI

+)(gJXJ
−) tβγtγδ Ajδ −

1
4 Ωαβ Ai

α (gIY ijI) tβγ Ajγ ,
(3.3)

where
e−K := F+

I X
I
− + F−I X

I
+ , NIJ := F+

IJ + F−IJ , (3.4)

and
F±Iab := F±Iab −

1
4X

I
±T
±
ab , (3.5)

which actually vanishes identically on the backgrounds we consider here. Note that the
last two rows of the Lagrangian above come from the auxiliary hypermultiplet, e−1LH.

At this stage we can start simplifying our Lagrangian for the purpose of evaluating
the action on the backgrounds of interest. Our first general assumption is that the theory
exhibits a real Lagrangian and action, which means

F
(m,n)
+ (XI) = F

(m,n)
− (XI) = F (m,n)(XI) , (3.6)

as also discussed in [33]. Note that this does not correspond to an equality of the full
prepotentials F+ and F− as defined in (3.2), which depend on a set of a priori independent
fields. We are thus going to keep the subscripts until the final evaluation where confusion
is no longer possible.

Let us now observe that actually many of the terms in the Lagrangian conveniently
vanish on the backgrounds of interest, even before we go into the details of the higher
derivative terms. The hypermultiplet Lagrangian, using (2.8) and (2.9), becomes

e−1LH = χH

(1
6R+ 1

2D − 2(gIXI)2
)
, (3.7)

– 15 –



J
H
E
P
0
2
(
2
0
2
3
)
1
1
0

which vanishes for both the ΩR4 and the ΩH4 backgrounds we consider (as well as on
the corresponding undeformed vacua). Usually the hypermultiplet Lagrangian is kept in
order to gauge-fix the hyper-Kähler potential χH and introduce the Newton constant in
the on-shell action via the D field equation of motion. Here we take a different path to
introducing κ (see section 3.4) and therefore have no need for the equation of motion for
the scalar D, which itself is vanishing on the backgrounds of interest. Together with the
observation that F±Iab = 0 and XI

+ = XI
− = const on all backgrounds of interest, we arrive

at a substantially simpler off-shell action on maximally symmetric backgrounds,

e−1L = 1
6 e
−KR + 1

32 F
−(T−ab)2 + 1

8 NIJ Y
I
ijY

J,ij

+ 1
2 F

+
Ap
Cp,+ + 1

2 F
−
Ap
Cp,− + 1

4 F
+
ApI
Bijp,+ Y I

ij + 1
4 F

−
ApI
Bijp,− Y I

ij

+ 1
8 F

+
ApAq

Bp,ij+Bijq,+ + 1
8 F

−
ApAq

Bp,ij−Bijq,−

− 1
4 F

+
ApAq

G−p,abG
ab−
q − 1

4 F
−
ApAq

G+
p,abG

ab+
q ,

(3.8)

where we also implemented the vanishing of the self-dual tensor T+.
At this stage we need to finally define properly the W and T multiplets in order to start

simplifying the action further. The W invariant is defined by the Weyl multiplet written
in a chiral/anti-chiral form

A±W = 1
64(T∓ab)

2 , (3.9)

and in turn the remaining bosonic components of the corresponding chiral and anti-chiral
multiplets can be evaluated to

Bij
W,± = 1

4T
∓abεk(iR(V)abj)k ,

G±W,ab = 0 ,

CW,± = −1
2(R(V)∓ab

i
j)2 .

(3.10)

Note that we did not write down the most general expressions that are readily available
in [25], but directly simplified them on the backgrounds of interest. In particular we
omitted a term proportional to DaT−ab from the last equality and simplified the remaining
expressions using that the dilatational and SO(1, 1) gauge fields vanish and D = 0. We
further used the vanishing of the Weyl tensor on R4 and H4.

The chiral multiplet related to the T invariant is chosen to be made out of the linear
combination of the (anti-) chiral multiplets gIX I± that make up the vector multiplets (in the
ungauged case all components are identically zero for an arbitrary choice of T invariant),

A±T = �c(gIXI
±)

(gJXJ
∓)

+ 1
8
gIFI,∓ab T∓,ab

(gJXJ
∓)

− gIgJ
8(gKXK

∓ )
(
Y I
ijY

J,ij − 2FI,±ab F
J,±ab

)
, (3.11)

see [27] and [45] for more details. Using that the scalars XI
+ = XI

− = XI and Y I
ij are

constant and F±Iab = 0, we can simplify the general expressions for the bosonic fields in the
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resulting multiplet (see also [46] for more explicit formulae),

A±T = 1
6R−

(gIY I
ij)(gJY J,ij)

8(gKXK)2 ,

Bij
T,± = 1

6R
gIY

I,ij

gJXJ
,

G±T,ab = R(V)±ab
i
k
gIY

I,jk

gJXJ
εij −

R

12T
±
ab ,

CT,± = 1
3R

2 − (Rab)2 − 1
2(R(V)±ab

i
j)2 − 1

16(T±ab)
2A±T .

(3.12)

We have simplified the Lagrangian and the higher derivative corrections as much as
possible, and now we are in a position to evaluate the resulting action on the particular
BPS configurations of interest.

3.1 ΩR4

Using the explicit background configuration of ΩR4, it is immediate to find that the entire
T multiplet vanishes identically,

A±T = Bij
T,± = G±T,ab = CT,± = 0 , (3.13)

as similarly observed in [45] for asymptotically flat black holes, while the W multiplet takes
the simple form

A+
W = 1

16(ε1 − ε2)2 , A−W = Bij
W,± = G±W,ab = CW,± = 0 . (3.14)

We therefore find two different expressions for the prepotentials F+ and F−,

F− = F (0,0) , F+ =
∞∑
m=0

F (m,0) (ε1 − ε2)2m

4m . (3.15)

Notice that we actually have only a single non-vanishing term in the Lagrangian (3.8),
proportional to F−(T−)2, meaning that all higher derivative contributions are set to zero
as they only feature inside F+ above. We thus find

e−1L|ΩR4 = 1
8(ε1 − ε2)2 F (0,0)(XI) . (3.16)

Let us now discuss the evaluation of the action, noting that we need to add the usual
Gibbons-Hawking-York [3, 47] boundary term in order to have a well-defined action prin-
ciple,

Sbdry = −
∫
∂M

dx3√h (e−K + χH)
3

(
K −K0

)
, (3.17)

where hab is the induced metric on the boundary (a three-sphere at infinity in the coor-
dinates (2.41)), Kab is the extrinsic curvature and K0

ab the additional boundary extrinsic
curvature needed to normalize the flat space action to zero,

S|R4 = 0 . (3.18)
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In the presence of the deformation it is easy to see that the above boundary term is not
enough to regularize the action, which can be formally evaluated using a naive cutoff at
radius r = Λ that should be sent to infinity:

S|ΩR4 = lim
Λ→∞

π2

16 (ε1 − ε2)2 Λ4 F (0,0)(XI) . (3.19)

Notice that, importantly, the contribution from the centre of the space (the position of
the nut) vanishes. This infinite asymptotic contribution can easily be regularized by an
additional boundary term proportional to

∫
∂M d3Σµ T−µνW

I,ν , see [48], but this immediately
leads to a vanishing action and does not have the clear physical interpretation of changing
the ensemble as in [48].

3.2 H4

In order to ease our way into the full ΩH4 calculation which is considerably more involved,
we first focus on the case of pure H4 in the lack of a deformation. We thus turn off the
two-form field T− and in turn have vanishing gauge fieldsW I

µ = 0 and SU(2) field Vµij = 0.
The W multiplet fields then vanish entirely,

A±W = Bij
W,± = G±W,ab = CW,± = 0 , (3.20)

and, using R = 12/L2, the T fields are given by

A±T = 1
L2 , Bij

T,± = − 4i
L3 ε

jkσ3
i
k , G±T,ab = 0 , CT,± = 12

L4 . (3.21)

In order to evaluate the Lagrangian (3.8), we can also simplify the prepotentials and their
derivatives,

F± =
∞∑
n=0

F (0,n)L−2n, F±IJ =
∞∑
n=0

F
(0,n)
IJ L−2n, F±AT

=
∞∑
n=0

F (0,n)nL2(1−n),

F±IAT
=
∞∑
n=0

F
(0,n)
I nL2(1−n), F±ATAT

=
∞∑
n=0

F (0,n)n(n− 1)L2(2−n).

(3.22)

We also remind the reader that the homogeneity properties of the prepotentials imply

XIF
(0,n)
I = 2(1− n)F (0,n) , XJF

(0,n)
IJ = (1− 2n)F (0,n)

I ,

⇒ XIXJF
(0,n)
IJ = 2(n− 1)(2n− 1)F (0,n) .

(3.23)

We also need the simplifying identities for the scalar triplets,

Bij
T,±Y

I
ij = 16

L4 X
I , Bij

T,±BijT,± = 32
L6 , (3.24)

derived using (2.22).
Plugging all these identities in the off-shell Lagrangian produces a remarkable simpli-

fication,

e−1L|H4 = 4
L2

∞∑
n=0

F (0,n)

L2n

[
2(1− n) + (1− n)(1− 2n) + 3n

+ 4n(1− n) + 2n(n− 1)
]

= 12
L2

∞∑
n=0

F (0,n)

L2n = 3
L2 F (2XI ; 0, 4L−2) .

(3.25)
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The final step of evaluating the (in this case off-shell) action passes through the pro-
cedure of holographic renormalization, see [31]. The general approach to this task, when
applied to arbitrary asymptotically Euclidean AdS configurations, involves an off-shell gen-
eralization of this procedure in the presence of arbitrary higher derivative corrections, no-
tably involving terms that are quadratic in the Riemann curvature. A useful discussion
on this topic was presented in [33] restricted to the four derivative couplings, and it would
be desirable to understand this procedure in the presence of scalar couplings and arbitrary
number of derivatives. Here we have a much simpler task of evaluating the action on the
empty vacuum, where we have simplified the Lagrangian as above. It is therefore clear that
we can simply add to the off-shell action above the usual two derivative Gibbons-Hawking-
York boundary term, [3, 47], with the suitable prefactor,

Sbdry = −
∫
∂M

dx3√hF (2XI ; 0, 4L−2)
(
K − L

2 R−
2
L

)
, (3.26)

where hab is the induced metric on the boundary, Kab is the extrinsic curvature, and Rabcd
is the Riemann tensor of the induced metric. We then find

S|H4 = 4π2L2 F (2XI ; 0, 4L−2) = 4π2 F (2LXI ; 0, 4) . (3.27)

We see that the Lagrangian (3.25) leads straightforwardly to (3.27) using the countert-
erms (3.26) due to the fact that we have fixed all scalar fields to constants. We give more
comments on the general procedure of holographic renormalization in the next section when
discussing the proof of [1].

3.3 ΩH4

Now we include the deformation coming from the non-vanishing two-form field, T−. The
evaluation of the higher derivative action on the ΩH4 background now requires the identity

(T−ab)2

64 = (b21 − b22)2

4L2 Ξ2(r, θ) , (3.28)

using Ξ(r, θ) as defined in (2.52). In order to keep the formulae below more compact, we
are going to use the l.h.s. expression above until the final step.

Due to the chosen chirality of T−, the anti-chiral part of the W multiplet fields still
vanish. However, the W+ fields now no longer vanish, and we find

A+
W = 1

64(T−ab)
2 , Bij

W,+ = i
16L(T−ab)

2εjkσ3
i
k , CW,+ = 1

16L2 (T−ab)
2

A−W = Bij
W,− = G±W,ab = CW,− = 0 .

(3.29)

This natural imbalance between the chiralities reflects into a difference between the prepo-
tentials F+ and F− that we need to keep track of. The evaluation of the T multiplet fields
instead remains the same as for pure H4 (after some non-trivial cancellations),

A±T = 1
L2 , Bij

T,± = − 4i
L3 ε

jkσ3
i
k , G±T,ab = 0 , CT,± = 12

L4 . (3.30)
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In addition to (2.22) and (3.24), in order to simplify the Lagrangian here we need the
following identities

Bij
W,+Y

I
ij = −(T−ab)2

4L2 XI , Bij
W,+BijT,± = −(T−ab)2

2L4 , Bij
W,+BijW,+ = (T−ab)4

128L2 . (3.31)

The relevant prepotentials and their (non-vanishing) derivatives now can be simplified
to the form

F+ =
∞∑

m,n=0
F (m,n) (T−ab)2m

64mL2n , F− =
∞∑
n=0

F (0,n) 1
L2n ,

F+
IJ =

∞∑
m,n=0

F
(m,n)
IJ

(T−ab)2m

64mL2n , F−IJ =
∞∑
n=0

F
(0,n)
IJ

1
L2n ,

F+
AT

=
∞∑

m,n=0
F (m,n) n

(T−ab)2m

64mL2(n−1) , F−AT
=
∞∑
n=0

F (0,n) n
1

L2(n−1) ,

F+
IAT

=
∞∑

m,n=0
F

(m,n)
I n

(T−ab)2m

64mL2(n−1) , F−IAT
=
∞∑
n=0

F
(0,n)
I n

1
L2(n−1) ,

F+
AW

=
∞∑

m,n=0
F (m,n)m

(T−ab)2(m−1)

64(m−1)L2n , F+
IAW

=
∞∑

m,n=0
F

(m,n)
I m

(T−ab)2(m−1)

64(m−1)L2n ,

F+
ATAT

=
∞∑

m,n=0
F (m,n) n(n− 1) (T−ab)2m

64mL2(n−2) ,

F−ATAT
=
∞∑
n=0

F (0,n) n(n− 1) 1
L2(n−2) ,

F+
AWAT

=
∞∑

m,n=0
F (m,n)mn

(T−ab)2(m−1)

64(m−1)L2(n−1) ,

F+
AWAW

=
∞∑

m,n=0
F (m,n)m(m− 1) (T−ab)2(m−2)

64(m−2)L2n ,

(3.32)
and we again need

XIF
(m,n)
I = 2(1−m− n)F (m,n) , XJF

(m,n)
IJ = (1− 2m− 2n)F (m,n)

I ,

⇒ XIXJF
(m,n)
IJ = 2(m+ n− 1)(2m+ 2n− 1)F (m,n) .

(3.33)

as implied by the homogeneity properties.
The full Lagrangian now features a number of different terms with either a single or a

double infinite series, but we can make use of the pure H4 case above in order to understand
their systematics. It turns out that it is convenient to regroup the second series, labeled
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by the integer m, in contributions from m = 0 and m > 0 separately,

e−1L|ΩH4 = 12
L2

∞∑
n=0

F (0,n)

L2n + (T−ab)2

32

∞∑
n=0

F (0,n)

L2n + 2
L2

∞∑
m=1

∞∑
n=0

F (m,n)

L2n
(T−ab)2m

64m
[
3n

+m+ 2(1−m− n) + (1−m− n)(1− 2m− 2n) + 4n(1−m− n)

− 4m(1−m− n) + 2n(n− 1) + 2m(m− 1)− 4mn
]

= 12
L2

∞∑
n=0

F (0,n)

L2n + (T−ab)2

32

∞∑
n=0

F (0,n)

L2n

+ 2
L2

∞∑
m=1

∞∑
n=0

F (m,n)

L2n
(1− 2m)(3− 4m)(T−ab)2m

64m ,

(3.34)

where it is evident that the first term is the one resulting from pure H4, which is the reason
we did not spell out in more detail how it comes about (see (3.25)).

It is now rather interesting to observe that only the first term in the Lagrangian above
is constant and requires the addition of counterterms in order to produce a finite action, as
already done and discussed around (3.26)–(3.27). All the other terms are proportional to
(T−)2m and each higher power leads to further subleading terms asymptotically, cf. (3.28).
Therefore, in agreement with holographic renormalization at two derivatives, see [7, 22],
the action is finite without the addition of any boundary terms other than (3.26). By a
direct integration,10 we find the remarkable identity

2(1− 2m)(3− 4m)
64m

∫
ΩH4

√
g (T−ab)

2m = 4π2 L2 (b1 − b2)2

4b1b2
(b1 − b2)2(m−1)

(b1 + b2)2(m−1) , (3.35)

for m ∈ Z+, which allows for a seemingly miraculous simplification of the action,

S|ΩH4 = 16π2L2
(

1 + (b1 − b2)2

4b1b2

) ∞∑
n=0

F (0,n)

L2n

+ 16π2L2 (b1 − b2)2

4b1b2

∞∑
m=1

∞∑
n=0

F (m,n)

L2(m+n)
(b1 − b2)2(m−1)

(b1 + b2)2(m−1)

= 4π2L2(b1 + b2)2

b1b2

∞∑
m,n=0

F (m,n)

L2(m+n)
(b1 − b2)2m

(b1 + b2)2m

= 4π2

b1b2
F
(
(b1 + b2)LXI ; (b1 − b2)2, (b1 + b2)2

)
.

(3.36)

The final answer is in exact agreement with the prediction of [1], as further discussed in
the next section.

3.4 Introducing GN and going on-shell

We have so far focused purely on establishing off-shell supersymmetry for the ΩR4 and ΩH4

backgrounds, and evaluating the resulting action. The process of going to the Poincaré su-
pergravity, which exhibits only the physically relevant symmetries and degrees of freedom,

10We could perform the integral explicitly via Mathematica for the first five powers in the sequence. The
rather non-trivial coefficients predicted correctly give us confidence in the general answer, but it would be
interesting to prove this analytically.
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requires gauge fixing all the redundant symmetries in the superconformal group, as well as
solving the equations of motion of the auxiliary fields, see [24] and [33] for a more extended
discussion. In the process of solving the supersymmetry constraints we inadvertently per-
formed some of these steps, but here we complete this procedure in two steps in order to
also present a meaningful answer for the on-shell action of ΩH4.

Gauge fixing. In the process of fixing the supersymmetric configurations, a number of
gauge freedoms were already fixed, and we summarize them here for completeness. The
special conformal symmetries and the SO(1, 1)R symmetries were fixed by the choices (2.1)
and (2.19), respectively, while the SU(2)R symmetry was fixed by the choice (2.9). These
choices, via supersymmetry, lead to fixing the S-supersymmetries as in (2.11), and (as al-
ways) the particular choice of backgrounds and the solution of the Killing spinor equations
fixed the general coordinate transformations and the Q-supersymmetries. Additionally we
have the freedom to fix the dilatations, which typically means we are free to set χH to an
arbitrary constant allowing us to introduce a dimensionful constant such as GN (on top of
the FI parameters gI that are inversely related to the length scale L). However, we saw
that χH itself drops out of the action, and therefore we have no interest in its particular
value. An alternative (and equally general) approach was outlined in [1], based on the sim-
ple postulate that every order of higher derivatives should come with an additional power
of the Newton constant. This point of view was already advocated in [32] from an effective
theory point of view, since we naturally expect string theory compactifications (or possi-
bly other UV embeddings) to produce higher derivative corrections with a corresponding
coupling constant suppression. In turn, it is easy to notice the scalars XI

± appearing in the
prepotential can simply be rescaled by

XI
± → κ−1XI

± , κ2 := 8πGN , (3.37)

which automatically introduces the expected factors of GN in each individual term in the
Lagrangian.

We are therefore lead to the simple result that, after gauge-fixing, the off-shell action
for ΩH4 is given by

S|ΩH4 = 4π2

b1b2
F

(
(b1 + b2)L

κ
XI ; (b1 − b2)2, (b1 + b2)2

)
. (3.38)

Let us stress once again that this result is obtained after the particular choice (3.37), which
even if seemingly logical might not be precisely realized in this way by every possible UV
embedding. However, one can always come back to the fully general result in (3.36) and
impose the choice that is relevant in a given situation.

Equations of motion. We are now left with solving all equations of motion in order
to find the on-shell action. In reality we have almost completed this task automatically
while solving the supersymmetry constraints: (anti-) self-dual two forms drop out of the
Einstein equations, and supersymmetry on R4 and H4 ensures the Poincaré supergravity
field equations are automatically solved, see [28]. We are then left to check the auxiliary
scalar equations of motion, i.e. those stemming from the D and Y I

ij fields.
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The D field equation for the particular background value D = 0, as already mentioned
above, serves to relate the scalars XI to the hyper-Kähler potential χH and can be used to
introduce the Newton constant after using the dilatation symmetry gauge fixing to choose
χH. We circumvented this procedure here by the rescaling (3.37), which instead would lead
to fixing χH via the D equation of motion. Since the hypermultiplet sector dropped out of
the Lagrangian, we can safely neglect the D equation of motion without any consequences.

The situation with the Y I
ij equations of motion is different depending on whether we

are in the ungauged or in the FI gauged case. In the lack of gauging, Y I
ij is set to zero

and a simple check on the equations of motion from the Lagrangian (3.3) shows that they
are automatically satisfied due to the lack of linear terms in Y I . This is enough for us to
conclude that ΩR4 is automatically a supersymmetric solution of higher derivative gravity.
From a practical point of view this was easy to anticipate since the only freedom in the
configuration was given by the arbitrary scalars XI

± that are indeed known to remain
unfixed in flat space due to the lack of scalar potential. In the presence of FI gauging the
exact opposite is true - supersymmetry relates Y I and XI as in (2.21), and the resulting
equation of motion is non-trivial. In terms of the on-shell degrees of freedom, it means
we have to fix the scalars at the minimum of their non-trivial potential, as expected for a
(Euclidean) AdS vacuum solution. What supersymmetry has guaranteed for the scalars is
that they are constant, and therefore we have evaluated the off-shell action so far without
the need to fix the particular values of XI . We are in a position analogous to Sen’s entropy
function, [49], precisely designed to simplify the calculation of the higher derivative action
(on a black hole background). Once the coordinate dependence of all fields is fixed on the
given configuration, one can proceed to evaluate the action in terms of constants and only
at the end extremize with respect to them in order to satisfy all remaining equations of
motion. In the present case we only need to extremize the scalars XI under the gauge
fixing constraint (2.9). We can summarize this discussion by the simple relation between
the off-shell and on-shell action,

∂Soff-shell

∂XI
|X̂I = 0 , Son-shell = Soff-shell(X̂I) , (3.39)

under the constraint gIXI = L−1. We therefore find the formal answer for the on-shell
action of ΩH4,

Son-shell|ΩH4(b1, b2) = 4π2

b1b2
F

(
(b1 + b2)L

κ
X̂I ; (b1 − b2)2, (b1 + b2)2

)
, (3.40)

which depends on the particular choice of prepotential. This extremization procedure can
be seen as the higher derivative generalization of F-extremization, [35, 36], and was dis-
cussed at length in [1]. We also give an explicit example of how it works in a holographically
motivated setting below, see also [2].
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4 Towards a proof of [1] and [2]

Let us now discuss more carefully the relation of the present results with the conjecture
of [1], which we first need to briefly summarize.11 The main idea of the conjecture is
the prediction of a unifying formula for the off-shell/on-shell action of supersymmetric
backgrounds as a sum over contributions from individual fixed points. Assuming a higher
derivative action defined by the prepotential (1.1), the action on a supersymmetric back-
ground M4 is given by12

F(M4, χ
I , ω) =

χ(M4)∑
σ=1

s(σ) B(κ−1XI
(σ), ω(σ)) ,

B(XI , ω) :=4π2

ω
F (XI ; (1− ω)2, (1 + ω)2) ,

(4.1)

where the identification of signs s(σ), the geometric deformation parameters ω(σ) and the
scalars XI

(σ) at each fixed point, together with one overall constraint λ(gI , ω,XI) = 0,
depend on the particular background and go under the called gluing rule, [18]. In particular,
the gluing rule pertaining to the squashed sphere background, called here ΩH4, known to
exhibit a single nut, σ = 1, was conjectured to be13

M4 = ΩH4 : s(1) = 1 , ω(1) = ω , XI
(1) = (1 + ω)LXI , (4.2)

under the constraint gIXI = L−1. Finally, in order to obtain an exact agreement with our
present notation and results, we have the relation

ω = b2
b1
, (4.3)

or the inverse (there is a symmetry under exchange of b1 and b2 and therefore under
ω ↔ ω−1), in the regular regime b2/b1 > 0. It is now immediate to conclude that our
result (3.38) for the off-shell action (and therefore also the on-shell action that follows)
of ΩH4 is in agreement with the conjectural formula (4.1) under the gliung rule (4.2).
As further discussed at length in [1], the extremization of the action with respect to the
deformation ω, also known as squashing parameters, leads to ω̂ = 1 such that we recover
the empty H4 vacuum with a round sphere boundary.

We have thus proven the validity of the proposed gluing rule in (4.2). It is clearly desir-
able to prove the general formula (4.1) at least for a larger set of different supersymmetric
backgrounds, and the present results allow us to discuss how such a proof may be devised.
Our focus so far have been the two maximally symmetric spaces with a deformation at a
single fixed point, and we are now in a position to make some useful conclusions from our
explicit calculations. In order to give more precise statements in the particular context, it
is at this point natural to split the discussion of the ungauged and the FI gauged cases.

11We are only going to focus on part I of the conjecture in [1] regarding higher derivative corrections. Part
II of the conjecture concerns genuine quantum corrections and can be understood from the index theorem
as discussed in [50], but further explicit derivation is beyond the present discussion.

12Note that the conjecture was originally presented in Lorentzian conventions, where the prepotential
standarly comes with an additional factor of i that we have stripped off here.

13Here we reinsert the length scale L, which was set to 1 in [1].
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4.1 The asymptotically flat case

Here we focus on what we have learnt from the ΩR4 background. At first sight it might
seem that we have failed to find anything, given that we could not present a finite action
in this example. Indeed the final answer itself in this case is not a subject of prediction
from formula (4.1), which explicitly requires the existence of a finite action. We can
however make three important remarks about the validity of (4.1) on asymptotically flat
backgrounds in ungauged supergravity, based on the technical results here:

• Volume regularization.
In order to obtain a finite action, it is clear that some mechanism of volume regu-
larization is needed. Empty flat space does not provide such a mechanism, but it is
known that asymptoptically flat black holes are a class of configurations with finite
action. The difference can be physically understood due to the existence of a finite
horizon area in the latter examples. This also explains the wide applicability and use
of the ΩR4 in field theory localization on compact manifolds.

• W-tower contributions.
Even when the volume is regularized in a meaningful way, we observed that all terms
carrying higher derivative corrections entirely vanished from the calculation in sec-
tion 3.1. The reason can be traced back to the nature of the considered deformation,
being (anti-) self-dual. Due to the opposite chiralities in the Weyl multiplet defini-
tion, (3.12), it becomes a technical requirement that both T+ and T− are switched
on, as otherwise the W-tower of higher derivatives does not contribute. An example
of both T+ and T− switched on are again black hole spacetimes, since Lorentzian
signature automatically enforces T± to be related via complex conjugation.

• T-tower contributions.
The previous observation is not enough to save the T-tower of higher derivative con-
tributions, which can be seen to vanish as long as we commit ourselves to ungauged
supergravity. This already follows from the general requirements in section 2 regard-
ing the ungauged case (or the gI = 0 limit), and was also observed for black holes
in [45].

We notice that, apart from the ΩR4 background, the supersymmetric black holes in
Minkowski4 are non-trivial examples that also obey the above observations. In fact single
centered black holes in Minkowski are already known to obey (4.1) with their corresponding
gluing rule, see [1], from a series of previous works, [51–53], which served as an inspiration
for the general conjecture in first place. It is important here to make the following remark:
it was shown in [54] via BPS thermodynamics that asymptotically flat single centered black
holes do indeed correspond to ω = −1 (in the conventions of (4.1)), such that the potential
T-tower of corrections vanishes. However, it would be misleading to expect that potentially
new asymptotically flat examples with ω 6= −1 might lead to non-vanishing T-corrections,
as this is not possible. It is then a question of further study to understand if this automat-
ically implies that ω = −1 for all backgrounds in ungauged supergravity, or one should
rather specify a refined version of (4.1).
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4.2 Nut action in Euclidean AdS

Here we consider general supersymmetric asymptotically locally Euclidean AdS (or H4)
backgrounds, and discuss how (4.1) can be proven with the help of our explicit calculations
on ΩH4, leaving the actual accomplishment of such a proof as a future goal. For this
purpose we need to come back to the Gibbons-Hawking picture of nuts and bolts, [4],
and its application to supersymmetric AdS backgrounds developed in [6–8, 10]. Using the
fixed point set of the canonical isometry ξ (produced from the Killing spinor bilinears), the
restriction of (4.1) to the two derivative theory with no additional matter was shown in [10]
to apply for all supersymmetric asymptotically AdS backgrounds in the minimal Poincaré
supergravity with cosmological constant.14 The conceptual idea of this proof, which we
sketch next, is also directly applicable to the generalization with extra matter and higher
derivatives. We can divide the analysis in three main steps:

1. Reduction on a base.
Using the isometry ξ, any background space M4 can be written in local coordinates
as a circle fibration over a base B3. The full action can then be reduced on the
isometry down to a three-dimensional action on the base, and using the equations
of motion the resulting on-shell action is shown to be exact. Stokes’ theorem leads
to an integral over the boundary of B3, which consists of the conformal boundary at
inifinity and the boundaries of the neighborhoods around the fixed point set (nuts
and bolts) of ξ.

2. Conformal boundary contributions.
The evaluation of the conformal boundary contributions requires holographic renor-
malization, which in two derivative minimal supergravity only requires the standard
Gibbons-Hawking-York counterterm, see (3.26). Due to an additional freedom in the
term known as the nut potential, see [10], the relative contributions between the con-
formal boundary and the fixed points can be freely adjusted, allowing for the natural
choice of putting all asymptotic contributions to zero and leaving the full answer to
be determined on the nuts and bolts.

3. Fixed point contributions.
The final answer is thus entirely derived from the integral on (the boundary around)
the fixed point set, ultimately leading to a sum over nuts and bolts. The sum over
nuts is precisely the restriction of (4.1) to the absence of matter and higher derivative
corrections.

The same three steps can be undertaken in the general case we consider here, with
some important technical differences that we emphasize. Repeating the first step requires
starting from the fully off-shell action we work with, (3.3), performing the reduction along
the isometry ξ and rearrangement of the resulting terms without the use of the equations
of motion. The second step is technically independent of the first one and requires the
systematic application of holographic renormalization on theories with additional matter

14See also [34] for the analogous proof in on-shell four derivative minimal supergravity.
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and higher derivative couplings. We can roughly differentiate the terms in the action in
two main groups: curvature invariants and field strength/two form terms, both of these
coupled with (composite) scalars. In the absence of scalar coupling, the curvature invariants
generically require respective counterterms, see [33], while the field strength/two form terms
are already vanishing at the boundary. The addition of potentially non-constant scalars
requires further understanding and leaves open the question of potential finite counterterms
that needs to be addressed.15 Finally, the evaluation of the nut/bolt contributions should
follow straightforwardly given the completion of the first step, since there do not appear
to be additional complications.

Resolving these points rigorously is left for future studies. However, what gives us
strong confidence in the expected outcome of this computation is the successful evaluation
of the off-shell action on ΩH4 and its precise agreement with (4.1). The choice of particular
background in this case allowed us to circumvent many of the subtleties mentioned above,
while still giving us a clean proof that a single nut contribution can be understood by the
above logic. It would also be interesting to repeat this on a background exhibiting a single
bolt, as the ones discussed in [9], in order to complete the general expression (4.1).

4.3 11d on S7/Zk from holography

Finally, let us also present an explicit example where the two towers of inifinite derivative
corrections can be seen to play a role. Based on the conjectural expression for the off-shell
action of ΩH4, which we have now proven, [2] applied what was described as holographic
bootstrap in order to find the higher derivative prepotential resulting from 11d supergrav-
ity reduction on S7/Zk. This simply amounts to imposing the holographic match with
the squashed sphere partition function of ABJM theory, [55], which was evaluated via su-
persymmetric localization beyond the large N limit in [56–60]. Referring to [2] for more
details, this holographic comparison ultimately leads to the following prediction for the
form of the higher derivative prepotential (1.1) and FI gauging,16

F = 2
√
X0X1X2X3

∞∑
n=0

fn

(
kW(X)AW + kT(X)AT

64X0X1X2X3

)n
, gI = L−1 , ∀I , (4.4)

where

kW(X) := −2
∑
I<J

XIXJ ,

kT(X) :=
∑
I

(XI)2 − (X0 +X1 −X2 −X3)(X0 −X1 +X2 −X3)(X0 −X1 −X2 +X3)∑
I X

I
,

(4.5)

15Due to the fact that the scalars were shown to be constant on ΩH4 we could determine the rele-
vant counterterms and evaluate the action without such issues, but this simplification cannot hold for all
supersymmetric backgrounds.

16We are again converting to Euclidean notation and reinserting the length scale L where appropriate.
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and coefficients fn given in terms of the numbers N and k as in [2], related to the 11d
solution AdS4×S7/Zk representing the near-horizon limit of N coincident M2-branes,

L2 f0
4GN

=
√

2k
3

(
N − k

24

)3/2
,

2πf1 =
(
− 1

2k

) √2k
3

(
N − k

24

)1/2
,

. . .

2πL2(1−n) fn
κ2(1−n) =

((2n− 5)!! 3
n! (6k)n

) √2k
3

(
N − k

24

)3/2−n
.

(4.6)

The prepotential can thus be recognized as the Taylor expansion of the simple power
function

F = κ2
√

2kX0X1X2X3

3πL2

(
N − k

24 −
L2

3k
kW(X)AW + kT(X)AT

64κ2X0X1X2X3

)3/2

. (4.7)

The off-shell action of ΩH4, using the parametrization (4.3), is then evaluated to

S|ΩH4 = 4π(1 + ω)2

3ω
√

2kX0X1X2X3

(
N − k

24 −
kW(X)(1− ω)2 + kT(X)(1 + ω)2

192k(1 + ω)2X0X1X2X3

)3/2

,

(4.8)
under the constraint ∑I X

I = 1. Upon writing this in the natural field theory variables,
XI = 1

2∆i,17 the result can be recognized as the leading term in an Airy function expansion,
see [2]. It is precisely this relation that lead to the identification of (4.4)–(4.6). Note that in
this case it is easy to perform the extremization of the off-shell action explicitly, recovering
X̂I = 1/4, ∀I that already holds at leading order. The on-shell action is thus given by

S|ΩH4(X̂) =
√

2kπ(1 + ω)2

12ω

(
N − k

24 + 3(1− ω)2 − (1 + ω)2

3k(1 + ω)2

)3/2

. (4.9)

Having now proven the direct relation between (4.4) and (4.8), the results reported
in [2] concerning the sphere partition function of ABJM and the holographic prediction of
the higher derivative prepotential are on a more solid ground. However, the generic form of
other partition functions given in [2] still relies on the full validity of (4.1) combined with the
gluing rules for the particular background in question. It is a non-trivial holographic check
that both the twisted and the identity gluing rules (see [1, 18]) lead to the correct finite
N answer for the topologically twisted and superconformal indices of ABJM, respectively,
as numerically verified in [61] and [62]. Additionally, at large N , the refined topologically
twisted index of ABJM was also shown in [63] to agree with the proposed gluing rules
applied to (4.1), generalizing the analytic result of [64].

17This map, which here is claimed to hold off-shell with no derivation, is standardly established in
holography on-shell using an explicit solution with position dependent scalars as in the two derivative
example of [37].
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5 Outlook and extensions

There are a number of open questions related to the conjecture of [1] and higher derivative
supergravity left for future studies. In the previous section we have discussed at some
length the evaluation of the action for supersymmetric backgrounds exhibiting nuts, or
fixed points, and the remaining steps to complete the proof of (4.1). A natural extension
would be to also include possible bolts, such that (4.1) is completed. In turn one can
also investigate the quantum corrections coming on top of the higher derivative terms, see
again [1, 50], such that we complete the quantum gravitational block (conjectured in [2]
via holography to be the complete Airy function for the AdS4×S7/Zk example). It would
likewise be very interesting to fully understand the analogous gravitational building blocks
in different dimensions (see [18, 65]) and even directly inside string compactifications via
the internal geometry (see [66]). We hope to come back to all of these problems. The
present work does allow a more detailed understanding of two particular extensions, while
remaining in 4d higher derivative gauged supergravity, to which we turn next.

5.1 Adding hypermultiplets

The present results for the ΩR4 and ΩH4 backgrounds were derived using the choice
of a single compensating hypermultiplet, which is invisible in the on-shell formulation.
However, much of our analysis is directly applicable to the case of arbitrary hypers, which
means that we can now conceptually understand the impact of on-shell hypermultiplets
to the calculation. As already mentioned in section 2, maximal supersymmetry in the
superconformal hypermultiplet sector leads to the conditions (2.5), which can always be
solved on a given manifold. At this stage the discussion can be split into two parts that
can be considered independently.

First, we should stress that the hypermultiplet geometry is now encoded in the hyper-
Kähler potential χH, as discussed in [42, 43]. This function plays an analogous role to
the prepotential (1.1) that specifies the vector multiplet geometry. Importantly, χH can
also receive corrections from string compactifications, as discussed in e.g. [67], and these
corrections are completely independent from the higher derivative invariants W,T that
we have focused on. Explicit correction to the universal hypermultiplet for example were
worked out in [68, 69], but more general results have not appeared in the literature.

Second, due to the independence of the hypermultiplet sector, the only way our results
are going to be changed is via the presence of a gauged isometry on the hypermultiplet
moduli space. As expalined above, it is hard to work with an explicit example in the
superconformal formalism, but it is relatively easy to see the consequence of gauging if
we look at the Poincaré theory (see [42, 43] for the relation of the two formalisms in the
hypermultiplet sector). Since we imposed maximal supersymmetry in this sector for both
ΩR4 and ΩH4, we can directly borrow the results of [28] and [70] in this case. The gauging
of a given hypermultiplet isometry is parametrized by a killing vector kuI (q) (we remind
the reader that the hypermultiplet scalars are denoted by qu), selecting the particular
linear combination of gauge fields W I

µ used for the gauging. The resulting moment maps
PI(q) generalize the FI parameters gI , and the vevs q̂u at the minimum of the resulting
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scalar potential selects whether one can realize the R4 (PI(q̂) = 0) or the H4 (PI(q̂) 6= 0)
vacuum. The only additional difference in the supersymmetry backgrounds is the additional
constraint

kuI (q̂)XI = 0 , (5.1)

which needs to hold at the vacuum. As further observed in [71, 72], this constraint is
satisfied automatically for compact isometries since kuI (q̂) = 0, but leads to an additional
non-trivial constraint on the vector multiplet scalars for non-compact isometries where
kuI (q̂) 6= 0. The additional constraint (5.1) can be seen as a direct consequence of a
supersymmetry-preserving Higgs mechanism that takes place on the background configu-
ration, see [70]. Therefore, our expectation is that the final answer for the supersymmetric
configurations and the resulting evaluation of the action remains the same, upon the re-
placement of gI with PI(q̂) and the additional constraint (5.1).

We should however stress that we are not aware of explicit supergravity models con-
structed from string theory flux compactification that include higher derivative/quantum
corrections and non-trivial gauging, such that the above discussion is somewhat abstract
at the moment. It is worth pointing out that a holographic bootstrap of the Lagrangian,
similar to the one employed to determine (4.4) above, is unfortunately not applicable for
the hypermultiplet sector since it is not readily visible in the final off/on-shell action. Ul-
timately the difference is due to the fact that keeping track of flavor symmetries in field
theory allows us a direct relation to background vector multiplets in supergravity, while
similar relation does not exist for the hypermultiplet sector.

5.2 Conical defects

The interest in allowing conical defects to asymptotically AdS solutions in various di-
mensions has recently spiked due to the original work of [73, 74] on the so-called spindle
geometry, which was also shown to make sense holographically. The gluing rules applicable
to black holes with spindle horizons were later proposed in [75] and generalized in various
directions in [65] and [66]. From the point of view of the present work, focusing on the 4d
perspective, the black spindles are backgrounds exhibiting two different fixed points, near
which the metric is locally C × C/Zn1 and C × C/Zn2 , respectively. The conical deficit
angles n1 and n2 then play an important role in characterizing the geometry and the full
solution, see again [73, 74] and references thereof.

In the context of the ΩH4 background that we focused on, adding conical deficit angles
is practically a rather simple exercise, which we can perform in the following way. First,
notice that the H4 metric,

ds2 = dr2

1 + r2

L2

+ r2
(
dθ2 + cos2 θdϕ2

1 + sin2 θdϕ2
2

)
, (5.2)

near the fixed point at the center (r = 0) exhibits the C× C metric in two copies of polar
coordinates, cf. (2.38). The angles ϕ1 and ϕ2 are precisely the angles on the two complex
planes, and therefore we can simply introduce two independent conical deficit angles by
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changing their periodicities,

ϕ1 ∈ [0, 2π
p

) , ϕ2 ∈ [0, 2π
q

) . (5.3)

Importantly, both ϕ1 and ϕ2 are isometries not only of the metric, but the complete set of
background fields (2.58), and furthermore the explicit Killing spinors are independent of
ϕ1, ϕ2 as shown in [7, 22] (see section 2.4). We are therefore allowed to take arbitrary values
for p and q in (5.3) without changing anything else in the background (2.58) and without
breaking any of the original symmetries and supersymmetries. The resulting spacetime,
which corresponds to ΩH4/(Zp×Zq) then exhibits a single nut that is locally C/Zp×C/Zq.
The evaluation of the off-shell action is also in complete analogy, with the more general
periodicities simply appearing in the final integration,

S|ΩH4/(Zp×Zq) = 4π2

p q

1
b1b2

F

(
(b1 + b2)L

κ
XI ; (b1 − b2)2, (b1 + b2)2

)
, (5.4)

and the on-shell action following upon extremization, as before. It is therefore natural to
expect that the conical deficit angles p and q at a given nut to appear in the denominator
of the building block,

Bp,q(XI , ω) := 4π2

p q ω
F (XI ; (1− ω)2, (1 + ω)2) , (5.5)

which enters in the factorization formula (4.1), where each different fixed point σ can a
priori come with independent integers p(σ) and q(σ). It would be interesting to explore in
more detail the higher derivative corrections on the black spindles and derive rigorously
the corresponding gluing rules. We leave this for future study.
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