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1 Introduction and conclusion

Conformal field theories (CFTs) play prominent roles in theoretical physics ranging from the
critical phenomena of phase transitions, the boundary excitation of (fractional) quantum
Hall effects, to the world-sheet dynamics of quantum strings. If we specialize to two
dimensions, the conformal symmetry gets enlarged to the infinite dimensional Virasoro
algebra that restricts the underlying dynamics severely. As a consequence, for example,
any unitary CFT with central charge c less than one can only be one of the minimal
models [1].

However, for general 2d CFTs, it still remains a difficult task to comprehend the full
landscape of their theory space. After the breakthrough in the study of 3d Ising model [2],
the philosophy of bootstrap has taken a more central role in recent years. In particular,
it became more compelling to explore the idea of modular bootstrap, which employs the
modular invariance of the CFT partition functions on the torus. The modular invariance
implies new constraints on the space of 2d CFTs as well as possible 3d gravity duals, and
also provides unexpected connections to mathematics. See for example [3–15] for a very
partial list of related works.

Rational conformal field theories (RCFTs), defined to have finitely many chiral pri-
maries, have drawn particular attention in the past decades. The minimal models, lattice
CFTs, and the Wess-Zumino-Witten (WZW) models of compact group are just a few ex-
amples of the RCFT. Compared to irrational CFTs, they have much nicer properties, and
we are naturally led to a quest for its possible classification.
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Mathur, Mukhi and Sen [16] first realized that modular symmetry can be explored to
systematically classify bosonic RCFTs, based on the number of independant characters d,
the rank of RCFT, they have. This approach is dubbed as holomorphic modular boot-
strap [17–19]. Its essential idea is the observation that characters form a vector-valued
modular function (vvmf), and mathematically they must satisfy a modular linear differen-
tial equation (MLDE). We also remark that the method of MLDE also features in the study
of higher dimensional quantum field theories, most notably in four-dimensional supercon-
formal field theories (SCFTs) through the so-called SCFT/VOA correspondence [20–25].

On the other hand, in mathematics there is a class of different although related objects:
modular tensor categories (MTCs). RCFTs and MTCs are similar because modularity
plays important role in both cases. For instance the modular data of an MTC should in
some sense capture the modular transformation of RCFT characters. The classification
of MTCs according to their rank is also an important topic [26–28], which resonates with
the holomorphic modular bootstrap method. However, since it is still unknown whether
every MTC is realized by an RCFT, and even if so a given MTC could be mapped to many
RCFTs, we are still lacking a precise dictionary between the two methods.

Nevertheless, this does not stop us from utilizing techniques developed in the MTC
side. In particular, the so-called congruence property [29] is utilized to constrain the
set of modular data for MTC at low ranks. The latest result can be found in [30]. In the
RCFT side, this can be formulated as the integrality conjecture or unbounded denominator
conjecture [31], which was recently proved in [32] (see also [33]). Its statement is that each
component of a vvmf becomes a modular function for a congruence subgroup Γ(N) of
SL(2,Z) if all the coefficients in its q-expansion are integral. Last year, [34] imported this
technique to RCFTs and greatly extended the previous classification using holomorphic
modular bootstrap.

In this paper, we will consider a generalization of the above successful story to theories
including fermions. This generalization was initiated in the papers [35, 36], in which one
examines the modular subgroups preserved by the choice of spin structure for fermions,
and write down corresponding fermionic MLDEs (FMLDEs). Naturally, this tool helps to
classify what one may call fermionic RCFTs (FRCFTs), which has interesting connections
to various topics such as fermionization [37, 38], emergence of supersymmetry (SUSY) [39–
42], moonshine phenomena of sporadic groups [36, 43], etc.

As a next step, naturally we would like to study the implication of integrality of the
Fourier coefficients of the characters for FRCFTs. We state an analogue of the integrality
conjecture in 2.2, which is the counterpart of congruence property in super-MTC [44]. As-
suming this conjecture, we are able to, in certain sense, extend the previous classification
in [35, 36], and we successfully bootstrap candidate solutions for putative FRCFT char-
acters up to rank four. To be more specific, first of all, by our working hypothesis, we
are able to cover non-degenerate FRCFTs, meaning that there exists no pair of NS sector
conformal weights whose difference is a multiple of a half-integer, and no pair of R sector
conformal weights whose difference is an integer. For this class, then indeed all the theories
found in [35, 36] are recovered. Moreover, there is a non-negative integer ` as another input
parameter, which characterizes the pole structure of the coefficient functions of FMLDE
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and is known as the index. We only consider index ` ≤ 1 in this paper, together with
possible unitarity constraint. For easy of reference, we summarize the main results here:

(d, `) = (2, 0) (d, `) = (3, 0) unitary (d, `) = (3, 1) unitary (d, `) = (4, 0) unitary

tables 3, 4 table 5 table 6 table 7

We would like to stress here that the previous approaches to the classification of the
FRCFTs as well as some studies in the super-MTC are limited in a sense that they mainly
rely on the physical constraints in the Neveu-Schwarz (NS) sector but barely concern those
in the Ramond (R) sector. There are however some occasions where the torus partition
function in the NS sector, that looks perfectly consistent, is modular-transformed to the
partition function in the R sector that is ill-defined. Recently, it was pointed out in [45]
that careful examining the often-ignored Ramond sector results in a stronger constraint
on the spectra of fermionic CFTs. Interestingly, we observe that the consequence of the
integrality conjecture for FRCFTs actually not only constrains the spectra in both NS and
R sectors but also the provides a consistency relation between them.

For readers who wish to compare our results with the classification in the super-MTC
literature, we first remark that the exponential of conformal weights in their language
are known as twists or topological spins, while their central charge c is only defined mod
8. Also, to obtain their normalization of T matrix in the modular data, one needs to
multiply ours by an overall factor exp(c/24). Therefore, the number N which labels the
congruence subgroup will in general differ from those appearing in the modular data. More
importantly, due to the fact that different primaries may share the same character, the rank
of super-MTC will in general be bigger than the number of independent characters in our
classification.

As possible further directions, first it would be nice to understand or disprove the
solutions that we find but are unable to identify. For instance, one has to check if they
have the well-defined fusion algebra. Although each fusion coefficient can be computed
by the Verlinde formula, it requires the so-called refined modular matrices. However, the
conformal characters constructed by the holomorphic modular bootstrap only provide the
reduced modular matrices that leads to the wrong fusion coefficients. See [46] for reference.
It would be interesting to develop a systematic manner to unfurl the reduced modular
matrices to refined modular matrices that eventually furnishes the (super) MTC data,
whose classification can be found in [47, 48]. Second, one could consider turning on extra
parameters such as flavor fugacity in the characters, which upgrades the MLDEs to the so-
called flavored MLDEs. Such generalization has already appeared, for example, in [22, 24].
Third, it would be interesting to look for a correct Hecke operator relating different FRCTs,
as was done for bosonic RCFTs in [49, 50]. Finally, incorporating all possible topological
defect lines for fermionic theories would be another important direction to pursue [51], and
FRCFTs are surely suitable examples to study.

This paper is organized as follows. In section 2, we review the basic structure of
2d CFT in the presence of fermions, and introduce the holomorphic modular bootstrap
method. New ingredients start from section 2.2 where we make use of the integrality
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conjecture and hence the representation theory of finite groups to constrain all possible
exponents mod 1 for fermionic MLDEs at low ranks. Section 3 contains the main result of
this paper, where we present explicitly putative two-, three- and four-character fermionic
theories with constraint mentioned above after a computerized scan. In particular, they
contain all non-degenerate theories previously found in [35, 36]. We also include two
appendices. In appendix A, we give some detail about the induced representation to prove
a claim in section 2.2. In appendix B, we list all the exponents mod 1 that are used in
section 3.

Note Added. While this work is at the final stage, [52] appeared which uses the same
idea to construct modular data in the super-MTC.

2 Preliminaries

An RCFT is defined as a CFT whose torus partition function can be described as a finite
sum of products of holomorphic functions and anti-holomorphic functions of the complex
parameter of torus τ ,

Z(τ, τ̄) = TrH
[
qL0−c/24q̄L̄0−c/24

]
=

d−1∑
i,j=0

Mijχi(τ)χ̄j(τ̄) (2.1)

with the trace over the Hilbert space H on a circle and non-negative integers Mij . Such
holomorphic functions χi(τ) with i = 0, 1, . . . , d− 1 are referred to as conformal characters
of the chiral primary operators with respect to a certain chiral algebra that includes the
Virasoro algebra. The central charge c and the conformal weights h of the primary operators
turn out be rational numbers for RCFTs.

The invariance of the partition function of a bosonic RCFT under the modular trans-
formation of torus, SL(2,Z), leads to the fact that conformal characters, denoted by ~χ(q)
(q = e2πiτ ) collectively, transform as d-dimensional vector-valued modular forms of weight
zero. For instance, the character χi(q) transform under S and T as follows

χi(−1/τ) =
d−1∑
j=0
Sijχi(τ), χi(τ + 1) =

d−1∑
j=0
Tijχi(τ), (2.2)

where the modular matrices S and T are constant matrices in GL(d,C), and satisfy the
relations

S2 = (ST )3 = C (2.3)

with C the charge conjugation matrix.
In the presence of fermions, the boundary condition along the non-trivial cycles relaxes

the SL(2,Z) invariance of the torus partition function. To see this, note that one can
impose either periodic (R) or anti-periodic (NS) boundary condition for a fermion along
each cycle of torus. As depicted in figure 1, we thus have four possible boundary conditions,
labelled as (NS,NS), (R,NS), (NS,R), and (R,R), to define a theory of fermions on torus. A

– 4 –



J
H
E
P
0
2
(
2
0
2
3
)
0
7
9

T

NS NS

NSR

R

NSNS NSNS ÑS RS
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Figure 1. Transformations among NS, ÑS and R sectors.

choice of boundary conditions is also known as a choice of spin structures for the fermions.
For convenience, in this work we use a shorthand notation NS, ÑS, R and R̃ for the
aforementioned boundary conditions, respectively. For the interacting field theories, we
impose the same boundary conditions on all fermions. The torus partition function for
each boundary condition allows the Hamiltonian interpretation as follows,

ZNS(τ, τ̄) = TrHNS

[
qL0−c/24q̄L̄0−c/24

]
,

ZÑS(τ, τ̄) = TrHNS

[
(−1)F qL0−c/24q̄L̄0−c/24

]
, (2.4)

ZR(τ, τ̄) = TrHR

[
qL0−c/24q̄L̄0−c/24

]
,

ZR̃(τ, τ̄) = TrHR

[
(−1)F qL0−c/24q̄L̄0−c/24

]
,

where the trace is performed over the Hilbert space of a given CFT on circle in the Neveu-
Schwarz (Ramond) sector, HNS (HR).

We also describe in figure 1 how the fermionic spin structures transform under S and
T . It is then evident that the torus partition functions for NS, ÑS, R boundary conditions
are invariant under Γθ, Γ0(2), and Γ0(2),

Γθ =
{(

α β

γ δ

)
∈ SL(2,Z),

(
α β

γ δ

)
≡
(

1 0
0 1

)
or
(

0 1
1 0

)
mod 2

}
,

Γ0(2) =
{(

α β

γ δ

)
∈ SL(2,Z), β ≡ 0 mod 2

}
, (2.5)

Γ0(2) =
{(

α β

γ δ

)
∈ SL(2,Z), γ ≡ 0 mod 2

}
,

respectively. They are the level-two congruence subgroups of SL(2,Z). On the other hand,
the SL(2,Z) invariance of the partition function for the R̃ boundary condition remains
intact.

We refer an FRCFT as a conformal field theory of fermions whose partition function
for each boundary condition can be expressed in terms of finite numbers of conformal
characters in each sector,

ZNS =
d−1∑
i,j=0

Mijχ
NS
i (τ)χ̄NS

j (τ̄), ZÑS =
d−1∑
i,j=0

M̃ijχ
ÑS
i (τ)χ̄ÑS

j (τ̄),

ZR =
d−1∑
i,j=0

Nijχ
R
i (τ)χ̄R

j (τ̄), ZR̃ =
d̃−1∑
i,j=0

Ñijχ
R̃
i (τ)χ̄R̃

j (τ̄), (2.6)
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where the modular pairing matrices Mij , M̃ij , Nij , and Ñij are constant matrices with
integer components. We define the number of independent characters d to be the rank of
FRCFT. The rank d remains the same in NS, ÑS,R as the characters of these three sectors
are related by the T, S transformations. We could treat the R̃ sector partition function
somewhat like a bosonic RCFTs as they are SL(2,Z)-invariant. The rank d̃ of R̃ sector
characters is independent from d. We would hardly explore the R̃ sector physics in this
work. In the limit τ → i∞, such characters in each sector can be expanded in powers of q
as follows,

χNS(q) = qα
NS(

a0 + a1/2q
1/2 + a1q

1 + a3/2q
3/2 + · · ·

)
,

χÑS(q) = qα
NS(

a0 − a1/2q
1/2 + a1q

1 − a3/2q
3/2 + · · ·

)
, (2.7)

χR(q) = qα
R(
b0 + b1q

1 + b2q
2 + b3q

3 + · · ·
)
,

where the exponents are determined by the central charge c of the theory and conformal
weights h of primaries,

αNS = hNS − c

24 , αR = hR − c

24 . (2.8)

Henceforth we will focus our attention to fermionic RCFTs where half-integer spin descen-
dants exist in the NS sector, i.e., the Fourier coefficients an with a half-integer n are in
general non-zeroes, with some attention to the implications of the R sector. In other words,
a fermionic RCFT of our interest has an extended chiral algebra that contains conserved
currents of half-integer spin.

The invariance of ZNS, ZÑS, and ZR under Γθ, Γ0(2), and Γ0(2) implies that the con-
formal characters χNS(q), χÑS(q), and χR(q) transform as vector-valued modular forms for
corresponding modular symmetry groups, respectively. The essential features of conformal
characters are presented below:

• Integrality: all Fourier coefficients of conformal characters have to be integer-valued.
In addition the modular pairing matrix Mij has the integral entries. Otherwise, we
have to lose the Hamiltonian interpretation of the partition functions (2.4).

• Positivity: in particular, the Fourier coefficients of χNS(q) and χR(q) are further
required to be non-negative. In addition the entries of the modular pairing matrix
Mij should be positive.

• Unique vacuum: the first Fourier coefficient of the NS vacuum character has to be
unit. In addition M00 = 1. This is because, by definition, any CFT has a unique
vacuum that corresponds to the identity operator.

• Weak holomorphicity: conformal characters in each sector are holomorphic in τ

inside the fundamental domain for the corresponding level-two congruence subgroup
of SL(2,Z).

– 6 –
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• Unitarity (optional): for the unitary CFTs, the central charge c as well as the
conformal weights h should be non-negative for a unitary CFT. It implies that, in
the limit τ → i∞, the conformal character over the identity is the dominant one in
the NS sector.

In order to explore the space of FRCFTs, one can naturally study the whole space of
vector-valued modular forms with the above properties. Let us first discuss a systematic
and practical approach to construct such vector-valued modular forms by studying the
MLDEs satisfied by these characters [53–55].

2.1 Modular linear differential equations

In this subsection, we review the holomorphic modular bootstrap method for FRCFTs. As
a prerequisite, one first needs to understand how it works for bosonic cases.

We rely on the fact that the conformal characters for a given bosonic RCFT are
solutions to an MLDE. The role of derivative in such an MLDE is played by the so-called
Serre derivative, which maps a modular form of weight k to a new modular form of weight
k + 2,

Dk = 1
2πi

d

dτ
− k

12E2(τ) , (2.9)

where E2(τ) is the quasi-modular Eisenstein series of weight 2. We define the order n
modular derivative as

Dn := D2n−2 ◦D2n−4 · · ·D0 , (2.10)

acting on weight zero modular forms. We choose the convention D0 = 1.
Let us consider an arbitrary function f made of a linear combination of d characters

{χ0, . . . , χd−1}, which constitute a d-dimensional vector-valued modular form of weight
zero. The following determinant then obviously vanishes,

det


f χ0 · · · χd−1
D1f Dχ0 · · · D1χd−1
...

...
...

Ddf Ddχ0 · · · Ddχd−1

 = 0. (2.11)

Dividing by the Wronskian W (τ) of d characters χi(τ), one can obtain the desired MLDE
from the above determinant, [

Dd +
d−1∑
k=0

φk(τ)Dk
]
f(τ) = 0, (2.12)

where φk(τ) are modular forms of weight (2d − 2k) for SL(2,Z). Since the conformal
characters χi(τ) are weakly holomorphic, φk(τ) are allowed to have poles on the upper-half
plane only at the zeros of the Wronskian W (τ).

Since the order of poles is important to restrict the possible form of φk, one introduces
the notion of index l̃ as six times the sum of order of zeros for W (τ) in the fundamental
domain. Notice that the order of zeros becomes 1/3 at an orbifold point τ = e2πi/3 while
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1/2 at another orbifold point τ = i. Furthermore, from the valence formula of W (τ), we
are able to relate the parameter l̃ to the central charge c, conformal weights hi, and the
number of primaries d:

l̃

6 = d(d− 1)
12 −

d−1∑
i=0

αi, (2.13)

where αi = hi − c/24 is the leading exponent of each character in the q-expansion.
The core idea of holomorphic modular bootstrap is to turn the above logic around.

We instead start from a discrete set of data {l̃, d} and classify all possible character-like
solutions satisfying the aforementioned physical constraints: (i) integrality, (ii) positivity,
(iii) existence of the unique vacuum, and (iv) weak holomorphicity. As a special case, the
case l̃ = 0 is dubbed the holomorphic or monic MLDE, and their complete classification
for the smallest nontrivial value d = 2 marks the first triumph of the holomorphic modular
bootstrap [16].

The MLDE method was extended to classify the fermionic RCFTs recently in [35,
36]. One can argue that conformal characters for each boundary condition solve a linear
differential equation invariant under the corresponding level-two congruence subgroup of
SL(2,Z). More precisely, the FMLDEs for NS, ÑS, and R characters become[

Dd +
d−1∑
k=0

φNS
k (τ)Dk

]
fNS(τ) = 0,

[
Dd +

d−1∑
k=0

φÑS
k (τ)Dk

]
f ÑS(τ) = 0, (2.14)

[
Dd +

d−1∑
k=0

φR
k (τ)Dk

]
fR(τ) = 0.

The coefficients φNS
k (τ), φÑS

k (τ), and φR
k (τ) are the weight (2d− 2k) modular forms of the

respective level-two congruence subgroups.
Analogous to (2.13), one can obtain the valence formula for fermionic theories by per-

forming the contour integral of Wronskians from conformal characters for each boundary
condition. Here the contour is chosen as the boundary of fundamental domain of the
corresponding modular symmetry group. To be more concrete, let us consider for in-
stance the NS sector. Its fundamental domain can be chosen as the region {τ ∈ H

∣∣ |τ | ≥
1 and |Re(τ)| ≤ 1}. There is one orbifold point after gluing the boundary, i.e., τ = i

with cone angle π. The fundamental domain of Γθ has two cusps τ = +i∞ and τ = ±1.
Performing a contour integral along the boundary of the region, we obtain the valence
formula [35]

`

2 = d(d− 1)
4 − 2

d−1∑
j=0

αNS
j −

d−1∑
j=0

αR
j , (2.15)

where αNS and αR are given by (2.8). Here d denotes the number of characters in the
NS sector and ` is the Wronskian index, the analog of l̃, counting the zeros for WNS twice
except zero at τ = i only once in the fundamental domain. One interesting feature of (2.15)
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is that, even if we only focus on the NS sector, we still need information from the R sector,
which arises from the cusp τ = ±1.

In general, one can express the coefficient functions φk(τ) in (2.14) as rational functions
of Jacobi theta functions,

ϑ2(τ) =
∞∑

n=−∞
q(n+1/2)2/2, ϑ3(τ) =

∞∑
n=−∞

qn
2/2, ϑ4(τ) =

∞∑
n=−∞

(−1)nqn2/2. (2.16)

This is because φk(τ) is defined as ratio of two holomorphic modular forms, and the space
of entire modular forms of a given weight is generated by combinations of Jacobi theta
functions:1 for non-negative integers (r, s),

M2k(Γθ) =
〈

(−ϑ4
2)rϑ4s

4 + (−ϑ4
2)sϑ4r

4 , r ≤ s, r + s = k
〉
,

M2k(Γ0(2)) =
〈
ϑ4r

2 ϑ
4s
3 + ϑ4s

2 ϑ
4r
3 , r ≤ s, r + s = k

〉
, (2.17)

M2k(Γ0(2)) =
〈
ϑ4r

3 ϑ
4s
4 + ϑ4s

3 ϑ
4r
4 , r ≤ s, r + s = k

〉
.

Here M2k(G) denotes the space of holomorphic modular forms of weight 2k for modular
symmetry group G. Moreover, based on the transformation rules below,

T : (ϑ4
2, ϑ

4
3, ϑ

4
4) −→ (−ϑ4

2, ϑ
4
4, ϑ

4
3)

S : (ϑ4
2, ϑ

4
3, ϑ

4
4) −→ (−τ2ϑ4

4,−τ2ϑ4
3,−τ2ϑ4

2).
(2.18)

we can easily read off how the coefficient functions for different boundary conditions are
related.

Clearly not all FMLDE solutions can be identified as conformal characters of putative
CFTs. The Fourier coefficients of some solution can be rational with a growing denomina-
tor, and so cannot be made integral by multiplication of a large integer. We will discuss
how the integrality of conformal characters can be reflected in the representation theory of
modular symmetry groups below.

2.2 Integrality conjecture

The integrality is the primary criterion for the solutions to an MLDE to be considered as
physical characters. It was first observed in [56] that the conformal characters solve an
MLDE with finite monodromy group. Soon afterwards the integrality conjecture was pro-
posed to explain the above observation. The conjecture states that if a vvmf transforming
under SL(2,Z) has integer Fourier coefficients, then there must exist a principal congru-
ence subgroup Γ(N) under which each of its components becomes singlet. Here Γ(N) is
defined as

Γ(N) :=
{(

α β

γ δ

)
∈ SL(2,Z),

(
α β

γ δ

)
≡
(

1 0
0 1

)
mod N

}
(2.19)

for some N ∈ N. In other words, any d-dimensional vvmf with integer Fourier coefficients
has to transform in a d-dimensional representation of SL(2,Z)/Γ(N) = SL(2,ZN ) . This

1We correct here a typo in equation (3.12) of [35].

– 9 –



J
H
E
P
0
2
(
2
0
2
3
)
0
7
9

conjecture was recently proved in [32], and when the vvmf arises from a bosonic RCFT it
goes under the name of the congruence property proven earlier in [29].

The irreducible representations of SL(2,ZN ) were all classified in [57–59], and can be
easily accessed from computer software such as GAP [60]. Based on the above fact, the
integrality ‘theorem’ allows us to tightly constrain possible values of the central charge
and conformal weights of vvmfs with integer Fourier coefficients for a given rank d. This
method was studied in [34] to classify the space of bosonic RCFTs, which we review briefly
below.

Suppose N = ∏
i p
λi
i is factorized in terms of prime numbers pi. We then have a finite

group decomposition
SL(2,ZN ) =

∏
i

SL(2,Z
p
λi
i

) . (2.20)

Since the representation of SL(2,ZN ) also factorizes accordingly, it is sufficient to determine
a finite list of irreducible representations of SL(2,Zpλ) for any prime number p and λ ≥ 1,
out of which we can build up irreducible representations for each positive integer N .

We should stress here that the irreducible representations of SL(2,Zpλ) of our interest
are those which do not arise from irreducible representations of SL(2,Zpλ−1) via the natural
projection map. On the other hand, for reducible representations the modular S-matrix
can be block-diagonalized, and there must exist two conformal weights which differs by
an integer.2 Therefore, we restrict ourselves to non-degenerate bosonic RCFTs where any
difference between two conformal weights is not an integer.

One important remark on the admissible representations of SL(2,ZN ) is in order.
Precisely speaking, the conformal characters transform in a representation of PSL(2,ZN )
rather than SL(2,ZN ). It implies that one has to search for irreducible representations of
SL(2,ZN ) where the minus of the identity acts trivially.

As an illustration, let us consider the simplest but non-trivial example, d = 2. From
the representation theory of SL(2,ZN ), one can show that the list of possible values of N
which allow a two-dimensional representation fulfilling the above requirements is finite and
is given as

N ∈ {2, 6, 8, 12, 20, 24, 60} . (2.21)

In fact, one can argue that there are only finitely many values of N for which any irreducible
representation in d-dimension can exist. Intuitively, it can be explained by the fact that
the irreducible representations of SL(2,Zpλ) for a large λ with sufficiently small dimensions
all arise from pull-backs of those of SL(2,Zpλ0 ) with λ0 < λ.

In [34], the authors carried out this procedure up to d = 5, and finally able to bootstrap
candidate characters for RCFTs with Wronskian index l < 6. Motivated by their success,
we would like to generalize this method to FRCFTs.

The first step is to extend the integrality theorem to the theory with fermions.

2In the context of MTC this is known as the t-spectrum criteria [28]. Some constraints to construct
reducible modular data from irreducible ones can be found in [30].
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Conjecture. If a d-dimensional vvmf is covariant under the modular group Γθ and has
integral Fourier coefficients, then all d components are modular functions for a fixed prin-
cipal congruence subgroup Γ(N) < Γθ with some positive even integer N , taken to be the
smallest possible.

We remark that in the context of super-MTC, assuming the existence of a minimal modular
extension (which was shown to be true in [61]), this was proved by [44]. However, the
general statement in terms of vvmf seems to be still open. Also notice that N here must
be even, since otherwise Γ(N) cannot be a subgroup of Γθ. Then the isomorphism (2.20)
can be generalized as follows,

Theorem 2.1. Assume N = 2kQ with k > 0 and gcd(2, Q) = 1. We have the following
decomposition,

Γθ/Γ(N) ∼= Γ(k)
θ × SL(2,ZQ), (2.22)

where Γ(k)
θ is defined to be the finite group Γθ/Γ(2k).

Proof. We regard Γθ/Γ(N) as a subgroup of SL(2,ZN ) = SL(2,Z2k) × SL(2,ZQ) where,
according to the Chinese reminder theorem, the map to each factor is given by mod 2k
and mod Q respectively. We first prove that Γθ/Γ(N) after modding by Q is actually
SL(2,ZQ). To see this, note that there exist two integers (a, b) such that a · 2 + b ·Q = 1
by the Bézout theorem. It implies that T 1 ≡ (T 2)a mod Q is contained in Γθ/Γ(N) mod
Q. Together with S element (mod Q), they generate the whole SL(2,ZQ). It is then easy
to check that both sides of equation (2.22) have the same order, so the kernel of the map
is trivial and they are isomorphic.

See [44] for another proof. This theorem says that in order to understand the irreducible
representations of Γθ/Γ(N), the essential new ingredient is the group Γ(k)

θ . We discuss a
few properties of Γ(k)

θ below.
Let us begin with a useful observation. The order of the finite group SL(2,ZN ) is

given by ∣∣∣SL(2,ZN )
∣∣∣ = N3 ∏

p|N
(1− 1

p2 ) , (2.23)

where the product is taken over all prime numbers dividing N . PluggingN = 2k into (2.23),
we have |SL(2,Z2k)| = 3 × 23k−2. Moreover, since Γθ is an index-3 subgroup of SL(2,Z),
we learn that ∣∣∣Γ(k)

θ

∣∣∣ = 23k−2. (2.24)

In other words, Γ(k)
θ is a 2-Sylow subgroup of SL(2,Z2k). It is well-known that, for a

given finite group G, the total number of p-Sylow groups of G is given by the index of
the normalizer of any p-Sylow subgroup. Moreover, all p-Sylow subgroups are conjugate
to each other by certain elements of G. In our case where G = SL(2,Z2k) and p = 2, we
have three different 2-Sylow subgroups that are simply the quotient of Γθ,Γ0(2) and Γ0(2)
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by Γ(2k). One can also argue that three 2-Sylow subgroups are conjugate to each other by
the elements T and S of SL(2,Z2k),

Γ(k)
θ

T⇐⇒ Γ0(2)/Γ(2k) S⇐⇒ Γ0(2)/Γ(2k), (2.25)

which exactly agree with the maps between three spin structures NS, ÑS, and R.
In practice, one can identify any of them in the software GAP [60] by the command

“SylowSubgroup” and “ConjugateGroup”. Then its irreducible representations are easily
accessed from the command “CharacterTable”. We demonstrate it in a few examples with
small k below.

Let us consider the simplest example Γ(1)
θ . Since Γ(1)

θ is of order two, it is isomorphic to
the cyclic group Z2. It is known that there are two irreducible representations of dimension
one. One of them is the trivial representation and the other is the sign representation. The
character table of Γ(1)

θ is simple,
1a 2a

ch1 1 1
ch2 1 −1

where each row is for an irreducible representation while each column for a conjugacy class.
We adopt the notation for each conjugacy class from GAP where the prefactor shows the
order of its elements. Since the two elements (−I) and T 2 are equal to I modulo two, they
are in conjugacy class 1a. Therefore, one can conclude that Γ(1)

θ has two one-dimensional
irreducible representations where (−I) acts trivially.

Next, we move onto the first non-trivial example Γ(2)
θ . It is a finite group of order 16.

Using GAP, one learns that there are ten different conjugacy classes whose character table
is presented below,

1a 4a 4b 4c 4d 2a 2b 2c 2d 2e
ch1 1 1 1 1 1 1 1 1 1 1
ch2 1 −1 1 −1 1 −1 1 1 −1 1
ch3 1 −1 −1 −1 −1 1 1 1 1 1
ch4 1 1 −1 1 −1 −1 1 1 −1 1
ch5 1 i −i −i i 1 1 −1 −1 −1
ch6 1 −i −i i i −1 1 −1 1 −1
ch7 1 −i i i −i 1 1 −1 −1 −1
ch8 1 i i −i −i −1 1 −1 1 −1
ch9 2 0 0 0 0 0 −2 2 0 −2
ch10 2 0 0 0 0 0 −2 −2 0 2

where i =
√
−1. Unlike the previous example, we should identify which representation

comes from Γ(1)
θ via the natural projection map Γ(2)

θ → Γ(1)
θ . Note that the conjugacy

classes 4a, 4b, 4c, and 4d of Γ(2)
θ descend to the 2a class of Γ(1)

θ while the others to the
1a class. It implies that two representations ch1 and ch3 are simply the pull-back of the
trivial and sign representation of Γ(1)

θ . They should be disregarded as “proper” irreducible
representations of Γ(2)

θ according to our assumption. The group Γ(2)
θ thus have 8 “proper”
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irreducible representations in total, two of which are two-dimensional and others are one-
dimensional. Since (−I) is in the conjugacy class 2c, one can also read off its action
on each representation from the character table. For instance, (−I) acts trivially on the
representation ch9 while non-trivially on the representation ch10.

In a similar fashion, after deleting those coming from smaller k, one proceeds to find
28 “proper” irreducible representations for Γ(3)

θ , 78 for Γ(4)
θ , and so on.

There are finitely many possible values of N so that Γθ/Γ(N) allows a d-dimensional
irreducible representation where (−I) acts trivially. According to the theorem 2.1, a irre-
ducible representation of Γθ/Γ(N) can be described as a tensor product of a irreducible
representation of Γ(k)

θ and a irreducible representation of SL(2,ZQ). It was shown in [34]
that the sets of odd numbers Q such that SL(2,ZQ) has a d-dimensional irreducible repre-
sentation, denoted by Deno(d), are

Deno(1) = {1+, 3+},
Deno(2) = {3−, 5−, 15−},
Deno(3) = {3+, 5+, 7+, 15+, 21+},
Deno(4) = {5±, 7−, 9±, 15±, 21−},

(2.26)

where the superscript + (−) indicates the trivial (non-trivial) action of (−I) in a given
representation. We also define Dene(d) as a set of 2k such that Γ(k)

θ has a d-dimensional
irreducible representation that turns reducible under the map Γ(k)

θ → Γ(k−1)
θ . We utilize

the program GAP to verify that

Dene(1) = {2+, 4±, 8±, 16±},
Dene(2) = {4±, 8±, 16±, 32±},
Dene(3) = φ,

Dene(4) = {8±, 16±, 32±, 64±}.

(2.27)

In general, we claim that Dene is non-empty if and only if m has only prime factor 2, and
we give a proof in appendix A. Based on (2.26) and (2.27), it is straightforward to compute
the possible values of N for which Γθ/Γ(N) has irreducible representations where (−I) has
trivial action. We summarize the results in the table 1.

2.3 Candidate conformal weights

We make use of the integrality conjecture to classify the possible values of N such that
putative conformal characters χNS

i transform in an d-dimensional irreducible representation
ρ of Γθ/Γ(N). Since the element T 2 of Γθ/Γ(N) has to satisfy the relation (T 2)N/2 = TN =
1, we see that

χNS
i (τ +N) = e2πi(NαNS

i )χNS
i (τ) = χNS

i (τ), (2.28)

where the exponents are defined in (2.7), αNS
i = hNS

i −c/24. The value of N thus determines
the denominator of the exponents. In fact, the representation theory of Γθ/Γ(N) can further
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d N Number of irrep.

1
{
2, 4, 6, 8, 12, 16, 24, 48

}
48 irreps.

2
{
4, 8, 12, 16, 20, 24, 32, 40, 48, 60, 80, 96, 120, 240

}
300 irreps.

3
{
6, 10, 12, 14, 20, 24, 28, 30, 40, 42, 48, 56, 60, 80, 84,

208 irreps.
112, 120, 168, 240, 336

}
4

{
8, 10, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 48, 56, 60,

1206 irreps.
64, 72, 80, 84, 96, 112, 120, 144, 160, 168, 192, 240, 336, 480

}
Table 1. Complete lists of allowed values of N for FRCFTs as well as the number of possible
irreducible representations when d = 1, 2, 3, 4.

constrain the space of allowed central charges and conformal weights. This is because each
exponent αNS

i gives rise to an eigenvalue of ρ(T 2),

ρ(T 2) =̇


e4πiαNS

0

e4πiαNS
1

. . .
e4πiαNS

d−1

 . (2.29)

We shall argue that those eigenvalues can be read off from the character table.
Suppose that the conformal characters are in a representation ρ of Γθ/Γ(N). The

eigenvalues of ρ(T 2) are then all of the form exp (4πim
N ) for some integer m between 1 and

N/2, due to the relation ρ(T 2)N/2 = 1. To determine those eigenvalues, it is essential to
identify the conjugacy classes of (T 2)l for l = 1, 2, . . . N/2. As a result, we can compute
the characters of (T 2)l from the character table. Each characters can be also expressed in
terms of eigenvalues as,

chρ
[
(T 2)l

]
≡ Trρ

[
(T 2)l

]
=

N/2∑
m=1

ν(ρ)
m e

4πiml
N , (2.30)

where ν(ρ)
m counts the degeneracy of exp (4πim

N ) in ρ(T 2). Invoking the inverse discrete
Fourier transform, it is straightforward to solve (2.30),

ν(ρ)
m = 2

N

N/2∑
j=1

chρ
[
(T 2)j

]
· e

−4πimj
N , (2.31)

from which one can reconstruct the eigenvalues of ρ(T 2).
We demonstrate the above procedure for the example Γ(2)

θ , i.e., N = 4. UsingGAP, we
learn that the element T 2 lies in the class 2a. When the conformal characters χi (i = 0, 1)
are in the two-dimensional representation with trivial (−I) action, the characters of T 2
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and T 4 = I read

ch9
[
I
]

= 2 =
2∑

m=1
ν(9)
m , ch9

[
T 2] = 0 =

2∑
m=1

(−1)mν(9)
m .

The matrix ρ(T 2) therefore becomes

ρ(T 2) =
(

1 0
0 −1

)
, (2.32)

and thus 2(αNS
0 , αNS

1 ) = (0, 1/2) modulo integers.
Remarkably, the character table of Γθ/Γ(N) is not ignorant of information from the R

boundary condition. To be more concrete, the characters of group elements TS.T l.(TS)−1

for l = 1, 2, . . . , N determine the conformal weights hR
i or equivalently the exponents αR

i .
To see this, we first note that a representation of Γθ/Γ(N) can induce representations of
SL(2,ZN ). They all give rise to the same result so we just pick one of them and continue
to call it ρ. Then we can regard the above elements in Γθ/Γ(N) as genuine product of
elements in SL(2,ZN ), and we have

Trρ|NS

[
TS.T l.(TS)−1

]
= Trρ|R

[
T l
]
. (2.33)

This is because (TS)−1 maps any vector in ρ|NS to a vector in ρ|R, i.e., |i〉NS = ∑
j(T S)ij |j〉R.

Once we identify the conjugacy classes of Γθ/Γ(N) where TS.T l.(TS)−1 are placed, the
eigenvalues of ρ|R(T ) as well as the exponents αR

i modulo integers

ρ|R(T ) =̇


e2πiαR

0

e2πiαR
1

. . .
e2πiαR

d−1

 (2.34)

can be thus worked out in the similar fashion.
Again, let us consider the case Γ(2)

θ for illustration. For the two-dimensional represen-
tation that is singlet under (−I), the eigenvalues of ρ(TS.T.(TS)−1) can be expressed as
exp (2πim

4 ) for some integer m between 1 and 4. Let us denote by ν(9)
m the number of times

the eigenvalue exp ( iπm2 ) occurs. We utilize the program GAP to see that the conjugacy
classes of TS.T l.(TS)−1 for l = 1, 2, 3, 4 are 4a, 2e, 4c, and 1a respectively. From the
character table of Γ(2)

θ , one can read off the corresponding characters,

ch9[I] = 2 =
4∑

m=1
ν(9)
m , ch9[TS.T.(TS)−1] = 0 =

4∑
m=1

(i)mν(9)
m ,

ch9[TS.T 2.(TS)−1] = −2 =
4∑

m=1
(−1)mν(9)

m , ch9[TS.T 3.(TS)−1] = 0 =
4∑

m=1
(−i)mν(9)

m .

It implies that the eigenvalues of ρ9(TS.T.(TS)−1), namely those of ρ|R(T ), are ±i. In
other words, (αR

0 , α
R
1 ) = (1/4, 3/4) modulo integers.
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d = 1 exponents

No. {2αNS, αR}

1 { k24 ,
24−k

24 }, 0 ≤ k ≤ 23

2 { k24 ,
12−k

24 }, 0 ≤ k ≤ 23

Table 2. All possible exponents mod 1 for rank 1 FRCFTs.

All we need is to carry out the procedure reading off exponent pairs (2αNS, αR) for
all possible representations in table 1. Let us start with the case of rank one, d = 1. The
results already appear intriguing. We find that the 48 representations for d = 1 give rise
to two families of exponent pairs. They are summarized in table 2.

One can immediately see that the exponent pairs of k copies of free Majorana fermion
are in perfect agreement with those in the first family. The torus partition functions of a
free fermion are given by

ZNS =
∣∣∣∣∣
√
ϑ3(τ)
η(τ)

∣∣∣∣∣
2

, ZÑS =
∣∣∣∣∣
√
ϑ4(τ)
η(τ)

∣∣∣∣∣
2

, ZR =
∣∣∣∣∣
√
ϑ2(τ)
η(τ)

∣∣∣∣∣
2

, ZR̃ = 0, (2.35)

where θi(τ) are Jacobi theta functions and η(τ) is the Dedekind eta function. The partition
function in the R̃ boundary condition vanishes because of fermionic zero mode. We can see
that the theory of a free fermion is RCFT with a single character that transforms under S
and T as follows,

T : χNS(τ + 1) = e−2πi/48χÑS(τ), χR(τ + 1) = e2πi/24χR(τ),

S : χÑS(−1/τ) = χR(τ), χNS(−1/τ) = χNS(τ). (2.36)

Thus we see that the eigenvalue of χNS under T 2 together with the eigenvalue of χR under
T realizes the exponent pair {2αNS, αR} = {23

24 ,
1
24} in the first family.

Meanwhile we notice that there is also a second family in table 2. The theories in the
second family share the same NS sector exponents 2αNS with those in the first. However
the R sector exponents αR differ by 1/2 pairwise. The difference also concerns with the
action of S. As we can see from (2.36), S acts trivially on arbitrary copies of χNS. On
the other hand, S acts as (−1) for theories in the second family. The non-trivial action of
S has a physical consequence. The theory of a free Majorana-Weyl fermion cannot be a
genuine two-dimensional CFT by its own because of the gravitational anomaly. However,
the three-dimensional fermionic gravitational Chern-Simons coupling cancels the anomaly,
more precisely the extra phases of (2.36). It suggests that the chiral theory of a free
Majorana-Weyl fermion can exist on the boundary of a three-dimensional fermionic gapped
system. This is not the case for the theories in the second family:3 the chiral part of them

3We thank Ying-Hsuan Lin for discussion on this point.
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cannot be realized as the boundary theories since S acts non-trivially. Furthermore, we
will confirm in the next section that no physical theories can realize the exponents in the
second family.

After treating the rank one theories as a warm-up, let us move on to the higher
rank cases. Repeating the above procedure, we extract all the exponent pairs from the
representations in table 1. Let us decompose the exponent pairs into families within which
they are related by constant shifts; when two exponent pairs, {2αNS, αR} and {2βNS, βR}
are in the same family, their difference is

{2αNS, αR} − {2βNS, βR} = k

24{1d,−1d} mod Z, (2.37)

for some integer k between 0 and 23. For this categorization, we are motivated by the fact
that two RCFTs realizing the exponent pairs obeying (2.37) could be potentially related by
adding or subtracting k copies of free fermions. We present all possible families for d = 2, 3
and 4 in appendix B, and provide a representative exponent pair for each family.

3 Classification

So far we investigated the space of possible exponent pairs {2αNS, αR}, or conformal
weights, of vvmfs with integral Fourier coefficients, relying on the representation theory of
Γθ/Γ(N). However the integrality conjecture only determines the exponents pairs modulo
integers. Moreover, not every vvmf for each choice of allowed exponent pairs can be iden-
tified as conformal characters satisfying the aforementioned constraints such as positivity,
the existence of unique vacuum, and weak holomorphicity.

The classification of FRCFTs thus needs more elaboration. To achieve the goal, we
solve the FMLDEs (2.14) armed with exponent pairs in appendix B, and then analyze the
solutions carefully to see whether physical constraints are obeyed. In this classification,
we only consider non-degenerate theories, meaning that there exists no pair of NS sector
conformal weights whose difference is a multiple of a half-integer, and no pair of R sector
conformal weights whose difference is an integer. For those theories, the presentation of
Γθ/Γ(N) should be irreducible.4

To make our approach available, we restrict our attention to FMLDEs where the
coefficient functions φk(τ) are completely fixed for a given choice of {2αNS, αR}. They
are referred to as rigid FMLDEs in the present work. The strategy to fix the unknown
coefficients is simple. We first write down the FMLDE of order d for Γθ, and require the
solutions to start with χNS

j ∼ q
αNS
j (1+· · · ) (j = 1, 2, . . . , d) in the limit τ → i∞. It provides

us d constraints among the coefficient functions. Then we transform the FMLDE to the
one for Γ0(2) via a suitable modular transformation. Again, having solutions that begin
with χR

j ∼ q
αR
j (1 + · · · ) gives rise to another d constraints. We need to check whether the

exponents leads to independent constraints.
When we search for unitary fermionic RCFTs, the no-free-fermion condition can be

further imposed without loss of generality. In practice, we simply demand the vacuum
4We expect a corresponding theorem in the super-MTC. See also footnote 2.
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character to have vanishing second Fourier coefficient,

χNS
0 = q−c/24(1 + 0 · q1/2 + a1q

1 + · · · ). (3.1)

To see this, we note that any Virasoro primary of dimension 1/2 and spin 1/2 corresponds
to a free fermion. See [62] for a demonstration. The number of such primaries are counted
by the second Fourier coefficient of the vacuum character, specified by the smallest NS
exponent.

Let us finally discuss how to fully determine the exponent pairs with no integer ambi-
guity, that play an essential role in our approach. We start with an exponent pair defined
mod ` presented in appendix B, and denote it by {2α̃NS, α̃R} for later convenience. We
here reduce all of exponents to lie within the range (0, 1), i.e.,

0 ≤ 2α̃NS
i , α̃R

i < 1 for i = 0, 1, . . . , d− 1. (3.2)

Then we consider all possible ways to shift each of the exponents by an integer with absolute
value smaller than a fixed bound, while satisfying the valence formula (2.15) for a given
Wronskian index l. In other words, for a set of integers (nNS, nR), we have

d−1∑
j=0

(
2α̃NS

j + nNS
j

)
+
d−1∑
j=0

(
α̃R
j + nR

j

)
+ `

2 = d(d− 1)
4 , (3.3)

where integers are bounded, |nNS
j , nR

j | ≤ R for some integer R. The bound R will be
henceforth referred as the range. This procedure will generate a whole list of well-defined
exponent sets {2αNS, αR} = {2α̃NS, α̃R}+{nNS, nR} for a fixed range R. Then we solve the
FMLDE for each of them, and expand the solutions up to roughly the order q50. The next
step is to impose the physical constraint listed in section 2.1, and finally obtain a small
list of possible candidate conformal characters. We repeat this procedure while gradually
increasing the value of R until no physical solution can be found.

For the case of d = 1, we in fact do not find any physical solutions in the numerical
search for the second family in table 2. This serves as a consistency check for our argument
in the last section. Starting from rank two there are many more possibilities, which will
be detailed in the following sections.

3.1 Rank 2 with ` ≤ 1

The second-order FMLDE for Γθ (2.14) involves two coefficient functions φNS
0 (τ), φNS

1 (τ).
When the Wronskian index ` ≤ 1, the coefficient functions φk(τ) are allowed to have a pole
only at τ = i. Since (ϑ4

4 − ϑ4
2) vanishes precisely at τ = i, one can show from (2.17) that

the coefficient functions can be expressed as follows,

φNS
0 (τ) = µ3(ϑ8

2 + ϑ8
4) + µ4ϑ

4
2ϑ

4
4 ,

φNS
1 (τ) = µ1(ϑ8

2 + ϑ8
4) + µ2ϑ

4
2ϑ

4
4

ϑ4
4 − ϑ4

2
. (3.4)
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Rank two, unitary, ` = 0, {c, hNS
1 , hR

0 , h
R
1 }type{

7
10 ,

1
10 ,

3
80 ,

7
16

}
B

{
11, 5

6 ,
11
24 ,

9
8

}
S

{
21, 5

4 ,
3
2 ,

7
4

}
B{

3
4 ,

1
4 ,

1
32 ,

5
32

}
S

{
133
10 ,

9
10 ,

57
80 ,

21
16

}
B

{
85
4 ,

5
4 ,

51
32 ,

55
32

}
B{

1, 1
6 ,

1
24 ,

3
8

}
S

{
91
5 ,

11
10 ,

49
40 ,

13
8

}
B

{
22, 4

3 ,
3
2 ,

11
6

}
B{

9
4 ,

1
4 ,

3
32 ,

15
32

}
S

{
39
2 ,

7
6 ,

65
48 ,

27
16

}
B

{
114
5 , 7

5 ,
3
2 ,

19
10

}
B{

39
4 ,

3
4 ,

13
32 ,

33
32

}
S

{
102
5 , 6

5 ,
3
2 ,

17
10

}
B

Table 3. Rank 2 non-degenerate unitary theories with ` = 0, which are all discovered in [35].
Type: S=SUSY, B=SUSY Broken.

Thus, the most general FMLDE of d = 2 with ` ≤ 1 for the NS sector becomes[
D2 + µ1(ϑ8

2 + ϑ8
4) + µ2ϑ

4
2ϑ

4
4

ϑ4
4 − ϑ4

2
D + µ3(ϑ8

2 + ϑ8
4) + µ4ϑ

4
2ϑ

4
4

]
χNS(τ) = 0, (3.5)

Performing a suitable SL(2,Z) transformation, one can obtain the FMLDE for the R sector,[
D2 + µ1(ϑ8

4 + ϑ8
3)− µ2ϑ

4
4ϑ

4
3

−ϑ4
3 − ϑ4

4
D + µ3(ϑ8

4 + ϑ8
3)− µ4ϑ

4
4ϑ

4
3

]
χR(τ) = 0. (3.6)

Since four free parameters µa (a = 1, 2, 3, 4) can be solely determined by the exponent data
{2αNS

i , αR
i } (i = 1, 2), we see that (3.5) and (3.6) are rigid. For higher values of `, each

coefficient function can have poles anywhere inside the fundamental domain, which brings
in more undetermined parameters. Thus, the FMLDEs with ` > 1 cannot be rigid.

Following the procedure outlined above, we are able to pin down 31 solutions which
can be regarded as physical conformal characters. The search was completed when R = 7.
Interestingly, even though we start with the ` = 1 FMLDEs, all the physically sensible
solutions turn out to satisfy ` = 0.

We divide the results into two groups. The first group is for unitary theories without
any free fermion summarized in table 3. We observe that they all have non-negative
Ramond exponents,

αR
i = hR

i −
c

24 ≥ 0 for all i, (3.7)

which coincides with the unitarity bound of supersymmetry. It was argued in [41] that
any unitary FRCFT satisfying (3.7) is supersymmetric unless it has free fermions. When
the bound is saturated, there exist supersymmetric Ramond vacua. Otherwise, the super-
symmetry is spontaneously broken. We can indeed show that the theories in table 3 are
supersymmetric theories, which match all the rank-two non-degenerate unitary theories
found in [35]. However, we do not have a clear understanding why the rank-two fermionic
unitary RCFTs with no free fermion should be all supersymmetric.
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Rank two, more , ` = 0, {c, hNS
1 , hR

0 , h
R
1 }{

8
5 ,

3
10 ,

1
20 ,

1
4

} {
33, 7

4 ,
9
4 , 3
}

{
2, 1

16 ,
3
16 ,

11
16

} {
341
10 ,

9
5 ,

37
16 ,

249
80

}
{

4, 1
8 ,

3
8 ,

7
8

} {
75
2 ,

7
6 ,

125
48 ,

79
16

}
{

6, 3
16 ,

9
16 ,

17
16

} {
39, 5

4 ,
21
8 ,

41
8

}
{

69
10 ,

7
10 ,

1
80 ,

13
16

} {
169
4 , 5

4 ,
99
32 ,

175
32

}
{

8, 1
4 ,

3
4 ,

5
4

} {
87
2 ,

13
6 ,

161
48 ,

59
16

}
{

151
5 , 8

5 ,
17
8 ,

109
40

} {
179
4 , 9

4 ,
109
32 ,

121
32

}
{

63
2 ,

5
3 ,

35
16 ,

137
48

} {
46, 5

4 ,
29
8 ,

47
8

}
{

162
5 , 17

10 ,
11
5 , 3

}
Table 4. Rank 2 non-degenerate theories with ` = 0 that are not unitary and seem to be new.

The results in the second group are listed in table 4. They were not discovered in the
previous work [35]. If the theories in table 4 were unitary, they contained multiple copies
of free fermion. However, when such free fermions were decoupled, the leftover conformal
characters in turn had negative Fourier coefficients. Thus, they should not be identified
as unitary theories. On the other hand, they still satisfy the constraint on the modular
pairing matrix Mij . Although it is likely that the theories of table 4 could play no physical
role, we report the results for completeness.

Finally, we comment that all families in table 8 of appendix B are realized in tables 3
and 4.

3.2 Rank 3 with ` ≤ 1

We can argue that the most general rigid FMLDE at rank three for the NS sector are
given by

[
D3 + µ1(ϑ8

2 + ϑ8
4) + µ2ϑ

4
2ϑ

4
4

ϑ4
4 − ϑ4

2
D2 +

(
µ3(ϑ8

2 + ϑ8
4) + µ4ϑ

4
2ϑ

4
4
)
D

+µ5(ϑ16
2 + ϑ16

4 ) + µ6(ϑ12
4 ϑ

4
2 + ϑ12

2 ϑ
4
4) + µ7ϑ

8
2ϑ

8
4

ϑ4
4 − ϑ4

2

]
χNS(τ) = 0. (3.8)

– 20 –



J
H
E
P
0
2
(
2
0
2
3
)
0
7
9

The corresponding equation for the R sector then becomes[
D3 + µ1(ϑ8

4 + ϑ8
3) + µ2ϑ

4
4ϑ

4
3

−ϑ4
3 − ϑ4

4
D2 +

(
µ3(ϑ8

4 + ϑ8
3)− µ4ϑ

4
4ϑ

4
3
)
D

+µ5(ϑ16
4 + ϑ16

3 )− µ6(ϑ12
3 ϑ

4
4 + ϑ12

4 ϑ
4
3) + µ7ϑ

8
4ϑ

8
3

−ϑ4
3 − ϑ4

4

]
χR(τ) = 0. (3.9)

Note that the Wronskian index of (3.8) is ` ≤ 1; otherwise the corresponding FMLDE
becomes non-rigid. In order to avoid having too many solutions, we only search for unitary
theories in what follows. The seven unknown parameters µa (a = 1, 2, . . . , 7) can be
specified by {2αNS

i , αR
i } (i = 1, 2, 3) and no-free-fermion condition (3.1).

We observe that the number of unitary solutions are actually finite. In practice, for
` = 0 cases we obtain no more solution when the range is increased from seven to eight
while for ` = 1 all the solutions are within range three. Altogether we obtain 43 solutions
for ` = 0 and 15 solutions for ` = 1, listed in tables 5 and 6 respectively.

As expected, all the non-degenerate SUSY solutions found in [36] are rediscovered in
this approach. However we stress that most of the solutions are entirely new. One can
construct a three-character FRCFT by tensoring a two-character FRCFT in table 3 with
itself. Some of the theories obtained in this manner are highlighted in the table 5 while
others from table 3 become degenerate. We also note that non-supersymmetric FRCFTs
start to appear from rank three.

Some of the theories can be recognized with well-known theories. For example, two
copies of the ŝu(2)3 WZW model can be fermionized to the theory with c = 18/5. On the
other hand, the theory with c = 63/5 can be bosonized to the orbifold theory ŝu(8)2/Z2,
recently studied in [39].

We remark that families 1 and 2 in table 9 of appendix B do not lead to any unitary
theories that are physically acceptable.

3.3 Rank 4 with ` = 0

We now proceed to the case of d = 4. The most general rigid fourth-order FMLDE has to
be monic, which takes the following form[

D4 + µ1(ϑ4
4 − ϑ4

2)D3 +
{
µ2(ϑ8

2 + ϑ8
4) + µ3ϑ

4
2ϑ

4
4

}
D2 +

{
µ4(ϑ8

4ϑ
4
2 − ϑ8

2ϑ
4
4) (3.10)

+µ5(ϑ12
4 − ϑ12

2 )
}
D + µ6(ϑ16

2 + ϑ16
4 ) + µ7(ϑ12

4 ϑ
4
2 + ϑ12

2 ϑ
4
4) + µ8ϑ

8
2ϑ

8
4

]
χNS(τ) = 0.

The corresponding equation in the R sector is[
D4 − µ1(ϑ4

3 + ϑ4
4)D3 +

{
µ2(ϑ8

4 + ϑ8
3)− µ3ϑ

4
4ϑ

4
3

}
D2 +

{
− µ4(ϑ8

3ϑ
4
4 + ϑ8

4ϑ
4
3) (3.11)

+µ5(ϑ12
3 + ϑ12

4 )
}
D + µ6(ϑ16

4 + ϑ16
3 )− µ7(ϑ12

3 ϑ
4
4 + ϑ12

4 ϑ
4
3) + µ8ϑ

8
4ϑ

8
3

]
χR(τ) = 0.

Notice that the d = 4 FMLDE with ` = 1 already becomes non-rigid.
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Rank three, ` = 0, {c, hNS
1 , hNS

2 , hR
0 , h

R
1 , h

R
2 }type{

11
14 ,

1
14 ,

3
14 ,

3
112 ,

5
16 ,

99
112

}
N

{
77
5 ,

7
10 ,

11
10 ,

33
40 ,

49
40 ,

13
8

}
B

{
187
7 , 13

14 ,
25
14 ,

79
56 ,

17
8 ,

143
56

}
B{

1, 1
10 ,

2
5 ,

1
40 ,

9
40 ,

5
8

}
N

{
33
2 ,

9
10 ,

11
10 ,

77
80 ,

93
80 ,

25
16

}
B

{
323
10 ,

17
10 ,

19
10 ,

31
16 ,

171
80 ,

187
80

}
B{

7
5 ,

1
10 ,

1
5 ,

3
40 ,

19
40 ,

7
8

}
B

{
35
2 ,

5
6 ,

7
6 ,

49
48 ,

65
48 ,

27
16

}
B

{
465
14 ,

25
14 ,

27
14 ,

31
16 ,

249
112 ,

265
112

}
B{

2, 1
6 ,

1
3 ,

1
12 ,

5
12 ,

3
4

}
S
∗

{
130
7 , 13

14 ,
8
7 ,

5
4 ,

39
28 ,

47
28

}
B

{
182
5 , 11

10 ,
11
5 ,

49
20 ,

57
20 ,

13
4

}
B{

18
5 ,

3
10 ,

2
5 ,

3
20 ,

11
20 ,

3
4

}
S
∗

{
19, 9

10 ,
8
5 ,

19
40 ,

51
40 ,

15
8

}
N

{
39, 7

6 ,
7
3 ,

65
24 ,

73
24 ,

27
8

}
B{

81
10 ,

3
10 ,

9
10 ,

9
80 ,

57
80 ,

21
16

}
N

{
99
5 ,

9
10 ,

6
5 ,

11
8 ,

63
40 ,

71
40

}
B

{
391
10 ,

13
10 ,

12
5 ,

207
80 ,

239
80 ,

51
16

}
B{

42
5 ,

3
5 ,

7
10 ,

7
20 ,

3
4 ,

19
20

}
S
∗

{
207
10 ,

13
10 ,

8
5 ,

23
80 ,

119
80 ,

27
16

}
N

{
204
5 , 6

5 ,
12
5 , 3,

16
5 ,

17
5

}
B{

9, 3
5 ,

9
10 ,

9
40 ,

5
8 ,

41
40

}
N

{
21, 7

6 ,
4
3 ,

9
8 ,

35
24 ,

43
24

}
B

{
42, 11

10 ,
12
5 ,

63
20 ,

67
20 ,

15
4

}
B{

10, 2
3 ,

5
6 ,

5
12 ,

3
4 ,

13
12

}
S
∗

{
22, 5

6 ,
5
3 ,

11
12 ,

19
12 ,

9
4

}
S
∗

{
297
7 , 19

14 ,
18
7 ,

165
56 ,

181
56 ,

27
8

}
B{

143
14 ,

11
14 ,

13
14 ,

39
112 ,

55
112 ,

17
16

}
N

{
22, 11

10 ,
7
5 ,

5
4 ,

33
20 ,

37
20

}
B

{
44, 4

3 ,
8
3 , 3,

10
3 ,

11
3

}
B{

165
14 ,

5
7 ,

15
14 ,

45
112 ,

11
16 ,

141
112

}
N

{
221
10 ,

13
10 ,

7
5 ,

17
16 ,

117
80 ,

149
80

}
B

{
310
7 , 17

14 ,
18
7 ,

93
28 ,

97
28 ,

15
4

}
B{

63
5 ,

4
5 ,

9
10 ,

27
40 ,

7
8 ,

51
40

}
B

{
170
7 , 17

14 ,
11
7 ,

5
4 ,

51
28 ,

55
28

}
B

{
228
5 , 7

5 ,
14
5 , 3,

17
5 ,

19
5

}
B{

66
5 ,

4
5 ,

11
10 ,

11
20 ,

3
4 ,

27
20

}
S
∗

{
171
7 , 19

14 ,
11
7 ,

9
8 ,

95
56 ,

111
56

}
B

{
70, 4

3 ,
25
6 ,

55
12 ,

21
4 ,

83
12

}
B{

195
14 ,

1
14 ,

19
14 ,

75
112 ,

13
16 ,

267
112

}
B

{
247
10 ,

13
10 ,

8
5 ,

19
16 ,

143
80 ,

159
80

}
B{

195
14 ,

6
7 ,

15
14 ,

75
112 ,

13
16 ,

155
112

}
B

{
133
5 , 9

10 ,
9
5 ,

57
40 ,

81
40 ,

21
8

}
B

Table 5. Rank 3 non-degenerate unitary theories with ` = 0. Type: S=SUSY, B=SUSY Broken,
N = non-SUSY. We highlight the theories that are a product of lower rank theories. Theories with
asterisk are discovered in [36].

Again, in order to avoid having too many solutions, we further impose the unitarity
constraint. Altogether we have 37 unitary FRCFTs without free fermion, listed in table 7.

Similar to the rank three case, one can construct a four-character FRCFT by ten-
soring a two-character FRCFT in table 3 three times. We highlight those theories that
can be obtained in this fashion in table 7. Others in table 3 generate the degenerate
theories with d = 3. What’s more, as shown in [39], the ŝu(4)3 WZW model can be
mapped to the theory with c = 45/7 via the generalized Jordan-Wigner transformation
while the ŝu(6)2 WZW model to the theory with c = 35/4. Finally we remark that families
1, 2, 4, 8, 9, 10, 11, 14, 15, 20, 21, 22, 25, 27, 28, 29, 30, 32, 33, 39, 42, 43, 44, 46, 47, 48, 49, 52,
53, 54, 55 in table 10 of appendix B do not lead to any unitary theories with ` = 0 that are
physically acceptable.
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Rank three, ` = 1, {c, hNS
1 , hNS

2 , hR
0 , h

R
1 , h

R
2 }type{

13
7 ,

1
7 ,

3
14 ,

5
56 ,

3
8 ,

29
56

}
B

{
62
7 ,

9
14 ,

5
7 ,

1
4 ,

11
28 ,

27
28

}
N

{
139
7 , 3

14 ,
8
7 ,

75
56 ,

99
56 ,

21
8

}
B{

2, 1
5 ,

3
10 ,

1
20 ,

1
4 ,

9
20

}
N

{
10, 7

10 ,
4
5 ,

1
4 ,

9
20 ,

21
20

}
N

{
20, 4

5 ,
6
5 ,

13
10 ,

3
2 ,

17
10

}
B{

22
7 ,

2
7 ,

5
14 ,

3
28 ,

1
4 ,

15
28

}
N

{
149
14 ,

5
14 ,

11
14 ,

53
112 ,

117
112 ,

19
16

}
B

{
146
7 , 8

7 ,
17
14 ,

25
28 ,

41
28 ,

7
4

}
B{

89
14 ,

3
14 ,

9
14 ,

9
112 ,

73
112 ,

15
16

}
N

{
85
7 ,

11
14 ,

6
7 ,

3
8 ,

37
56 ,

69
56

}
N

{
148
7 , 6

7 ,
9
7 ,

19
14 ,

3
2 ,

25
14

}
B{

7, 3
10 ,

7
10 ,

3
40 ,

27
40 ,

7
8

}
N

{
132
7 , 5

7 ,
8
7 ,

17
14 ,

3
2 ,

23
14

}
B

{
45
2 ,

6
5 ,

13
10 ,

81
80 ,

129
80 ,

29
16

}
B

Table 6. Rank 3 non-degenerate unitary theories with ` = 1. Type: S=SUSY, B=SUSY Broken,
N=non-SUSY.

Rank four, ` = 0, {c, hNS
1 , hNS

2 , hNS
3 , hR

0 , h
R
1 , h

R
2 , h

R
3 }{

4
5 ,

1
40 ,

1
8 ,

2
5 ,

1
40 ,

1
8 ,

21
40 ,

13
8

}
N

{
63
8 ,

3
8 ,

5
8 ,

3
4 ,

21
64 ,

49
64 ,

69
64 ,

81
64

}
S

{
207
7 , 9

14 ,
10
7 ,

33
14 ,

69
56 ,

101
56 ,

141
56 ,

27
8

}
S{

5
6 ,

1
18 ,

1
6 ,

1
3 ,

1
48 ,

35
144 ,

11
16 ,

65
48

}
N

{
35
4 ,

7
12 ,

3
4 ,

5
6 ,

35
96 ,

21
32 ,

95
96 ,

33
32

}
S

{
247
8 , 7

8 ,
5
4 ,

17
8 ,

113
64 ,

133
64 ,

181
64 ,

209
64

}
B{

7
8 ,

1
8 ,

1
4 ,

7
8 ,

1
64 ,

5
64 ,

21
64 ,

33
64

}
N

{
99
8 ,

3
4 ,

7
8 ,

9
8 ,

33
64 ,

45
64 ,

77
64 ,

81
64

}
S

{
247
8 , 13

8 ,
7
4 ,

15
8 ,

113
64 ,

117
64 ,

133
64 ,

145
64

}
B{

1, 1
32 ,

1
8 ,

9
32 ,

1
32 ,

9
32 ,

25
32 ,

49
32

}
N

{
68
5 ,

17
40 ,

4
5 ,

9
8 ,

17
40 ,

9
8 ,

13
8 ,

77
40

}
N

{
65
2 ,

13
24 ,

7
6 ,

15
8 ,

39
16 ,

125
48 ,

149
48 ,

63
16

}
B{

1, 1
14 ,

2
7 ,

9
14 ,

1
56 ,

9
56 ,

25
56 ,

7
8

}
N

{
15, 15

32 ,
7
8 ,

39
32 ,

15
32 ,

39
32 ,

55
32 ,

63
32

}
N

{
663
20 ,

17
10 ,

7
4 ,

39
20 ,

65
32 ,

69
32 ,

357
160 ,

377
160

}
B{

5
4 ,

1
32 ,

5
32 ,

1
4 ,

1
16 ,

5
16 ,

9
16 ,

29
16

}
B

{
88
5 ,

4
5 ,

11
10 ,

6
5 ,

11
10 ,

13
10 ,

3
2 ,

17
10

}
B

{
133
4 , 19

32 ,
5
4 ,

63
32 ,

19
8 ,

21
8 ,

25
8 ,

31
8

}
B{

5
4 ,

1
12 ,

1
4 ,

5
6 ,

5
96 ,

3
32 ,

41
96 ,

23
32

}
S

{
56
3 ,

7
9 ,

7
6 ,

4
3 ,

7
6 ,

23
18 ,

3
2 ,

11
6

}
B

{
264
7 , 13

14 ,
25
14 ,

18
7 ,

51
28 ,

75
28 ,

13
4 ,

99
28

}
B{

10
7 ,

1
14 ,

1
7 ,

5
14 ,

1
14 ,

5
14 ,

9
14 ,

3
2

}
B

{
77
4 ,

11
12 ,

7
6 ,

5
4 ,

121
96 ,

133
96 ,

51
32 ,

55
32

}
B

{
196
5 , 63

80 ,
11
10 ,

35
16 ,

49
16 ,

253
80 ,

293
80 ,

73
16

}
B{

3
2 ,

1
18 ,

2
9 ,

8
9 ,

11
144 ,

3
16 ,

59
144 ,

107
144

}
B

{
429
20 ,

11
10 ,

5
4 ,

27
20 ,

39
32 ,

231
160 ,

291
160 ,

59
32

}
B

{
399
10 ,

9
10 ,

9
5 ,

27
10 ,

171
80 ,

219
80 ,

267
80 ,

63
16

}
B{

21
10 ,

1
10 ,

1
5 ,

3
10 ,

9
80 ,

41
80 ,

73
80 ,

21
16

}
B

{
70
3 ,

7
6 ,

14
9 ,

11
6 ,

7
12 ,

5
4 ,

65
36 ,

23
12

}
N

{
169
4 , 13

32 ,
5
4 ,

81
32 ,

45
16 ,

53
16 ,

65
16 ,

89
16

}
B{

12
5 ,

3
40 ,

1
5 ,

3
8 ,

3
40 ,

3
8 ,

7
8 ,

63
40

}
N

{
203
8 , 7

8 ,
13
8 ,

9
4 ,

29
64 ,

81
64 ,

125
64 ,

161
64

}
N

{
273
5 , 11

10 ,
11
5 ,

33
10 ,

147
40 ,

163
40 ,

179
40 ,

39
8

}
B{

21
8 ,

1
8 ,

3
8 ,

3
4 ,

3
64 ,

15
64 ,

35
64 ,

63
64

}
N

{
27, 13

14 ,
12
7 ,

33
14 ,

27
56 ,

75
56 ,

115
56 ,

21
8

}
N{

45
7 ,

5
14 ,

4
7 ,

9
14 ,

15
56 ,

39
56 ,

55
56 ,

9
8

}
S

{
225
8 , 5

8 ,
11
8 ,

9
4 ,

75
64 ,

111
64 ,

155
64 ,

207
64

}
S

Table 7. Rank 4 non-degenerate unitary theories with ` = 0. Type: S=SUSY, B=SUSY Broken,
N = non-SUSY. We highlight the theories that are a product of lower rank theories.
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A Some finite group theory

In this appendix we give the proof of the claim just below eq. (2.27) in section 2.2. To
set up the notation, we will use G to denote a generic finite group, and H for one of its
subgroup, |G|, |H| for their orders, |G/H| for the corresponding index.

For application in this paper, we can take G as SL (2,ZN ), and H as one of Γθ/Γ(N),
Γ0(2)/Γ(N),Γ0(2)/Γ(N). The order of G is

|SL (2,ZN ) | = N3 ∏
p|N

(1− 1
p2 ) (A.1)

and we have |G/H| = 3 for all the three choices of H. We are mainly interested in the
special case N = 2λ, here the corresponding H is also denoted as Pλ.

Suppose V is a finite dimensional vector space over some algebraic closed field K

with CharK = 0.5 Having a representation ρ : G → GL(V ) of G on V is equivalent to
assigning a K[G]-module structure for V , so we can just use the K[G]-module V to refer
to this representation. If we restrict this representation to some subgroup H, we will get
a representation ρ|H : H → GL(W ) of H on some subspace W of V , and we say W is
the restriction of V on H. Alternatively, starting with some W , that is, a representation
ξ : H → GL(W ), we can construct a representation W ′ of G through the following scalar
extension

W ′ = K[G]
⊗
K[H]

W. (A.2)

We say V is induced by W iff V ∼= W ′ as K[G] module. More concretely, this means

V =
⊕

σ∈G/H
Wσ, Wσ = ρ(sσ)W. (A.3)

ThenH is precisely the collection of elements h ∈ G such that ρ(h) = ξ(h), ρ(h)W = W . In
particular, when H is a Sylow p-subgroup and V,W are irreducible, we say V is p-induced
by W .

5Essentially, we have K = C in this paper.
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It is obvious that
dim V = |G/H| dimW. (A.4)

If we begin with some irreducible V , its restriction W may or may not be irreducible.
On the other hand, if we begin with some irreducible W , the induced W ′ may or may not
be irreducible as well, but at least we have:

Theorem A.1. Every irreducible V is contained in some inducedW ′ by some irreducibleW.

When the induced representation W ′ itself is irreducible, W must be irreducible as
well, then we may use eq. (A.4) to calculate the dimension of W if we know the dimension
of V ∼= W ′.

For example, we can take G = SL(2,Z2λ) and H = Pλ with |G/H| = 3. In table 1
of [34], we find when λ > 5 the irreducible representations have dimensions:{

2λ−1
}
∪
{

3 · 2λ−i | i = 1, 2, 3, 4
}
. (A.5)

So it seems that the 3 · 2λ−i type representations are 2-induced. Usually it is hard to
decide whether a restricted or induced representation is irreducible or not in general, but
in this case we have the following theorem [63], which in our notation says

Theorem A.2. Given a prime p dividing |G|, an irreducible V is p-induced iff |G|/ dim V =
pr for some positive integer r.

Applying this theorem to our problem with p = 2 and using eq. (A.1) we find |G| =
3 · 2m(λ) for some positive integer m(λ) > λ, so when λ > 5 we have the following set of
2-induced representations of G = SL(2,Z2λ){

3 · 2λ−i | i = 1, 2, 3, 4
}
. (A.6)

Then from |G/H| = 3 we find the set of irreducible representations of H = Pλ labeled
by their dimensions {

2λ−i | i = 1, 2, 3, 4
}
. (A.7)

While the λ ≤ 5 cases can be treated by this method or calculated directly, then we
can construct a fermionic version of table 1 of [34] .

B Exponents

In this appendix, we collect the exponents for rank d = 2, 3, 4 in tables 8, 9, 10. Recall
that they always appear in terms of families, so we only need to give one representative for
each family.
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d = 2 exponents: {2αNS, αR}+ k
24{−12,12} for k ∈ Z

No. Representative No. Representative

1 {(0, 1
8), ( 7

16 ,
15
16)} 8 {(0, 1

3), (1
4 ,

11
12)}

2 {(0, 1
4), (3

8 ,
7
8)} 9 {(0, 1

3), ( 5
12 ,

3
4)}

3 {(0, 3
8), ( 5

16 ,
13
16)} 10 {( 1

120 ,
49
120), ( 17

120 ,
113
120)}

4 {(0, 1
2), (1

8 ,
7
8)} 11 {( 1

120 ,
49
120), ( 53

120 ,
77
120)}

5 {(0, 1
2), (1

4 ,
3
4)} 12 {( 1

60 ,
49
60), ( 1

30 ,
19
30)}

6 {( 1
48 ,

25
48), ( 1

24 ,
11
12)} 13 {( 1

60 ,
49
60), ( 2

15 ,
8
15)}

7 {( 1
48 ,

25
48), (1

6 ,
19
24)}

Table 8. All possible exponents mod 1 for rank 2 non-degenerate FRCFTs.

d = 3 exponents: {2αNS, αR}+ k
24{−13,13} for k ∈ Z

No. Representative No. Representative

1 {(0, 1
5 ,

4
5), (0, 2

5 ,
3
5)} 6 {(0, 1

3 ,
2
3), (0, 1

3 ,
2
3)}

2 {(0, 1
5 ,

4
5), ( 1

10 ,
1
2 ,

9
10)} 7 {( 1

168 ,
25
168 ,

121
168), ( 11

168 ,
107
168 ,

155
168)}

3 {(0, 2
5 ,

3
5), (0, 1

5 ,
4
5)} 8 {( 1

168 ,
25
168 ,

121
168), ( 23

168 ,
71
168 ,

95
168)}

4 {(0, 2
5 ,

3
5), ( 3

10 ,
1
2 ,

7
10)} 9 {( 1

56 ,
9
56 ,

25
56), (11

56 ,
43
56 ,

51
56)}

5 {(0, 1
3 ,

2
3), (1

6 ,
1
2 ,

5
6)} 10 {( 1

56 ,
9
56 ,

25
56), (15

56 ,
23
56 ,

39
56)}

Table 9. All possible exponents mod 1 for rank 3 non-degenerate FRCFTs.
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d = 4 exponents: {2αNS, αR}+ k
24{−14,14} for k ∈ Z

No. Representative No. Representative

1 {(1
5 ,

2
5 ,

3
5 ,

4
5), (1

5 ,
2
5 ,

3
5 ,

4
5)} 29 {( 1

120 ,
3
40 ,

49
120 ,

27
40), ( 23

120 ,
47
120 ,

21
40 ,

29
40)}

2 {(0, 1
24 ,

3
8 ,

2
3), ( 1

16 ,
19
48 ,

9
16 ,

43
48)} 30 {( 1

120 ,
2
15 ,

49
120 ,

8
15), ( 19

240 ,
91
240 ,

139
240 ,

211
240)}

3 {(0, 1
16 ,

1
4 ,

9
16), ( 5

32 ,
13
32 ,

21
32 ,

29
32)} 31 {( 1

120 ,
19
120 ,

49
120 ,

91
120), ( 1

15 ,
4
15 ,

17
30 ,

23
30)}

4 {(0, 1
16 ,

9
16 ,

3
4), ( 1

32 ,
9
32 ,

17
32 ,

25
32)} 32 {( 1

120 ,
49
120 ,

61
120 ,

109
120), ( 1

60 ,
1
15 ,

4
15 ,

49
60)}

5 {(0, 1
12 ,

1
3 ,

3
4), ( 1

24 ,
3
8 ,

13
24 ,

7
8)} 33 {( 1

120 ,
49
120 ,

61
120 ,

109
120), ( 23

120 ,
47
120 ,

83
120 ,

107
120)}

6 {(0, 1
9 ,

4
9 ,

7
9), (0, 2

9 ,
5
9 ,

8
9)} 34 {( 1

120 ,
49
120 ,

73
120 ,

97
120), ( 11

120 ,
59
120 ,

83
120 ,

107
120)}

7 {(0, 1
9 ,

4
9 ,

7
9), ( 1

18 ,
7
18 ,

1
2 ,

13
18)} 35 {( 1

120 ,
49
120 ,

73
120 ,

97
120), ( 17

120 ,
41
120 ,

89
120 ,

113
120)}

8 {(0, 1
9 ,

4
9 ,

7
9), ( 5

36 ,
1
4 ,

17
36 ,

29
36)} 36 {( 1

120 ,
49
120 ,

73
120 ,

97
120), ( 29

120 ,
53
120 ,

77
120 ,

101
120)}

9 {(0, 1
9 ,

4
9 ,

7
9), (11

36 ,
23
36 ,

3
4 ,

35
36)} 37 {( 1

96 ,
25
96 ,

49
96 ,

73
96), ( 1

48 ,
1
12 ,

25
48 ,

5
6)}

10 {(0, 1
8 ,

1
3 ,

11
24), ( 3

16 ,
17
48 ,

11
16 ,

41
48)} 38 {( 1

96 ,
25
96 ,

49
96 ,

73
96), ( 7

48 ,
5
24 ,

11
24 ,

31
48)}

11 {(0, 1
8 ,

1
2 ,

5
8), ( 1

16 ,
5
16 ,

9
16 ,

13
16)} 39 {( 1

80 ,
9
80 ,

41
80 ,

49
80), ( 1

40 ,
9
40 ,

13
20 ,

17
20)}

12 {(0, 1
7 ,

2
7 ,

4
7), ( 1

28 ,
9
28 ,

3
4 ,

25
28)} 40 {( 1

80 ,
9
80 ,

41
80 ,

49
80), ( 1

10 ,
31
40 ,

9
10 ,

39
40)}

13 {(0, 1
7 ,

2
7 ,

4
7), (1

4 ,
11
28 ,

15
28 ,

23
28)} 41 {( 1

60 ,
1
15 ,

4
15 ,

49
60), ( 1

120 ,
49
120 ,

61
120 ,

109
120)}

14 {(0, 1
6 ,

1
2 ,

2
3), (0, 1

3 ,
1
2 ,

5
6)} 42 {( 1

60 ,
17
120 ,

49
60 ,

113
120), ( 17

240 ,
113
240 ,

137
240 ,

233
240)}

15 {(0, 1
6 ,

1
2 ,

2
3), (1

8 ,
3
8 ,

11
24 ,

17
24)} 43 {( 1

60 ,
3
20 ,

7
20 ,

49
60), ( 1

20 ,
23
60 ,

9
20 ,

47
60)}

16 {(0, 3
16 ,

1
4 ,

11
16), ( 3

32 ,
11
32 ,

19
32 ,

27
32)} 44 {( 1

60 ,
3
20 ,

7
20 ,

49
60), (17

60 ,
11
20 ,

53
60 ,

19
20)}

17 {(0, 3
16 ,

11
16 ,

3
4), ( 7

32 ,
15
32 ,

23
32 ,

31
32)} 45 {( 1

60 ,
23
120 ,

47
120 ,

49
60), ( 83

240 ,
107
240 ,

203
240 ,

227
240)}

18 {(0, 2
9 ,

5
9 ,

8
9), (0, 1

9 ,
4
9 ,

7
9)} 46 {( 1

60 ,
19
60 ,

31
60 ,

49
60), ( 1

120 ,
31
120 ,

49
120 ,

79
120)}

19 {(0, 2
9 ,

5
9 ,

8
9), ( 1

36 ,
1
4 ,

13
36 ,

25
36)} 47 {( 1

60 ,
19
60 ,

31
60 ,

49
60), (17

60 ,
23
60 ,

47
60 ,

53
60)}

20 {(0, 2
9 ,

5
9 ,

8
9), ( 7

36 ,
19
36 ,

3
4 ,

31
36)} 48 {( 1

48 ,
7
48 ,

25
48 ,

31
48), ( 5

48 ,
11
48 ,

29
48 ,

35
48)}

21 {(0, 2
9 ,

5
9 ,

8
9), ( 5

18 ,
1
2 ,

11
18 ,

17
18)} 49 {( 1

48 ,
7
48 ,

25
48 ,

31
48), (17

48 ,
23
48 ,

41
48 ,

47
48)}

22 {(0, 1
4 ,

1
2 ,

3
4), (0, 1

4 ,
1
2 ,

3
4)} 50 {( 1

48 ,
3
16 ,

25
48 ,

11
16), (0, 1

8 ,
2
3 ,

19
24)}

23 {(0, 3
7 ,

5
7 ,

6
7), ( 3

28 ,
1
4 ,

19
28 ,

27
28)} 51 {( 1

48 ,
3
16 ,

25
48 ,

11
16), ( 1

24 ,
3
8 ,

5
12 ,

3
4)}

24 {(0, 3
7 ,

5
7 ,

6
7), ( 5

28 ,
13
28 ,

17
28 ,

3
4)} 52 {( 1

48 ,
13
48 ,

25
48 ,

37
48), ( 1

24 ,
1
6 ,

13
24 ,

2
3)}

25 {( 1
240 ,

49
240 ,

121
240 ,

169
240), ( 1

120 ,
17
60 ,

49
120 ,

53
60)} 53 {( 1

48 ,
13
48 ,

25
48 ,

37
48), ( 5

48 ,
17
48 ,

29
48 ,

41
48)}

26 {( 1
240 ,

49
240 ,

121
240 ,

169
240), ( 1

30 ,
31
120 ,

19
30 ,

79
120)} 54 {( 1

48 ,
13
48 ,

25
48 ,

37
48), (11

48 ,
23
48 ,

35
48 ,

47
48)}

27 {( 1
120 ,

1
30 ,

49
120 ,

19
30), ( 31

240 ,
79
240 ,

151
240 ,

199
240)} 55 {( 1

32 ,
9
32 ,

17
32 ,

25
32), (0, 1

16 ,
9
16 ,

3
4)}

28 {( 1
120 ,

3
40 ,

49
120 ,

27
40), ( 1

40 ,
9
40 ,

83
120 ,

107
120)} 56 {( 1

32 ,
9
32 ,

17
32 ,

25
32), (1

8 ,
3
16 ,

3
8 ,

11
16)}

Table 10. All possible exponents mod 1 for rank 4 non-degenerate FRCFTs.
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