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Abstract: Axion-like particles (ALPs) arise in a variety of theoretical contexts and can,
in general, mediate flavor violating interactions and parity non-conservation. We consider
lepton flavor violating ALPs with GeV scale or larger masses which may, for example, arise
in composite dark sector models. We show that a future Electron-Ion Collider (EIC) can
uncover or constrain such ALPs via processes of the type eAZ → τ AZ a, where AZ is a
nucleus of charge Z and a is an ALP in the range mτ ≤ ma . 20 GeV. The production of
the ALP can have a large Z2 enhancement from low Q2 electromagnetic scattering of the
electron from a heavy ion. Using the gold nucleus (Z = 79) as an example, we show that the
EIC can explore e− τ flavor violation, mediated by GeV-scale ALPs, well beyond current
limits. Importantly, the EIC reach for this interaction is not sensitive to the lepton-flavor
conserving ALP couplings, whose possible smallness can render searches using τ decays
ineffective. We also discuss how the EIC electron beam polarization can provide a powerful
tool for investigating parity violating ALPs.
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1 Introduction

Global symmetries arise in a variety of theoretical settings and their spontaneous breaking
generally leads to axion-like particles (ALPs) [1–4]. Often the global symmetry is not
exact and its small explicit breaking leads to the appearance of relatively light ALPs. In
the Standard Model (SM), the spontaneous breaking of chiral symmetries gives rise to
pseudo-Nambu-Goldstone bosons, i.e. the parity-odd pions, which have axion-like properties.
The small masses of light quarks, compared to typical hadronic scale ΛQCD ∼ 200MeV,
provide explicit chiral symmetry breaking, leading to relatively small pion masses.

One may expect similar phenomena to arise in new sectors of physics, which could
provide answers for open questions like the nature of dark matter (DM), for example. New
physics sectors at scales of O(GeV) or less have been considered as potential alternatives to
beyond SM (BSM) models at or above the weak scale ∼ 100GeV. In particular, “dark sectors”
that could include DM and other related states and interactions have been extensively studied
over the last several years. In these setups, new experimental possibilities for discovery of
BSM phenomena open up. Due to the relatively low scale and feeble couplings associated
with such “dark sectors”, intense sources can provide good prospects for uncovering them.

Searches for lepton flavor violation (LFV) mediated by ALPs can be a particularly
sensitive probe of new physics [5–13]. For an example of a concrete UV-complete model in
which GeV-scale ALPs with lepton flavor violation emerge out of a dark sector giving rise
to dark matter and neutrino mass, see ref. [14]. The dominant current constraints on flavor
off-diagonal ALP-lepton couplings universally come from low-energy experimental searches
involving flavor-violating lepton decays [8, 13], such as τ → eµµ for the aeτ interaction, where
a denotes the ALP. Searches for ALPs produced in Higgs decays can also provide relevant
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limits [15], particularly for relatively heavy ALP masses above 2GeV. However, these exper-
imental probes require the existence of other significant couplings — either flavor-diagonal
interactions a`` or ALP-Higgs couplings — in addition to the flavor-violating couplings.
In particular, the constraints from lepton decays become sharply weaker for axion masses
above the tau lepton mass, where the decays become highly suppressed due to kinematics.

One may also consider Z decays as a probe of ALP mediated LFV at the LHC. Assuming
the a-e-τ coupling Cτe/Λ . 10TeV−1 (typical of the parameter space in our analysis below)
only and for ma � mZ , we estimate that gives a branching fraction

Br(Z → aeτ → eτeτ) ≈ Br(Z → (e+e−, τ+τ−))× C2
τem

2
τ

Λ2
1

8π2 . 3× 10−7 , (1.1)

for which no experimental bounds exist at the present (the current measurement of 4-lepton
Z decays has an uncertainty of ∼ 2 × 10−7 [16], but only applies to electron and muon
final states). Though not directly relevant, we also note that the limit on flavor-violating
Z → eτ decay branching fractions is 5× 10−6 at 95% confidence level [16]. In any event, it
could be interesting to consider bounds from Z decays in more detail in future work.

Motivated by the above considerations, in this work, we examine the possibility of
probing lepton-flavor-violating ALPs arising at or above the GeV scale, perhaps as part of
a new dark sector of physics, in electron-ion collisions at the future Electron-Ion Collider
(EIC). We will focus specifically on probing the aeτ interaction through the process e→ τa.
In contrast with bounds on this interaction from rare lepton decays, the EIC is directly
sensitive to the aeτ coupling with no requirement of significant flavor-diagonal lepton
couplings. Compared to electron-proton scattering experiments, electron-ion collisions
offer a coherent enhancement in scattering rate due to the ion charge, increasing the ALP
production rate in electromagnetic scattering processes by orders of magnitude (although
this enhancement is partially compensated by reduced ion luminosity compared to electron-
proton operation.) These features, along with its high center-of-mass energy, make the EIC
uniquely effective at searching for LFV ALPs in theoretically interesting regions of parameter
space. Additionally, the use of beam polarization at the EIC provides an experimental
handle on the parity-violating angle in the aeτ interaction.

In this paper, we will study the ALP EFT allowing for both LFV and parity non-
conservation. Exploiting the presence of LFV, we will focus on tau lepton final states. Under
a wide range of efficiency assumptions, we will estimate projected limits on the aeτ interaction
and compare with existing bounds. Other works that consider exploring LFV using electron
beam facilities include refs. [17–19] (EIC) and ref. [20] (CEBAF), where a leptoquark sector
is generally assumed to mediate the effects studied therein. Recent work [21] has also
studied the prospects for detecting ALPs through their photon coupling at the EIC.

2 ALP effective field theory

The flavor-violating ALP effective Lagrangian we will adopt for this analysis has been
previously considered in refs. [7, 8, 13, 22–27]. It is given by

L = 1
2(∂µa)2 − 1

2m
2
aa

2 + L` + · · ·+ h.c. (2.1)
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We will be focusing on the term

L` = ∂µa

Λ
∑
``′

¯̀γµ (V``′ +A``′γ5) `′ + h.c. (2.2)

where Λ is the EFT scale of the ALP theory. Here, we will take V``′ and A``′ to be real, so
that the Lagrangian is CP-even. However, note that the presence of the vector-like V``′ term
implies that parity violation is present in general. The parity violation can be parametrized
by an angle θ``′ by defining θ``′ = − tan−1(V``′/A``′) and C``′ =

√
V 2
``′ +A2

``′ , so that

L` = C``′

Λ ∂µa
∑
``′

¯̀γµ (sin θ``′ − cos θ``′γ5) `′ + h.c. (2.3)

Note that θ``′ = 0 leaves only the parity-even term, while θ``′ = π/4 (θ``′ = 3π/4) is
maximally parity-violating, because then the ALP only interacts with left-handed (right-
handed) particles.

It is useful to rewrite the leptonic Lagrangian by integrating by parts and solving the
classical equations of motion on the leptons. Doing so, we have

L` = C``′

Λ a
∑
``′

¯̀
(
m− sin θ``′ −m+ cos θ``′γ5

)
`′ + h.c., (2.4)

where m± ≡ m`±m`′ . Here, we note that there is no PV contribution for the flavor-diagonal
case, because for ` = `′, the difference in masses goes to zero, so we can absorb cos θ`` into
the definition of C``. Although we will neglect θ``, it is worth noting that the presence of
parity violation will tend to suppress the diagonal couplings |C``| relative to the off-diagonal
couplings |C``′ |. We will retain the explicit dependence on parity violation in the off-diagonal
couplings, although we will find that this dependence vanishes in our signal cross-section.

The above model could lead to an interesting LFV (and potentially parity violating)
signal at the EIC. In particular, one can consider the process in figure 1, where the coupling
Cτe allows for the process eAZ → τAZa, emission of an ALP in which the beam electron is
converted to a tau lepton. The emitted a can then decay into leptonic final states.

We restrict our attention to the τ lepton because of the mass-dependence of the ALP
coupling: since mτ � mµ � me, the branching fractions into final states containing only µ
and e are negligible. We further neglect the Cτµ coupling, for two reasons: first, the Cτe
coupling is essential for the production of our ALP signal, whereas Cτµ will only be relevant
for ALP decays; second, current plans for the EIC detectors do not necessarily include
muon chambers, in which case muonic decays of the ALP will be difficult to detect. In this
scenario, the only terms in the Lagrangian we are interested in are those which contain at
least one τ ; in particular,

Lτ ≈
Cτemτ

Λ aτ̄(sin θτe − cos θτeγ5)e

+ Cττmτ

Λ aτ̄γ5τ + h.c. , (2.5)
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Figure 1. The diagrams which contribute to the process eAZ → τAZa, where AZ is the ion nucleus.

where me is ignored. For ma > mτ � me, the decay rates of interest are

Γ(a→ τ+τ−) = |Cττ |
2

2π
m2
τ

Λ2

√
m2
a − 4m2

τ (2.6)

and

Γ(a→ τ±e∓) ≈ |Cτe|
2

8π
m2
τ

Λ2
(m2

a −m2
τ )2

m3
a

. (2.7)

For the region of parameter space explored in this paper, the a decay is always prompt. We
restrict our attention to ma > mτ +me; as shown in figure 3 below, other bounds on the
|Cτe| coupling become much stronger for ma < mτ .

3 Cross-section calculation

We are now in a position to evaluate the diagram in figure 1. The incoming momenta are
denoted as pµ for the electron and Pµi for the incoming ion, and the outgoing momenta
are denoted as p′µ for the τ , k for the ALP, and Pµf for the outgoing ion. We restrict our
attention to events in which the interaction with the ion is coherent and elastic, i.e. the ion
does not break apart; these events will give the dominant contribution to our signal due
to the Z2 enhancement discussed below. The four-momentum of the exchanged photon is
given by qµ ≡ Pµi − P

µ
f . For simplicity (following refs. [28, 29]), we will assume that the

ion is a scalar boson with mass M , atomic number Z, and form factor F (q2), so that the
interaction of a photon with the ion is

iV µ(q2, Pi, Pf ) = ieZF (q2)(Pµi + Pµf ). (3.1)

From here forward, we will specialize to a gold ion (Z = 79, mass number A = 197),
corresponding to a mass of M = 183GeV. The form factor is an approximation of the
Fourier transform of the Woods-Saxon distribution applied to the gold nucleus [30], given by

F (q2) = 3
q3R3

A

(sin qRA − qRA cos qRA) 1
1 + a2

0q
2 (3.2)
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where a0 = 0.79 fm, RA = (1.1 fm)A1/3. For low momentum transfer, F (q2) ≈ 1, so the
amplitude is proportional to Z. As a result, the cross section will be enhanced by a factor
of 792 ≈ 6000 for small momentum transfer. This Z2 enhancement enables the constraints
made on Cτe to be competitive with existing constraints, as we discuss below. We have
found, through numerical inspection, that F (q) ∼ 1 until ma ∼ 20GeV, corresponding to
the region with the above Z2 enhancement. Above this mass scale, F (q) < 1 and decreases
with larger ma, leading to a suppressed ALP production cross section. To restrict to the
signal region where nuclear breakup does not occur, we additionally require a cutoff in the
form factor of q2 < (100 MeV)2, corresponding to ma ∼ 27 GeV.

To compute the amplitude, it is useful to define some Mandelstam-like variables in
terms of the momenta of the diagram. We have

s̃ = (p′ + k)2 −m2
e (3.3)

ũ = (p− k)2 −m2
τ (3.4)

t = −q2 (3.5)

The amplitude calculation is done in full detail in appendix A; the final spin-averaged result
is given by

|M|2 =
(4πZαCτemτ

Λ

)2 F (q2)2

q4 |A|2 , (3.6)

where α is the fine-structure constant, and

|A|2 = (s̃+ ũ)2

s̃ũ
P 2− 4t

s̃ũ
(P ·k)2 + (s̃+ ũ)2

s̃2ũ2 M2(θτe)
[
P 2t−4

(
ũP ·p+ s̃P ·p′

s̃+ ũ

)2]
(3.7)

where M2(θτe) = m2
a − m2

τ − m2
e + 2mτme cos (2θτe). Note that for the spin-averaged

amplitude, the only dependence on the parity violating angle θτe is an O(me/mτ ) correction
to the amplitude, so to very good precision one can compute the spin-averaged cross-section
with |A0|2 ≡ |A|2(θτe = 0). We find that these results are in agreement with refs. [28, 29]
with the replacement mτ → me (any apparent sign discrepancies are due to the choice of
the metric, which we take to be mostly negative).

To compute the cross section, the integral over phase space is also done following
ref. [29] closely. Defining x = Ek/|p| to be the fraction of energy the ALP has w.r.t. the
electron (assuming p0 = |p|), the differential cross-section in the rest frame of the ion is
given by

d2σ

dxd cos θk
= |k|

(32π2)2M2V

∫ t+

t−
dt

∫ 2π

0
dφq|M|2, (3.8)

where V = |V| = |p − k|, θk is the angle k makes with p, φq is the azimuthal angle of
q about V, and t± are kinematic bounds from the energy-conserving δ-function in the
Lorentz-invariant phase space. Details on the phase-space calculation are given in the
appendix B.
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Figure 2. The cross section for the process eAZ → τAZa as a function of ma, assuming an ALP
UV scale Λ = 1TeV and assuming a Woods-Saxon nuclear form factor, given in eq. (3.2).

In order to evaluate the phase-space integral, we must determine the values of the
initial-state momenta in figure 1. For this, we use table 10.2 of the EIC Yellow Report [31],
which states that the highest energies for the electron and gold ion beams are |plab| = 18GeV
and Elab

i = 110GeV/nucleon, respectively. In the rest frame of the gold ion, a relativistic
calculation reveals that the electron momentum has a magnitude of |p| ≈ 4200GeV.

Next, we must determine the range of integration for cos θk. Following the detector
requirements listed in table 10.6 of the EIC Yellow Report, we assume a detector pseu-
dorapidity range of |η| < 3.5, corresponding to a range of angles 0.04 < θlab < π − 0.04
in the lab frame. For most of the phase-space of interest, the differential cross-section in
eq. (3.8) is highly peaked near θ = 0, making numerical integration challenging. This can
be remedied by transforming from cos θk to η, with the added benefit that one can then
directly integrate over the allowed pseudorapidity region. The details of this transformation
are shown in the appendix B.

After inserting the kinematic parameters and doing the relevant transformations de-
scribed above, the integral can be evaluated. The φq integrals are computed analytically,
and the rest are done via trapezoid integration. The result for the total cross-section
integration are shown in figure 2.

Finally, we comment on the effect of beam polarization on the ALP signal. To compute
the polarized amplitude or cross-section, there are slight modifications to be made. In
particular, one can rewrite the τe coupling as

Lτe ≈
Cτemτ

Λ a[R(θτe)τ †LeR + L(θτe)τ †ReL] + h.c. (3.9)

where R(θ) = cos θ − sin θ and L(θ) = cos θ + sin θ. The left-polarized cross-section can
then be obtained by singling out the left-handed piece of eq. (3.9). This simply corresponds
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to setting θτe = π/4, then multiplying by 1√
2L(θτe). Hence, we find

|AL|2 = 1
2 |L(θτe)|2|A(θτe = π/4)|2

≈ |L(θτe)|2|A0|2 , (3.10)

where have used |A(θτe = π/4)|2 = 2|A(θτe = π/4)|2 ≈ 2|A0|2. The additional factor of 2
accounts for the fact that |A|2 is a spin-averaged quantity. We similarly obtain

|AR|2 = 1
2 |R(θτe)|2|A(θτe = 3π/4)|2

≈ |R(θτe)|2|A0|2. (3.11)

Hence, to good approximation, σL = |L(θτe)|2σ0 and σR = |R(θτe)|2σ0, where σ0 represents
the spin-averaged cross-section when θτe = 0. This allows us to compute the left-right
asymmetry:

rLR(θτe) = σL − σR
σL + σR

= sin 2θτe (3.12)

Observation of an ALP signal at varying beam polarizations can thus be used as a direct
probe of the parity-violating angle θτe.

4 Results

Once the cross section is determined for a large sample of masses, limits can be placed on the
coupling Cτe. Since the process always has an aeτ vertex, the cross section is proportional
to |Cτe|2/Λ2. As a result, one can write the cross section as

σ(eAZ → τAZa) ≡ |Cτe|
2

Λ2 σ̂. (4.1)

In what follows, we will assume that the ALP always decays leptonically in the detector
and that ma > mτ . We note that the addition of the coupling Cτµ may enhance the ability
to detect LFV at the EIC, but we avoid this scenario for more straightforward comparison
with the LFV constraints from ref. [8] (and the possible lack of a dedicated muon detection
capability, as mentioned earlier). Due to the mass-dependence of the ALP coupling, there
are only three significant decay channels for the ALP: (i) a → τ−τ+, (ii) a → τ−e+ and
(iii) a→ τ+e−.

Here, we note that the most advantageous aspect of our proposal for investigating
LFV at the EIC is the ability to probe the Cτe coupling nearly independently of the
flavor-diagonal Cττ coupling. In particular, when the latter is relatively suppressed, we
find that the EIC can provide a promising venue for accessing the former. In that case,
the final states of interest are a(→ e±τ∓)τ−, on which we will focus. In particular, for our
search, we will require the identification of an e+ and a τ± in the final state, and we will
veto on the identification of an e−. The largest source of irreducible background would then
arise from electromagnetic production of τ pairs, which will be dominated by production
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through the Bethe-Heitler process [32–34]. To estimate this cross-section, we rescale the
cross-sections found in ref. [35], which investigates the cross-section of ditau production
from high-energy muons. We expect the difference between muon and electron collisions
to be negligible for sufficiently high incident energies. We take the results are found for
“rock” (Z = 11, A = 22) and rescale the cross-section by (ZAu/Zrock)2 = 51. For an incident
beam energy of E = 4200 GeV, this corresponds to a cross-section of σb.g. = 2.6× 104 pb.
For τ identification, we will adopt the τ efficiency found in ref. [19] of ετ ≈ 1%, which only
considers 3-pronged decays, though we note that this is completely ignoring the other τ
decay modes and an improved analysis could likely give a higher efficiency. We also expect
that one could improve the efficiency from the 3-pronged channel by vetoing on breakup
of the ion, since this choice has no effect on our signal but reduces hadronic background.
To calculate the background efficiency, we take a rate of ∼ 10−2 for losing the initial-state
electron completely [31] and a rate of ∼ 10−3 for misidentification of the e− as an e+, in line
with studies of pions faking an electron from [31]. Then, the overall background efficiency is

εb.g. = 10−3 · 10−2 · (1− 0.18) + 10−2 · 10−2 · 0.18 = 3.6× 10−5, (4.2)

where the first term comes from misidentifying the electron as a positron (and assumes the
τ− does not decay to e−), and the second term comes from losing the electron down the
beam-pipe and detecting a positron from the decay of the τ+. Hence, the number of expected
background events with L = (100/A) fb−1 of integrated luminosity is nb.g. = εb.g.σb.g.L ≈
475. Following the analysis done in ref. [36], the upper end of the 90% confidence interval
for Poisson signal mean given 475 mean background events and 475 observed events is
nmax = 35. Hence, for a signal with acceptance×efficiency ε, a value of Cτe can be ruled
out at a 90% C.L. if

|Cτe|2

Λ2 εσL ≥ nmax. (4.3)

Here, the signal efficiency ε can be written as

ε = ε1B(a→ e+τ−) + ε2B(a→ τ+τ−) (4.4)

where εi represent the individual efficiencies of each possible branching. Adopting the same
τ efficiency and positron misidentification rate, we have ε1 = 2(0.01)(0.82) ≈ 0.016, and
ε2 = 2(0.01)(0.82)(0.18) ≈ 0.003.

The panels in figure 3 show the effect of assuming diagonal ALP couplings equal to
C``/Λ = 10−1 and 10−2 TeV−1. Note that as |C``| is reduced, our EIC production cross
section remains unchanged, since it is only sensitive to Cτe. As a result, our proposal
for exploring the Cτe LFV coupling can far exceed future projections using other probes,
particularly when C`` is small and other indirect searches are less constraining. The bounds
obtained in the EIC search generally fall in a region of parameter space where Cτe is
significantly larger than C``; this may be realized in a general framework, or in the presence
of significant parity violation as discussed above.
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Figure 3. Projected constraints (90% CL) on the interaction strength Cτe from the EIC (with
100/A fb−1 of integrated ion luminosity) compared to LFV constraints from BABAR (solid lines)
and projections from Belle II (with 50 ab−1 of integrated luminosity, dashed lines) for |C``|/Λ =
10−1 TeV−1 (left) and |C``|/Λ = 10−2 TeV−1 (right), assuming that the only non-zero off-diagonal
coupling is Cτe. The LFV limits (90% CL) are taken from ref. [8] for ma ≤ 10GeV, while the
τ → eγ limit is calculated explicitly for ma > 10GeV with formulae from ref. [8], since this limit
dominates in that regime. The LFV limits are scaled up according to their dependence on |C``|/Λ,
assuming that any contribution from the tree-level aγγ coupling is negligible.

5 Conclusions

Axion-like particles (ALPs) appear in a wide range of physical settings and may play
a role in explaining some of the open questions of particle physics. As such, they are
well-motivated subjects of inquiry for theory and experiment. In this work, we considered
ALPs, at or above the GeV scale, whose couplings can lead to lepton-flavor-violation (LFV)
and may even dominate their interactions with the SM. We focused on τ − e LFV and
showed that even with a fairly conservative analysis that does not make use of detailed
kinematic information, the planned Electron-Ion Collider (EIC) can provide useful limits
for this interaction, particularly in the case where the lepton-flavor-conserving couplings
are suppressed. This is mostly due to two factors: (i) a significant coherent enhancement
of low-momentum-transfer electromagnetic scattering from a large Z ion, mediating ALP
emission, and (ii) the sizeable center-of-mass energy ∼ 100GeV envisioned for the EIC
allowing it to reach for ALPs well above the GeV scale. The final reach of such a search
will depend on the EIC detectors’ efficiency for τ identification, which may be significantly
improved if muon detection capabilities are included in their final design [37].

The EIC can reach beyond current and projected bounds for τ − e LFV in tau decays
for ALP masses above mτ up to ma ∼ 20GeV, assuming universal diagonal lepton couplings
of order |C``|/Λ . 0.1TeV−1, with (100/A) fb−1 of gold ion scattering data. The kinematics
of the EIC are particularly favorable for production of ALPs towards the heavier end of
this mass range, as opposed to fixed-target experiments [29, 38] which benefit from high
luminosity and similar Z2 enhancement, but have much lower collision energy. A possible
future fixed-target experiment using an ion beam at the LHC [39] could possibly provide
competitive limits to the EIC and is worth future study.
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One notable observation is that the limits on Cτe from the EIC are more robust and
model-independent than other limits. Although we have focused on LFV constraints, this
is generally true. For example, similar constraints were found for a universal a``′ coupling
by analyzing Higgs decays at the LHC in ref. [15]. These constraints were significantly
weakened as the ALP-Higgs coupling was decreased, whereas the limits from the EIC would
remain unaffected.

We also considered the possibility that ALPs may mediate parity-violating interactions.
This, for example, can be realized in certain models with composite ALPs from new strong
dynamics. Here, the EIC electron beam polarization can be a powerful probe of such
interactions, making it a unique tool for illuminating the physics underlying LFV processes.

In principle, one could consider probing the muon-electron coupling Cµe at the EIC
using a similar search. However, the characteristic mass dependence of ALP couplings
reduces the corresponding cross section by (mµ/mτ )2, so that an EIC search would not
typically be competitive with other LFV bounds [8] on Cµe, barring very small lepton-flavor
diagonal a`` and aγγ couplings. Production of ALPs via the third LFV coupling Cτµ
is not accessible in electron-ion collisions, but if both Cτe and Cτµ are significant then
a→ µτ decays could provide access to the latter coupling, assuming that muon detection
capabilities are included in the EIC detectors.
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A Amplitude calculation

In computing the amplitude, we borrow notation from refs. [28, 29]. In this appendix, we
attempt to provide the amplitude calculation in as much detail as possible, stating explicitly
whenever a computer algebra system was used.

Let the incoming four-momenta be p for the electron and Pi for the incoming ion. Let
the outgoing momenta be p′ for the τ , k for the ALP, and Pf for the outgoing ion. Also, let
the mass of the ALP be ma, the mass of the ion be M , and the charge of the ion be Z. We
define P ≡ Pi + Pf and q ≡ Pi − Pf , along with the following Mandelstam variables:

s̃ = (p′ + k)2 −m2
e = 2p′ · k +m2

a +m2
τ −m2

e (A.1)
ũ = (p− k)2 −m2

τ = −2p · k +m2
a +m2

e −m2
τ (A.2)

t2 = (p′ − p)2 = −2p′ · p+m2
e +m2

τ (A.3)
t = −q2, (A.4)

which satisfy s̃+ t2 + ũ+ t = m2
a.
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The diagrams in figure 1 are relatively straightforward, and yield

iM1 = ū(p′)ieγµ
i

/p− /k −mτ
i(sin θτe − γ5 cos θτe)

mτCτe
Λ u(p)V

µ(q2, Pi, Pf )
q2 , (A.5)

iM2 = ū(p′)i(sin θτe − γ5 cos θτe)
mτCτe

Λ
i

/p′ + /k −me
ieγµu(p)V

µ(q2, Pi, Pf )
q2 , (A.6)

where
iV µ(q2, Pi, Pf ) = ieZF (q2)(Pµi + Pµf ) (A.7)

is the photon-ion interaction vertex. The total amplitude can then be written as

iM = 4πZαCτemτ

Λ
F (q2)
q2 Pµū(p′)Γµ(p, k, k′)u(p) , (A.8)

where

Γµ(p, k, k′) =
[
γµ

/p− /k +mτ

(p− k)2 −m2
τ

+ /p′ + /k −me

(p′ + k)2 −m2
e

γµ
]

sin θτe (A.9)

−
[
γµ

/p− /k +mτ

(p− k)2 −m2
τ

− /p′ + /k +me

(p′ + k)2 −m2
e

γµ
]
γ5 cos θτe. (A.10)

The spin-averaged squared amplitude is then given by

|M|2 =
(4πZαCτemτ

Λ

)2 F (q2)2

q4 |A|2 , (A.11)

with

|A|2 = PµP ν
1
2
∑
σσ′

ūσ(p)Γ†µ(p, k, k′)uσ′(p′)ūσ′(p′)Γν(p, k, k′)uσ(p) (A.12)

= 1
2P

µP νtr
{

(/p+me)Γ†µ(p, k, k′)(/p′ +mτ )Γν(p, k, k′)
}
. (A.13)

One can compute this trace in a computer algebra system, then simplify using the Mandel-
stam variables defined in eqs. (A.1)–(A.4). It is given by

|A|2 = (s̃+ũ)2

s̃ũ
P 2−4 t

s̃ũ
(P ·k)2+ (s̃+ũ)2

s̃2ũ2 M2(θ)
[
P 2t−4

(
ũP ·p+s̃P ·p′

s̃+ũ

)2]
, (A.14)

where M2(θ) =m2
a−m2

τ−m2
e+2mτme cos(2θ). Note that M2(θ)≈m2

a−m2
τ , regardless of θ.

B Differential cross section integration

In the initial-state ion rest frame, the differential cross-section is given by

dσ = 1
4|p|M |M|

2(2π)4δ4(p′ + k − p− q) d3p′

(2π)32E′
d3Pf

(2π)32Ef
d3k

(2π)32Ek
, (B.1)
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where E′, Ef , and Ek are the time-components of the four-momenta p′, Pf , and k, respec-
tively. The first step in simplifying dσ is converting variables from Pf to q (which has unit
Jacobian) and integrating over p′. Doing so yields

dσ = |M|2
1024π5|p|MEfE′Ek

δ(E′ + Ek − E − q0)d3qd3k (B.2)

In order to simplify some expressions, let V = p−k and V = |V|, and define q ≡ (Q, θq, φq)
in the direction of V. Then we find

E′ =
√
Q2 + V 2 + 2QV cos θq +m2

τ (B.3)

Ef =
√
Q2 +M2 (B.4)

Ek =
√
|k|2 +m2

a (B.5)

E =
√
|p|2 +m2

e (B.6)

q0 = M −
√
Q2 +M2. (B.7)

One can replace Ek systematically with ũ, since

ũ = (p− k)2 −m2
τ

= (E − Ek)2 − |p− k|2 −m2
τ

= (E − Ek)2 − V 2 −m2
τ (B.8)

=⇒ Ek = E −
√
ũ+ V 2 +m2

τ (B.9)

Now we can integrate over θq. To do this, note that the argument inside of the delta
function

f(cos θq) = E′(cos θq) + Ek − E − q0 (B.10)

has derivative

f ′(cos θq) = QV√
Q2 + V 2 + 2QV cos θq +m2

τ

(B.11)

and a zero at

cos θ0
q = (E − Ek + q0)2 −m2

τ −Q2 − V 2

2QV . (B.12)

Using this expression for f ′(cos θq) the delta function can be rewritten as

1
EfE′Ek

δ(f(cos θq)) = 1
EfE′Ek

1
|f ′(cos θ0

q)|
δ(cos θq − cos θ0

q) (B.13)

= 1
EkQV

√
M2 +Q2 δ(cos θq − cos θ0

q) (B.14)
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and the differential cross-section becomes

dσ = |M|2
1024π5|p|M

1
EkQV

√
M2 +Q2 δ(cos θq − cos θ0

q)Q2dQd(cos θq)dφqd3k. (B.15)

Note that this solution is not always between −1 and 1. For | cos θ0
q | > 1, the process is

kinematically forbidden, and this is enforced by the integral over the δ-function. We can
determine when this happens by solving for cos θ0

q(Q) = ±1, which yields two positive and
two negative solutions in Q. We only care about the positive solutions, which yields

Q± =

∣∣∣∣∣∣
V [ũ+ 2(E′ + Ef )M ]± (E′ + Ef )

√
ũ2 + 4M(E′ + Ef )ũ+ 4M2V 2

2(E′ + Ef )2 − 2V 2

∣∣∣∣∣∣ . (B.16)

As a result, we have

dσ = d3k
1024π5|p|V EkM

∫ Q+

Q−
dQ

Q√
M2 +Q2dφq|M|

2. (B.17)

Alternatively, one can leave the integral over Q unbounded, by noting that the integral of
δ(cos θq − cos θ0

q ) with respect to cos θq introduces a Heaviside Θ function, which automati-
cally enforces the bounds:

dσ = d3k
1024π5|p|V EkM

∫ ∞
0

dQ
Q√

M2 +Q2dφq|M|
2Θ(1− cos2 θ0

q). (B.18)

This is the approach we take when evaluating the integral numerically. To simplify things
further, we make a change of variables by introducing the Mandelstam variables t:

t = −q2 = Q2 −
(√

Q2 +M2 −M
)2

= 2M
(√

M2 +Q2 −M
)
. (B.19)

This has dt/dQ = 2MQ/
√
M2 +Q2, so

dσ = d3k
128π4|p|V Ek

∫ t(Q+)

t(Q−)
dt

( 1
8M2

∫ 2π

0

dφq
2π |M|

2
)
. (B.20)

We can now simplify the integral over d3k = |k|2d|k|dφkd(cos θk) by defining x = Ek/E, so
that dx/d|k| = |k|/EEk. Then,

dσ

dx d(cos θk)
= 1

64π3
|k|E
|p|V

∫ t(Q+)

t(Q−)
dt

( 1
8M2

∫ 2π

0

dφq
2π |M|

2
)

(B.21)

≈ 1
64π3

|k|
V

∫ t(Q+)

t(Q−)
dt

( 1
8M2

∫ 2π

0

dφq
2π |M|

2
)

(B.22)

where we have taken me � |p|. It turns out that the integral over φq can be computed
analytically. To do so, one must express the amplitude eq. (A.14) in terms of the integration
variables. We have

q · k = Q|k|
V

[
|p|(cos θ0

q cos θk + sin θ0
q sin θk cosφq)− |k| cos θq

]
(B.23)
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and

q · p = Q|p|
V

[
|p| cos θ0

q − |k|(cos θ0
q cos θk − sin θ0

q sin θk cosφq)
]
. (B.24)

With these, the kinematic terms that appear in eq. (A.14) can be represented in terms of
the integration variables. We have

s̃ = −
(

1 + E

M

)
t− 2(q · p) (B.25)

ũ = m2
a +m2

e −m2
τ − 2xE2 + 2|p|

√
x2E2 −m2

a cos θk (B.26)

P 2 = 4M2 + t (B.27)

P · k =
(

2M + t

2M

)
xE + q · k (B.28)

P · p =
(

2M + t

2M

)
E + q · p (B.29)

P · p′ = P · p− P · k . (B.30)

To compute the integral over φq, we note that the only place φq appears is in the cosφq
inside of q ·k and q ·p. As a result, each of the terms in eq. (A.14) can be written in the form

A+B cosφq + C cos2 φq + D

F +G cosφq
+ E

(F +G cosφq)2 . (B.31)

This can then be integrated according to∫ 2π

0

dφ

2π

[
A+B cosφ+ C cos2 φ+ D

F +G cosφ + E

(F +G cosφ)2

]
= A+ 1

2C + D

(F 2 −G2)1/2 + EF

(F 2 −G2)3/2 (B.32)

so in principle,
∫ 2π

0
dφq

2π |A|2 can be computed analytically. The constants A,B,C,D, and E
are complicated functions of the kinematic variables and differ term-by-term, so we do not
write them out explicitly. However, this substitution can be made in a computer algebra
system so that the only remaining integrals are over t, cos θk, and x.

The integral over cos θk is highly-peaked near cos θk = 1, but this can be simplified by
converting to an integral over η in the lab-frame. The angle of the ALP in the lab-frame is
given by

tan θlab
k = sin θk

γA(cos θk − vA/uk)
(B.33)

where vA is the speed of the ion in the lab-frame and uk =
√

1−m2
a/E

2
k is the speed of the

ALP in the rest-frame of the ion. This can be solved for cos θk, yielding

cos θk =

√
u2
k + (u2

k − v2
A)γ2

A tan2 θlab
k + vAγ

2
A tan2 θlab

k

uk(1 + γ2
A tan2 θlab

k )
(B.34)
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Figure 4. The differential cross section for the process eAZ → τAZa as a function of the energy
fraction x = Ek/p for ma = 0.1, 2.0, 10.0, and 20.0GeV, assuming an interaction strength
|Cτe|/Λ = 1TeV−1.

Then, the pseudorapidity of the ALP in the lab-frame is given by

ηk = − log (tan(θlab
k /2)). (B.35)

The differential cross-section is then given by

dσ

dxdηk
= dσ

dxd(cosθk)
d(cosθk)
dθlab
k

dθlab
k

dηk
(B.36)

=−sinθlab
k

1− vA√
u2
k+(u2

k−v2
A)γ2

A tan2 θlab
k

 γ2
A sec2 θlab

k

1+γ2
A tan2 θlab

k

dσ

dxd(cosθk)
(B.37)

where one must make the substitutions eq. (B.34) and θlab
k = 2 arctan e−ηk before performing

the integral. This final result for dσ/dxdηk can then be integrated over t, ηk, and x using
the trapezoid rule. The results of integrating over t and ηk for a range of ma are shown
in figure 4.
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