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1 Introduction

For the past decade, there has been profound progress in the understanding of the pertur-
bative S-matrix of N' = 4 super-Yang-Mills (sYM). Beginning with the all-loop result of
the four- and five-point amplitude, known as the Bern-Dixon-Smirnov (BDS) [1] ansatz,
combined with its strong coupling string theory dual [2], represents the complete answer
for n < 5-pt N' = 4 super-Yang-Mills. This result can be understood from the hidden dual
conformal symmetry in the planar limit [3] (see [4] for its string theory origin), which has
its origin in the duality between the amplitude and null polygonal Wilson Loops [2, 3, 5—
11]. The symmetry fixes the result up to functions of invariant cross ratios which are
absent for n < 5 [12]. Starting at n = 6, one finds deviation from BDS ansatz due to fi-
nite functions of conformal cross-ratios (remainder functions) [5]. However, by inclusion of
the fermionic part of the dual superconformal symmetry, one obtains differential equations
that iteratively determine the finite part of the amplitude [13]. This, combined with symbol
technology [14], initiated the bootstrap program, which culminated to the state-of-the-art
n = 6 MHV amplitude to seven-loops (NMHYV to six loops) and n = 7 to four loops [15-27]
(see [28] for a recent review). Starting from the seminal work of [29], the frontier for higher
multiplicities has been pushed to two-loop n = 8,9 MHV [30], (the symbol of) NMHV and
N2MHYV [31, 32], as well as that of three-loop n = 8 MHV [33].

Remarkably the dual superconformal symmetry that sits at the heart of the progress in
N = 4 sYM, was found to also emerge in the planar limit of a three-dimensional theory [34—
36]. This is the N/ = 6 three-dimensional Chern-Simons matter theory [37, 38] commonly
referred to as ABJM. It was speculated that since the same type of symmetry is present,
based on a different supergroup OSp(6]4) instead of SU(4|4) for N' = 4 sYM, the scattering
amplitudes of the two theory must share a similar structure. Indeed, on the one hand, the
BDS ansatz of ' = 4 sYM appears to completely capture the four-point amplitude of
ABJM theory [39], on the other hand, topological features unique to the kinematics of
massless scattering in three-dimensions reveal itself as novel non-analytic behavior of the
amplitude at one-loop to all (even) multiplicity [40-43]. These two features are fully fleshed
out in the six-point two-loop amplitude [44], which is the current frontier.

In this paper, we would like to extend this frontier to two-loop eight (and higher) points.
There are multiple motivations. The first, of course, is the verification that the BDS ansatz
continues to capture the infrared (IR) divergence of this theory. Second, the eight-point
amplitude provides valuable data for perturbative calculations as well as a non-perturbative
flux-tube program [45]: while the pentagon OPE [46] has proved to be extremely successful
for bootstrapping and non-perturbative computations of sYM amplitudes, explicit higher-
point data is needed to push such a program for ABJM amplitudes. By continuing to the
eight-point, our results will also provide us a window into the potential patterns of the
symbol alphabet of the theory, which may control the analytic property to higher loops
and provide the starting point for a bootstrap program. Finally, we would like to see how
the non-analytic pieces (in terms of sign functions), are extrapolated from the six- to the
eight-points. This may allow us to make a connection with anyon effects that was proposed
for the Chern-Simons matter theory with fundamental matter [47].



Our strategy for computing two-loop amplitudes can already be illustrated with a
warm-up exercise at one-loop, which gives new integrands for n > 8. Already for one-loop,
we begin with a set of the dual conformally invariant basis of the triangle and tensor box
integrals, and fix their coefficients using maximal cuts and constraints from soft-collinear
behavior; the integration is trivial, which gives well-known sign functions. For two loops,
the integral basis consists of kissing-triangle, double-triangle, box-triangle, and double-box
topologies. It’s highly non-trivial to find the correct set of numerators for these topologies.
Very nicely, as we show explicitly for eight-points, matching soft cuts, maximal cuts, as well
as vanishing collinear-soft limits, and three-point cuts will be sufficient to fix the integrand
completely. The integration is then performed using Higgs regularization: we find to our
satisfaction that IR divergences are again given by eight-point BDS ansatz. Very nicely,
we identify a subset of integral that directly gives the BDS ansatz, which we conjecture
to generalize to all multiplicities. After subtracting divergences, the finite part of the
amplitude is not only manifestly dual conformally invariant, and passes various stringent
consistency checks such as little-group parity and reflection symmetry. It is given by
only three kinds of uniform weight-two functions, which is the result of highly nontrivial
cancellations among higher weight contributions (and pieces beyond multiple polylogs)
from individual integrals. These functions have very simple symbols which satisfy physical-
discontinuity conditions, and the alphabet consists of letters that are simple polynomials
of cross-ratios as well as phases. The latter is unique to ABJM theory. They are dressed
with non-analytic sign functions, and all these interesting structures nicely generalize those
in the six-point amplitude [44].

The paper is organized as follows. In section 2, we review the basics of scattering
amplitudes in ABJM theory needed in this paper, including various symmetries they satisfy,
tree amplitudes, and leading singularities for maximal cuts up to two loops. In section 3,
we compute one-loop integrands and amplitudes from integral basis (dressed with maximal
cuts), and in particular, give explicit results for eight-point amplitudes. In section 4, we
move to the construction of two-loop eight-point integrands, using soft cuts, maximal cuts,
vanishing collinear-soft limits, and vanishing three-point cuts; we show that the cancellation
of unphysical cuts ensures that elliptic pieces, which appear in individual (double-box)
integrals, all cancel in the final answer. In section 5, we integrate all the integrals in the
eight-point amplitude with Higgs regulators. The final amplitude satisfies all consistency
checks, with IR divergences captured by BDS ansatz, and we comment on the analytical
structure, including all the symbol letters, in section 6. We end with conclusions and
outlook and collect more results in the appendices.

2 Preliminaries

We begin with a lightning review of the relevant ingredients. We will be interested in
the ordered amplitude of ABJM theory, denoted as A, (123 --n), where the external legs
alternate between two on-shell super-multiplets, denoted as (@I U 7). Here I =1,2,3 are
SU(3) indices, the linearly realized subgroup of SO(6) R-symmetry. The on-shell mutltiplets
transform as bi-fundamental representation (N, N) and (N, N) of SU(N) x SU(N) gauge



group. Thus only an even number of legs can form a color singlet, and the amplitude is
non-vanishing.

Since (®7, G 1) is a bosonic and a fermionic multiplet, respectively, the super-amplitude
is cyclic by two sites invariants up to a sign:

A, (123---n) = (=) 4,(345---2). (2.1)

Furthermore, under Z, little group transformation of individual on-shell variables A;, =
(X, mir) here pf‘B = (—1)i)\f‘)\?, Aiq = —A;q, the amplitude will attain a minus sign
for odd legs. Finally, due to the reflection invariance of the fundamental vertices, the
amplitude enjoys the following reflection symmetry [41],

An(123---n) = (=)"n=2/BH 4 (Tn- .- 432), (2.2)

where ¢ denotes the number of loops.

Due to the dual-conformal covariance of the planar theory, it is often useful to express
part of the amplitude in terms of dual variables x;, defined through p; = z;11—2; = ;41.
Dual conformal invariance is then manifest by embedding x; in embedding space, i.e., a
projective plane in 5 dimensions y; = (z;, 1, 2?), and

(t-)) =y y; = (@ — mj)Z = xfj ) (2.3)

The OSp(6/4) Yangian symmetry [34] of planar ABJM theory suggests that the am-
plitude can be written in terms of Yangian invariants. While infrared divergences render
part of the symmetry anomalous, it must be proportional to the tree amplitude and hence
the sum of Yangian invariants. Such invariants are nicely captured by the residues of the
integral over the orthogonal Grassmannian [36, 48]:

42 e 1 k(k+1) ™\ ok
==t |3k (o,
T 35 A (cC™) sk (c - A (2.4)

where C* are matrix elements of an k x 2k matrix, and M, are the k x k consecutive
minors of C' beginning with column ¢, i.e. M; = det(i,i+1,i42,--- ,i+k—1). The integral

is k%-dimensional subject to M—FQk—S delta functions constraints, where the —3 is due
to momentum conservation. Thus the remaining dimension is %2(16_2), to be localized

on the minors.

For eight points (kK = 4) we have a one-dimensional integral to be localized by the
vanishing of one of the minors. Note that since the orthogonal constraint is quadratic in
(', the solution is split into a positive and negative branch. Furthermore, as the minors
are quadratic functions in integration variables, the solutions come in pairs. Thus we will
label the residues for M; = 0, or the leading singularities, as LS4 1 2[i] where + labels the
branch and 1,2 the solutions. The explicit form of LS4 ; 2[i] is given in appendix B.

Importantly, the on-shell data (unitarity cuts) necessary to determine the multi-loop
amplitude can be expressed in terms of linear combinations of these leading singularities.



Beginning with the eight-point tree amplitude, which was identified as the sum over residues
of minors My and My in [36], amounts to

Agree — Z LS+’a[2] —+ Lsi7a[2] + LS+7a[4] + Lsf7a[4]
a=1,2

= - ( > LSy a[l] +LS_4[1] + LS4 4[3] + LS_,Q[3]> : (2.5)

a=1,2

Note that the eight-point super-amplitude should pick up a minus sign under a cyclic shift
by two. This is manifested from the denominator of the Grassmannian integral, where
MiMoMsMy — MsMyMsMg, and using that MsMg = —M;Ms due to orthogonal con-
ditions [48]. This can also be seen from properties of the leading singularities listed in
eq. (B.8). At eight points, the tree level amplitude is even under reflection symmetry
eq. (2.2), which also can be read off from the behavior of leading singularities under reflec-
tion in eq. (B.10).

Similarly, we can identify the one-loop maximal cut with linear combinations of leading
singularities. At the eight-point, we will be interested in triangle cuts where the loop region
satisfies (a-i) = (a-i+2) = (a-i+4) =0 (for : =1,2,--- ,8). The cut is then given by the
product of a 6-point and two 4-point amplitudes

i+2 i+4

As there are two solutions to the cut condition, we denote them as Czil 2t

3
Granies= [ TLdnhnfyant Ay ayag 20
=1

=tE

where the state sum is given by Grassmann-odd integrals, and the + is defined through
their relation with the leading singularities,

_Gas (LS4 20 4418 _ 1) [4]) _ CGibs (L4102 M4LS_1()[4)

zm +,2(1) —,1(2) ) 2\/m +,1(2) —,1(2) )
(2.7)

where (i-j-k) = V- )i-k)(-k) and C3,4(C54g) is proportional to

LSt [4]+LS_ 1[4] (LS4 2[4]+LS_2[4]) . That these two cuts are identified with the
same leading singularities reflects the fact that they can be written in terms of the same
on-shell diagram [49] . The remaining cuts are similarly identified, and we list them for



completeness.

¢t Ca.
2o~ (LSS ) 5ot = (LS LS e f2).
cE Cs,
e =+ (SeieBHIS l). 5o = (15 B+S e b)),
_Chr (LS 1 [1HLS_ 201 [1]) s (LS4 a@[+LS_ 12 [1])
2T 57 +.1(2) -2 )5 T35 +1(2) —1(2) :

We reminder readers that under the cyclic by two sites A; — A;_o, the one-loop maximal
cuts transform as:

6248 6;68 C468 C246
V248 J(2:6-8) M4658 - J/2-14-6)
cit it ct it
1,3,7 1,5,7 3,5,7 1,35 . (2.8)

Ja-3 1 Ja5-7) M 5-7)  J1-3-5)

by reflection {Aj, Ao, ..., As} — {A1,As, ..., A2}, they have

C2 ,4,8 Cl ,3,7 C4 ,6,8 0;5,7
V(2-4-8) \/13 ) J({4-6-8) \«35.n’
6;6 8 CljF,3,5 C2 4,6 61365,7 . (2_9)

J2.68 VI35 J2io Jis57

and for parity A; — —A;:

Coag ¢ (— )’+C248for1—8,1,2,3 Cigs ¢ (— )‘+C468forz—4567
Cigs ¢ (— yEties eafori=1,6,7,8 Ci s (- Yty 4gfori=2,34,5, (2.10)
Clys < () Crysfori=1,2,3,4, Ciy, ¢ (—)"F'C;,fori=5,6,7,8,
137<—>( )Z+C37forz—1278 C357<—>( )Z+C357f0rz—3456

where F; is the fermion number of leg i, and one-loop cuts remain unchanged under the
parity transformation in other cases. We see that for the legs displayed, the cuts pick up
additional Z5 weights. These excess weights should be canceled against the functions that
dress them. For the remaining legs the Z5 weight is canonical:

+ Lot
Cii = (2)"Ci - (2.11)

Finally, we consider the two-loop maximal cuts. At eight points, there are two types
of topology for maximal cuts, kissing triangle and box-triangle, which we denote as

| i+ 4 | | |

7 i -\
o] @] ]
| i | | |

(2.12)



Each of them is given by a product of five 4-point tree amplitudes, summed over the internal
states. For example, with a specific choice of i they are given by:

C [ax,bs] = /HHdW Au(1, by, —01,8) As(2,3, 03, —la) Ag(lr, —L3, b5, —L4)

i=11=1

X A4(—€5,4 5 EG)A4(_£6367 ?764) (2 13)

o ba) = [ TTTT AT 2. 6y A, 6 o~ A, 9
1=11=1

X "44( 2174’£,57 _€,6)-A4( /6? 6, 7, —Els) .

In the above the argument a4, by simply labels the two solutions for each loop region
on the maximal cut, so there are four solutions for a given two-loop maximal cut. Again
these cuts can be mapped to the leading singularities. These two topologies are actually
“equivalent” in a sense they are given by the same leading singularities. In the language
of on-shell diagrams, this equivalence is a reflection of “triangle-move”:

T 2 1 2
f 6
8 3 8 3

A 2
7 4 = 4
6 5 6 b 5
In particular, we have:
LSy 1[ ] [a’—H b:l:] -4 Cé< [a-i—a b:t]
’ 16 det(fl, 52,£3)det<€ £57£6) ab=as bi 4\/<8 -2 4)\/(4 -6 - 8)
T (2.14)

LSj: 2[ ] _ C><1 [a’—7 b:F] — Céﬁ [a’—7 b:F]

4| = + .
16 det(ﬁl,Eg,ﬁg)det(&,&,ﬂg) ab=a_bs 4\/(8 -2 4)\/(4 -6 - 8)

Note that the Jacobian flips sign between the two solutions, 4 det(¢y,¢s,¢3)] =

a=a+t
+2./(8-2-4) and 4 det(lq, {5, 46)|—;, = £ 21/(4-6-8). Other leading singularities and
cuts correspond to each other in the following manner:

L Cllasbal . Cllabe]
LSi’lm_i4\/(1.3-5)\/(1.5-7)’ LS*’Z[l]_izl\/(l 3 5)\/(35 5.7)
LS [2] = + Glas, be] LS..[2] = + Gla, bs] (2.15)
! 1/2-46/2 6.8 7 1/2-4-6)/2-6-9) '
LS [3] = £ Clo, be] LS. of2]) = £ Cla= sl

4/(1-3-7)/B-5-7) 4/(1-3-7)/3B-5-7)



Similarly, the box-triangle cut can also be identified with the same set of leading singular-

ities:
LSeald] = 16 det(Z] Ce%j [Z/j;ﬁl;ge' A - i4\/ e
1:%2:%3 4>*5%6 ab=a+,by (b+13)\/(468) (216)
LSj:Q[4] — Cg]j[a$7b*] -+ Cgt[a$7b*] )
’ 16 det (€], 0, ¢4)det (¢}, L, £5) A 4y/(b—-1-3)/(4-6-8)

Notice that here the Jacobian factor depends on the cut-solution for one of the loop regions,
i.e. b. This hints at a more involved integrand to reproduce the maximal cut as we will see.

Before closing, since all the on-shell data are given by leading singularities, the two-
loop maximal cut can be linearly related to the one-loop maximal cut. This relation will
be useful when one combines the constraint of soft-cuts, which reduces the two-loop to
one-loop integrand. Explicitly they are given as:

0;4,8 _ C§< [a—7 b—]_cbsﬁ [a— ) b-‘r] _ Cg}] [a’— ) b—] _ CEE [a—7 b+]
2v/(2-4-8)  4/(8-2:4)\/(4-6-8) 4/(b_-1-3)/(4-6-8) 4/(b;-1-3)\/(4-6-8)’
Gy Cllay,bi]-Cllay,bo] Clay,by] B C3-[at,b-]
2//(2-4-8)  4/(82:4)\/(4-6-8) 4/(by-1-3)/(4-6-8) 4/(b_-1-3)\/(4-6-8)’
CI&B _ C§<[a+vb+] _C§<[a—vb+] o C%T[a-i-’b-‘r} _C%’[a—ﬂb-i-] (2 17)
2//(4-6-8)  4,/(8-2:4)\/(4-6-8)  4/(b;-1-3),/(4-6-8) '
Cies _ —Chlay,b_]+C2[a_,b_] —CZlay,b_]+C% [a—,b_]

2468  4/(B824)/(46-8)  4/(b_-1-3)/(4:6-8)
3 The one-loop eight-point integrand and amplitude

Let us begin by constructing the one-loop integrand. Note that since the one-loop ampli-
tude is finite, in principle, no regularization is needed. However, since it will appear in soft
limits of two-loop amplitudes, we will derive integral representations which are manifestly
dual conformal invariant and thus amenable for Higgs branch regularization, i.e. it can be
expanded in m? the Higgs branch vacuum expectation values (vev).

3.1 Maximal cuts

There are two types of on-shell data that constrain the one-loop integrand: 1. the maximal
cut where three propagators connecting three massive corners are put on-shell, and 2.
when the momenta between consecutive massless corners are soft. On the maximal cuts,
the one-loop amplitude must satisfy:

cut — - i,0+2,i+4
042, 4 (1-14+2-i+4)

where 1/4/(i - i+2 - i+4) is the Jacobian for putting propagators on shell. For latter con-
venience, we define shorthand notations for the sum and difference of one-loop maximal

1
Ay = cE (3.1)

cuts, weighted by the Jacobian:

Ct . +cC. ct ., —c-.
B, ., = bk | Thik — Jbpk gk (3.2)

ik = v Dijr= :
RN R M N R



These maximal cuts are intimately related to terms in the tree-level BCFW recur-
sion [42]. In particular, combining eq. (2.5) with eq. (2.6) and eq, (2.7),the tree-level
amplitudes are given by sum over the difference of maximal cut on the two cut solutions:

t
ASree = D2,4,8 + D2,6,8 = —D1’375 — D173’7
= Dy, + D2as =—Dis7—Dss7- (3.3)

Note that the above representation also exhibits shift by one-site symmetry, where the extra
minus sign reflects the fact that exchanging the gauge groups corresponds to exchanging
k< —k.

Since there are no odd multiplicity amplitudes in ABJM, we cannot have massless cor-
ners. However in the case of consecutive massless corners, one can have three propagators
becoming on-shell, (a-i—1) = (a-i) = (a-i+1) = 0, when the exchanged momenta between
two massless legs become soft. In terms of the dual region, this corresponds to the limit
Yo — yi and the amplitude reduces to that with one loop lower:

AfL_IOOP — (_1)iA$f—1)—100P' (3.4)

cut
1—1,7,14+1

We will refer to such cuts as “soft cuts”.

3.2 The integral basis and one-loop amplitudes

We will determine the full integrand of the one-loop ABJM amplitude by requiring that all
maximal cut matches, i.e. eq. (3.1) and eq. (3.4) holds. To achieve this, we define a pair of
“chiral-box” integrals for any triplet (i, j, k),

(s _ 1 (i-7-k) —e(a,i,j,k, X)
LY 2(/a(a.i)(a~j)(a.k)i\@(a.i)(a.j)(a.k)(a.){)>

1 .. .
= §(It1'i (Zv.jak> :IZIbOX (ZyjakaX))y (35)

and the triangle integral is absent if any pair of the labels are adjacent; for example,
I (i—1,i,i4+1) = FIlex (i—1,i,i+1). Note that in the formula we have introduced a
reference point, X, which should cancel out in the physical one-loop integrand.

This combination has the desired property that it evaluates to 1 or 0 on the maximal
cuts. For adjacent soft-cuts, (a-i—1)=(a-i)=(a-i+1) = 0, I* (i—1,5,i+1) which only
involves the box integral, evaluates to

Cutts 11011 Toox (i—1, 4, i41, X) = /a5(<a-7;—1>)5((a-i))a((a-m))6(a’i/;l(’;"i;)l’X) ~1
(3.6)

For massive maximal cut the triangle integrals give Cutfi 42 iraltri (1,142,i+4) = 1. For

the box, due to the numerator we have

€(a,iyit2,i+4, X)|, oe = FV2,/(i - i+2-i+4) (a* - X), (3.7)

where a® represents the two cut solutions. On the cut the combination integral give:

cutl.%i 2,44 IF (i,i42,i4+4) = 1, cutj;. voipal T (0,i42,i44) = 0. (3.8)



We are now ready to write the general one-loop amplitude. By manifesting all massive
and soft maximal cut, we write:

n ) C:E
Aldoop — _ gtree NT(_yip 1 Gt X Sk (i . 3.9

n n 1221( ) box( + )+m§VQW 2 Js ) ( )
If one chooses one of the external regions as the reference point, X = y;, some of the
box integrals will be absent due to the tensor numerator. However, identities amongst the
maximal cut and the tree amplitude will ensure that all cuts are faithfully reproduced. This
is an alternative way of saying that the representation is X independent. For example, if
we choose X = yi, then the box integrals for the soft cut (n,1,2) will be absent from the
part proportional to A%®®. They however will be present in the massive cut part

Z\/# (i,n,2) 'X_yl (3.10)
B mg \/(i n-2) —e(a,i,n,2,1)
eV ey </ a-n)(a-2>iﬁ(a-z’)(a-n)(aa)(a-l))

where the i only sums over massive maximal cuts. This simply reproduces the (n, 1)-shift

for the BCFW representation of the tree amplitude. Similarly, choosing X = y; utilizes
the BCFW representation for the (n,4)-shift.

As an example, consider 8-points there are now 4+4 massive maximal cuts, (2,4,6)
and 3 cyclic by two as well as (1,3,5) and its counterpart. Similarly, there are 8 massless
maximal cuts. By choosing the reference point X = y;, we find the following combination
that satisfies all cuts:

Aé*lOOP _Atree [IbOX (172a3 4) 7IbOX (17374,5)+Ibox (1a45576) *Ibox (175)677) +IbOX (1567778)]

Z Cia £(3,5,7)+Bu,3,5Li (1,3,5) +Bu1,3,71exi (1,3,7) +B1s.7Luxi (1,5,7)

\/357

Z Caits +(2,4,6)+ (i —i4+2)+(i — i+4)+(i = i+6) | . (3.11)

\/246

The above manifests all even maximal cuts, i.e. (2,4,6) and its orbits, as well as (3,5,7).
For the massive cuts that involve 1, (1,3,5) (5,7,1) (7,1,3), they are reproduced when
combined with the contribution from the part proportional to the tree amplitude. For
example, the following terms contribute to cut (1,3,5):

_AgreerOX (17 37 47 5) + D3,5,7Ibox (17 37 57 7) + 81,3,5Itri (1, 3, 5) .

Using the relation between the tree amplitude and maximal cut in eq. (3.2), as well as
eq. (3.3), we see that indeed it evaluates to Cfg’g) on both cut solutions respectively. Simi-
larly, the soft-cut constraint eq. (3.4), is manifested by the box integrals in the first line of
eq. (3.11) except for the cut (8,1,2). This is reproduced by

D2,6,8Ibox (17 27 67 8) + D2,4,8Ibox (17 27 47 8) ) (312)

which reproduces the soft limit again using eq. (3.3).

~10 -



For completeness, we give the integrated result. Since the tensor box integrals can be
written as a total derivative, it vanishes, and one only needs to retain the massive triangles.
The massive scale one-loop triangle integral is

a(a-i)(a-j)(a k)

whose result is well-known

i V-G k) (k-0
4 /=i ) —iey/=(5 - k) —iey/=(k i) —ie’ (3.14)

and it can be further simplified to

Itri(i7 j) k) -

Ti(i, k) = gsgnc[(i - J)lsgn [(7 - k)]sgn[(k - 7)) (3.15)

by defining the sign function [42]:

sen i) = - YU 4y (3.16)
)k

and we can further canonically calculate the square root on the numerator by introducing

the spinor
.. 9 1 2 for 0 (1 \B)
(i-5)= Diit1, j—1 = —ZW v) OT Pj i1, j—1 = ) )™,
SO
sen (i) =~ 4 (3.17)
—(i-7) —ie
The one-loop eight-point amplitude now is
1—loop Nr .
Ay = 7 [Basg sen [(2 - 4)]sen [(4 - 6)]sen [(6 - 2)] +cyelic | . (3.18)

Thus the one-loop amplitude is given by the combinations of maximal cut, each summed
over the two solutions, weighted by the sign-function associated with the cut.

Before closing, let us verify that the result eq. (3.18) satisfied cyclic shift and reflection
symmetries. Since from eq. (2.8), the one-loop maximal cuts attain a minus sign under
cyclic shift by two sites, the above one-loop amplitude inherits this property. Under reflec-
tion, the cuts interchange according to eq. (2.9) and as a sum of two cut solutions, the sign
of B; ;1 is not affected by exchanging of £, while the sign function attains a minus sign.
To see this note that the sign functions come in the combination:!

oo . , . vi+1 +21i+3
sgn,[(i - i+2)|sgn.[(i42 - i+4)]sgn, [(i - i+4)] = < > ) . < 5 ) -
\/—pi,z‘+1_“ \/—Pi+2,z‘+3_16

\ —p; i+1,i+2,i+3
1,2 1 YA
e (3.19)

X - ,
\/_pi,z’+1,i+2,z‘+3_“

'Here, we use +/—p? implicitly represent the spinor bracket (uv) with p(;ﬁ = \,u)(o‘\u)m.
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where pr := > ;¢ pi- Under reflection, again say {A1,Ag,..., Ag} = {A1,Ag,..., A2}, we
see

(12) (34) VT4 L) (76)  \/Pirsa (320)
\/—Piz—ie \/—P§,4—i5 \/_p%,2,3,4—i€ \/_pg,l_if \/_P%J_ie \/_P%ﬁ,s,l_i‘f

The last square root in the numerator can be removed if we note that any vector in three
dimensions can be written in a bi-spinor form as Kug = p(o¥g), such that K? = —(u,v)%
We see that the three spinor brackets are mapped to reversed ordering,? and thus giving
the requisite minus sign satisfying eq. (2.2).

4 The two-loop eight-point integrand

The four and six-point two-loop integrands were constructed via imposing various physical
constraints on a set of dual conformal integrands [39, 44]. These include the matching
of (1) soft cuts, (2) maximal cuts, (3) vanishing collinear-soft limits, and (4) vanishing
three-point cuts. The first two were already discussed in our construction of the one-loop
integrand: at two loops, the only new ingredient is that there are two topologically distinct
maximal cuts,

Each maximal cut consists of four cut solutions. Collinear-soft limits occur when two-loop
momenta are collinear to a massless external leg, and lead to non-factorizable singularities,
which should not occur at two-loops since the leading IR divergence occurs at this order
(see [44] and reference therein for a more detailed discussion). Finally, at two loops, one can
have internal trivalent vertices which must vanish on the cut due to vanishing three-point
amplitudes. We will demonstrate that the eight-point integrand can be fully determined
using such on-shell data. As a further consistency check, we will show that the resulting
integrand vanishes on any multi-particle cut that involves odd-multiplicity amplitudes.

2To see this sign for . /=D?\1.i12.i43> One can simply take double collinear limit where p; || pi+1 and
Di+2 || pi+3 and apply the reflection.
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We begin by first introducing the topologies of two-loop integrals that participate in
the constraints discussed above. First, for soft cuts, we have:

it2 i+2 i+2
| | |
b . . db . . . db . .
IA7i7j . i+ 14— 7 IB,’LJ i+ 14— J o IC,’L D1
|
| ., |
i 1 i
i+ 2 i+2 i+ 2
| | |
b . ; db . db .
ID,i,j N i+ 1 J oy IE,i,j . i+1 - j y [F,Z M i+1 =
|
= : I
(2 i i
i+2 i+2
| |
[ [
bt . . . bt ..
IA,’i,j I = J o IB,’L Dot 4+1 4= (42)
| |
| |

where we have used superscripts db and bt to represent double-box and box-triangle topol-
ogy, respectively. Note that Ifffi’j correspond to two cases for fixed i, with 7 = i4+4 and
i—2. The same is true for other topologies with an extra label j; for 19 I%lfh ; and Ig{’i

A7i7j’
topologies participate in two distinct soft cuts.

The topologies entering the two types of maximal cuts are:

i+4
——
Igffl D2 4, Igfl : (4.3)
——
(3
where kt represents kissing-triangle, and
i+2 .
— S
I i + L, I + -+ (4.4)
| ] ]
I [ i [

At this point, all double-boxes and box-triangles are fully determined. What remains
is the double triangles which can be fixed by the remaining two constraints.
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The collinear-soft singularities occur for the following topologies:

i+2 i+2
| | | |
db ' ' db 1 l
Tajj i+t -+ i dpit e 1
% i
i+2 i+2 ,
| 142 I
I I
bt .. . bt .. bt .
IA,i,j Do+l -+ J o IB,i coi+1 — s IC,i . -1
|
[ )

dt . dt .
Lioit3,i-3 v Lot

Once again, Igfjm, I%t and Ibctvi contains two separate soft-collinear singularities. Finally,

the topology that is involved in the three-point amplitude sub-cuts is:

2

i+2 it2 i+2
| | | |
T ] T I
db . _ .. . .
[BJJ: i+1 +1 J o [DJJ' i+1 —+ Jj o, IE@j' i1 £ j
| |
i i ry
| it | i+2 i+4
| 1
db . . dt ) dt .
Ig o i+ + v iivoigo: @é v L aiga %@é
, i i
1
i+4 i—2
dt ) dt .
Liitoit2i-2: o Liivoiioivat . (4.6)
i+2 i it4 i

The on-shell data controlling the soft cuts are the one-loop maximal cuts. Since the
double-box integrals I %{’i are subject to both soft-cut and two-loop maximal-cut constraints,
this tells us that the tree, one and two-loop on-shell data are not independent. Indeed they
can all be expressed as linear combinations of leading singularities as previously discussed.

4.1 Soft constraints

Let us begin with the soft constraints which restrict the numerators for the topologies listed
in eq. (4.2). Without loss of generality, we consider the soft channel 1,2, 3, where the inte-
grands share the common propagators 1/(a-1)(a-2)(a-3). Following the one-loop discussion,
it is natural to introduce the Levi-Civita numerators €(a, 1, 2,3, #) such that on the cut:

[ 8@ 0)d((a-2)8((a-3)) e(a,1,2,3,%) = Vb (4.7)

The task is to find suitable vectors to contract with €(a, 1,2, 3, #), such that one reproduces
the one-loop box and triangles in the soft limit. Starting with double box topologies, the
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one-loop box integrals can be obtained by contracting with the vector that is the box
numerator with yo removed, while the triangles are reproduced if one contracts with y.
Beginning with topologies Ifibl Nt I Blijo and [ d{)i, since these contain two soft cuts, one
for loop a one for b, their soft limits should only lead to boxes. This is because there are no
one-loop triangles with massless corners. For example, for I%l,s we introduce the double

epsilon numerator nfg, =€(a,1,2,3, ")e(b,4,5,6, ,)/2, we find

¢(b,4,5,6,2)

4)(b-5)(b-6)(b-2)°
(4.8)

Similarly, on the soft cut for b we find the one-loop box I (1,2,3,5). Readers can verify

| 8@ 1)o((a2)6((@3)) 1 slnhas) = Foos (4:5.6,2) = /f

by themselves the similar construction of the numerators for I%b

' j» and ICZ can produce

other one-loop box in (3.11). Here we simply give their results:

1 o
nd; = g€(a 41,42, F)e(b, j=1,5,j+1, 1),
1 . ‘ . .
ndez,] 26(&,2,2+1,2+2, M) 6(b7]_17]7]+17 M)? (49)
1
ng, = o€ (@0 11,042, 1) € (b, 14,145,146, 1) -

The remaining double boxes in eq. (4.2) will produce both one-loop box and triangles.
This suggest that each topology contains two distinct numerators. Let us use 1% D.i,; as an
illustration. For 1% D 1,50 introducing the following numerators

1 1
nP sy = 5e(a, 1,2,3, ")e(b,3,5,1, 1), ny 5, = \ﬁe(a,l,Q,S, b)y/(3-5-1)  (4.10)

where we use the subscript b,¢ to indicate their fate under soft cuts, i.e., they reduce to
one-loop box and triangles respectively. Indeed one can verify that:

/a5((a‘1))5((a'2))5((a'3)) I 5B 560 = Toox (3,5,1,2)

[ 8@ 18- 2)6((a - 3)) 18y 5101 50) = o (1.3.5). (3.11)

Similar definitions of numerators apply for topologies I%bz j and I%?i.

Finally, for the box-triangles I%,i,j and Igi, we expect their soft cuts to reproduce
the one-loop triangles. However, this is insufficient to fix the form of their numerators
uniquely. We will postpone the determination of n® Az J and n ; till the discussion of
vanishing collinear soft where they can be fixed. For now, we will 51mply assume that their
soft-cuts lead to the correct one-loop triangle.

Since each diagram under the soft cut is matched to the one-loop box and triangle
integrals in a one-to-one fashion, the coefficient in front of each integrand is uniquely
consequently determined by the one-loop amplitude. Summing all the soft-channels ¢, ¢+1,
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1+2, we write down the “soft” part of the two-loop integrand:

2-loop tree db db db :
Agsorp = Ag - X [_IA,l,S +1Ig1 4+ 10 + CyChC}

+ |=Dras B slne]l = Diar B zlm] = Dyl slms] = Dusalfy zlne] — Das sl ng)
+ Buss B sl + Busa B z[na] + Basal g slndd + Bus,rIi 7[ne] + Bagslica [ni]

+82747613f’1’5 + 82,6,81%177 + 827478]5)571 + (—)cyclic} (4.12)

where (—)cyclic indicates that one sum over cyclic permutations with alternating signs.
From here on we only display numerators of integrals that are not unique. For example,
there are two numerators for Ifl)lim indicated by IdDb’w[nb,t], whereas the numerator for
Ifﬁlll?lﬁ is uniquely given in eq. (4.9), and we suppress its display.

4.2 Maximal cuts

We now move on to the matching of maximal cuts, where for each cut there are four
solutions labeled with {ay,bs}. There are two topologies entering each cut, so we aim to
construct numerators such that one can have combinations that evaluate to 1 on one of the
solutions, and zero for the remaining. As it turns out, from the point of view of individual
topologies, it will be easier to identify numerators that evaluate to +1 on the cut. As long
as the sign pattern is distinct for each numerator, their linear combination can lead to the
desired result. We discuss two cuts separately.

Kissing-triangle maximal-cut C;'q. We first consider the maximal cut corresponding

to the kissing triangle:
| 144 |

The cut involves two topologies, a double box Igfi and a kissing triangle I’gl Without loss

of generality we take i = 1 where the cut conditions are (a-1) = (a-3) = (a-5) = 0 and

(b-5)=(b-7) = (b-1) = 0. This generates a Jacobian factors 1/,/(1-3-5) from a and
1/4/(5-7-1) from b.

If we choose the numerator for the kissing triangle integral to be the inverse of the
Jacobian factors, then the integral evaluates to one on all four solutions on the cut:

IE = 1 nt", nffz\/(z'+4-z‘+2-z’)\/(z'+4.z'—2-z'). (4.13)

For the double box integral, we then consider the numerators involves in the five-component
Levi-Civita tensors, which evaluate to inverse Jacobian factors with +1 depending on the
cut solution:

o
6(“71’\/35’5’) =+/(5-3-1)ak,
a=a4
(4.14)
W5TLM e
\/Q b=b+

~16 —



One then only needs to ensure that they are contracted with appropriate vectors such
that when both a,b are on the cut, they evaluate to (a - b) to cancel the remaining uncut
propagator. This leads to three potential numerators:

ndb . E(CL717375, 'u)e(b7577717 N)
G,l,a - 2
(1-3-5)e(b,5,7,1,a)
n‘(i;b’Lb : \/7\/5 (4.15)
db 6(&,1,3,5,1))\/ (571)
nG’l’c : .
V2
We summarize the residues of the integral under four solutions of the maximal cut below
(a*,0%) =1 (a*,bt) = 1
o) =1 (a*t,b7) = —1
Idb ol : (CL ’ Idb )
G,l[n ] (a_,b+) -1 G,l[nb] (a‘,b‘*‘) -1
a",b7)=1 a",b7)=-1
(a,b) (a,b) )
(a*,0%) =1 (at,bt) =1
) =1 (at.b) =1
Idb o (a ’ Ik‘t ) )
G,l[n ] (af,bJr) -1’ G,1 (a77b+) -1
(a™,b7)=—-1 (a=y07) =1

We see that the sign for the first integral depends on both {a4, b4}, the second only on b4,
the third on a4 and the last is independent. As the sign pattern for each integral is distinct,
requiring that the linear combination of integrals allgjl [na]+ 51 Igﬁl [np] +71 Igfl [ne|+01 I’gf,l
produce a correct two-loop maximal cut, completely determines the coefficient to be:

1 % C>1<1[a’+’ b+]+cbl<1 [aJrv b*]7C>1< [CL,, bJr] 7C>1< [(I,, b*]

o 4 \/(1 -3 5)\/(1 5-7) 1,3,5 1,5,7
B = 1 —ClLay,by]4+Cllay,b ]4+CLla_, b ]—Clla_,b_] s
4 V(1-3-5)/(1-5-7) 3, .
1 —Cllas byl+Cllay, b ]—Clla_ by+Clla—b] |
nTa V(1-3-5)/(1-5-7) 1,57
5, Ly Gl bal+Cllar b JClla byJ+Clla- b] _ 5 5
! VI 3-5(1-5-7) = D135 = Dis.

The general solution of ailglii [na] + Bilé’ji [np] + %Iébﬂ- [ne] + 6ilgfi for : = 1,2,3,4 which
produce correct two-loop maximal cut can be summarized as follows:

) *D;iq2,i04 = (=)' Dijaioa,,

i
i

) Biit2,it4,
i

(67 (—
fi=(= (4.18)
Y= (—

) Biva,i—2.

0i = Djit2,i+4 = Diyai—2,-
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Box-triangle maximal-cut Cg 1. We now move on to the box-triangle:

| |
N
z+1/\_|

| |

i+1 .
citl

In this case, we have a double box Ijlji and a box-triangle Igt’i contributing. Since the

numerator for Iff”i has already been fixed by the soft-cut consideration, the task is to
determine the numerator for the box-triangle integral. Let us consider C2-, other cuts
are related by cyclic permutations. An important distinction with the kissing-triangle
Ci,, is that here the Jacobian factor from solving (b-4) = (b-6) = (b-8) = 0 and
(a-1) = (a-3) = (aby) =0is1/(\/(4-6-8)y/(bx - 1-3)), i.e. it depends on the solution by
This suggests that the numerators will be more involved in reproducing the maximal cuts.

First the numerators for the double box integral of type Ij‘g”l was given in eq. (4.10),

ngty = €(a,1,2,3, ")e(b,4,6,8,,)/2, n¥, =e(a,1,2,3, b)\/(4 -6)(6-8)(8-4)/V2.
(4.19)
The first numerator evaluates to =1 depending on a+ and b4, while the sign on the cut
for I%’l [n¢] only depends on ay. For the box-triangle Ibcfl we will also introduce two sets
of numerators (nlgZ o n%tl 5), so that the former evaluates to +1 on all four cut solutions
and the other +1 depending on by. For ngm the numerator can be further constrained
by the cancellation of soft-collinear divergence. Here we simply give the result, leaving the

details to appendix D:
o 20014+ 1)(i+3i+4) (0 + 50+ 6)(i + 2|piit1]t — 1)
e e(i,i+2,i+3,i+5,i— 1) (4.20)
X (ai(b . z’)+ai+2(b . z’—|—2)+ai+3(b . z’+3)+ai+5(b . z’+5)+ai_1(b . i—l))

where

a;=0{+2-i+5)(i+3-i—1)—(+2-i—1)(i+3-i+5),
Qipo=—(i-i+3)(i+5-i—1)+@G-i+5)(i+3-i—1),
Qivg=(-i+2)(i+5-i—1)—(i-i+5)(+2-i—1), (4.21)
aips=—(-i+2)i+3-i—1)+(@-i+3)(i+2-i—1),
(i-i+2)(i+3-i+5) —(i-i+3)(i+2-i+5).

Qi1

For nlgi 3 one has:

" 1 €(i,i+1,i42,i+3,i—1)

n-~ - = —
Cyi.B V2(i41 - i43)(i4+1 - i—1) €(i, i+2,i+3,i—3,i—1)
w [(i - i—3)e(byi+2,i43,i—3,i—1)+(i—1-i—3)e(b,i,i+2,i+3,i-3)] , (4.22)

NCENTEREY

one can numerically verify that with this numerator the maximal cut has a relative minus
when evaluated on b+. Note when generating kinematic data for the cut solutions, one
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should ensure that the resulting internal momenta can be identified with solutions to 6 (¢2),
i.e. 0 > 0. We will discuss this in detail in appendix E.
We summarize the sign on the maximal cut as follows:

(a*,b+) = (a*b%) =1
at — at,b7) = —
17 n) @Zﬁzj,famy((ﬁ%_l,
(a=,b7)=1 (a,b7)=— (4.23)
(at,b*) =1 (at,bt) =1
a )= at =
R RIS AR S A S
(a™,b7)=-1 (a=,b7) =1

We can now solve for coefficients for the linear combination aﬂ%{’l [np] + ﬁll(bj 1ngl +
vl }1}7’1 (] + 5113{ 1[na], the coefficient can be solved by the maximal cut:

CED[CL_;,_, b+] — Cg]:l[a’—7 b+] CED[CL_, b—] — Cgt[a-h b—]
oy = = —Doysg = —Dygpg
4/(by -1-3)\/(4-6-8)  4/(b_-1-3)/(4-6-8)
3 _ Chlay, byl +Cola, by]] n Cxlay,b-] +C%[a_,b_] _ B
YT/, 133 6.8 40 1-3)/& 6.8) (424
_ C%][a+a b+] — CED[(I,, b+] C%:‘I:a/+7 b*] — ng[a,, b*] —B '
/s 1-3)VE6.8) 4/ 1-3)J/@ 6.8) 68
C2far,be) +Cofa,by]  Chlap,b]+Chlab] _ o
o = =Do48 =Dygss -
4/(by 1-3)\/(4 6-8)  4,/(b_-1-3),/(4 6-8)
We can obtain i = 2,3, ..., 8 in a similar way. The general solution of o; 1% [nb]—i—ﬁzI g? ;[ngl+
vl Fz[nt] + 51,]3 ;[na) for i =1,2,...,8 which produces correct two-loop maximal cut citt
can be summarized as follows:
= ()" Di_1ir1i03 = (=) Di_3i-1.i+3,
= o Bz ;41,7435
(— )H-l 1,i+1,i+3 (4.25)
= ( ) Bz 3,i—1,i4+3;

52‘ =Di_1,i+1,i+3 = Di—3,i—1,i+3.

Thus we see that in addition to Ag ;g(f)f’ , the matching to maximal cut requires us to

introduce the following set of integrals:

1 1 1 .
ATO® = —5 D248l @ [na]+§5’2,4,81 & [nb]+534,6,8fgf1 [ne]+Ba,asI¢ [ng]+(—)eyclic
1 . .
+ §D2,4,SIIC€T'€1 + ’D27478]g€1 [na} + cyclic. (4.26)

Note that the double box integral If?, was already included in AZ% " One can check

that its coefficient is fixed by maximal cuts, —Dys¢ g for Ij;lf’l [np] and Bagg for I }1,{’1 [ne], is
identical to that fixed by soft-cuts listed in eq. (4.12).
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4.3 Collinear-soft constraints

The implementation of soft-cut and maximal-cut constraints completely fixes all the double-
box numerators and the numerator of one of the box-triangles, Igfﬂ-. The remaining box-
triangles and double-triangle will be fixed by the requirement of vanishing collinear-soft
limits. This corresponds to when the two-loop momentum becomes collinear with a mass-
less external leg. In terms of region variables, the limit can be parameterized as:

Yo = Vi + Talit1,  Yb = Yi + ToYit1 (4.27)

where p; = y;+1—y; is the massless external momenta.

As discussed previously, collinear-soft occurs for topologies Ifffm, I%{’i, I%m, Igi, Igi,
I# s g and I o i We introduce the numerator for double-triangles as:
dt . ydt dt dt e iNge
i1,d03is,04 - Li1,iais,ia [n™], n™ = (i1 - i2) (i3 - i4) - (4.28)

As we will see, the collinear-soft limits of double boxes are canceled against double triangles,
while triangle-boxes cancel among themselves.

Double-box and double-triangles. Let us begin with the double box integral Ijl‘l?i’j.

Choosing j = i+4, in the collinear limit where y,, y, is sent to (y;+2, yi+3), the divergence
becomes proportional to:

13 i45)(i - i42)
db. _ (4
Aditd =TT (i)

(4.29)

This can be directly cancelled by the double triangle Iff;‘f +2:i+34+5- Lhus the following
combination is finite in the collinear-soft limit:

db dt
ITiiiva + Liitoy3its - (4.30)

Next, consider the double-box integral I;f%, which has two potential collinear-soft lim-
its, Ya, yp is sent to (yi, vi—1) and (yit2, ¥i+3). When dressed with the numerator ndFlfM, the
€(a,i,1+1,i42,b) vanishes in the limit, so we only need to consider I%f’i [np]. Similar to the
previous case, the following combination with double triangles:

db dt dt dt
IF,i[nb] + 1iiv0443i-1 — Lii42:i+3,i45 — Liit2ii45,i—15 (4.31)
is finite in both collinear limits.

Box triangles. For the box-triangles, I gt’i’j and I%t,i were partially constrained by soft-
cut conditions in subsection 4.1, it should reduce to one-loop triangle under soft-cut. This
suggests that their numerator take the form

e(a,i,i+1,i+2, X)
V2(i+1- X)

where X is to be determined and /(I -J - K) is the inverse Jacobian for the one-loop

triangle. For I%ij,

by choosing X. For j = i—2 we chose X = i—1, while for j = i+4 we chose X = i+3.

(I-J-K) (4.32)

since there is only one-collinear soft regime, it can be rendered finite
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For I %t,i there are two potential divergent regions, and choosing X can only remove one
of them. The remaining is to be canceled by Ié’ii. There are two numerators for Ig{i, nlng
and nlgz 5 denoted in eq. (4.20) and eq. (4.22). Only the latter has non-trivial collinear-soft

contributions for y,, yp is sent to (y;, yi—1)

n%i o - (b-i—3)e(i, i+1,‘i+2, i.—|—3, i-—l)\/.(z'+3 -i—3-i—1) . (4.33)
v V2(i41 - i+1)(i+1 - i—1)
This cancels against Ig’i with a numerator:
i1 it 543
I, = Ig,n%,], nf, = ela, b, itl, 142, it )\/(H—l ie1-i-3). (4.34)

V2(i+1 - i+3)

Thus all the box-triangle coefficients are completely determined.

4.4 Vanishing unphysical cuts

So far using soft, maximal-cut, and collinear-soft constraints we have determined the
double-box, box-triangle and a large class of double-triangle numerators. The remaining
can be fixed by requiring the absence of unphysical cuts, in particular cuts with three-
particle sub-amplitudes.

We consider the triplet cut (a-i) = (a-b) = (b-4) = 0 in the double boxes, which
separates out a three-point sub-amplitude and thus vanishes. Three-particle cut occurs

in the topology of I%ljm-, I,%bm, I%ljm-, and Iél?m- We add the double triangles I%H;iﬂ,i’

IE pivais I 004 o and I o001, involving in this cut to cancel the ones in the
double boxes. The numerator for the double triangle is just as (4.28) we introduce in
the previous subsection. As a consistency check, we further verify that once we use the

three-particle cut to fix the integrals, higher odd-particle cuts are automatically absent.

Double e-numerator. We begin with canceling the tree-particle for the doubles boxes
whose numerators are double e-tensor contract together. First, The double box I%b’iyj (say
i =1,j = 4) have the triplet cut (a-3) = (a-b) = (b-3) = 0 cutting out the . It can be
canceled by Iffy ;o

i+2
i1 4 it =0. (4.35)
i i+4

For double box I%bﬂ-’j [mp] (say i = 1,7 = 5), there are two three-particle cuts, (a-1) =
(a-b)=(b-1)=0and (a-3) = (a-b) = (b-3) = 0. The first one (red) can be canceled by
adding Iflf&g,l, Iflf3;5’1. The second one (blue) can be cancelled by I{lf&g’l, Iff3;3’5. That is,

i+2 i+2 it2 itd
I |
LD e
] ] 7 i+4
i i
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For double box IE”[nb] (say i = 1,5 = 7), its has three-particle cut (a-1) = (a-b) =
(b-1) = 0. Adding the double triangle Iflf3;571 and Iff3;7’1, we have

i+2

i1 4 i+ — -0 . (4.37)

Finally, perhaps the most complicated case is the non-soft integral Igfl [ng]. It has
triple cut (a-1) = (a b) = (b 1)=0and (a-5) = (a-b) = (b-5) =0. The first one (red)
is cancelled by —I{% s | + If%.; | + I{%.5 1 — I{%.; . The second one (blue) is cancelled by
—If s+ I 57 + 195,51 — 1§55 7. The combination is free of three-particle cut:

| | it

SR A >%>< %
Z
P42 i+ 4
L+2

Single e-numerator. The triple cut is rather trivial in the single e-numerator. The

(4.38)

diagrams themselves vanish in the triple cut:

i+ 2 i+2 i+4
] ] | ]
T | | |
i+1 —+ i o= i+l —+ i = i+2 - =0
! ! | ] | ] (439)
T I P [ |
2 1 i
IH1 s [nd] I 7 ) & [m), 18 [n)

4.5 The complete eight-point integrand

We have now fixed the two-loop eight-point integrand. It consists of three parts, reflecting
the sequence of on-shell constraints used to fix the integrand: the soft-constructible, the
maximal-cut, and double-triangle integrands. The latter is determined by the cancellation
of soft-collinear divergences and vanishing cuts with three-point sub-amplitude. We write:

AZloop — pZloop | pZloop 4 pZloop, (4.40)

8,soft 8, max—cut
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Ag a 1 b + D375’7 a - -+ 5 + D1A5’7 a 1 p4+7 =0

|

|
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L 1! | [
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IC,l IE11,5 ()] IE,L? (18]

Figure 1. The integral I, If, ; [ny] and If?, ; [ny] will contribute to the elliptic cut (a-1) =

(a-3)=(a-b)=(b-5) = (b-7) = 0. Due to isolating five-point sub-amplitude, the elliptic function
will cancel in AgI’) + Dy s 7IF, 5[] + D s 7IF, 7 [ma)-

.. 2-loop 2-loop
The explicit form of Ay n"and Ag Ly oy

while AT 0P = AF, + A%

. are given in eq. (4.12) and eq. (4.26) respectively,

coll 1s given as:

tree dt dt
Spt = A Z 4,14+2;0+2,i+4 + Z D, Ji+2,1+4 Ii7i+2;i+2,i_Ii,i+2;i+2,i+4 I’L Ji+25i+4,i

i=1

dt
+Ii+2,i+4;i+4,i+2 —Ift 42,4544, Iz+2,i+4;i,i+2+I T 4i—2siAT I 4 2:i42,i+4

4
dt dt i dt dt

120004 — LiZo i | — Z(—l) D it2,i+4 {—]i7i+4;i+4,i+Ii,i+4;i—2,i (4.41)
i=1

dt dt dt
I i aiot ot I 2 i i Iz,i+2;i—2,i_Ii+2,i+4;i+4,i—2:| :

tree
Acoll A Z Iz 425143,14-5
=1

8
=2 (-D)'Diii2,ita {Iidii’),ifl;i,i+4 I viiv2— 150 140 z+4]

i=1
In the above, we’ve organized the double triangles in subsets that manifest the vanishing
three-point cut and soft-collinear divergences once combined with the double box integrals.
The complete integrand is now determined. As further consistency checks, one can
check whether other cuts with odd-point amplitude vanish. For example the following cut

on Igﬂ%’:s

contributes to a cut containing a five-point tree amplitude and must vanish. Indeed it
cancels with contributions from 21 other double-box and double triangles.

The cancellation of such cuts actually plays an important role in the simplification of
the integrated result. Consider cutting two more propagators leaving one degree of freedom
of loop variables unfixed as in figure 1. This cut introduces a Jacobian factor of the form
J = \/Q(z) . If the square root cannot be rationalized, then one has an elliptic integral.
For example the cut (a-1) = (a-3) = (a-b) = (b-5) = (b-7) = 0 is elliptical. However,
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+—a 4+ b 4 + “ 4— b 4+~ 7 =0,
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Figure 2. The integral Igfjl [nq] with contribute to the two elliptic cuts: (a-3) = (a-5) = (a-b) =
b-7)=0®B-1)=0and (a-1)=(a-3)=(a-b) =(b-5) = (b-7) =0. These two cuts will isolate
five-point sub amplitude so the elliptics will cancel with other integral.

since such a cut isolates a five-point amplitude, it must vanish. Indeed the combination of
Aglgffl + D3’577I%lf175 [1p] + D1,5’7I%€177 [np] under the cut is zero, illustrated in figure 1.

Some integrals contribute to more than one elliptic cut. For example, the integral
Igl;ljl [ng] will contribute the two elliptic cut (a-3) = (a-5) =(a-b)=(b-7)=(b-1)=0
and (a-1) = (a-3) = (a-b) = (b-5) = (b-7) = 0. Both of the cuts will isolate the five-point
sub-amplitude so they will vanish in the end. In the first cut, the Ig;lfl (g + I%If&? [np]) =0
while in the second cut, Iglil [na] + 1%13577 [np] = 0 as shown in figure 2.

The above analysis tells us that while each individual integral will contain elliptical
pieces, they will cancel when combined. This is indeed what we find in the next section.

5 The computation of two-loop integrals

We now proceed to integrate the eight-point two-loop amplitude. Many of the integrands
are kinematically equivalent to ones already computed for the six-point two-loop, and thus
their result can be directly imported. For example, the double triangles at eight-point do
not add the new topology, while Ijélji,j is kinematically equivalent to the “IP” integral

in [44]. The kissing triangles Igtl are the new topologies that can be straightforwardly

integrated:
I _/ VA-3-5V(5-7-1)
G Jap (- 1)(a-3)(a-5)(b-5)(b-7)(b- 1) (5.1)
w2
= - 380[(1:3)]sgn[(3-5)]sgn.[(5-7)]sgn[(7-1)] -

Here we will focus on the remaining double-box and box-triangles.

5.1 Generalities: kinematics, regularizations and all that

Before proceeding, let us first recall the kinematics for eight-point amplitudes in ABJM.
It is easy to see that we have twelve multiplicatively independent (dual) conformal cross-
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ratios, which we denote as:

i i +2)(i+3-147)
i+ 3)(i4+2-i+T7)
i1 +3)(i+4-i+7)

L L i=1,2 3, 4
T i )i +3-iv7)

General cross-ratios are monomials of u; and v; variables, and as a shorthand notation, we

Ui =

=1,2,,8
(5.2)

—~~ |
~

define the product of v and v:

uy 1= I_IuZ and vy := Hvi. (5.3)
icl iel

Note that these 12 cross-ratios are not functionally independent as they satisfy 6 Gram-
determinant constraints, reflecting the fact that all the dual points live in D = 3. This is
equivalent to the requirement that embedding variables y;—1 2 .., live in D+2 = 5 dimen-
sions, or that any 6 of them must be linearly dependent. They amount to the conditions
that any 6 x 6 Gram determinant of the form G;, ;s = det[(a - b)|qp=i,... is] Must van-
ish. A convenient parametrization can be obtained using momentum twistor variables [50]
subject to D = 3 conditions [51]: as discussed in [52], we first parametrize the n = 8 DCI
kinematics in D = 4 using 9 variables from a quiver of G4 (4,8), and the reduction to D = 3
amounts to certain “folding” of the quiver which has 6 variables. One such parametrization

in D = 4 gives a 4 x 8 matrix Z/_, , g (for I =1,2,3,4) [53]:

1 9789 fi98405 fafrfs905. Jifafsfrfsfo 0 0 0
0 1 gus6  fagsieo Nfafs(fofo+fo+1) fifefafsfo 0 0

0 0 1 91,23 f(fsfot+fot+1) fifa(fs+1) fifafs 0
0 O 0 1 1 1 1 1

Z = (5.4)

where we introduce shorthand notation g; ;1 = fifjfr + fif; + fi + 1 and g§7j7k’l =
fi(fifufi+ fifu+ f; + f +1) + 1. By reducing to D = 3, we have 3 additional con-
straints

_ 1 9123 _ fsfat fot1
f7 - ) f8 — 7 7/ r | 4\ fg - T
fi(fsfat fot+1) f2(f3+1) f3
thus our eight-point kinematics is parametrized by f1,-- -, fg. Though we will not explicitly
use it, for any cross-ratio of (5.2) we simply replace (a - b) — (a—1,a,b—1b) where the
bracket is defined to be (i, j, k,1) := det(Z;Z; Z Z;).
Now we move to Feynman parametrization and regularizations for all the integrals.
For example, the one-loop triangle can be parametrized as

1 1
F(?’)/a (a- AP a(LA- AP (5:5)

where A is a sum of dual regions multiplied by Feynman parameters. For two-loops, e.g.the

double-triangle takes the form:
/ 1 . /oo dc da;db; 1
ab (@-A)?(a-b)(b-B)?  Jo dmy/ec) vol(GL(1)) ((1 +e)la-A+4A.B+1B- 3)2
(5.6)
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where A = > a;5; and B = Y b;y;. Due to dual-conformal invariance, any box must
be accompanied by loop-dependent tensor numerators. These can be readily rewritten as
derivative operators acting on the above formula for double-triangle integral. For example,
the double-box integral with double e-numerators can be written as

/ e(avilai%ii’n M)E(bajlvj%j?n ,u)
ab (a-ir)(a-iz)(a-i3)(a-b)(b- j1)(b- j2)(b- j3)
_ /OO de dazdbl 6(8A7i17i277:37 H)E(aB,jl,jQ,jg, u) (57)
0 Amye ) vol(GL() (o 4 1)%A-A+A-B+%B-B)2

The double-box integrals with single e-numerator, i.e. €(a,1,7j,k,b) for I%b[nt], I%b[nt],
I#[ny] and Ig[n, /] integrates to zero. To see this, one simply needs to realize that in
Feynman parameter space it can be written as:

€(0a,i, j, k,0p)
2
(c+1)34-A+4-B+1B-B)

x  e(Aij.k,B)=0, (5.8)

since for such case either A or B will be a sum of vectors (y;,y;, yx). From now on we will
only consider nj, numerators for j:l,b I Jdgb I% and n, for Ig;b.

For divergent integrals, we will use mass regulator, which corresponds to letting the
scalar fields obtain a vev. That is, we move the theory slightly onto the Higgs branch
and analytically continue to the origin. This has the advantage of retaining the dual
conformal symmetry, which was instrumental in constraining the integrand. In practice,
this simply amounts to extending the five-dimension vector to: (Z,1,2%) — (7, 1, 22+uiy),
or (i) = (i - )+ 24

Note that while we expect that the final answer has uniform transcendental weight
2, one often encounters functions with higher transcendental weight in the intermediate
steps. Thus it is often more convenient to evaluate these integrals at the level of symbol
first. Most integrals will be linearly reducible (sometimes after some change of variable
or subtraction of divergences), i.e. it can be decomposed into rational factors of the form
dz/(x — z;)™ with n > 1, multiplied by logarithms or polylogarithms with arguments that
are rational functions of x. The symbol of these integrals can be extracted in an automated
manner as follows (see [54] for more detail). Suppose we have the following integral and
want to obtain its symbol

b
/a dlog(x — ;) (F(z) ® w(z)), (5.9)

where F'(z)®w(z) is an integrable linear reducible symbol in . Since it’s linearly reducible,
here we will assume w(x) is at most linear in x, while there’s no restriction on its dependence
on other kinematic invariants. Taking the total differential with respect to other variables
gives two contributions:

(1) differentiating with respect to other variables at the endpoints yield:

dlog(x — 2;)(F(z) ® w(@))[I=) - (F(2) ®w(x) ® (b)) - (F(2) 9w(e) © (a— 7)),
(5.10)
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(2) differentiating with respect to other variables in w(z): if w(z) is a constant with
respect to x then

b b
(/a dlog(z — xﬂF(m)) dlogw — (/a dlog(z — :L'Z)F(.%')> ®w (5.11)

while for w(z) =z — z,

b T — b T —
(/ dlogag_xz'F(x)) dlog(zj—x;) — </ dlogx_ml.F(x))@)(%—:ni). (5.12)
a 7 a J

Iteratively repeating the above procedure, we can obtain the symbol of the linearly reducible
integrals. For the case where we encounter (xf% with n > 1, its result can be obtained

by repeated differentiation with respect to x; on (I_“fﬂ -

Those integrals that are not linear-reducible will, in general, integrate into elliptic
functions. As discussed at the end of section 4.5, these elliptic pieces will cancel as they
are associated with vanishing cuts. In practice, when encountering these non-rationalizable
terms, we will stop at the last c-integral, and leave them to be canceled with similar terms
from other integrands. Finally, terms with 7 that are missed by symbol methods can
be obtained by either numerical integration or taking the double-soft limit such that the

integrand reduces to a six-point integrand whose results are known.

5.2 Finite double box integrals

We begin with finite double-boxes such as Ig’i, Igf”z» [np] as well as those with soft-collinear

divergences that are canceled when combined with appropriate double triangles, such as
19, . and I%[n,]. Since these integrals, or their combinations, are convergent, we do not
need to introduce a regulator.

First double box Ig{’l has the very simple expression in the c-integrand.

© d 1
Ig{’l = /0 Ffﬁm X (log(l + ¢) log uz 7v2 3 — 2log va log v3 + log w1 5v1 4

. log us3,7v2,3 — 2L12(1 — U3) — 2Lig(1 — U7) — 2Li2(1 — UQ) — 2Lig(1 — 1)3)

5.13
+ 2L12(1 — U3’U2) + 2L12(1 — U3U3) + 2L12(1 — U7U2) + 2L12(1 — U7vg)> ( )

U1,5V1.4
— Fmb [ —/—, UL 5014 | -
u3,7v2,3

The function Fmb (v, w) is, in fact, closely related to the one-loop four-mass box integral
integrated over a square root,

dc w — v
4r/c (1 + ¢)v/—4vw + (v +w — (1 + ¢)ow)? (5.14)
x (1og(zz) log (1 + z) — log(22) log (1 + 2) + 2Lis(—2) — 2L12(—z))

Fmb (v, w) :=
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where z and z are

—v—w+vw(l+c)+/—dvw+ (v+w— (1+ c)vw)?

2,2 =
’ 2w

(5.15)

Due to the square root factor, this is an elliptic function. However, as argued previously,
since the cut that leads to elliptic integral vanishes, this term will cancel against that arising
from I%b’m and I%l?u. Thus we will leave it unintegrated with respect to c. Performing the
final ¢ integral on the rest, we find:

1 1 1
Ig’fl = 3 log 2log ug 7v2,3 — 3 log vo log vg + 1 log w1 5v1,4 log us 7v2 3

1 1 1 1
- §L12(1 - U3) - §L12(1 - U7) - §L12(1 - ’1}2) - §L12(1 - ’03)

1. 1. 1_. 1. (5.16)
-+ §L12(1 — U,3’l)2) -+ §L12<1 — U3'U3) + §L12(1 — u7v2) + §L12(1 — U71)3)
— Fmb (W, U175U174> .
u3,7v2,3
The log 2 term will be canceled in the final answer after summing over all integrals.
Similarly for Iglil [np], we obtain the following:
b © de —log(1+c)logui s vz — 2Lis(—c)
1 [me] =
4my\/c c(l+¢)
+ Fmb <U3’7v2’3, U3,7U2,3> + Fmb (W,U1,5U1,4>
Uup 5V Uz 7v
) 1,51 1,4 3,702,3 (517)
T
=2+ + 5(1 —log 2) loguy,3,5,7v1,2,34
+ Fmb (W, U3777)2’3> + Fmb (1”7501’4, U175’U174> .
U1,501,4 Uu3,7V2,3

Note the presence of the same elliptic function.
For the double box 1%, ., we combine it with I {lf3;4’6 and define the finite combination
I 5 =19, 5+ I, 5. The integrated result is:

fdb =2 * _de LX ﬂj—LiQ(l—UQ)—Lig(l—U,g)—Lig(l—Ug)
ALS 0o 4mycl+ec 6
+ Lig(l — UQUQ) + Lig(l — U3UQ) — Lig(l — (1 + C)U174U4) — logus log 'LL3> (5 18)
T2 1. 1. 1_. 1.
= Z — §L12(1 — U2) — §L12(1 — U3) — §L12(1 - ’UQ) + §L12(1 - UQUQ)
1 . 1 1
+ §L12(1 — ugvy) + 1 log (x(u1,4v4))2 ~3 log us log us,
where for convenience we have defined the variable
() 1—vV1—z1 (5.19)
T) = .
X 1 +vI_at
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Figure 3. The five double boxes that have collinear or soft-collinear divergences. We use the red
line to indicate the loop momentum being collinear. The double boxes I gfjl, , and I%b,L ; have two
collinear divergence regions. On the other hand, the double boxes I]‘élfm (I I(i“ljlﬂ) only diverge in one

collinear region where both loop momenta are collinear to p3(p1).

We will discuss the significance of these variables when the final result is presented. As a
consistency check, if we let p%j’s go to zero, the integrated result (5.18) will reduce to the
critter integral at two-loop six-point.

Similarly for the double box I, [ny], the finite combination is given as, IN%’I = I ] —

dt dt dt i -
I1,3;4,6 + I1,3;4,8 - I1,3;6787 we Obtaln.

~ < 1
I%’l = 2/0 47rc\ﬁ e X (— log ugvg log ugvs — Lia(1 — ugva) — Lig(1 — ugvs)

— Lig(1 — (14 ¢)uq) 4+ Liz(1 — (1 + ¢)ug gv1) + Lia(1 — (1 + c)u1,4v4)>

, (5.20)

T 1 1 1
=—% 11 log(x(u1))* — i log(x(u1,6v1))* — 1 log(x (u1,4v4))?

1 1 1
— 5 log U2V log ugvsg — iLiQ(l — UQUQ) — §Li2(1 — U8U3).

Upon taking the limit of pi5 and p%j approaching zero, the result of integration (5.20) will
also become equivalent to the two-loop six-point critter integral.

5.3 Divergent double box integrals

We now consider the divergent integrals, where both loop momenta can become collinear
with the external legs. This is kinematically allowed when an external massless leg is
connected with two consecutive cubic vertices. If there are two such collinear regimes
for a given graph, then they can overlap with certain propagators becoming soft. Such
soft-collinear divergence is factorizable and leads to log? M%R times a number, while the
previous case only leads to log ,u%R. This is illustrated in figure 3, wherein the first line of
the integrand I%IfL 4 (or 1 %177175) can have two collinear regions, both momentum proportional
to leg p2 or p3 (p1). On the other hand in the second line, there is only one collinear region.
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Note that as we will be introducing mass regularization ,u%R, in Feynman parameter
space this introduces terms that are squares of Feynman parameters:

W X = i ((Za + Zb)2 +e(X a)2) , (5.21)

here > a and ) b represent the sum over Feynman parameters of each loop. This spoils
the linear reducibility of the integral. Following [44] our strategy is to subtract something
which has the same divergent behavior but which is simpler to integrate (in the sense
that the ,uIQR dependent term is the simplest). We then compute the correction that is the
difference between the two, which is finite and can safely send “%R — 0. We illustrate this
in an explicit example.

Integrating I%lle. We start with simplifying the ,uIQR— term in I%ljm. Since it is only
relevant when the loop momenta are in the collinear regime, we can find a simpler expression
by neglecting irrelevant Feynman parameters in that limit. This integral has two collinear
regions, the loop momenta being proportional to py, where (ai,bs,bs) — 0, or ps where
(a1,a2,b5) — 0. We can safely set ai,bs — 0 In both cases. Therefore, we can neglect
a1,bs in X and integrate it out straightforwardly.

To proceed further, we replace X with something simpler that has the same divergence
behavior of Ijélfm but which is simpler to integrate. A good candidate is

1:%1?1,4 = 1%111,4()( — (ag + b3)? + ca3) (5.22)

since this has identical soft and soft-collinear regions. But thanks to the simplified denom-
inator, this can be integrated more easily.

The correction terms then correspond to restoring either as or by, which modifies the
logarithmic cut-off X. To capture this, it requires considering the difference between the
regulator after simplification (i.e. in 1:%317 4) and the original regulator only drops az(bs) one
at time. First, let’s restore the correction of dropping bs. We can first quickly integrate
a1, as, by which regulator is irrelevant to whether dropping b4 in X, and we can obtain the
function of the form

log X dependent term + remainder. (5.23)

Then the difference between the simplified regulator and the regulator only drops ao is
the correction for by. Since the change is only sensitive to the small modification of the
regulator, it turns out that only the log X dependent term will survive the difference and
the result is
bs + asc X=(b3+bs)?+a’c
bsby(bs + asc + by /1 X=b2+ale (5.24)
_ bs + asc log (b3 + b4)? + adc
b3by(bs + agc + by/y1) b?;, + a%c

where y; = x%:)) / :1;%4. By redefining b4 to be byy1, the correction term for dropping b4 is

)logX‘

aZc+(b3+bay1)?
I (1 = 224/22 )| :/oo de d?[azbsby] (b3 + asc) log = e
BT =LA a2=0 7 Jo dmr/e Jus<ps vol (GL(1))  baba(bs + ba + asc)?
(5.25)
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Similarly, for the as correction is

2 (ag+b3)%+(as+bs)%c
d [a2a3b3] b3y2 log 2 3b§+a§i 3

I B,14 (y2 o xd‘:’/ 12,5 ’(’4 0 / 471'\/» a3<b3 vol (GL( )) ag(bg +a36)(a2 +bgy2)2
(5.26)

The final integrated result is

=db
]B 1a=1g14+157 4(9U% 3/37% 4)’(1 o+t 1BA 5(553,5/95%,5”174:0

2 2 .9
™ 1 MIR 15 1. 5 4uReis
-1+ = 141 log —LIRTLS 202 THIRTLS
T+ tlsuz)los Zaals 40 Pl (5.27)
. a7 5 . 235 1
— LIQ — LIQ 2 + ng 1—-— s
x1,4 Ty 5 u2

caIcrab ”

which is kinematically equivalent to the integral in six-point.

Integrating I%l’,l,j [np]. The next divergent integral are IdDblj[nb] (j = 5,7). Since the

two integrals are related by relabelling, we can just focus on integrating Ij:i,7175. The common
behavior of the Feynman parameter for both collinear divergences is b5 set to zero. Thus
we can drop b5 from X5 and integrate out b5, yielding

1B ] = < dc [d*a1azasbibs] [a2(2-5)—2((A+B)-5)](2-5)/(1-3)/((A+B)-5)?
DL dmy/c vol(GL(1)) ((1 +c)ajaz+aibs+asb; —l—blbg—l-%X)Z

(5.28)
where X := (3 a+ 3 b)2 +¢(>a)?.
The other Feynman parameters being set to zero in the collinear limits is (ag, b3) and
(a1,b1). So the simpler form of the regulator is:

IR 5 = IE 5[] (X — a3(1+¢)) . (5.29)

Thanks to the simplified denominator, this can be integrated more easily. Indeed after

redefining a1 + by — b1, as + bg — b together with a simple rescaling of the variables, it

_ 4p2 22 2
can be seen to depend only on a single parameter ¢ := —25L5-35.

x1,3‘”3,5
®  dec [d4a1a2a3b1b3] as + 2b1 + 2bs
D’1’5 47‘(‘[ a1<b1 VOl(GL(l)) (GQ + by + 53)2(()1()3 + ajazc + 6&%(1 -+ C))2
21 9

Restoring (as, b3) and (a1, b1) leads to the following change in the logarithmic cutoff

*  de [d2a1a2b1]
cor — .2 2 _
s =25/715) g0 _/o Am/€ Jay<by vOl(GL(1))
2 2
y1(azy1+2b1) log (a2+bl(3§ ai(z)ﬁ@)

b1 (b1 + arc)(agys + b1)?

2
=5 — Liz(1 - 1), (5.31)

cor — .2 2 71'2 :
ID,1,5(y2 = 1’2,5/$3,5)|a1:b1:o = e Lia(1 — y2). (5.32)
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So that
db 7db 2 /.2 2 /.2
Ipslm] =1ph s + 1) 5(952,5/951,5)|a3:b3:0 + 154 5($2,5/$3,5)|a1:b1:0

— m’ o dptratseis 35 ' 3 5 (5.33)
_2_*_*1% — 2 a1 L 5| L2 (1—-—=5=],
4 4 T1,3%25 Ty T35

which is kinematically equivalent to the “I?™M” integral in six-point. Similarly,
2 2 2
72 1., dpfgat 7 8 T3
I 7lme] = 2 — — — S log? — 53—+ — Liy —Lip(1——==]. (5.34)
o 4 4 xf 3332 7 % 7 95:%,77

Integrating szjl’ jlmw].  Similarly, the two integrals of Ip,1 j[ne](j = 5,7) are related by
relabelling. We can just integrate out I%I?w[nb}. A first observation is that in all divergent
regions as, bs, by — 0. Thus we can drop as, bs, by from terms multiplying the mass in the
denominator. We can easily integrate out ag, b7.

We simplify the regulator by taking the limit a;,b; — 0

7 =111 lm) (X — a3y?(1+0)) (5.35)

2
where y = % Simplifying the regulator will introduce the error. The finite correction
2,7

term to compensate for the change of regulator is given by

> dc d2a1a2b1 b1 (—U7U2 + 1) ((ZQU7U2 —+ ag + 2[)1)
4mv/c Jay<b, vol (GL (1)) (ag + b1)? (b1 + asic) (agurvg + by)?
b3 + ale + 2a9 (b1 +alc)y+a2(1 +¢) y?

IE 1,7 U7U2a
(5.36)

x log
a3 (1+c)y?
After integrating out 3] ,(u7ve,y), it gives
1. g 1. o % af 7
—log —— log(u7va) — = log*(uzvy) — Lia [ 1 — + Lig — | . (5.37)
2 5'7%,7 2 552,5 x%,?

The result of I]‘iﬂljm[nb] integral is

db =db
Igh 7] = Igh 7 + 151 7 (w, )

1 1
= — log U3,7’U273(2 — log4 — log Ul 5U1 4) 4+ — log Urv2 log U1’5U1,4

4
1 1 4 1 1
- = log U7V — = log u7v2 log 'UIL;? — —Lig(1 — uyvg) — =Lia(1 — ugvs)
risely 2 2

2 2
. L15 . L7 U1,501,4
—Lip [ 1— 27 +Lig [ 1— 27 + Fmb —— U1 5014 | -
Ly 5 Ly 7 u3,7v2,3

(5.38)
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Similar, the integrating result of I%ljm[nb] is given by

1 1
1%1?175[7%] = 1 log ’LL3,7’U273(2 — log 4 — log U175U174) + 5 log UuU3v3 log U1,501,4

1 1 4pidn 1 1
- log? ugvg — 5 log usgvs log afgjxgi’: — §Li2(1 — ugv3) — 5Li2(1 — u7vy)
x§ 5 x§ 7 U1,501,4
+Lig [1— 2’ —Lis (11— 2’ + Fmb —— U1 5V14 | - (539)
L2 5 Lo 7 u3,7v2,3

5.4 Box-triangle integrals

Finally, we consider the box-triangle integrals. We pay special attention to the integrals
that are proportional to B, as they must integrate to functions that have non-trivial lit-
tle group properties to restore the deficiency in B. There are three box-triangles Ifi{i’j,
I%t,i + Ig{ ;[ng] where the latter are combined such that their non-factorizable soft-collinear
divergence cancels.

Recall that we have defined x(z) in (5.19), and note that x(x) and x(1 — z) are not

multiplicative independent since
—x(z) ifx <0ora>1,;
x(1-z)= .
—x(z) ifo<z<1;
we usually take the simpler one as the letter in the symbol. In order to avoid the problem

arising from branches of the square root in x, we assume that u;, v; > 1 in this subsection.
Moreover, we define two functions

T 1. 51—a 1 1—a1 b—a
o
8 Satb

1. (1=b\ 1. (1-b\ 1 [(1-0 (5.40)
_2L12(1—a)_2L12<1+a)+4L12<1—a2>’
F(.’L‘,y)Ef(v1—.1'_1,\/1—2/_1),

they are building blocks of box-triangle integrals in this subsection, and their symbol are

fairly simple,
1[(b’—a®> 1-b 1—a b—a
S[f(a’b)]_zL(a?—l ®1+b+1+a®b+a>’

(z—1)y
r—y

(5.41)

S[F(x,y)] = % <<1— ;j) ®X(y)+x(a:)®x< )> ifz>1orxz<D0.

Integrating I%L e There are two integrals that need to be evaluated in this topology
(j = 5,7). We begin with integrating Iflt,l,& and then relabel it to obtain I%,L?‘ The
Feynman integral of 1%7175 read in this case:

> de da1a2a354bﬁ 1

- / 6(8141172’374) 2
o 4mye/ vol(GL(1)) (c+1D3A2+4-B+3B2)
o /OO dc daiasasbsbg 2bg 6(6, 1,2,3,4)
- 3
o 4mye/ vol(GL(1)) (c+1)342+4-B+1B?2)

(5.42)
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where A = a1y1 + asys + asys, B = byys + bgys. The integrand can be straightforwardly
integrated, yielding

€(6,1,2,3,4)1/(2-4-6) [ dc 1 <7r2
1—ugveo

— X | — — log ugvs log uy 4v4

—log (1 + ¢)log ugvy — Lig(1 — ugug) — Lig(1 — (1 + c)u1U4v4)> (5.43)

6(6, 1, 2, 3, 4) (2 -4 - 6) F(u v U1,4V4
= = e
V2(2-4)(1-3)(2-6)(4-6),/1 — e Ugv2

and its symbol is

1 U 4V 1 —wuj4v
- <U2v2 ® X (144> + X (u1,4v1) ® X (1’4 4)) : (5.44)
4 1-— U2V U2V

Remarkably, the prefactor is simply a product of sign functions thanks to the iden-
tity (A.3) and (A.4) (see appendix A for details):

«(6,1,2,3,4)y/(2-4-6) — L sign((12)(45) )sign ((23) (1ps.1.512) + (13)2-6))

VE(2A)(1-3)(26)(4-6), /1L i
(5.45)

where sign(z) = z/vx? which differs from sgn, in eq. (3.16). Note that this product of
sign functions actually takes little group weight at legs 2, 3,4, 5.

Similarly, we can obtain the integrated result of box-triangle 1% 41,7 by shifting the legs
Y1 < Y3, Y4 — ys, and left yo, yg unchanged of the Iﬁ{ljz

1
H sign(67) sign(12) sign ((18)(2|pe,7.8/1) + (82)(2 - 6)) F('LLLG’Ul, 11“21}1)) (5.46)
— ugv3
and its symbols
1 u1,6v1 1-—- U1,6V1
4 <(U803) ® X(l—UgUg) + x(u1,6v1) ® X( Usvs >> : (5.47)
Integrating I]”Bt’1 + 1 g‘{ 1Img]. Let’s define the following rescaled combination:
-1
1,2,3,4,8)/(2-4-8)
ooy = (L2354 N 5.48
B+C,1 ( \/5(2 4) ( B,1 ,1[”5]) ( )
_/ e(a,1,2,3,4)/€(1,2,3,4,8)
(a-1)(a-2)(a-3)(a-b)(b-4)(b-8)
((16)e(b,3,4,6,8)+(68)e(b, 1,3, 4,6)) /e(1,3,4,6,8)

(2-8)(a-1)(a-3)(a-b)(b-4)(b-6)(b-8)
®  de d®ajasasbybebs [ €(0a,1,2,3,4)
Amy/c vgl(QGE(D? 8( e(1,2,3,4,8) (95 - 6)

(1-6)e(dp,3,4,6,8) + (6 - 8)e(dp, 1,3,4,6)) 1
2
(2'8)6(1a3a47678) ((C—l—l)%Az—i-AB'i‘%BQ)

where A = a1y1 + as2y2 + azyz, B = bays + beys + bsys.

—(2-04)
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We do integral in the order as, as, by, a1, and bg, setting bg = 1. In the process, the
e-tensor will neatly cancel out:

Ibt _ 1 de t
BrOIT(1-3)(2-8)(4-8) J Amy/e (1+c)uy—1

U202

(—log((1+c)u1)log

ugU3
—Liy (1 —u6U1) +Liy (1 —U4U4) + Lis (1 — (1 —I—c)uLﬁvl) —Liy (1 — (1 +C)U174U4) > (5.49)

! 1 UV (1—ugv
N (F(“174U4a“1)—F(U1,6U17U1)+4logx(ul)log22(161)>
(1-3)(2-8)(4-8)y/1—u;t s (1—tug0s)

here again the answer is expressed in term of function F' in (5.40), and its symbol reads

1 UV UV 1 —wuj4v
1% ( 22 @ y(u1) + x(u1) ® == + X(u1,4v4) ® x<1’4 4)
ugvs usvs 1-— UQV4 (5 50)
1-— U1761}1> 1-— U6UI> ‘
x(u1,6v1) ® X< T—— + x(u1) ® T ugos)

The factors in front of the transcendental function in (5.49) can again be combined with
the scaling factor in eq. (5.48) to produce a product of sign functions:

€(8,1,2,3,4)\/(2-4-8)
V2(2-4)(1-3)(2-8)(4-8)y/1 —uy?

Once again this sign function takes little group at legs 8, 1,2, 3.

1
= ;sign<12> sign(8|p1,2/3). (5.51)

Integrating Ig{l[na]. The last one box-triangle in Feynman parameters space is by
striping off kinematic prefactor 2(12)(45)(67)(3|p1,2|8)/€(1, 3,4, 6, 8):

B /oo de da1a3b4b6b8 Z OA(@A . Z) 1
7 2
o 4my/c) vol(GL(1)) i=134.6,8 ((c—i— 11424+ A-B+ %BQ)
.52
3 /oo de [ dayasbsbsbg 20;(A+ B 1) 52
0

3
dmy/e ) vol(GL(L)) ,_ 5765 ((c +1)142+ A-B+ %B2>

where A = a1y1 + agys, B = bays + bgys + bgys. The Feynman parameters of this integral
can be straightforwardly integrated, then the integral arriving

© de  2(1—ugvi—uqvs(l—ug 6v1))
o 4my/el—ugvi+ugva((1+c)uy gvi—1)
+ Liy (1—u6v1) —Liy (1 — (1—|—c)u1u6v1) +Lisy (1—U4U4) —Liy (1—(1—|—C)U1U4U4) )

1—ugv1 —ugvs(l—u1 601 U1,4,6V1 4 U1,4,6V1,4
— 2 ( 9 ) X _F u17 y*y i +F u174,v4, ) xy 3
U1,4,6V1,4 ugv1+ugvs—1 ugU1tugvs—1

U1 4,6V1,4
F ,A6UL4 ) ) 5.53
* (umvl U6U1+U4U4_1>> (5:53)

X ( log ugvy log ugvg+Lis (1—(14c)uy)
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The kinematic prefactor also combines into a sign function with little group weight
2(12)(45)(67) (3|p1.2[8)

v o)

1
— = Esign(lQ)sign<45>sign<67)sign ((8|p1,213)) -

(5.54)
In terms of the symbols, the integrated result is simplified to
1 1—uy)ug gv ugv1 (1—uq 4v
1 (—X(Ul) ®X( (1—u1)us,6v1,4 >+X(u1,4v4) ®X( 6v1(1—u1,4 4)>
4 (1—u6v1)(1—u4v4) 1—U4U4 (5 55)

ugvs(1—uq 6v1) >) _

+x (u1,6v1) @ X ( 1—ugoy

6 The two-loop eight-point amplitude

We now return to the complete two-loop integrand,

2-1 2-1 2-1 2-1
AT = ATl gzloen g azlor (6.1)

8,soft 8, max—cut

where each set is defined in eq. (4.12), eq. (4.26) and eq. (4.41). Schematically, the result
is organized as combinations of leading singularities dressed with dual conformal inte-
grals. The leading singularities are organized into the (Agree,[j’i,j,k,Dl-7j7k,75i,j,k), where
(Bi,j ks Dijk) can be identified as the sum and difference of one-loop maximal cut respec-
tively. Since the one-loop amplitude, eq. (3.18), is given in terms of B; jx, its dressing at
two-loop can be considered as the correction to the one-loop amplitude.

6.1 The integrated result

Let us first begin with terms proportional to A™® and D; j, since they are linearly de-
pendent (see eq. (3.3)). This entails part of A;iz(f)f and all of Agiflo P That they should
be considered in combination can also be seen from the cancellation of elliptical cuts, as
discussed at the beginning of section 5. We can further separate these terms into the part
that contains infrared divergences while at the same time free of elliptical and three-point
amplitude sub-cut, and the remaining part. For the former, we have

8 8
AFreex Z Ip;it3+ %Igf?i [ne] | + Z<_1)iDi,i+2,i+4 X|Ipiita +1IDjit2, (6.2)
+1gitai42 + Ipitai — §IG,Z‘ .
where
IB,Z,H-S - B Ji,i4+3 [le] + I’L z+2 i+2,i4+4
Ipijita = D iivalmn] + I z+2 ir2,i If§+2 2,044 T Ig§+2;i+4,i
Ipivai = IB0lme) + Ifto iy aiiaire — Iiboiyaiva; — Titoiraiive
Ipitaiv2 = IE,i+4,i+2[nb] I o vira— I g 0iinita (6.3)
Igita; = I%bz’+4 i) + IflfQ,i;i,z'H - Iidi2,i;i,z’+2
I, : g:bz [na] — fff§+4;i+4,i + Igf+4i 24T Ig§+4;i+4,z’—2 + I A+2:i44,i

dt
+ Iz+2 itdsitai — Liivoi—2, IH—Q i dsitA,i—2
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Substituting the integrated result the above collapses into an universal A{® prefactor
multiplied by the eight-point BDS ansatz of A" =4 SYM:

i i+3) A (i - i43)
BDSg + 7% = 7r +z Z( (M> log? ((i-i~|—2)(i—|—1-i+3)>>
2

8
B <log () log <(4F‘+2)> FLis (1 — ui)> (6.4)

241 4M2
— Z <log (vi) log <(+3)> +Lis (1 — vl)> :

=1

Remarkably the BDS ansatz can be identified with a set of integrands that captures the
infrared divergences accompanied by those necessary to cancel unphysical cuts. We will
return to this observation at the conclusion. The remaining terms can be organized as

tree peven, A even,D
A R + Z Di s Z+4Rz z+2 i+4
=1
8
__ ptree dt
= AFey [ I i — Ii,i+2;i+3,i+5} (6.5)
i=1
8
i db dt dt dt
+ Z(_l) Divi+2,i+4 {—IF,z'—?,[”b] + Ii—3,i—1;i,i—4 - Ii—3,i—1;i,i+2 - Ii—3,i-1;i+2,i_4} ,
i=1

where the superscript R°V" indicates that the integrand involves even number of Levi-
Cevita tensors. The integrated result is then given as:

N 7 1 1 1 1
Rgve A _Z 7—2L12(1 uH_l)—ing(l UZ+2)—§L12(1 Uz+1)+2L12(1 Uz+lvz+1>
=1
1. 1 2 1
+5Liz(1 = uirovira) + 7 log (x (uiivsvirs))” — 5 loguitiloguira (6.6)

2 1 1 1
Rfﬁlﬁﬂ 51 log (x (ui—3))” +Z log (X (ui—3.i120i41))> +Z log (x (ui—3,4v:))?

1 1. 1.
+ 3 log u; —2v; 42 log Ui74vi71+§L12(1 — Ui720i+2)+§L12(1 —ui—4vi—1). (6.7)
We now consider the remaining terms, which are proportional to B; ;. Recall that the

double box integrals I%b‘ Bl r[ne] and I [ny.] integrate to zero. Thus terms proportional to
B; ;1 are simply box-triangle integrals:

8
Z(_1)13i,i+2,i+4R;‘),?i2,z’+4
= (6.8)
b
Z Biit2,i+a {IA i-1,i+3 T 1 i1 T4 t,i+1 + IC{iJrl[nﬂ]] ;
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where the superscript R°44 represents odd number (one) of Levi-Cevita tensors. Using the
results in eq. (5.43), eq. (5.45), eq. (5.49) and eq. (5.51), we have:

P2 ita = - sign(i—11) sign{i+2i+3)sign (1 i+1) (i—1{pis1ir2ir3ld)+{i=11+1) (0 - i+4))
Ui—1,i42Vi4-2

1
L, > + H sign(ii+1) sign(i+3i+4)

X F (Uil,i+2vi+27

x sign ((i43i42) (i+4|piit1,i+2|i+3)+(i4+2i+4) (i - i+4))

Ui i+30i+3 | .. .
X F(ui7i+3vi+3, 1_2;12:;2) + n sign(i+1i+2) sign(i|pit+1,i+2|i+3)
(] (]

X <F(Ui+1,z'+4vi, Uiy1)—F(ui—2i110i41, Uit1)

1 Ui+2Ui+2(1_Ui2Ui+1))
+ -lo U;+1) 1o 6.9
4 e x(ui+1)log V;Vi43(1—wiyav;) (6.9)
Finally we have the terms proportional to D is:
8 5 8 1
Y Diiv2itaRils ;4= Diiyaita 515;3 + Ig{i+5[na]} : (6.10)
i=1 i=1
We find:
even 25 7r2 1
REEST, 4 = o sign{ii1)sign(i+2i-+3)sign(i+4i+5)sign(i-+6i+7)+sign(i+5i+6) (6.11)
9 9 2

xsign(ii+1)sign(i+2i+3)sign(i+4|pits,i+6]i+7)

Ui i+2,i+5Vi,i+1
F | uiys,
Uj42Vit1+u;v;—1

Uj i42,i+5Vi,i+1 Ui i42,i+5Vi,i+1
—F (Ui,i+5via 7 —F( Uip2i45vi401, —— ; 1)1
Uj4-2Vi+1FUi V5 — Uiy 2Vi41+UiV;—

Putting everything together, we obtain

Ag_IOOP _ A‘éree « |:BDSS + 7_[_2 + Rgven,A:| (612)
8 8 _
i even,D odd M even,D
+> (-1 [Di,i+27i+4Ri,i+2,i+4 + Bi,i+2,i+4Ri,i+2,i+4} + DiirairaRiiys,1a
i=1 =1

where (Rgve“vA,Rf}féfﬁ,}zgﬁ% L4) are given in eq. (6.6), (6.7), (6.11) and (6.9) respec-
tively.

6.2 Consistency checks and analytic structure

The construction of the integrand has already utilized several non-trivial constraints, in-
cluding the matching of maximal and soft-cuts, the correct soft-collinear divergences, and
the absence of un-physical cuts. For the integrated result, we can further check that the
amplitude has the correct little-group parity, and the reflection behavior eq. (2.2). As we
will see, the integrated result realizes these properties in a non-trivial fashion.
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Little-group parity. We begin with considering Zs little group transformation of ex-
ternal leg A; — —A;. The full amplitude should pick up a sign depending on the fermion
number F; of the particle on leg ¢:

Ag (A1, ooy =Agy o M) = (=) T Ag (A, ..o Ay, Ay (6.13)

Since the combination of leading singularities appearing in two-loop amplitude have dis-
tinct little group parity compared to the tree-amplitude (C.3), the functions dressing these
combinations must provide compensating L little group weight.

According to (C.3), D; ;1 has the same parity of the amplitude so the functions pro-
portional to D; ;1 should be little group neutral. The non-trivial ones are B; j » and @i,j,k-
The former has half number of legs with the same parity and half with the opposite parity,
while the latter is totally opposite parity of amplitude. The compensating functions are
comprised of sign functions. Let’s first look at the function proportional to By q42q+4-
The coefficient By q+2.4+4 has opposite little group at legs i = a,a+1,a+2,a+3. We can
see that the three box-triangles have a sign function that exactly carries non-trivial little
group weight at these legs:

lezlt,i—l,i—f—?) : sign(i—l Z> Sign(i—i—Q i+3)sign (<’L i+1> <i—1 ’pi+1,i+2,z’+3 ‘Z‘>—‘r<i—1 i+1> (Z . i—‘r4))
1% i igien o sign(ii+1)sign(i+3i+4)sign ((i+3i+2) (i+4|piit1,iv2li+3)+(i+2i+4) (i -i+4))
Igm —|—Igi+1[nﬁ] s sign (i-+14+2) sign(i[p;11.i42]i+3), (6.14)

where we set ¢ = a.

For the functions proportional to @a’a+2,a+4, the sign functions need to have little
group weight at all legs to restore the correct parity of @a7a+27a+4. We can see the that the
sign functions in I]g;tl and Igfi +5[na] satisfy this property:

(i,i+1) (i+2, i+43) (i+4, i+5) (i+6,i+T)
V=i - i+2) —ie /=(i4+2 - i+4) — ie /—(i+4 - i+6) — ie \/—(i+6 - i) — i’ (6.15)
Igfﬂ-%[na] . sign(i+5, i+-6)sign (i, i+1)sign(i+2, i+3)sign (i+4[pi1s5.it6|i+7).

kt .
IG,i .

Therefore, the full two-loop amplitude has the correct little weight.

Reflection symmetry. We now turn to the reflection symmetry, where the two-loop
amplitude should be invariant under the reflection {A1,Ag,...,Ag} — {A1,As,..., A2}
The reflection rule of the coefficients appearing in the two-loop amplitude is summarized
in (C.2). The non-trivial reflection rules imply that the functions proportional to these co-
efficients have non-trivial properties under reflection. First, let’s consider the function pro-
portional to D; ;1. According to eq. (C.2), D; ;i <+ —Di js i, where {i, j, k} and {7, j', k'}
are reflection pairs and consists of totally even or totally odd legs respectively. The extra
sign then exactly matches the alternating sign when cycling shifting by odd sites for the
part proportional to D; ;. in the final answer eq. (6.12). One can trivially check that the
functions proportional to D; ;. map to functions proportional to Dy j ;. The mapping
becomes non-trivial when sign functions are involved, which we now turn to.
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Similar analysis can be applied to the @i’j,k sector. Under reflection @i,j,k &~ ﬁi',j',ku
where the pair {i,7,k} and {¢/,j’,k'} are reflection pairs and consists of totally even or
totally odd legs respectively. This is consistent with the fact that the cyclic sum for @m}k
in eq. (6.12) does not pick up a sign upon cyclic shifts by odd sites. Now we just need to
show that the function proportional to ﬁi7]~7k maps to 151-/73'/7;,3/ under reflection. Consider for
example the reflection pair 151’375 > 1_)2,6,& From eq. (6.10) the functions dressing 15173,5
come from kissing triangle Ig’l and box-triangle I 2?76[11&]. We find

= (12) (34) (56) (718) »
’ V—(1-3)—ie\/—(3-5) —ie/—(5-7) —ie/—(7-1) —ie
= (18) (76) (54) (32) (6.16)
V/—(2-8) —icy/—(6-8) —icy/—(4-6) —ic/—(2-4) ic
kt
— D2

and

1
Ig{G[na] = Esign(12)sign<34>sign<67>sign<5|p677|8> (F (UG,

r (u o U1,3,6V1,2 ) r <u3 vy U1,3,6V1,2 ))
- 1,601, —————— | — V9, ————————
’ uzvo+uivi—1 ’ uzvotuivi—1

U1,3,6V1,2
uzvotuivi—1

U3,6,302,3 ) (6.17)
ugvz+ugva—1

7 (g U3,6,8V2,3 7 (e o U3,6,8V2,3
- 3,6V2 - 8,3V3
’ ugvs+ugua—1 ’ ugvs+ugua—1

1
— —;sign(18>sign(76)sign<43>sign<5]p374\2> (F (U3,

= g't,S[noc]-

Note that the argument in each sign function is actually reversed under the map, since

there is an even number of them, the combination is invariant.

Finally, we consider the terms proportional to B; ; ;, which are dressed by box-triangles
bt I%t,f(l}t. Without loss of generality, we focus on the sector Bj 35. According to (C.2),
the sector By 35 will be reflected to the sector Bagg. We see explicitly:

1
g4 = ~sign(81)sign(34)sign ((12)(8|p23.4|1) + (82)(1 - 5)) x F <u3,8v3, -9 )
i 1 U3 8v3

1
> —sign(21)sign(76)sign (—(18) (2|po.7s/1)+(28) (2 - 6)) x F ( 128 )
7 U1,6V1

— 1%, (6.18)

Here the reflection of I%S 4 Picks up an extra minus compared to I ﬁfl 7, due to the odd
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number of sign-functions. Similarly,

1. :
1%724—[2?72[715] = 251gn<23>81gn<1\p273|4>

1 ugv3(1 — urvg
x (F - F -1 1
( (U2,5U1>u2) (u2,7U2, uz) + 4 og(x(uz))log uvg(1l — uzvy

)
=)
- %sign<87>sign<1yp7,8|6> (6.19)
ugv1 (1 — ugvg)
)

1
X (F (u4,7v3,u7) — F(u2,7v2, u7) + 1 log(x(ur)) log

= - (Ifbatj"‘lg,?[nﬁ]) :

Again, we see that reflection picks up a minus sign. The overall minus sign then exactly

U87}4 1 — U4V3

compensates the minus sign when cyclic rotates from By 35 to Bag s.

Symbol letters and analytic structure. Let us summarize all symbol letters that ap-
pear in the two-loop eight-point amplitudes. As we have mentioned that the 12 cross-ratios,
u1<i<g and vi<j<4, satisfy constraints thus there are only 6 of them that are functionally
independent. The symbol letters can be divided into two classes: those letters that are
simple polynomials of cross-ratios, and those that involve square roots which correspond
to pure phases. For the former, there are 40 letters:

{ui, vj, 1 —ui, 1 =05, 1T — o), 1 — w10, 1 = ujpavj, 1 — ujpsvihicissicj<a - (6.20)

They are nothing but the symbol letters from functions of the form Liy (1 - EZ g;gg Eg) where
in the argument, the cross-ratio with a < b < ¢ < d is a monomial of u;, v; variables.

As discussed in [55], these letters belong to the one-loop alphabet of n = 8 amplitudes
in N' = 4 SYM; they also give weight-two functions satisfying first-entry conditions and
Steinmann relations. Since these letters are parity invariant, they stay unchanged under
“folding” , or the dimensional reduction to D = 3 (except that they satisfy more constraints,
such that only 6 are independent). We expect that all parity-invariant symbol letters of
ABJM amplitudes can be obtained from dimensional reducing those in sYM.

Finally for the letters x(z), these represent phases. To see this, note that

\/>_Vl‘_1_e—i9‘

X(z) = ——"F7—== (6.21)
Ve+Vz—1
where we have parameterize T = cos %. Thus log x(z) = —if gives a phase. For 0 < x < 1
the phase is real and imaginary otherwise. In our case, x can either be products of cross-
ratios,
{x(us), x(wiviys5vi) b<ics (6.22)
or rational functions of cross-ratios:
{ Uj i+5V; Uj i+5V; I —wiipsvi 1 — w50 1— w050 1— w450
) 9 ) ) ?
I —wujovigo 1 —ui 1042 Uj_2042 Ui—1Vit2 L —uipsv; - 1T — v

(6.23)

(1 — wi)uipsivsviits  UitsVi(l — Ui i430i3) Wigsvips(l — Uiiv50;) }
(1 — uip50;) (1 — wi3vi43)’ 1 — uit3vit3 ’ 1 —ujpsv; 1<i<8
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Recall that for n = 6, there are only 6 parity-invariant letters and 3 phases, u;, 1 — u;
and x(u;) for i = 1,2,3, thus we have seen a dramatic proliferation of symbol letters from
n = 6 to n = 8. However, these letters only appear in a few simple functions. We already

mentioned that rational letters in (6.20) only come from Liy (1 — EZ g;gz gg) and similar

log log functions; similarly all the x(z) only appear in loglog terms and F' function defined

n (5.40). To be more precise, both terms of the form arccos(y/z)? ~ log? x(x) in the even

part, and those of the form log x(z) log (Eggggzgg) in the odd part contain only simpler

x(z) of (6.22); the more complicated ones of (6.23) exclusively appear in F' functions de-
fined in (5.40), which are accompanied with sign functions as prefactors. Therefore, the
amplitude only contains three types of weight-two functions. Furthermore, it is straight-
forward to check that all these functions satisfy physical-discontinuity conditions [56]: the
first entries are either x or x(x) with x being products of u; and v; variables.

Since the phase switches between real and imaginary at x = 0, 1, these are the associ-
ated branch points. As we will see, these correspond to collinear and soft limits. Without
loss of generality, we set ¢ = 1 in eq. (6.22) and eq. (6.23). We find

uy = (L3-8 [ =0 p1 o< pa
(1-4)(3-8) =1 y1=ysorys=uys (6.24)
i goy = LB6:8) =0 procpsorpgocpr
’ (1-6)(3-8) =1 Y1 = Us
For rational arguments we instead have
(1-3)(6-8)
UL6V1 _ (16)(38) =0 p1xp2
1—uzvs 11— 27 1%5? 2; = Y1 =1s,
(1-3)(6-8)
I—uygvr 1— (16)(38) {20 P7 X Dpg
U7v3 (7.3)51.63 1 ye=uyr
(1-3)(6-8)
lueon _1—ToGs [=0 yi=ys (y=ys+eys) (6.25)
(1 —ugv1) 1—21435 ; =1 Y6 =Y70T Y3 ="1Ya
| (13)(48)) (1-4)(6:8) (46)(83)
A—uuggria A= T0Es) T6)@s) @863 { =0 P4 X P5 OT P X 7
6-8)
8)

(I—ugvr)(I—ugva)  (1— & e (1— ) =1 yi=ys (y1=ys+eyr)

(16 (4-8)(6-3)

(
(4-
(13
ugvr(1—upqvs)  (6-8)(1-4) 1= FGd [ =0 peocpr
8)1 '

— (15(36)
—uw) (610 .J“ﬁg 1 =

For limits where the numerator and denominator are approaching zero, we’ve indicated how
it is approached that leads to the limiting value. Note that for some cases, there can be
overlapped between collinear and soft limits. It is interesting that these limits invariantly
lead to odd-point kinematics.
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7 Conclusion and outlook

In this paper, we have computed the two-loop eight-point amplitude of ABJM theory. The
integrand was determined by constraints involving soft cuts, maximal cuts, the absence of
collinear-soft divergences, and the vanishing of cuts involving three-point sub-amplitudes.
Further checks were done where unphysical cuts are absent, i.e., cuts where the tree am-
plitude vanishes. The complete integration was integrated using Higgs regularization, and
the integrated result was checked to satisfy the correct little-group parity and reflection
symmetry.

Interestingly, we can identify a collection of integrals that reproduce the four-
dimensional BDS piece just as observed at six points [44]. Here the set includes IR di-
vergent integrals as well as those that are needed to cancel unphysical cuts. It is natural
to conjecture that this defines the set of integrals that reproduce BDS,, for arbitrary mul-
tiplicity. We leave its verification to future work [57]. Note that already at the eight-point,
several integrals contain elliptic pieces, as seen in figure 1 and figure 2. These elliptic
pieces cancel since they correspond to unphysical cuts. At ten points, we will have the first
non-vanishing elliptic cut:

-
S

—_
co——

Thus we expect that the results for two-loop n > 10 can no longer be expressed in terms
of multiple polylogarithms only.

It is possible to push the frontier to higher loops via a bootstrap program based on
perturbative data and various physical constraints. For n = 6, as a starting point, we
may use the symbol alphabet of 9 letters {u;, 1 — u;, x(u;)}, and it is straightforward to
construct the space of higher-weight functions satisfying physical discontinuity conditions
and Steinmann relations. However, we find that all known constraints so far are insuf-
ficient to determine the three-loop amplitude, thus more constraints are needed already
there. One possibility is to look for the analog of @ anomaly equations [13], which have
played a crucial role in sYM, for ABJM amplitudes; our results up to two-loop eight points
provide rich data for “deriving” such equations, which in turn can greatly facilitate future
perturbative computations and bootstrap in the theory. Starting at n = 8, the “folding”
of the sYM alphabet [52] contains many more letters (polynomials of cross-ratios similar
to those in (6.20)) which we expect to appear for higher-loop ABJM amplitudes. What
makes the bootstrap much more difficult, however, is the proliferation of y-type letters,
and the possibility of elliptic symbol letters for higher loops and multiplicities. We leave
the study of higher-loop amplitudes and their analytic structure to future works.

Just as observed at two-loop six points and one-loop general points, the non-analyticity
of the amplitude is not limited to poles and branch cuts due to the ubiquitous sign func-
tions. Their presence is crucial for the result to satisfy little-group parity and reflection
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symmetry. At one loop these sign functions are directly mapped to the kinematics of
maximal cut, i.e. the arguments are the square of external momenta at each corner of
the triangle cut. At two-loop things are more complicated. It will be desirable to have a
systematic understanding of the structure of the arguments for these sign functions.

Note that the one-loop integrand in eq. (3.9) contains a reference point X. The fact
that the integrand is independent of this reference point can be verified by a series of
tedious Schouten identities. This highly suggests that different choices of X correspond
to different “triangulations” of a fundamental geometric object, similar to the geometric
formulation of the planar integrand of N' = 4 sYM, i.e. the amplituhedron [58]. This
highly suggests a geometric definition of all-loop planar integrands of ABJM theory. So
far, the tree-level [59-61] and four-point multi-loop [62] has been successfully defined. This
indicates that a full definition is within reach [63].

Finally, the result here provides non-trivial data for a potential pentagon program
for ABJM amplitudes [45]. In particular, our two-loop eight-point analysis would provide
explicit data to constrain the spinor pentagons, which are flux-tube excitations belonging
to the bi-fundamental representation.
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A Several identities

In this appendix, we aim to prove a series of identities used in the text. We prove that the
coefficients of the transcendental functions in the box-triangle can be expressible in terms
of the product of the sign function.

First we consider the coefficient in front of box-triangle 1%7175 and prove the following
identity:

€(6,1,2,3,4),/(2-4-6)
V2(24)(1-3)(2:6)(4-6) [1- =22

U1,404

= %sign<12> sign(45) sign ((23)(1|p3,4,5/2)+(13)(2-6)).

(A1)
Our strategy is to express the five-dimensional € symbol in terms of angle brackets. To
do so, we start from the definition of the e-symbol as a determinant and use the trans-
lation invariant properties to set xo = 0. In doing so, we must remember to normal-
ize the determinant such that (i, j, k,1,m)? agrees with the Gram determinant formula
€(it,...,i5)€(j1,...,J5) := det [(i; - jj)], since this is the convention used in the main text;
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this requires an extra factor of 2iv/2. Thus

D2+ D3 +pa+ps —p1 0 po po+p3
6(671727374):2\/§idet(y67y17y27y37y4):2\/§idet 1 1 11 1
(2-6) 0 00 (2:4)
=2v/2i (—(Q'G)det(phpz,pg)—(2-4) det(m,m,pi)) : (A.2)
i=3,4,5

This determinant can now be evaluated in terms of three-dimensional ones, which in turn
give two-brackets: det(p;, pj, pi) := 3(ij)(jk)(ki). This way, we obtain

€(6,1,2,3,4) = iv/2(12)(23) ((23)(1[p3,a,5/2) + (13)(2-6)). (A.3)
The cross-ratio /1 — 11:‘742;’2 also can be expressed in terms of the angle brackets and its

form is very similar to €(6, 1,2, 3,4)

1 — ugvg 23 1|p345|2> ( 3>(2 '6))2
e ! e A

By combining all the ingredients together, we can derive the identity (A.1).

Performing a similar computation, we find that the coefficient of transcendental func-
tions in the box-triangle Ifffl - is equal

€(6,1,2,3,8),/(2-6-8)

VE2(2-8)(1-3)(2-6)(6-8) /1- 1 s

1)+(82)(2-6)),

= %sign(G?) sign(12) sign ((18)(

(A.5)
the one in front of the combination box-triangle Igl + Igvtjl[ng] is as
€(8,1,2,3,4)\/(2-4-8 1. .
( VL ) = 251gn<12> sign(8|p1.2|3), (A.6)

V2(2-4)(1-3)(2-8)(4-8)y/1 —uy?

and the one in front of the box-triangle Ig{ 1[na] is
2(12)(45)(67)(3[p1,2(8)
—1
6(1, 3,4,6, 8) (2\/1U6U1’U4v4(1u176v1)>
U1,4,6V1,4

1
= —sign(12)sign(45)sign(67)sign(8|p1 2|3).
i

(A7)

B Leading singularities for eight points

In this appendix, we will derive the explicit form of the leading singularities at the eight-
point. We evaluate the Grassmannian integral (2.4) by solving the orthogonal condition
(£ labels two branches) and localizing the minors (1,2 labels two solutions), leading to a
set of four independent leading singularities for a given minor.
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Here, we choose to localize the Grassmannian on the cell My = 0. On the positive
branch, where all ordered minors are positive, the 2 solutions are given as:

—A1 A2 A3 A=A Ae —A7 Ag
+
01(2) = €31 €32 C33 0 0 0 0 C3,8 (B.l)
Cq1 C42 C43 Ca4 Cap Ca6 C47 CA8

where

€31 = p?;,5,6,7 + ((1+(8))pas6.711) F (23)\/ =i 567
c38 = Piser — (L+(8))Pase7l8) T (23)\/—Piser
—((14+(8)pa5,6.712) £ ((1[+(8))I3)\/ —Pi 567

33 = ((1+(8))pas6.713) F ((1+(8])12)\/—Pise6r
ca1 = —(46)c3g, cag=—(46)c31, ca2=—(5T)c33, ca3=—(57)c32 (B.2)

c1a = Pi 567 ((1+(8)I6)—(18) ((1|+(8])pa,5.6,716) F (23)((1|+(8])I6)\/—P] 56,7

c16 = —Pi 56,7 (L8149 +18) (1 +(8))pas6,7[4) £ (23) ((LI+(8])[4)\/~Pi 56,7
cas = (23)((L+(8)pas.6,717) £ ((L+(8)pas,6,77)+(18) ((L+(8))I7))/—Pi5.6.7
car = —(23)((1[+(8)pa5.6,715) F (((L+(8])pas,6,715)+(18) ((1|+(8])I5)) {/—Pi 56,7

[
w8
o
Il

In the above we’ve defined solution 1 to be the upper of &£, F, and solution 2 to be the
lower. For the solutions in the negative branch, we just need to flip the sign of the matrix
element ¢4 ; — —ca; (j = 1,4,6,8), i.e.

—A1 A2 =A3 A —Xs Ag =7 Ag
C;(Q) = 03,1 0372 63,3 0 0 0 0 6378 . (B.3)

—C4,1 C42 C43 —C44 C45 —C46 C47 —C48

The leading singularities arising from My = 0 are then given as:

1 53(p)sA(C -y
L84 = 2 (]34M(M )
4\/—Pise7 17243 o=t
(B.4)
1 53 (p)std(C -
LS o] = - )
4 —p§,5,6,7 172743

c=Cf

where the factor ———— stems from the Jacobian factor for solving the orthogonal
44/ *pi,5,6,7

constraint and localizing on My = 0. Remaining leading singularities LS, j(9)[i] arising
from localizing on M; = 0, for ¢ = 1,2, 3, can be obtained from cyclic shifting the indices
A; — A;_1, and shifting column i of C' to i—1, such that instead of M4 = 0, one has M3 = 0,
M = 0 and M; = 0 under each successive shift. The leading singularities LS, ;(2)[d] for
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1 =1,2,3 are then identified as

1 53 (p)dM2(C -y
LSyq[l] =~ B (]3/[ M(M )
4/ —P123.4 2 C=CT |imi3
=01 li—i—
1 83 (p)d12(C -y
LS.l 2 ( ]34 M(M ) (B.5)
4/ —P123.4 2 C=Climi-3
1 83(p)d2(C -y
LSy 1[2] = 2 (]3/[M(M )
4\/=P3345 1 C=CF|iio
=01 li—i—
1 53(p)o2(C -y
LSy 0[2] = — 5 (]34 M(M ) B0
4\/=P3345 1T C=CFlissio
1 53 (p)s12(C - NI
LS+ 1[3] = — 5 (]24 M(M )
4\/=P3456 1 C=CTlimi1
1 83 (p)d(C -y
L8, a03] = 2 ( ]34 M(M ) (B.7)
4\/—DP3456 12

C=CJ |imi-1

Trivially from construction, under cyclic shit of the on-shell data A; — A;_1, they are

related as:

LS, 1(9)[4] = LS_ 19)[3] = —LS, 1(9)[2] = —LS_ 1(9)[1] — LS, o1y [4],

LS_19)[4] = LSy 1(2)[3] = —LS_ 1(9)[2] = LS4 1(2)[1] = LS_ 1(2)[4].

Another useful symmetry often discussed in ABJM theory is reflection symmetry:

{A1, Ao, ...

7A8} — {A17A87 ..

Under reflection, these leading singularities are related by

LS| 19)[1] <» —LS_ 5(1)[2],
LS4 1(2) 3] < —L81,2(1)[4]-
As well, for parity A; — —A;:

LS 1(2)[1] < (—)LS_ 51y[1]
LS, 1(9[1] « (= )E 'LS_ 1)[1]
LS 1(2)[2] & (—)LS_ 51)[2]
LSy 12)[2] & (-) ZLS*,I(Q) 2]
LS, 12)[3] « (=) ZLS—,Z(l)[?’]
LSy 12)[3] < (= )E "LS_ 1(2)[3]
LS, 1(2)[4] « (- )F "LS_ o1y[4]
LS 1(2)[4] < (—)""LS_ 1(2)[4]

LS_12)[1] > —LSy 112)[2],

where F; is the fermion number of the particle on leg .
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(B.8)
Ao} (B.9)
(B.10)
(B.11)
fori=1,2,3,4,
fort=5,6,7,8; (B.12)
fori=2,3,4,5,
for i =1,6,7,8; (B.13)
for i = 3,4,5,6,
fori=1,2,7,8; (B.14)
for i =4,5,6,7,
fori=1,2,3,8; (B.15)



Component amplitudes are obtained from the superamplitude by integrating out ap-
propriate 7;ss. For example, A@W@WW can be obtain by integrating out n;; with
i =1,6,7,8. This specific choice is convenient in the sense that only LS4 ;[4] contributes
while LS+ ;[2] vanishes. The explicit contribution from LSy ;[4] is given as:

+1 = N4 1741
RS 4, /—1)?175’677 P%,2,3P421,5,6P§,6,7P§,1,2
: 50 (B.16)

Lsi72[4}|772773774775 - - 2 p2 p2 p2 p2 N4 2MN4 2
4,/—1)4,57677 1,2,3P1,5,6P5,6,7P8,1,2

where the subscript indicates selecting the term proportional to [[;_; o 372,17m3,1m4,175.1,

and
Ny 1(2) = Fy/ P67 ((67)(14) + (23)(58)) + (48)) (—(45)(81) + (23)(67)) — p1 56,7 (15)),
i 1(2) = £/ D567 ((81)((36)) + (45)(72)) + (73) ((45)(81) — (23)(67)) + p1 56,7 (62)),

n_12) =Ny (M = —\), and  A_ o) = g 12) (A — =), (B.17)

where the bracket represents ((ij)) := (i|pjit1,... j|7). The tree amplitude is then given by
the sum of the four leading singularities

3
6°(p)
2 2 2 2
P1,2,3P456P5,6,7P8,1,2

x ( — Piser ((23)(58)((62) + (81)((36))(15))
+ (45)(67) ((23){(48))(72) + (81)((37) (14)))
— (45)(81)*((48))((36)) — (67)(23)*((37)) <<58>>) :

AL (oo ppiny) =

(B.18)

C Cyclicity, reflection, and parity of B, i, D; jk, ’ﬁi,j,k

In this appendix, we will discuss how B; ; ., D; ;x, and ﬁi,j,k‘a which we define in our main
text, transform under the various symmetries.
First, we consider the cyclic by one site A; — A;_1:

Bi3s— Bigg— —Bi37——Boae— Bis7— Boag— —Bs3s7——Baes— Bi13s;
Di135(D157) = —Daasg(Dass) — —D137(Ds57) — Daae(D2ss) = Di3ss(Disr), (C.1)
D1,35(D1,5,7) = D24g8(Dasg) = —D137(D357) = —D2ae(D2sg) = D135(D157)-

For the reflection symmetry {A1, Ag, ..., Ag} — {A1,Ag, ..., A2}

Bi3s < Bags, Bi37<rBoag, Bis7<r Boases, Bssr<r Bigg;
Di135(D15,7) <+ —D268(D246), Di137(D357) <> —D248(Dagg); (C.2)
Z_71,3,5(7_)1,5,7) e 1_)2,6,8(132,4,6)a Z_71,z'>,7(7_)3,5,7) e 2_)2,4,8(154,6,8)-
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Finally, for the parity transformation A; — —A;:

Ba,a+2,a+4 — Fi+1Ba,a+2,a+4 for i = a, CL—|—1, a+27 a+37

(-)
Ba.a+2,a+4 — (—)FiBa,a+27a+4 for i = a+4, a+5,a+6,a+7; (©3)
Da,a+2,a+4 — (_)FiDa,a+2,a+4 for i = L2,....8 '
Daja+2,a+4 — (=) ' Dgatoa4a for i =1,2,...,8,

where the legs that transforms as (—)f**! has opposite parity.

D Numerators of box-triangle integrals

In this section, we demonstrate how the numerators of box-triangles Ibctﬂ- [nq(p)] are con-
structed. This topology will contribute to the two-loop maximal cut C?EH, and on the cut
the numerators n%’iija( g are required to reproduce the sign patterns in (4.23). Furthermore,
this topology will contribute to the collinear-soft divergence, and the numerator is required
to vanish at these kinematic points. We use the ¢ = 1 as an example.

We begin with the numerator nlg,i:l’ o Since nlgl’a is evaluated to +1 under all four
maximal cut solutions, its numerator can only be inner product (b-j)s. We write the ansatz
for the numerator as oy (b- 1)+as(b-3)+a4(b-4)+as(b-6)+ag(b-8). Now, imposing that

our ansatz vanishes under collinear region y, = a1y1 + asys, yp» = b1y1 + bgys gives:
ag(bi(1-3)+bg(3-8)) +ayg(bi(1-4)+bg(4-8))+ag(bi(1-6)+bg(6-8))=0. (D.1)
while vanishing in the region y, = asys + a4y4, y» = b3ys + bays gives:
a1 (b3(1-3)+ba(1-4)) + ag(b3(3-6) +ba(4-6)) +asg(b3(3-8)+b4(4-8))=0. (D.2)

Solving eq. (D.1) and eq. (D.2), the coefficients can be determined up to a normalization
factor:
ar=N((3-6)(4-8)—(3-8)(4-6))
ag=—N((1-4)(6-8) — (1-6)(4-8))
as=N((1-3)(6-8)—(1-6)(3-8)) (D.3)
ag = —N((1-3)(4-8) - (1-4)(3-8))
ag=N((1-3)(4-6)—(1-4)(3-6))

(12)(45)(67)(3|p1,2(8)
(1,3,4,6,8)

and N can be determined to be 2 by requiring that the integrand evaluate
to 41 on the maximal cut.

We turn to fix the numerator nbctﬂzlﬂ. As discussed in sec 4.2, the soft-colinear di-
vergence of box-triangle Ig?’l[ng] should cancel against I%’il. Choosing the numerator of
I%’il to be (b, 1,2,3,4)1/(2-4-8)/v/2(2-4), it evaluates to zero in the soft-collinear region
Yo = a3Y3 + a4, yp = bayz + bays. Therefore, the numerator ng should also vanish in this
region. According to the sign pattern (4.23) of maximal cut C%-, the numerator should

reflect the sign change which switch b4 to b_. The possible numerator n%t’l, g is

nd | 5= Pre(b,3,4,6,8) + Bse(b, 1,3,4,6). (D.4)
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Now imposing that two box-triangle I%tg and Ig‘il[nﬁ] cancels each other in the other
collinear region y, = a1y1 + asys, Y» = b1y1 + bgys yields:

€(1,2,3,4,8)/(2-4-8) n (0151 + bgPs) €(1,3,4,6,8) 0 (D.5)
V2(2-4)(2-8)(a-3)(b-4)  (bi(1-6) +bg(6-8))(a-3)(b-4) '

The solution of above equation is

(1-6)e(1,2,3,4,8)\/(2-4-8)
V2(2-4)(2-8)e(1,3,4,6,8)
(6-8)e(1,2,3,4,8)/(2-4-8)
V2(2-4)(2-8)e(1,3,4,6,8)

fr=—

fg = —

One can check that the solution (D.6) under the maximal cut C% is unity.

Note that the above solution stems from a particular choice for the numerator of
I%tyl, €(b,1,2,3,4)\/(2-4-8)/v/2(2-4). One could have started with another viable choice
€(b,1,2,3,8)\/(2-4-8)/v/2(2-8), and proceed with the same procedure to determine an-
other corresponding ng. Here we show that the two choices are equivalent. We apply
Schouten identity on the box-triangle Ilbst,l:

e(a,1,2,3,4)\/(2-4-8)
V2(2-4)(a-1)(a-2)(a-3)(a-b)(b-4)(b-8)
_ €(1,2,3,4,8)/(2-4-8) 0.7
V32 0(2-8)(a D(a-3)(a )b (b-8) |
€(a,1,2,3,8)\/(2-4-8)

V2(2-8)(a-1)(a-2)(a-3)(a b)(b-4)(b-8)

_l’_

It produces the other choice of numerator for I%ﬁl and an extra double triangle with the
tensor numerator. On the other hand if we apply Schouten identity on (1 - 6)e(b, 3,4, 6,8)
of the box-triangle Ig{l [ngl:

(1-6)e(b,3,4,6,8) + (6-8)e(b,1,3,4,6) €(1,2,3,4,8)/(2-4-8)
V2(2-4)(2-8)(a-1)(a-3)(a-b)(b-4)(b-6)(b-8) €(1,3,4,6,8)
_ (3-6)e(b,6,8,1,4) + (4-6)e(b,6,8,1,3) €(1,2,3,4,8)/(2-4-8) (D.8)
V2(2-4)(2-8)(a-1)(a-3)(a-b)(b-4)(b-6)(b-8) €(1,3,4,6,8) '
€(1,2,3,4,8)/(2-4-8)

V22-4)(2-8)(a-D(a-3)(a-)(b-4)(b-8)

It creates another choice of numerator of Igl[nﬁ] and the same double triangle with oppo-
site sign. Hence, the two choices of tensor numerators are equivalent.

E The + of §7(P?) in maximal cuts

In section 4.2, we’ve constructed a set of numerators that evaluate to 1 on the maximal
cut, with the sign depending on the cut solution. To check that the numerators do the job,
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sometimes we need to resort to numerics. However special care is needed when selecting
the numerical cut solutions, since the solution needs to be forward-pointing, i.e., we have
57 (%) where (9 > 0. This means that we should only consider solutions where along each
close loop, we can identify a direction of the loop where the momenta are always pointing
in the future direction. We will use the numerator nlgﬂ-:l’ 3 of the box-triangle to illustrate
this subtlety.

First, we consider the rule of reading out the momentum flow between the regions. For
each vertex, we consider a clockwise orientation of (red) arrows connecting different regions.
If an arrow points from region i to j, it represents that the momentum flow between the
two regions is given by y; — y;, with the direction given by the sign of the first component
of y; — y;. If the sign is positive, then the momentum flow is pointing outward from the
vertex. A negative sign represents pointing inward toward the vertex. For example, let’s
consider the quartic vertex below, where the sign of the difference in clockwise directions is:

9 Jf»g ys — 1) = (+)
— Y3 —ys = (-)
1‘1*4 ye — 3 = (+)

-y =(-)

Following our rule, momentum p; and p3 are outgoing and p2 and p4 are incoming;:

b2

p1 b3

P4
For the box-triangle Ig?’ 1, we have the following region differences
{Y1 = Ya> Y3 = Ya» Yo — Ya» Y4 — Yo, Y6 — Ybs Ys — Yb} » (E.1)

and we label them with red arrows in the following diagram, each being clockwise to a
unique vertex,

w
i NN

6 -

\V]
s}

|
v

>

|

1 v
8
Now let’s consider two sets of sign patterns for the first component of the differences in

eq. (E.1):
(A){—,—, —,+,+,+}, B){+,+,+++ +}. (E.2)
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For kinematics (A) the momentum flow is illustrated in the following:

4
3 <
2 ay b AO
1 >
8

We see that loop a forms a clockwise loop while loop b forms a counterclockwise loop. For
kinematics (B), as shown below, loop b does not form a closed loop,

3 <

2 a A b “6
1 >
8

The arrow in the loop indicates the future direction, where the energy is positive. So the
fact that we don’t get a closed loop is a reflection that the loop momentum cannot have
positive energy everywhere in the loop. Thus kinematics (B) should not be considered
when checking cut constraints.
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