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1 Introduction

An important property of the S-matrix is its invariance under field redefinitions [1–4]. The
Lagrangian and correlation functions (Green’s functions) change under field redefinitions;
however, the scattering amplitudes and physical observables remain unchanged.1 Field
redefinitions which do not include derivatives, such as φ(x)→F (φ(x)) for a scalar field, can
be viewed as a change of coordinates on the manifold where the scalar fields live, which does
not change the dynamics of the theory. An example is chiral perturbation theory, where
for two light flavors, the Goldstone boson manifold is the group SU(2) which is isomorphic
to the three-sphere S3. Two common field choices are to use Cartesian coordinates π̃=
(π̃1, π̃2, π̃3, π̃4) with the constraint π̃·π̃= 1 for S3, or the exponential parameterization
exp(iπ·τ/f) with π= (π1,π2,π3) for the corresponding SU(2) group element. The two
forms lead to different off-shell correlation functions, but the same S-matrix elements.

The geometric approach was used to compute scattering amplitudes, and to charac-
terize deviations from the Standard Model (SM) in terms of the curvature of the scalar
manifold of the Higgs field [6, 7]. It was shown that deviations from the SM model for
Higgs Effective Field Theory (HEFT) or Standard Model Effective Field Theory (SMEFT)
have a simple universal form in terms of the curvature [6, 7]. Further work can be found
in refs. [8, 9]. Recently, the geometric structure of scattering amplitudes under field redef-
initions has been extended to include field redefinitions with derivatives and higher-spin
fields through several approaches [10, 11].

The geometric view of scattering amplitudes also has practical advantages. It reor-
ganizes the calculation of amplitudes in terms of geometric invariants. Many terms in a
Feynman-diagram expansion are organized into geometric quantities, leading to a more
efficient calculation of the amplitude. It provides a universal description of some scatter-
ing amplitudes — Higgs and longitudinal W scattering in BSM models, soft scattering
amplitudes for spontaneously broken theories [7, 12], and the renormalization group equa-
tions [6, 7, 13] in terms of the curvature.

1Scattering amplitudes refers to S-matrix elements, i.e., the on-shell amplitudes including external leg
(wavefunction) corrections. A simple derivation of S-matrix invariance is given in ref. [5], implementing
field redefinitions as a change of variables in the functional integral.
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The previous results were extended to include gauge fields and combine the scalar and
gauge sectors in a unified framework [14]. Kinetic terms for the scalar and gauge fields
are unified into a combined metric tensor with both scalar and gauge indices. The results
unify scalar and gauge amplitudes, so that φφ→φφ, φφ→AA and AA→AA are different
components of a single curvature tensor. Even though the starting metric is block-diagonal,
with scalar and gauge components, the curvature tensor is not. Terms in the curvature
tensor such as ΓijrΓrkl have internal index sums which run over both scalar and gauge
indices. They give terms in the scattering amplitude from diagrams with internal scalar
and gauge exchange. The geometric analysis can be used to compute one-loop anomalous
dimensions. We apply the methods in this paper to reproduce the renormalization group
equations (RGEs) for the dimension-six even-parity bosonic operators in the SMEFT [15–
17] as a check on the formalism. We then obtain the RGEs for dimension-eight even-parity
bosonic operators in the SMEFT. Parts of the dimension-eight RGEs have been computed
previously [18–20], but a lot of terms are new. We agree with the previous results for the
terms common to both calculations.

We will use the standard EFT power counting in 1/M , where M is a mass scale.
Dimension-six contributions to the Lagrangian or RGE are proportional to 1/M2, dimen-
sion-eight contributions to 1/M4, etc. Section 2 discusses the geometric formulation we use,
including the combined scalar-gauge metric, covariant derivatives, and curvature. Section 3
computes the second variation of the action using geodesic coordinates for the fluctuations,
and the one-loop renormalization counterterms in terms of curvatures and field-strength
tensors. The SMEFT Lagrangian to dimension eight, and the expressions for the metric
and Killing vectors in the SMEFT are given in section 4. The formalism of sections 2 and 3
is applied to compute the RGEs in section 5. Operator counterterms have to be reduced
to the canonical dimension-eight basis. These reduction expressions are lengthy, and given
in appendix B, and the RGEs in the canonical basis are given in appendix C. Section 6
discusses the implications of our results for geometric zeros in the anomalous dimensions.
We conclude in section 7.

2 Field-space manifold

Consider a theory of scalar and gauge bosons with interactions with at most two deriva-
tives,2 and ignore CP-violating interactions for simplicity. The general gauge-invariant
Lagrangian takes the form

L= 1
2hIJ(φ)(Dµφ)I(Dµφ)J−V (φ)− 1

4gAB(φ)FAµνFBµν , (2.1)

where hIJ(φ), V (φ), and gAB(φ) depend on the scalar fields, and

(Dµφ)I = ∂µφ
I+ABµ tIB(φ), FBµν = ∂µA

B
ν −∂νABµ −fBCDACµADν , (2.2)

2Higher-derivative interactions are linked to higher-derivative field redefinitions, which is outside the
scope of this work. They have been considered in refs. [10, 11].
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where tIA(φ) are Killing vectors of the scalar manifold, so they generate a symmetry.3 The
Lie derivative of the scalar metric hIJ vanishes,

(LtAh)IJ = tKAhIJ,K+hKJ tKA,I+hIKtKA,J = 0, (2.3)

where hIJ,K = ∂KhIJ and tIA,J = ∂J t
I
A. The Killing vectors satisfy the Lie bracket relations

[tA, tB]I = fCABt
I
C , (2.4)

and the relation
∇J tIA =−∇ItJA , (2.5)

where tIA =hIJ t
J
A. The gauge coupling constant is included in tIA, and hence also in the

structure constants fCAB.
The kinetic term coefficient for the scalars, hIJ(φ), can be interpreted as a metric in

scalar field space [21], and transforms as a metric under field redefinitions. The kinetic
term coefficient for the gauge fields, gAB(φ), which depends on the scalars, is symmetric
under A↔B, and transforms as an invariant tensor with two adjoint indices under action
by the Killing vector tIA,

gAB,I t
I
C−fDCA gDB−fDCB gAD = 0 . (2.6)

We extend the notion of a field-space manifold to include gauge fields, where gAB(φ)
will take center stage, and unify the scalar and gauge sectors, so eqs. (2.3) and (2.6) are
components of a single equation. This also provides a unified description of scalar and
gauge amplitudes.

We group the scalars and gauge bosons into real multiplets φI and ABµB , where
I,J,K, . . . are scalar indices and (AµA),(BµB), . . . are gauge and Lorentz indices, treated
as a combined index. We will use i, j,k, . . . to run over both scalar and gauge indices. We
define a combined metric

g̃ij =
(
hIJ 0
0 −ηµAµB gAB

)
(2.7)

from the scalar and gauge kinetic terms. The quadratic part of the gauge kinetic term is

L=−1
2gAB(φ)

[
(∂µAAν )(∂µABν )−(∂µAAµ )(∂νABν )

]
. (2.8)

The first term in the square brackets motivates the choice in eq. (2.7). The second term is
cancelled by the gauge-fixing term.

In earlier works [6, 7], the metric used was the scalar metric hIJ . This metric gives
the Christoffel symbol

ΓIJK = 1
2h

IL (hJL,K+hLK,J−hJK,L) , (2.9)

and Riemann curvature

RIJKL =hIM
(
∂KΓMLJ−∂LΓMKJ+ΓMKNΓNLJ−ΓMLNΓNKJ

)
. (2.10)

3More details can be found in ref. [7].
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Covariant derivatives using the connection in eq. (2.9) are denoted by ∇I , where only
the scalar indices are treated as active indices. We can compare these with quantities
derived from the metric in eq. (2.7), which we denote with a tilde superscript. The various
components of the Christoffel symbol Γ̃ijk are

Γ̃IJK = ΓIJK , (2.11a)

Γ̃(AµA)
JK = Γ̃I(AµA)K = Γ̃(CµC)

(AµA)(BµB) = 0, (2.11b)

Γ̃I(AµA)(BµB) = 1
2h

IJ∇JgABηµAµB , (2.11c)

Γ̃(AµA)
I(BµB) = 1

2g
AC∇IgCBδµA

µB
, (2.11d)

where ∇IgAB = gAB,I is the covariant derivative using the connection ∇I , since A,B are
not active indices for ∇I . Christoffel symbols with an odd number of gauge indices vanish.
We will also use the notation

Γ̃I(AµA)(BµB)≡ΓIAB(−ηµAµB ) , ΓIAB =− 1
2h

IJ∇JgAB, (2.12a)

Γ̃(AµA)
I(BµB)≡ΓAIBδµA

µB
, ΓAIB =1

2g
AC∇IgCB, (2.12b)

where ηµAµB and δµA
µB

have been factored out. Even though the metric in eq. (2.7) is block
diagonal, we get non-zero mixed Christoffel symbols with both scalar and gauge indices.

The Riemann curvature tensor components R̃ijkl are computed from the Christoffel
symbols Γ̃ijk, and the summation over indices runs over both scalar and gauge indices. The
components of R̃ijkl are

R̃IJKL =RIJKL, (2.13a)
R̃(AµA)JKL =R(AµA)(BµB)(CµC)L = 0, (2.13b)

R̃IJ(AµA)(BµB) =
(1

4(∇IgAC)gCD(∇JgBD)− 1
4(∇JgAC)gCD(∇IgBD)

)
ηµAµB ,

(2.13c)

R̃I(AµA)J(BµB) =
(1

2∇I∇JgAB−
1
4(∇JgAC)gCD(∇IgBD)

)
ηµAµB , (2.13d)

R̃(AµA)(BµB)(CµC)(DµD) =− 1
4(∇IgAC)hIJ(∇JgBD) ηµAµCηµBµD

+ 1
4(∇IgAD)hIJ(∇JgBC) ηµAµDηµBµC . (2.13e)

Curvature components with an odd number of gauge indices vanish. Here

∇I∇JgAB = gAB,IJ−ΓKIJgAB,K , (2.14)

since only the scalar indices are active indices for ∇I . The gauge curvature obeys the
Bianchi identities

R̃(AµA)(BµB)IJ+R̃(AµA)IJ(BµB)+R̃(AµA)J(BµB)I = 0 , (2.15)
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Figure 1. Generic one-loop graph. The internal (dashed) lines are fluctuation fields, ηI and ζAµ ,
and the external (solid) lines are the background fields ΦI and ABµB . All interaction vertices are
quadratic in the fluctuations.

and similarly for R̃IJKL and R̃(AµA)(BµB)(CµC)(DµD).
We will also use the covariant derivative ∇̃I using the Christoffel connection Γ̃ijk in

eq. (2.11), where scalar and gauge indices are both active indices. One quantity which
enters in helicity amplitudes is [14]

∇̃I∇J (gABηµAµB ) =
(
∇I∇JgAB−

1
2∇IgAC g

CD∇JgBD−
1
2∇JgAC g

CD∇IgBD
)
ηµAµB ,

(2.16)
where A,B are active indices for the combined covariant derivative ∇̃, but not for the
scalar covariant derivative ∇. As in eq. (2.12), it is convenient to factor out ηµAµB from
both sides,

∇̃I∇JgAB ≡
(
∇I∇JgAB−

1
2∇IgAC g

CD∇JgBD−
1
2∇JgAC g

CD∇IgBD
)

= ∇̃J∇IgAB .
(2.17)

These geometric quantities arise in the calculation of the renormalization group equations.

3 Renormalization

The one-loop renormalization of the Lagrangian in eq. (2.1) can be computed using the
background field method. The scalar fields are written as the sum of a background field Φ
plus fluctuation η, φI→ΦI+ηI . The one-loop renormalization is computed by expanding
the Lagrangian to second order in the fluctuations, and then integrating over the fluctua-
tions. A generic one-loop graph that contributes to the RGEs is shown in figure 1. This
method was used for the dimension-six SMEFT operators in ref. [22].

The expansion φI→ΦI+ηI is not a covariant expansion to second order in the fluctu-
ation, and it is better to use instead an expansion in geodesic coordinates [6, 7, 23, 24]

φI = ΦI+ηI− 1
2ΓIJKηJηK+. . . (3.1)

This results in a covariant second variation of the action. In our case, we use geodesic
coordinates for both scalar and gauge fluctuations,

ηi =
(

ηI

ζAµA

)
, (3.2)
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with the connection derived from the combined metric in eq. (2.7). The expansions of the
fields are

φI = ΦI+ηI− 1
2Γ̃Ijkηjηk+. . .

= ΦI+ηI− 1
2Γ̃IJKηJηK−

1
2Γ̃I(AµA)(BµB)ζ

AµAζBµB +. . .

= ΦI+ηI− 1
2ΓIJKηJηK+ 1

2ΓIABζAµζBµ +. . . , (3.3a)

ABµB = ABµB +ζBµB− 1
2Γ̃(BµB)

jk ηjηk+. . .

= ABµB +ζBµB− 1
2Γ̃(BµB)

(CµC)Kζ
CµCηK− 1

2Γ̃(BµB)
J(CµC)η

JζCµC +. . .

= ABµB +ζBµB−ΓBCKζCµBηK+. . . , (3.3b)

where ΦI and ABµB are the background fields. After expanding the action, we will simply
use φI and ABµB for the background fields when there is no ambiguity. Note that with
the choice in eq. (3.3), there is mixing between the scalar and gauge fluctuations at second
order.

The computation of the variation of the action to second order is a lengthy calculation.
The substitution in eq. (3.3) is used for the fields, and then the action is expanded to second
order in η and ζ. There is considerable simplification when using the expansion in eq. (3.3)
and the symmetries in eqs. (2.3) and (2.6). Using geodesic fluctuations gives the resultant
fluctuations in terms of geometric quantities. In computing variations of the action, it is
useful to define various covariant derivatives. The gauge covariant derivative of φ is

(Dµφ)I = ∂µφ
I+ABµ tIB(φ) , (3.4)

and the gauge covariant derivative of a gauge adjoint such as FAαβ or ζAα is

(DµFαβ)A = ∂µF
A
αβ−fABCABµ FCαβ , (Dµζ

α)A = ∂µζ
Aα−fABCABµ ζCα . (3.5)

The derivative of the scalar fluctuation that is covariant w.r.t. gauge transformations and
scalar manifold coordinate transformations is [7]

(Dµη)I = ∂µη
I+tIB,KABµ ηK+ΓIJK(Dµφ)JηK . (3.6)

Since (Dµφ)I transforms like the fluctuation ηI , the covariant second derivative of φ is

(DνDµφ)I = ∂ν(Dµφ)I+tIB,JABν (Dµφ)J+ΓIKL(Dνφ)K(Dµφ)L . (3.7)

Generalizing to the combined metric in eq. (2.7), we define a covariant derivative D̃ w.r.t.
both the gauge field and the background metric g̃ij analogous to the definition of D in
ref. [7]. Let

Ziµ =
[
(Dµφ)I

FAµA
µ

]
(3.8)
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be the analog of Dµφ in the combined scalar-gauge space, and define

(D̃µη)I = ∂µη
I+tIB,KABµ ηK+Γ̃IjkZjµηk

= ∂µη
I+tIB,KABµ ηK+ΓIJK(Dµφ)JηK+Γ̃I(AµA)(BµB)F

AµA
µ ζBµB

= ∂µη
I+tIB,KABµ ηK+ΓIJK(Dµφ)JηK−ΓIABFAµνζBν

= (Dµη)I−ΓIABFAµνζBν , (3.9)

and similarly(
D̃µζ

)(AµA)
= ∂µζ

AµA−fACDACµ ζDµA +Γ̃(AµA)
ij Ziµη

j

= ∂µζ
AµA−fACDACµ ζDµA +Γ̃(AµA)

I(BµB)(Dµφ)IζBµB +Γ̃(AµA)
(BµB)IF

B µB
µ ηI

= (Dµζ
µA)A+ΓAIB(Dµφ)IζBµA +ΓABIFB µA

µ ηI . (3.10)

The final expressions for the one-loop counterterms simplify greatly when written in terms
of D̃µη and D̃µζ.

3.1 First order variation

The first variation of the action in eq. (2.1) is

δηS=
∫
d4x

{
−hIJ(DµD

µφ)J− 1
4gAB,IF

A
µνF

Bµν−∇IV
}
ηI (3.11)

under scalar fluctuations, and

δζS=
∫
d4x

{
hIJ t

I
B(Dνφ)J+gAB,I(Dµφ)IFAµν+gAB(DµFµν)A

}
ζBν (3.12)

under gauge fluctuations, and δηS= 0, δζS= 0 are the classical equations of motion.

3.2 Second order variation

Obtaining the second order variation of the action is a tedious computation, with many
terms, which collapse into a covariant expression when using the symmetry conditions in
eqs. (2.3) and (2.6). The second order terms can be divided into the scalar variation δηη, the
gauge variation δζζ , and the mixed variation δηζ . We have used the geodesic fluctuations
in eq. (3.3) to compute the second order variation, which results in a covariant expression
and simplifies the final result. To the second variation, we have added a gauge-fixing term,
eq. (3.20), to eliminate terms linear in (Dµζ

µ)A. The gauge-fixing term is included in the
expressions below.

ηη: the scalar variation is

δηηS= 1
2

∫
d4x

{
hIJ

(
D̃µη

)I (
D̃µη

)J
+
[
−R̃IKJL(Dµφ)K(Dµφ)L−(∇I∇JV )

− 1
4
(
∇I∇JgAB−ΓCIAgCB,J−ΓCIBgAC,J

)
FAµνFBµν−hIKhJLgABtKA tLB

]
ηIηJ

}
,

(3.13)
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which can be written in the more compact form

δηηS= 1
2

∫
d4x

{
hIJ

(
D̃µη

)I (
D̃µη

)J
+
[
−R̃IKJL(Dµφ)K(Dµφ)L−(∇I∇JV )

− 1
4
(
∇̃I∇JgAB

)
FAµνFBµν−tIAtAJ

]
ηIηJ

}
. (3.14)

The covariant derivative ∇̃I∇JgAB is given in eq. (2.17). Scalar and gauge indices on the
Killing vector tIA are lowered and raised by the metrics hIJ and gAB and their inverses,

tIA =hIJ t
J
A , tAI = gABhIJ t

J
B . (3.15)

ηζ: the mixed variation is

δηζS=
∫
d4x

[(
hKJ∇ItJA−hIJ∇KtJA

)
(Dµφ)K− 1

2(∇J∇IgAB)(Dνφ)JFBµν

− 1
2g

BDgAD,IhLJ t
L
B(Dµφ)J+ 1

2g
BDgAD,IgCB,L(Dνφ)LFCµν

+gBA,K(Dµφ)KhILgBGtLG−
1
4(Dνφ)JgAB,JgBDgDC,IFCµν

]
ηIζAµ . (3.16)

The first term can be rewritten using the identity

hKJ∇ItJA−hIJ∇KtJA = 2hKJ∇ItJA = 2∇ItKA , (3.17)

which follows from eq. (2.5) since tA is a Killing vector. The entire expression reduces to

δηζS=
∫
d4x

{[
2(∇ItJA)+tBI (∇JgAB)− 1

2 t
B
J (∇IgAB)

]
(DµAφ)J

+
(
−R̃(AµA)I(BµB)J+2R̃IJ(AµA)(BµB)

)
FBµBρ(Dρφ)J

}
ηIζAµA (3.18)

using the combined curvature R̃ defined in eq. (2.13).

ζζ: the gauge variation is

δζζS= 1
2

∫
d4x

{
−gAB ηµAµB (D̃µζ)AµA(D̃µζ)BµB

+
[
tIAt

I
Bηµν−R̃I(Aµ)J(Bν)(Dαφ)I(Dαφ)J+ 1

2gAB,I
(
(D̃µDνφ)I+(D̃νDµφ)I

)
+
(
∇I∇JgAB−gAD,IgDGgGB,J

)
(Dµφ)I(Dνφ)J

+ 1
2
(
gDBf

D
CA−gDAfDCB+2gCDfDAB

)
FCµν−

1
4gDB,Kh

KLgCA,LF
C
αµF

D
αν

+ 1
8h

IMgAB,MgCD,IF
C
αβF

Dαβηµν+ 1
2h

IMgAB,MV,Iηµν
]
ζAµζBν

}
. (3.19)
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Gauge-fixing term: the gauge-fixing term, which has been included in the above second
variation of the action, is

Sg.f. =−1
2

∫
d4x gABGAGB ,

GA = (D̃µζ)Aµ+ 1
2g

ACgCB,I(Dµφ)IζBµ−hIJgABtJBηI

= (D̃µζ)Aµ+ΓAIB(Dµφ)IζBµ−tAI ηI . (3.20)

This is an extension of the gauge-fixing term in ref. [25]. The gauge-fixing term in eq. (3.20)
has been chosen to eliminate terms linear in (D̃µζ)Aµ in the second variation of the action,
and to make the ζ kinetic term invertible. Physical results do not depend on the choice of
gauge-fixing term.

Ghosts: there is also a ghost Lagrangian which depends on the gauge variation of the
gauge-fixing term in eq. (3.20). Under a gauge transformation with parameter θA,

δηI = tIA,Jη
JθA , δζAµ =−∂µθA−fABCθB(ACµ +ζCµ ) , (3.21)

the ghost Lagrangian takes the form

Sghost =
∫

d4x cA
δGA

δθB
cB

=
∫

d4x

{
(Dµc)A(Dµc)B+(Dµc)AfABCζCµ cB−2cAΓAIB(Dµφ)I(Dµc)B

−2cAΓAIB(Dµφ)IfABCζCµ cB−cAhIJgACtJCtIBcB−cAhIJgACtJCtIB,KηKcB
}
, (3.22)

where c and c are the anticommuting ghost and anti-ghost fields. The covariant derivative
of the ghost and anti-ghost analogous to eq. (3.10) is(

D̃µc
)A

= ∂µc
A−fABCABµ cC+ΓAIB(Dµφ)IcB = (Dµc)A+ΓAIB(Dµφ)IcB ,(

D̃µc
)
A

= ∂µcA−cCfCBAABµ +cBΓBIA(Dµφ)I = (Dµc)A+cBΓBIA(Dµφ)I , (3.23)

in terms of which the ghost action is

Sghost =
∫
d4x

{
(D̃µc)A(D̃µc)A

+cA
[(1

2g
AE∇I∇JgEB−

1
4g

AEgEC,Ig
CDgDB,J

)
(Dµφ)I(Dµφ)J+ΓAIB(DµDµφ)I−tIAtIB

]
cB

+(Dµc)AfABCζCµ cB−2cAΓAIB(Dµφ)IfABCζCµ cB−cAhIJgACtJCtIB,KηKcB
}
, (3.24)

which can be written in the simpler form

Sghost =
∫
d4x

{
(D̃µc)A(D̃µc)A+cA

[
gAC

1
2∇̃I∇JgCB(Dµφ)I(Dµφ)J+ΓAIB(DµDµφ)I−tIAtIB

]
cB

+
[
(Dµc)AfABCζCµ −2cAΓAIB(Dµφ)IfABCζCµ −cAtAI tIB,KηK

]
cB
}
. (3.25)

The last line of the ghost action is cubic in the fluctuation fields, and not needed for the
one-loop functional integral over fluctuations.
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3.3 One-loop counterterms

The divergent one-loop contributions are calculated from the second variation of the action.
The general form was first computed in ref. [26] and extended to a kinetic term with non-
trivial metric in ref. [7]. In the purely scalar case, if the second variation has the form

δηηS= 1
2

∫
d4x

{
hIJ(Dµη)I(Dµη)J+XIJη

IηJ
}
, (3.26)

then the infinite part of the one-loop functional integral in 4−2ε dimensions is

∆S= 1
32π2ε

∫
d4x

{ 1
12Tr[YµνY µν ]+ 1

2Tr
[
X 2
]}

, (3.27)

where
[Yµν ]IJ = [Dµ,Dν ]IJ , X IJ =hIKXKJ . (3.28)

In our case, we can use the above results treating X and Y as matrices in the com-
bined scalar-gauge space, and subtract the corresponding expression for the ghosts. The
components of X ,

X =
[

[Xηη]IJ [Xηζ ]I (BµB)
[Xηζ ](AµA)

J [Xζζ ](AµA)
(BµB)

]
, (3.29)

can be read off from eqs. (3.14), (3.18), and (3.19), and XAB for the ghosts from eq. (3.24).
The covariant derivative in the combined scalar-gauge space is

D̃µ

[
ηI

ζAλ

]
= ∂µ

[
ηI

ζAλ

]
+
[
tIC,JA

C
µ +ΓILJ(Dµφ)L −ΓICBFCµσ
ΓACJFCµλ −fACBACµ ηλσ+ΓALB(Dµφ)Lηλσ

][
ηJ

ζBσ

]
, (3.30)

and the commutator of covariant derivatives D̃ takes a very simple form,[
D̃µ,D̃ν

]i
j

=
[
Ỹµν

]i
j

= R̃ijklZ
k
µZ

l
ν+∇̃j t̃iCFCµν , (3.31)

extending ref. [7, (3.45)], where the combined Killing vector is

t̃iB =
[

tIB
−δAB∂µA +fACBACµA

]
. (3.32)

This grouping of the Killing vectors was introduced in ref. [14]. The commutator of covari-
ant derivatives for the ghosts is[

D̃µ,D̃ν

]A
B

= [Yµν ]AB = R̃ABKL(Dµφ)K(Dνφ)L+∇̃B t̃ACFCµν
= R̃ABKL(Dµφ)K(Dνφ)L−fACBFCµν+ΓALBtLCFCµν . (3.33)

The divergent contribution in eq. (3.27) allows us to compute the anomalous dimension
of the effective Lagrangian. The remaining computation is purely algebraic. Evaluate Yµν
and X in terms of the metrics and potential in the Lagrangian, and then take the traces in
eq. (3.27). Note that matrix multiplication and traces are over the combined scalar-gauge
space. The ghost contribution is subtracted, since ghosts are anticommuting. We discuss
the application of our results to the SMEFT in the next section.
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4 Standard Model Effective Field Theory

Although the construction and main results of this paper apply to a general effective field
theory for scalars and gauge fields, it is of particular interest to apply it to the SMEFT. In
the SMEFT, the only scalar field is the Higgs doublet, which we write as four real scalars,
as in eq. (A.1),

H = 1√
2

(
φ2+iφ1

φ4−iφ3

)
, (4.1)

and the scalar indices I,J, . . . take values from 1 to 4. We group all gauge fields of the full
gauge group SU(3)c⊗SU(2)L⊗U(1)Y into the multiplet

ABµ =

G
A
µ

W a
µ

Bµ

 . (4.2)

The corresponding field-strength tensors are GA
µν , W a

µν , and Bµν . Unless otherwise speci-
fied, a runs from 1 to 3. At times we will combine the electroweak SU(2)L⊗U(1)Y gauge
groups, and let a run from 1 to 4, where W 4

µν =Bµν , and denote this explicitly.
The operators in the starting SMEFT Lagrangian are those that can be included as

terms in the metrics or potential. All fermions are dropped. The terms in the SMEFT
Lagrangian to dimension four are the SM terms

L=− 1
4G

A
µνG

A µν− 1
4W

a
µνW

aµν− 1
4BµνB

µν+DµH
†DµH−λ

(
H†H− 1

2v
2
)2

=− 1
4G

A
µνG

A µν− 1
4W

a
µνW

aµν− 1
4BµνB

µν+ 1
2(Dµφ)I(Dµφ)I− 1

4λ(φIφI−v2)2 . (4.3)

From eq. (4.3), we can read off the potential

V (φ) = 1
4λ(φIφI−v2)2 , (4.4)

and gauge covariant derivative [6]

(Dµφ)I = ∂µ


φ1

φ2

φ3

φ4

+ 1
2


0 g2W

3
µ+g1Bµ −g2W

2
µ g2W

1
µ

−g2W
3
µ−g1Bµ 0 g2W

1
µ g2W

2
µ

g2W
2
µ −g2W

1
µ 0 g2W

3
µ−g1Bµ

−g2W
1
µ −g2W

2
µ −g2W

3
µ+g1Bµ 0



φ1

φ2

φ3

φ4

 .
(4.5)

The Killing vectors ta can be read off from eq. (4.5)

t1 = 1
2g2


φ4

φ3

−φ2
−φ1

 , t2 = 1
2g2


−φ3

φ4

φ1
−φ2

 , t3 = 1
2g2


φ2

−φ1

φ4
−φ3

 , t4 = 1
2g1


φ2

−φ1

−φ4
φ3

 , (4.6)

using t1,2,3 for the SU(2)L generators and t4 for the U(1)Y generator.
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H2

2
QH2 (H†H)

Table 1. Bosonic dimension-two operator in the SM (and the SMEFT).

H4

4
QH4 (H†H)2

H2D2

4
QH2D2 (DµH†DµH)
4
RH2� (H†D2H)+(D2H†H)

X2

4
QG2 GA

µνG
A µν

4
QW 2 W a

µνW
aµν

4
QB2 BµνB

µν

Table 2. Bosonic dimension-four operators in the SM (and the SMEFT). The operator 4
RH2� is

redundant, and can be eliminated by integration by parts.

The notation we use for the SMEFT operators is given in appendix B and follows the
notation of ref. [27]. [The dimension-eight operators were also classified in ref. [28].] We
include an additonal left superscript with the operator dimension, since we need operators
of dimension d= 2,4,6,8. The even-parity bosonic SM operators of dimension two and four
are given in tables 1 and 2. These are generated by the one-loop formula, eq. (3.27).

We include all SM couplings other than the Yukawa couplings in our calculation. We
use the Warsaw basis [29] for the dimension-six terms, listed in table 3 with our notation
and the original notation of ref. [29]. The H6 SMEFT operator gives a contribution to
the scalar potential, the H4D2 operators contribute to the scalar metric, and the X2H2

operators contribute to the gauge metric, where X is a general field strength. We cannot
include the X3 operators in our initial Lagrangian in eq. (2.1). The dimension-eight even-
parity bosonic operators are listed in table 4, excluding the X4 operators which we do not
need for this paper.

The H8 operator contributes to the potential, the H6D2 operators to the scalar metric,
and X2H4 operators to the gauge metric.

The total potential to dimension eight is

V = 1
4λ(φIφI−v2)2− 1

8
6
CH6(φIφI)3− 1

16
8
CH8(φIφI)4 , (4.7)

and the total scalar metric to dimension eight is

hIJ =δIJ
[
1+ 1

4
(8
C

(1)
H6D2−

8
C

(2)
H6D2

)
(φKφK)2

]
+
(
−2 6

CH4�

)
φIφJ

+ 1
2
[6
CH4D2 +8

C
(2)
H6D2(φKφK)

]
HIJ(φ) , (4.8)
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X3

QG
6
QG3 fA BCGA ν

µ GBρ
ν GCµ

ρ

QW
6
QW 3 εabcW aν

µ W bρ
ν W cµ

ρ

H4D2

QH�
6
QH4� (H†H)�(H†H)

QHD
6
QH4D2

(
DµH†H

)(
H†DµH

)

H6

QH
6
QH6 (H†H)3

X2H2

QHG
6
QG2H2 (H†H)GA

µνG
A µν

QHW
6
QW 2H2 (H†H)W a

µνW
aµν

QHB
6
QB2H2 (H†H)BµνBµν

QHWB
6
QWBH2 (H†τaH)W a

µνB
µν

Table 3. Bosonic even-parity dimension-six operators in the SMEFT. The first column is the
notation of ref. [29], and the second column is the notation used in this paper.

where

HIJ(φ) =φIφJ+


φ2

2 −φ1φ2 −φ2φ4 φ2φ3
−φ1φ2 φ2

1 φ1φ4 −φ1φ3
−φ2φ4 φ1φ4 φ2

4 −φ3φ4
φ2φ3 −φ1φ3 −φ3φ4 φ2

3

 . (4.9)

The matrix H is

HIJ(φ) = 1
2

4∑
a=1

[Υa]IJ xa(φ) , xa(φ) = [Υa]KLφ
KφL , (4.10)

where the matrices Υ were defined in ref. [30], and are discussed in appendix A.
The total gauge metric is

gAB =

 [gGG]A B 0 0
0 [gWW ]ab [gWB]a
0 [gBW ]b gBB

 , (4.11)

where A and B run over the SU(3), SU(2), and U(1) gauge groups. The submatrices are

gGG =
[
1−2 6

CG2H2(φIφI)−8
CG2H4(φIφI)2

]
18×8 ,

[gWW ]ab =
[
1−2 6

CW 2H2(φIφI)−8
C

(1)
W 2H4(φIφI)2

]
13×3−4 8

C
(2)
W 2H4xa(φ)xb(φ) ,

[gWB]a =[gBW ]a =
(
2 6

CWBH2 +8
CWBH4

)
xa ,

gBB =
[
1−2 6

CB2H2(φIφI)−8
CB2H4(φIφI)2

]
. (4.12)

Note that B in eq. (4.12) denotes the Bµν field strength for the U(1)Y gauge group, and
not a gauge index. From eq. (4.8),

RIJKL =−2 6
CH4�(δIKδJL−δILδJK)− 1

2
6
CH4D2

4∑
a=1

([Υa]IK [Υa]JL−[Υa]IL[Υa]JK)

−
(

4
(6
CH4�

)2
+8
C

(1)
H6D2−

8
C

(2)
H6D2

)
(φRφR)(δIKδJL−δILδJK)
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H8

8
QH8 (H†H)4

H6D2

8
Q

(1)
H6D2 (H†H)2(DµH

†DµH)
8
Q

(2)
H6D2 (H†H)(H†τ IH)(DµH

†τ IDµH)

H4D4

8
Q

(1)
H4D4 (DµH

†DνH)(DνH†DµH)
8
Q

(2)
H4D4 (DµH

†DνH)(DµH†DνH)
8
Q

(3)
H4D4 (DµH†DµH)(DνH†DνH)

X3H2

8
Q

(1)
G3H2 fA BC (H†H)GA ν

µ GBρ
ν GCµ

ρ

8
Q

(1)
W 3H2 εabc(H†H)W aν

µ W bρ
ν W cµ

ρ

8
Q

(1)
W 2BH2 εabc(H†τaH)B ν

µ W
bρ
ν W cµ

ρ

X2H4

8
Q

(1)
G2H4 (H†H)2GA

µνG
A µν

8
Q

(1)
W 2H4 (H†H)2W a

µνW
aµν

8
Q

(3)
W 2H4 (H†τaH)(H†τ bH)W a

µνW
bµν

8
Q

(1)
WBH4 (H†H)(H†τaH)W a

µνB
µν

8
Q

(1)
B2H4 (H†H)2BµνB

µν

XH4D2

8
Q

(1)
WH4D2 i(H†H)(DµH†τaDνH)W a

µν

8
Q

(3)
WH4D2 iε

abc(H†τaH)(DµH†τ bDνH)W c
µν

8
Q

(1)
BH4D2 i(H†H)(DµH†DνH)Bµν

X2H2D2

8
Q

(1)
G2H2D2 (DµH†DνH)GA

µρG
A ρ
ν

8
Q

(2)
G2H2D2 (DµH†DµH)GA

νρG
A νρ

8
Q

(1)
W 2H2D2 (DµH†DνH)W a

µρW
aρ
ν

8
Q

(2)
W 2H2D2 (DµH†DµH)W a

νρW
aνρ

8
Q

(4)
W 2H2D2 iεabc(DµH†τaDνH)W b

µρW
cρ
ν

8
Q

(1)
WBH2D2 (DµH†τaDµH)BνρW aνρ

8
Q

(3)
WBH2D2 i(DµH†τaDνH)(BµρW aρ

ν −BνρW aρ
µ )

8
Q

(4)
WBH2D2 (DµH†τaDνH)(BµρW aρ

ν +BνρW aρ
µ )

8
Q

(1)
B2H2D2 (DµH†DνH)BµρB ρ

ν

8
Q

(2)
B2H2D2 (DµH†DµH)BνρBνρ

Table 4. Bosonic dimension-eight operators in the SMEFT. The XH4D2 operators have a factor
of i relative to ref. [27] to make them hermitian. There are also X4 operators which have not been
listed here.

– 14 –



J
H
E
P
0
2
(
2
0
2
3
)
0
6
3

+
(8
C

(1)
H6D2−

8
C

(2)
H6D2

)
(δJKφIφL+δILφJφK−δJLφIφK−δIKφJφL)

+dimension-eight Υ terms , (4.13)

where the Υ terms are complicated, and have not been shown explicitly.

5 Renormalization group equations

The RGEs can be computed using eq. (3.27). The starting Lagrangian to dimension eight
is given by expanding the potential and the scalar and gauge metrics to order 1/M4. The
coefficients included in the Lagrangian are those that multiply operators given by expanding
the potential and the metrics in eq. (2.1). As we have seen, the SM couplings m2

H , λ, g1,
g2, and g3 can all be included, so the only SM couplings which are dropped are the Yukawa
couplings. The dimension-six SMEFT coefficients included in the form in eq. (2.1) are

6
CH6 ,

6
CH4�,

6
CH4D2 ,

6
CG2H2 ,

6
CW 2H2 ,

6
CB2H2 ,

6
CWBH2 , (5.1)

and the dimension-eight coefficients are
8
CH8 ,

8
C

(1)
H6D2 ,

8
C

(2)
H6D2 ,

8
C

(1)
G2H4 ,

8
C

(1)
W 2H4 ,

8
C

(3)
W 2H4 ,

8
C

(1)
B2H4 ,

8
C

(1)
WBH4 . (5.2)

While the starting Lagrangian has the form in eq. (2.1), the counterterms generated are
not limited to that form. Thus we can compute all terms in the entire RGE to dimension
eight which depend on the coefficients listed above.4 As a non-trivial check of the method,
we reproduce the known SM RGEs, and the dimension-six RGEs computed in refs. [15–17]
which depend on the above coefficients. The dimension-four and dimension-six RGEs are
not included in the results in appendix C, and must be added to the equations given there.

The operators generated by the renormalization counterterms are not in the canonical
operator basis. The most lengthy part of the computation is converting the redundant
operators to the canonical basis using integration-by-parts and field-redefinition identities.
These relations are tabulated in appendix B. Eliminating operators by field redefinitions
is equivalent to using the equations of motion to first order, but not to higher orders (see,
e.g., ref. [31] for an HQET example). In our computation, the redundant operators have
a one-loop coefficient, so second-order quantities are effectively two-loop order, and can
be dropped. Thus one can use the classical equations of motion instead of field redefini-
tions to get the results in appendix B. This simplification cannot be used for a two-loop
computation.

The RGEs are given in appendix C for the dimension-eight corrections to the SM
couplings m2

H and λ, and to the dimension-six SMEFT couplings 6
CH6 , 6

CH4�,
6
CH4D2 ,

6
CG2H2 , 6

CW 2H2 , 6
CB2H2 , and 6

CWBH2 . We also obtain the dimension-eight RGEs for the
H8, H6D2, H4D4, X2H4, X3H2, X2H2D2, and XH4D2 operators. All other dimension-
eight SMEFT coefficients have no terms in their RGE that depend on the coefficients in

4Warning: as an example, the RGEs for H4D2 operators in appendix C do not include H4D4 terms,
since these are not in the listed coefficients. This does not mean that such terms vanish. They are present,
e.g., from wavefunction renormalization contributions, and were computed in ref. [20]. Similarly for all
other contributions which depend on coefficients not listed in eqs. (5.1) and (5.2).
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eqs. (5.1) and (5.2) and the SM bosonic couplings. Following the convention of refs. [15–17],
we list 16π2µ d

dµ for the RGEs to avoid a factor of 1
16π2 in each equation.

Parts of the dimension-eight RGEs have been computed previously in refs. [18–20].
These results include fermionic terms which we have not computed, and we have some
bosonic contributions which they have not computed. Refs. [19, 20] computes the RGEs
for the dimension-eight operators proportional to dimension-eight coefficients. We agree
with their results for all the terms both calculations have in common. In comparing, it is
necessary to take into account the opposite sign convention for the coupling constant in
the gauge covariant derivative, and the difference in gauge β-functions because we do not
include fermion loops.

The one-loop correction to the SM kinetic terms gives the field anomalous dimensions
(wavefunction renormalization factors) listed in eq. (C.3). These depend on the gauge-fixing
term, and are computed using our choice in eq. (3.20). There are dimension-six corrections
to the wavefunction renormalization. Note that the dimension-four contribution to γH ,
γH =−g2

1−3g2
2, is twice the value in Feynman gauge.

As in previous calculations [15], there are some unusually large coefficients in the RGEs,
with several coefficients larger than 100. The biggest coefficient is in the RGE

µ
d

dµ
8
CH8 =−1568

16π2λ
2
(6
CH4�

)2
+. . .≈−0.17

(6
CH4�

)2
+. . . (5.3)

using the known value of λ in the SM.

5.1 NDA

There are some consistency checks on our result using the NDA [32] rules given in refs. [33,
34]. Every operator in the Lagrangian has mass dimension d, and an NDA weight u=F−2,
where F is the number of fields in the operator.5 One can write a Lagrangian term as

L=CO= ĈÔ , (5.4)

where

Ô= (4π)u

Md−4O, Ĉ = Md−4

(4π)u C , (5.5)

and are dimensionless, and M is the SMEFT power counting scale. For example,

L=8
C

(1)
H6D2(H†H)2(DµH

†DµH)+8
CH8H8

=
[
M4

(4π)4
8
C

(1)
H6D2

][
(4π)4

M4 (H†H)2(DµH
†DµH)

]
+
[
M4

(4π)6
8
CH8

][
(4π)6

M4 H8
]

(5.6)

so that
8
Ĉ

(1)
H6D2 = M4

(4π)4
8
C

(1)
H6D2 ,

8
ĈH8 = M4

(4π)6
8
CH8 . (5.7)

5u is 2w, where w was defined in ref. [33]. This avoids half-integer values.
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Then if an operator O is generated by an L-loop graph with insertions of operators Oi, we
have the power counting rules [32–34]

µ
d

dµĈ ∼
∏
i

Ĉi , (5.8)

where the overall coefficient is order one, and

d−4 =
∑
i

(di−4) , u+2L=
∑
i

ui . (5.9)

A strongly coupled theory is one where Ĉi are order unity. It is inconsistent to have theories
with Ĉi much larger than unity. In a weakly coupled theory, Ĉi can be much smaller than
unity, and eq. (5.8) implies that loop corrections are small.

The H8 operator has d= 8, u= 6, the H6D2 and X2H4 operators have d= 8, u= 4,
the H6 operator has d= 6, u= 4, the H4D2 and X2H2 operators have d= 6 and u= 2, the
H4 operator which multiples λ has d= 4, u= 2, and the gauge couplings multiply a d= 4,
u= 1 operator. Thus from eq. (5.9), the one-loop RGE for H8 can only have terms of the
form

8
ĊH8 ∼

(
λ,g2

)
×
{8
CH8

}
+
(
λ, g2

)2
×
{8
CH6D2 ,

8
CX2H4

}
+
(6
CH6

)2

+
(
λ, g2

)
×6
CH6×

{6
CX2H2 ,

6
CH4D2

}
+
(
λ, g2

)2
×
{6
CX2H2 ,

6
CH4D2

}2
, (5.10)

which is the structure of the terms found in eq. (C.22). One can similarly check that the
other RGEs satisfy eq. (5.9).

6 Geometric zeros

Much interest has centered around some surprising vanishing terms in the RGEs for the
SMEFT, first found in ref. [35]. For example, using the NDA described above for the
dimension-six coefficient 6

CH4D2 , the RGE can depend on

6
ĊH4D2 ∼

(
λ, g2

)
×
{6
CH4D2 ,

6
CX2H2

}
. (6.1)

The RGE for the dimension-eight coefficient 8
CH6D2 can depend on

8
ĊH6D2 ∼

(
λ, g2

)
×
{8
CH6D2 ,

8
CX2H4

}
+
(
λ, g2

)
×
{6
CH4D2 ,

6
CX2H2

}2

+6
CH6×

{6
CH4D2 ,

6
CX2H2

}
. (6.2)

However, some of these entries vanish non-trivially— (g2)×6
CX2H2 in the first example,

and (g2)×8
CX2H4 in the second example — when all the diagrams are added up. The zeros

at dimension six were explained using on-shell methods [36]. Similar vanishing entries in
the RGEs have also been encountered at two loops [37] and when including gravity [38].
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We will explore this using the geometric approach to the RGE. Let us focus on the
terms of the schematic form (t·t)(∇2g) (∂φ)2, which would contribute to the RGE of the
form d

Ċ
Hd−2D2 ∼ (g2)×dC

X2Hd−4 . The gauge variation gives

1
2Tr[X2]gauge

∣∣∣∣∣
(t·t)(∇2g) (∂φ)2

=
[
hKLt

KAtLBηµν
]

×
[
−1

2∇I∇JgABηµν(Dαφ)I(Dαφ)J+(∇I∇JgAB)(Dµφ)I(Dνφ)J
]

=−
[
tAKt

KB
][
∇I∇JgAB(Dαφ)I(Dαφ)J

]
. (6.3)

The ghost terms give

1
2Tr[X2]ghost

∣∣∣∣∣
(t·t)(∇2g) (∂φ)2

= (−2)
[
gAC

1
2∇I∇JgCB(Dµφ)I(Dµφ)J

][
−tKBtKA

]
=
[
tAKt

KB
][
∇I∇JgAB(Dαφ)I(Dαφ)J

]
. (6.4)

The ghost terms enter the one-loop calculation with a minus sign, because they are anti-
commuting, which has been included. This gives the cancellation

1
2Tr[X2]gauge

∣∣∣∣∣
(t·t)(∇2g) (∂φ)2

+ 1
2Tr[X2]ghost

∣∣∣∣∣
(t·t)(∇2g) (∂φ)2

= 0. (6.5)

This is consistent with the vanishing of these entries in the RGE that was found at di-
mension six and dimension eight. In the geometric approach it is clear that the same
cancellation happens at all mass dimensions.

7 Conclusion

The structure of scattering amplitudes can be elucidated using the geometry of field space.
The geometric approach allows for more compact, field-redefinition-independent expres-
sions for the scattering amplitudes. The geometric approach also simplifies the functional
integral calculation of loop corrections.

We have applied the geometry of field space for an effective field theory of scalars
and gauge bosons and calculated the one-loop counterterms. The resulting expression
depends on geometric quantities, demonstrating that the geometric approach continues to
be valuable at loop level.

As an important application of our results, we have calculated the RGEs for the
SMEFT for even-parity bosonic operators with mass dimension eight. The results are
listed in appendix C. Some of these terms were previously calculated in the literature [18–
20], and we agree with previous results. We also have many terms which are new.

Our calculation focused on combining the scalars and gauge bosons into a unified frame-
work. Fermions were not included. However, there should be a geometric formulation for
fermions, since field redefinitions involving fermions also leave physical results unchanged.
Including fermions, as well as higher-derivative operators, is necessary to capture the full
RGEs for the SMEFT at dimension eight. This will be explored in future work.
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A SU(2)L×SU(2)R generators

The Higgs doublet Hi and H̃i = εijH
†j , with ε12 = 1, εij =−εji, both transform as SU(2)

doublets, and can be combined into a 2×2 matrix which can be written as a linear combi-
nation of 1 and the Pauli matrices,

Σ =
(
H̃ H

)
=
(
H0∗ H+

−H+∗ H0

)
=φ4+iτ ·φ . (A.1)

The group SU(2)L×SU(2)R acts on Σ by Σ→ gLΣg†R, giving the generators in the four-
dimensional space of φI ,

T 1
L = i

2


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 , T 2
L = i

2


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 , T 3
L = i

2


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 ,

T 1
R = i

2


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 , T 2
R = i

2


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 , T 3
R = i

2


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 . (A.2)

Defining a fourth Pauli matrix τ4 =−i12×2,

[T aL]IJ = 1
4Tr

(
τ I†τaτJ

)
, [T aR]IJ =−1

4Tr
(
τ I†τJτa

)
. (A.3)

The Killing vectors in eq. (4.3) are

tIa = ig2 [T aL]I J φJ , a= 1,2,3, tI4 = ig1
[
T 3
R

]I
J φ

J . (A.4)

It is convenient to define the matrices

Υa =−4 T aLT 3
R, a= 1,2,3, Υ4 =−4 T 3

RT
3
R, (A.5)

Υ1 =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 , Υ2 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , Υ3 =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 , Υ4 =−I4×4. (A.6)

These are identical to the matrices Γa in ref. [30]. We choose to denote them by Υ to avoid
confusion with the Christoffel symbol.
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B Notation and operator relations

In this paper, we need the bosonic even-parity SMEFT operators up to dimension eight.
The renormalization counterterms generate operators of dimension d= 2,4,6,8 multiplied
by m8−d

H . In addition to the operators present in the SMEFT Lagrangian in a canonical
basis, redundant operators are generated which can be eliminated by integration by parts
and by field redefinitions. At dimension six, we use the Warsaw basis [29], and at dimension
eight, the basis in ref. [27]. The dimension-eight operators were also classified in ref. [28].
To avoid confusion, we have used the notation d

Q
(n)
F for operators in the canonical basis.

Here d is the operator dimension, F is the field content, and n is used if there are multiple
operators with the same dimension and field content. The subscript F is written as a
product of powers of G, W , B, H, D, and � for the field-strength tensors, Higgs field,
covariant derivatives, and covariant Laplacian. d is redundant, since it can be computed
from F , but we have included it for clarity. A generic gauge field strength will be denoted
by X. Other than the left superscript d, the notation is that of ref. [27]. The coefficient of
d
Q

(n)
F in the Lagrangian is denoted by d

C
(n)
F .

Redundant operators, which are eliminated by integration by parts and field redefi-
nitions, follow the same notation d

R
(n)
F but are denoted by R instead of Q. Redundant

operators do not appear in the Lagrangian, so we do not need a notation for their La-
grangian coefficients. Redundant operators are generated at one-loop order. As a result,
second-order terms in field redefinitions are of two-loop order, and field redefinitions are
equivalent to using the equations of motion accurate up to dimension eight.6 To save space,
we have given relations which can be used to reduce each redundant operator to a linear
combination of canonical operators, rather than write each redundant operator in terms of
canonical operators. For example, 6

R
(1)
H4D2 can be written in terms of canonical operators

by first using eq. (B.11) followed by eq. (B.10).
To simplify the notation, it is convenient to define

jµ = i(H†DµH−DµH
†H) = iH†

←→
D µH , rµ = ∂µ(H†H) ,

jaµ = i(H†τaDµH−DµH
†τaH) = iH†

←→
D a

µH , raµ = Dµ(H†τaH) . (B.1)

The commutation relations

[Dµ,Dν ]H = i

2g1BµνH+ i

2g2W
a
µντ

aH ,

[Dµ,Dν ]W a
αβ = −g2ε

abcW b
µνW

c
αβ ,

[Dµ,Dν ]Bαβ = 0 , (B.2)

can be used to change the order of covariant derivatives. Since H is the only field with a
U(1)Y charge in our analysis, the results for a scalar with general hypercharge yH are given
by the replacement g1→ 2g1yH .

6If redundant operators are generated at tree level, e.g., when integrating out a heavy particle, one needs
to keep the nonlinear terms in the field redefinitions [31].
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B.1 Dimension 0

At dimension zero, the only operator is 1 with coefficient the negative of the cosmological
constant,

L=−Λ+. . . (B.3)

B.2 Dimension 2

At dimension two, the only operator is 2
QH2 = (H†H) listed in table 1 with coefficient

L= 2
CH2

2
QH2 = 1

2m
2
H(H†H) (B.4)

where mH is the Higgs mass in the broken phase.

B.3 Dimension 4

At dimension four, the canonical bosonic operators are 4
QH4 = (H†H)2,

4
QH2D2 = (DµH†DµH), 4

QG2 =GA
µνG

A µν , 4
QW 2 =W a

µνW
aµν , and 4

QB2 =BµνB
µν with

L=
∑

X=G,W,B

4
CX2

4
QX2 +4

CH2D2
4
QH2D2 +4

CH4
4
QH4 . (B.5)

The Higgs self-coupling is λ=−4
CH4 . The fields are rescaled so that the kinetic terms have

canonical normalization, 4
CX2 =−1/4, 4

CH2D2 = 1, so the anomalous dimensions of 4
CX2

and 4
CH2D2 give the field anomalous dimensions

γX = 2 d
dlnµ

4
CX2 , γH =−1

2
d

dlnµ
4
CH2D2 . (B.6)

There is one redundant operator at dimension four, 4
RH2�, which can be eliminated

by integration by parts,
4
RH2�≡ (H†D2H)+(D2H†H) =−2(DµH

†DµH) =−2 4
QH2D2 . (B.7)

The dimension-four operators are listed in table 2.

B.4 Dimension 6

At dimension six, we use the operators in the Warsaw basis [29], which are listed in table 3.
The redundant dimension-six operators are listed in table 5. They can be eliminated by field
redefinitions and integration by parts. The operator relations for these are listed below, and
extend previous results to include dimension-eight contributions to the reduction formula.
The relations all respect the NDA power counting rules [32–34], which dictate the power
of coupling constants in the various terms.

Note that the relations need not remain valid when multiplied by additional fields,
because integration by parts has been used in their derivation. For example, one has the
relation in eq. (B.7),

H†D2H+D2H†H+2(DµH
†DµH) = 0 , (B.8)

but on multiplying by (H†H),

(H†H)
[
H†D2H+D2H†H+2(DµH

†DµH)
]

= 6
QH4� , (B.9)

instead of zero.
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H4D2

6
RH4� (H†H)

[
H†D2H+D2H†H

]
6
R

(1)
H4D2 (H†H)(DµH

†DµH)
6
R

(2)
H4D2 (H†DµH)(H†DµH)+(DµH

†H)(DµH†H)
6
R

(3)
H4D2 jµj

µ

6
R

(4)
H4D2 jaµj

aµ

XH2D2

6
R

(1)
WH2D2 jaνDµW a

µν

6
R

(2)
WH2D2 i(DµH)† τa (DνH)W a

µν

6
R

(1)
BH2D2 jν∂µBµν

6
R

(2)
BH2D2 i(DµH)† (DνH)Bµν

Table 5. Redundant bosonic dimension-six operators in the SMEFT.

B.4.1 H4D2

The redundant H4D2 operators are related to the operators in the canonical basis as

6
RH4� =m2

H
4
QH4 +

(
−4λ+4m2

H
6
CH4�−

1
2m

2
H

6
CH4D2

)
6
QH6

+
(
6 6

CH6−16λ 6
CH4�+2λ 6

CH4D2

)8
QH8 +

(
8 6

CH4�+6
CH4D2

)8
Q

(1)
H6D2

+2 6
CH4D2

8
Q

(2)
H6D2 +2 6

CG2H2
8
Q

(1)
G2H4 +2 6

CW 2H2
8
Q

(1)
W 2H4 +2 6

CB2H2
8
Q

(1)
B2H4

+2 6
CWBH2

8
Q

(1)
WBH4 , (B.10)

6
R

(1)
H4D2 = 1

2
6
QH4�−

1
2

6
RH4� , (B.11)

6
R

(2)
H4D2 =−6

QH4�−2 6
QH4D2 , (B.12)

6
R

(3)
H4D2 =6

QH4�+4 6
QH4D2 , (B.13)

6
R

(4)
H4D2 =3 6

QH4�−2 6
RH4� . (B.14)

B.4.2 XH2D2

The redundant XH2D2 operators are related to the operators in the canonical basis as
6
R

(1)
WH2D2 =−g2m

2
H

4
QH4 + 3

2g2
6
QH4�

+
(

4g2λ−4g2m
2
H

6
CH4�+ 3

4g2m
2
H

6
CH4D2 +g1m

2
H

6
CWBH2

)
6
QH6

+
(
−6g2

6
CH6 +16g2λ

6
CH4�−3g2λ

6
CH4D2−4g1λ

6
CWBH2

)8
QH8

+
(
−8g2

6
CH4�+ 1

2g2
6
CH4D2 +6g1

6
CWBH2

)
8
Q

(1)
H6D2

+
(
−g2

6
CH4D2 +4g1

6
CWBH2

)8
Q

(2)
H6D2−2g2

6
CG2H2

8
Q

(1)
G2H4

+
(
−2g2

6
CB2H2−g1

6
CWBH2

)8
Q

(1)
B2H4

+
(
2g1

6
CW 2H2−3g2

6
CWBH2

)8
Q

(1)
WBH4

−8 6
CW 2H2

8
Q

(1)
WH4D2 +12 6

CWBH2
8
Q

(1)
BH4D2 , (B.15)

6
R

(2)
WH2D2 =− 1

2
6
R

(1)
WH2D2 + 1

4g2
6
QW 2H2 + 1

4g1
6
QWBH2 , (B.16)
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6
R

(1)
BH2D2 =

(1
4g1m

2
H

6
CH4D2 + 1

2g2m
2
H

6
CWBH2

)
6
QH6 + 1

2g1
6
QH4�+2g1

6
QH4D2

+
(
−g1λ

6
CH4D2−2g2λ

6
CWBH2

)8
QH8

+
(3

2g1
6
CH4D2 +4g2

6
CWBH2

)
8
Q

(1)
H6D2 +

(
g1

6
CH4D2 +g2

6
CWBH2

)8
Q

(2)
H6D2

− 1
2g2

6
CWBH2

8
Q

(1)
W 2H4 + 1

2g2
6
CWBH2

8
Q

(3)
W 2H4 +2g1

6
CB2H2

8
Q

(1)
B2H4

+2g2
6
CB2H2

8
Q

(1)
WBH4 +4 6

CWBH2
8
Q

(1)
WH4D2−8 6

CB2H2
8
Q

(1)
BH4D2 , (B.17)

6
R

(2)
BH2D2 =− 1

2
6
R

(1)
BH2D2 + 1

4g1
6
QB2H2 + 1

4g2
6
QWBH2 . (B.18)

B.5 Dimension 8

The dimension-eight even-parity bosonic operator basis is that of ref. [27]. The operators
are given in table 4. The operator superscripts are not in consecutive order, e.g., Q(n)

W 2H2D2 ,
with n= 1,2,4. This because the n= 3 operator in ref. [27] has odd parity, and is not used
in this paper. Redundant bosonic dimension-eight operators are given in tables 6, 7, and 8
and the relations used to eliminate these are listed below.

B.5.1 H6D2

The redundant H6D2 operators are related to the operators in the canonical basis as

8
RH6� =m2

H
6
QH6−4λ 8

QH8 , (B.19)
8
R

(1)
H6D2 = 1

2
8
Q

(1)
H6D2 + 1

2
8
Q

(2)
H6D2 , (B.20)

8
R

(2)
H6D2 =−1

2m
2
H

6
QH6 +2λ 8

QH8−2 8
Q

(1)
H6D2−

8
Q

(2)
H6D2 , (B.21)

8
R

(3)
H6D2 =−1

2m
2
H

6
QH6 +2λ 8

QH8−8
Q

(1)
H6D2 , (B.22)

8
R

(4)
H6D2 = 1

2m
2
H

6
QH6−2λ 8

QH8 +3 8
Q

(1)
H6D2 +2 8

Q
(2)
H6D2 , (B.23)

8
R

(5)
H6D2 = 1

2m
2
H

6
QH6−2λ 8

QH8 +3 8
Q

(1)
H6D2 +2 8

Q
(2)
H6D2 , (B.24)

8
R

(6)
H6D2 = 1

2m
2
H

6
QH6−2λ 8

QH8 +5 8
Q

(1)
H6D2 . (B.25)

B.5.2 XH4D2

The redundant XH4D2 operators are related to the operators in the canonical basis as

8
R

(1)
WH4D2 =0 , (B.26)

8
R

(2)
WH4D2 = 1

2g2
8
Q

(1)
H6D2−

1
2g2

8
Q

(2)
H6D2−

1
4g2

8
Q

(1)
W 2H4 + 1

4g2
8
Q

(3)
W 2H4 +2 8

Q
(1)
WH4D2 ,

(B.27)
8
R

(3)
WH4D2 = 1

4g2m
2
H

6
QH6−g2λ

8
QH8 + 5

2g2
8
Q

(1)
H6D2−

1
2g2

8
Q

(1)
W 2H4−

1
2g1

8
Q

(1)
WBH4

+2 8
Q

(1)
WH4D2 , (B.28)
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8
R

(4)
WH4D2 =2 8

Q
(3)
WH4D2 , (B.29)

8
R

(5)
WH4D2 =g2

8
Q

(1)
H6D2−g2

8
Q

(2)
H6D2−

1
2g2

8
Q

(1)
W 2H4 + 1

2g2
8
Q

(3)
W 2H4 , (B.30)

8
R

(6)
WH4D2 =−2 8

Q
(3)
WH4D2 , (B.31)

8
R

(7)
WH4D2 = 1

2g2m
2
H

6
QH6−2g2λ

8
QH8 +5g2

8
Q

(1)
H6D2−g2

8
Q

(1)
W 2H4−g1

8
Q

(1)
WBH4

+8 8
Q

(1)
WH4D2 , (B.32)

8
R

(8)
WH4D2 =8

Q
(3)
WH4D2 , (B.33)

8
R

(9)
WH4D2 =− 1

8g2m
2
H

6
QH6 + 1

2g2λ
8
QH8−g2

8
Q

(1)
H6D2−

1
4g2

8
Q

(2)
H6D2

+ 1
8g2

8
Q

(1)
W 2H4 + 1

8g2
8
Q

(3)
W 2H4 + 1

4g1
8
Q

(1)
WBH4 , (B.34)

8
R

(10)
WH4D2 =8

Q
(3)
WH4D2 , (B.35)

8
R

(11)
WH4D2 =− 1

8g2m
2
H

6
QH6 + 1

2g2λ
8
QH8−

3
2g2

8
Q

(1)
H6D2 + 1

4g2
8
Q

(2)
H6D2 + 3

8g2
8
Q

(1)
W 2H4

− 1
8g2

8
Q

(3)
W 2H4 + 1

4g1
8
Q

(1)
WBH4−2 8

Q
(1)
WH4D2 , (B.36)

8
R

(12)
WH4D2 =− 1

2g2
8
Q

(1)
W 2H4 + 1

2g2
8
Q

(3)
W 2H4 , (B.37)

8
R

(1)
BH4D2 =− 1

8g1m
2
H

6
QH6 + 1

2g1λ
8
QH8−

3
4g1

8
Q

(1)
H6D2−

1
2g1

8
Q

(2)
H6D2

+ 1
4g1

8
Q

(1)
B2H4 + 1

4g2
8
Q

(1)
WBH4−

8
Q

(1)
BH4D2 , (B.38)

8
R

(2)
BH4D2 = 1

4g1m
2
H

6
QH6−g1λ

8
QH8 + 3

2g1
8
Q

(1)
H6D2 +g1

8
Q

(2)
H6D2−

1
2g1

8
Q

(1)
B2H4

− 1
2g2

8
Q

(1)
WBH4 +2 8

Q
(1)
BH4D2 =−2 8

R
(1)
BH4D2 , (B.39)

8
R

(3)
BH4D2 =2 8

R
(1)
BH4D2−

8
Q

(1)
BH4D2 . (B.40)

B.5.3 X2H2D2

The redundant X2H2D2 operators are related to the operators in the canonical basis as
8
R

(1)
G2H2D2 = 1

2m
2
H

6
QG2H2−2λ 8

Q
(1)
G2H4 +2g3

8
Q

(1)
G3H2 +8

Q
(2)
G2H2D2 , (B.41)

8
R

(2)
G2H2D2 = 1

2
8
R

(1)
G2H2D2 , (B.42)

8
R

(3)
G2H2D2 =− 1

2m
2
H

6
QG2H2 +2λ 8

Q
(1)
G2H4−

8
Q

(2)
G2H2D2 , (B.43)
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R
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W 2H2D2 = 1
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QW 2H2 +

(
−2λ+ 1

2g
2
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)
8
Q
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W 2H4 + 1

2g1g2
8
Q

(1)
WBH4 +2g2

8
Q
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W 3H2

+8
Q
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W 2H2D2−2g2
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WH4D2 , (B.45)

8
R
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W 2H2D2 = 1

2
8
R

(1)
W 2H2D2 , (B.46)
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R

(3)
W 2H2D2 =− 1
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6
QW 2H2 +2λ 8

Q
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8
Q
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W 2H2D2 , (B.47)
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6
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Q
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H6D2 +g2
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Q

(1)
W 2H4 +g1g2

8
Q
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WBH4
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8
Q
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Q
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8
Q
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8
R
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W 2H2D2 = 1

2
8
R
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W 2H2D2 , (B.50)

8
R
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B2H2D2 = 1

2m
2
H

6
QB2H2 +

(
−2λ+ 1

2g
2
1

)
8
Q
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B2H4 + 1

2g1g2
8
Q

(1)
WBH4 +8

Q
(2)
B2H2D2

−2g1
8
Q

(1)
BH4D2 , (B.51)

8
R

(2)
B2H2D2 = 1

2
8
R

(1)
B2H2D2 , (B.52)

8
R

(3)
B2H2D2 =− 1

2m
2
H

6
QB2H2 +2λ 8

Q
(1)
B2H4−

8
Q

(2)
B2H2D2 , (B.53)

8
R

(4)
B2H2D2 = 1

2
8
R

(3)
B2H2D2 , (B.54)

8
R

(1)
WBH2D2 = 3

8g1g2m
2
H

6
QH6 + 1

2m
2
H

6
QWBH2−

3
2g1g2λ

8
QH8 + 5

2g1g2
8
Q
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H6D2

+ 5
4g1g2

8
Q
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H6D2−

1
8g1g2

8
Q

(1)
W 2H4 + 1

8g1g2
8
Q

(3)
W 2H4−

1
4g1g2

8
Q

(1)
B2H4

−
(

2λ+ 1
4g

2
2

)
8
Q

(1)
WBH4 +g2

8
Q

(1)
W 2BH2 +8

Q
(1)
WBH2D2 +g1

8
Q

(1)
WH4D2

+3g2
8
Q

(1)
BH4D2 , (B.55)

8
R

(2)
WBH2D2 = 1

2
8
R

(1)
WBH2D2 , (B.56)

8
R

(3)
WBH2D2 =− 1

8g1g2m
2
H

6
QH6−

1
2m

2
H

6
QWBH2 + 1

2g1g2λ
8
QH8−

1
2g1g2

8
Q

(1)
H6D2

− 3
4g1g2

8
Q

(2)
H6D2−

1
8g1g2

8
Q

(1)
W 2H4 + 1

8g1g2
8
Q

(3)
W 2H4 + 1

4g1g2
8
Q

(1)
B2H4

+
(

2λ+ 1
4g

2
2

)
8
Q

(1)
WBH4−g2

8
Q

(1)
W 2BH2−

8
Q

(1)
WBH2D2 +g1

8
Q

(1)
WH4D2

−3g2
8
Q

(1)
BH4D2 , (B.57)

8
R

(4)
WBH2D2 = 1

2
8
R

(3)
WBH2D2 , (B.58)

8
R

(5)
WBH2D2 = 1

8g1g2m
2
H

6
QH6−

1
2m

2
H

6
QWBH2−

1
2g1g2λ

8
QH8 + 1

2g1g2
8
Q

(1)
H6D2

+ 3
4g1g2

8
Q

(2)
H6D2 + 1

8g1g2
8
Q

(1)
W 2H4−

1
8g1g2

8
Q

(3)
W 2H4−

1
4g1g2

8
Q

(1)
B2H4

+
(

2λ− 1
4g

2
2

)
8
Q

(1)
WBH4 +g2

8
Q

(1)
W 2BH2−

8
Q

(1)
WBH2D2−g1

8
Q

(1)
WH4D2

+3g2
8
Q

(1)
BH4D2 , (B.59)

8
R

(6)
WBH2D2 = 1

2
8
R

(5)
WBH2D2 . (B.60)
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B.5.4 H4D4

The redundant H4D4 operators are related to the operators in the canonical basis as

8
R

(1)
H4�2 =8

R
(2)
H4�2 = 1

2
8
R

(3)
H4�2 = 1

4m
4
H

4
QH4−2λm2

H
6
QH6 +4λ2 8

QH8 , (B.61)

8
R

(1)
H4D2� =− 1

2m
4
H

4
QH4 +2λm2

H
6
QH6 + 1

2m
2
H

6
QH4�−4λ 8

Q
(1)
H6D2 , (B.62)

8
R

(2)
H4D2� =m2

H
6
QH4D2−2λ 8

Q
(1)
H6D2−2λ 8

Q
(2)
H6D2 , (B.63)

8
R

(1)
H4D4 =m2

H

(
−1

2λ+ 1
16g

2
1 + 1

16g
2
2

)
6
QH6 +λ

(
2λ− 1

4g
2
1−

1
4g

2
2

)
8
QH8 +8

Q
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H4D4

+
(
−λ+ 3

8g
2
1 + 5

8g
2
2

)
8
Q

(1)
H6D2 + 1

4g
2
1

8
Q

(2)
H6D2 +g2

8
Q

(1)
WH4D2 +g1

8
Q
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BH4D2 ,

(B.64)
8
R

(2)
H4D4 =m2

H
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1
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2
1
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(
2λ+ 1
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2
1

)
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(
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2
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1
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)
8
Q
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H6D2
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4g
2
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8g
2
2

)
8
Q
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Q
(1)
H4D4 + 1

16g
2
2

8
Q
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W 2H4 + 1

16g
2
2

8
Q

(3)
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2
1

8
Q
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8g1g2
8
Q
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WBH4−g1

8
Q

(1)
BH4D2 , (B.65)

8
R

(3)
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H

(
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8g
2
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1
4g

2
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(
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2
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+
(
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9
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(
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Q

(2)
H6D2 +2 8
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8g

2
2

8
Q

(1)
W 2H4−

1
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8
R

(4)
H4D4 =− 1

4m
4
H

4
QH4 +m2

H
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(
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(
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C Renormalization group evolution in the SMEFT to dimension eight

This appendix lists the renormalization group equations up to dimension eight. The terms
included in the RGEs are those that depend on the coefficients that are included in our ini-
tial Lagrangian in eq. (2.1) through the metric and the potential. The dimension-two coef-
ficient m2

H and dimension-four coefficients g1,g2,g3,λ are included, as are the dimension-six
coefficients

6
CH6 ,

6
CH4�,

6
CH4D2 ,

6
CG2H2 ,

6
CW 2H2 ,

6
CB2H2 ,

6
CWBH2 , (C.1)

and the dimension-eight coefficients

8
CH8 ,

8
C

(1)
H6D2 ,

8
C

(2)
H6D2 ,

8
C

(1)
G2H4 ,

8
C

(1)
W 2H4 ,

8
C

(3)
W 2H4 ,

8
C

(1)
B2H4 ,

8
C

(1)
WBH4 . (C.2)

Unless otherwise specified, only the dimension-eight terms in the RGE are listed here. The
full RGE are given by adding the dimension-four and dimension-six terms given previously
in refs. [15–17].

In the RGEs, we follow the notation of refs. [15–17], and use a dot over the coefficient
to denote 16π2µ d

dµ . Consequently, the anomalous dimensions are all multiplied by 16π2.

C.1 Field anomalous dimensions

The field anomalous dimensions to dimension-eight in the gauge used in this paper are:

γH =−g2
1−3g2

2 +3m2
H

6
CH4� , (C.3a)

γG =−11g2
3−4m2

H
6
CG2H2 , (C.3b)

– 27 –



J
H
E
P
0
2
(
2
0
2
3
)
0
6
3

H6D2

8
RH6� (H†H)2(H†D2H+D2H†H)

8
R

(1)
H6D2 (H†H)
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(DµH

†H)(H†DµH)
]

8
R

(2)
H6D2 (H†H)

[
(DµH

†H)(DµH†H)+(H†DµH)(H†DµH)
]

8
R

(3)
H6D2 (H†H)rµrµ

8
R

(4)
H6D2 (H†H)jµjµ

8
R

(5)
H6D2 (H†τaH)jµjaµ

8
R

(6)
H6D2 (H†H)jaµjaµ

H4D4

8
R

(1)
H4�2 (H†H)(D2H†D2H)

8
R

(2)
H4�2 (H†D2H)(D2H†H)

8
R

(3)
H4�2 (H†D2H)(H†D2H)+(D2H†H)(D2H†H)

8
R

(1)
H4D2� (DµH

†DµH)(H†D2H+D2H†H)
8
R

(2)
H4D2� (H†DµH)(DµH

†D2H)+(DµH
†H)(D2H†DµH)

8
R

(1)
H4D4 (H†H)(DµDνH

†DµDνH)
8
R

(2)
H4D4 (DµDνH

†H)(H†DµDνH)
8
R

(3)
H4D4 (DµDνH

†H)(DµDνH
†H)+(H†DµDνH)(H†DµDνH)

8
R

(4)
H4D4 (H†DµDνH)(DµH

†DνH)+(DµDνH
†H)(DνH

†DµH)
8
R

(5)
H4D4 (H†DνDµH)(DµH

†DνH)+(DνDµH
†H)(DνH

†DµH)
8
R

(6)
H4D4 (DµH

†DµDνH)(H†DνH)+(DµDνH
†DµH)(DνH

†H)
8
R

(7)
H4D4 (DνH

†DµDνH)(H†DµH)+(DµDνH
†DνH)(DµH

†H)
8
R

(8)
H4D4 (DµH

†DµDνH)(DνH
†H)+(DµDνH

†DµH)(H†DνH)
8
R

(9)
H4D4 (DνH

†DµDνH)(DµH
†H)+(DµDνH

†DνH)(H†DµH)

Table 6. Redundant even-parity bosonic dimension-eight operators in the SMEFT, part 1.
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8
R
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8
R
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8
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8
R

(4)
WH4D2 jaµjνW a

µν

8
R

(5)
WH4D2 εabcraµrbνW c

µν

8
R

(6)
WH4D2 εabcraµjbνW c

µν

8
R

(7)
WH4D2 εabcjaµjbνW c

µν

8
R

(8)
WH4D2 (DµH†τaH)(H†DνH)W a

µν+(H†τaDµH)(DνH†H)W a
µν

8
R

(9)
WH4D2 i(DµH†τaH)(H†DνH)W a

µν−i(H†τaDµH)(DνH†H)W a
µν

8
R

(10)
WH4D2 (H†DµH)(H†τaDνH)W a

µν+(DµH†H)(DνH†τaH)W a
µν

8
R

(11)
WH4D2 i(H†DµH)(H†τaDνH)W a

µν−i(DµH†H)(DνH†τaH)W a
µν

8
R

(12)
WH4D2 εabc(H†τaH)(H†τ bDµDνH+DµDνH

†τ bH)W c
µν

8
R

(1)
BH4D2 i(DµH†H)(H†DνH)Bµν

8
R

(2)
BH4D2 jµrνBµν

8
R

(3)
BH4D2 i(H†τaH)(DµH†τaD

νH)Bµν

Table 7. Redundant bosonic dimension-eight operators in the SMEFT, part 2.

γW =− 43
6 g

2
2−4m2

H
6
CW 2H2 , (C.3c)

γB = 1
6g

2
1−4m2

H
6
CB2H2 . (C.3d)

The gauge β-functions do not include fermionic contributions. In Feynman gauge, the H
anomalous dimensions of refs. [15–17] is

γH =− 1
2g

2
1−

3
2g

2
2 +m2

H

(
2 6

CH4�−
6
CH4D2

)
. (C.4)

The gauge field anomalous dimensions are the same as eq. (C.3) if the fermions contribu-
tions are dropped.

C.2 Dimension 0

The RGE for the cosmological constant is

Λ̇ = 1
2m

4
H , (C.5)

and is entirely dimension four. The dimension-six and dimension-eight terms vanish.
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c
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8
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c
µσ

8
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B2H2D2 (H†H)DµBνσD

µBνσ

8
R

(2)
B2H2D2 (H†H)DµBνσD

νBµσ

8
R

(3)
B2H2D2 rµ∂µBνσB

νσ

8
R

(4)
B2H2D2 rµ∂νBµσB

νσ

8
R

(1)
WBH2D2 (H†τaH)∂µBνσDµW aνσ

8
R

(2)
WBH2D2 (H†τaH)∂µBνσDνW aµσ

8
R

(3)
WBH2D2 raµ∂µBνσW

aνσ

8
R

(4)
WBH2D2 raµ∂νBµσW

aνσ

8
R

(5)
WBH2D2 raµDµW

a
νσB

νσ

8
R

(6)
WBH2D2 raµDνW

a
µσB

νσ

Table 8. Redundant bosonic dimension-eight operators in the SMEFT, part 3.

C.3 Dimension 2

The RGE for the Higgs mass is

ṁ2
H =m2

H

{
12λ− 3

2g
2
1−

9
2g

2
2

}
+m4

H

{
−4 6

CH2�+2 6
CH2D2

}
, (C.6)

and has only dimension-four and dimension-six contributions given in refs. [15–17]. The
dimension-eight contributions vanish.

– 30 –



J
H
E
P
0
2
(
2
0
2
3
)
0
6
3

C.4 Dimension 4

The RGE for the Higgs self-coupling is

λ̇=
{

24λ2−λ
(
3g2

1 +9g2
2

)
+ 3

8g
4
1 + 3

4g
2
1g

2
2 + 9

8g
4
2

}
+m2

H

{
6
CH6 +

(
−32λ+ 10

3 g
2
2

)
6
CH4�+

(
12λ+ 3

2g
2
1−

3
2g

2
2

)
6
CH4D2 +9g2

2
6
CW 2H2

+3g2
1

6
CB2H2 +3g1g2

6
CWBH2

}
+m4

H

{
6
(6
CH4�

)2
+ 5

4
(6
CH4D2

)2
−6 6

CH4�
6
CH4D2−32

(6
CG2H2

)2

−12
(6
CW 2H2

)2
−4
(6
CB2H2

)2
+6
(6
CWBH2

)2
−4 8

C
(1)
H6D2 +2 8

C
(2)
H6D2

}
. (C.7)

The dimension-four and dimension-six contributions were given in refs. [15–17]. The
dimension-eight terms are proportional to m4

H .

C.5 Dimension 6

The dimension-eight RGEs for the dimension-six coefficients in the SMEFT Lagrangian are
listed below. The contributions are all of order m2

H/M
4 in the SMEFT power counting.

The dimension-six contributions are given in refs. [15–17], and not included below.

C.5.1 H6

The RGE for the H6 coupling is

6
ĊH6 =m2

H

{
−120 6

CH6
6
CH4�+27 6

CH6
6
CH4D2 +

(
320λ+ 10

3 g
2
1−10g2

2

)(6
CH4�

)2

+
(35

2 λ+ 37
48g

2
1−

5
16g

2
2

)(6
CH4D2

)2
+
(
−160λ− 13

3 g
2
1 + 28

3 g
2
2

)
6
CH4�

6
CH4D2

−31g2
2

6
CH4�

6
CW 2H2−7g2

1
6
CH4�

6
CB2H2−

19
2 g1g2

6
CH4�

6
CWBH2

+5g2
2

6
CH4D2

6
CW 2H2−

3
2g

2
1

6
CH4D2

6
CB2H2−

7
12g1g2

6
CH4D2

6
CWBH2

−50g2
2

(6
CW 2H2

)2
−14g2

1

(6
CB2H2

)2
+
(

32λ− 11
2 g

2
1−

25
6 g

2
2

)(6
CWBH2

)2

−11g1g2
6
CW 2H2

6
CWBH2−17g1g2

6
CB2H2

6
CWBH2

−20 8
CH8 +

(
−22λ+ 1

12g
2
1−

17
12g

2
2

)
8
C

(1)
H6D2 +

(1
6g

2
1 +3g2

2

)
8
C

(2)
H6D2

−9g2
2

8
C

(1)
W 2H4−3g2

2
8
C

(3)
W 2H4−3g2

1
8
C

(1)
B2H4−3g1g2

8
C

(1)
WBH4

}
. (C.8)
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C.5.2 H4D2

The RGEs for the H4D2 couplings, which enter in the scalar metric, are

6
ĊH4� =m2

H

{
−24

(6
CH4�

)2
+ 3

4
(6
CH4D2

)2
+8 6

CH4�
6
CH4D2−64

(6
CG2H2

)2

−24
(6
CW 2H2

)2
−8
(6
CB2H2

)2
+4
(6
CWBH2

)2
−3 8

C
(1)
H6D2 +2 8

C
(2)
H6D2

}
,

(C.9)
6
ĊH4D2 =m2

H

{
6
(6
CH4D2

)2
−8 6

CH4�
6
CH4D2−16

(6
CWBH2

)2
−8 8

C
(2)
H6D2

}
. (C.10)

C.5.3 X2H2

The RGEs for the X2H2 couplings, which enter in the gauge metric, are

6
ĊG2H2 =m2

H

{
−14 6

CH4�
6
CG2H2 +4 6

CH4D2
6
CG2H2−12

(6
CG2H2

)2
−6 8

C
(1)
G2H4

}
,

(C.11)
6
ĊW 2H2 =m2

H

{
−14 6

CH4�
6
CW 2H2 +4 6

CH4D2
6
CW 2H2−12

(6
CW 2H2

)2
−
(6
CWBH2

)2

−6 8
C

(1)
W 2H4−2 8

C
(3)
W 2H4

}
, (C.12)

6
ĊB2H2 =m2

H

{
−14 6

CH4�
6
CB2H2 +4 6

CH4D2
6
CB2H2−12

(6
CB2H2

)2
−3
(6
CWBH2

)2

−6 8
C

(1)
B2H4

}
, (C.13)

6
ĊWBH2 =m2

H

{
−6 6

CH4�
6
CWBH2 +2 6

CH4D2
6
CWBH2−8 6

CW 2H2
6
CWBH2

−8 6
CB2H2

6
CWBH2−4 8

C
(1)
WBH4

}
. (C.14)

C.6 Dimension 8

The dimension-eight RGEs for the dimension-eight coefficients in the SMEFT Lagrangian
are listed below. The contributions are all of order 1/M4 in the SMEFT power counting.

C.6.1 X4

There are 26 even-parity X4 operators at dimension eight [27]. The non-zero RGEs involv-
ing the coefficients in eq. (C.2) are:

8
Ċ

(1)
G4 =−2

(6
CG2H2

)2
, (C.15)

8
Ċ

(1)
W 4 =−2

(6
CW 2H2

)2
, (C.16)

8
Ċ

(1)
B4 =−2

(6
CB2H2

)2
, (C.17)

8
Ċ

(1)
G2W 2 =−4 6

CG2H2
6
CW 2H2 , (C.18)
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8
Ċ

(1)
G2B2 =−4 6

CG2H2
6
CB2H2 , (C.19)

8
Ċ

(1)
W 2B2 =−4 6

CW 2H2
6
CB2H2 , (C.20)

8
Ċ

(3)
W 2B2 =−2

(6
CWBH2

)2
. (C.21)

All other anomalous dimensions do not depend on the couplings in the Lagrangian in
eq. (2.1).

C.6.2 H8

The RGE for the H8 coupling is

8
ĊH8 =−126

(6
CH6

)2
+
(
960λ−20g2

2

)6
CH6

6
CH4�+

(
−228λ−9g2

1 +9g2
2

)6
CH6

6
CH4D2

−54g2
2

6
CH6

6
CW 2H2−18g2

1
6
CH6

6
CB2H2−18g1g2

6
CH6

6
CWBH2

+
(
−1568λ2− 40

3 λg
2
1 +40λg2

2

)(6
CH4�

)2

+
(
−74λ2− 37

12λg
2
1 + 5

4λg
2
2−

3
8g

4
1−

3
4g

2
1g

2
2−

3
8g

4
2

)(6
CH4D2

)2

+
(

736λ2+ 52
3 λg

2
1−

112
3 λg2

2

)
6
CH4�

6
CH4D2 +124λg2

2
6
CH4�

6
CW 2H2

+28λg2
1

6
CH4�

6
CB2H2 +38λg1g2

6
CH4�

6
CWBH2

+
(
−20λg2

2−6g2
1g

2
2−6g4

2

)6
CH4D2

6
CW 2H2

+
(
6λg2

1−6g4
1−6g2

1g
2
2

)6
CH4D2

6
CB2H2

+
(7

3λg1g2−6g3
1g2−6g1g

3
2

)
6
CH4D2

6
CWBH2

−512λ2
(6
CG2H2

)2
+
(
−192λ2+200λg2

2−12g2
1g

2
2−54g4

2

)(6
CW 2H2

)2

+
(
−64λ2+56λg2

1−18g4
1−12g2

1g2
)(6

CB2H2

)2

+
(
−32λ2+22λg2

1 + 50
3 λg

2
2−3g4

1−12g2
1g

2
2−3g4

2

)(6
CWBH2

)2

−12g2
1g

2
2

6
CW 2H2

6
CB2H2 +

(
44λg1g2−12g3

1g2−24g1g
3
2

)6
CW 2H2

6
CWBH2

+
(
68λg1g2−24g3

1g2−12g1g
3
2

)6
CB2H2

6
CWBH2 +

(
192λ−6g2

1−18g2
2

)8
CH8

+
(

40λ2− 1
3λg

2
1 + 17

3 λg
2
2−

3
4g

4
1−

3
2g

2
1g

2
2−

9
4g

4
2

)
8
C

(1)
H6D2

+
(

48λ2− 2
3λg

2
1−12λg2

2−
3
4g

4
1−

3
2g

2
1g

2
2 + 3

4g
4
2

)
8
C

(2)
H6D2

+
(
36λg2

2−3g2
1g

2
2−9g4

2

)8
C

(1)
W 2H4 +

(
12λg2

2−3g2
1g

2
2−3g4

2

)8
C

(3)
W 2H4

+
(
12λg2

1−3g4
1−3g2

1g
2
2

)8
C

(1)
B2H4 +

(
12λg1g2−3g3

1g2−3g1g
3
2

)8
C

(1)
WBH4 . (C.22)
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C.6.3 H6D2

The RGEs for the H6D2 couplings, which enter in the scalar metric, are

8
Ċ

(1)
H6D2 =−96 6

CH6
6
CH4�−12 6

CH6
6
CH4D2 +

(
352λ+20g2

1 + 20
3 g

2
2

)(6
CH4�

)2

+
(
−23λ+ 1

8g
2
1 + 161

24 g
2
2

)(6
CH4D2

)2
+
(
−64λ−2g2

1 +12g2
2

)6
CH4�

6
CH4D2

−22g2
2

6
CH4�

6
CW 2H2 +6g2

1
6
CH4�

6
CB2H2−

32
3 g1g2

6
CH4�

6
CWBH2

+8g2
2

6
CH4D2

6
CW 2H2 +6g2

1
6
CH4D2

6
CB2H2 + 43

3 g1g2
6
CH4D2

6
CWBH2

+512λ
(6
CG2H2

)2
+
(
192λ+4g2

2

)(6
CW 2H2

)2
+
(
64λ+12g2

1

)(6
CB2H2

)2

+
(
−3g2

1−3g2
2

)(6
CWBH2

)2
+ 80

3 g1g2
6
CW 2H2

6
CWBH2 + 8

3g1g2
6
CB2H2

6
CWBH2

+
(

68λ+ 1
2g

2
1−

31
6 g

2
2

)
8
C

(1)
H6D2 +

(
−8λ+7g2

1 + 17
3 g

2
2

)
8
C

(2)
H6D2 , (C.23)

8
Ċ

(2)
H6D2 =−18 6

CH6
6
CH4D2 + 40

3 g
2
1

(6
CH4�

)2
+
(
−26λ− 35

12g
2
1 + 11

3 g
2
2

)(6
CH4D2

)2

+
(

64λ+ 20
3 g

2
1 + 20

3 g
2
2

)
6
CH4�

6
CH4D2 +20g2

1
6
CH4�

6
CB2H2

+ 35
3 g1g2

6
CH4�

6
CWBH2 +12g2

2
6
CH4D2

6
CW 2H2−3g2

1
6
CH4D2

6
CB2H2

− 13
6 g1g2

6
CH4D2

6
CWBH2 +16g2

1

(6
CB2H2

)2

+
(

32λ−10g2
1 + 10

3 g
2
2

)(6
CWBH2

)2
+ 94

3 g1g2
6
CW 2H2

6
CWBH2

− 14
3 g1g2

6
CB2H2

6
CWBH2 + 10

3 g
2
1

8
C

(1)
H6D2 +

(
56λ− 7

3g
2
1 + 10

3 g
2
2

)
8
C

(2)
H6D2 . (C.24)

C.6.4 H4D4

The H4D4 operators are not included in the initial Lagrangian in eq. (2.1), but they are
generated in the counterterm structure. The RGEs are

8
Ċ

(1)
H4D4 =− 16

3
(6
CH4�

)2
− 11

3
(6
CH4D2

)2
+ 32

3
6
CH4�

6
CH4D2−16

(6
CWBH2

)2
, (C.25)

8
Ċ

(2)
H4D4 =− 16

3
(6
CH4�

)2
− 5

3
(6
CH4D2

)2
− 16

3
6
CH4�

6
CH4D2 , (C.26)

8
Ċ

(3)
H4D4 =− 40

3
(6
CH4�

)2
+ 7

3
(6
CH4D2

)2
− 16

3
6
CH4�

6
CH4D2−128

(6
CG2H2

)2

−48
(6
CW 2H2

)2
−16

(6
CB2H2

)2
+8
(6
CWBH2

)2
. (C.27)
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C.6.5 X2H4

The RGEs for the X2H4 coefficients, which enter in the gauge metric, are

8
Ċ

(1)
G2H4 =−24 6

CH6
6
CG2H2 +

(
88λ− 20

3 g
2
2

)
6
CH4�

6
CG2H2

+
(
−24λ−3g2

1 +3g2
2

)6
CH4D2

6
CG2H2 +48λ
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CG2H2
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2
6
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6
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1

6
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6
CB2H2−6g1g2

6
CG2H2

6
CWBH2

+
(
48λ−3g2

1−9g2
2−22g2

3

)8
C

(1)
G2H4 , (C.28)
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Ċ

(1)
W 2H4 =−24 6

CH6
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2
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2
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1 + 3
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(
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)(6
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4λ+g2
1−

13
3 g

2
2

)(6
CWBH2

)2
−6g2

1
6
CW 2H2

6
CB2H2

− 13
3 g1g2

6
CW 2H2

6
CWBH2−
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+
(
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2
2

)
8
C

(1)
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(
8λ−8g2

2

)8
C

(3)
W 2H4 +g1g2

8
C

(1)
WBH4 , (C.29)
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Ċ
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W 2H4 = 19
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CH4�
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1
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+
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)(6
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C.6.6 X3H2

The X3H2 operators are not included in the initial Lagrangian in eq. (2.1), but they are
generated in the counterterm structure. The RGEs are
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Ċ

(1)
G3H2 = 16g3
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CG2H2

)2
, (C.33)

8
Ċ

(1)
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W 2BH2 = 16g2
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CW 2H2

6
CWBH2 . (C.35)

C.6.7 X2H2D2

The X2H2D2 operators are not included in the initial Lagrangian in eq. (2.1), but they
are generated in the counterterm structure. The RGEs are
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Ċ

(1)
G2H2D2 = 32
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CG2H2

)2
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C.6.8 XH4D2

The XH4D2 operators are not included in the initial Lagrangian in eq. (2.1), but they are
generated in the counterterm structure. The RGEs are
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