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Abstract: Within the framework of holography, the Einstein-Maxwell action with Dirich-
let boundary conditions corresponds to a dual conformal field theory in presence of an
external gauge field. Nevertheless, in many real-world applications, e.g., magnetohydro-
dynamics, plasma physics, superconductors, etc. dynamical gauge fields and Coulomb in-
teractions are fundamental. In this work, we consider bottom-up holographic models at
finite magnetic field and (free) charge density in presence of dynamical boundary gauge
fields which are introduced using mixed boundary conditions. We numerically study the
spectrum of the lowest quasi-normal modes and successfully compare the obtained results
to magnetohydrodynamics theory in 2 + 1 dimensions. Surprisingly, as far as the electro-
magnetic coupling is small enough, we find perfect agreement even in the large magnetic
field limit. Our results prove that a holographic description of magnetohydrodynamics does
not necessarily need higher-form bulk fields but can be consistently derived using mixed
boundary conditions for standard gauge fields.
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1 Introduction

The essence of the holographic duality lies in the correspondence between a gravitational
theory in d + 1 dimensions and a “dual” field theory in d dimensions which is formally
defined via the so-called GPKW (Gubser, Polyakov, Klebanov, Witten) master rule [1, 2].
Importantly, the bulk gravitational action does not uniquely define the boundary dual field
theory but, for that scope, needs to be supplemented with boundary conditions for all the
bulk fields.

Let us consider the example of a bulk gauge field Aµ. Formally, in the (d + 1)-
dimensional bulk, one usually writes a gravitational action of the form:

S =
∫
dd+1x

√
−g [R− 2Λ + L (Fµν) + . . . ] , (1.1)

where R is the Ricci scalar, Λ a negative cosmological constant and L (Fµν) a generic
Lagrangian for the bulk field Aµ which is written in terms of its field strength F := dA,
as imposed by gauge invariance in the bulk. The simplest example possible is a Maxwell
kinetic term, L (Fµν) = −F 2/4 with F 2 := FµνF

µν , which gives rise to the so-called
Einstein-Maxwell action. The ellipsis in eq. (1.1) indicates the presence of other possible
bulk fields which are irrelevant for the present discussion and therefore not shown. Also,
for simplicity, let us neglect possible couplings between the field strength Fµν and other
bulk fields, e.g., dilaton couplings. The asymptotic solution for a massless gauge field in
an asymptotically Anti-de Sitter bulk geometry is then generically given by:

Aµ (r, t, ~x) ∼
r→∞

A(0)
µ (t, ~x) + A(1)

µ (t, ~x) r2−d , (1.2)

where r is the radial holographic direction, r = ∞ the location of the AdS boundary.
At this point, A(0),(1)

µ (t, ~x) are two undetermined functions, usually denoted as the lead-
ing/subleading terms, which must be fixed by the choice of boundary conditions at r =∞.
The canonical (but not unique) procedure, which goes under the name of standard quantiza-
tion, is to fix the value of A(0)

µ at the boundary and dynamically determine the value of A(1)
µ .

From a dual field theory perspective, this corresponds to a CFT deformation of the type:

LCFT −→ LCFT +
∫
ddxA(0)

µ Jµ , (1.3)

where Jµ is a U(1) current operator in the dual CFT with conformal dimension ∆ = d− 1
whose vacuum expectation value is determined by A(1)

µ (see [3] for details). Gauge invari-
ance in the bulk, Aµ → Aµ+∂µξ, implies that the dual U(1) current is conserved, ∂µJµ = 0.
Additionally, the current operator two-point function 〈JJ〉 (whose spatial component is re-
lated to the electric conductivity σ) can be easily computed in linear response theory by
looking at the ratio A(1)/A(0). Within this picture, it is often said that a local symmetry
in the bulk (in this case, a local U(1) gauge symmetry) corresponds to a global symmetry
in the dual boundary theory. In other words, following the prescription just described and
using standard quantization, the dual field theory does not possess a local U(1) symme-
try and, as a consequence, no electromagnetism nor long-range Coulomb interactions are
present therein.
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Having in mind possible applications of the holographic duality to realistic systems,
this outcome might appear rather disappointing and limiting. There are indeed several
circumstances in which the role of dynamical gauge fields and electromagnetic interactions
are fundamental for the correct physical description and cannot be neglected. Plasma
physics and condensed matter systems are clear examples of this sort. Even if too often
ignored, within the holographic framework, the solution to this problem is more than ten
years old. Starting from the seminal works by Witten [1, 4] (see also [5–8]), the existence
and meaning of different boundary conditions for bulk vector fields were analyzed in detail
by Marolf and Ross in 2006 [9]1 and few years later applied for the first time in the context
of holographic superconductors [11–13], to be contrasted with the more famous holographic
superfluid model of Hartnoll, Herzog and Horowitz [14].2

Without going into details, the main idea of this program is to promote the b.c.s. for
the gauge field at the AdS boundary to the most general form:

αA(0)
µ (t, ~x) + β A(1)

µ (t, ~x) = fixed , (1.4)

which takes the name of mixed boundary conditions.3 The standard quantization is recov-
ered by setting β = 0, while the alternative quantization by setting α = 0. It was early
realized (mostly for the simpler case of a bulk scalar field) [4, 6, 17–19] that these most
general b.c.s. are connected to double trace deformations in the boundary field theory and
specific SL(2,R) transformations in the moduli space of the dual CFTs.

As already mentioned, one of the first concrete realizations of these modified boundary
conditions in the context of applied holography has appeared in the construction of a “real”
holographic superconductor model [12, 13, 20, 21] which has turned out to be fundamental
for the study of certain specific properties of superconductors such as vortices [11, 21–29] or
the Meissner effect [30]. Similar types of mixed b.c.s. have been considered in the study of
anyons physics in [31–33]. A more recent explosion of efforts to incorporate, understand and
utilise the effects of dynamical electromagnetism in the boundary field theory is connected
to the study of magnetohydrodynamics and plasmons physics. From one side, the latter has
been initiated by Gran, Tornsö and Zingg [34] using mixed b.c.s. for the bulk gauge field and
has been investigated in several directions [35–42]. The connection of this framework to the
diagrammatic Random Phase Approximation (RPA) [43] and double trace deformations in
the dual field theory has been explained in [44, 45]. On the contrary, the aspects related to
magnetohydrodynamics have been so far dominated by the usage of higher-form symmetry
structures as proposed in the original work by Hofman, Grozdanov and Iqbal [46] which
has been implemented within the holographic framework in [47–49] and discussed from a
hydrodynamic perspective in [50–55]. In particular, Grozdanov and Poovuttikul [47] have
demonstrated a complete match between the magnetohydrodynamic expectations [50] and

1As noted in [10], the b.c.s of [9] are actually different from the original ones in [4].
2This model is often improperly labelled as “holographic superconductor”. This is imprecise since the

U(1) symmetry at the boundary is not dynamical and the gauge field is external. In this sense, the dual of
the HHH model [14] is a superfuid state and not a superconducting one.

3See also [15, 16] for the possibility and meaning of implementing the same procedure for the boundary
metric gµν .
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the bulk higher-form picture. Moreover, in this class of theories, a bona fide photon has
been identified [56]4 and interestingly described as a Goldstone mode of the emergent
higher-form symmetry [57].

Is the higher-form bulk picture really necessary to have dynamical electromagnetism at
the boundary? What is its relation with the mixed boundary conditions discussed so far?
Can we recover magnetohydrodynamics in the boundary field theory without using higher-
form symmetries? Most of the answers to these questions have been already addressed in a
beautiful work by Higginbotham and DeWolfe [58] (see figure 1 therein for a nice summary
of their results). In a nutshell, the Hodge dual operation performed in the bulk, and needed
to pass from the standard Maxwell picture to the higher-form description (which in AdS5
appears as a Maxwell action for a 3-form field strength), does not leave the boundary
conditions unchanged. On the contrary, it hiddenly modifies the standard Dirichlet b.c.s.
into mixed b.c.s. rendering the original global U(1) symmetry in the boundary dynamical.
As a consequence, the higher-form formalism introduces non-trivial physics in the boundary
field theory because it corresponds to deforming the original Dirichlet boundary conditions
for the Maxwell bulk gauge field Aµ. In other words, despite the bulk physics is unchanged
because of the harmless Hodge dual, the field theory interpretation of the two scenarios is
completely different.5 Therefore, the naive expectation is that one could be able to obtain
the same results, i.e., to obtain dynamical electromagnetism and magnetohydrodynamics
in the boundary, by sticking to the maybe less elegant but more direct gauge field picture
and deforming its asymptotic b.c.s. without the need of any higher-form structure. This
possibility and its outcomes are the subject of this paper.

More concretely, we are asking whether a standard Einstein-Maxwell action:

S =
∫
dd+1x

√
g

[
R− 2Λ− 1

4F
2
]
, (1.5)

implemented with the “right” (and indeed not Dirichlet) boundary conditions for the gauge
field Aµ is able to provide the physics of a dual system exhibiting a dynamical U(1) sym-
metry with EM (electromagnetic) long-range interactions.

In the case of standard Dirichlet b.c.s., the dual field theory is a finite temperature CFT
with a conserved U(1) current Jµ in presence of an external, and not dynamical, gauge field
Aµ (and therefore an external magnetic field B as well). This scenario has been studied in
several works [61–65] and the complete consistency between the holographic picture and the
dual hydrodynamic framework has been recently verified in [64]. This same system has also
been studied in presence of explicit and/or spontaneous breaking of translations [66–72]
and anomalies [73]. Here, in analogy with the higher-symmetry analysis in [47], we aim at
running a parallel program for the case in which the U(1) symmetry, and correspondingly
the magnetic field B, in the boundary are dynamical. Our holographic results will be
compared to the magnetohydrodynamics derived in ref. [50] reduced, for simplicity, to two

4See [23] for an earlier identification of a propagating photon using alternative boundary conditions in
AdS3. We will comment again on the results of [23] at the end of this work proposing a slightly different
interpretation.

5This is happening also for the simpler case of bulk massless scalars in the context of broken translations.
See for example [59, 60].
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spatial dimensions. We will study the system at finite charge density and finite dynamical
magnetic field and explore the regime of strong magnetic field.

Finally, we will discuss the more speculative possibility of modifying the nature of the
dual field theory not by using boundary conditions nor by performing a Hodge duality in
the bulk but rather by substituting the original Maxwell term FµνF

µν in the bulk with a
non-canonical higher derivative action of the form (FµνFµν)N/2.

S =
∫
dd+1x

√
g
[
R− 2Λ− (FµνFµν)N/2

]
with N > 2 . (1.6)

Aware of the issues of “naturalness” in the effective field theory sense, we will consider this
case as a toy model to understand better the implementation of symmetries and boundary
conditions in bottom-up holography. The idea for an action as in (1.6) is borrowed from
the holographic axions model [74] in which this type of higher order kinetic terms [75]
has been employed to realize the spontaneous symmetry breaking of translations in the
dual field theory [76]. Therein, this procedure turned out to be equivalent to modifying
appropriately the boundary conditions for the axion fields responsible for the breaking of
translations [60]. Despite its odd nature, the bulk action written in terms of non-canonical
kinetic terms exactly reproduces the structure and dynamics of viscoelasticity theory [77]
(see [78] for a review on the topic) proving its validity as an effective bulk description. Here,
we will perform the same analysis for a bulk gauge field with non-canonical kinetic term
as in eq. (1.6). As we will explore in detail, the deformation of the bulk action as in (1.6)
automatically modifies the nature of the coefficient A(0)

µ (t, ~x) in the asymptotic expansion
of the gauge field (1.2) from leading to subleading. This implies that, assuming standard
quantization for the theory in (1.6), the coefficient A(0)

µ (t, ~x) is not anymore a source for an
external field Aµ but rather the expectation value of the current Jµ. This is exactly what
would happen by considering the standard Maxwell action, N = 2, but with alternative
b.c.s. for the bulk gauge field Aµ. Indeed, the two frameworks will give analogous results.

Structure of the paper. In section 2, we revisit the magnetohydrodynamic framework
of [50] in 2 + 1 dimensions and obtain the dispersion relation of the low-energy modes at
finite charge density and dynamical magnetic field; in section 3, we introduce our holo-
graphic setup and the precise boundary conditions used: in section 4, we present all the
main results of our work with modified mixed b.c.s. for the bulk gauge field Aµ; in sec-
tion 5, we discuss the features of a higher-derivative bulk model and its meaning from the
point of view of the dual field theory; finally, in section 6, we conclude and discuss a few
points for future investigation. Appendix A discusses some interesting outcomes regarding
the regime of validity of the hydrodynamic framework.

2 Hydrodynamics with dynamical gauge fields

In this section, we consider relativistic magnetohydrodynamics in (2+1) dimensions, in-
cluding the effects of finite charge density and magnetic field. With the term relativistic
magnetohydrodynamics we refer to the hydrodynamic description of a relativistic charged
fluid in presence of long-range EM interactions mediated by a dynamical gauge field (see [79]
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for a recent review on the topic). This is very different from the situation (which is often
loosely labelled in the same way) in which the magnetic and electric fields are external
and non dynamical (see [80] for a review). From a practical perspective, the computa-
tions presented in this section are identical to those in [50] but in the simpler situation of
(2+1) dimensions. The main simplification with respect to [50] arises from the fact that a
magnetic field in two spatial dimensions cannot be associated to a proper vector field and
therefore one cannot define an angle θ between the magnetic field B and the wave-vector k.
This avoids several complications related to the anisotropy of the system in (3+1) dimen-
sions. As a downside, the dynamics in (2 + 1) is less richer than that in (3 + 1) dimensions.
For example, it does not include the so-called Alfvén waves nor the separation between fast
and slow magnetosonic waves.

2.1 Setup

Let us start by considering the generating functional Z[gµν , Aµ]:

Z[gµν , Aµ] =
∫
DΦ exp

[
iS0 (Φ) + i

∫
d3x
√
−g

(
AµJ

µ (Φ) + 1
2gµνT

µν (Φ)
)]

, (2.1)

where Φ denotes a set of dynamical fields, Aµ an external gauge field coupled to the field
theory current Jµ (Φ) and gµν a fixed external metric coupled to the stress tensor Tµν (Φ).
Using eq. (2.1), and the standard functional derivative prescription, the n-point functions
of the corresponding conserved current operator Jµ (and not only) can be computed.
Within the holographic business, this would correspond to imposing the standard Dirichlet
boundary conditions on the bulk gauge field (see more details below).

From the generating functional in eq. (2.1), we can define an effective action as

S[gµν , Aµ] := −i lnZ[gµν , Aµ] =
∫

d3x
√
−g F , (2.2)

where F denotes the free energy density. The derivative expansion of F ,

F = p(T, µ,B2) + O(∂) , (2.3)

gives the thermodynamic pressure p at the leading order in fluctuations, i.e., at equilibrium.
Here, T is the temperature, µ the chemical potential, and B the magnetic field. Moreover,
we have assumed that T, µ,B are O(1) in derivatives while E is order O(∂). This is the
correct assumption in case of magnetohydrodynamics (MHD) [50]. Using eq. (2.2), one can
further define the stress-energy tensor Tµν and the U(1) conserved current Jµ as

δgµνS = 1
2

∫
d3x
√
−g Tµν δgµν , δAµS =

∫
d3x
√
−g Jµ δAµ . (2.4)

So far, all the quantities discussed are defined in terms of the external fields gµν , Aµ
which are not dynamical. In order to promote the external gauge field to be dynamical,
one considers the following Legendre-transformed action

Stot = S[gµν , Aµ] +
∫

d3x
√
−g Aµ Jµext ,

= Sm[gµν , Aµ] +
∫

d3x
√
−g

[
− 1

4λF
2 +Aµ J

µ
ext

]
.

(2.5)

– 6 –
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In the second line of eq. (2.5) we separate S into two pieces which correspond to the
“matter contribution” Sm, and the Maxwell kinetic term for the dynamical gauge field.
The Maxwell kinetic term is defined using the field strength F := dA. The last term
in eq. (2.5) represents a coupling of the dynamical gauge field to an external current Jµext.
Here, λ is the square of the electromagnetic coupling. For convenience, we define the matter
contribution to the stress-energy tensor Tµνm and to the U(1) conserved current Jµm as

δgµνSm = 1
2

∫
d3x
√
−g Tµνm δgµν , δAµSm =

∫
d3x
√
−g Jµm δAµ . (2.6)

In order to show the physical meaning of the action in eq. (2.5), it is convenient to vary
it with respect to Aµ obtaining

δAµStot =
∫

d3x
√
−g

[
Jµm −

1
λ
∇νFµν + Jµext

]
δAµ . (2.7)

The vanishing of eq. (2.7) corresponds to the standard Maxwell equations, i.e.,

∇νFµν = λ (Jµm + Jµext) , (2.8)

implying that the gauge field Aµ is now dynamical and coupled to the external current Jµext
as in standard electromagnetism through the coupling λ. Using the action in eq. (2.5), the
dynamical equations of motion can be summarized as

∇µ (Tµνm + TµνEM) = F λνJextλ , ∇µJµm = 0 , (2.9)
Jµm + JµEM + Jµext = 0 , εαβγ ∇αFβγ = 0 , (2.10)

where the Levi-Civita symbol is taken following the notation ε012 = 1/√−g, and TµνEM is
the stress-energy tensor of the Maxwell kinetic term given by

TµνEM = 1
λ
FµσF νσ −

1
4λF

2gµν . (2.11)

Likewise, we can define the contribution of the Maxwell kinetic term to the current as:

JµEM = − 1
λ
∇νFµν . (2.12)

With these notations, the total stress tensor and current are given by:

Tµν = Tµνm + TµνEM , Jµ = Jµm + JµEM , (2.13)

and, in absence of external sources, Jext = 0, are both conserved. In terms of the total
stress tensor and total current, the EOMs in (2.9)–(2.10) become simply:

∇µTµν = F λνJextλ , Jµ + Jµext = 0 , (2.14)

as reported in [50]. Notice that the first equation in (2.10) implies the independent conser-
vation of the external current Jµext as well. The first two equations (2.9), can be obtained
by utilising the diffeomorphism invariance (and the gauge invariance) of the action in

– 7 –



J
H
E
P
0
2
(
2
0
2
3
)
0
1
2

eq. (2.5). The other equations (2.10), are the Maxwell equation and the electromagnetic
Bianchi identity, respectively. Note that the Maxwell equation determines the evolution
of the dynamical gauge field Aµ and the Bianchi identity is used to ensure that the elec-
tric/magnetic fields can be derived from a scalar/vector potential.

In order to solve the equations of motion (2.9)–(2.10), we need to further specify the
constitutive relations for either Tµνm and Jµm, or equivalently Tµν and Jµ. Following the
standard procedure to construct hydrodynamic theories, for this purpose, we will use a gra-
dient expansion (more details about this procedure and its validity will be provided below).
In the Landau (or energy) frame, the constitutive relations at first order in derivatives are

Tµν = ε uµuν + p∆µν + Hµγ F νγ + Πµν ,

Jµ = ρ uµ−∇νHµν + νµ ,
(2.15)

where ε is the energy density, ρ is the charge density, p is the pressure given in (2.3), and
∆µν := gµν + uµuν the projection tensor in terms of the fluid velocity uµ. In addition, we
have defined the H tensor:

Hµν := 1
λ
Fµν −Mµν

m , (2.16)

where Mµν
m is the polarization tensor (2.19). Finally, (Πµν , νµ) are the first order in

derivatives dissipative corrections (2.25). Then the constitutive relation of matter part of
the stress-energy tensor and U(1) current density are given by

Tµνm = Tµν − TµνEM = εm u
µuν + pm ∆µν − Mµγ

m F νγ + Πµν ,

Jµm = Jµ − JµEM = ρm u
µ +∇νMµν

m + νµ ,
(2.17)

where εm = ε− 1
4λF

2, pm = p+ 1
4λF

2, and ρm = ρ. All the quantities indicated with a sub-
index m relates to the matter part of the total action in eq. (2.5). Using the constitutive
relation for the current Jµm in (2.17), one can notice that eq. (2.8) corresponds to the
standard Maxwell equation in matter:

1
λ
∇νFµν = Jµfree + Jµbound + Jµext , (2.18)

in which Jµfree := ρmu
µ+νµ and Jµbound := ∇νMµν

m . Jµfree refers to the current of free charges
while Jµbound incorporates the polarization effects. We can decompose the polarization
tensor Mµν

m and Hµν with respect to fluid velocity as

Mµν
m = Pµ uν − P ν uµ − εµνρ uρM ,

Hµν = uµDν − uνDµ − εµνρuρH ,
(2.19)

and can also be identified with Mµν
m = 2∂pm/∂Fµν , Hµν = 2∂p/∂Fµν . The objects Dµ and

H are respectively the displacement vector and the magnetic H-field, also known as the
magnetic field strength [81]. In (3+1) dimensions [50], the magnetization M in eq. (2.19)
becomes the magnetic polarization vector Mµ. The electric polarization vector Pµ and the
magnetization M are associated with the electric field Eµ and magnetic field B via the
susceptibilities (χEE , χBB), i.e.,

Pµ = χEEE
µ , M = χBBB , (2.20)

– 8 –
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with
χEE = 2∂pm

∂E2 , χBB = 2∂pm
∂B2 . (2.21)

To understand better the physical meaning of Dµ and H, it is convenient to re-write
eq. (2.18) in terms of Hµν

∇νHµν = Jµfree + Jµext . (2.22)

Eq. (2.20) implies that Dµ and H are also proportional to the electric and magnetic field
Eµ and B via the following relations

Dµ = 1
λ
Eµ + Pµ = εeE

µ , H = 1
λ
B −M = 1

µm
B , (2.23)

in which we have defined the electric permittivity εe and the magnetic permeability µm.
Using all the previous identities and definitions, we finally arrive at the following identities

χEE = εe −
1
λ
, χBB = 1

λ
− 1
µm

, (2.24)

which connect the susceptibilities to the electric permittivity and the magnetic permeabil-
ity.

Continuing with the hydrodynamic construction, the dissipative terms Πµν and νµ are
given by

Πµν = −η
[
∆µα∆νβ (∂αuβ + ∂βuα)−∆µν∂γu

γ
]
,

νµ = σ∆µν
(
−∂νµ+ Fναu

α + µ

T
∂νT

)
,

(2.25)

where η is the shear viscosity and σ the conductivity. Here, conformal symmetry has been
assumed (e.g., the bulk viscosity is not appearing therein).

One can now solve the equations of motion (2.9)–(2.10) together with the constitutive
relations (2.15) and obtain the low-energy excitations of the system. For this purpose, we
consider the following set of fluctuations (δT, δµ, δui=x,y, δEi=x,y, δB) around the equilib-
rium configuration

uµ = (1, 0, 0) , T = Teq , µ = µeq , B = Beq , (2.26)

with (Teq, µeq, Beq) being the equilibrium values for the corresponding thermodynamic
quantities. In order to simplify the notations, we will drop the subfix eq in the following.
Note that the fluctuations of the electric field (δEi) and magnetic field (δB) appear ex-
plicitly in this case as a direct manifestation of the dynamical, rather than external, gauge
field. Indeed, this is one of the major differences with the hydrodynamics with external
gauge fields considered for example in [61–64].

In Fourier space, assuming the spacetime dependence of the fluctuations to be propor-
tional to e−iωt+ikx, the linearised equations of motion can be rewritten in matrix form as

M(ω, k) · sA = 0 , (2.27)
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whereM(ω, k) is a 6× 6 matrix and sA = {δT, δui=x,y, δEi=x,y, δB}. The matrixM(ω, k)
is a function of the thermodynamical susceptibilities(

∂ρ

∂µ

)
T,B

,

(
∂ρ

∂T

)
µ,B

,

(
∂ρ

∂B

)
T,µ

,

(
∂ε

∂µ

)
T,B

,

(
∂ε

∂T

)
µ,B

,

(
∂ε

∂B

)
T,µ

,(
∂p

∂µ

)
T,B

,

(
∂p

∂T

)
µ,B

,

(
∂p

∂B

)
T,µ

,

(2.28)

and the various thermodynamical parameters (ε , p , T , µ , ρ , B , σ , η , εe , µm).
Then, the dispersion relations (or eigenmodes), ω = ω(k), can be obtained by solving

the condition
detM(ω, k) = 0 . (2.29)

The complete analytic expressions of eq. (2.29) and of the dynamical matrixM(ω, k) itself
are rather lengthy and therefore not made explicit. We will show the dispersion relations
of the low-energy modes only in the low ω, k expansion in the next sections. Furthermore,
in the main text, to simplify our formulas and avoid clutter, we will only show the formulas
in the low B expansion. The small B expansion is sometimes called the “weak field” limit
and it is somehow equivalent to assuming the magnetic field to be of order O(∂) [50]. When
expanding the expressions in this limit, all the thermodynamic quantities, such as ε, p, will
be independent of B. To avoid clutter, we will still denote them in the same way, avoiding
additional subscripts.

Readers interested in the complete expressions are referred to the GitHub repository
available here.

2.2 Zero density

We first study the hydrodynamics of a neutral plasma, at zero charge density, ρ = 0, or
equivalently at zero chemical potential, µ = 0. Moreover, we may further set the following
thermodynamic susceptibilities(

∂ρ

∂T

)
µ,B

=
(
∂ε

∂µ

)
T,B

=
(
∂p

∂µ

)
T,B

= 0 , (2.30)

for the neutral state. This assumption will be verified a posteriori using the holographic
computations in the next section. Using eq. (2.30) together with ρ = 0, the spectrum of
low-energy excitations exhibits six modes: four gapless modes and two gapped modes.

Let us first discuss the simplest case, i.e., the case with a vanishing magnetic field,
B = 0. For such a system, we have a pair of longitudinal sound waves together with one
transverse shear diffusion mode

ω = ±vs k − i
Γs
2 k2 , ω = −i η

ε+ p
k2 , (2.31)

where v2
s = ∂p/∂ε and Γs = η/(ε+ p). In this case, (ε + p) is just the momentum sus-

ceptibility. The modes above are decoupled from the others and simply follow from the
conservation of energy and momentum as in simple relativistic fluids. In addition, the
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remaining gapless mode can be determined from the “telegrapher equation” for electro-
magnetic (EM) waves [82, 83]:

ω

(
ω + i

σ

εe

)
= k2

εe µm
, (2.32)

where εe is the electric permittivity, µm magnetic permeability. In vacuum, σ = 0, eq. (2.32)
would just give rise to standard electromagnetic waves with light speed equal to c2 ≡
1/ (εe µm). Screening effects are introduced when σ 6= 0 and relate to the well-known skin
effect (for which, differently from here, one usually assumes ω ∈ R and k ∈ C). Notice, that
in our holographic setup, which does not preserve Galilean symmetry, the conductivity σ
is finite even at zero charge density.

Eq. (2.32) gives rise to the following solution:

ω = ±1
2

√
4c2k2 − σ2

ε2e
− i σ2εe

, (2.33)

where we have identified c2 = 1/(εeµm). The dynamics in eq. (2.33) is sometimes labelled as
k-gap [83] since the dispersion relation of the modes acquires a finite real part only above a
certain critical wave-vector. This happens via a collision between a diffusive hydrodynamic
mode and a relaxational non-hydrodynamic mode. As we will prove explicitly, eq. (2.33) is
an accurate description only when the k-gap is small (in this case σ/(2 c εe)� T ), or also
in the so-called quasihydrodynamic regime [51].

In the small wave-vector limit, eq. (2.32) gives rise to two modes with dispersion

ω = −i k2

σ µm
+ . . . , ω = −i σ

εe
+ i

k2

σ µm
+ . . . . (2.34)

EM waves do not propagate anymore at long distances (small k). Conversely, for σ/εe 6= 0,
the magnetic field diffuses with a diffusion constant DB := 1/(σµm) while the electric field
relaxes with a rate τ−1

e := σ/εe. In the language of global higher-form symmetries [46], the
electric U(1) symmetry is explicitly broken while the magnetic one is preserved implying
the conservation of the magnetic flux and the presence of magnetic diffusion.

The last low energy mode is a longitudinal damped charge diffusion mode

ω = −i σ
εe
− i σ

χρρ
k2 . (2.35)

Here, we have defined the charge susceptibility χρρ = ∂ρ/∂µ. Charge fluctuations do not
diffuse anymore but they are rather relaxing with a rate equal to τ−1

e , and identical to that
for the electric field E.

Next, let us turn on the magnetic field and discuss its effects on the low energy modes.
We focus on the small B limit, defined as B/T 2 � 1 (where the eq subscripts are neglected
for simplicity), and use the following identities:(

∂p

∂B

)
T,µ

=
(
∂pm
∂B

)
T,µ
− B

λ
= χBBB −

B

λ
,(

∂ε

∂B

)
T,µ

=
(
∂εm
∂B

)
T,µ

+ B

λ
= −2χBBB + B

λ
,

(2.36)

which are valid in that regime.
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The longitudinal sound waves and transverse shear mode in (2.31) are now modified
into

ω = ±vms k − i
Γms

2 k2 , ω = −i
(

η

ε+ p
− ηB2

µm(ε+ p)2

)
k2 . (2.37)

The sound modes in (2.37) are known as magnetosonic waves. Their velocity vms and
attenuation constant Γms are given by

vms = vs − δvsB2 , δvs := λ
(
2v2
s − 1

)
− v2

sµm
2λµm vs (ε+ p) ,

Γms = η

ε+ p
−
[

η

µm(ε+ p)2 −
(v2
s − 1)(vs(εe µm − 1) + 2µmδvs(ε+ p))

µ2
m vs σ (ε+ p)

]
B2 .

(2.38)

The EM waves still follow the same dynamics as in eq. (2.32) but their dispersion relations
at small wave-vector are corrected by the presence of a finite magnetic field. In particular,
the expressions in eq. (2.34) are now modified into

ω = −i
( 1
σ µm

− vs − 2µmδvs(ε+ p)
µ2
mvsσ(ε+ p) B2

)
k2 ,

ω = −i
(
σ

εe
+ σB2

εe µm(ε+ p)

)

+ i

[
1

σ µm
+
(
v2
s(εeµm − 1)− εeµm

µ2
mσ(ε+ p) + 2vsδvs

µmσ
− η

µm(ε+ p)2

)
B2
]
k2 .

(2.39)

Finally, the dispersion relation of the damped charge diffusion mode (2.35) becomes

ω = −i
(
σ

εe
+ σB2

εe µm(ε+ p)

)
− i

(
σ

χρρ
+ ηB2

µm(ε+ p)2

)
k2 , (2.40)

where, once again, the limit of small magnetic field is assumed. We remind the Reader
that in this limit, all the thermodynamic quantities appearing in the expressions above are
not functions of the magnetic field B. This is equivalent to the “weak field” limit in [50].
Note that all the dispersion relations presented in (2.37)–(2.40) are consistent with the
ones in (3+1) dimensions derived in [50]. A main qualitative difference is that in (2+1),
one does not have Alfvén waves because the magnetic field is always perpendicular to the
wave-vector.6 Indeed, Alfvén waves disappear even in (3+1) dimensions when the direction
of propagation is perpendicular to the magnetic field [50] (θ = π/2 in their notations, see
also [47]). Moreover, the distinction between fast and slow magnetosonic waves, which
relies on the presence of a finite angle θ, is also absent in (2+1).

2.3 Finite density

Next, we study the hydrodynamics at finite density (ρ 6= 0). To be precise, by “finite
density” we mean a finite density of free charges ρ = J t. Because of Maxwell’s equations,

6To be more precise, in (2+1) dimensions, the magnetic field does not relate to a well-defined vector but
rather to a pseudo-scalar. Therefore, formally, one cannot define any angle between the magnetic field and
the wave-vector in (2+1) dimensions.
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we necessarily have Jµ +Jµext = 0 at equilibrium. This implies that we also have J text = −ρ
and that the total charge density is zero, J ttot ≡ J t + J text = 0. Physically, we should think
of this situation as a system with a finite density of free charges (e.g., electrons) together
with an equal finite density of ions which render the total system neutral. In [50], this state
is labelled as “charged state offset by background charge”. For simplicity, we will continue
with the simpler notation “finite density”, well aware of the caveat discussed above.

Solving eq. (2.29) in the small wave-vector limit, one finds six low energy modes cor-
responding this time to two gapless modes and four gapped modes. Note that the number
of the gapless modes (and gapped modes) is different from the zero density case. This is
related to the fact that the small ρ limit does not commute with the small k limit when
the gauge field is dynamical [50].

We now show the structure of the low-energy modes at finite charge density and finite
magnetic field B, focusing on the small B limit. We find one longitudinal diffusive mode
and one transverse subdiffusive shear mode with dispersions

ω = −i

(
∂ρ
∂µ

)
T,B

(ε+ p)2 σ

T

[(
∂ε
∂T

)
µ,B

(
∂ρ
∂µ

)
T,B
−
(
∂ε
∂µ

)
T,B

(
∂ρ
∂T

)
µ,B

]
(ρ2 +B2σ)

k2 , ω = −i η

µm ρ2 k
4 .

(2.41)
The fact that the dispersion relation of the subdiffusive mode is not well defined at ρ→ 0
is just a manifestation of the non-commutativity of limits. Note that the gapless modes
in (2.41) appear also in the case of external gauge fields [64]. Interestingly, the dispersion
of the diffusive mode in (2.41) is exactly the same (at this order in k) as the one in the
case of external gauge fields (see eq. (2.51)). This observation is also consistent with the
results in the higher dimensional (3+1) theory [50]. On the contrary, the subdiffusive mode
in (2.41) displays a slightly different form (see eq. (2.51) for the subdiffusive mode in the
case of external gauge field). One could worry whether the subdiffusive mode in eq. (2.41)
is a spurious mode whose dispersion is not robust under higher-order corrections. We will
discuss this problem in detail in section 2.5 and we will concretely show in appendix A
that this is not the case.

The remaining four modes are all non-hydrodynamic and their dispersions can be found
by solving the following equation:

[
ω

(
ω + i

σ

εe

)
− Ω2

p

]2
= B2

ε2e µ
2
m(ε+ p)2

[
ρ2 − µ2

mσ
2(ρ2 −B2) + ω2 (2(ε+ p)(σ − iεeω))

]
,

(2.42)
where Ωp is the plasma frequency

Ω2
p := ρ2

εe(ε+ p) . (2.43)
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In particular, in the small B limit, the four modes are given as follows

ω = − i2

(
σ

εe
−
√
σ2

ε2e
− 4 Ω2

p

)
±

1− 1 + 2εeµm√
σ2

ε2e
− 4 Ω2

p

σ

εe

 ρB

2εeµm(ε+ p) ,

ω = − i2

(
σ

εe
+
√
σ2

ε2e
− 4 Ω2

p

)
±

1 + 1 + 2εeµm√
σ2

ε2e
− 4 Ω2

p

σ

εe

 ρB

2εeµm(ε+ p) .

(2.44)

One interesting feature of the gaps at finite density (2.44) can be observed in the limit of
B = 0. More precisely, depending on the value of the charge density ρ (entering through the
plasma frequency Ωρ), the dispersions in eq. (2.44) can be purely imaginary or complex, i.e.,(

σ2/ε2e � 4 Ω2
p ; small density

)
: ω = − i εe

σ
Ω2
p , ω = −i σ

εe
+ i

εe
σ

Ω2
p ,(

σ2/ε2e � 4 Ω2
p ; large density

)
: ω = ± Ωp − i

σ

2εe
.

(2.45)

Finally, setting all the dissipative coefficients (e.g., σ = 0) to zero, one finds

ω2 = Ω2
p + v2

s k
2 , ω2 = Ω2

p + k2

εe µm
. (2.46)

The plasma frequency Ωp gaps out both the sound waves (the first equation in (2.46)) and
the electromagnetic waves (the second equation in (2.46)).7 As the sound waves become
the magnetosonic waves (2.37) at finite B, one may say that finite density gaps out the
magnetosonic waves as well [50].

For later use, we summarize the small B correction to (2.45) as follows. For small
density, (σ2/ε2e � 4 Ω2

p), we have

ω = − i εe
σ

Ω2
p ±

[ 1
ε+ p

+ εe(1 + 2εe µm)
µmσ2(ε+ p) Ω2

p

]
ρB ,

ω = −i σ
εe

+ i
εe
σ

Ω2
p ±

[ 1 + εe µm
εe µm(ε+ p) + εe(1 + 2εe µm)

µmσ2(ε+ p) Ω2
p

]
ρB ,

(2.47)

where the magnetic field B produces a real gap. For large density (σ2/ε2e � 4 Ω2
p), we

have
ω = ±Ωp − i

σ

2εe
±
[

1
2εe µm(ε+ p) ∓ i

(1 + 2εe µm)σ
4ε2e µm(ε+ p)Ωp

]
ρB , (2.48)

where the magnetic field B produces both a real and an imaginary gap.

2.4 Dynamical vs. external gauge fields

We finish this section by comparing the dispersion relations of the low-energy modes for
the distinct cases of dynamical and external gauge fields. The results are summarized in
tables 1–2.

7The gapped sound waves, the first equation in (2.46), are the relativistic analogues of Langmuir oscil-
lations [50].
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External gauge fields Dynamical gauge fields
Energy diffusion mode (2.49), Magnetosonic waves (2.37),

Gappless modes Subdiffusive mode (2.49), Shear diffusion mode (2.37),
Magnetic diffusion mode (2.39),

Gapped modes Cyclotron mode (2.50). Damped diffusion mode (2.39),
Damped charge diffusion mode (2.40).

Table 1. The low energy modes at zero density and finite magnetic field.

External gauge fields Dynamical gauge fields
Gappless modes Diffusion mode (2.51), Diffusion mode (2.41),

Subdiffusive mode (2.51), Subdiffusive mode (2.41),
Gapped modes Cyclotron mode (2.52). Gapped plasma modes (2.44).

Table 2. The low energy modes at finite density and finite magnetic field.

Let us briefly remind the Reader of the results in the case of external gauge fields. In
the neutral case, the spectrum displays a energy diffusion mode and a subdiffusive mode
with dispersion:

ω = −i∂p
∂ε

ε+ p

σB2 k
2 , ω = −i η

B2χρρ
k4 , (2.49)

together with the so-called cyclotron mode

ω = −i σB
2

ε+ p
. (2.50)

At the finite density, the dispersion of these modes are modified into

ω = −i

(
∂ρ
∂µ

)
T,B

(ε+ p)2σ

T

[(
∂ε
∂T

)
µ,B

(
∂ρ
∂µ

)
T,B
−
(
∂ε
∂µ

)
T,B

(
∂ρ
∂T

)
µ,B

]
(ρ2 +B2σ2)

k2 ,

ω = −i η

B2
(
∂ρ
∂µ

)
T

k4 , (2.51)

ω = ±ΩB − i
σB2

ε+ P
, (2.52)

where the real gap, ΩB := Bρ/(ε+ p), is the cyclotron frequency.
By looking at the summary tables 1–2, one can notice that the dispersion relations in

the two cases (dynamical vs. external gauge fields) are noticeably different. However, as
described below eq. (2.41), there is one exception: the diffusion mode at finite density (cfr.
eq. (2.51) vs. eq. (2.41)). At least at such order in the wave-vector k, the dispersions are
identical.
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2.5 A note on the regime of validity of first-order magnetohydrodynamics

Before concluding this section about the magnetohydrodynamic framework, we would like
to clarify its regime of validity and the role of possible higher order corrections. Everything
discussed so far is valid in the approximation of first-order linearised hydrodynamics. The
latter is the statement that the constitutive relations for the stress tensor Tµν and the U(1)
current Jµ are expanded in dissipative corrections up to terms which are linear, or first-
order, in the gradients. The first-order dissipative corrections, which have been indicated
respectively as Πµν and νµ, are only the first of an infinite series expansion in gradients.
In particular, both the stress tensor and the U(1) current can be expanded as:

Tµν = Tµνeq + Πµν + Tµν(2) + Tµν(3) + . . . , Jµ = Jµeq + νµ + Jµ(2) + Jµ(3) + . . . , (2.53)

where the terms indicated with suffix (n) refers to dissipative corrections beyond equilibrium
which are n-th order in gradients. Higher order terms correspond to shorter timescales
and lengthscales and they expand the validity of the effective description towards the
microscopic world.

In our analysis, the first terms which are neglected are second order in gradients, i.e.,
Tµν(2) , J

µ
(2). Since all the dynamical equations contain at least an extra derivative, these

neglected corrections enter into the dynamical matrix M(ω, k) as terms ∼ k3, where k is
the wave-vector. All in all, this means that the dispersion relations within the second order
magnetohydrodynamic framework should be extracted from:

det
[
M(ω, k) + C k3

]
= 0 , (2.54)

with C a matrix of k−independent coefficients. In the worst case scenario, all the entries of
the matrix C are nonzero. This is obviously a very conservative view but at this point, with-
out knowing the precise form of C, the safest. Following this argument, we can confidently
trust the results from first-order magnetohydrodynamics only up to the order in which the
corresponding hydrodynamic coefficients are not affected by the possible corrections ap-
pearing in C. This is a well known problem in hydrodynamics which sometimes leads to the
appearance of spurious poles as well. See for example section 2.6 in [84]. To make this point
clearer, let us make an example. Let us assume that as a solution of det [M(ω, k)] = 0 we
get a mode whose dispersion relation within the first-order approximation can be written as:

ω(k) =
n∑
i=0

aik
i , (2.55)

with ai random complex numbers. Now, let us assume, that the same dispersion relation
extracted from the second-order formalism reads:

ω(k) =
n∑
i=0

ãik
i . (2.56)

Then, we can trust the dispersion relation obtained from the first-order formalism only up
to the order at which ai = ãi or, in other words, up to the order at which the higher order
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corrections do not play any role. In the rest of the manuscript, whenever we will refer to
hydrodynamic predictions, we will always have in mind this first order formalism truncated
up to the terms in the k expansion which can be trusted within this approximation.

Notice that all the dispersion relations written so far, apart from that of the subdiffusive
mode, ω ∼ k4 in eq. (2.41) are at most order k2. It is then immediate to verify that such
expressions would not be corrected by possible higher order terms ∼ k3. The case of the
subdiffusive mode could be potentially different. In particular, both the k3 coefficient,
which is zero in the first-order approximation, and the k4 one shown in the text might in
principle be affected by higher-order corrections. Nevertheless, we have verified with an
accurate numerical analysis that this is not the case. We refer the Reader to appendix A
for an extensive discussion on this point.

Finally, in appendix A, we will investigate further the validity of the dispersion relations
obtained from solving det [M(ω, k)] = 0 without worrying about possible higher-order
corrections. In particular, we will show that the dispersion relations obtained in that way,
by assuming somehow that no higher-order corrections appear, significantly extend the
range of agreement between the numerical data and the hydrodynamic predictions. This is
an a-posteriori proof that many of the higher-order corrections are either zero or negligible
for the problem at hand. Of course, one is not guaranteed that this is generally the case.

3 Holography with dynamical boundary gauge fields

In this section, we study the dynamics of a simple holographic system at finite charge
density and finite magnetic field in which the gauge field is taken as dynamical in the
boundary field theory using mixed boundary conditions.

3.1 Holographic setup

Let us consider the Einstein-Maxwell action in (3+1) dimensions,

Sbulk =
∫

d4x
√
−g

(
R + 6 − 1

4F
2
)
, F = dA , (3.1)

where we set 16πG = 1 and the AdS radius L = 1. We use Latin indices M,N, . . .

for the 4-dimensional bulk spacetime coordinates and use Greek indices µ, ν, . . . for the
3-dimensional boundary coordinates. In addition, let us consider the background dyonic
black-brane ansatz

ds2 = −f(r) dt2 + 1
f(r) dr2 + r2(dx2 + dy2) , A = At(r) dt− B

2 y dx + B

2 x dy , (3.2)

where r =∞ is the location of the AdS boundary and B the magnetic field. The action in
eq. (3.1) allows for a simply dyonic black-brane analytic solution given by

f(r) = r2 − m0
r

+ µ2r2
h +B2

4 r2 , m0 = r3
h

(
1 + µ2r2

h +B2

4 r4
h

)
,

At(r) = µ

(
1− rh

r

)
,

(3.3)
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where µ is the chemical potential, rh the horizon radius, and the black-brane mass m0 is
determined by the condition f(rh) = 0.

The various thermodynamic parameters associated with such a solution can be derived
as [61, 65, 69, 85]. We identify the bulk on-shell action in eq. (3.1) with the matter
controbution Sm[gµν , Aµ] in eq. (2.5). Moreover, we add the following boundary terms

Sboundary =
∫

d3x

[
− 1

4λF
2
µν + Aµ J

µ
ext

]
. (3.4)

The latter, together with the bulk part, eq. (3.1), constitute the full boundary action which
has to be compared with eq. (2.5). As a consequence, the thermodynamic quantities for
Tµν and Jµ, which include the contributions from the Maxwell kinetic term, are given by

T = 1
4π

(
3 rh −

µ2r2
h +B2

4 r3
h

)
, ρ = µ rh , s = 4π r2

h ,

ε = 2r3
h + µ2rh

2 + B2

2rh
+B2

2λ , p = r3
h + µ2rh

4 − 3B2

4rh
−B

2

2λ ,
(3.5)

where (T, ρ, s, ε, p) are the temperature, charge density, entropy, energy and pressure den-
sity, respectively. One can easily verify that these expressions satisfy the Smarr relation
ε+ p = s T + µρ. Furthermore, using (3.5), one can compute all the thermodynamic sus-
ceptibilities in (2.28) holographically. Doing so, we have verified that some of them vanish
for this concrete solution at zero charge density as anticipated in eq. (2.30). Notice that
while the trace of the matter contribution to the stress tensor vanishes, the trace of the
total stress tensor does not. In particular, we have:

Tµµ = 1
4λF

2 . (3.6)

This result is not surprising since it corresponds to the statement that Maxwell theory in
3 + 1 dimensions is scale invariant but not conformal invariant [86, 87]. As a consequence,
the trace of its stress tensor does not vanish but it is equal to the total divergence of a
virial current [86]. Moreover, in presence of the magnetic field, the mechanical pressure is
not equal to the thermodynamic pressure. In particular, we have:

Txx = ε

2 + B2

4λ =
(
p+ B2

µm

)
6= p . (3.7)

The other transport coefficients (σ , η) can also be computed and read

σ =
(
sT

ε+ p

)2
, η = s

4π , (3.8)

where the conductivity σ is given in [61, 65, 69, 85]8 and the shear viscosity η in (3.8) is
obtained from the fact that the KSS bound [89, 90] is not violated in the presence of both
charge density and magnetic field in (3+1) dimensions.9

8See also [66, 67, 88] for the development of transport property where B is no longer taken to be of order
one in derivatives.

9On the contrary, in the higher dimensional case [91–95], the KSS bound is violated at finite B.
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Finally, we observed that the term ε+p which frequently appears in the hydrodynamic
expressions is not affected by the Maxwell kinetic term. In particular, as evident from
eq. (3.5), we have that:

εm + pm = ε+ p . (3.9)

3.2 Boundary conditions for dynamical gauge fields

In order to investigate the quasi-normal modes, we consider the fluctuations δgMN and
δAM as

gMN → gMN + δgMN , AM → AM + δAM , (3.10)

where gMN and AM are the background bulk fields given in eq. (3.2). For convenience, we
choose the radial gauge: δgtr = δgrr = δgxr = δgyr = δAr = 0. Additionally, we write the
fluctuations in Fourier form using the following notations

δgMN = hMN (r) e−iωt+ ikx , δAM = aM (r) e−iωt+ ikx , (3.11)

with the wave-vector k aligned along the x direction. We then construct four gauge-
invariant variables (see for example [64]) as

ZH1 := k hyt + ω hyx ,

ZH2 := 4k
ω
hxt + 2hxx −

(
2− k2

ω2
f ′(r)
r

)
hyy + 2k2

ω2
f(r)
r2 htt ,

ZA1 := k at + ω ax −
iB ω

k
hyx −

k r

2 A′t h
y
y ,

ZA2 := ay + iB

2k
(
hxx − hyy

)
,

(3.12)

where the index of the metric fluctuation hMN is raised with the background metric (3.2).
The number of gauge-invariant variables is related to the structure of the equations of
motion at the linearized level. In our case, one can find nine second-order equations with
five first-order constraints. This implies that there are four independent fluctuations and
therefore four gauge-invariant variables.

Then, we can study the quasi-normal modes by employing the determinant method [96]
in which the source matrix, S, is constructed with the AdS boundary (r →∞) expansion of
the variables (3.12). Note that, at the AdS boundary, the gauge-invariant variables (3.12)
are expanded as

ZHi = Z
(L)
Hi

r0 (1 + . . . ) + Z
(S)
Hi

r−3 (1 + . . . ) ,

ZAi = Z
(L)
Ai

r0 (1 + . . . ) + Z
(S)
Ai

r−1 (1 + . . . ) ,
(3.13)

where the superscripts (L, S) denote the leading/subleading term in the asymptotic expan-
sion.

At this point, it is fundamental to understand how to construct the matrix S (3.18)
appearing in the determinant method in the case of dynamical gauge field. For this purpose,
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we need to consider the boundary action (3.4). Then the variation of the total action
Son-shell + Sboundary produces the following equation at the AdS boundary,

Πµ − 1
λ
∂νF

µν + Jµext = 0 , Πµ = δSon-shell
δAµ

= −
√
−g F rµ

∣∣
r→∞ , (3.14)

where Son-shell is the on-shell action from (3.1) and Πµ the radially conserved bulk cur-
rent obtained from the Maxwell equation: ∂r (√−g F rµ) = ∂r Πµ = 0. Notice that λ
parametrizes the ratio between the bulk electromagnetic coupling and the boundary one.
Since we have fixed the bulk one to unity, then λ corresponds directly to the boundary
coupling as in the hydrodynamic description of the previous sections.

The first order variation of each terms is given by

δΠt = 1
ω2 − k2

(
kZ

(S)
A1
− 1

2ρZ
(L)
H2
− 1

2ρ(k2 − ω2)(h(L)
xx − h(L)

yy )
)
,

δΠx = 1
ω2 − k2

(
ωZ

(S)
A1
− ω

2kρZ
(L)
H2
− ω

2kρ(k2 − ω2)(h(L)
xx − h(L)

yy )
)
,

δΠy = Z
(S)
A2
− ρ

k
Z

(L)
H1

+ ω

k
ρh(L)

xy ,

δ

( 1
λ
∂µF

µt
)

= k

λ
Z

(L)
A1

+ i
ω2

λ
Bh(L)

xy ,

δ

( 1
λ
∂µF

µx
)

= ω

λ
Z

(L)
A1

+ i
ω

kλ
Bh(L)

xy ,

δ

( 1
λ
∂µF

µy
)

= ω2 − k2

λ
Z

(L)
A2

+ i
ω2 − k2

2kλ B
(
h(L)
xx − h(L)

yy

)
,

(3.15)

where, for convenience, gauge-invariant variables (3.12) are used. Using the Maxwell equa-
tions, we then get:

δJ
t (L)
ext = −k

λ
Z

(L)
A1
− k

ω2 − k2Z
(S)
A1

+ ρ

( 1
2(ω2 − k2)Z

(L)
H2
−
(
h(L)
xx − h(L)

yy

))
− iBω

λ
h(L)
xy ,

δJ
x (L)
ext = −ω

λ
Z

(L)
A1
− ω

ω2 − k2Z
(S)
A1

+ ρω

k

( 1
2(ω2 − k2)Z

(L)
H2
−
(
h(L)
xx − h(L)

yy

))
− iB ω

2

kλ
h(L)
xy ,

δJ
y (L)
ext = −ω

2 − k2

λ
Z

(L)
A2
− Z(S)

A2
+ ρ

k

(
Z

(L)
H1
− ωh(L)

xy

)
+ iB

ω2 − k2

2kλ
(
h(L)
xx − h(L)

yy

)
. (3.16)

In the following, we will set h(L)
xx , h

(L)
xy , h

(L)
yy to zero. As shown in [97], those terms would con-

tribute only to finite local counterterms in the on-shell action and therefore they would not
modify the structure of the poles that we are interested in. Doing that, eq. (3.16) becomes

δJ
t (L)
ext = −k

λ
Z

(L)
A1
− k

ω2 − k2Z
(S)
A1

+ ρ

2(ω2 − k2)Z
(L)
H2

,

δJ
x (L)
ext = −ω

λ
Z

(L)
A1
− ω

ω2 − k2Z
(S)
A1

+ ρω

2k(ω2 − k2)Z
(L)
H2

,

δJ
y (L)
ext = −ω

2 − k2

λ
Z

(L)
A2
− Z(S)

A2
+ ρ

k
Z

(L)
H1

,

(3.17)

and the conservation equation ∇µJµext = 0 is trivially satisfied. Then, we choose
δJ

x (L)
ext , δJ

y (L)
ext as our independent external sources.
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To compute the quasi-normal modes, we are interested in the determinant of the source
matrix. This is given by

detS =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Z
(L)(I)
H1

Z
(L)(II)
H1

Z
(L)(III)
H1

Z
(L)(IV )
H1

Z
(L)(I)
H2

Z
(L)(II)
H2

Z
(L)(III)
H2

Z
(L)(IV )
H2

δJ
x (L)(I)
ext δJ

x (L)(II)
ext δJ

x (L)(III)
ext δJ

x (L)(IV )
ext

δJ
y (L)(I)
ext δJ

y (L)(II)
ext δJ

y (L)(III)
ext δJ

y (L)(IV )
ext

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (3.18)

where (I), (II), (III), (IV ) indicate four linearly independent solutions of the equations of
motion for the fluctuations.

Before continuing, one remark is in order. In principle, the electric and magnetic
susceptibilities in eq. (2.21) could be computed directly knowing the expression for the
matter pressure pm. In the case of holography, we are able to easily compute χBB since
we dispose of a background solution at finite magnetic field. Nevertheless, we do not
know how to compute the electric susceptibility χEE because introducing a background
electric field will inevitably make the full solution time dependent. Therefore, in order to
proceed, we will assume that χEE = 0. As we will see, this assumption will turn out to
be a good approximation in the limit of small EM coupling, λ/T � 1, but not in general
(see figure 16 below). We cannot exclude that this might be one of the reasons behind
the disagreement between the hydrodynamic predictions and the holographic results in the
concomitant limit of large B and large λ. Given this clarification, within this assumption,
the electric permittivity (εe) and magnetic permeability (µm) satisfy

εe = 1
λ
, µm = λ

1− λχBB
, (3.19)

where 1/µm = −2∂p/∂B2 can be computed via (3.5). Interestingly, for the simple Reissner-
Nordstrom solution considered, we find:

χBB = − 1
rh

< 0 . (3.20)

This is tantamount to saying that the dual field theory is the avatar of a diamagnetic
material as already noted in [14, 98, 99].

4 Results at finite electromagnetic coupling

By following the method just outlined, we are now ready to compute the low-energy exci-
tations in our holographic model. The phase space of our system is defined by three scale
invariant parameters (µ/T ,B/T 2 , λ/T ). For the moment, we mainly focus on the case of
small EM interactions, λ/T = 0.1. We will discuss in detail the effects of dialing the EM
coupling λ in section 4.5. We study the quasi-normal modes at zero density (µ/T = 0)
and finite density (µ/T 6= 0), separately. Moreover, to avoid clutter in the presentation of
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Figure 1. Dispersion relations of the lowest QNMs at zero density (µ/T = 0) and B/T 2 = 0.

the results, for the pure imaginary dispersion relations (e.g., the shear diffusion mode in
eq. (2.31)), we only display the imaginary part in all the figures.

Unless indicated otherwise, in all the figures of this manuscript solid lines will refer to
the hydrodynamic predictions as explained in section 2.5. On the contrary, colored dots will
represent the numerical results obtained from the quasi-normal modes (QNMs) analysis.

4.1 Zero density

Let us start from the case of zero density ρ = µ = 0. We display the dispersion relation of
the quasi-normal modes at zero magnetic field B/T 2 = 0 and small EM coupling λ/T = 0.1
in figure 1. We find that the numerical results are well matched with the dispersion relations
from hydrodynamics in the expected range, k/T � 1. In particular, figure 1 presents:

• the sound waves with dispersion as in eq. (2.31) (red);

• the shear diffusion mode with dispersion as in eq. (2.31) (yellow; see the inset);

• the EM waves as in eq. (2.32) (or (2.34)) (blue);

• the damped charge diffusion mode as in eq. (2.35) (green).

In figure 2, we show the low energy modes in the case of finite magnetic field. In particular,
we have:

• magnetosonic waves with dispersion as in eq. (2.37) (red);

• shear diffusion as in eq. (2.37) (yellow);

• magnetic diffusion mode as in eq. (2.39) (blue);

• gapped mode as in (2.40) (green).

The numerical results are still well fitted by the hydrodynamic formulae. The validity
of the hydrodynamic framework and the match to the numerical data upon dialing the
value of the magnetic field will be discussed in more detail in section 4.4.
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Figure 2. Dispersion relations of the lowest QNMs at zero density (µ/T = 0) and B/T 2 6= 0. Top
and bottom panels are respectively for B/T 2 = 0.5, 1.

4.2 Finite density

From the hydrodynamic analysis of section 2, at finite density, we do expect two gapless
modes, eq. (2.41), and four gapped modes, eq. (2.44). In particular, depending on how
large the density is, the gapped modes can exhibit distinct behaviors given by:

(I) Eq. (2.47) for small density (σ2/ε2e � 4 Ω2
p);

(II) Eq. (2.48) for large density (σ2/ε2e � 4 Ω2
p).

In this section, as representative examples for each case, we choose µ/T = 0.5 for the small
density case and µ/T = 5 for the large density case. A more detailed discussion about the
role of the chemical potential and the transition between the two regimes will be presented
in section 4.3.

In figure 3, we display the quasi-normal modes at µ/T = 0.5 both for zero (top panel)
and finite, but small, magnetic field (bottom panel). In both cases, the red data correspond
to the diffusive mode in eq. (2.41), the yellow data to the subdiffusive mode eq. (2.41) and
the green/blue data to the gapped modes eq. (2.47). The strongest effect of the finite
magnetic field appears in the gapped mode, eq. (2.47). There, B produces a real gap which
is absent for B = 0 (see the difference between top and bottom panels). In the case of
small charge (top panel of figure 3), first order hydrodynamics is able to generally predict
the existence of the k-gap but not its location accurately if that is large (in units of k/T ).
To be more precise, the k-gap curve appears well fitted by hydrodynamics only when the
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Figure 3. Dispersion relations of the lowest QNMs at finite density (µ/T = 0.5). Top and bottom
panels refer respectively to B/T 2 = 0, 0.5.
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Figure 4. Lowest QNMs at finite density (µ/T = 5). Top and bottom panels refer respectively to
B/T 2 = 0, 0.5.

momentum gap is small, i.e. in the so-called quasihydrodynamic regime [51] (see figure 13
later in the discussion).
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In figure 4, we show the quasi-normal modes at large chemical potential for both zero
and finite magnetic field (respectively top and bottom panels therein). In all figures, the
red data correspond to the diffusive mode in (2.41), the yellow data to the subdiffusive
mode (2.41) and finally the green/blue data to the gapped modes (2.48). Note that the
dispersion of the gapped modes is now given by eq. (2.48).

At B = 0, the mode in eq. (2.48) exhibits a real gap which was absent in the case of
zero charge density (eq. (2.47)). The value of the gap corresponds to the plasma frequency
Re(ω) = ±Ωp. Additionally, at finite charge density, the magnetic field B contributes to
both the real and imaginary parts in the limit of zero wave-vector.

In summary, using mixed boundary conditions as explained in the previous sections,
all the quasi-normal modes and their dispersion relations are consistent with the expec-
tations from magnetohydrodynamics at low wave-vector. This is the concrete proof that
the modified boundary conditions are indeed rendering the gauge field at the boundary
dynamical and that the boundary physics is accurately described by relativistic magneto-
hydrodynamics.

4.3 The effects of a finite chemical potential

In the previous sections, we did not explore in detail the role of the chemical potential on
the dispersion relations of the low-energy modes. Here, we present additional results about
the µ dependence at fixed magnetic field. For this purpose, we fix λ/T = 0.1 and B/T 2 = 0.

In order to proceed with this analysis, we first distinguish the two regimes of small
and large chemical potential as

(I) σ2/ε2e > 4 Ω2
p , (II) σ2/ε2e < 4 Ω2

p . (4.1)

For λ/T = 0.1 and B/T 2 = 0, the same inequalities can be directly expressed as follows

(I) 0 < µ/T . 0.56 , (II) µ/T & 0.56 , (4.2)

where µ/T ∼ 0.56 corresponds to σ2/ε2e ∼ 4 Ω2
p.

Let us start with the first regime of small chemical potential. In figure 5, we display
the dispersion relations of the low-energy excitations at finite wave-vector.

At zero chemical potential (left panel of figure 5), we observe a gapless sound mode
together with the diffusive mode which substitutes the propagating EM wave. The left
panel of figure 5 can also be found in figure 2. By making the chemical potential finite,
also the sound mode acquires a wave-vector gap and stops propagating at small k. The
non-hydrodynamic modes (see for example the central panel in figure 5) are located, in the
limit of small density, at:

ω = − i εe
σ

Ω2
p , ω = −i σ

εe
+ i

εe
σ

Ω2
p , (4.3)

as derived in eq. (2.45). As we increase µ further, the two values in eq. (4.3) gets closer
and the different non-hydrodynamic modes approach each other on the negative imaginary
frequency axes (see right panel in figure 5). Exactly at the critical value, (µ/T )∗ ∼ 0.56 , all
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Figure 5. Dispersion relation of the low-energy modes. Left, center and right panels correspond
respectively to µ/T = 0, 0.5, 0.55.
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Figure 6. Dispersion relation of the lowest QNMs. Left, center and right panels correspond
respectively to µ/T = 0.57, 0.62, 0.65.

the imaginary parts of the non-hydrodynamic modes are equal and given by iω = σ/(2εe).
Moreover, increasing the charge density the k-gap of EM waves becomes smaller, while
its imaginary part at large wave-vector remains constant. At the critical value, the k-gap
becomes exactly zero and after that a real gap appears. The dispersion relations of the
modes above the critical value (µ/T )∗ ∼ 0.56 are shown in figure 6.

Indeed, as we increase µ further, beyond the critical value µ/T ∼ 0.56, all the lowest
non-hydrodynamic modes discussed before acquire a finite real gap and show the same
dispersion

ω = ± Ωp − i
σ

2εe
, (4.4)

at zero wavevector, k = 0, as already discussed in eq. (2.45). This behavior is confirmed
by the numerical data in figure 6.
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Figure 7. Thermodynamic parameters (ε, p, s) and conductivity σ from weak to strong magnetic
field at µ/T = 0, 5 (black, red).

4.4 The strong magnetic field limit

Now, we extend our analysis to the regime of strong magnetic field, B/T 2 � 1. Our
main scope is to better understand the regime of validity of the magnetohydrodynamic
description beyond the small B limit. Here, we present the results at fixed λ/T = 0.1.

For this purpose, we first investigate the thermodynamic parameters (ε, p, s) and the
transport coefficients (σ, η, diffusion constant, etc) appearing in the magnetohydrodynamic
description. We recall that p is the thermodynamic pressure and does not correspond to
the mechanical pressure.

4.4.1 Thermodynamics and transport coefficients

In figure 7, we display the thermodynamic parameters (ε, p, s) together with the electric
conductivity σ at fixed density as a function of the magnetic field. The shear viscosity η is
trivially related to the entropy s via the KSS relation (3.8) and it is therefore not shown.
In the weak B field regime (B/T 2 � 1), all the observables are µ-dependent constants. On
the other hand, in the strong B field regime (B/T 2 � 1), we find the following asymptotic
behaviors:

ε

T 3 ∼
B3/2

T 3 ,
s

T 2 ∼
B

T 2 ,
p

T 3 ∼
B3/2

T 3 , σ ∼ const , (4.5)

where all the coefficients are independent of the ratio µ/T .
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Interestingly, increasing the value of B, the thermodynamic pressure p becomes nega-
tive at a critical value B∗. This critical value can be obtained analytically from eq. (3.5).
Its behavior as a function of µ/T is showed in figure 8.

Using the Smarr relation (p = −ε+ sT +µρ), one can also understand the behavior of
both p and σ in the strong B regime. In that limit, ε ∼ B3/2 scales faster than the entropy,
s ∼ B. As a result, at large B one has p ∼ −ε and therefore a negatively divergent
thermodynamic pressure. In addition, the electric conductivity can also be rewritten as
σ =

(
sT

sT+µρ

)2
which approaches unity in the strong B limit. Similar results have been

obtained in AdS5 using a higher-form language [47].

4.4.2 Transport coefficients and magnetohydrodynamics

We now turn to the analysis of the dispersion relations of the low-energy modes (lowest
QNMs) and in particular of the coefficients appearing up to order k2. Our task is to verify
the validity of the hydrodynamic description at large magnetic field.

Let us start with the simplest case of a neutral plasma. Here we do expect four gapless
modes: two magnetosonic waves together with the two (shear/magnetic) diffusive modes

ω = ± vms k − i
Γms

2 k2 , ω = −iDshear k
2 , ω = −iDmag k

2 . (4.6)

The specific expression for the coefficients above is lengthy and is provided in the GitHub
repository available here.

In figure 9, we display (vms,Γms) as a function of B. We find that the speed of
magnetosonic waves interpolates between the conformal sound speed v2

ms = 1/2 at weak B
field and the speed of light v2

ms = 1 at strong B field. The normalized attenuation constant
ΓmsT displays a non-monotonic behavior. It vanishes at large B and it asymptotes a
constant at zero B. Notice that, using the asymptotic forms presented in table 3, a negative
value of λ would result in a superluminal magnetosonic waves at strong magnetic field. This
is not surprising since λ must be taken as positive.

We also show the B-dependence of the diffusion constants for shear and magnetic
diffusion in figure 10. We find that all the diffusion constants vanish in the strong B

regime, which is consistent with the previous literature [47, 64, 100].
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Figure 9. Speed and attenuation constant of magnetosonic waves (vms,Γms) at µ = 0.

Weak B field Strong B field
v2
ms

1
2 + O

(
B/T 2)2 1−

√
3π
2 λ/T

(
B/T 2)−1 + O

(
B/T 2)−3/2

ΓmsT
1

4π + O
(
B/T 2)2 λ/T

2
√

3
(
B/T 2)−1 + O

(
B/T 2)−3/2

DshearT
1

4π − O
(
B/T 2)2 λ/T

2
√

3
(
B/T 2)−1 + O

(
B/T 2)−3/2

DmagT
4π+3λ/T

4πλ/T − O
(
B/T 2)2 31/4

√
2
(
B/T 2)−1/2 + O

(
B/T 2)−1

Table 3. Approximate asymptotic behavior for the transport coefficients appearing in the disper-
sion relations of the hydrodynamic modes in weak- and strong-field limits at zero density.
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Figure 10. Diffusion constants for shear and magnetic diffusive modes and damping of the first
non-hydro mode as a function of B/T 2 at µ = 0.

We find that all the transport coefficients of the gapless modes, obtained by fitting the
numerical dispersion relations, are in perfect agreement with the magnetohydrodynamic
formulae even in the large B limit. This is somehow surprising but, as we will see, strongly
dependent on the value of the EM coupling λ. We will comment more on this point in
the next sections and in the conclusions. This agreement implies that the formula for the
conductivity σ given in eq. (3.8) works well for all values of B, even beyond the small B
regime. To complete this section, we can also analytically derive the asymptotic behavior
of all these coefficients. For the zero density case, these are given in table 3.

In figure 10 we also show the value of the damping of the first non-hydrodynamic
mode in function of the dimensionless magnetic field. In this case, the prediction from
magnetohydrodynamics are not in well agreement with the numerical data for B/T 2 � 1.
This is not surprising. It is simply due to the fact that the imaginary part of this non-
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Figure 11. The diffusive parameters for the longitudinal diffusive (circles) and subdiffusive (tri-
angles) modes at finite charge density and magnetic field. Yellow lines are for µ/T = 5 while red
lines for µ/T = 0.5. The fluctuations of the red triangles are due to numerical inaccuracy.

hydrodynamic mode becomes large, i.e., Im(ω) ∼ T , and the mode moves away from the
regime of validity of linearised hydrodynamics.

Next, we perform the similar analysis at finite density. In this case, as demonstrated
in section 2.3, we have two gapless modes, the longitudinal diffusive mode and subdiffusive
mode, whose dispersions are given by

ω = −iDlong k
2 , ω = −iDsubdiff k

4 . (4.7)

The concrete form of the diffusive parameters is cumbersome but can be found in the
GitHub repository available here. For the caveats related to the validity of the subdif-
fusive dispersion within first order hydrodynamics see the discussions in section 2.5 and
appendix A.

In figure 11, we display the B-dependence of the two diffusive parameters. Dlong
vanishes in the strong B limit independently of the value of the charge density. On the
contrary, Dsubdiff reaches a constant value at B/T 2 → ∞. More precisely we find that in
the strong B limit:

DlongT ∼
(
B/T 2

)−1/2
+ . . . , DsubdiffT

3 ∼ (λ/T )−1 (µ/T )−2 + . . . . (4.8)

In addition, we also find that both transport coefficients are suppressed at larger density.
Once again, the results obtained by the fitting method are in good agreement with mag-
netohydrodynamic predictions at finite density even in the strong B regime. The apparent
fluctuations in the numerical data visible in figure 11 are just due to numerical precision.

Finally, we discuss also the dynamics of the non-hydrodynamic modes at finite charge
density by dialing the strength of the magnetic field B.

In figure 12, we display the B-dependence of the imaginary and real gaps at zero wave-
vector, k = 0. In the weak B regime, as demonstrated in section 2.3, the behavior of the
gaps depend on the density. The precise expressions are provided in eq. (2.47) for small
density and in eq. (2.48) for large density.

Interestingly, in the strong B limit, we find that one of the two pair of modes approaches
the origin of the complex frequency plane. More specifically, both its real and imaginary
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Figure 12. The real and imaginary part of the first non-hydrodynamic modes at density µ/T =
(0.5, 5) (upper panels, lower panels).

parts at zero wave-vector go to zero in the limit B/T 2 → ∞. This mode in the strong B
limit becomes an emergent propagating magnetosonic wave with speed v2

ms = 1 and vanish-
ing attenuation constant. It is very tempting to describe this mode as an emergent photon
in the strong B limit. We are not aware of similar observations in the previous literature.
This point needs further investigation in the future. On the other hand, the remaining pair
is pushed away from the hydrodynamic limit since both its real and imaginary part diverge.
Notice that whenever its imaginary part becomes too large, magnetohydrodynamics breaks
down and its predictions are not anymore in good agreement with the numerical data.

The asymptotic behavior for these non-hydrodynamic modes in strong B regime can
be obtained analytically and it reads

ωk=0
T

= ± (λ/T ) (µ/T )√
2 31/4

(
B

T 2

)−1/2
− i

√
2π(λ/T )3(µ/T )2

33/4

(
B

T 2

)−5/2
+ . . . , (4.9)

ωk=0
T

= ± 31/4(µ/T )
2
√

2π

(
B

T 2

)1/2
− i

√
3

2π

(
B

T 2

)
+ . . . , (4.10)

where (4.9) corresponds to the pair approaching the hydrodynamic limit in figure 12,
while (4.10) to the pair which is gapped away in the large B limit.

In summary, we find that as long as the EM coupling λ is small, the magnetohy-
drodynamic predictions for the hydrodynamic modes are in perfect agreement with the
numerical results even in the strong B regime. At this point, we are not able to provide a
solid derivation of why this is the case and how general this is. We will comment further
on this point in the conclusion section. In the next section, we discuss the effect of λ.
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4.5 The role of the electromagnetic coupling

In the previous sections, we have fixed λ/T = 0.1 and considered only the limit of small
electromagnetic coupling. We now investigate the role of the EM coupling λ and the
interpolation between the two limits λ→ 0 and λ→∞. Similar analyses in the context of
plasmons can be found in [38, 40, 41].

For this purpose, we first consider the dynamics of EM waves which is given within the
magnetohydrodynamic framework by eq. (2.32). In figure 13, we compare the numerical
QNMs data from the holographic model with the magnetohydrodynamic preditions. As
expected, EM waves are screened by Coulomb interactions and they start propagating only
above a certain cutoff wave-vector k?, the k-gap. The magnetohydrodynamic framework,
in the first-order approximation, gives:

k? = σ

2 c εe
with c2 := (εe µm)−1 . (4.11)

From figure 13, we can indeed observe that at low wave-vector the EM waves are not
propagating but they rather split into a diffusive mode and a non-hydrodynamic one, as
predicted by magnetohydrodynamics. Moreover, for small values of the EM coupling,
λ/T � 1, the magnetohydrodynamic formula, eq. (2.32), is in very good agreement with
the numerical data and accurately predicts the value of the cutoff wave-vector k?. The
onset of propagation moves to larger wave-vectors by increasing the EM coupling λ or
equivalently the magnetic field B (see for example the red data in figure 13) and the
accuracy of the magnetohydrodynamic description decreases. This is simply the sign that
higher order corrections in eq. (2.32) become important at k/T ∼ O(1). Interestingly, the
imaginary gap of the non-hydrodynamic mode can be derived analytically (see eq. (4.14)
below) and it is in perfect agreement with the numerical data even when Im[ω]/T � 1.

In order to derive the inverse relaxation time of the non-hydrodynamic mode ana-
lytically, we notice that the equations of motion for the gauge field fluctuations (δai=x,y)
decouple in the limit of k = 0 and µ = B = 0. Then, the equations can be solved
analytically and give the following leading/subleading coefficients near the AdS boundary

δa
(L)
i = 1 , δa

(S)
i = i ω . (4.12)

Continuing, we use the boundary conditions described in section 3.2 which at k = 0 are
given by

ω2 δa
(L)
i + λ δa

(S)
i = 0 . (4.13)

By combining the two last equations, we finally arrive at two independent solutions

ω = 0 , ω = −iλ . (4.14)

The first mode corresponds to the hydrodynamic diffusive mode at k = 0 while the second
mode is the non-hydrodynamic one visible in figure 13 (top panel). Taking into account
that in the limit µ = B = 0 we have σ = 1, this analytically confirms the identification
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Figure 13. Top: the dynamics of the EM waves at zero density and zero magnetic field. Different
colors, from blue to red, correspond to λ/T = (0.1, 0.5, 1, 2). The imaginary part of the non-
hydrodynamic mode at k = 0 is given analytically in eq. (4.14). Bottom: the dynamics of the EM
waves at zero density and λ/T = 0.1. Different colors, from blue to red, correspond to B/T 2 =
(0, 7, 10).

of the parameter λ in the b.c.s. as λ = 1/εe, at least in the regime of small λ coupling.10
These results are in agreement with those found in [41]. It is interesting to notice that
the inverse relaxation time of the non-hydrodynamic mode can be analytically derived for
arbitrary values of the EM coupling λ, in perfect agreement with the numerical data.

Following the trend in figure 13, one could anticipate the appearance of a propagating
free photon for λ → 0. This is indeed the case as explicitly shown in figure 14 for λ = 0.
This outcome is maybe not surprising since the mixed b.c.s. imposed reduce in the limit
of λ→ 0 to the decoupled boundary Maxwell equations in vacuum:

∂µF
µν = 0 , (4.15)

which clearly displays a freely propagating photon. In other words, we can understand this
limit as the one in which the EM interactions are vanishing and therefore all the effects of
polarization and screening disappear. The dynamics of the Maxwell field decouples from
the current. From a technical perspective, this comes from the fact that the b.c.s. used
do not reduce to the standard Dirichlet ones in the limit of λ→ 0. On the contrary, they
reduce to the Dirichlet b.c.s. times an independent and external factor (ω2 − k2) = 0.

10Whenever λ becomes large, the non-hydrodynamic mode acquires a very large imaginary gap. At that
point, the prediction from first-order hydrodynamics are totally unreliable and the identification λ = 1/εe
does not hold anymore. This is confirmed numerically in figure 16.
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Figure 14. The emergent propagating photon at zero density, zero magnetic field and zero EM
coupling λ/T = 0.

The spectrum of the theory in this limit is then the same as the one for a CFT with non-
dynamical U(1) symmetry times a freely propagating (and infinitely living) photon. Our
results are consistent with those found using higher-form symmetries in [56].

What about the opposite limit of λ → ∞? As already hinted in section 3.2, our
boundary conditions in this limit do not boil down to the ones usually defined as alternative
quantization. In particular, we do not fix directly the subleading term of the bulk gauge
field, as for example done in [23]. Before getting there, let us first ask a different question. Is
the hydrodynamic framework of section 2 still reliable in the large λ limit? From figure 13,
one can already notice that, in the small wave-vector regime, the gapless modes can be
still well described by the hydrodynamic predictions even at large λ. In figure 15, we show
the speed and attenuation constant of the magnetosonic waves together with the diffusive
parameters of shear and magnetic diffusion for different values of B and λ. We do observe
that the numerical data are not matching well the predictions from magnetohydrodynamics
in the regime of large magnetic field and concomitant large EM coupling. Interestingly,
the dynamics of shear diffusion is still perfectly described by hydrodynamics.

In addition to the hydrodynamic modes, one can further discuss the λ dependence of
the gap of the non-hydrodynamic mode. For this purpose, we focus on the behavior of
eq. (2.44). Fitting their dispersion relation, we obtain the value of the plasma frequency
Ω2
p and the damping parameter σ/εe numerically.

In figure 16, we find that at small EM coupling their values are in good agreement
with our expectations from magnetohydrodynamics:

Ω2
p ∼ λ , τ−1

e = σ/εe ∼ λ . (4.16)

Away from the small λ limit, both the plasma frequency and the inverse relaxation time
approaches a constant which is not anymore well approximated by the hydrodynamic pre-
dictions. Two comments regarding this discrepancy are in order. First, this might imply
that, for large values of λ, the non-hydrodynamic mode are already too far away from the
hydrodynamic window and, not surprising, the predictions from hydrodynamics, eq. (2.44),
are not reliable anymore. Second, note that for the solid lines in figure 16, we set χEE
to zero and assume that χEE does not depend on λ. This is probably not the case. In
particular, we do not expect χEE to be generically zero in our holographic model. It would
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Figure 16. Plasma frequency Ωp and damping parameter σ/εe at finite density (µ/T = 0.5) and
zero magnetic field.

be interesting to find an independent way to calculate χEE holographically. The main dif-
ficulty is that, by switching on a background electric field, time dependence is unavoidable.

5 Alternative quantization and a bulk experiment with non-canonical
kinetic term

In this section, we discuss the possibility of modifying the nature of the dual field theory not
by using boundary conditions nor by a Hodge duality in the bulk but rather by substituting
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the original Maxwell term F 2 with a higher derivative action of the form (1.6). Moreover,
we compare the results of this experiment with the results obtained in the λ→∞ limit.

5.1 Higher derivative bulk action

Let us consider a higher derivative bulk action as

S =
∫

d4x
√
−g

[
R+ 6− 1

4
(
F 2
)N/2

]
, (5.1)

where the AdS asymptotic behavior of the gauge field reads

Aµ (r, t, ~x) ∼
r→∞

A(0)
µ (t, ~x) + A(1)

µ (t, ~x) r
N−3
N−1 . (5.2)

Note that the higher derivative bulk action in eq. (5.1) reduces to the standard Maxwell
action in eq. (3.1) when N = 2.

Depending on the value of N , the coefficient A(0)
µ (t, ~x) in the asymptotic expansion of

the gauge field (5.2) can be leading or subleading, i.e., 1 < N < 3 : A
(0)
µ (t, ~x) is leading , A

(1)
µ (t, ~x) is subleading ,

N > 3 : A
(0)
µ (t, ~x) is subleading , A(1)

µ (t, ~x) is leading .
(5.3)

This implies that, for the bulk action (5.1) with N > 3, the coefficient A(0)
µ (t, ~x) is not any-

more a source for the external field Aµ but rather the expectation value of the conjugated
current Jµ. In other words, the standard quantization for the bulk theories with N > 3 ap-
pears equivalent to the alternative scheme for those with N < 3 (see figure 17 for a graphic
summary). Fixing the value of A(0)

µ (t, ~x) in a theory with N > 3 does not correspond to
setting the value of a non-dynamical external gauge field (the source in common jargon).

The scope of this section is to try to make sense of a bulk theory with a non-canonical
kinetic term with N > 3 and in particular to understand which is the nature of its dual field
theory. Finally, we would like to ask whether this bulk theory is equivalent, and in which
sense, to using the standard Maxwell kinetic term (N = 2) but with alternative boundary
conditions. For brevity, we will often refer to the N = 4 theory with Dirichlet b.c.s. as the
“F 4 theory” and to the Maxwell action N = 2 with alternative b.c.s. as the “F 2 theory”.

5.2 Low-energy modes and magnetohydrodynamics

As a concrete example, we will focus on the neutral state and compute the dispersion
relation of the lowest quasi-normal modes in the F 2 model (N = 2) with alternative
quantization (Neumann b.c.s) and in a high-derivative F 4 model (N = 4) with standard
quantization (Dirichlet b.c.s). Note that in both cases the boundary condition corresponds
to fix the value of A(1)

µ (t, ~x) at the boundary. Notice also that, for theories with N 6= 2,
one cannot safely take the limit of zero charge and zero magnetic field since the bulk
fluctuations would then suffer of a strong coupling problem. One can explicitly check this
fact by looking at the generalized bulk Maxwell equation:

∇µ

[(
F 2
)N−2

2 Fµν
]

= 0 , (5.4)
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Figure 17. A representation of the role of the gauge field coefficients at the asymptotic boundary
and the quantization scheme in the dual field theory for different N .

in which the effective EM coupling in the bulk would be given by:

1
g2
eff
∼
(
F 2
)N−2

2 , (5.5)

such that geff −→∞ when F 2 → 0. This is totally analogous to the case in which the bulk
action is a higher-derivative theory for massless scalar, see discussion in [76].

Let us now consider the neutral state with a finite magnetic field for which the back-
ground bulk solution is given by

f(r) = r2 − m0
r

+ 2N2 −3BN

2N − 3 r2(1−N) , m0 = r3
h

(
1 + 2N2 −3BN

(2N − 3) r2N
h

)
, (5.6)

with the corresponding thermodynamic variables

T = 1
4π

(
3 rh −

2N2 −3BN

r2N−1
h

)
, s = 4π r2

h , ε = 2m0 , P̄ = m0 . (5.7)

For convenience, we have defined P̄ =: 〈Txx〉. Note that, P̄ is not equal to the thermody-
namic pressure in presence of a magnetic field [61–65].11 We then consider the fluctuations
defined in eq. (3.11) to study numerically the quasi-normal modes of the system. We im-
pose the Neumann/Dirichlet b.c.s for the gauge fields, while we keep the Dirichlet b.c.s for
the metric fluctuations. In what follows, Neumann/Dirichlet b.c.s denote the boundary
conditions for the gauge fields only.

We find that the quasi-normal modes for both the F 2 model (with Neumann b.c.s) and
F 4 model (with Dirichlet b.c.s) exhibit four gapless modes: a pair of sound waves, a shear
diffusion mode and a magnetic diffusion mode. Moreover, we empirically observe that their
dispersion relations at finite magnetic field are well approximated by the following formulae:

ω = ±

√
∂P̄

∂ε
k − i η

2
(
ε+ P̄

) k2 , ω = −i η

ε+ P̄
k2 , ω = −iD k2 . (5.8)

11This is not so uncommon. Within the axion model [74], one can also find that P̄ is different from the
thermodynamic pressure defined as minus the free energy.
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Figure 18. Left: F 2 theory with Neumann boundary conditions; right: F 4 theory with Dirichlet
boundary conditions. Top: sound waves. Bottom: shear diffusion. The colors correspond to B/T 2

= 10−6, 40, 150 (red, green, blue).
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Figure 19. Left: F 2 theory with Neumann boundary conditions; right: F 4 theory with Dirichlet
boundary conditions. Diffusion mode for B/T 2 = 10−6, 40, 150 (red, green, blue). The dashed
lines here are not analytic results from magnetohydrodynamics but simply numerical fits to the
quasinormal modes data.

The meaning of the diffusion constant D is associated with the magnetic diffusion constant
Dmag at small B explained below. The numerical results for the dispersion of sound waves
and shear diffusion (first two set of modes in eq. (5.8)) are shown in figure 18 and they
are in perfect agreement with the formulae above. Let us emphasize that in the limit of
small magnetic field, the formulae presented in eq. (5.8) can be consistently derived from
hydrodynamics by taking the λ → ∞ limit. In particular, in that regime, we find from
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hydrodynamics

v2
ms = 1

2 + ∂χBB/∂T

∂P̄/∂T

B2

2 + O(B)3 , Γms = η

ε+ P̄
+ χ2

BB

σ(ε+ P̄ )
B2

2 + O(B)3 , (5.9)

which agree with eq. (5.8) at small B. Similarly, from hydrodynamics, the diffusion
constants of shear and magnetic diffusion, in the limit of λ→∞ and small magnetic field,
are given by

Dshear = η

ε+ P̄
, Dmag = − χBB

σ
− χ2

BB

σ(ε+ P̄ )
B2 + O(B)3 . (5.10)

Notice that, using eq. (2.24) in the λ =∞ limit, the magnetic susceptibility is given by:

χBB ∼ −
1
µm

, (5.11)

and it is negative. Then, Dmag > 0.
For the magnetic diffusion mode, we find agreement between the hydrodynamic pre-

dictions and the numerical data only in the low-B limit and for the F 2 model (see left
panel in figure 20). We do not believe that the failure of the magnetohydrodynamic the-
ory for the F 4 theory in the small B limit is meaningful. On the contrary, that is just a
signal of our failure in correctly identifying the hydrodynamic transport coefficients, such
as the conductivity σ, in the F 4 theory. We plan to revisit these results and the transport
dynamics of the F 4 theory in more detail in the future.

In summary, this analysis once more shows that the magnetohydrodynamic theory
only fails in the EM sector and only in the concomitant limit of large (in this case infinite)
EM coupling and large magnetic field. Moreover, it shows that modifying the bulk action
with a higher-derivative kinetic term is equivalent to considering the standard kinetic term
with alternative boundary conditions. This is in close analogy with the case of holographic
models with broken translations [74, 78].

5.3 Further comments on magnetic diffusion

As already mentioned, we have not been able to match the magnetic diffusion constant for
the F 4 model using our magnetohydrodynamic theory because we could not robustly derive
the transport coefficients needed. In particular, in order to achieve this, one would need
to understand how to extract the electric conductivity σ and the magnetic susceptibility
χBB in the higher-derivative F 4 model. Nevertheless, one can gain further insights on
the diffusion constant D by performing a perturbative bulk analysis. From the equation
for the fluctuations, one can check that such a diffusive mode originates from the gauge
fluctuation sector δay which couples to the metric fluctuation sector at finite B. In the
limit of a vanishing B, one can find that the gauge sector decouples so that one can study
the dynamics of the gauge fields on a fixed Schwarzschild background.

In this decoupling limit the equation of motion for δay reads

δa′′y + δa′y

(
f ′

f
+

4(1− N
2 )

r

)
+ δay

(
ω2

f2 + k2(1−N)
r2f

)
= 0 , (5.12)
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Figure 20. The diffusion constant of the diffusive mode. Left: the result for the F 2 model with
Neumann boundary conditions. The solid line is the hydrodynamic prediction which at small B
is given in eq. (5.10). Right: black dots are for F 2 model and gray dots are for F 4 model with
Dirichelt boundary conditions. The dashed lines are the analytic results from the perturbative bulk
computation, eq. (5.13), valid at B/T 2 → 0. The zoom shows the validity of the hydrodynamic
formula for the F 2 theory with alternative b.c.s. in the limit of small magnetic field.

where f(r) is given by eq. (5.6) in the limit of B = 0. Implementing standard perturbative
techniques, we are able to solve the above equation analytically and obtain the Green’s
function for the operator dual to δay. By looking at the poles structure of the latter, we
can identify the presence of a mode whose dispersion is given by

ω = −iDB→0 k
2 , DB→0 = N − 1

2N − 3 r
−1
h +O (B) . (5.13)

As shown in figure 20, the analytic result above is consistent with the numerical results
in the limit of B/T 2 → 0.

5.4 On the existence of a free boundary photon in the alternative quantization
scheme

For the case of alternative boundary conditions, a propagating photon ω = ±k was identi-
fied in the neutral AdS3 case [23]. More precisely, the emergent photon was found by im-
posing the vanishing of the subleading term of the gauge field in the gauge-invariant way as

Z
(S)
A1

= 0 . (5.14)

In order to understand the photon dispersion from (5.14), it is useful to re-express (5.14) as

ω δa(S)
x + k δa

(S)
t = 0 . (5.15)

Using the AdS boundary expansion, one can also find the following relation

δa
(S)
t = − k

ω
δa(S)
x , (5.16)

which is nothing else that the conservation of the current. Putting eqs. (5.15)–(5.16)
together, one immediately obtains (

ω2 − k2
)
δa(S)
x = 0 , (5.17)
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which has a trivial solution at ω = ±k. This is exactly the propagating photon observed
in [23].

However, if one considers as boundary conditions the vanishing of the external current,
as we do, the situation is different. Instead of eq. (5.14), one has to impose

1
ω2 − k2Z

(S)
A1

= 0 . (5.18)

The frequency dependent pre-factor cancels out and the emergent photon does not appear
anymore.

In order to justify our findings, let us have another look at the standard Maxwell
equation for electromagnetic waves in matter, given by:

ω

(
ω + i

σ

εe

)
= k2

εe µm
. (5.19)

Solving this equation together with (3.19) in the λ → ∞ limit gives two modes with
dispersion:

ω = −iλσ , ω = −i |χBB|
σ

k2 , (5.20)

where the diffusive mode is the magnetic diffusion given in (5.10) at B = 0. This means
that in such a limit the photon disappears. The only way that a photon could emerge
in the limit of λ → ∞ would be if σ/εe → 0. As proved numerically in figure 16, this is
certainly not the case. In summary, in the limit of infinite EM coupling, λ → ∞, we do
not find any propagating photon.

6 Conclusions

In this work, we have studied the low-energy dynamics of bottom-up holographic models at
finite (free) charge density and magnetic field in presence of dynamical electromagnetism
at the boundary. We have achieved the presence of a local U(1) symmetry in the bound-
ary field theory by appropriately modifying the boundary conditions for the bulk gauge
fields. We have then compared the numerical results from the holographic models with the
predictions of magnetohydrodynamic theory in 2 + 1 dimensions. We have found perfect
agreement between the two results. This proves that modified mixed boundary conditions
for the bulk gauge fields provide the correct magnetohydrodynamic phenomenology in the
dual field theory.

Importantly, our work proves that the dual higher-form bulk description (e.g., [47])
is not necessary to obtain dynamical electromagnetism in the boundary field theory of
bottom-up holographic models. This is somehow not surprising given that one could derive
a precise duality between higher-form models and standard Maxwell model using different
mixed boundary conditions [58].

Interestingly, we numerically observe the breaking down of magnetohydrodynamics
only in the concomitant limit of large EM coupling, λ/T � 1, and large magnetic field,
B/T 2 � 1. On the contrary, we find that, as far as the electromagnetic coupling is small,
the predictions from magnetohydrodynamics at small frequencies and wave-vectors are in

– 41 –



J
H
E
P
0
2
(
2
0
2
3
)
0
1
2

good agreement with the numerical data even in the limit of large magnetic field. Despite
the magnetic field is treated in the “strong field” limit, where B ∼ O(1), this is somehow
surprising. A few possible explanations arise. (I) This is a pure coincidence valid only for
the model considered. (II) We have not been able to probe very large values for the magnetic
field B where maybe the predictions from magnetohydrodynamics would fail. (III) We are
witnessing another case in favor of “unreasonable effectiveness” of hydrodymamics. (IV)
A solid argument behind this observation exists but we have not found it yet. We find this
aspect particularly interesting and we leave further investigation of this open question for
the near future.

More in general, our results provide a good playground to describe holographic models
with finite electromagnetic interactions in view of possible applications to plasma physics,
astrophysical objects and condensed matter systems. A set of additional open questions is
left for future studies.

• What is the emergent physics at infinite electromagnetic coupling in 2+1 dimensions
and how can that be described (see [23] for earlier discussions on this point)? A
reasonable attempt would be to re-formulate the theory in that limit in terms of the
dual “vortex” degrees of freedom using particle vortex duality. This also connects
with the idea that, as already suggested in [4], switching boundary conditions relates
to an SL(2,Z) in the boundary field theory. It would be interesting to provide a full-
understanding of the alternatively quantized theory and of the F 2N bulk experiment
in terms of the dual vortex picture.

• Can we find a way to compute the electric susceptibility χEE from holography and
improve our understanding at large EM coupling? It would be interesting to under-
stand whether the models and analyses of [101–103] could shed light on this point.

• Can we understand better the large B limit and in particular test the recent claims
made in [104] about magnetic diffusion?

• Can the numbers of gapless (hydrodynamic) modes be understood in terms of sym-
metries? In this sense, is the plasma frequency related to the explicit breaking of any
symmetry? If the photon can be identified as a Goldstone mode, is the plasmon the
manifestation of a pseudo-Goldstone mode?

• Is there an emergent photon in the strong B regime? And, why? A natural interpre-
tation12 is that in the strong B limit the matter degrees of freedom become negligible
since the matter energy density is subleading. Therefore, the EM wave energy is much
larger than the matter one and the photon travels basically free as in vacuum.

• What is the correct dual field theory interpretation of the higher-derivative F 2N

bulk model? Which are the corresponding transport properties?

• Are the modified boundary conditions giving the correct phenomenology of supercon-
ductors once the U(1) symmetry is spontaneously broken [105] (see for example [30])?

12We thank Yuji Hirono for suggesting it.
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• Can we extend our formalism to a 5−dimensional bulk spacetime by considering axial
and vector gauge fields and the related chiral anomaly as done for external gauge
fields in [73]? This would allow us to investigate chiral magneto-hydrodynamics
and the effects of dynamical gauge fields on the chiral magnetic effect and chiral
magnetic waves (cfr. [106, 107]).

Finally, it would be instructive to re-do our computations in a four dimensional boundary
theory in which magnetohydrodynamics displays a richer, and angle dependent, spectrum
with for example Alfvén waves and fast/slow magnetosonic waves [47]. Also, it would be
interesting to extend our results in presence of a chiral anomaly, as done in [73] for the
case of external gauge fields. We plan to report on some of these issues in the near future.
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A The unreasonable effectiveness of first-order magnetohydrodynamics

In this appendix, we provide a few more details about the discussion of section 2.5.
First, we analyze in more detail the dispersion relation of the subdiffusive mode,

ω = −iDsubdiff k
4 and the validity of the predictions from first-order magnetohydrodynam-

ics presented in the main text. As already argued in section 2.5, taking a overly pessimistic
attitude, one could expect that the corrections from second-order hydrodynamics could
modify the dispersion relation of the subdiffusive mode in eq. (2.41) at order k3. Fortu-
nately, this is not the case. In figure 21, we present an accurate analysis of the dispersion
relation of the subdiffusive mode at low wave-vector. As evident from there, the dispersion
displays a k4 scaling up to low wave-vector, indicating the k3 correction is not present.
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corresponding to figure 3 in the main text. The solid lines are the hydrodynamic formulas without
truncating the solution while the dashed line correspond to the controlled hydrodynamic predictions
shown in the text. See section 2.5 for more details.

Additionally, the prediction from first-order hydrodynamics of the k4 coefficient matches
perfectly the data up to k/T ≈ 0.04. This indicates that the dispersion relation extracted
from first order hydrodynamics is reliable and, at least up to k4 order, no corrections appear.

Finally, we discuss the validity of the first order hydrodynamic formalism used in
the main text. As explained in detail in section 2.5, apart from the subdiffusive mode in
eq. (2.41), in the main text we take a conservative attitude and we consider the results from
the first-order formalism only to the order at which we are sure they cannot be affected
by second-order corrections, ∼ k3. Here, we want to relax this attitude and consider the
dispersion relations from first-order hydrodynamics without expanding the solutions of
det(M(ω, k)) = 0 at small wave-vector. SinceM is a 6× 6 square matrix and every entry
is at most order k2, we do expect the final polynomial to be order six in frequency and
order twelve in wave-vector. To perform this analysis we consider only the QNMs shown
in the bottom panel of figure 3 in the main text. We show the results in figure 22: we also
provide the data for all other cases (corresponding to figures 1–6 in the main text) in the
GitHub repository available here.
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First, in the left panel, we show that this unjustified relaxed attitude significantly
enlarges the validity of the hydrodynamic predictions. The latter are now in perfect agree-
ment with the numerical data up to k/T ∼ 0.05. This has to be contrasted with the results
shown in the bottom panel of figure 3 in which the first-order hydrodynamic predictions
fail already around k/T ∼ 0.013. In order to make this more evident, in the right panel of
figure 22, we show both predictions for a single mode. In dashed red line we display the
conservative predictions used in the main text while in solid red line the enlarged attitude
described in this appendix. The difference is evident. What is this suggesting us? These
results are telling us that, at least for the system at hand, the higher order corrections
which come from expanding the constitutive relations at higher-order are subleading for a
quite large range of wave-vector. This might certainly not be the case in general, but it is
nevertheless a nice and interesting observation. Let us conclude this appendix saying that,
even considering the ∼ k12 solution from det(M(ω, k)) = 0, the hydrodynamic predictions
will not match the data at arbitrarily large values of k. Increasing the range of k further,
one would see deviations as well.
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