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Abstract: The signature of noncommutativity on various measures of entanglement has
been observed by considering the holographic dual of noncommutative super Yang-Mills
theory. We have followed a systematic analytical approach in order to compute the holo-
graphic entanglement entropy corresponding to a strip like subsystem of length l. The
relationship between the subsystem size (in dimensionless form) l

a and the turning point
(in dimensionless form) introduces a critical length scale lc

a which leads to three domains
in the theory, namely, the deep UV domain (l < lc; aut � 1, aut ∼ aub), deep noncom-
mutative domain (l > lc, aub > aut � 1) and deep IR domain (l > lc, aut � 1). This in
turn means that the length scale lc distinctly points out the UV/IR mixing property of the
non-local theory under consideration. We have carried out the holographic study of en-
tanglement entropy for each of these domains by employing both analytical and numerical
techniques. The broken Lorentz symmetry induced by noncommutativity has motivated us
to redefine the entropic c-function. We have obtained the noncommutative correction to
the c-function upto leading order in the noncommutative parameter. We have also looked
at the behaviour of this quantity over all the domains of the theory. We then move on to
compute the minimal cross-section area of the entanglement wedge by considering two dis-
joint subsystems A and B. On the basis of EP = EW duality, this leads to the holographic
computation of the entanglement of purification. The correlation between two subsystems,
namely, the holographic mutual information I(A : B) has also been computed. Moreover,
the computations of EW and I(A : B) has been done for each of the domains in the theory.
We have then briefly discussed the effect of the UV cut-off on the IR behaviours of these
quantities. Finally, we consider a black hole geometry with a noncommutative parameter
and study the influence of both noncommutativity and finite temperature on the various
measures of quantum entanglement.
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1 Introduction

The study of information theoretic quantities has proven to be a crucial tool to understand
the fundamental aspects of quantum mechanics and quantum field theory. Among various
entanglement measures, the entanglement entropy (EE) is one of the most useful physical
quantity with a very simple definition. The EE is a good measure of entanglement for
pure states and it is defined as the von-Neumann entropy of the reduced density matrix.
However, it is not a suitable measure of entanglement for mixed states as it measures both
quantum and classical correlations. In order to resolve this, the concepts of entanglement of
purification, reflected entropy and entanglement negativity were introduced. In this paper
we will focus on the idea of entanglement of purification (EoP) [1] in the holographic set
up. The EoP can be defined as follows. If ρAB represents a density matrix corresponding
to a mixed state in Hilbert spcae H = HA ⊗HB, then the process of purification suggests
that a pure state |ψ〉 can be computed from ρAB by adding auxiliary degrees of freedom
to the total Hilbert space H. This obtained pure state |ψ〉 is often denoted as one of the
possible purifications of ρAB. It is worth mentioning that the process of purification is not
unique. Further, the measure for entanglement in this set up which is denoted as the EoP
has the following definition [1]

EP (ρAB) ≡ EP (A,B) = min
|ψ〉

S(ρAA′); ρAA′ = trBB′ |ψ〉 〈ψ| (1.1)

where the minimization is taken over any state |ψ〉 with ρAB = trA′B′ |ψ〉 〈ψ| being held
constant. However, in the field theoretic scenario, the computations of this measure become
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quite challenging. This was resolved by the gauge/gravity duality upto a satisfactory level.
The gauge/gravity duality [2–4] has related these mentioned entanglement measures of the
boundary field theory to certain geometric regions in the bulk gravity theory [5–7]. The
gauge/gravity duality led holographic computation of EE is known as the Ryu-Takayanagi
(RT) prescription. The RT prescription relates the area of a codimension-2 static minimal
surface in the bulk theory to the von-Neumann entropy (EE) of the reduced density matrix
at the boundary QFT [5–7]. This can be expressed as

SEE(A) = Area(Γmin
A )

4GN
(1.2)

where SEE(A) denotes the EE of the subsystem A at the boundary QFT. On the other
hand, the holographic analogy of EoP has been suggested to be the minimal cross section
of the entanglement wedge (EWCS) EW (A,B) [8, 9]. It has been observed that both
EP (A,B) and EW (A,B) satisfy the following properties [8]

EP (A,B) = SEE(A) = SEE(B); ρ2
AB = ρAB,

1
2I(A : B) ≤ EP (A,B) ≤ min [SEE(A), SEE(B)] ,

I(A : B) + I(A : C)
2 ≤ EP (A,B ∪ C) (1.3)

where I(A : B) represents the mutual information between two subsystems A and B

given by
I(A : B) = SEE(A) + SEE(B)− SEE(A ∪B) . (1.4)

Replacing EP by EW in eq. (1.3), we obtain the inequalities for EW . Note that the
inequalities appearing in the second and third lines hold for both pure and mixed states.
It is worth mentioning that for a certain critical separation length between A and B,
the mutual information vanishes (I(A : B) = 0) and the domain of entanglement wedge
becomes disconnected. Apart from EW , various different quantities have been suggested
to probe mixed state correlation measures, some of them are, reflected entropy [10, 11] and
logarithmic negativity [12, 13]. Furthermore, recently it was suggested that information
associated to the EWCS can be extracted from the odd entropy SO(A,B), as SO(A,B) =
EW (A,B) + SEE(A ∪ B) [14]. Due to its usefulness and interesting properties, the study
of EWCS has gained appreciable amount of attention in recent times. Some of these
interesting observations in this direction can be found in [15–33].

On the other hand, noncommutativity of spacetime is a very unique concept which
has appeared in various areas of physics and mathematics. The fundamental philosophy
of noncommutativity states that spacetime coordinates do not commute and satisfies the
following relation [34]

[xi, xj ] = iϑij (1.5)

where ϑij is anti-symmetric in i, j; where i, j can take all possible values. Since in this
work we shall consider noncommutativity only in a plane, hence only one coordinate pair
of ϑij will be non-zero. In this paper we consider the noncommutative generalization of the
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Yang-Mills theory. In order to make a gauge theory noncommutative one needs to deform
the products of ordinary functions in the following form

(f ? g)(x) = e
(i/2)ϑij ∂

∂xi
∂

∂xj f(x)g(y)|y=x ; i, j = 2, 3 ; x2 = x, x3 = y (1.6)

where f(x) and g(y) are ordinary functions. The above product is denoted as the Moyal-
Weyl product (star product) [35–37]. The motativations to study this type of star product
deformed gauge theory are their non-local nature and UV/IR mixing property [35, 36]. In
the context of string theory, noncommutative gauge theory arises as the low-energy lim-
iting theories of D-branes with non-vanishing NS-NS B-field background [38–40]. Some
studies related to the emergence of noncommutativity due to the presence of a background
NS two-form field Bµν can be found in [41–43]. In this paper we probe the effect of this
noncommutative deformation of a gauge theory on various entanglement measures. In par-
ticular we start from a gravity dual spacetime geometry dual to a noncommutative (NC)
Yang-Mills theory. With this geometry, we compute the holographic entanglement entropy
(HEE), entanglement wedge-cross section (EWCS) and mutual information. We compute
all of these quantities in different domains of the theory, and compare the numerical and the
analytical results. Our motivation is to investigate the effect of the NC parameter on the
above information theoretic quantities. Furthermore, we also study the effect of noncom-
mutativity on the entropic c-function. Some previous observation of various entanglement
measures for NC Yang-Mills can be found in [44–47].

The paper is organized as follows. In section 2, we give a short description of the
holographic dual of noncommutative Yang-Mills theory. The holographic computation of
EE has been carried out in section 3 and the computation of entropic c-function has been
shown in section 4. In section 5 we compute the minimal cross-section of the entanglement
wedge and study the effect of noncommutativity on it. The finite temperature computations
has been done in section 6 and section 7. We summarize our findings and conclude in
section 8.

2 Dual description of noncommutative Yang-Mills theory

In [39], it was shown that the non-zero NS-NS B-field leads to noncommutative space on the
D-brane which decouples from the closed string excitations. The B-field is introduced by
performing a T -duality in a particular direction while the other directions are compactified
on a torus. In [48, 49], a stack of D3-branes with non-zero B-field (in a certain plane)
was considered and it was shown that at a particular decoupling limit, a holographic dual
of SU(N) noncommutative super Yang-Mills theory exists. This type IIB gravity dual is
described by the following metric in the string frame [48, 49]

ds2 = R2
[
− u2dt2 + u2dx2

1 + u2h(u)(dx2
2 + dx2

3) + du2

u2

]
+R2dΩ2

5 (2.1)

where h(u) = 1
1+a4u4 and a = λ1/4√ϑ is the renormalized noncommutative scale or the NC

parameter. The NC parameter is non-zero only in the x2 − x3 plane with the commutator
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[x2, x3] = iϑ. The non-vanishing dilaton profile is specified as e2Φ = g2
sh(u) where gs is the

string coupling. The t’Hooft coupling constant is related with the AdS radius as
√
λ = R2

α′

where α′ is the string tension. Further the only non-vanishing component of the NS-NS
B-field reads B23 = R2a2u4h(u).

We would like to make a comment now. The (x2, x3)-plane collapses in the UV limit,
that is, as u→∞. Hence it is necessary to introduce a UV cutoff. We shall see subsequently
that the introduction of this cutoff leads to the presence of a critical length, and the study
of entanglement of regions smaller than this critical length needs to be done carefully. For
cylindrical entangling regions, the necessity of the cutoff is the following. Without the
cutoff, all bulk surfaces would correspond to the same boundary region in the collapsing
(x2, x3)-plane [44].

3 Holographic computation of entanglement entropy and UV/IR mixing

We start our analysis by considering a strip like subsystem, namely, subsystem A. The
subsystem is specified by the volume Vsub = L2l, where − l

2 ≤ x2 ≤ l
2 and x1, x3 ∈ [−L,L]

with L→∞. Further, we assume that the widths along x1 and x3 are fixed and only the
width along x2 is allowed to vary. This particular choice has been made in order to probe
the effect of noncommutativity on the EE. One can also make the choice − l

2 ≤ x1 ≤ l
2 and

x2, x3 ∈ [−L,L], for which the effect of noncommutativity does not influence the computed
result of EE. We choose the parametrization u = u(x2) in order to compute the surface
area of the co-dimension one RT surface Γmin

A . On the other hand it is to be noted that
the metric (2.1) is given in the 10-dimensional string frame with a non-vanishing dilaton
however the calculation is to be done in the Einstein frame. In order to resolve this, we
use the following transformation

gEµν → e−
φ
2 gSµν . (3.1)

By using the above transformation, we obtain
√
gE8 = e−2φ

√
gS8 . We now use this fact to

write down the generalized RT formula for 10-dimensional string frame

SEE = Area(Γmin
A )

4G(10)

= 1
4G(10)

N

∫
d8ξ e−2φ

√
gS8

= 2R8L2Vol(Ω5)
4g2
sG

(10)
N

∫ 0

−l/2
u3

√
1 + u′2

u4h(u)dx2 ; u′ ≡ du

dx2
(3.2)

where G(10)
N is the 10d Newton’s constant which is related with the 5d Newton’s constant

as G(10)
N = π3R5G

(5)
N . Considering the integrand in the above equation as the Lagrangian,

it is easy to see that x2 is a cyclic coordinate. This gives rise to the conserved Hamiltonian

H = − u3√
1 + u′2

u4h(u)

= constant(c) . (3.3)
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At the turning point u = ut, du
dx2

= 0. This fixes the value of the constant c = −u3
t , which

then results in the following differential equation

du

dx2
=

√√√√u4h(u)
((

u

ut

)6
− 1

)
. (3.4)

Now substituting eq. (3.4) in eq. (3.2) and using the boundary condition (which implements
the UV cutoff)

u

(
x2 = ± l2

)
= ub = 1

ε
(3.5)

we get the dimensionless form of HEE

a2SEE = 2R8L2Vol(Ω5)
4g2
sG

(10)
N

(aut)2
∫ 1

aut
aub

√
p4 + (aut)4

p5
√

1− p6 dp (3.6)

where p = aut
au . On the other hand the length of the subsystem (in dimensionless form) in

terms of the bulk coordinate reads

l

a
= 2
aut

∫ 1

aut
aub

dp
p
√
p4 + (aut)4√

1− p6 . (3.7)

We first compute the integral given in eq. (3.7), in order to probe the relation between the
subsystem size l and turning point ut. It is well-known that the UV/IR mixing property
is one of the most interesting aspects of this noncommutative gauge theory. We aim to
probe this complicated UV/IR mixing property by following an analytical approach. The
deep IR limit is characterized by the fact aut � 1 [50]. Incorporating this condition, one
can obtain the following relation(

l

a

)
deep IR

≈ 2
aut

∫ 1

0
dp

p3√
1− p6 (3.8)

= 2
(aut)

√
π

Γ(2/3)
Γ(1/6) .

On the other hand, the deep noncommutative (NC) limit is associated with fact aut � 1,
and aut � aub [50], which leads to(

l

a

)
deep NC

≈ 2(aut)
∫ 1

0
dp

p√
1− p6 (3.9)

=
√
π

3
Γ(1/3)
Γ(5/6)(aut) .

From the above relations it can be observed that the deep IR limit leads to the result
corresponding to the usual commutative N = 4 super Yang-Mills gauge theory (AdS5×S5)
in 3 + 1-dimensions. This in turn means that one can denote the deep IR limit as the
commutative limit of this theory. The deep UV limit, on the other hand, needs to be
analysed carefully as we shall now see.
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Our aim is to obtain a single analytical solution which can probe the UV/IR mixing
property. This can be done in the following way. For aut ≤ 1, eq. (3.7) can be written as

l

a
= 2

(aut)

∫ aut

aut
aub

dp
p
√
p4 + (aut)4√

1− p6 +
∫ 1

aut
dp
p
√
p4 + (aut)4√

1− p6

 . (3.10)

In eq. (3.10), we have divided the whole integral in two parts. It can be noted that for
the first integral 0 ≤ p ≤ (aut) and hence p

(aut) < 1. Similarly for the second integral
(aut) ≤ p ≤ 1 and hence (aut)

p < 1. We can now perform a binomial expansion and keep

terms upto O
(

p
aut

)4
in the first integral and terms upto O

(
aut
p

)4
in the second integral.

This leads to the following expression for the subsystem size (for aut ≤ 1)

l

a
≈
√
π

2(aut)
Γ
(5

3
)

Γ
(7

6
) − (aut)3 ln(aut) + (aut)3

∞∑
n=1

1√
π

Γ
(
n+ 1

2
)

Γ(n+ 1)
1

(6n)

−
∞∑
n=1

1√
π

Γ
(
n+ 1

2
)

Γ(n+ 1)
(aut)(6n+3)

(6n) (3.11)

+
( ∞∑
n=0

2√
π

Γ
(
n+ 1

2
)

Γ(n+ 1)

[
1−(1/aub)6n+2

(6n+ 2) − 1
(6n+ 4) + 1−(1/aub)6n+6

2(6n+ 6)

])
(aut)(6n+3) .

For aut ≥ 1, the expression for
(
l
a

)
(in eq. (3.7)) reads

(
l

a

)
= 2(aut)

∫ 1

aut
aub

dp
∞∑
n=0

∞∑
m=0

p√
π

Γ
(
n+ 1

2
)

Γ(n+ 1)
Γ
(3

2
)

Γ(m+ 1)Γ
(3

2 −m
)p6n

(
p

aut

)4m

=
∞∑

n,m=0

Γ
(
n+ 1

2
)

Γ(n+ 1)Γ(m+ 1)Γ
(3

2 −m
) 1

(aut)4m−1
1

(6n+ 4m+ 2)

[
1−

(
aut
aub

)6n+4m+2
]

≈
∞∑
n=0

Γ
(
n+ 1

2
)

Γ(n+ 1)Γ
(3

2
)(aut)

1
(6n+ 2)

[
1−

(
aut
aub

)6n+2
]

+
∞∑
n=0

Γ
(
n+ 1

2
)

Γ(n+ 1)Γ(2)Γ
(1

2
) 1

(aut)3
1

(6n+ 6)

[
1−

(
aut
aub

)6n+6
]

(3.12)

where in getting the first line we have used the identities√
1 +

(
p

aut

)4
=

∞∑
m=0

Γ
(3

2
)

Γ(m+ 1)Γ
(3

2 −m
) ( p

aut

)4m
;

(
p

aut
< 1

)
1√

1− p6 =
∞∑
n=0

1√
π

Γ
(
n+ 1

2
)

Γ(n+ 1) (p)6n ; (p < 1) . (3.13)

It can be observed that in the limit a→ 0, eq. (3.11) produces the result corresponding to
commutative SYM theory.(

l

a

)
= 2√

π(aut)

∞∑
n=0

Γ
(
n+ 1

2
)

Γ(n+ 1)
1

(6n+ 4)

[
1−

(
aut
aub

)6n+4
]
. (3.14)
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Figure 1. Variation of la with respect to aut for two different values of the cutoff (aub = 10, 20). The
solid curve represents the analytical results given in eqs. (3.11), (3.12) and the dotted curve shows
the numerical result. The red dotted curve shows the commutative result. For the analytical curves
corresponding to the noncommutative case, the plots have been made using eqs. (3.11), (3.12). The
value of both the functions matches at aut = 1 and is equal to 1.7255 (for aub = 10) and 1.733 (for
aub = 20).

We now numerically compute the integral given in eq. (3.7) and compare it with our
analytically computed result given in eq. (3.11) and eq. (3.12).

From figure 1, it can be observed that our analytically computed result is in good
agreement with the numerically computed result. The plots have been made for two values
of cutoff aub = 10, 20. Further, l

a has the first local minimum
(
l
a

)
min
≈ 1.61 which occurs

at (aut)numc ≈ 0.78 (obtained numerically), and
(
l
a

)
min
≈ 1.64 at (aut)apprc ≈ 0.77 (obtained

using eq. (3.11)).1 This in turn means that the domain upto (aut)c can be interpreted as
the IR domain, and beyond (aut)c it probes the deep noncommutative domain (where l

a is
proportional to aut), and then the deep UV domain. One can also analytically estimate the
value of (aut)c by using the expressions given in eqs. (3.8), (3.9). Equating the expressions
of l

a corresponding to deep NC and deep IR limits at aut = (aut)c, leads to the following

2
(aut)anac

√
π

Γ(2/3)
Γ(1/6) =

√
π

3
Γ(1/3)
Γ(5/6)(aut)anac

⇒ (aut)anac = 0.784 . (3.15)

The above analytically estimated value of (aut)anac matches well with that obtained graph-
ically (using the approximate expression for l

a given in eq. (3.11)) and numerically. From
figure 1, it can be seen that l goes to zero for large aut (that is, aut → aub) reflecting the
fact that extremal surfaces exist for any l.

Now we shall compute the expression for a2SEE (given in eq. (3.6)). Firstly, we
compute the expressions corresponding to the deep IR and deep NC limits. As we have
observed earlier, in the deep IR limit, the commutative results appear. By using this
fact and eq. (3.8), we obtain the finite piece of HEE in the deep IR (commutative limit).

1(aut)c is the value of aut where l
a
has the first local minimum.
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This reads(
a2S̄EE |finite

)
deep IR

= −
√
π

4
Γ(2/3)
Γ(1/6)(aut)2 = −(π)3/2

(Γ(2/3)
Γ(1/6)

)3 (a
l

)2
(3.16)

where we have used the scaling S̄EE =
(

g2
sG

(10)
N

R8L2Vol(Ω5)

)
SEE . On the other hand in the deep

NC limit ( 1
aut
≈ 0), the finite piece of HEE reads(

a2S̄EE |finite
)

deep NC
= 1

16π3/2

(3Γ(5/6)
Γ(1/3)

)3 ( l
a

)4
. (3.17)

Now by following the same procedure we have used to compute l
a , the general expression

(which can probe the UV/IR mixing) for a2S̄EE reads (for aut ≤ 1)

a2S̄EE = (aut)2

2

[
(aut)2

∫ aut

aut
aub

dp

√
1 + ( p

aut
)4

p5
√

1− p6 +
∫ 1

aut
dp

√
1 + (autp )4

p3
√

1− p6

]

≈ a2S̄div +
( ∞∑
n=1

1
2
√
π

Γ
(
n+ 1

2
)

Γ(n+ 1)

[ 1
(6n− 4) + 1

(12n) −
1

(6n− 2)

])
(aut)(6n)

−
∞∑
n=2

1
4
√
π

Γ
(
n+ 1

2
)

Γ(n+ 1)
(aut)(6n)

(6n− 6) +
∞∑
n=2

1
4
√
π

Γ
(
n+ 1

2
)

Γ(n+ 1)
(aut)6

(6n− 6)

+
∞∑
n=0

1
2
√
π

Γ
(
n+ 1

2
)

Γ(n+ 1)
(aut)2

(6n− 2) +
[

1
6 −

(aut)6

24 − (aut)6 Γ
(3

2
)

log(aut)
4
√
π

]
. (3.18)

In the above expression, the subsystem information (turning point) independent divergent
piece [51] reads

a2S̄div = 1
8(aub)4 + log(aub)

4 . (3.19)

In the limit a → 1
ub
, the finite piece of eq. (3.18) produces the HEE corresponding to the

commutative SYM (given in eq. (3.16))

a2S̄EE |deep IR =
∞∑
n=0

1
2
√
π

Γ
(
n+ 1

2
)

Γ(n+ 1)
1

(6n− 2)(aut)2 = −
√
π

4
Γ(2/3)
Γ(1/6)(aut)2 . (3.20)

For aut ≥ 1, the expression for the HEE reads

a2S̄EE ≈
1
8
(
(aub)4 − (aut)4)− 1

4 ln
(
aut
aub

)
+ (aut)4

2

∞∑
n=1

1√
π

Γ
(
n+ 1

2
)

Γ(n+ 1)
1

(6n− 4)

(
1−
(
aut
aub

)6n−4
)

+1
4

∞∑
n=1

1√
π

Γ
(
n+ 1

2
)

Γ(n+ 1)
1

6n

(
1−

(
aut
aub

)6n
)

+1
4

∞∑
m=2

√
π

Γ(m+ 1)Γ
( 3

2 −m
) 1

(aut)4(m−1)

(
1−

(
aut

aub

)4(m−1)
)

4(m− 1)

+1
4

∞∑
n=1

∞∑
m=2

Γ
(
n+ 1

2
)

Γ(n+ 1)Γ(m+ 1)Γ
( 3

2 −m
) 1

(aut)4(m−1)
1

(6n+ 4(m− 1))

×

(
1−

(
aut
aub

)6n+4(m−1)
)
. (3.21)
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Figure 2. Variation of a2S̄EE with respect to l
a for two different values of cutoff

(aub = 10, 20). The solid curve represents the analytical results which is obtained by using
eqs. (3.11), (3.12), (3.18), (3.21) and the dotted curve represents the numerical result. For the an-
alytical curves corresponding to the noncommutative case, the value of both the functions matches
at aut = 1 and is equal to 1250 (for aub = 10) and 2× 104 (for aub = 20).

It is to be noted that unlike the computed result of l
a , the computed result of HEE does

not produce the commutative result if we naively take the limit a→ 0. The commutative
result emerges in the limit a → 1

ub
(which can also be written down as

√
ϑ → 1

λ1/4ub
).

This is due to the reason that we have modified the divergence structure by introducing
a dimensionless cut-off aub. This modification relates the NC parameter with the cut-off
which is reminiscent of the UV/IR mixing property and the reason is the following. We
note that the radial cut-off ub represents the momentum cut-off of the dual field theory
(which is inversely proportional to the lattice spacing). Further, for a noncommutative
field theory (with noncommutative parameter ϑ), this momentum cut-off ub of the lattice
field theory is related with the NC parameter ϑ. This in turn means that one cannot take
a limiting value of a = λ1/4√ϑ without influencing the momentum cut-off ub. In figure 2,
we compare our analytically computed result a2S̄EE (given in eqs. (3.18), (3.21)) with
that obtained numerically from eq. (3.6). We have used only the finite pieces of EE. It
can be observed that our analytical result is in very good agreement with that obtained
numerically. The plots have been made both numerically and analytically for aub = 10, 20.

We shall now obtain a critical length lc below which we have the deep UV limit. It
has been argued in [45] that for studying surfaces anchored on small strips, u(x2) has to
be expanded in a power series of x2 (for small x2)

u(x2) = u0 + u1x2 + u2x
2
2 + . . . . (3.22)

Substituting this in eq. (3.4) and using u(x2 = 0) = ut and the boundary condition in
eq. (3.5), we get

u(x2) = ut + 3
2

u3
t

[1 + a4u4
t ]
x2

2 + . . . . (3.23)
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Now putting x2 = l
2 in the above equation gives [45]

ub = ut + 3
8

u3
t

[1 + (aut)4] l
2 +O

(
(l/a)4

)
. (3.24)

This result can be substituted in eq. (3.2) to get

a2S̄EE = a2

2

(
l

ε3
− 3

8
l3

εa4
1

[1 + (ε/a)4] −
9
8
l5

a8
ε

[1 + (ε/a)4]2 +O
(
(l/a)7

))
= 1

2

(
(aub)3 l

a
− 3

8

(
l

a

)3 (aub)
(1 + (1/aub)4) −

9
8

(
l

a

)5 1
aub

1
(1 + (1/aub)4)2

)
+O

(
(l/a)7

)
. (3.25)

Note that we have also provided the finite terms which go to zero in the limit ε → 0 in
the above equation. Comparing the leading order divergence term of the above result with
that obtained in eq. (3.19) yields the critical length lc to be2

lc ≈
a2ub

2 . (3.26)

Hence, eq. (3.25) holds for l < lc and eqs. (3.18), (3.21) holds for l > lc. Using the
relation given in eq. (3.26), one can recast the expression of SEE (given in eq. (3.25)) in
the following form

a2S̄EE = a2

2

(
lcl

a

)[8l2c
a5 −

3
4

(
1

1 + ( a
2lc )4

)(
l2

a5

)
− 9

16

(
1

1 + ( a
2lc )4

)2(
l4

l2ca
5

)
+ . . . .

]

= lcl

2

[
8lc
a3 −

3
4

( 1
1 + (a/2lc)4

)(
l2

a3

)
− 9

16

( 1
1 + (a/2lc)4

)2
(

l4

a3l2c

)
+ . . .

]
. (3.27)

We shall now investigate the c-function of the dual field theory holographically. We shall
carry out our investigation for l > lc. As we shall see in the subsequent discussion that the
deep UV solution (for l < lc) poses problems in the determination of the c-function. For
this we now proceed to write down the expression of a2S̄EE |finite (given in eq. (3.18) for
aut ≤ 1) in terms of the dimensionless form of the subsystem size l

a (given in eq. (3.11) for
aut ≤ 1). Keeping the leading order noncommutative correction, eq. (3.11) can be recast as

l

a
'
√
π

2(aut)
Γ
(5

3
)

Γ
(7

6
) [1+ 1

3
√
π

Γ(7/6)
Γ(5/3)

(
4 + log 4− 6 log(aut)− 6

( 1
aub

)2
−
( 1
aub

)6
)

(aut)4
]
.

(3.28)
Now with the above expression in hand and assuming aut to be very small (aut � 1), we
can solve it perturbatively and write down aut in terms of l

a . This reads (for aut � 1)

aut

(
l

a

)
= α0(

l
a

) + α1(
l
a

)5 +
α4

0 log
(
l
a

)
(
l
a

)5 (3.29)

2The left panel of figure 1 has been plotted for aub = 10. This gives lc
a

= 5. Hence, we can see that
the critical length lc

a
below which we have the deep UV limit is larger than

(
l
a

)
min

which means that an
observer in the field theory will not realise that there is a minimum length

(
l
a

)
min

.
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where aut
aub

has been neglected since it is very small. Similarly, we now approximate the
expression for a2S̄EE |finite (given in eq. (3.18)) by keeping the leading order NC correction
terms only. This leads to the following expression (for aut � 1)

a2S̄EE |finite '
1
6 −
√
π

4
Γ(2/3)
Γ(1/6)(aut)2 + 1

48 (3 + log 4− 6 log(aut)) (aut)6 . (3.30)

By substituting the expression of turning point aut (given in eq. (3.29)) in eq. (3.30), we
obtain

a2S̄EE

(
l

a

)
|finite = 1

6 −

√π4 Γ(2/3)
Γ(1/6) −

(3 + log 4)
48

 α0(
l
a

) + α1(
l
a

)5 +
α4

0 log
(
l
a

)
(
l
a

)5


4

×

 α0(
l
a

) + α1(
l
a

)5 +
α4

0 log
(
l
a

)
(
l
a

)5


2

−
(1

8

) α0(
l
a

) + α1(
l
a

)5 +
α4

0 log
(
l
a

)
(
l
a

)5


6

× log

 α0(
l
a

) + α1(
l
a

)5 +
α4

0 log
(
l
a

)
(
l
a

)5

 (3.31)

where

α0 =
√
π

2
Γ(5

3)
Γ(7

6)
; α1 = 2

3α
4
0 + α4

0
6 log 4− α4

0 logα0 .

The expression given in eq. (3.31) represents HEE for a strip-like subsystem at the bound-
ary. Using the above expression we can holographically compute the c-function of the dual
field theory which we shall carry out in the next section.

4 Holographic computation of the c-function

The c-function is a monotonically decreasing function (under renormalization group flow)
measuring the degrees of freedom of the theory and is stationary at the fixed points of
the renormalization group flow. Further, the value of the c-function at the fixed points
are related to the central charge of the two-dimensional conformal field theory (CFT).
In [52, 53], a c-function in terms of the entanglement entropy was computed for two-
dimensional CFT. This was a entropic reformulation of the Zamolodchikov theorem [54].

For the EE corresponding to a single interval of length l, the c-function for 2D CFT
reads [52, 53, 55]

c = 3l dSEE
dl

. (4.1)

Following this direction, in [56] a c-function in terms of the EE, for a d + 1-dimensional
CFT has been proposed. It is known that the HEE corresponding to a ‘slab’ like subsystem
is given by [6]

SEE = α
Ld−1

εd−1 −
1

(d− 1)
Cd
β

(
L

l

)d−1
(4.2)
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where α and β are dimensionless constants, ε is the UV regulator and Cd is the central
charge. Following the idea of 2D CFT, the following c-function along the RG flow for a
d+ 1-dimensional CFT was proposed [56]

c =
(

β

Ld−1

)
ld
dSEE
dl

. (4.3)

Without loss of generality, we use the above c-function to characterize the degrees of
freedom of NC SYM. It is to be noted that the above mentioned c-function has been
proposed for Lorentz invariant theories. On the other hand the full Lorentz symmetry for
NC SYM is broken as SO(3, 1)→ SO(1, 1)×SO(2). It remains an open problem to construct
a c-function for systems with broken Lorentz symmetry. However, we shall use the above
definition of the c-function since it can still probe the degrees of freedom of the system and
observe the effect of noncommutativity on it. Firstly, we look at the deep IR limit of the
NC SYM. In this limit, we have the commutative SYM and the EE reads (given in (3.16))

SEE =
(
R8L2Vol(Ω5)
g2
sG

(10)
N

)[
SSYM
div − π3/2

(Γ(2/3)
Γ(1/6)

)3 (1
l

)2
]

(4.4)

where SSYM
div represents the universal divergent term of SYM. Now by correctly identifying

β and by using the definition (given in (4.3)) for d = 3, the c-function for the commutative
SYM is obtained to be

c = 2R8Vol(Ω5)
g2
sG

(10)
N

= Csym . (4.5)

This is also the central charge of the N = 4 SYM theory in 3 + 1-dimensions. It is to be
noted that this identification of dimensionless quantity β is difficult to carry out for the
expression of SEE corresponding to NC SYM (given in (3.18)). Hence, we proceed with
the expression given in eq. (3.31). We can recast the expression in the following form

SEE = −C
symL2

2
1
β0

(1
l

)2
+ CsymL2

[
1

12a2 −
a4α6

0
16l6 log

(
α0a

l

)]

+CsymL2a
4α0
l6

[
α5

0(3 + log 4)
96 −

√
π

4
Γ(2/3)
Γ(1/6)α1 −

√
π

4
Γ(2/3)
Γ(1/6)α

4
0 log

(
l

a

)]
(4.6)

where we have identified Csym = R8V ol(Ω5)
g2
sG

10
N

and β0 = 4Γ(1/6)√
πΓ(2/3)α2

0
. It is to be noted that the

first term is the usual one which we get from the commutative SYM in 3 + 1-spacetime di-
mensions. We now introduce a l-dependent β, namely, β(l) and recast the above expression
in the form

SEE = CsymL2

12a2 − CsymL2

2β(l)l2 (4.7)

where
1
β(l) = 1

β0
− α0

(
a

l

)4 {α5
0(3 + log 4)

48 −
√
π

2
Γ(2/3)
Γ(1/6)α1 −

√
π

2
Γ(2/3)
Γ(1/6)α

4
0 log

(
l

a

)
−α

5
0

8 log
(
α0a

l

)}
(4.8)
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Figure 3. Behaviour of the c-function for all possible values of l
a (we set aub=10).

We now define the entropic c-function in the following way

c = β(l)
L2 l

3dSEE
dl

. (4.9)

Computation of the above expression leads to the following

c

Csym = 1− β0

(
a

l

)4
α0

[
(3 + log 4)

24 α5
0 −
√
π

Γ(2/3)
Γ(1/6)α1

−
√
π

Γ(2/3)
Γ(1/6)α

4
0 log

(
l

a

)
− α5

0
4 log

(
α0a

l

)
+
√
π

4 α4
0
Γ(2/3)
Γ(1/6) + α5

0
16

]
. (4.10)

It can be observed that the first term in the above equation is the central charge of the
commutative theory whereas the rest probes the signature of a Lorentz violating theory
induced by noncommutativity. It can be noted that in the deep IR limit the c-function of
the NCYM approaches the constant value Csym corresponding to the commutative Yang-
Mills theory. For large l

a , (for aub = 10), eq. (4.10) yields c
Csym = 1 which agrees very well

with the numerical result. There is a small difference between the two results only at the
third decimal place.

Before ending this discussion we would like to point out that in the deep UV limit
(l < lc), the definition of c-function (given in eq. (4.3)) runs into a problem because of the
non-locality of the theory which leads to the violation of area law for SEE . To see this we
compute and graphically represent the c-function for all possible values of l

a .
In figure 3, we have plotted

(
β0
β

) (
c

Csym
)
in the vertical axis and in the horizontal axis

we have plotted l
a . In the left panel of figure 3, we observe that in the IR domain the

ratio
(
β0
β

) (
c

Csym
)
apporaches unity, that is, the c-function of NC SYM matches with that

of SYM. Interestingly, we observe that there are discontinuous jumps in the quantity (see
right panel of figure 3) which is due to the swallowtail behaviour of the HEE. These jumps
appear at the junction between the IR and NC domains of the theory, and the junction
between the NC and UV domains (see figure 4) of the theory. The discontinuities in the c-
function therefore correspond to the transitions from one domain to the other, in particular
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the discontinuity between the IR and the NC domains correspond to a transition from the
area to the volume law for the HEE.

5 Entanglement wedge cross section

In this section we compute the EWCS for NC Yang-Mills gauge theory. This computation
holographically probes the entanglement of purification on the basis of EP = EW dual-
ity [8]. We proceed by considering two strip-like subsystems on the boundary ∂M (∂M
is the boundary of a time-slice M we have considered in the gravity dual). We denote
these subsystems as A and B with both of them having the same length l. Further we
consider that A and B are separated by a distance d with the condition A ∩ B = 0. The
Ryu-Takayanagi surfaces corresponding to A, B and AB are denoted as Γmin

A , Γmin
B and

Γmin
AB respectively. The codimension-0 domain of entanglement wedge MAB is characterized

by the following boundary

∂MAB = A ∪B ∪ Γmin
AB = Γ̄A ∪ Γ̄B (5.1)

where Γ̄A = A ∪ ΓAAB, Γ̄B = B ∪ ΓBAB. In the above equation we have used the condition
Γmin
AB = ΓAAB ∪ ΓBAB. In this set up, one can define the holographic entanglement entropies
S(ρA∪ΓAAB

) and S(ρB∪ΓBAB
) and compute them by finding a static RT surface Σmin

AB with the
following condition

∂Σmin
AB = ∂Γ̄A = ∂Γ̄B . (5.2)

The spliting condition Γmin
AB = ΓAAB ∪ ΓBAB which has been incorporated in not unique and

there can be infinite number of possible choices. Further, this means that there can be
infinite number of choices for the surface Σmin

AB . The EWCS is computed by minimizing the
area of Σmin

AB over all possible choices for Σmin
AB . This reads

EW (ρAB) = min
Γ̄A⊂∂MAB

[
A
(
Σmin
AB

)
4Gd+1

]
. (5.3)
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This in turn means that EWCS is the vertical constant x2 hypersurface with minimal area
which splits MAB into two domains corresponding to A and B. The time induced metric
on this constant x2 hypersurface reads

ds2
ind = R2

[
u2dx2

1 + u2h(u)dx2
3 + du2

u2

]
+R2dΩ2

5 . (5.4)

By using this above mentioned induced metric and the formula given in eq. (5.3), the
EWCS is found to be

a2EW = a2R
8L2Vol(Ω5)
4g2
sG

(10)
N

∫ ut(d)

ut(2l+d)
u
√

1 + a4u4 du

= R8L2Vol(Ω5)
4g2
sG

(10)
N

[1
4

(
(aut(d))2

√
1 + (aut(d))4 − (aut(2l + d))2

√
1+ (aut(2l + d))4

)

+ 1
4
(
sinh−1

(
(aut(d))2

)
− sinh−1

(
(aut(2l + d))2

))]
. (5.5)

It is to be noted that in general the above expression of EWCS always satisfies the bound

EW ≥
1
2I(A : B) . (5.6)

We shall check this explicitly in our study. It has been pointed out in [8] that for a given l,
there exists a critical separation length (dc < l) between the two subsystems A and B above
which there is no connected phase. We shall also see this feature in our study. This means
that the codimension-0 bulk region MAB (entanglement wedge) will be disconnected and
therefore results in vanishing EW (ρAB). Up to this critical separation length dc, the mutual
information I(A : B) is non-zero and the RT surface Γmin

AB is in connected phase which leads
to a non-vanishing EW . However beyond this critical separation length dc, the mutual
information I(A : B) = 0 and Γmin

AB is in disconnected phase which results in a vanishing
EW . The value of this critical separation length dc can be computed from the vanishing
condition of the mutual information at d = dc. This can be formally written as [44, 57]

I(A : B) = 2SEE(l)− SEE(d)− SEE(2l + d) = 0 . (5.7)

In the above expression we have used the fact SEE(A ∪ B) = SEE(2l + d) + SEE(d), for
“small” d/l.

For aut ≤ 1, eq. (5.5) can be simplified as

a2ĒW = 1
8
[
((aut (d))2 − (aut (2l + d))2

]
+ 1

32
[
(aut (d))6 − (aut (2l + d))6

]
(5.8)

where ĒW =
(

g2
sG

(10)
N

R8L2Vol(Ω5)

)
EW . In the above expression, aut (d) and aut (2l + d) represents

the turning points associated with the RT surfaces Γmin
d and Γmin

2l+d.
In order to probe the bound given in eq. (5.6), we need to compute the expression

of I(A : B). We do this by using the expression of a2S̄EE
(
l
a

)
for aut ≤ 1 given in

eq. (3.18) and the expression for l
a for aut ≤ 1 given in eq. (3.11). The finite piece of the
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expression in eq. (3.18) contributes in the mutual information, and similarly expressions
of HEE for subsystems (2l+ d) and d can be obtained from eq. (3.18) which contribute to
the mutual information.3 This in turn means that we obtain the following dimensionless
form of holographic mutual information

a2Ī(A : B) = 2a2S̄EE

(
l

a

)
− a2S̄EE

(
d

a

)
− a2S̄EE

(2l + d

a

)
(5.9)

where a2S̄EE is given in eq. (3.18), and we have used the scaling Ī =
(

g2
sG

(10)
N

R8L2Vol(Ω5)

)
I.

Further, in order probe the effect of noncommutativity, we also compute the expression for
EW and I(A : B) in the deep IR (commutative) and deep noncommutative limits.

In the deep IR (commutative) limit, the expressions for EW and I(A : B) (in dimen-
sionless form) reads

a2ĒW |deep IR = 1
8

(
2
√
π

Γ(2/3)
Γ(1/6)

)2
 1(

d
a

)2 −
1(

2l+d
a

)2

 (5.10)

a2Ī(A : B)|deep IR = −π3/2
(Γ(2/3)

Γ(1/6)

)3
 2(

l
a

)2 −
1(
d
a

)2 −
1(

2l+d
a

)2

 . (5.11)

On the other hand, in the deep noncommutative limit, the expressions for EW and I(A : B)
(in dimensionless form) reads

a2ĒW |deep NC = 1
16

( 3√
π

Γ(5/6)
Γ(1/3)

)4 [(d
a

)4
−
(2l + d

a

)4]
(5.12)

a2Ī(A : B)|deep NC = 1
16π3/2

(3Γ(5/6)
Γ(1/3)

)3 [
2
(
l

a

)4
−
(
d

a

)4
−
(2l + d

a

)4]
. (5.13)

In the deep UV limit, we substitute eq. (3.24) in eq. (5.5) to get

16a2ĒW =
(
aub −

3
8

(aub)3

1 + (aub)4

(
d

a

)2)2
√√√√1 +

(
aub −

3
8

(aub)3

1 + (aub)4

(
d

a

)2)4

−
(
aub −

3
8

(aub)3

1 + (aub)4

(2l + d

a

)2)2
√√√√1 +

(
aub −

3
8

(aub)3

1 + (aub)4

(2l + d

a

)2)4

+ sinh−1

(aub − 3
8

(aub)3

1 + (aub)4

(
d

a

)2)2


− sinh−1

(aub − 3
8

(aub)3

1 + (aub)4

(2l + d

a

)2)2
. (5.14)

We now graphically represent our results and observe the effect of noncommutativity on
the EWCS and holographic mutual information.

3The divergent pieces of the HEEs are independent of subsystem size information so they cancel out and
do not contribute.
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Figure 5. Effect of noncommutativity on EWCS and HMI (we have chosen two values for l
a ,

l
a = 6 (red) and l

a = 8 (blue)). The curve in the left panel depicts the analytical result in
eq. (5.8), (5.9) (for aut ≤ 1) with aub = 10. The curve in the right panel depicts the analytical
results in eqs. (5.10), (5.11) (deep IR limit).

In figure 5, we have plotted a2ĒW and a2

2 Ī(A : B) with respect to the separation
distance d

a for both noncommutative (given in eqs. (5.8), (5.9)) and commutative Yang-
Mills theory. In getting the plots for a2ĒW and a2

2 Ī(A : B), we need eqs. (3.11), (3.18)
which are valid for aut ≤ 1. The commutative results (given in eqs. (5.10), (5.11)) are
obtained by taking the deep IR limit. We observe that, in both of the above cases, the
bound a2EW ≥ 1

2a
2I(A : B) holds and the value of critical separation point or the point

of phase transition (from connected to disconnected phase of MAB) increases for increase
in the value of l

a . It is to be noted that for the noncommutative case (in figure 5), we
have chosen the lower limit of the d

a axis in such a way so that aut(d) ≤ 1. Furthermore,
the values of l

a are also chosen in order to make aut(2l + d), aut(l) ≤ 1. The domain for
which d

a < 1.61 is not allowed as it corresponds to aut � 1 for which the above analysis
breaks down.

Further, we note that in the deep NC limit, the expressions a2ĒW and a2Ī(A : B)
(given in eqs. (5.12), (5.13)) produces negative values for all possible values of d

a . The
result therefore indicates that this cannot be a physical phase, which signals that the
disconnected phase is the physical phase and therefore both EW and I(A : B) are zero.

We now study the effect of UV/IR mixing on the EWCS and HMI. By UV/IR mixing
we intend to investigate the effect of the UV cut-off on the IR result [45]. We compute the
above quantities for two different values of the UV cut-off, namely, aub = 10, 20.

From figure 6, we can see clearly the prominent effect of the UV cut-off on the EWCS
and HMI. The effect of the UV cut-off on these quantities is a signature of the UV/IR
mixing [45]. In particular, we observe that for a fixed subsystem length l

a , the HMI and
EWCS vanishes at a smaller value of separation d

a for a larger cut-off value. This shows
the sensitivity of the IR results on the UV cut-off. We make one more comment. In the IR
domain, the HEE obeys an area law (eq. (3.19)) in contrast to the UV domain (eq. (3.25))
where it obeys a volume law. This is consistent with the fact that in the deep IR limit, the
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Figure 6. Effect of UV/IR mixing on EWCS and HMI. In the above plot, the red curves (both
solid and dotted) correspond to aub = 10 and the blue curves (both solid and dotted) correspond
to aub = 20. We have set l

a = 6.

HEE reduces to the Bekenstein-Hawking entropy of the black hole. The fact that in the
UV limit, the HEE obeys a volume law implies that it has an extensive behaviour unlike
the IR behaviour.

Now we proceed to investigate the behaviour of mutual information in the deep UV
region. Once again we consider two subsystems of equal length l < lc kept at a distance
d < l, and also consider 2l + d < lc. Substituting eq. (3.25) in the expression for mutual
information eq. (1.4), we obtain

a2Ī(A : B) =

−(d
a

)
(aub)3 +

( 3
16

)
(aub)

6
(
l
a

)3
+ 2

(
d
a

)3
+ 12

(
l
a

)2 (
d
a

)
+ 6

(
l
a

) (
d
a

)2

1 + ( 1
aub

)4

+
( 9

16aub

) 30
(
l
a

)5
+ 2

(
d
a

)5
+ 80

(
l
a

)4 (
d
a

)
+ 40

(
l
a

)2 (
d
a

)3
+ 10

(
l
a

) (
d
a

)4

(1 + ( 1
aub

)4)2

 .
(5.15)

From eq. (5.15), one can see that the holographic mutual information is a divergent quantity
in the deep UV regime. We know that the mutual information is in general UV insensitive.
By this we mean that the divergent piece is independent of the length of the subsystem.
But in this case, the divergent part in the HEE depends on the subsystem size. So in this
case the divergent parts in the expression for mutual information do not cancel. Hence, the
holographic mutual information is a divergent quantity in the deep UV regime and hence,
there is no phase transition in the deep UV limit. This observation was made earlier
in [45]. Further, we note that, in the deep UV limit, the evaluation of a2Ī(A : B) (given in
eq. (5.15)) produces negative values for all possible d

a . The result therefore indicates that
this phase is not physical.
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6 Holographic entanglement entropy at finite temperature

In this section, we discuss the information theoretic aspects of NC Yang-Mills theory at a
finite temperature. The dual gravitational theory in this context is a black hole geometry
associated with the following metric

ds2 = R2
[
− u2f(u)dt2 + u2dx2

1 + u2h(u)(dx2
2 + dx2

3) + du2

u2f(u)

]
+R2dΩ2

5 (6.1)

where f(u) = 1 −
(uH
u

)4. In the lapse function f(u), the position of the event horizon of
the black hole is specified by uH . Further it is related with the Hawking temperature TH
of the black hole as TH = uH

π .
We now proceed to compute the HEE corresponding to a subsystem A at the boundary

by following the same set up we have used previously. This leads to the following integral
for HEE(SEE)

SEE = 2R8L2V ol(Ω5)
4g2
sG

10
N

∫ 0

−l/2

u2√
h(u)

(
u2h(u) + u′2

u2f(u)

) 1
2

dx2 . (6.2)

The cyclicity of the coordinate x2 gives the conserved Hamiltonian to be

H = − u4(
u2 + u′2

u2f(u)h(u)

) 1
2

= constant(c′) = −u3
t . (6.3)

This now results in the following differential equation

du

dx2
=

√√√√u4h(u)f(u)
((

u

ut

)6
− 1

)
. (6.4)

Now substituting eq. (6.4) in eq. (6.2) and using the boundary condition 3.5 yields

a2S̄EE = 1
2(aut)2

∫ 1

aut
aub

√
p4 + (aut)4

p5
√

1− p6
√

1− η4p4dp ; η = auH
aut

; p = aut
au

. (6.5)

We now make an approximation. We assume that the dimensionless parameter η � 1
which can be identified as the low temperature approximation. By incorporating this, we
have the following expression (for aut ≤ 1)

a2S̄EE '
1
2(aut)2

[ ∫ 1

aut
aub

√
p4 + (aut)4

p5
√

1− p6 dp+ η4

2

∫ 1

aut
aub

√
p4 + (aut)4

p
√

1− p6 dp

]

≈ a2S̄div +
( ∞∑
n=1

1
2
√
π

Γ
(
n+ 1

2
)

Γ(n+ 1)

[ 1
(6n− 4) + 1

(12n) −
1

(6n− 2)

]

−
∞∑
n=2

1
4
√
π

Γ
(
n+ 1

2
)

Γ(n+ 1)
1

(6n− 6)

)

×(aut)(6n) +
∞∑
n=2

1
4
√
π

Γ
(
n+ 1

2
)

Γ(n+ 1)
(aut)6

(6n− 6) +
∞∑
n=0

1
2
√
π

Γ
(
n+ 1

2
)

Γ(n+ 1)
(aut)2

(6n− 2)

+
[1

6 −
(aut)6

24 − (aut)6 Γ
(3

2
)

log(aut)
4
√
π

]
+ η4

4

[
(aut)2

∞∑
n=0

1√
π

Γ(n+ (1/2))
Γ(n+ 1)

1
6n+ 2
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+(aut)4

2

∞∑
n=0

1√
π

Γ(n+ (1/2))
Γ(n+ 1)

1
6n− 2

+
( ∞∑
n=0

1√
π

Γ(n+ (1/2))
Γ(n+ 1)

[ 1
2(6n+ 4) −

1
6n+ 2 −

1
6n− 2

]

+
∞∑
n=1

1√
π

Γ(n+ (1/2))
Γ(n+ 1)

1
6n

)
(aut)6n+4

]
. (6.6)

It is a well known fact that computation of the above expression will lead to two terms,
namely, a divergent term Sdiv and a finite term a2S̄EE |finite (as a function of the turning
point aut). By following same method we have introduced previously, one can compute
the expression corresponding to a2S̄EE |finite.

The divergent piece in this scenario reads

a2S̄div = 1
8(aub)4 + log(aub)

4 + (aπT )4

4 log(aub) . (6.7)

The above divergent piece is quite surprising as it contains a temperature dependent term
(aπT )4

4 log(aub). This can be interpreted as a unique feature of NC Yang-Mills theory as in
general the divergent piece does not depend on the temperature. In the finite temperature
context the critical value of the turning point depends on the choice of the temperature.
On the other hand, in the small aut approximation, a2S̄EE |finite reads

a2S̄EE |finite '
[

1
6 −
√
π

4
Γ(2/3)
Γ(1/6)(aut)2 + 1

48 (3 + log 4− 6 log(aut)) (aut)6
]

−η4
[

(aut)4

32 +
√
π(aut)6

16
Γ(2/3)
Γ(1/6) −

√
π(aut)2

8
Γ(4/3)
Γ(5/6) + (aut)10

240

]
. (6.8)

It is to be noted that the above expression has been written under the condition auH �
aut ≤ 1. This approximation leads to the leading order NC correction at low temperature.
For aut ≥ 1, we have

a2S̄EE = 1
8
(
(aub)4 − (aut)4

)
− 1

4 ln
(
aut
aub

)

+1
4

∞∑
m=2

√
π

Γ(m+ 1)Γ(3
2 −m)

1
(aut)4(m−1)

(
1−

(
aut
aub

)4(m−1)
)

4(m− 1)

+1
4

∞∑
n=1

∞∑
m=0

Γ(n+ 1
2)

Γ(m+ 1)Γ(3
2 −m)Γ(n+ 1)

1√
π

1
(aut)4(m−1)

(
1−

(
aut
aub

)6n+4(m−1)
)

6n+ 4(m− 1)

+(auH)4

4

ln(aub) +
∞∑
m=1

Γ(3/2)
Γ(m+ 1)Γ(3

2 −m)
1

(aut)4m

(
1−

(
aut
aub

)4m
)

4m

+
∞∑
n=1

∞∑
m=0

Γ(3
2)

Γ(m+ 1)Γ(3
2 −m)

Γ(n+ 1)
Γ(n+ 1

2)
√
π

1
(aut)4m

(
1−

(
aut
aub

)6n+4m
)

6n+ 4m

 . (6.9)
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Note that one can recover the expression for HEE for aut ≥ 1 at T = 0 given in eq. (3.21)
by setting uH = 0 in the above expression. We now write down this expression as a function
of the subsystem size l

a . To do this we note that the subsystem size in terms of the bulk
coordinate can be written as

l

a
= 2
aut

∫ 1

aut
aub

p
√
p4 + (aut)4√

1− p6
√

1− η4p4 dp . (6.10)

The integral for subsystem size l
a in the low temperature approximation reads (for aut ≤ 1)

l

a
' 2

(aut)

∫ 1

aut
aub

dp
p
√
p4 + (aut)4√

1− p6 + η4

2

∫ 1

aut
aub

dp
p5√p4 + (aut)4√

1− p6


≈
√
π

2(aut)
Γ
(5

3
)

Γ
(7

6
) − (aut)3 ln(aut) + (aut)3

∞∑
n=1

1√
π

Γ
(
n+ 1

2
)

Γ(n+ 1)
1

(6n)

−
∞∑
n=1

1√
π

Γ
(
n+ 1

2
)

Γ(n+ 1)
(aut)(6n+3)

(6n)

+
( ∞∑
n=0

2√
π

Γ
(
n+ 1

2
)

Γ(n+ 1)

[
1− (1/aub)6n+2

(6n+ 2) − 1
(6n+ 4) + 1− (1/aub)6n+6

2(6n+ 6)

])
(aut)(6n+3)

+η4
[√

π

8
Γ(7/3)
Γ(11/6)

1
aut

+
√
π

8
Γ(5/3)
Γ(7/6)(aut)3 +

∞∑
n=0

1√
π

Γ(n+ (1/2))
Γ(n+ 1)

(1− (1/aub)6n+6

6n+ 6

− 1
6n+ 8 −

1
2(6n+ 4) + 1

2
1− (1/aub)6n+10

6n+ 10

)
(aut)6n+7

]
. (6.11)

Once again we compare our analytical result (given below) with the numerical one. In the
left panel of figure 7, we have graphically represented this comparison for auH = 0.2. The
analytical expression of

(
l
a

)
has been obtained from eq. (6.11) by following the technique

introduced for the zero temperature case. From this figure, it can be seen that the numerical
and analytical results are in good agreement with each other. We now proceed to compute
the value of (aut)c at which the length scale

(
l
a

)
min

appears. In the deep IR limit, that is,
aut � 1, eq. (6.10) leads to the following expression(

l

a

)
deep IR

≈ 2
√
π

(aut)
Γ(2/3)
Γ(1/6) + (auH)4

(aut)5

√
π

8
Γ(7/3)
Γ(11/6) . (6.12)

In the deep noncommutative limit, that is, (aut)� 1, and aut � aub [50], one can obtain
the following expression from eq. (6.10)(

l

a

)
deep NC

≈
√
π

3
Γ(1/3)
Γ(5/6)(aut) + 1

3
(auH)4

(aut)3 . (6.13)

In the computation of the above expression, we have considered terms upto O((auH)4). By
equating the results given in eq. (6.12) and eq. (6.13), we obtain an equation of the form

2
√
π

Γ(2/3)
Γ(1/6)(aut)4 −

√
π

3
Γ(1/3)
Γ(5/6)(aut)6 − (auH)4

(
(aut)2

3 −
√
π

8
Γ(7/3)
Γ(11/6)

)
= 0 . (6.14)
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Figure 7. In the left we have shown the variation of l
a with respect to aut, and in the right we

have presented the variation of a2S̄EE with respect to l
a . In these plots we have set aub = 10.

Now if we choose auH = 0.2, the value of (aut)c is obtained to be (aut)c ≈ 0.784. Further-
more, the value of

(
l
a

)
min

is found to be
(
l
a

)
min
≈ 1.649. We conclude that in the finite

temperature scenario, the values of (aut)c and
(
l
a

)
min

depend on the choice of (auH). We
can now follow the same procedure we have performed previously and compute the above
integrals. The above integrals can be easily computed by the technique we have introduced
in this paper. In the limit auH � aut � 1, the expression reads

l

a
'
√
π

2(aut)
Γ(5/3)
Γ(7/6)

[
1 + 1

3
√
π

Γ(7/6)
Γ(5/3) (4 + log 4− 6 log(aut)) (aut)4

]
+η4

[√
π(aut)3

8
Γ(5/3)
Γ(7/6) +

√
π

8(aut)
Γ(7/3)
Γ(11/6) −

(aut)7

30

]
. (6.15)

By following the perturbative approach, we can express the turning point aut in terms of
the subsystem size l

a , for large
l
a . This reads

aut =

 α0(
l
a

) + α1(
l
a

)5 +
α4

0 log
(
l
a

)
(
l
a

)5

+ (aπT )4

4

 α0(
l
a

) + 1
α4

0

Γ(7/3)
Γ(11/6)

(
l

a

)3
− 4

30
α4

0(
l
a

)5


≡ l1 + (aπT )4

4 l2 (6.16)

where l1 and l2 are given by

l1 = α0(
l
a

) + α1(
l
a

)5 +
α4

0 log
(
l
a

)
(
l
a

)5 ; l2 = α0(
l
a

) + 1
α4

0

Γ(7/3)
Γ(11/6)

(
l

a

)3
− 4

30
α5

0(
l
a

)5 .
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For aut ≥ 1, we have

l

a
=

∞∑
m=0

∞∑
n=0

Γ
(
n+ 1

2
)

Γ(m+ 1)Γ
(3

2 −m
)
Γ(n+ 1)

1
(aut)4m−1

(
1−

(
aut
aub

)6n+4m+2
)

6n+ 4m+ 2

+η4
∞∑
m=0

∞∑
n=0

Γ
(
n+ 1

2
)

Γ(n+ 1)Γ(m+ 1)Γ
(3

2 −m
) 1

(aut)4m−1

(
1−

(
aut
aub

)6n+4m+6
)

6n+ 4m+ 6 . (6.17)

From the above expression it can be observed that a temperature dependent term has
appeared due to the thermal excitation we have considered. It is to be noted that in
the above computation we have kept terms upto O

(
T 4). We now substitute the above

expression for the turning point aut (eq. (6.16)) in eq. (6.8) and obtain the following
expression (for aut � 1, large l

a)

a2S̄EE |finite
(
l

a

)
= a2S̄EE

(
l

a

)
|finite + (aπT )4

4 ∆
(
a2S̄EE

)
. (6.18)

In the above expression, a2S̄EE
(
l
a

)
|finite represents the finite piece of HEE corresponding

to T = 0 case and the expression is given in eq. (3.31). Further, ∆
(
a2S̄EE

)
represents the

change in HEE due to the thermal excitation, with the following expression

∆
(
a2S̄EE

)
=
√
π

2l21
Γ(4/3)
Γ(5/6) −

√
π

2
Γ(2/3)
Γ(1/6) l1l2 + (3 + log 4)

8 l51l2 −
√
π

4
Γ(2/3)
Γ(1/6) l

2
1 −

l61
60

−1
8 l

5
1l2 log(l1)− l51l2

8 − 1
8 . (6.19)

It is to be noted that in the above expression we have kept terms upto O
(
T 4). The change

in the HEE due to thermal excitation plays a crucial role in context of entanglement
thermodynamics [58–62]. In the right panel of figure 7, we have graphically represented
a2S̄EE |finite

(
l
a

)
as a function of (l/a) (given in eq. (6.18)). The presence of the length scale

( la)min can be noticed from the plot in the left panel. One can also observe the effect of
temperature from the plot in the right panel.

In order to probe the effect of noncommutativity we now compute the HEE at the
deep IR limit, which corresponds to the commutative Yang-Mills theory. This reads(
a2S̄EE |finite

(
l

a

))
deep IR

=
(
a2S̄EE |finite

(
l

a

))T=0

deep IR
+ (aπT )4

4 ∆
(
a2S̄EE

)
deep IR

(6.20)

where
(
a2S̄EE |finite

(
l
a

))T=0

deep IR
represents the temperature independent piece (given in

eq. (3.16)) and
∆
(
a2S̄EE

)
deep IR

probes the change in HEE (due to thermal excitation) with the following
expression

∆
(
a2S̄EE

)
deep IR

= 1√
π

(Γ(7/6)
Γ(5/3)

)2 (Γ(1/3)
Γ(5/6)

)(
l

a

)2 [4
3 −

432
55

(Γ(7/6)
Γ(5/3)

)]
. (6.21)
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All the analysis done above is valid for a strip length l larger than some critical length lc
which we shall see now. It has been observed in [45] that to study the surfaces anchored on
small strips, u(x2) has to be expanded in a power series of x2 (see eq. (3.22)). Substituting
this power series in eq. (6.4) and using u(x2 = 0) = ut and the boundary condition given
in eq. (3.5), we get the profile of the RT surface to be

u(x2) = ut + 3
2

u3
t

1 + (aut)4

(
1−

(
uH
ut

)4)
x2

2 + . . . . (6.22)

Now putting x2 = l
2 , we get

ub = ut + 3
8

u3
t

[1 + (aut)4]

(
1−

(
uH
ut

)4)
l2 +O

(
(l/a)4

)
. (6.23)

Now substituting the above result in eq. (6.2), we get the entanglement entropy as

a2S̄EE = a2

2

(
l

ε3
− 3

8
l3

εa4
(1− (εuH)4)
[1 + (ε/a)4] −

9
8
l5ε

a8
[1 + 3(εuH)4/10]

[1 + (ε/a)4]2 +O
(
(l/a)7, ε6

))

= 1
2

(aub)3 l

a
− 3

8

(
l

a

)3 (aub)(1− (auH/aub)4)
(1 + (1/aub)4) − 9

8

(
l

a

)5
(
1 + 3

10(auH/aub)4
)

aub (1 + (1/aub)4)2


+O

(
(l/a)7, ε6

)
. (6.24)

This result matches with the zero temperature result eq. (3.25) when uH = 0. We observe
that temperature arises only in the finite terms of the above expression. Now to obtain the
critical length lc, we equate the leading order divergent terms appearing in eq. (6.24) and
eq. (6.7). This results in [44]

lc = a2ub
2 +

(
1 + (aπT )4

a2u3
b

)
ln(aub) . (6.25)

7 EWCS at finite temperature

In this section we proceed to compute the EWCS in the finite temperature scenario. Similar
to the zero temperature case, we again consider two disjoint subsystems, namely, A and B
(along the direction x2) with length l and separated by a distance d. The induced metric
on constant x2 hypersurface at finite temperature reads

ds2
ind = R2

[
u2dx2

1 + u2h(u)dx2
3 + du2

u2f(u)

]
+R2dΩ2

5 . (7.1)
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The above mentioned induced metric leads to the following expression for EWCS

a2ĒW = a2

4

∫ ut(d)

ut(2l+d)

u
√

1 + a4u4√
f(u)

du

= a2

16

(aut(d))2
√

1 + (aut(d))4

√
1−

(
auH
aut(d)

)4

+(1 + (auH)4) sinh−1

(aut(d))2
√

1−
(
auH
aut(d)

)4

√
1 + (auH)4


−(aut(2l + d))2

√
1 + (aut(2l + d))4

√
1−

(
auH

aut(2l + d)

)4

−(1 + (auH)4) sinh−1

(aut(2l + d))2
√

1−
(

auH
aut(2l+d)

)4

√
1 + (auH)4


 . (7.2)

For aut ≤ 1, the above expression simplifies to

a2ĒW = 1
8
[
(aut(d))2 − (aut(2l + d))2

]
+ 1

32
[
(aut(d))6 − (aut(2l + d)6)

]
(7.3)

+(auH)4

16

[ 1
(aut(2l + d))2 −

1
(aut(d))2

]
+ 3

64(auH)4
[
(aut(2l + d))2 − (aut(d))2

]
.

In the deep IR (commutative) limit, the expression of EWCS in terms of the subsystem
size is given by

a2ĒW |deep IR = 1
8


 α0(

d
a

) +
(
d

a

)2
A (aπT )4

2

−

 α0(
2l+d
a

) +
(2l + d

a

)2
A (aπT )4

2


+(aπT )4

16

 1(
α0

( 2l+d
a ) +

(
2l+d
a

)
A (aπT )4

)2 −
1(

α0
( da) +

(
d
a

)
A (aπT )4

)2


(7.4)

where A is given by

A =
Γ(7

3)
12
√
πΓ
(11

6
) (Γ(1

6)
Γ
(2

3
))2

.

Further, the holographic mutual information at finite temperature reads (for aut ≤ 1)

a2Ī(A : B) = 2a2S̄EE

(
l

a

)
− a2S̄EE

(
d

a

)
− a2S̄EE

(2l + d

a

)
(7.5)

where a2S̄EE(l/a) is given by eq. (6.6). Once again to compute a2Ī(A : B), we need to use
the analytical expressions in eqs. (6.6), (6.11). We now incorporate the expression given

– 25 –



J
H
E
P
0
2
(
2
0
2
2
)
1
9
2

 0

 0.01

 0.02

 0.03

 0.04

 1.72  2.22  2.72  3.22  3.72

a
2
E-

W
, 
a

2
I-  (

A
:B

)/
2

d/a

a
2
E
-

W

a
2
I
-
 (A:B)/2

a
2
E
-

W

a
2
I
-
 (A:B)/2

Noncommutative Yang-Mills theory

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 1  1.5  2  2.5  3  3.5  4

a
2
E-

W
, 
a

2
I-  (

A
:B

)/
2

d/a

a
2
E
-

W

a
2
I
-
 (A:B)/2

a
2
E
-

W

a
2
I
-
 (A:B)/2

Commutative (deep IR) Yang-Mills theory

Figure 8. Effect of noncommutativity on EWCS and HMI at finite temperature with aT = 0.1
π

(red) and aT = 0.2
π (blue) (we have set l

a = 6) is shown in the left panel. The curve depict the
analytical results. The value of aub = 10 for which eq. (6.25) gives lc

a = 5.0023 for aT = 0.1
π , and

lc
a = 5.00232 for aT = 0.2

π . The right panel depict the corresponding results in the deep IR limit.

in eq. (6.6), in order to understand the effect of temperature on a2Ī(A : B). This leads to
the following

a2Ī(A : B) = a2Ī(A : B)|T=0 + (aπT )4

4 ∆
(
a2Ī(A : B)

)
. (7.6)

In the above expression, a2Ī(A : B)|T=0 represents the temperature independent piece
(given in eq. (5.9)) and ∆

(
a2Ī(A : B)

)
represents the change in HMI due to thermal

excitation. This temperature dependent piece has the following expression

∆
(
a2Ī(A : B)

)
=
[
2∆

(
a2S̄EE

(
l

a

))
−∆

(
a2S̄EE

(
d

a

))
−∆

(
a2S̄EE

(2l + d

a

))]
. (7.7)

On the other hand, in the deep IR limit (commutative limit), the EWCS is obtained to be

a2ĒW |deep IR = a2ĒW |T=0
deep IR + (aπT )4

4 ∆
(
a2ĒW

)
deep IR

(7.8)

where the temperature independent piece a2ĒW |T=0
deepIR is given in eq. (5.10) and

∆
(
a2ĒW

)
deep IR

represents the change in EWCS due to thermal excitation in the deep IR

limit. Using eq. (7.4), ∆
(
a2ĒW

)
deep IR

is given by

∆
(
a2ĒW

)
deep IR

= A α0

((
d

a

)
−
(2l + d

a

))
+ 1

4

 1(
α0

( 2l+d
a )

)2 −
1(
α0
( da)

)2

 . (7.9)

We now graphically represent our computed results in order to have a better understanding
of the above discussion.

In figure 8, we have graphically represented the effect of noncommutativity on EWCS
and HMI at finite temperature. We have chosen two different values of temperature,
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Figure 9. Effect of UV/IR mixing on EWCS and HMI at finite temperature aT = 0.1
π . In the

above plot, the red curves (both solid and dotted) correspond to aub = 10 and the blue curves
(both solid and dotted) correspond to aub = 20. We have set l

a = 6.

namely, aT = 0.1
π (red) and aT = 0.2

π (blue). We observe that in presence of noncommu-
tativity, the connected to disconnected phase transition of the RT surface Γmin

AB occurs at
a higher value of the critical separation length

(
d
a

)
c
. Further it can be observed that the

value of the critical separation length
(
d
a

)
c
decreases with the increase in the temperature.

The above plots also suggest that a2EW ≥ 1
2a

2I(A : B) for all valid temperatures. Once
again we choose the lower limit of the d/a axis (for the noncommutative case in the left
panel of figure 8) to be d/a = 1.649 (for T = 0.2

π ) so that aut(d/a) ≤ 1.
In figure 9, we once again probe the effect of UV/IR mixing on the EWCS and HMI,

at a finite temperature. Similar to the zero temperature scenario, we observe that for a
fixed subsystem length l

a , the HMI and EWCS vanishes at a smaller value of separation
d
a for a larger cut-off value. This again shows the sensitivity of the IR results on the UV
cut-off.

Now we will consider again the behaviour of the holographic mutual information (HMI)
below the critical length lc given in eq. (6.25). Following the same procedure to obtain the
holographic mutual information below the critical length for zero temperature, we obtain
the holographic mutual information at finite temperature using eq. (6.24). In this case
it reads

a2Ī(A : B) = 1
2

[
− 2

(
d

a

)
(aub)3 + 3

8(aub)

(
1−

(
auH
aub

)4
)

(
1 + ( 1

aub
)4
) {6

(
l

a

)3
+ 2

(
d

a

)3

+12
(
l

a

)2 (d
a

)
+ 6

(
l

a

)(
d

a

)2}
+ 9

8
1
aub

(
1 + ( 3

10)
(
auH
aub

)4
)

(1 + ( 1
aub

)4)2

{
30
(
l

a

)5

+2
(
d

a

)5
+ 80

(
l

a

)4 (d
a

)
+ 40

(
l

a

)2 (d
a

)3
+ 10

(
l

a

)(
d

a

)4}]
. (7.10)

Once can see that the mutual information at zero temperature given in eq. (5.15) is recov-
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ered by setting uH = 0 in the above result. In this case also, the mutual information is a
divergent quantity. All the discussions made earlier in the zero temperature case also hold
in this case.

8 Conclusion

In this paper we have holographically computed various entanglement measures, namely,
entanglement entropy, entropic c-function, mutual information and entanglement of purifi-
cation for noncommutative super Yang-Mills theory in 3+1-spacetime dimensions. Firstly,
we compute the length of the strip like subsystem l

a (by keeping the lengths correspond-
ing to the other directions fixed) by following a systematic analytical approach. We also
show that our analytically computed results are in good agreement with that computed
numerically. We observe that l

a has a critical length scale lc
a which primarily points out

two distinct domains in the theory, one is for l < lc and other one is for l > lc. The domain
corresponding to l < lc and aut � 1, aut ∼ aub is the deep UV domain of the theory.
On the other hand, the domain l > lc has two solutions depending upon the value of the
turning point aut. The domain with l > lc, aut � 1 is the deep IR domain and the domain
with l > lc, aub > aut � 1 is the deep noncommutative domain. We then holographically
compute the entanglement entropy corresponding to a strip like subsystem A. Keeping in
mind the presence of the length lc, we have computed the holographic entanglement entropy
for both l > lc and l < lc regimes. Once again we observe that our analytical results are
in good agreement with that computed numerically. We observe that the divergent part of
the HEE is not universal for l < lc since it depends on the subsystem size l. For l > lc, we
obtain the expected universal divergent part in the HEE (independent of the subsystem size
l). Our analysis also reveal that extremal surfaces exists for any l. In order to probe the
signature of noncommutativity on the number of degrees of freedom, we then proceed to
compute the entropic c-function. By following the proposed definition for the c-function in
the literature we observe that in the deep IR limit (which corresponds to the commutative
YM theory), the c-function is obtained to be a constant number which specifies the number
of degrees of freedom of the underlying theory. This definition of entropic c-function was
proposed only for CFTs. However, the full Lorentz symmetry for NC SYM is broken as
SO(3, 1) → SO(1, 1) × SO(2). This motivates us to redefine the c-function in such a way
so that we can distinctly point out the signature of noncommutativity. Furthermore, we
have done this by keeping the leading order correction due to noncommutativity, only for
the scenario l > lc. It has been noted that in the deep IR region, the c-function of the NC
SYM approaches the constant value Csym corresponding to the usual commutative theory
of Yang-Mills. We have then investigated the full behaviour of the c-function for arbitary
subsystem length. We observe that there are discontinuities in the function at the IR,
NC and NC, UV junctions. We then compute another entanglement measure (for mixed
states), namely, the entanglement wedge cross-section which holographically probes the
entanglement of purification on the basis of EP (A,B) = EW (A,B) duality. We compute
the EWCS in both the domains l > lc and l < lc. The effect of noncommutativity has been
noted from the graphical representation of the computed results. The critical separation
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length (dc) between two subsystems (with fixed lengths) at which the holographic mu-
tual information (mutual correlation) vanishes, has also been computed which also probes
the connected to disconnected phase tranformation of the RT surface Γmin

AB . However, we
have observed this only in the domain l > lc. It is interesting to note that the property
a2EW ≥ 1

2a
2I(A : B) holds for the noncommutative gauge theory. We also study the effect

of the UV cut-off on the IR results of these quantities. We then move on to the finite tem-
perature scenario. In this case, we obtain leading order thermal corrections (by considering
terms upto O(T 4)) to the information theoretic measures considered in this paper. This
we have done in the limit auH � aut � 1. This can be interpreted as the low temperature
limit. Another unique feature of noncommutative gauge theory which we come across is
the divergent piece of the holographic entanglement entropy. We note that in the finite
temperature case, the divergent piece of the HEE consists a term which is temperature
dependent. In this case also, the notion of a critical length lc is present. Furthermore, in
the presence of a finite temperature we note that the value of the length scale lc depends
upon temperature. We then compute the HEE corresponding to the subsystem lengths
l < lc and l > lc. Once again we compute the minimal cross-section of the entanglement
wedge, the holographic mutual information and note down the collective effect of finite
temperature and noncommutativity on these. Finally, we would like to mention that it
will be very interesting to study the holographic subregion complexity and complexity of
purification for NC SYM theory. The gravity dual of NC SYM contains a warp factor
which one needs to address in the computation of holographic subregion complexity [63].
We leave these as future works in this direction.
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