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Abstract: We introduce a general framework realizing edge modes in (classical) gauge
field theory as dynamical reference frames, an often suggested interpretation that we make
entirely explicit. We focus on a bounded regionM with a co-dimension one time-like bound-
ary Γ, which we embed in a global spacetime. Taking as input a variational principle at the
global level, we develop a systematic formalism inducing consistent variational principles
(and in particular, boundary actions) for the subregion M . This relies on a post-selection
procedure on Γ, which isolates the subsector of the global theory compatible with a general
choice of gauge-invariant boundary conditions for the dynamics in M . Crucially, the latter
relate the configuration fields on Γ to a dynamical frame field carrying information about
the spacetime complement of M ; as such, they may be equivalently interpreted as frame-
dressed or relational observables. Generically, the external frame field keeps an imprint on
the ensuing dynamics for subregion M , where it materializes itself as a local field on the
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frame reorientations and show that they divide into three types, depending on the bound-
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on the covariant phase space formalism, and is in principle applicable to any gauge (field)
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non-Abelian Yang-Mills theories. In complement, we also analyze a mechanical toy-model
to connect our work with recent efforts on (quantum) reference frames.
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1 Introduction

It is well known that gauge field theories defined on manifolds with boundaries can support
the emergence of dynamical edge modes. This is unquestionable in the quantum theory,
and in condensed matter physics in particular, where such emergent degrees of freedom can
be related to a wealth of interesting phenomena (famously, chiral edge states are known
to arise from the topological order underlying the quantum hall effect [1, 2]). In a broader
context, and already at the classical level, the emergence of edge modes was argued to
be a necessary consequence of gauge symmetry in the presence of boundaries by Donnelly
and Freidel [3]. This has led to a series of efforts to better understand the notion of edge
modes in gauge theories [4–15], gravity [5, 16–37] and string theory [38–40]. However,
the genericity of this particular argument for edge modes, its interpretation and physical
relevance, all remain debated in the literature. In particular, it is not a priori obvious
how the two notions of edge modes just mentioned — physical edge degrees of freedom
on the one hand, and Donnelly-Freidel edge modes on the other hand — are related to
one another.

To various degrees, it was already suggested in the literature that Donnelly-Freidel
edge modes might be best understood as some kind of dynamical reference frames (see
e.g. [8, 31] and also [17]). Part of the purpose of the present work is to realize this idea in
an entirely explicit manner. This will allow us to rederive the structure of Donnelly-Freidel
edge modes from first principles, while making their interpretation as reference frames
completely transparent; in particular, we will show that they are dynamical reference frames
in the same sense as they appear in the recent quantum reference frame literature [41–54].
By investigating their interplay with generic boundary conditions, we will also elucidate how
they can sometimes (but not always) support a non-trivial algebra of boundary symmetries
acting on the physical phase space. At least in the classical set-up we are considering, this is
a necessary condition for Donnelly-Freidel edge modes to support the emergence of physical
degrees of freedom, and therefore, to reveal themselves in an experiment. We will show
that different types of boundary conditions lead to a refinement of the notion of boundary
symmetry into three distinct types. Since our primary focus will be on Donnelly-Freidel
edge modes, from now on we will simply refer to them as “edge modes”.

Beyond the question of edge modes per se, our work establishes new connections be-
tween subjects that were previously discussed in the literature, which we believe to be of
broader interest.
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From a technical standpoint, we will employ covariant phase space methods [55–63]
(see [64, 65] for reviews) to describe the dynamics of fields in a (bounded) spacetime
region M . For definiteness, we will take M to have the topology of a cylinder, with
time-like boundary Γ (but generalizing the construction to the case of a null boundary
should be reasonably straightforward). This problem has received renewed interest in
recent years [11, 66–68], in part because of its relevance to holography, e.g. see [37, 69–78],
gravitational observables [79], and more generally, to the characterization of asymptotic
symmetries in gauge and gravitational subsystems, see e.g. [28, 35, 68, 80–87]. Our work
revisits such constructions, from the vantage point of a global field space of solutions in
a spacetime M ∪ M̄ , where M̄ is the complementary spacetime region of M . In that, it
provides a direct link between the global methods of [56] and the regional analysis of [11, 66].
In more concrete terms: given a consistent variational principle for M ∪M̄ , we will provide
a general algorithm inducing consistent variational principles, and specifically boundary
actions, for fields in M .

By identifying edge modes as reference frames, our work establishes a bridge between
field theory and the recent literature on (quantum) reference frames. This permits us
to identify the above mentioned boundary symmetries as edge frame reorientations and to
prove that frame-dressed observables—a systematic generalization of the examples consid-
ered in [3]—can be equivalently understood as relational observables in the sense of [88–95].
It furthermore enables us to consider different systems of edge frame fields and to show
how to translate from the description relative to one frame field to that relative to another,
i.e. to establish the transformation between the relational observables relative to different
edge frames. Given that edge modes are only defined on the boundary Γ of M , rather
than its full bulk, they provide a particularly promising avenue for extending the efforts
on quantum frame covariance of physical properties [41–54] into the quantum field theory
setting. Conversely, the distinction between (i) gauge transformations and symmetries (i.e.
frame reorientations) or, equivalently, constraints and charges, as originally proposed in [3],
and (ii) different types of symmetries depending on the boundary conditions as established
below, has so far not been explored in the quantum reference frame literature and warrants
further investigation there.

A basic idea we will invoke in our construction is that of post-selection of a certain
subspace of field configurations in a global space of solutions. We view post-selection
as a unifying concept allowing one to incorporate operational constraints into a given
overarching theory to select the subsector of that theory consistent with the constraints.
These are associated to physical events of a contingent nature. Such constraints may encode
the boundary conditions describing the context of a controlled experiment (e.g. a scattering
experiment), or more broadly speaking, the state of the world we happen to observe as
agents. This broad understanding seems particularly relevant in the gravitational context,
where controlled experiments are more the exception than the norm. In (quantum) general
relativity, our control/engineering abilities are essentially non-existent, but what we observe
around us is nonetheless post-selected from within the set of all possibilities admitted by
the global theory.

– 2 –
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In this paper, it is post-selection of field configurations on Γ that will provide a link
between the global covariant phase space for M ∪ M̄ , e.g. in the sense of [56], and the local
one forM , e.g. in the sense of [11, 66, 68]. The two additional guiding principles we will rely
on in this endeavour are: 1) that post-selection should operate on physical (as opposed to
gauge) degrees of freedom, and thus, on gauge-invariant functionals in the global solution
space forM∪M̄ ; 2) that it should lead to a consistent factorization of the global variational
problem into two independent ones, for M and its complement. Up to more minor and
technical assumptions that we will make along the way, this will be sufficient to derive
the structure of edge modes on Γ, in a self-contained and conceptually illuminating way.
In particular, edge modes assume the role of “internalized” external dynamical frames for
subregion M and do not have to be added to the theory; they are always part of the global
theory and induced onto the regional one, encoding how the subregion M of interest relates
to its spacetime complement M̄ . Furthermore, the fact that edge modes can ultimately
restore the invariance of the regional presymplectic structure under field-dependent gauge
transformations becomes secondary in our approach: it is a direct consequence of our
construction, not a main postulate (as it was in [3]).

Post-selection naturally prompts us to examine the interplay between edge modes
and different boundary conditions on Γ. Incidentally, we will investigate general boundary
conditions, that can be obtained by application of a linear canonical transformation of some
set of gauge-invariant local canonical Darboux coordinates for the presymplectic current
on Γ. This will allow us to observe that, within the same global theory space, the physical
role of edge modes for the post-selected dynamics in subregion M can in fact be contingent
on the choice of boundary conditions. For instance, in Maxwell theory, edge modes drop
out of the regional presymplectic structure (and hence the regional physical phase space)
if one decides to impose Neumann boundary conditions, i.e. boundary conditions on the
flux ?F

∣∣
Γ. This suggests that, in this specific example, the concept of edge mode could

be dispensed with altogether. This is consistent with the interpretation of edge modes
as external frames for subregion M (originating in the complement M̄) and the fact that
Neumann boundary conditions correspond to reflecting boundary conditions and thus an
essentially independent dynamics of M and M̄ . Indeed, it was demonstrated explicitly
in [6–9] that edge mode degrees of freedom are not strictly necessary in order to construct
a consistent phase space for Maxwell theory with boundary condition on the flux. However,
our work also demonstrates that they do have physical significance for other (e.g., Dirichlet
and Robin) boundary conditions in Maxwell, Chern-Simons and Yang-Mills theories.1

This ultimately leads to a refinement of the notion of boundary symmetries, as pro-
posed in [3], into three types depending on the boundary conditions, that we call symme-
tries, meta-symmetries and boundary gauge symmetries. Symmetries are physical trans-
formations in the regional phase space, while meta-symmetries are symplectomorphisms

1For Yang-Mills (and in particular Maxwell) theories, the imprint of edge modes on the reduced phase
space remains arguably mild: once boundary conditions have been imposed, at most a finite number of
global charges survive at the physical level. This is dramatically less than in Chern-Simons theory, which
generates an algebra of symmetries parametrized by a space of functions on Γ (hence, infinite-dimensional,
see section 7).
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between different regional phase spaces (i.e. different subregion theories), and boundary
gauge symmetries arise when the charges turn into additional first-class constraints on the
boundary (which will always be the case for Neumann boundary conditions).

Even though we are mainly motivated by (quantum) gravity, our focus in the present
article will be on non-gravitational gauge theories, in which the metric is non-dynamical
(though can be curved). We however anticipate our interpretation of edge modes as dy-
namical reference frames to extend (with suitable adaptations) to gravitational theories, a
problem we plan to return to in the future. In the long run, our hope is that this viewpoint
will help to further establish the notion of gravitational edge mode as a valuable concept for
quantum gravity, in line with recent efforts in this direction [21–32]. Given the holographic
nature of gravitational systems (see for instance [96]), and the fact that the quantum
reference frame literature provides a promising framework in which to define quantum gen-
eralizations of the equivalence principle (see e.g. [53, 97] for initial explorations), we believe
this hope is warranted.

Organization of the paper. We start in section 2 by analyzing a Newtonian mechanical
model featuring a local gauge symmetry generated by a single constraint. This serves as
a simple illustration of the general formalism to be developed later, in a context where
conceptual connections with the existing literature on dynamical reference frames are not
obscured by field theory technicalities. Readers who are unfamiliar with the covariant
phase space formalism will also find in this section a gentle introduction to its philosophy.
A more substantial introduction to this formalism is provided in section 3, this time in the
context of field theory. This is where we fix some of our basic notations for the global field
space, and introduce additional background material on the relation between covariant
and canonical methods. In section 4, we start by formalizing the notion of dynamical
reference frame in the context of field theory. This allows us, in a second step, to explicitly
realize gauge field theory edge modes as dynamical reference frames. We conclude that
section by analyzing two types of transformations on edge frames: boundary symmetries
(following the nomenclature of [3]), which we identify as physical frame reorientations; and
changes of frames, which can be formalized as field-dependent generalizations of the former.
Along the way, we establish that the frame-dressed observables entering the construction
of Donnelly and Freidel can be generalized and understood as a covariant incarnation
of the relational observables originally defined in a canonical set-up by Dittrich [94, 95]
(extending earlier work by Rovelli [88–93]). We finally proceed with post-selection itself,
which for didactic reasons, we describe in two steps. In section 5, we work exclusively
on-shell of the bulk equations of motion, which already allows us to induce a conserved
presymplectic structure for the subregion M . Moving on to an off-shell description of the
same procedure in section 6, we construct a general and systematic algorithm inducing
consistent variational principles for the subregion M , that is, to deduce an appropriate
boundary action imposing both the bulk equations of motion and the boundary conditions
as dynamical equations on Γ. Finally, we illustrate our results on standard examples of
field theories in section 7: scalar field theory, which does not necessitate the introduction
of edge modes, but in which the general algorithm of section 6 is still operational; Maxwell
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theory, which we take as a main basic example to illustrate our formalism throughout
the paper, and only work out in full detail in that section; Abelian Chern-Simons theory,
a particularly interesting example in which the edge modes construction gives rise to an
infinite-dimensional algebra of boundary symmetries; and finally, Yang-Mills theory, as a
way to illustrate non-Abelian features of the general formalism.

1.1 Main notations

For the reader’s convenience, we collect here our main field space notations; they will be
of particular relevance in sections 3 to 7.

Spacetime structures

M Spacetime region with the topology of Sd−1 × R

M̄ Spacetime complement of M

M̄ Spacetime complement of M

M̊ Interior of region M

Γ Time-like boundary of M

Σ ∪ Σ̄ Space-like Cauchy surface in M ∪ M̄ , such that Σ ⊂M and Σ̄ ⊂ M̄

ε Spacetime volume form

εΓ Volume form on Γ induced by ε

d Spacetime exterior derivative

∧ Spacetime wedge product∣∣
Γ Pullback to Γ

Field space structures

F Space of global field configurations

S Subspace of solutions (S ⊂ F)

P Physical phase space of gauge orbits

(P = S/G, where G is the gauge group)

FM ,SM ,PM Analogously defined field spaces for the spacetime subregion M

SX0
M Subspace of solutions in SM obeying the boundary condition X = X0

δ Field-space exterior derivative

Field-space wedge product (kept implicit)

· Field-space interior product

– 5 –
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Weak equalities

= Equality on F (resp. FM )

≈ Equality on S (resp. SM )

≈̂ Equality on SX0
M

Presymplectic structure

Θ Presymplectic potential (defined on F)

ω Presymplectic current ω := δΘ

Ω Presymplectic form on S (Ω :=
∫

Σ∪Σ̄ ω)

ω∂ Boundary presymplectic current ((2, d− 2)-form on Γ)

ΩM Presymplectic form on SX0
M (ΩM :=

∫
Σ ω +

∫
Γ ω∂)

Gauge transformations and symmetries

Xα Field-space vector field generating the gauge transformation δα := Xα · δ

C[α] Gauge constraint associated to Xα (δC[α] = Xα · ΩM )

Yρ Vector field generating the symmetry (i.e. frame reorientation) ∆ρ := Yρ · δ

Q[ρ] Charge associated to Yρ (δQ[ρ] = Yρ · ΩM )

2 Edge modes and post-selection in a mechanical system*

*This section may be skipped by a quick reader only interested in our field theory con-
structions. It may serve as an introduction to the covariant phase space formalism for the
uninitiated.

As a warm-up exercise, and for the sake of conceptual clarity, we shall illustrate a few
illuminating observations in a mechanical toy model before later exploiting them in the
field theory context. This model mimics finite region gauge theories through groups of
particles subject to translation invariance. Specifically, this model serves to show

• that edge modes constitute “internalized” external reference frames for a subregion
and are dynamical frames in the same sense in which they have been discussed in the
recent quantum reference frame literature [41–54];

• how to change from the description of the subregion relative to one choice of edge
mode frame to another one;

• how to obtain a subregion phase space structure from a boundary condition induced
foliation of the global space of solutions through a splitting post-selection procedure;

• that gauge transformations and symmetries need to be distinguished [3], where we
identify the latter as frame reorientations. These frame reorientations have to be

– 6 –
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further distinguished into three types: symmetries, meta-symmetries and boundary
gauge symmetries. Symmetries leave a subregion theory defined by given boundary
conditions invariant, while a meta-symmetry maps one such theory into another
one defined by different boundary conditions. Boundary gauge symmetries arise in
addition to the already present gauge symmetry and only for Neumann boundary
conditions.

While the mechanical toy model captures many of the qualitative features we shall later
encounter in gauge field theory, it also leads to some differences which we try to highlight.
For example, owing to the discrete nature of the degrees of freedom, it does not give rise
to corner terms. Furthermore, gauge constraints arise as identities already off-shell and,
due to the simplicity of the model, are non-local in contrast to our field theory examples.

2.1 Covariant phase space in mechanics

Suppose we are given a group of N particles in 1D Newtonian space, collectively called M ,
subject to an action SM =

∫ t2
t1
LM with Lagrangian form

LM = L(qi, q̇i)dt .

Our configuration space is Q = RN which is the mechanical analog of the space of instan-
taneous field configurations, i.e. space of field configurations on some Cauchy slice. By
contrast, the mechanical analog of the space of field configurations here is the space of
spatiotemporal configurations of M , in other words, the space of histories for the time
interval [t1, t2], which we take to be FM̊ := {c : [t1, t2] → Q| c is a C2 curve} and for
simplicity often refer to as “field space”. M̊ denotes here internal or “bulk” degrees of
freedom in distinction of the situation when we include external frame particles below.
The action is a function SM : FM̊ → R, while the Lagrangian can be thought of as a
functional L[c, t] = L(qi(t), q̇i(t)) on FM̊ × [t1, t2] because a history c = {qi(t), t ∈ [t1, t2]}
and an instant t determine the positions and velocities (qi(t), q̇i(t)). For the moment it is
irrelevant whether the Lagrangian L features a gauge symmetry.
FM̊ is itself a smooth infinite-dimensional manifold, allowing us to define standard

differential geometric notions on it. In what follows, we will be using the covariant phase
space formalism, constructing a phase space from the subspace SM̊ ⊂ FM̊ of solutions to
the equations of motion. In line with standard convention for the covariant phase space
in field theory, which we adopt throughout this work, we denote the exterior derivative on
field space FM̊ by δ, while reserving the notation d for the exterior derivative of spacetime
forms. In the mechanical case, these are forms on the time manifold [t1, t2] underlying the
action SM . As such, we will be dealing with (r, s)-forms µ, which means µ is an r-form on
FM̊ and an s-form on spacetime. For example, the Lagrangian form LM is a (0, 1)-form.
The two exterior derivatives commute with each other ([d, δ] = 0), and both square to zero
(d2 = 0 and δ2 = 0).

– 7 –
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The variation of the action on field space δSM =
∫ t2
t1
δLM is determined through the

exterior derivative of the Lagrangian (0, 1)-form

δLM =
N∑
i=1

(
∂L
∂qi
− d

dt
∂L
∂q̇i

)
δqidt+ dΘM̊ , (2.1)

where the Lagrangian symplectic potential (a (1, 0) form) takes the form

ΘM̊ =
N∑
i=1

∂L
∂q̇i

δqi (2.2)

and gives rise to the Lagrangian presymplectic structure (a (2, 0) form)

ΩM̊ =
N∑

i,j=1
δΘM̊ =

N∑
i,j=1

∂2L
∂q̇i∂qj

δqjδqi +
N∑

i,j=1

∂2L
∂q̇i∂q̇j

δq̇jδqi . (2.3)

Again in line with standard covariant phase space convention, we keep the field space
wedge product between field space one-forms δqj and δq̇i implicit, keeping in mind that
δqjδq̇i = −δq̇iδqj ; the notation ∧ is reserved for the spacetime wedge product.

The presymplectic structure is conserved on-shell, which follows from

dΩM̊ =
dΩM̊

dt dt ≈ 0 , (2.4)

where ≈ denotes evaluation on SM̊ ⊂ FM̊ , i.e. on solutions to the Euler-Lagrange equations
of motion ∂L

∂qi
− d

dt
∂L
∂q̇i

= 0. Indeed, this follows immediately from applying δ to δLM ≈ dΘM̊ ,
which is implied by equation (2.1).

Defining2 pi := ∂L
∂q̇i

, we find the potential and presymplectic structure in the simple
forms

ΘM̊ =
N∑
i=1

piδqi and ΩM̊ =
N∑
i=1

δpiδqi , (2.5)

which will become useful shortly.

2.2 Edge modes as “internalized” external reference frames

In this subsection, we will illustrate the mechanical analog of edge modes. To this end, we
have to introduce a gauge symmetry. As the simplest possibility, suppose the Lagrangian
is of the form

L(qi, q̇j) = L
(
{qi − qj , q̇i − q̇j}Ni,j=1

)
, (2.6)

so that it features an invariance under translations qi(t)→ qi(t) + α(t) and q̇i(t)→ q̇i(t) +
α̇(t), for an arbitrary function of time α(t).3 In the mechanical context, the time manifold

2We are not performing a Legendre transformation and so pi is here simply a function on FM̊ × [t1, t2].
3For example, the Lagrangian could read 1

2N
∑N

i,j=1(q̇i − q̇j)2 − V ({qi − qi+1}), which amounts to
subtracting the center-of-mass kinetic energy from the total kinetic energy and a translation-invariant
potential.

– 8 –
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R assumes the role of spacetime and since α depends on t, we can view this as a gauge-
transformation of the corresponding action.4 The gauge group is thus the translation
group (R,+).

We denote by Xα the vector field on FM̊ which generates the above translation. It
satisfies Xα(qi) = α = Xα · δqi and Xα(q̇i) = α̇ = Xα · δq̇i, where Xα · µ denotes the interior
product of the vector field Xα and the form µ on FM̊ × [t1, t2]. Let g(α) ∈ R denote
the translation group element amounting to translation by α. Let f(qi(t), q̇i(t)) be an
arbitrary functional on FM̊ × [t1, t2] which depends analytically on positions and velocities.
It transforms under this group action as

g(α) . f(qi, q̇i) = eXαf = f(qi + α, q̇i + α̇) , (2.7)

which clearly satisfies g(α+ β) . f = g(α) . g(β) . f = g(β) . g(α) . f .

2.2.1 Internal description of a group of particles

We can select any of the particles of M , say particle N , as a dynamical internal reference
frame for the translation group (R,+), relative to which we describe the remaining ones.
Indeed, we can build gauge-invariant quantities, such as relative distances qi − qN , using
the frame degrees of freedom. More formally, note that the frame position qN constitutes
a (translation) group-valued dynamical reference frame U = qN on field space, which
transforms by group multiplication (here, the addition) under translations, g(α) . U =
g(α) + U = qN + α. The group being Abelian, left and right actions of the group are
of course the same. Using this frame, we can turn any functional f(qi(t), q̇i(t)) into a
gauge-invariant one by subjecting it to a frame-dressed gauge transformation defined by
α = −qN + x, for an arbitrary real function x(t):

Of,U (x) := g(−qN + x) . f = (U − x)−1 . f := g(α) . f
∣∣
α=−U+x , (2.8)

where (U − x)−1 denotes the inverse group element.5 In coordinates, we thus have

Of,U (x, qi, q̇i) = f(qi − qN + x, q̇i − q̇N + ẋ) , (2.9)

which clearly is translation-invariant. This frame-dressed observable is the (Lagrangian
analog) of a relational Dirac observable. They constitute so-called gauge-invariant ex-
tensions of gauge-fixed quantities [46, 58, 94, 98] and here encode the question “what
is the value of f when the reference frame (particle N) is in orientation (position)
x?” [88, 89, 91–94]. This is particularly transparent when setting f = qi, giving the relative
distance

Qi|N (x) := Oqi,U (x) = qi − qN + x . (2.10)
4For simplicity, we choose this spatially global gauge symmetry. In order to better mimic the

local gauge symmetries in field theory, one could for instance choose a Lagrangian of the form
L = 1

2
∑

i
(q̇2i − q̇2i+1)2 − V ({q2i+1 − q2i − q2i−1 + q2i−2}). This would lead to a “local” gauge symme-

try (q2i(t), q2i+1(t)) → (q2i(t) + αi(t), q2i+1(t) + αi(t)), in term of a gauge parameter αi(t) which can be
explicitly “space” dependent. The exposition would become somewhat more convoluted, however.

5For the translation group, we of course have (U−x)−1 = −(U−x). The reason we also use the notation
g−1 for the inverse group element here is for facilitating the comparison with the corresponding construction
of gauge-invariant observables for general groups in gauge field theory, which will be the focus of section 4.
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Since the value of Oqi,UN (x) is constant on any gauge orbit, this value is the same as on
the gauge-fixing surface qN = x, in this sense measuring the position of particle i when
frame particle N is in position x.

Next, we observe that Xα constitutes a null direction of the presymplectic structure. To
this end, we first note that, owing to our assumption on the Lagrangian in equation (2.6),
pi = ∂L

∂q̇i
is translation-invariant, so that Xα(pi) = Xα · δpi = 0. Furthermore, the total

momentum vanishes identically on all of FM̊ × [t1, t2],6

PM =
N∑
i=1

pi = 0 . (2.11)

This yields
Xα · ΩM̊ = −αδPM = 0 . (2.12)

In particular, Xα is also off-shell a degenerate direction of the presymplectic structure. By
contrast, in the field theory examples later, the constraints will be related to the equations
of motion in such a way that gauge directions in field space will only be on-shell null
directions of the presymplectic structure.

We can use the relational observables to split the symplectic potential and presym-
plectic structure into gauge-invariant and gauge parts, that is ΘM̊ = Θ̊inv + Θ̊gauge and
ΩM̊ = Ω̊inv + Ω̊gauge, respectively, where

Θ̊inv :=
N−1∑
j=1

pjδQj|N (x) Θ̊gauge := PMδqN = 0 , (2.13)

Ω̊inv :=
N−1∑
j=1

δpjδQj|N (x) Ω̊gauge := δPMδqN = 0 . (2.14)

For distinction from the case with external frame particles below, we have equipped the
forms with a .̊ A characteristic feature of the gauge contributions Θ̊gauge and Ω̊gauge (here,
but also in field theory) is that they involve the constraints. However, in contrast to the
field theory case later, the gauge part vanishes identically here.

Let us now consider the construction of a phase space for the particle group M . Owing
to the degeneracy of the presymplectic form ΩM̊ , the field space FM̊ is not a phase space.
In order to construct a phase space PM̊ from it, we have to factor out the null directions
of ΩM̊ : PM̊ := FM̊/ ∼, where c ∼ c′ if the histories c, c′ differ by such a null direction.
Clearly, Xα is a null direction, but there are more: recalling that ΩM̊ is a (2, 0)-form,
we have to fix a time t ∈ [t1, t2] in order to turn it into a genuine two-form ΩM̊ (t) on
F . Note that outside of the space of solutions SM̊ ⊂ FM̊ , ΩM̊ (t) will depend on the
choice of t. It is clear that any non-zero vector field X which vanishes at t will be a null
direction of ΩM̊ (t), simply because it only changes qi(t′), q̇i(t′) at times t′ 6= t. Taking both

6This is because PM constitutes a primary constraint (upon Legendre transformation) in the language
of constrained systems. This is yet another difference to the field theory examples later, where the gauge
constraints are not identities on field space, but only vanish on the subspace of solutions. The reason is
that they are secondary constraints.
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types of degeneracies together, the equivalence class [c] consists of all histories that have
the same gauge-invariant (Qj|N (x, t), Q̇j|N (x, t))N−1

j=1 at t as c. The phase space PM̊ can
thus be parametrized by these gauge-invariant variables and is isomorphic to R2N−2, hence
finite-dimensional in contrast to FM̊ . We can, however, equivalently use (Qj|N , pj)N−1

j=1
as a coordinate system for PM̊ . To see this, note that we can write pj = ∂L

∂Q̇j|N
since

∂Q̇j|N
∂q̇j

= 1 and L
(
{qi − qj , q̇i − q̇j}Ni,j=1

)
= L

(
{Qj|N , Q̇j|N}N−1

j=1

)
, so pj is determined by

(Qj|N , Q̇j|N )N−1
j=1 . Conversely, (Qj|N , pj)N−1

j=1 determine (Qj|N , Q̇j|N )N−1
j=1 by the implicit

function theorem because ∂pj
∂Q̇j′|N

= ∂2L
∂Q̇j|N∂Q̇j′|N

is non-degenerate owing to the gauge-
invariance of the involved variables. Hence, PM̊ is also equipped with the non-degenerate
symplectic form Ω̊inv(t).

In the present class of models, it turns out that the so constructed phase space, in fact,
does not depend on t. The reason is that it coincides with the phase space constructed
directly from the space of solutions SM̊ ⊂ FM̊ on which ΩM̊ (t) is independent of t thanks
to equation (2.4). To see this, note that Xα is also a degenerate direction of the pullback
of ΩM̊ (t) to SM̊ , and that the set of Xα contains any non-zero vector field X tangential
to SM̊ which vanishes at t. The ensuing equivalence relation s ∼ s′ of solutions s, s′ ∈
SM̊ is thus simply the restriction of the field space equivalence relation c ∼ c′ to the
subspace of solutions. First consider the null directions defined by non-zero vector fields
which vanish at t (which are comprised of gauge directions Xα for which α, α̇ vanish at t).
Factoring out these null directions from SM̊ yields a finite-dimensional space isomorphic
to TQ ' R2N , parametrized by initial data (qi(t), q̇i(t)) at some time t ∈ [t1, t2]. Further
factoring out all remaining gauge directions Xα, which amounts to identifying the initial
data sets (qi(t), q̇i(t)) and (qi(t) + α(t), q̇i(t) + α̇(t)) for arbitrary α(t), produces a space
which is conveniently parametrized by the relational observables (Qj|N , Q̇j|N )N−1

j=1 . This is,
of course, the same phase space as above, i.e. altogether

PM̊ = SM̊/∼ = FM̊/∼ . (2.15)

This is also equivalent to the reduced phase space one would obtain if, instead of the
covariant phase space method, one were to first perform a Legendre transformation, fol-
lowed by a constraint reduction. Indeed, here the Legendre transformation, in coordinates
defined by pi = ∂L

∂q̇i
(viewing L at fixed t as a function L : TQ → R), would map the

space TQ of positions and velocities (qi, q̇i) to the kinematical phase space Pkin := T ∗Q.
On Pkin, PM = 0 no longer is an identity, but a non-trivial primary constraint defining
a constraint submanifold C ⊂ Pkin. Factoring out the gauge orbits of PM from C then
yields the reduced phase space PM̊ , coinciding with equation (2.15). However, within the
covariant phase space formulation, the Legendre transformation is not a natural map to
consider as it relies on fixed t.

The ultimate reason for the coincidence of the two phase spaces, constructed from the
field space and space of solutions, respectively, is that Xα constitutes a degenerate direction
of ΩM̊ both on- and off-shell. This will be different in Maxwell, Chern-Simons and Yang-
Mills theory later where constraints will only hold on-shell (they are secondary), such that
gauge directions Xα are only degenerate directions of the pullback of ΩM̊ to SM̊ . In those
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cases, the equivalence relation ∼ does not encompass gauge directions and so Pkin :=
FM̊/∼, C := SM̊/∼ and P :=

(
SM̊/∼

)
/G, where G denotes the group of spacetime gauge

transformations, are distinct sets, constituting what are usually known as the kinematical
phase space, constraint surface and reduced or physical phase space, respectively; see
e.g. [56] (as well as section 3.2). A field theory example where the kinematical and physical
phase spaces coincide as here is parametrized field theory [56].

Altogether, this constitutes a purely internal description of the group of particles M .
At times it will be interesting though to explore how a subsystem relates to its environment.

2.2.2 External description of the particle group: “extending the Heisenberg
cut”

While the internal description of the particle group M , e.g. relative to particle N , thus lives
in the physical phase space PM̊ = SM̊/∼, i.e. on the set of equivalence classes of solutions,
the kinematical phase space Pkin, as we shall now elucidate, can be associated with the
description of M relative to an external reference frame. As just seen, the kinematical
phase space is not a natural object to consider in the covariant phase space formulation of
the present mechanical model because it is here not obtained through the natural reduc-
tion methods of the covariant formulation as in equation (2.15), but through a Legendre
transformation. We nevertheless discuss this physical interpretation of Pkin here since it
is useful for understanding edge modes conceptually and as we are ultimately interested
in field theory where no Legendre transformation is needed in order to construct Pkin (see
section 3.2). From the point of view of the covariant method, the following interpretation
of Pkin will thus be more natural to entertain in field theory.
PM̊ comprises the physical states of M that are distinguishable relative to an internal

frame of M at any time t ∈ [t1, t2], while Pkin can, in a sense to be made more precise
below, be viewed as comprising those states that are distinguishable relative to a frame
external to M . This frame could be fictitious or a physical one that we have thus far
ignored. In the sequel, we consider the latter situation and “internalize” such an external
frame through a field space and corresponding phase space extension. The set of physical
states of the ensuing internal description of M relative to the new reference frame will then
be equivalent to Pkin. Although we are not in the quantum theory and neither considering
measurement interactions, this is somewhat reminiscent of the extension of the Heisenberg
cut. In the quantum theory, the below extension is related to what is known as the ‘paradox
of the third particle’ [48, 99] (see also [49] for a summary).

Suppose the group of particles M is not alone in the world and there is a further
particle that we call R1 (see figure 1). It will assume the role of the “internalized” external
reference frame and will be the mechanical analog of an edge mode forM . To accommodate
it, we will have to extend the translation-invariant Lagrangian in equation (2.6) as well as
the underlying field space accordingly. In line with the subsequent field theory discussion,
let us denote this field space by FM , which is defined in complete analogy to FM̊ above,
incorporating all histories of the now N + 1 particles (group M and frame R1). For this
(N + 1)-body problem, we can now repeat the same exercise as before. Specifically, the
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symplectic potential and presymplectic structure on FM (which depend on t) read

ΘΣt =
N∑
i=1

piδqi + pR1δqR1 and ΩM =
N∑
i=1

δpiδqi + δpR1δqR1 , (2.16)

where, in preparation for the field theory case, Σt here highlights that the potential depends
on the “time slice” t both on- and off-shell, in contrast to ΩM which on SM will be t-
independent due to equation (2.4). In contrast to equation (2.11), we now have the identity

PMR1 := PM + pR1 = 0 (2.17)

on all of FM × [t1, t2], so PM need no longer vanish.
All the relational observables of the previous subsection remain invariant observables

on FM . However, thanks to the additional frame particle R1 we can now turn all the
kinematical degrees of freedom associated with M into gauge-invariant ones. Specifically,
we can now also relate the old internal frame, particle N , to the “edge mode” R1, yielding
new relational observables, such as

QN |R1(y) := OqN ,UR1
(y) = qN − qR1 + y . (2.18)

This permits us to decompose the symplectic potential and symplectic structure once more
into gauge-invariant and gauge parts, ΘΣt = Θinv + Θgauge and ΩM = Ωinv + Ωgauge, taking
equation (2.13) into account, where:

Θinv :=
N−1∑
j=1

pjδQj|N (x) + PMδQN |R1(y) , Θgauge := PMR1δqR1

Ωinv :=
N−1∑
j=1

δpjδQj|N (x) + δPMδQN |R1(y) , Ωgauge := δPMR1δqR1 . (2.19)

In particular, observe that only the last term in the invariant parts are dressed by the
edge mode R1. These are the mechanical analogs of the radiative contributions to the
presymplectic potential and presymplectic structure on the boundary that we shall later
see in field theory, while the first terms are the mechanical analog of the bulk contribution
in field theory. In contrast to the field theory case, no corner term can arise in this discrete
model and the gauge parts vanish identically.

It is clear that the physical phase space

PM := SM/∼= FM/∼ (2.20)

of M and R1 together is isomorphic to R2N , equipped with the non-degenerate symplectic
form Ωinv, and parametrized by the pairs (Qj|N , pj ;QN |R1 , PM )N−1

j=1 . Specifically, we can de-
scribe PM equivalently through a gauge-fixing since, e.g., qR1 = y for some y ∈ R is a glob-
ally valid gauge fixing. On the corresponding gauge-fixing surface we have QN |R1(y) = qN
such that the coordinates on PM become (Qj|N , pj ; qN , PM )N−1

j=1 . This is equivalent to the
Legendre transformation induced natural coordinates (qi, pi)Ni=1 on the kinematical phase
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space Pkin := T ∗Q ' R2N ; in particular, the invariant part of the symplectic structure can
(in this gauge-fixing) be written equivalently as Ωinv = ∑N

i=1 δpiδqi. In this sense, the set
of gauge-invariant states of M relative to R1 is equivalent (even symplectomorphic) to the
kinematical phase space associated withM only, i.e. PM ' Pkin. This equivalence is rooted
in the above observation that we can turn all kinematical degrees of freedom associated
with M into gauge-invariant ones by relating them to the edge mode R1.

2.3 Symmetries as frame reorientations vs. gauge transformations

Given the internalized external frame R1, we now have to distinguish two types of transfor-
mations which are indistinguishable in a purely internal description of M on PM̊ , as they
leave all the relations within M invariant (see figure 1):

Gauge transformations: a global translation

qi → qi + α , i = 1, . . . , N , and qR1 → qR1 + α (2.21)

of M and R1 leaves the relation between the new frame R1 and M invariant and
thus describes the same physical situation. Denote the vector field on FM generating
this transformation once more by Xα, where α may be “field-dependent”, i.e. depend
on where it is evaluated on field space FM . It constitutes a null-direction of the
presymplectic structure

Xα · ΩM = δC[α] = 0 , (2.22)

with “constraint”7

C[α] = −αPMR1 = 0 . (2.23)

Symmetries (frame reorientations): a relative translation of M and R1 by a distance
ρ. While we could equivalently formulate such a transformation as a transformation
of only M , we shall write it as a transformation purely of the new frame R1:

qi → qi , i = 1, . . . , N , and qR1 → qR1 + ρ . (2.24)

This transformation does not leave the relation between R1 and M invariant and
thereby changes the physical situation. Since the position qR1 constitutes the “orien-
tation” of the frame, this transformation amounts to a frame reorientation. Denote
the vector field on FM generating this transformation by Yρ, where ρ must now be
field-space-independent.
For concreteness, let us assume that the only dependence of the Lagrangian for M,R1
on the velocities is of the form Lkin = 1

4(N+1)
∑N+1
I,J=1(q̇a− q̇b)2, where I, J runs over all

particles inM and the edge mode R1, which is tantamount to assuming unit mass for
the particles and subtracting the center-of-mass kinetic energy from the total kinetic
energy, e.g. see [42, 43]. This yields pI = q̇I− 1

N+1
∑
J q̇J and therefore the variations

∆ρQj|N = Yρ · δQj|N = 0, ∆ρQN |R1 = Yρ · δQN |R1 = −ρ,

and ∆ρpi := Yρ · δpi = − ρ̇

N + 1 ,

7We write it in quotation marks as it vanishes identically everywhere on FM × [t1, t2].
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· · ·
1 1 2 3 N R12 3 N R1

α α α α αM M̄

· · ·
R1 R1

ρM M̄

1 2 3 N

Xα

Yρ

Figure 1. Two types of transformations which are indistinguishable from their action on particles in
region M , but distinguishable relative to the dynamical frame R1. The vector field Xα (top) moves
both the particles in M and the frame R1 by the same distance, therefore does not affect relative
distances and corresponds to a gauge direction. The symmetry (frame reorientation) generator Yρ
(bottom) only acts on R1, thereby affects relative distances to the reference frame: it generates a
physical transformation.

where i = 1, . . . , N runs over the particles of M . Contraction with the presymplectic
structure gives

Yρ · ΩM = Yρ · Ωinv = δQ[ρ] , (2.25)
with gauge-invariant charge

Q[ρ] = ρPM −
1

N + 1 ρ̇
N−1∑
j=1

Qj|N −
N

N + 1 ρ̇ QN |R1 (2.26)

which does not in general vanish even on-shell. Specifically, for an edge-mode-
independent functional on FM of the form f(qi, q̇i), we have, thanks to the analog of
equation (2.9) for when R1 is used as frame,

Of,UR1+ρ(y) = Of,UR1
(y − ρ) (2.27)

and

ρ
∂Of,UR1

(y)
∂y

+ ρ̇
∂Of,UR1

(y)
∂ẏ

=
{
Q[ρ], Of,UR1

(y)
}

= ZO · Yρ · Ωinv , (2.28)

where ZO is the Hamiltonian vector field on PM associated with the relational ob-
servable Of,UR1

(y). In line with the interpretation of frame reorientations, we thus
see that the charge generates changes in the frame orientation label y of the edge
mode for such observables.
Just like the group action . in equation (2.7) corresponds to gauge transformations
acting on all dynamical variables, we can now define the group action � corresponding
to symmetries, i.e.

g(ρ)� f(qi, qR1 , q̇i, q̇R1) = eYρf = f(qi, qR1 + ρ, q̇i, q̇R1 + ρ̇) . (2.29)

This permits us to rewrite equation (2.27) as

g(ρ)�Of,UR1
(y) = Of,g(ρ)�UR1

(y) = Of,UR1
(y − ρ) . (2.30)

This will become useful to describe frame changes shortly.

– 15 –



J
H
E
P
0
2
(
2
0
2
2
)
1
7
2

This distinction between gauge transformations and symmetries is the mechanical ana-
log of the distinction in gauge theories put forth in [3]. What is new here is the connection
with dynamical reference frames and especially the identification of symmetries as frame
reorientations of the “edge mode”. We shall see in section 2.6, that we have to introduce a
further distinction of symmetries into three types.

We finally note that an infinitesimal frame reorientation Yρ, which we have so far
defined on FM , does not necessarily translate into an actual symmetry of the solution
space SM . The translation parameter ρ needs to verify some non-trivial set of differential
equations in order for Yρ to act tangentially to SM , that is, in order for ∆ρ to map
solutions to solutions. In the present model, requiring those equations to have non-trivial
solutions turns out to impose severe constraints on the shape of the translation-invariant
potential V . As a result, for the purpose of illustrating the physical action of symmetries
on solutions, it will be convenient to simply assume a vanishing potential V = 0. In that
case, it is clear that Yρ leaves the space of solutions invariant (in particular ṗR1 = 0, where
pR1 = q̇R1 − 1

N+1(∑N
i=1 q̇i + q̇R1)), if and only if ρ̈(t) = 0. That is, we must require ρ(t) to

be a linear function of time.

2.4 Reference frame changes

The choice of dynamical reference frame is not unique. For instance, we have already used
the internal frame particle N and the “edge mode” R1. As in the field theory context
later, there could be additional external frames that we can internalize as further edge
modes. It is therefore natural to inquire about a further type of transformation we have so
far not considered: changes of reference frame. How can we change from the description
relative to one dynamical frame to that relative to another? Plenty of recent efforts in the
context of quantum reference frames have focused on developing a framework for dynamical
frame covariance [41–54]. For example, the classical discussion of [42, 43] could be directly
applied to the present mechanical scenario. Here, we shall restrict our attention to the
transformation of relational observables under changes of dynamical frame, i.e. we consider
an active change from the relational observables relative to one frame to those relative to
another. The following discussion can thereby be viewed as an extension of the exploration
in some of the above references where relational observables relative to different frame
choices where considered (e.g., see [50]), but the explicit transformations between them
were not given.8 It also bears some resemblance to the “clock transformations” in ([100],
section 5).

Suppose we are given a second “edge mode” R2 in addition to R1 and the original
group of particles M . R2 can be accommodated by extending accordingly the translation-
invariant Lagrangian, as well as the field space (and thus physical phase space), in the same
manner in which these structures were extended in the previous subsection to internalize
the first “edge mode” R1. We denote the group-valued orientation variables of the two
dynamical external frames to M by URk = qRk , k = 1, 2. See figure 2.

8The frame changes in these references rather encompass how one and the same invariant observable
can be described relative to different internal frame choices. This involves an additional reduction using a
gauge fixing procedure compared to the present treatment.
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· · ·
R1N1 2 R2M M̄

QR2|R1

· · ·
R1N1 2 R2M M̄

Q1|R1 Q2|R1

Q2|R2Q1|R2

QR1|R2

R1 → R2

Figure 2. Pictorial illustration of the frame change mapping the relational observables {Qi|R1} to
{Qi|R2}. It is implemented by a field-dependent reference frame transformation, namely a transla-
tion by the relative distance UR2 − UR1 .

Consider an arbitrary functional f(qI(t), q̇I(t)) which depends analytically on posi-
tions and velocities, where I runs over the N particles in M , as well as R1, R2. Invoking
equation (2.8), the corresponding relational observable relative to frame Rk reads

Of,URk (yk) = (URk − yk)
−1 . f := g(α) . f

∣∣
α=−URk+yk

. (2.31)

This implies that the transformation from Of,UR1
toOf,UR2

is given by a relation-conditional
translation by the gauge-invariant relative distance between the two frames (which is a
dynamical element of the translation group (R,+)):

g21(UR1 , UR2) := QR1|R2(0) := OUR1 ,UR2
(0) = UR1 − UR2 . (2.32)

This implies that the transformation from the description relative to frame R1 to the one
relative to frame R2 is given by the relation-conditional translation � of the frame R1:

UR1 7−→ UR2 = g−1
21 � UR1 := UR1 − g21 , (2.33)

Of,UR1
(y1) 7−→ Of,UR2

(y2) = (−y1 + y2 + g21)−1 �Of,UR1
(y1)

:= Of,(−y1+y2+g21)−1�UR1
(y1) .

Note that this constitutes an extension of the definition of � in equation (2.29) to
field-dependent frame translations, in complete analogy to how equation (2.8) extends
field-independent to field-dependent gauge transformations. In particular, just like equa-
tion (2.8) gives rise to observables invariant under gauge transformations, equation (2.33)
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generates observables invariant under symmetries (reorientations of the frame R1). Indeed,

Of,UR2
(y2) =

(
(UR1 − y1)− (UR1 − y1) + (UR2 − y2)

)−1
. f

=
((
− g21 − y2 + y1

)−1
.
(
UR1 − y1

)−1)
. f

=
(
− g21 − y2 + y1

)−1 �Of,UR1
(y1) (2.34)

= g(β) . f
∣∣
β=(−y1+y2+g21)−1�α(UR1 ) ,

where (−y1 + y2 + g21)−1 � α(UR1) = −UR2 + y2 and α(UR1) = −UR1 + y1 is the field-
dependent group parameter used in equation (2.31).9 We can therefore interpret the frame
change transformation as a relation-conditional frame reorientation. Specifically, it is equiv-
alent to the relation-conditional translation of the frame orientation label

y1 7→ y1 + (−y1 + y2 + g21) = QR1|R2(y2) (2.35)

i.e. (
− g21 − y2 + y1

)−1 �Of,UR1
(y1) = Of,UR1

(
QR1|R2(y2)

)
. (2.36)

This is especially transparent in the coordinate expression, cf. equation (2.9), for relational
observables Of,UR1

(y1) = f(qi − UR1 + y1, q̇i − U̇R1 + ẏ1).
It is instructive to illustrate this on a generating set of observables. Since the mo-

menta are translation-invariant and therefore trivially relational observables relative to
both R1, R2, we only need to look at the relational observables associated with the posi-
tions f = qI :

QI|R1(y1) = qI − UR1 + y1 7−→ qI − UR1 +QR1|R2(y2) = QI|R2(y2) . (2.37)

This includes the tautological observables (e.g., encoding “what is the position of R1 when
R1 is in position y1?”)

QR1|R1(y1) = y1 7−→ QR1|R2(y2)
QR2|R1(y1) = UR2 − UR1 − y1 7−→ y2 = QR2|R2(y2) .

Including the tautological observables and the identity PM + pR1 + pR2 = 0, the change of
frame thus amounts to a canonical transformation on the physical phase space(

Qi|R1 , pi;QR2|R1 , pR2

)N
i=1

7−→
(
Qi|R2 , pi;QR1|R2 , pR1

)N
i=1

. (2.38)

This can also be viewed as a “field redefinition” on the physical phase space.
It is important to note that, despite the change of frame transformation admitting

the interpretation of a relation-conditional (and hence configuration-dependent) frame
reorientation, it is not a symmetry; as seen in the previous subsection, symmetries are
configuration-independent translations of the frame R1. In particular, the change of frame
transformation is not generated by the charges Q[ρ]. Note also that, in contrast to a sym-
metry, it does not change the relations between the N + 2 particles, only the description
of them.

9Note that we cannot write the third line in (2.34) in terms of the global translation group action as(
g21 − y2 + y1

)−1
. Of,UR1

(y1) since g . Of,UR1
(y1) = Of,UR1

(y1) for all g ∈ R.
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2.5 Subsystem phase space from post-selection on the global space of solutions

Thus far, we have considered the covariant phase space structures associated with the group
of particles M with and without the two “edge modes” R1, R2. Accommodating the edge
modes required us to extend the field and phase spaces, embedding a setup with fewer into
a setup with more particles. Let us now consider the opposite process: how can we recover
the covariant phase space structure of fewer particles from that with more particles? This
serves as a toy scenario for recovering local subregion phase space structures from those
associated with a global spacetime region in field theory, which we shall elaborate on later.
This can be achieved through a post-selection on the global space of solutions.

Suppose that R1, R2 are part of a second group M̄ of N̄ particles, the complement ofM .
We shall now illustrate how to recover the phase space structure of the subsystem M from
the global one for M ∪ M̄ . To this end, let us assume for concreteness and simplicity that
we are dealing with free particle dynamics subject to a translation-invariant Lagrangian
of the form LM∪M̄ = 1

4(N+N̄)
∑N+N̄
I,J=1(q̇I − q̇J)2, where I, J now runs over all particles in

M ∪ M̄ . Then pI = q̇I − 1
N+N̄

∑
J q̇J , so that pi = q̇i − 1

N+N̄
∑N
j=1 q̇j − N̄

N+N̄ q̇C̄ , where
i = 1, . . . , N runs over the particles of M . Here, qC̄ := 1

N̄

∑N+N̄
j̄=N+1 qj̄ , where j̄ labels the N̄

particles in M̄ , is the center-of-mass of M̄ . In other words, the momenta in M now only
depend on M̄ through its center-of-mass. We denote the global field space on which the
Lagrangian is defined by F and the subspace of solutions by S. Let us choose particle N as
the internal frame for groupM , as before, while we now select the center-of-mass C̄ of M̄ as
an external frame for M and an internal frame for M̄ . We could in principle choose any of
the configuration degrees of freedom in M̄ as the edge mode, however, to ensure a suitable
dynamical decoupling, it will be convenient to choose qC̄ as the edge mode. Repeating the
previous exercises on F , we find the presymplectic structure in the form

Ω =
N−1∑
j=1

δpjδQj|N + δPMδQN |C̄ + (δPM + δPM̄ ) δqC̄ +
N+N̄∑
j̄=N+1

δpj̄δQj̄|C̄ , (2.39)

where j labels the N − 1 particles in M , except particle number N , and PM̄ = PC̄ = ∑
j̄ pj̄

is the total momentum of M̄ . The relational observables QN |C̄ , Qj̄|C̄ are constructed as
before according to equation (2.10).10 We now have the identity

PM + PM̄ = 0 . (2.40)

The third contribution to Ω is the pure gauge part and thus vanishes identically. The first
and last contributions pertain solely to M and M̄ , respectively, and are mechanical analogs
of the bulk contribution of a subregion. By contrast, the second term Ωrad := δPMδQN |C̄
is the mechanical analog of the edge-mode-dressed radiative contribution on the boundary
between adjacent subregions M and M̄ in field theory. We will consider the particle N as
the boundary of M and (QN |C̄ , PM ) as the “boundary variables”.

10There is a redundancy in the last term of equation (2.39) as
∑N̄

j̄=1 Qj̄|C̄ = 0, but this will be of no
relevance below.
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In splitting post-selection, we shall now post-select on the global space of solutions S
those solutions that are compatible with a choice of gauge-invariant boundary conditions
on particle N . This will split the global solution space into subgroup solution spaces for
M and M̄ . The “boundary contribution“ Ωrad will play an important role in this process.
In order to encompass different types of boundary conditions (Dirichlet, Neumann, Robin
and mixed), let us consider the linear combinations of the translation-invariant data

X = aQN |C̄ + b PM , Y = cQN |C̄ + dPM , (2.41)

where a, b, c, d are real functions of t subject only to ad− bc = 1, in which case they define
a symplectic transformation

Ωrad = δPMδQN |C̄ = δY δX . (2.42)

The space of solutions S can be parametrized by solu-
tions

(
Qj|N (t), QN |C̄(t), qC̄(t), Qj̄|C̄(t); t ∈ [t1, t2]

)
and so also by(

Qj|N (t), X(t), qC̄(t), Qj̄|C̄(t); t ∈ [t1, t2]
)
. In particular, we can thus use the config-

uration variable X to foliate S

S =
⊔
X0

SX0 , SX0 := {all histories c(t) ∈ S|X(t) = X0(t)} , (2.43)

where X0(t) is some non-dynamical background function specifying the gauge-invariant
boundary condition for particle N (which, of course, have to be consistent with the equa-
tions of motion of the relevant Lagrangian). For example, we could have a(t1) = d(t1) = 1
and b(t1) = c(t1) = 0 initially and a(t2) = d(t2) = 0 and b(t2) = 1 = −c(t2) at the
end, so that the boundary conditions are initially on X(t1) = QN |C̄(t1), hence Dirichlet,
and finally on X(t2) = PM (t2), thus Neumann, and so altogether of mixed type. Clearly,
different choices of the functions a, b, c, d will lead to distinct foliations of S.

Post-selection now proceeds by selecting a leaf SX0 from the global solution space S,
i.e. restricting to all solutions consistent with the history X0(t) of the variable X. Pulling
back to any of these leaves, we thus have δX

∣∣
SX0

= δX0 = 0 and so

Ωrad
∣∣
SX0

= 0 . (2.44)

Henceforth, we also write the weak equality ≈̂ for identities that only hold on SX0 (i.e.
after the boundary conditions have been imposed), so that Ωrad ≈̂ 0. In other words,
post-selection guarantees that there is no (physical) symplectic flux between M and M̄

since Ωrad is the only gauge-invariant contribution to the global presymplectic structure Ω
in (2.39) that involves degrees of freedom from M and M̄ that are generically non-constant
(the momenta, which depend on all particles, satisfy ṗI ≈ 0).

This also splits the phase space structures associated with M and M̄ . In particular,
we can consider the restriction of any leaf to M . As can be easily checked, the equations
of motion for the qi and edge mode qC̄ decouple from the remaining ones for M̄ and can
thereby be solved independently; we can therefore perform post-selection on this subset.
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This suggests to define the restriction of the leaf SX0 to M by including the edge mode in
the form

SX0
M :=

{
c(t)

∣∣
M

=
(
Qj|N (t), QN |C̄(t), qC̄(t)

)
, t ∈ [t1, t2]

∣∣∣ c ∈ SX0

}
. (2.45)

Accordingly, we equip this “regional” space of solutions for M with the presymplectic
structure (cf. equation (2.39))

N−1∑
j=1

δpjδQj|N + δPMδQN |C̄ + (δPM + δPM̄ ) δqC̄ = ΩM̊ + Ωrad ≈̂ ΩM̊ , (2.46)

recalling that the second term on the left hand side vanishes on-shell of the boundary
conditions, while the last term vanishes identically. On-shell, the surviving piece of the
presymplectic structure for M is thus ΩM̊ = Ω̊inv = ∑

j δpjδQj|N given in (2.13), which is
the “bulk” non-degenerate symplectic form forM on the physical phase space PM̊ discussed
at the end of section 2.2.1. Indeed, using the equations of motion in the form ṗI ≈ 0 and
noting that Q̇j|N = pj − pN and Q̇N |C̄ = pN + 1

N̄
PM , it is straightforward to check that

d
dt
(
ΩM̊ + Ωrad

)
≈ 0, i.e. the restricted presymplectic structure for M is conserved on-shell.

It is also gauge-invariant and any Xα constitutes a degenerate direction of it.11 Hence,
upon factoring out the degenerate directions of the presymplectic structure from SX0

M , we
recover the phase space PM̊ of internally distinguishable states for the subsystem M from
splitting post-selection on the global solution space for M ∪ M̄ . As discussed shortly, this
does not mean, however, that the dynamics on PM̊ induced by SX0

M will coincide with the
isolated dynamics forM defined by the pure subsystem Lagrangian L implicitly considered
in section 2.2.1; depending on the boundary condition X0, the Hamiltonian may be distinct.

Splitting post-selection can also be performed at the level of the action, however, we
shall only discuss this in the field theory case later. This will lead to a systematic algorithm
for generating boundary actions.

2.6 Three types of symmetry transformations (frame reorientations)

Each leaf SX0 in the global space of solutions S can be regarded as (the space of solutions
of) a specific subsystem theory for M (resp. M̄), defined by the boundary conditions X0.
Indeed, since the “edge-mode-dressed” variables X,Y contain degrees of freedom from
both M and M̄ , these boundary conditions specify how M couples to its complement M̄ .
Different choices of X0 for X will lead to distinct subsystem Hamiltonians (e.g., different
parameters or explicit time dependence) for the remaining N − 1 particles in M . This will
be discussed in more detail in [101]. That is to say, different “subleaves” SX0

M yield the
same physical phase space PM̊ , but will correspond to distinct subsystem dynamics and
thereby contain different sets of solutions for Qj|N (t). We are therefore justified to think of
the different SX0

M as different theories for the subsystem M and, consequently, of the global
space of solutions S as a “meta-theory” containing all the different subsystem theories.

11Neither conservation nor invariance would be true had we only included the generally non-vanishing
δPMδqC̄ for the edge mode contribution.

– 21 –



J
H
E
P
0
2
(
2
0
2
2
)
1
7
2

In section 2.2.2, we discussed the distinction between gauge and symmetry transforma-
tions, originally put forth in [3], and interpreted the latter as frame reorientations. Since
our subsystem theory is now subjected to boundary conditions when considered as a post-
selection of the global theory, we have to explore the consequences for symmetries in the
presence of these boundary conditions. In particular, we have to investigate whether the
frame reorientations preserve the boundary conditions or whether they give rise to changes
of leaves SX0 in the foliations of S.

For concreteness, let us once more assum a free particle dynamics as in the previous
subsection. The vector field Yρ on S generating the frame reorientation (2.24) (for the
center-of-mass) then leads to the variations ∆ρpi := Yρ · δpi = − N̄

N+N̄ ρ̇, where i = 1, . . . , N
runs over the particles of M . This has two consequences: first, it leads to the following
variation of the variable fixed through the boundary conditions

∆ρX = Yρ · δX = −ρa− NN̄

N + N̄
ρ̇b . (2.47)

Hence, only symmetries with ρ such that ∆ρX = 0 will leave the boundary conditions
invariant. Second, restricting Yρ to the subleaf SX0

M , we can contract it with its presym-
plectic structure ΩM̊ + Ωrad. Note that, while the pullback of Ωrad to SX0

M vanishes, the
contraction with Yρ, which may not be tangential to SX0 in S, will not in general vanish.
This leads to

Yρ ·
(
ΩM̊ + Ωrad

)
= δQ[ρ] (2.48)

with charges in the form (cf. (2.26))

Q[ρ] = ρPM −
N̄

N + N̄
ρ̇
N−1∑
j=1

Qj|N −
NN̄

N + N̄
ρ̇QN |C̄ . (2.49)

Given that they constitute generators of an Abelian transformation group (translations of
R1), they generate an Abelian Poisson algebra, {Q[ρ], Q[σ]} = Yσ ·

(
Yρ ·

(
ΩM̊ + Ωrad

))
= 0.

This leads to a further distinction of three types of symmetry transformations (frame
reorientations).

Symmetries. These are frame reorientations Yρ which preserve the boundary condition
X = X0, hence leave SX0 in S, and feature an unconstrained charge. These are
symmetries with time-dependent ρ(t) such that ∆ρX = 0 and δQ[ρ] 6≈̂ 0, by which
we mean that the pullback of δQ[ρ] to the leaf SX0

M does not vanish (e.g., Q[ρ] cannot
be proportional to X). The above implies that this is only possible for a, b 6= 0 and
thus requires Robin boundary conditions. Solving ∆ρX = 0 in this case and recalling
from the end of section 2.3 that for free particles frame reorientations must be of the
form ρ(t) = c1t+ c2 with c1, c2 = const to be determined, yields

c2
c1

= −t− N + N̄

NN̄

b

a
,

which only has a solution for special choices of a, b. When it has a solution, only
the ratio c2/c1 is specified, which means there will then be a one-parameter family
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of solutions. The Abelian Poisson algebra of the non-vanishing charges on SX0
M ,

Q[ρ] = − N̄ c1

N + N̄

N
a
X0 +

N−1∑
j=1

Qj|N

 , (2.50)

is then of dimension dimR = 1, in line with generating a translation group symmetry.

Meta-symmetries. These are frame reorientations Yρ which do not preserve the bound-
ary condition, ∆ρX 6= 0, and so change leaf SX0 (or subsystem theory) in the foliation
of the meta-theory S. For example, in the case of Dirichlet boundary conditions, i.e.
a = 1 and b = 0 so that X = QN |C̄ = Q0

N |C̄ , we have ∆ρQN |C̄ = −ρ so that any
frame reorientation will lead to a change of subsystem theory. In fact, Dirichlet
boundary conditions are the only ones which imply that every frame reorientation
is a meta-symmetry. By contrast, for some fixed Robin boundary conditions, hence
a, b 6= 0, there will typically exist some ρ satisfying ∆ρX 6= 0 and others satisfying
∆ρX = 0, so Robin boundary conditions will generally admit meta-symmetries, as
well as symmetries.

While Yρ thus leads to a change of leaf SX0 , note that it is a symplectomorphism in
the meta-theory S. Indeed, using Cartan’s magic formula LYΩ = δ(Y ·Ω) +Y · (δΩ),
we find

LYρ
(
ΩM̊ + Ωrad

)
= δ (δQ[ρ]) = 0 , (2.51)

which is the infinitesimal form of a symplectomorphism.

Boundary gauge symmetries. These are frame reorientations Yρ preserving the bound-
ary conditions, ∆ρX = 0, and generating a constrained charge δQ[ρ] ≈̂ 0. For in-
stance, we could have Q[ρ] = g X for some background function g(t). In the present
model, this is only possible for Neumann boundary conditions, i.e. for a = 0 so that
X = bPM = X0, and ρ time-independent, which leads to the new “boundary con-
straint”

C∂ [ρ] = ρ

(
PM −

1
b
X0

)
≈̂ 0 . (2.52)

Since Yρ defines a null-direction, Yρ ·
(
ΩM̊ + Ωrad

)
= δC∂ [ρ] = 0 on this subsystem

theory, it constitutes a gauge transformation. Indeed, all physical variables that are
to survive on the subsystem phase space have to leave the conditions defining the
theory invariant and must therefore be invariant under Yρ. While (Qj|N , pj) are
invariant (recall that ρ̇ = 0), we have ∆ρQN |C̄ = −ρ. Hence, while the edge-mode-
dressed QN |C̄ is gauge-invariant under global translations Xα, it fails to be invariant
under the boundary gauge symmetries appearing for Neumann conditions. However,
since Yρ therefore only varies a term in Ωrad (through Y ) which vanishes on-shell
of the boundary conditions, it constitutes a direction that in any case is factored
out from SX0

M in the reduced phase space construction. It therefore does not lead
to an additional reduction of the dimension of the reduced phase space, in contrast
to the analogous situation in field theory later. A special case of this constraint is
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PM ≈̂ 0 in which case one obtains precisely the purely internal subsystem theory on
PM̊ discussed in section 2.2.1, in which no edge mode appeared.

In conjunction with the previous subsection, this implies that the edge-mode-dressed
configuration observables ofM drop out from the ensuing phase space PM̊ for the subsystem
M ,12 regardless of the boundary conditions. However, the edge mode C̄ plays a crucial
role in the formulation of the boundary conditions giving rise to the foliation of the global
solution space into subsystem theories for M . Through the boundary conditions, the
edge mode will also determine the dynamics on PM̊ induced by the global Lagrangian on
M ∪M̄ [101]. Altogether, the edge mode is therefore relevant for describing in an invariant
manner how a subsystem couples to its complement.

Below (especially in section 7), we shall elaborate on these observations in the field
theory setting, where the situation is similar, but also more subtle.

2.7 Reference frame changes as changes of foliation of the solution space

Symmetries as frame reorientations thus divide into those that are tangential or transversal
to a leaf SX0 in a foliation of S, but they always preserve the foliation. What kind of
transformations map between distinct foliations of S and so between different classes of
boundary conditions, i.e. subsystem theories?

For a fixed external frame R1, different foliations arise from different choices for the
functions a, b, c, d that define the “boundary variables” X,Y in equation (2.41). These dif-
ferent foliations are therefore related by the corresponding canonical transformations in S.

Similarly, the second external frame R2 will give rise do different edge-mode-dressed
“boundary variables” X ′, Y ′, not encompassed by X,Y in equation (2.41). These lead to
a distinct family of foliations of S. It is the reference frame transformations of section 2.4
that link the family of foliations relative to frame R1 with the one relative to frame R2.
This bears some analogy to spacetime, where different foliations are related by (spacetime)
reference frame transformations too.

3 Covariant phase space method in field theory

We now begin our systematic investigation of edge modes in (gauge) field theory. In the
remainder of the paper, we will consider relativistic and Lagrangian field theories defined on
d-dimensional Lorentzian manifolds of the formM∪M̄ , whereM is the spacetime subregion
of primary interest and M̄ its complement. For definiteness, the interface between M and
M̄ , which we denote by Γ, is assumed to be time-like with the topology of Sd−2 × R; see
figure 3 from section 4. The main purpose of this section is twofold: first, to summarize
the key ingredients of the covariant phase space formalism we will need at the global level,
that is in M ∪ M̄ ; and second, to anticipate the main questions we will have to address in
going from the global level to the regional covariant phase space for subregion M .

12The momentum variables pi, which depend on q̇C̄ , however, survive on PM̊ .
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3.1 Presymplectic structure of global field space

We start from the space of off-shell field configurations in M ∪ M̄ , which we denote by F .
Given a Lagrangian L, one can define a presymplectic potential Θ on F via

δL = EaδΦa + dΘ , (3.1)

where Φa are local coordinates on F , Ea ≈ 0 are the bulk equations motion associated to
L and ω := δΘ is the presymplectic current. We note that L,Θ and ω are (0, d)-, (1, d−1)-
and (2, d−1)-forms, respectively, where we recall that an (r, s)-form is an r-form on F and
an s-form on M ∪ M̄ . By construction, ω is spacetime closed on-shell, since:

dω = dδΘ = δdΘ = δ (δL− EaδΦa) = −δEaδΦa ≈ 0 . (3.2)

We can then introduce a canonical presymplectic two-form

Ω =
∫

Σ∪Σ̄
ω (3.3)

on the subspace of on-shell configurations S ⊂ F , where Σ ∪ Σ̄ is some arbitrary Cauchy
surface in M ∪ M̄ , such that Σ ⊂ M and Σ̄ ⊂ M̄ . In case M ∪ M̄ has spatial boundaries
(whether asymptotic or finite), we assume that suitable boundary (or fall-off) conditions
have been imposed at the global level so that ω ≈ 0 there. Together with (3.2), this in
turn ensures that Ω, seen as a two-form on the solution space S, is independent from the
choice of Cauchy surface Σ ∪ Σ̄.

Vector fields Xα on F which on-shell lie in the kernel of the presymplectic form,

Xα · Ω ≈ 0 , (3.4)

are infinitesimal gauge transformations. They form a Lie algebra [56] and generate the
gauge group G (group of spacetime gauge transformations). Any two solutions related by
an element of G lie on the same gauge orbit and must be considered as physically equivalent.
Ignoring technical subtleties (such as the Gribov problem), one obtains a symplectic form
Ω̂ on the space of gauge orbits P := S/G by quotienting Ω with respect to G. We shall
refer to P as the physical phase space or, equivalently, as the reduced phase space.

Our goal in the rest of the paper will be to elucidate how to induce a consistent
dynamics for fields in the subregion M via a post-selection procedure on the solution
space of the global dynamical system in M ∪ M̄ . In the presence of gauge symmetries,
post-selection can in principle be performed at two levels. As a first option, one can post-
select in the physical phase space of gauge orbits equipped with the symplectic form Ω̂, to
directly obtain a phase space PM for subregion M , equipped with a symplectic form Ω̂M .
Alternatively, one can implement post-selection prior to gauge reduction. Given S and Ω
as input, one then looks for a presymplectic form ΩM for the post-selected solution space
SM in region M . Technical obstructions aside, one might subsequently expect to recover
(PM , Ω̂M ) from (SM ,ΩM ) by a suitable gauge reduction at the level of the subregion M .
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This is captured in the following (and tentative) commutative diagram:

(S,Ω) (P, Ω̂)

(SM ,ΩM ) (PM , Ω̂M )

/G

post−selection post−selection

/G

However, the process of gauge reduction being in general highly non-trivial, horizontal
arrows are not always readily available in practice. Moreover, even in theories in which the
process of moding out by gauge transformations is reasonably well-understood, it can only
be implemented at the expense of locality.13 This should not be too surprising, since in
gauge theories, working with a redundant description of physical states is precisely the price
one pays to preserve the locality of the dynamcis. Given our focus on dynamical questions
in the present work (as well as in follow-ups [101]), it is highly desirable for our purpose
to preserve locality as much as possible. We will therefore implement post-selection at
the level of the presymplectic structure. Of course, our construction will take the gauge
equivalence relation induced by the gauge group G into account, but it will not directly
rely on the existence of (P, Ω̂).

3.2 Relation to canonical phase space methods*

*This section may be skipped by a quick reader. It is only relevant for section 4.2, where it
will be established that frame-dressed observables formulated with covariant methods (gen-
eralizing the construction proposed in e.g. [3]) can be re-expressed as relational observables
in the standard canonical setting (as defined in e.g. [94]).

As in the mechanical example of section 2, the field space F is not a phase space; the
presymplectic structure features degenerate directions which must be factored out. Indeed,
the presymplectic current density ω = δΘ is a (2, d − 1) form. Hence, in order to turn it
into a genuine 2-form on F , we have to choose a Cauchy slice Σ ∪ Σ̄ in the spacetime
M ∪ M̄ and integrate to obtain the presymplectic structure Ω =

∫
Σ∪Σ̄ ω. Outside (but not

on) the subspace of solutions S ⊂ F this Ω depends on the choice of Cauchy slice (see
section 3.1 and [56]). In interesting field theories, such as Maxwell and Yang-Mills theory,
or general relativity, the degenerate directions of Ω consist of vector fields X on F with
vanishing support on Σ∪ Σ̄. Such vector fields only generate changes in field configurations
away from the Cauchy slice; thus, they do not encompass gauge transformations Xα with
α such that it and its first derivatives feature non-trivial support on the Cauchy slice [56].
This is because, in contrast to the mechanical model of section 2, these theories yield
only on-shell constraints (see also section 7). For this reason, factoring out the degenerate
directions X of the presymplectic structure, which define an equivalence relation ∼ for
spacetime field configurations, results in a kinematical phase space Pkin = F/∼ with non-
degenerate symplectic form Ωkin. This is the standard phase space of the field theory of
interest, parametrized by the pullback of field configurations to Σ ∪ Σ̄, as well as their
normal derivatives on the Cauchy slice. Furthermore, for this reason, the restriction of the

13For a lucid and pedagogical illustration of the interplay between locality and gauge redundancy, see [9].
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equivalence classes to the subspace of solutions S/ ∼, in contrast to the mechanical toy
model, does not coincide with Pkin, but rather resides as a constraint surface C in Pkin,
on which the pullback of Ωkin is degenerate (for details on these statements, we refer the
reader to [56]).

Next, we can ask what sort of functionals descend from the field space F to the quotient
space Pkin = F/∼. It is clear that these must be functionals which are constant along the
degeneracy orbits in F . These are functionals Ψ on F which can be written in the pullback
form Ψ̃◦π = Ψ, where π denotes the natural projection from F to Pkin and Ψ̃ is a functional
on Pkin. Suppose we are given a local functional Φ, i.e. a functional on F ×

(
M ∪ M̄

)
as

the relational observables in equation (4.13). Given the above observations, we can turn it
into a functional on F that descends to Pkin if we pull it back and smear it appropriately
across the chosen Cauchy slice Σ∪Σ̄ so as to remove non-trivial spacetime dependence away
from the Cauchy slice. In particular, we can choose a Dirac delta function as a smearing
function in order to obtain a local functional on Pkin, which now depends on x ∈ Σ ∪ Σ̄.

Similarly, we may ask what sort of vector fields Z project down from F to Pkin as π∗Z,
where π∗ is the natural push forward from the tangent space TfF to Tπ(f)Pkin defined by
the projection π : F → Pkin, where f ∈ F . As explained in [56], these vector fields are
characterized by the conditition that LXZ · Ω = 0 for all degeneracy vector fields X; i.e.
the change of Z along the degeneracy orbits is a degenerate direction itself. In this sense,
the transversal part of Z is then constant on the degeneracy orbit and thereby admits a
well-defined projection. In order to yield a non-vanishing vector field on Pkin, Z has to
feature non-vanishing transversal components to the degeneracy orbits. For gauge theories
such as Maxwell or Yang-Mills theory, as discussed later in this work, this is the case for
any gauge symmetry directions Xα with α such that it features non-trivial support on
the chosen Cauchy slice Σ ∪ Σ̄ [56].14 We will henceforth denote the so projected gauge
directions on Pkin by X̃α := π∗Xα and restrict to field-independent α for now.

This permits us to consider the constraint functionals C̃[α], associated with the Lie-
algebra-valued spacetime functions α, defining the constraint surface C := S/∼ inside Pkin.
These are (non-uniquely) defined by

X̃α = Ω−1
kinδC̃[α] , (3.5)

where here δ denotes the exterior derivative on Pkin [56].15 The X̃α are degenerate directions
of the pullback of Ωkin to C. Note also that the C̃[α] will be local constraint functionals
that are smeared across the Cauchy slice Σ∪ Σ̄; they are related to the smeared field space
constraints C[α] we shall later encounter in section 7 by C[α] = C̃[α] ◦ π.

3.3 Towards a regional covariant phase space: main questions to be addressed

We conclude this section by listing the main questions to be addressed in the remainder of
the paper.

14In general relativity, one needs to restrict to the space of solutions in order to also obtain a well-defined
projection of non-spatial diffeomorphisms [56].

15As emphasized in [56], non-degeneracy of Ωkin does not imply its invertibility, given that Pkin is (assumed
to be) an infinite-dimensional manifold. Invertibility of Ωkin is thus an additional assumption.

– 27 –



J
H
E
P
0
2
(
2
0
2
2
)
1
7
2

1. How can we account for gauge-invariant regional degrees of freedom, i.e. degrees of
freedom in M or M̄ , in a minimally non-local way?

2. After post-selecting global solutions with respect to suitable gauge-invariant bound-
ary conditions on Γ, what type of presymplectic structure descends from the global
to the local field space?

3. Given a variational principle for M ∪ M̄ together with a suitable set of boundary
conditions on Γ, is there a systematic way of constructing a variational principle for
subregion M?

In section 4, we will explain how to gauge-invariantly dress boundary degrees of freedom
on Γ by suitable reference frames drawn from M̄ , hence providing an answer to the first
problem. This will allow us in section 5 to focus on a post-selected subset of solutions,
defined by gauge-invariant conditions at the interface Γ. In this subspace, we will be able
to canonically induce a presymplectic structure for the subregion M from the global one,
thus providing a resolution to the second problem. Finally, the third question will be
answered in a systematic and algorithmic manner in section 6. In conjunction, this post-
selection procedure can be viewed as deriving the covariant phase space formulation for
finite regions with boundaries, e.g. as established in [11, 66, 68], from the covariant phase
space construction for global spacetimes, e.g. as established in [56]. We illustrate some of
the constructions in Maxwell and Yang-Mills theory along the way, and provide an in-depth
exposition of example theories in section 7.

4 Edge modes as “internalized” external frames and gauge-invariant ob-
servables

Gauge symmetries can be understood as a manifestation of the intrinsically relational na-
ture of certain observables [102, 103]. A valuable concept for dealing with such observables
is that of a dynamical reference frame [41–54]: it is constituted by a collection of dynami-
cal degrees of freedom which can be used to keep track of the evolution of the rest of the
system in a relational and gauge-invariant way. We will make use of a particular class
of such reference frames to correctly account for the dynamics of gauge fields in a finite
subregion M relative to its complement M̄ . These frames are the edge modes which, as
in the mechanical setting of the previous section, we identify as “internalized” external
frames for M . As such, they are not additional degrees of freedom one has to add to the
theory; they are already ingredients of the global theory for M ∪ M̄ one starts with. After
discarding any additional dynamical information from M̄ , the reference frame turns into
an independent dynamical field living on the time-like boundary of M . This observation
explains why, in gauge theories, dynamical edge modes can emerge at finite boundaries.
As we will see, another advantage of the reference frame formalism is that it clarifies under
which operational assumptions such edge modes are to be considered as physically relevant:
namely, when we have the operational means to measure gauge-variant observables in M

relative to a reference frame in M̄ , which jointly, give rise to a gauge-invariant relational
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or dressed observable with support on both M and M̄ . These relational observables will in
later sections become crucial for formulating the boundary conditions inducing foliations
of the global space of solutions for M ∪ M̄ into distinct subregion theories for M (compare
also with the mechanical case in sections 2.5 and 2.6).

4.1 Dynamical reference frames in gauge field theory

Let us first specify what we mean by a dynamical reference frame for some local (gauge)
symmetry Lie group G acting on some system S. Loosely speaking, it should be a dy-
namical subsystem R internal to the total system S that is as asymmetric under G-
transformations as possible. Its purpose in life is to constitute a dynamical coordinate
system for parametrizing G-orbits in the configuration space of the total system S. As
such, R constitutes a dynamical reference system relative to which we can describe the
remaining degrees of freedom of S as they transform under G in such a way that the rela-
tions translate into gauge-invariant observables of the theory. Subsystems that are already
invariant therefore constitute the worst possible choices of frames. In a nutshell, this is the
philosophy underlying much of the recent efforts on quantum reference frames [41–54]. In
gauge field theory, we will take G to be the local structure group rather than the (global)
gauge group, the latter coinciding in this context with the group of gauge transformations
(which can be described locally as G-valued functions). Our construction will therefore be
spacetime local by nature. In particular, the system S and reference frame R will consist
of local degrees of freedom at (or in a neighborhhod of) a spacetime point x.

More precisely, in order for R to parametrize G-orbits, it must (locally in spacetime)
feature a set of at least dimG configuration degrees of freedom that transform freely under
G. In other words, R must be such that G acts freely on its configuration space R (i.e. the
isotropy group for each configuration is trivial). If G acts furthermore regularly on R (i.e.
it also acts transitively, connecting any two configurations), then R is a principal homoge-
neous space for G—so dimR = dimG—and R features as many configurations as there
are group elements. In the language of [104], such a frame R is called a complete reference
frame. If, by contrast, G acts freely, but not regularly on R, the latter contains more
configurations than there are group elements, in which case we may call R an overcomplete
reference frame. It is also possible to consider partial reference frames characterized by the
action of G on R not being free, e.g. see [105], but we shall not explore them here much
further. Henceforth, we shall refer to the configurations of R as its frame orientations.
For example, in section 2, we considered particles as complete reference frames for the
translation group, whose positions were their frame orientations.

Let us now consider the general case of a gauge theory with local symmetry governed by
a connected Lie group G (which may be non-Abelian), and for definiteness we assume it to
be a compact matrix group (which could be weakened). The group of gauge transformations
G is a space of G-valued functions on spacetime, x 7→ g(x), with suitable fall-off conditions
at asymptotic infinity. The group law is the pointwise multiplication in G: given two gauge
transformations g1 and g2, g1g2(x) = g1(x)g2(x). The connection is a g-valued one-form
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A, transforming under the group action:

g . A = gAg−1 − dgg−1 . (4.1)

Indeed, we can check that (g1g2) . A = g1 . g2 . A. The generators of such gauge transfor-
mations are vector fields Xα on field configuration space F , labeled by g-valued spacetime
functions α:16

Xα(A) = [α,A]− dα , (4.2)

where [·, ·] denotes the Lie bracket. In particular, etXα(·) = etα . (·) for any t ∈ R.
Let us suppose that the gauge theory contains other fields, which are dynamically

independent from A, and that we collectively denote by Ψ. We can now consider the three
types of reference frames R alluded to above for the field theory (the system S) parametrized
by A,Ψ. The following applies both to the bulk and boundary of spacetime regions, so for
the moment we do not restrict to edge modes. The simplest possible type of frame R is
a G-valued reference frame: its configurations are described by a functional U [Ψ, A] with
values in the space of gauge transformations, which transforms by left-multiplication under
.. Namely, at least locally in field space F , U [Ψ, A] assigns a group element U [Ψ, A](x) ∈ G
to every point x in spacetime and:

g . U [Ψ, A] = gU [Ψ, A] . (4.3)

The frame orientation space R is therefore parametrized by these G-valued functions on
spacetime. When such a construction is possible, U [Ψ, A] provides a field-space-local and
complete reference frame for the local structure group G at every point in spacetime, since
the action of G on itself by left multiplication is regular. Owing to the Gribov obstruction,
this will in general not be possible globally in field space F ; for if it was possible, one could
use U [Ψ, A] to define global gauge fixing conditions for the G-orbits in F .

A group-valued reference frame is characterized by a particular choice of free group
action of the local structure group G on the configuration space R: namely, the action of G
on itself by left multiplication, which enters into the definition (4.3) (so that, in particular,
R = G and the action is also regular). It is straightforward to generalize this construction
to other types of reference frames, with R 6= G; the free character of the G-action on R is
the only necessary condition we need to preserve in order to obtain a reference frame whose
configurations can be used to parametrize G-orbits in field space. Indeed, suppose we are
given a free group action of the local symmetry group G on R, that is, a (smooth) map
D : G×R → R , (g,R)→ g ·R such that: for any (g,R) ∈ G×R, g ·R = R implies that
g = e (where e is the identity element in G). A local reference frame for the structure group
G can then be obtained by constructing a R-valued functional R[Ψ, A] transforming as:

(g . R[Ψ, A])(x) = g(x) ·R[Ψ, A](x) . (4.4)

If the group action D is regular on R, then the latter defines a complete reference frame
for G at every point x in spacetime; if it is only free (hence not transitive), the resulting

16This is true at least locally, and relative to a choice of trivialization. Gauge transformations are more
generally understood as G-valued sections, but this will not play any significant role in the present paper.

– 30 –



J
H
E
P
0
2
(
2
0
2
2
)
1
7
2

local reference frame is overcomplete. Again, on account of the Gribov obstruction, the
frame will generally have these properties only locally in field space F .17

Finally, we could imagine relying on group actions that fail to be free to construct
partial reference frames. Such structures may be of interest to describe situations in which
the observer has incomplete knowledge of her frame of reference. For simplicity, we will
ignore this possibility here, and instead adopt the view that, at least in principle, it is always
possible to construct (field-space-local) complete reference frames for the gauge degrees of
freedom of interest. Concretely, this may require the (explicit or implicit) introduction of a
sufficiently rich set of ancilla systems into our description.18 For instance, in pure Maxwell
theory, we could imagine adding test charges to make operational sense of holonomies
along open paths, which can in turn be used to construct group-valued reference frames
at their open ends. In most of the remainder of this manuscript, we shall work with
group-valued frames.

4.2 Frame-dressed observables are relational observables

Suppose now that we have access to a group-valued—and hence complete— reference
frame U [Ψ], which for simplicity does not depend on the connection A. This permits us to
decompose any local functional Φ[A] of the connection canonically into:

Φ = Φinv + Φgauge , (4.5)

where Φinv is the gauge-invariant frame-dressed field

Φinv := U [Ψ]−1 . Φ , (4.6)

and
Φgauge := Φ− U [Ψ]−1 . Φ (4.7)

17A mechanical toy model for dynamical reference frames in the presence of the Gribov problem is the
N -body problem in 3D subject to rotation and translation symmetry, where globally valid gauge-fixing
conditions likewise do not exist on the constraint surface [43]. This leads to an absence of globally valid
internal frame perspectives, in some analogy to the absence of globally valid coordinate systems on general
spacetimes.

18This is best illustrated with an example based on the natural action of G = SO(3) on the unit two-
sphere S2 of R3. This group action is not free since a point on the sphere is left invariant by a U(1) subgroup
of G. For the same reason, the action of SO(3) on three copies of S2 fails to be free. However, by restricting
the latter to the orbit of a normal basis (e1, e2, e3), we do obtain a free group action of G. In other words,
while a single unit vector does not constitute a complete local reference frame in R3, a basis does (for a
related discussion in quantum theory, see [51]). Likewise, in gauge field theory, a matter-dressed Wilson
line R[A](x) := P exp

(
−
∫
γx
A
)
ψ(γ(0)), where γ : [0, 1] → M ∪ M̄ is a path in spacetime and ψ denotes

a charged spinor field, transforms as (g . R[A])(x) = g(x) · R[A](x) under gauge transformations, where ·
is a group action on spinors. This action is in general not free, so that R will only constitute a partial
frame for G at x. Nonetheless, it is always possible to construct a complete reference frame from a suitable
collection of such matter-dressed Wilson lines, in a conceptually analogous manner to the previous example.
Anticipating section 4.3, this shows that edge reference frames (or edge modes) which are not group-valued
are in principle relevant in gauge field theory, even though, for simplicity, we will focus exclusively on
group-valued ones from section 4.4 onwards.
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carries the gauge dependence of Φ. Such a frame associated decomposition is similar to the
splitting into vertical and horizontal components relative to a field-space connection, as
advocated by Gomes and Riello [106, 107]. While the latter splitting was done for a spatial
slice, here we take a covariant picture, applicable to spacetime regions. As an illustration,
we find for the connection and field strength:

Ainv = U [Ψ]−1AU [Ψ]− dU [Ψ]−1U [Ψ] , Agauge = −U [Ψ]−1dU [Ψ]−
∑
n≥1

1
n! [A, u]n , (4.8)

Finv = U [Ψ]−1FU [Ψ] , Fgauge = −
∑
n≥1

1
n! [F, u]n , (4.9)

where we have defined the Lie algebra generator u via U [Ψ](x) := eu(x), used the general
formula AdeX = eadX , and introduced the short-hand [A, u]n := [[[A, . . .], u], u]. Owing
to the Gribov obstruction, this gauge-invariant dressing only needs to hold locally in field
space F . When G = U(1), a special case we will restrict to in some examples, Ainv = A−dϕ
and Agauge = dϕ, where U [Ψ](x) = eiϕ(x) (and we have absorbed a factor of i in A so that
Aµ(x) ∈ R).

While the choice of dynamical reference frame U is not a choice of gauge, stan-
dard gauge-fixing conditions can be recovered from this formalism and translate into spe-
cific restrictions on the orientation of U . For instance, in a U(1) gauge theory where
U(x) = eiϕ(x), we can view the Lorenz gauge-fixing condition ∇µAµ = 0 as an equation for
ϕ: ∇µ∇µϕ = −∇µAµrad, with the gauge-independent contribution on the right-hand side
playing the role of source.

This construction extends to the case of a frame R[Ψ] not valued in G that, however,
transforms freely under a G-action D (as specified in equation (4.4)). The only extra
ingredient we need in order to make sense of frame-dressings in this context is an equivariant
isomorphism between G and R; that is, a (smooth) invertible map E : G→ R such that:

∀g, g′ ∈ G , E(gg′) = g · E(g′) . (4.10)

Since E is one-to-one, we can use its inverse E−1 : R → G to introduce the decomposition:

Φinv(x) := [E−1(R[Ψ](x))]−1.Φ(x) , Φgauge(x) = Φ(x)−[E−1(R[Ψ](x))]−1.Φ(x) . (4.11)

Owing to equation (4.4), together with the fact that E−1 is itself equivariant,19 the frame-
dressed field Φinv is again gauge-invariant. What we have left to do is to justify the existence
of an equivariant and invertible map E. But it suffices to define E(g) := g ·R0, where R0
is some arbitrary (and fixed) configuration in R. As can be checked explicitly, this is an
equivariant map, and given that G acts freely on R, it is also injective. To make sure it
is surjective, all we need to do is to restrict the configuration space to its image E(G),
namely, define R := G ·R0.

19That is, for any (g,R) ∈ G×R:
gE−1(R) = E−1(g ·R) , (4.12)

which is a direct consequence of equation (4.10), evaluated for g′ = E−1(R).
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In fact, recalling the mechanical example from sections 2.2.1 and 2.2.2, we can slightly
generalize the above construction of the gauge-invariant frame-dressing. Restricting to
group-valued frames for simplicity, we can introduce a dependence on the frame orienta-
tion g ∈ G into the frame-dressed observable via right multiplication on the frame (cf.
equation (2.8)):

OΦ,U (g;x) :=
(
U [Ψ](x) g−1(x)

)−1
. Φ[A](x) (4.13)

for any local functional Φ[A] of the connection. We have here written the dependence
on the spacetime point x to emphasize that these observables are functionals on F ×(
M ∪ M̄

)
. This observable is clearly gauge-invariant, g′.OΦ,U (g) =

(
g′Ug−1)−1

.(g′ . Φ) =(
Ug−1)−1

g′−1 . (g′ . Φ) = OΦ,U (g). It is a relational observable, describing in a gauge-
invariant manner how the functional Φ transforms locally under G relative to the frame U ;
it encodes the question “what is the value of Φ when the frame U is in orientation g ∈ G?”.
Indeed, this can be seen as follows: since OΦ,U (g) is gauge-invariant, we can evaluate it on a
gauge-fixing surface in field space without it changing value. In particular, we can evaluate
it on the local gauge-fixing condition U [Ψ] = g, in which case the observable simply reduces
to Φ. Relational observables are therefore so-called gauge-invariant extensions of gauge-
fixed quantities [58, 94]. As a special case, we note for later use that “Φ when the frame is
in the origin e” coincides with the invariant observables above

OΦ,U (e) ≡ Φinv . (4.14)

In the remainder of this subsection, we shall demonstrate that the frame-dressed ob-
servables in equation (4.13) indeed constitute the covariant phase space version of the
relational observables originally constructed in [95], using the standard Legendre transfor-
mation based approach to phase spaces (and generalizing earlier proposals [88, 89, 92, 93]).
To this end, the reader is invited to remember how the standard phase space formulation
in field theory is obtained from the covariant one, which is discussed in section 3.2. One
elementary aspect to keep in mind is that, in their canonical form, and in contrast to their
covariant incarnation above, the relational observables depend on a point on a Cauchy
slice, rather than a spacetime point. To map from the covariant to the canonical picture,
we therefore need the canonical projection map π : F → Pkin, where Pkin denotes the
standard kinematical phase space, the construction of which is outlined in section 3.2.

With this key ingredient at hand, we are in a good position to discuss the “projection”
of the frame-dressed observables in equation (4.13) from F to Pkin. Recalling, eXα(·) =
eα . (·) and setting Ug−1 = eue−α =: eu′ , for u′ ∈ g, we can also write them as

OΦ,U (g;x) = eXαΦ[A](x)
∣∣∣
α(x)=−u′(x)

. (4.15)

Provided x ∈ Σ ∪ Σ̄ and the reference frame functional U [Ψ](x), which may depend non-
locally on dynamical fields, only has support in this chosen Cauchy slice, it will “project” to
a group valued local reference frame functional on Pkin via U = Ũ ◦π. We shall henceforth
assume that this is the case (which may require adjusting the Cauchy slice accordingly).20

20For example, in the below subregion problems, this will be the case for holonomy constructed frames
whose holonomies do not have support outside Σ ∪ Σ̄.
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In this case, also the field-dependent Lie-algebra-valued spacetime functions u′ descend to
the kinematical phase space as u′ = ũ′ ◦ π since pointwise addition and multiplication of
“projectable” functions is preserved by the projection π. Altogether, if Φ[A](x) is a local
field functional and x ∈ Σ ∪ Σ̄, OΦ,U (g;x) constitutes a functional which only depends on
the degeneracy orbits in F and therefore descends to a functional on Pkin, i.e.

OΦ,U (g;x) = ÕΦ̃,Ũ (g;x) ◦ π . (4.16)

Specifically, the assumption on u′ restricts us to α with non-trivial support in the Cauchy
slice. As noted above, the corresponding Xα contain transversal directions to the degener-
acy orbits in F . Since Φ[A](x) is constant along the degeneracy orbits for x ∈ Σ ∪ Σ̄, we
have that only the transversal directions contribute to the derivative Xα(Φ). This implies
Xα(Φ) = X̃α(Φ̃) ◦ π (transversal derivatives are preserved by the projection π) and thus
ultimately

eX̃αΦ̃
∣∣∣
α=−ũ′

◦ π = eXαΦ
∣∣∣
α=−u′

. (4.17)

Recalling equation (3.5), this yields for x ∈ Σ ∪ Σ̄

ÕΦ̃,Ũ (g;x) = eX̃αΦ̃
∣∣∣
α=−ũ′

= e{C̃α,Φ̃}
∣∣∣
α=−ũ′

=
∞∑
n=0

1
n!{C̃α, Φ̃}n

∣∣∣∣∣
α=−ũ′

, (4.18)

where {f, g}n = {f, {f, g}n−1} denotes the nth-nested Poisson bracket with convention
{f, g}0 = g. We emphasize that the Poisson bracket is here the one defined in terms of the
kinematical symplectic form Ωkin on Pkin. This is precisely the power-series representation
of relational observables in field theory originally constructed in ([95], eqs. (4–6)) using the
notion of a kinematical phase space.

Equation (4.13) therefore constitutes the covariant phase space formulation of rela-
tional observables and we conclude that all frame-dressed observables are in fact relational
observables. We also note that it is more convenient to construct relational observables
covariantly as done here; this does not necessitate to choose a Cauchy surface and neither
to choose a (possibly non-locally defined) reference frame geared to this Cauchy slice.

So far we have considered relational observables OΦ,U on the full field space, but
ultimately one is interested in their restriction to the space of solutions S, which in the
kinematical phase space formulation means restricting equation (4.18) to the constraint
surface C. Note that, while the construction of Pkin depends on the choice of Cauchy slice,
the construction of C in fact is independent of it since Ω does not depend on it on solutions.
This permits one to also dynamically reconstruct relational observables on spacetime points
x not lying on the chosen Cauchy slice by solving the equations of motion. By contrast,
off-shell, one would have to construct a new kinematical phase space.

4.3 Edge modes as dynamical reference frame fields

We now apply this general formalism to a subregionM , delimited by initial and final partial
Cauchy surfaces Σ1 and Σ2, and a time-like boundary Γ. In particular, we shall henceforth
only consider dynamical frames and relational observables on Γ: that is, we should content
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U [Ā](x)

Σ̄1

Σ1

M

M̄

Γ

Σ2

Σ̄2

x

y

W U [Ā](y)

sx

sy

Γ0

Figure 3. The spacetime region M and its complement. From a system of Wilson lines {γx}
anchored at asymptotic source {sx}, we construct the dynamical edge field U [Ā], which provides a
reference frame for the time-like boundary Γ. It allows us to decompose gauge-invariant observables
with support on both M and M̄ , such as the Wilson loop W , into composites of regional gauge-
invariant observables.

ourselves with a realization of formula (4.4) in which x spans the time-like boundary Γ
rather that the whole spacetime. For simplicity, we assume that the hypersurface Γ has
the topology of Sd−2 times an interval. We can arbitrarily extend Σ1 and Σ2 into complete
Cauchy surfaces Σ1 ∪ Σ̄1 and Σ2 ∪ Σ̄2. We then denote by M̄ the complement of M in the
spacetime slab delimited by Σ1 ∪ Σ̄1 and Σ2 ∪ Σ̄2. See figure 3.

We collectively denote local field configurations in M (resp. M̄) by Φ (resp. Φ̄). In
the presence of gauge symmetries, there might exist gauge-invariant observables with sup-
port in M ∪ M̄ , which cannot be reconstructed from the knowledge of gauge-invariant
observables which are solely supported in M or M̄ . Let us consider two examples, we shall
revisit below:21

(a) Consider a Wilson loop W with support in both M and M̄ , that intersects Γ at two
points x and y, see figure 3. Calling H̄xy[Ā] := P exp

(
−
∫
γxy

Ā
)
(resp. Hxy[A]) the

holonomy from x to y along the portion of the loop that lies inside M̄ (resp. M),22

we have
W := Tr

(
H̄xy[Ā]−1Hxy[A]

)
(4.19)

and neither Hxy[A] nor H̄xy[Ā] are gauge-invariant. If G is Abelian this can be
decomposed into gauge-invariant contributions from M and M̄ , but not otherwise.
Indeed, consider the closed Wilson line Hxx[A] = Hxy[A]H∂

yx[A] = P exp
(
−
∮
γ A
)
,

where γ is the closed path consisting of the previous path from x to y through M

and some path from y to x that passes solely through the interface Γ. Similarly, we
21In the mechanical toy model of section 2.5, examples would be intergroup relative distances, such as,

say, Qj|j̄ between particle j of group M and particle j̄ of group M̄ .
22Note that in the special case G = U(1) our convention to have real angles entails that H̄xy[Ā] =
P exp

(
−i
∫
γxy

Ā
)
.
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Γ

M M̄

Hxy[A]
H̄xy[Ā]

H∂
yx[A]

x

y

Figure 4. Wilson loop W = Tr
(
H̄xy[Ā]−1 Hxy[A]

)
, with support on both M and M̄ .

can define H̄xx[Ā] = H̄xy[Ā]H∂
yx[A], so that the Wilson loop can be written as

W = Tr
(
H̄xx[Ā]−1Hxx[A]

)
, (4.20)

see figure 4. When G is Abelian, both Hxx[A] and H̄xx[Ā] are gauge-invariant. In
the case that G = U(1), the trace is trivial, so that the Wilson loop W becomes
the product of the purely regional Wilson loops Hxx[A] and H̄xx[Ā] [9]. In the non-
Abelian case, neither Hxx[A], nor H̄xx[Ā] are gauge-invariant. The following example
shows that the decomposition of W into regional gauge-invariant quantities in the
Abelian case is a degenerate feature that, regardless of the group, does not hold
anymore as soon as dynamical coupling to matter is included into the picture.

(b) Consider a Wilson line passing through the point y in the interface Γ

ψ†(x)Hxy[A] H̄yx̄[Ā] ψ̄(x̄) (4.21)

and connecting a charged antiparticle ψ†(x) in M to a charged particle ψ̄(x̄) in M̄ .23

Regardless of the group, neither ψ†(x)Hxy nor H̄yx̄ψ̄(x̄) are gauge-invariant.

More abstractly, in the quantum theory, the failure to decompose gauge-invariant
observables with support in bothM∪M̄ into gauge-invariant observables fromM and M̄ is
rooted in the appearance of a constraint-induced non-trivial common center in the algebras
of gauge-invariant observables of M and M̄ , e.g. see [108]; given any Cauchy surface, this
center does not commute with arbitrary gauge-invariant cross-boundary observables.24

In such a situation, two natural options can be considered when projecting the global
dynamics down to the subregion M :

23To avoid confusion with our convention to equip fields in M̄ with a ,̄ we denote the antiparticle field
with a †.

24For instance, the algebra generated by AΣ ∪AΣ̄, where AΣ (resp. AΣ̄) is the algebra of gauge-invariant
observables supported on the partial Cauchy slice Σ (resp. Σ̄) is obtained by taking the bicommutant
(AΣ ∪ AΣ̄)′′. Since both the commutant and bicommutant contain the center, the result cannot include
arbitrary gauge-invariant cross-boundary observables; that is, (AΣ ∪ AΣ̄)′′ ( AΣ∪Σ̄.
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• if one is only interested in gauge-invariant observables which are fully supported in
M , it is sufficient to construct a variational principle for the regional configuration
variables Φ, and completely forget about the configuration variables Φ̄;25

• by contrast, in order to be able to reconstruct all gauge-invariant observables with
support in M ∪ M̄ (including those which cannot be reconstructed from regional
gauge-invariant observables), it is necessary to keep track of a sufficient amount of
relational information between M and M̄ .

In the present work, we are interested in the second option because it is more general,
but we emphasize that there is nothing wrong with following the first route: it is more
restrictive, but completely appropriate in a physical situation where one has no operational
access to the region M̄ .

The main idea is to construct a reference frame R[Φ̄,Φ] on the time-like boundary Γ,
with a non-trivial dependence on degrees of freedom Φ̄ (in a sense we will make more precise
below), and possibly on Φ as well. Namely, we assume we can construct a functional:

R[Φ̄,Φ] : Γ→ R , ∀x ∈ Γ, (g . R[Φ̄,Φ])(x) = g(x) ·R[Φ̄,Φ](x) , (4.22)

that is kinematically independent (i.e. can be varied independently) from the pull-backs
φ := Φ

∣∣
Γ, as we will elucidate in more detail in the following subsection.26 This functional

R[Φ̄,Φ] constitutes an edge mode field on Γ, which we can use as a reference frame to
decompose any φ on Γ as:

φ = φrad + φgauge (4.23)

where

φrad(x) := [E−1(R[Φ̄,Φ](x))]−1 . φ(x) , φgauge(x) := φ(x)− [E−1(R[Φ̄,Φ](x))]−1 . φ(x) ,
(4.24)

and E is an equivariant map as defined in (4.10). For a group-valued edge mode frame
field, which for distinction we will continue to denote by the letter U , we also consider
more generally the edge relational observables (cf. equation (4.13))

Oφ,U (g) :=
(
U [Φ̄,Φ] g−1

)−1
. φ . (4.25)

Because this decomposition operates solely on the time-like boundary, we call the gauge-
invariant dressed field φrad the radiative component of φ relative to R[Φ̄,Φ].27 We see that
the joint data (φ,R[Φ̄,Φ]) allows us to define the gauge-invariant observable φrad, which
cannot in general be reconstructed from φ alone (unless gauge symmetries act trivially on
φ). It is therefore crucial to keep track of R[Φ̄,Φ] when restricting to the subregion M . A

25Section 2.2.1 considers the analogous situation in mechanics.
26We emphasize that Φ

∣∣
Γ
is our notation for the pull-back of Φ to Γ. To avoid any potential confusion,

we will never invoke the distinct notion of restriction of a field (for instance, the restriction of a normal
vector field to Γ).

27We are here adopting the suggestive nomenclature introduced in the related work [7–9], even though
our set-up is not identical.
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natural way of doing so is to extend the configuration space for M spanned by Φ by an
R-valued field on Γ, that we will simply denote by R. We will therefore construct a regional
variational principle for the pair of bulk and edge fields (Φ, R). Such an extension (without
variational principle) was originally introduced in [3], but we emphasize that from the point
of view of the post-selection procedure discussed in the next sections (see also section 2.5
for the mechanical analog), R can be directly interpreted as a projection of R[Φ̄,Φ] from
the global variational problem for M ∪ M̄ to the regional one for M . This clarifies why R
must be dynamical, since R[Φ̄,Φ] is kinematically independent from Φ in the global field
space associated with M ∪ M̄ . Likewise, this point of view naturally explains why, when
gluing back the two regions M and M̄ , R will serve as a placeholder for R[Φ̄,Φ] [101].

Hence, R[Φ̄,Φ] does not constitute a set of degrees of freedom that has to be added
to the theory: it is part of the global theory to start with, however, only becomes relevant
when we restrict our attention to the subregion M under the premise that we would like
to know how it relates to its complement M̄ . We can therefore view the edge mode field
R, in the sense of section 2.2.2, as an “internalized” external reference frame for M . In
particular, the relational observables (4.25) encode how M relates to its complement M̄ .
As we will illustrate in the next subsection, once we explicitly include the edge frame into
the picture, we can recover the cross-boundary observables in examples (a) and (b) above
from regional relational observables.

4.4 Concrete realization of group-valued edge reference frames

As an illustration of the general framework outlined in the previous subsection, let us
discuss how group-valued edge reference frames can be constructed from a gauge connec-
tion A.

A natural idea is to construct a system of paths {γx|x ∈ Γ} such that the path γx
ends at x and originates from the interior of the complementary region M̄ .28 One can
then define U [Ā, A](x) as the holonomy of (Ā, A) along that path. In order for U [Ā, A](x)
to transform as in (4.3), the Wilson line must originate from a hypersurface where gauge
transformations vanish. We can for instance imagine that M̄ has an asymptotic boundary
where gauge transformations are constrained to fall-off sufficiently rapidly, so that we
only consider bulk-supported gauge transformations in the global field space.29 Such a
boundary provides a non-dynamical anchor for the Wilson lines, which can be understood
as a proxy for background matter degrees of freedom which are not explicitly included in
the description (such as heavy degrees of freedom constituting measurement apparata).
We can for example assume that the path γx originates from a reference point sx lying
on an asymptotic boundary, and that the latter is equipped with a background reference
frame U0(sx) that no longer transforms under G, as illustrated in figure 3.

To be more precise, we will assume that we have a continuous map γ : [0, 1] × Γ →
M ∪ M̄ , (t, x) 7→ γx(t), such that γ(·, x) = γx for any x ∈ Γ. In particular, the reference

28γx may or may not intersect M , but it must have some support in M̄ .
29In doing so, we are ignoring potentially interesting effects associated to asymptotic symmetries and

soft modes. Understanding the interplay between our general construction and asymptotic limits is an
important objective that we leave for future work.
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set Γ0 := γ(0,Γ) = {sx , x ∈ Γ} is homotopic to Γ = γ(1,Γ), which will prove important
later on. We also assume sufficient regularity of γ (such as, for instance, differentiablity) to
ensure that U [Ā, A] : Γ→ G is well-defined and differentiable. Lastly, in order for U [Ā, A]
to qualify as a maximally rich and interesting external reference frame for the region M ,
we will require it to be a non-trivial functional of the fields in M̄ , namely:30

• for any x ∈ Γ, U [Ā, A](x) can be varied independently from A in M ;

• for any x, y ∈ Γ, U [Ā, A](x) and U [Ā, A](y) can be varied independenly from each
other whenever x 6= y.

We will assume that those conditions hold at the dynamical level, that is to say in S, in
which case we will say that U [Ā, A](x) is dynamically independent from A

∣∣
M
. This may be

hard to check in full generality,31 but this is a reasonable assumption that we can expect to
hold true for many systems of paths. Furthermore, we can easily justify that the conditions
do hold in F , a weaker statement we may call kinematical independence. Indeed, at the
kinematical level, the first condition is fullfilled by our assumption that Γ0 ⊂ ˚̄M , where˚
denotes the interior of a region: it is then always possible to change the value of U [Ā, A](x)
by a variation of A with support in γx([0, 1]) ∩ ˚̄M . Similarly, one can enforce the second
condition by requiring, for any x 6= y, the existence of tx and ty such that: γx(tx) ∈ ˚̄M ,
γy(ty) ∈ ˚̄M , and γx(tx) 6= γy(ty). In words, any two distinct paths are assumed to be
non-overlapping somewhere inside M̄ . For conceptual clarity, and without significant loss
of generality, we will from now on assume that the paths γx are entirely supported in M̄ ,
as illustrated in figure 3, so that the reference frame is a functional of Ā alone and reads
explicitly

U [Ā] := P exp
(
−
∫
γx
Ā

)
. (4.26)

Once we have selected a dynamical reference frame for the boundary Γ, it is possible
to decompose any gauge-invariant observable as a composite of regional gauge-invariant
observables, relative to that particular frame. For instance, we can equivalently write the
cross-boundary Wilson loop in equation (4.19) as:

W = Tr
(
H̄s[Ā]Hxy[A]rad

)
, (4.27)

where

Hxy[A]rad := U [Ā]−1 . Hxy[A] = U [Ā](y)−1Hxy[A]U [Ā](x) , (4.28)
H̄s[Ā] := U [Ā](x)−1Hxy[Ā]−1U [Ā](y) , (4.29)

30Even though these conditions make the formalism physically more transparent, they are not strictly
necessary for our general construction to go through. One could for instance consider a situation in which,
because of a non-generic choice of system of paths, U [Ā, A] happens to be determined uniquely across Γ
once we know its value at one point. In such a situation, U [Ā, A] would effectively generate a reference
frame valued in a single copy of the structure group G, rather than in a space of group-valued functions.
But this would not preclude its use as a dressing field.

31For example, this assumption holds in the mechanical toy model of section 2.
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and both of these quantities are gauge-invariant. Similarly, the dressed Wilson line in
equation (4.21) can be split into

ψ†(x)Hxy[A]Hyx̄[Ā] ψ̄(x̄) = (ψ†(x)Hxy[A])rad ψ̄s[Ā](x̄) , (4.30)

where now

(ψ†(x)Hxy[A])rad := ψ†(x)Hxy[A]U [Ā](y) , ψ̄s[Ā](x̄) := U [Ā](y)−1Hyx̄[Ā] ψ̄(x̄) . (4.31)

4.5 Symmetries as edge frame reorientations

Now that we have set up an edge frame field, we are in the position to consider two types
of frame transformations as in the mechanical toy setting in sections 2.2.2 and 2.4: frame
reorientations and frame changes. Both types of transformations act on the right of the
frame U [Φ̄], in contrast to gauge transformations (4.22) which act on the left. The essential
difference between the two is that frame reorientations are field-independent, while frame
changes depend on the gauge-invariant relation between the old and new frames. We will
begin with the former and discuss the latter in the next subsection.

These observations are particularly clear in the example of the group-valued reference
frame U [Ā] we have just introduced. A reorientation of the edge mode U [Ā] can be inter-
preted as a change of background reference frame, parametrized by a group-valued function
g0(sx) on the asymptotic boundary Γ0 where the Wilson lines are anchored.32 The effect of
this change of asymptotic background frame on the holonomy along γx can be written as

P exp
(
−
∫
γx
Ā

)
→ P exp

(
−
∫
γx
Ā

)
g−1

0 (sx) (4.32)

and constitutes an asymptotic change of trivialization. Since γx(0) = sx, this induces a
group-valued map g : x 7→ g0(sx) on Γ, which acts on U [Ā] in equation (4.26) from the
right as:

U [Ā](x)→ U [Ā](x)g(x)−1 , (4.33)

where we emphasized that g, corresponding to a change of background frame, is independent
from dynamical fields. In particular, it is generated by a vector field Yρ on field space F
where ρ is some non-dynamical Lie-algebra-valued field on Γ, corresponding to the group
element g.

Transformations of this kind that act “on the other side” of the edge mode from gauge
transformations have been identified in [3] as symmetries.33 Our construction elucidates
what they mean physically: they are edge frame reorientations. In [3, 11], these symmetries
have been associated with charges Q[ρ] obtained via δQ[ρ] = Yρ · ΩM , where ΩM is the
regional presymplectic structure for M . In the mechanical toy model, we have shown the

32By contrast, in the case when we use an open ended Wilson line dressed by a charge in the bulk or on the
asymptotic boundary of M̄ and running solely through M̄ to Γ, i.e. Ũ [Ā](x) = P exp(−

∫
γx
Ā)ψ̄(sx), the re-

orientation of the edge frame corresponds to a physical transformation of the charge ψ̄(sx) 7→ g0(sx)−1ψ̄(sx).
33In the convention of [3], gauge transformations act on the right of the edge mode, while symmetries act

on the left, in contrast to here. We would obtain the convention of [3] if we chose the opposite orientation
for the holonomies defining our edge mode frame.
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analog in section 2.2.2 and demonstrated in section 2.6 that, in the presence of boundary
conditions, one has to distinguish symmetries into three further types. In order to expand
on this using our construction, we will need more structure. In particular, we will explain
in section 5 how to obtain ΩM from the global presymplectic structure on M ∪ M̄ via a
post-selection procedure involving the edge modes. This will then permit us to explore the
charges in sections 5 and 7 in detail in Maxwell, Chern-Simons and Yang-Mills theories,
including the further distinction of symmetries into genuine symmetries, meta-symmetries
and boundary gauge transformations.

For now, we observe that frame reorientations change the physical situation, as they
change the gauge-invariant relation between the system of interest (here the fields φ on
Γ) and the frame. This is clear from the associated transformations of the relational
observables in (4.25) (see also (2.27) for the mechanical analog):

Oφ,Ug−1(g′) = Oφ,U (g′g) . (4.34)

This constitutes a change of frame orientation label g(x), x ∈ Γ, in the family of gauge-
invariant observables Oφ,U (g). Hence, this amounts to a change of observable within this
family and therefore a change of relation since the family encodes the value of φ when the
frame U is in orientation g.

In analogy to the left group action . corresponding to field-independent gauge trans-
formations eXα(·) = eα . (·), we can define the right group action � corresponding to
symmetries on functionals f depending on boundary fields φ,U , as well as their derivatives
by (cf. equation (2.29) for the mechanical analog)

g(ρ)� f [φ,U ] := eYρf = f [φ,Ug(ρ)] . (4.35)

In particular, frame reorientations take the form g−1 � U = Ug−1, leaving other degrees
of freedom invariant, and we can rewrite the relational observable transformation in equa-
tion (4.34) as (cf. equation (2.30) for the mechanical analog)

g−1 �Oφ,U (g′) = Oφ,g−1�U (g′) = Oφ,U (g′g) . (4.36)

4.6 Edge frame changes and transformations of relational observables

We have provided a prescription for how to construct an edge mode frame field on Γ
using a system of paths {γx|x ∈ Γ}. However, this construction is by no means unique,
as illustrated in figure 5. The global theory in M ∪ M̄ supports a whole plethora of
different edge mode fields on the interface Γ, each corresponding to a different system
of paths, e.g. from the asymptotic boundary Γ0 to Γ. Each ensuing such edge mode
field constitutes a different external frame field for the subregion M of interest, which we
could then “internalize” by extending the field space associated with M correspondingly,
as sketched at the end of section 4.3 (and expanded on in section 5 below).34 For each such

34As mentioned in section 2.2.2, this is related to an extension of the Heisenberg cut in the quantum
theory. In fact, the analogy is stronger in the field theory case here because of the local nature of the gauge
constraints: extending the field space with additional edge mode fields does not change the form of the gauge
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Γ M̄M

x

y γ(2)x

γ(2)y

γ(1)y

s(2)x

s(2)y

s(1)x

s(1)y

γ(1)x

Γ0

Figure 5. Two systems of paths γ(1) and γ(2), supporting distinct families of Wilson lines. They
generate two distinct group-valued reference frames U1[Ā] and U2[Ā] for the boundary Γ.

edge mode field, we can construct relational observables on Γ according to equation (4.25)
and the relational observables relative to different edge frame choices will encompass the
different ways in which M relates to its complement M̄ .

Since there is therefore no distinguished choice of edge frame, we better explain how to
relate different frame choices, especially how to translate the relational observables relative
to one frame into relational observables relative to another. The following is essentially
a translation of the reference frame changes discussed in the mechanical toy model in
section 2.4 into the field theory context. Consider two edge frame fields U1, U2 and the
corresponding relational observables (cf. equation (4.25)) Oφ,Uk(gk) =

(
Uk[Ā] g−1

k

)−1
. φ,

k = 1, 2. The relation between the two sets of observables depends on the relation between
the two frames “when the second frame U2 is in the origin e ∈ G”, encoded in the gauge-
invariant group-valued function

x 7→ g21[Ā](x) := OU1,U2(e, x) = U2[Ā](x)−1 . U1[Ā](x) (4.37)
= U2[Ā]−1(x)U1[Ā](x) , (4.38)

which is now dynamical. We can then write the transformation from frame U1 to frame U2
as the relation-conditional right action � on the frame U1 (cf. the mechanical counterpart
in equation (2.33)):

U1[Ā] 7−→ U2[Ā] = g21[Ā]−1 � U1[Ā] := U1[Ā] g21[Ā]−1 (4.39)

Oφ,U1(g1) 7−→ Oφ,U2(g2) =
(
g−1

1 g2 g21
)−1
�Oφ,U1(g1) := Oφ,(g−1

1 g2 g21)−1�U1
(g1) . (4.40)

constraints. As such, the gauge-invariant physics on Γ intrinsic to M (i.e. not involving the edge modes)
is contained in the same form in any of such field space extensions. By contrast, in the mechanical setting
of section 2, the total momentum “constraint” as well as the action contribution involving the particles of
group M change with every addition of a new particle to M̄ (see also section 2.5).
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Note that this amounts to an extension of the right action � defined in equation (4.35)
to field-dependent frame reorientations, in analogy to how equation (4.15) extends field-
independent gauge-transformations to field-dependent ones. Similarly to how equa-
tion (4.15) generates gauge-invariant observables, equation (4.40) produces observables
invariant under reorientations of frame R1. Indeed, we have:

Oφ,U2(g2) =
(
U1[Ā]

(
U1[Ā]−1 U2[Ā]g−1

2 g1
)
g−1

1

)−1
. φ

=
(
U1[Ā]−1 U2[Ā]g−1

2 g1
)
�
( (
U1[Ā]g−1

1

)−1
. φ
)
.

We note that this is equivalent to (cf. the field-independent frame reorientation in equa-
tion (4.36))

Oφ,U2(g2) = Oφ,(g−1
1 g2 g21)−1�U1

(g1) ≡ Oφ,U1

(
g1(g−1

1 g2g21[Ā])
)

= Oφ,U1

(
g2g21[Ā]

)
(4.41)

and hence a relation-conditional right action on the frame orientation label of the relational
observable. This encompasses the tautological observables describing the edge frames rel-
ative to themselves

OU1,U1(g1) = g1 7−→ OU1,U2(g2) = g2g21[Ā] , (4.42)
OU2,U1(g1) = g1g21[Ā]−1 7−→ OU2,U2(g2) = g2 . (4.43)

In view of the previous subsection, we can thus interpret frame changes as relation-
conditional frame reorientations. However, in contrast to the field-independent frame reori-
entations of the previous subsection, frame changes are not symmetries (and not generated
by charges). Symmetries change the physical situation, while frame changes only change
the description of it. In particular, equation (4.40) constitutes a field redefinition for the
gauge-invariant data on Γ. As such, a change of edge frame simply amounts to a change
of coordinates on the field space FM (which includes the edge modes). Recall also that
field-independent frame reorientations map observables from one family Oφ,U (g) of rela-
tional observables into others within the same family (only changing the orientation label
g of the frame in a field-independent manner). By contrast, the frame changes here map
the observables from one family Oφ,U1(g1) of relational observables (associated with frame
U1) to a distinct family Oφ,U2(g2) (associated with frame U2).

In order to say that this coordinate change is equivalent to a symplectomorphism, as
in the mechanical case of section 2.4, we first need control of the presymplectic structure.
As argued in section 2.7 for the mechanical setting, different edge frame choices induce
distinct families of foliations of the solution space S which are crucial for the post-selection
procedure; a frame change relates a foliation within the family associated with the first
frame to a foliation in the family associated with the second frame. Accordingly, frame
changes relate different implementations of the post-selection procedure. This will also be
true in the field theory case, as we will argue in section 5.

4.7 Frame-reorientation-invariant field-space form

We finally introduce the field-space right-invariant Maurer-Cartan form δUU−1 which,
being invariant under frame reorientations, will play an important role in our construction.
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For notational convenience, we will from now on keep the dependence of the frame U on
Ā implicit. Its variation is given by

δ(δUU−1) = (δUU−1)(δUU−1) = 1
2
[
δUU−1, δUU−1

]
, (4.44)

where [·, ·] is to be understood as the Lie-bracket on field-space forms.35 As in finite
dimensions, one can understand this equation as a flatness condition for a field-space gauge
potential −δUU−1 = UδU−1.36 The Maurer-Cartan form also transforms nicely under
field-dependent gauge transformations, namely:

g . δUU−1 = gδUU−1g−1 + δgg−1 , (4.45)

where we have kept the field-dependence of g implicit. At the infinitesimal level, this yields:

LXαδUU−1 = Xα · δ(δUU−1) + δXα · δUU−1 = [α, δUU−1] + δα , (4.46)

Finally, the differential of the field-space Maurer-Cartan form δUU−1 can be related to the
variation of the spacetime Maurer-Cartan form dUU−1, as follows:

d(δUU−1) = δ(dUU−1) + [dUU−1, δUU−1] . (4.47)

5 Symplectic geometry of splitting post-selection

We shall now explain how to extend the splitting post-selection procedure, illustrated in the
mechanical example in section 2, to field theory. The underlying idea of our construction
is to take the total space of solutions S to the global equations of motion in M ∪ M̄ and
post-select the subset of solutions on it, which satisfy certain boundary conditions X = X0
on Γ. X will be some differential form, locally constructed out of the pullbacks φa := Φa|Γ
of the fields to Γ and their derivatives, as well as of U and its derivatives, and X0 is a
non-dynamical background field. We require the boundary conditions—and thus X—to
be gauge-invariant, so as to cleanly distinguish between physical boundary conditions and
gauge fixing conditions.

First implementing splitting post-selection on-shell, rather than at the level of the
action, has several advantages. From the point of view of M , this allows us to cleanly
disentangle bulk dynamical equations from boundary conditions (which, as we will explain
in section 6, will eventually be enforced dynamically). More generally, it is useful to in-
vestigate the relation between the covariant phase spaces of M and M̄ independently from
a choice of variational principle. By focusing on the (pre-)symplectic geometry underly-
ing post-selection, we will be readily able to connect our work to previous literature on
edge modes.

35That is, [ω1, ω2] := ω1ω2 − (−1)pqω2ω1 if ω1 is a p-form and ω2 a q-form (as before, the field-space
wedge product is kept implicit).

36Following e.g. [6, 106, 107], one could thus define a flat covariant differential D := δ− δUU−1 for fields
on Γ. We will not rely on such a formalism in the present paper, but it would be interesting to explore it
further.
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5.1 Radiative presymplectic structure from a dressing flow in field space

Let us first proceed to show that the group-valued dressing of edge fields introduced in
section 4.4 induces a natural and unambiguous splitting of the presymplectic structure
on Γ into radiative and gauge contributions. This is important, as only the radiative
component will be subject to boundary conditions, while, on-shell, the gauge component
will essentially constitute the corner term.

Dressing being implemented by a field-dependent gauge transformation φ 7→ U−1 . φ,
this operation does not commute with the field-space exterior derivative δ. As a result, it
is not completely obvious how to extend a prescription like (4.24) to field forms such as
θ := Θ

∣∣
Γ and ω

∣∣
Γ.

37 To circumvent this difficulty, we will implement dressing by means of
a particular flow in field space. The advantage of this point of view is that it will readily
generalize to field forms by means of the concept of Lie derivative.

Given our working hypotheses for the system of paths {γx, x ∈ Γ}, we can find a
homotopy between U(x) and the identity frame field 1l : Γ → G, x 7→ e (where e is the
identity element in G). Indeed, for any t ∈ [0, 1] and x ∈ Γ, we can define Ũt(x) as the
holonomy between the points sx and γx(t), along the path γx. We then have Ũ1 = U ,
Ũ0 = 1l, and given that (t, x) 7→ Ũt(x) is continuous, we conclude that U is homotopic to
the identity frame field 1l. As a result, U is in the image of the exponential on the Lie
algebra of the gauge group. In particular, there exists a continuous g-valued function u on
Γ, such that: for any x ∈ Γ, U(x) = eu(x).38 As anticipated, it is therefore legitimate to
view the dressing φ 7→ φrad = U−1 . φ as a field-dependent gauge transformation (in this
work, we do not consider large gauge transformations as part of the gauge group).

In order to extend this dressing to field-space forms, it is convenient to realize it
as a flow. To this effect, and given a fixed field-configuration A, we consider a path
{At := gt . A|t ∈ [0, T ]} in field-space, where {gt|t ∈ [0, T ]} is a one-parameter family of
(global) field-dependent gauge transformations. All we demand from gt is that g0 = Id,
and gT (x) = U−1[A](x) for any x ∈ Γ.39 Given those definitions, φrad (where we again
collectively denote pull-backs of fields on Γ by φ) can be recovered as the edge configuration
induced by AT :

φrad = φT . (5.1)
Likewise, the frame field flows from its initial value U to the identity frame field U−1 .U =
1l.40 In other words, the two defining properties of the path At are that: 1) it is confined
to the gauge orbit of A0 = A, and 2) U [ĀT ] = 1l. In particular, we can find a vector field
Xα such that:

d
dtAt = Xα(At) = α . At , (5.2)

where the infinitesimal gauge parameter α is a priori field-dependent.
37In the following, we will simply denote ω

∣∣
Γ
by ω, keeping the pull-back to Γ implicit.

38u is not unique, but at least locally in field-space, one can choose a smooth map U 7→ u from group- to
algebra-valued fields, defining local logarithmic coordinates.

39Such a path necessarily exists since U , seen as a field on Γ, is connected to the identity. At is actually
highly non-unique, but we will see that the resulting dressing of edge modes is independent from such
ambiguity.

40It is crucial at this level that U transforms nicely under field-dependent gauge transformations.
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The advantage of this somewhat contrived definition of the dressing is that it im-
mediately generalizes to field forms, upon replacement of the vector field Xα by the Lie
derivative LXα . In more detail, given a form p on the edge field-space, we introduce pt as
the solution to the flow

d
dtpt = LXαpt = Xα · δpt + δXα · pt , (5.3)

with initial condition p0 = p. We can then define the radiative component of the form p by

prad := pT . (5.4)

Owing to [LXα , δ] = 0, which directly follows from Cartan’s magic formula, an immediate
consequence of this definition is that:

(δp)rad = δ(prad) . (5.5)

In particular, θrad is a potential for ωrad:

ωrad = δθrad . (5.6)

Furthermore, using the Leibniz property of LXα , we infer that

(pq)rad = pradqrad , (5.7)

for any two forms p and q. Crucially, this observation is sufficient to show that our dressing
prescription is independent from the choice of vector field representative Xα, and in par-
ticular, of the choice of path At. Indeed, φrad = U−1 .φ is itself independent from Xα, and
therefore the statement holds for 0-forms. Invoking (5.5) and (5.7), we can then extend this
unicity to forms of arbitrary degree.41 Considering that φrad is invariant under arbitrary
field-dependent gauge transformations, a similar reasoning invoking (5.5) and (5.7), allows
us to extend this invariance to any dressed form prad. In particular, we have

LXαθrad = 0 and LXαωrad = 0 , (5.8)

for any gauge parameter α (including field-dependent ones).
Finally, we define the gauge contributions of the presymplectic potential and the

presymplectic current as:

θgauge = θ − θrad and ωgauge = ω − ωrad . (5.9)

For completeness, let us illustrate our construction with a concrete choice of vector field
Xα. Since U is in the image of the exponential, it is natural to choose suitable logarithmic
coordinates U(x) = eu(x), for instance by demanding u to be minimal relative to some

41Alternatively, we could have directly defined the dressing of forms by equations (4.24), (5.5) and (5.7).
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well-suited norm.42 We can then require the field-dependent gauge parameter α to verify:
α[A](x) = −u[A](x), for any x ∈ Γ. Given such a generator, it follows that:

Xαφ = −u . φ , (5.10)

for any local field on Γ. We can then observe that the following flow, which implements a
homotopy between the edge mode and identity frame field, is well-defined and unique:43

d
dt(φt, Ut) = Xα(φt, Ut) , φ0 = φ , U0 = U . (5.11)

Its solution is:
(e(−1+τ(t))u . φ, eτ(t)u) , τ(t) = e−t , t ∈ [0,+∞[ , (5.12)

which one can check by direct computation. Using that τ ′(t) = −τ(t) in conjuction with
the transformation rule α . U = uU for the reference frame, we indeed find that

d
dt(e

(−1+τ(t))u . φ, eτ(t)u) = ((τ ′(t)ue(−1+τ(t))u) . φ, τ ′(t)ueτ(t)u)

= (−τ(t)u) . (e(−1+τ(t))u . φ, eτ(t)u) (5.13)
= Xα(e(−1+τ(t))u . φ, eτ(t)u) . (5.14)

Consequently, φrad = U−1 . φ can be recovered as the limit:

φrad = lim
t→+∞

φt , (5.15)

and, as result, any field-space form can be dressed by following the induced Lie flow.

5.2 Foliation with respect to field configurations on the time-like boundary

Splitting post-selection proceeds in three steps (see section 2.5 for this procedure in me-
chanics): one

1. foliates the global space of solutions S with respect to suitable field configurations
on Γ; then

2. restricts to a particular leave in this foliation; and finally

3. discards the complementary region M̄ to obtain the looked for presymplectic
form ΩM .

We call this process splitting post-selection as the second step “post-selects” those solutions
in S, which satisfy a specific choice of boundary conditions on the interface Γ, thereby
effectively splitting the global space of solutions S for M ∪ M̄ into two, one for each

42One could for instance minimize the L2 norm. That is, given a group-valued U , we look for an algebra-
valued u such that U = eu and ‖u‖ :=

(∫
Γ(u(x) · u(x))dx

)1/2 is minimal (where · denotes here the Killing
form on g). The solution will be unique, except on a set of field configurations of measure zero. For those
special configurations, we choose one solution in an arbitrary way.

43The norm ‖u‖ is strictly decreasing along the flow, so that one never encounters field configurations
where u is not uniquely defined, except possibly at t = 0.
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spacetime subregion. Upon the third step, one then focuses on the dynamical problem for
the subregion M of interest, defined by the selected boundary conditions. Since the latter
define the dynamical theory for M (and, likewise, for M̄), we can think of each leaf in
the foliation of S as a particular subregion theory. As such, the global solution space S
assumes the role of a space of subregion theories, in this sense constituting a meta-theory
for the local subregions. This will lead us to distinguish symmetries (frame reorientations)
on Γ into (i) genuine symmetries that leave the subregion theory invariant, (ii) meta-
symmetries, which change leaf, i.e. subregion theory within S, and (iii) symmetries that
become gauge transformations on particular boundary conditions. We stress that case (ii)
only constitutes meta-symmetries for the subregion theories, not, however, for the global
dynamics inM∪M̄ , since it maps one solution into another one of the same global theory.44

In more detail, we look for a decomposition of S of the form

S =
⊔
X0

SX0 , SX0 := {Φ ∈ S|X [φrad] = X0} (5.16)

for some suitable choice of X and X0, where X0 is a (set of) background field(s) that spans
a function space on Γ appropriate for a well-posed boundary value problem, and X is a map
from field configurations on Γ to field configurations on Γ (including the reference frame U ,
which enters the definition of φrad). The post-selected leaf SX0 can be thought of as (the
space of solutions to) a specific subregion theory. The boundary condition X [φrad] = X0
must fix sufficiently many degrees of freedom to give rise to a well-posed dynamical problem
in M , and not too many so that partial Cauchy data in the interior of Σ remains freely
specifiable. In particular, we will require that there is no physical symplectic flux through
Γ after pulling-back Ω to SX0 . A natural and sufficient requirement seems at first to be
that ω

∣∣
Γ,SX0

= 0. However, in the presence of gauge symmetries such a condition may be
overly restrictive, in the sense that it is not always gauge-invariant. In such a situation,
ω
∣∣
Γ,SX0

= 0 would amount to imposing a vanishing flux, as well as a non-trivial gauge-fixing
condition. To make sure that we only constrain physical degrees of freedom, we instead
impose the weaker condition:

ωrad
∣∣
SX0

= 0 . (5.17)

In the following, we will denote equalities that only hold on the leaf SX0 , that is on-shell
of both the bulk equations of motion and the boundary conditions, by the symbol ≈̂. In
particular, ωrad ≈̂ 0. This ensures that the presymplectic current ω is gauge-equivalent to
zero when restricted to Γ and a specific leaf SX0 , but not necessarily identically zero.

To make sure that we do not constrain ωrad more than necessary, we will impose
boundary conditions on a Lagrangian submanifold of S. In practice, we will choose local
and gauge-invariant Darboux coordinates X and Y (which are fields on Γ) such that ωrad =
δXδY . To implement (5.17), it is then sufficient to impose e.g. δX ≈̂ 0, while leaving Y
dynamical.

Let us look at a simple but illuminating example in Maxwell theory (which we will
discuss again in more depth in section 7.2). The presymplectic current can be expressed in

44This global theory S too is to be defined by some asymptotic boundary conditions that are unaffected
by the meta-symmetries (ii).
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the canonical Darboux coordinates as ω = δA ∧ δ ? F . Given a U(1) reference frame with
phase ϕ(x) one can define the radiative data (see equations (4.8) and (4.9)):

Arad = A−dϕ , (?F )rad = ?F , ωrad = δArad∧δ(?F )rad ≈ δA∧δ?F−d(δϕδ?F ) . (5.18)

These coordinates induce two natural foliations. We can foliate the solution space S with
respect to the pull-back of ?F , which amounts to defining X[Arad, (?F )rad] := (?F )rad.
Since ?F is gauge-invariant to start with, it follows that ω

∣∣
Γ ≈̂ 0. Relative to this particular

choice of foliation, the dressing by U can be safely ignored. By contrast, it becomes relevant
again if one decides to impose a boundary condition on Arad, that is, if we foliate the
solution space with respect to X[Arad, (?F )rad] := Arad. In that case, ωrad

∣∣
Pf
≈̂ 0 while

ω
∣∣
Γ ≈̂ d(δϕδ ? F ) does not vanish in general. Note that the boundary condition on Arad

fixes the pull-back of F to Γ completely, but is stronger in that it also contains relational
information about A

∣∣
Γ and U . Finally, one can impose boundary conditions on linear

combinations of Arad and (?F )rad, which we will investigate thoroughly in section 7.
Let us now briefly discuss the two types of transformations one can perform on the

canonical splitting of A relative to the reference frame U = eiϕ:45

A
∣∣
Γ = Arad + dϕ . (5.19)

The gauge contribution Agauge = dϕ is unconstrained by purely local gauge-invariant ob-
servables, such as F

∣∣
Γ, but is fixed unambiguously by the reference frame data. Gauge

transformations act on both A and ϕ in a way that leaves Arad invariant:

δαA = dα , δαϕ = α ⇒ δαArad = 0 . (5.20)

By contrast, frame reorientations take the form of a symmetry transformation ∆ρ which
acts solely on ϕ, and thereby changes the radiative part of the connection:

∆ρA = 0 , ∆ρϕ = −ρ ⇒ ∆ρArad = dρ . (5.21)

Depending on the choice of boundary condition, the solutions might not be stable under
this transformation, in which case ∆ρ generates a meta-symmetry, i.e. a change of post-
selected theory SX0 within the global solution space S. For instance, when foliating the
solution space with respect to Arad, ∆ρ acts transversally to the leaves and thereby changes
the boundary condition (that is, the value of X0 in (5.16)), unless ρ is constant on Γ (in
which case ∆ρ does generate a symmetry). As we will see below, this meta-symmetry is a
symplectomorphism within S. The definition (5.21) is an Abelian incarnation of the sym-
metry transformation originally introduced by [3] in Yang-Mills theory. Our construction
clarifies its relation to reference frames, and its interplay with boundary conditions.

Our construction has so far been implicit about the choice of edge frame U [Ā] that
goes into the construction of the radiative data φrad (cf. equation (4.24)) defining the
boundary conditions X0. For a fixed frame choice, we can choose different maps X, each

45We focus exclusively on the connection because its conjugate ?F is gauge-invariant in the present
Abelian context.
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corresponding to a distinct foliation of S. We can consider them as part of one family of
foliations, associated with the frame U . They will be related by the transformations relating
the different choices of X (e.g., in the mechanical setting of section 2.7, these were canonical
transformations). As argued in section 4.6, there is a plethora of distinct choices of edge
frame fields. It is clear that each of them will lead to a distinct family of foliations (5.16)
of the global solution space S. Any choice of boundary conditions X0 fixes a set of edge
relational observables associated with some frame. Since the edge frame transformations of
section 4.6 map the fixed set of relational observables into relational observables associated
with a different frame, they also relate the different frame associated families of foliations
of S.46 The frame changes, as specific coordinate changes on S, can thereby be invoked to
link physically distinct implementations of post-selection.

5.3 Presymplectic structure of the subregion field space

Let us now introduce a presymplectic structure ΩM on the space of dynamical field con-
figurations in M , which includes both bulk fields and the boundary reference frame and
which is consistent with the global presymplectic structure Ω for fields in M ∪ M̄ . In the
pure gauge-theory examples we are interested in, this is defined as:47

SX0
M :=

{
(A
∣∣
M
, U [Ā])|(A, Ā) ∈ SX0

}
. (5.22)

We first assume that ΩM is locally identical to Ω in the bulk of M (resp. M̄), and that the
regional presymplectic forms are additive, in line with the idea that the global degrees of
freedom are constituted by the sum of the local degrees of freedom:

ΩM + ΩM̄ ≈̂ Ω . (5.23)

We are then naturally led to the following Ansatz:

ΩM =
∫

Σ
ω +

∫
∂Σ
ω∂ , and ΩM̄ =

∫
Σ̄
ω −

∫
∂Σ
ω∂ . (5.24)

In this equation, ω∂ is a (2, d− 2)-form on Γ that may depend on both bulk and boundary
fields and constitutes a corner term for ΩM . To ensure that δΩM = 0, we will furthermore
assume that ω∂ = δθ∂ for some (1, d− 2)-form θ∂ , so that for every Cauchy surface Σ,

ΘΣ :=
∫

Σ
Θ +

∫
∂Σ
θ∂ (5.25)

46Since the frame changes are field-dependent, the new set of relational observables will generally not be
fixed via the boundary conditions X = X0.

47Under the assumptions we made in section 4.4—namely, that U [Ā] can be varied independently from
A
∣∣
M

at the dynamical level —, we can conclude that SX0
M factorizes as a solution space for A

∣∣
M

times a space
of G-valued functions on Γ. As a result, SX0

M can be understood as a boundary extended functional space
for region M , in the spirit of [3]. If dynamical independence were not to hold, SX0

M could still be embedded
in the same extended functional space, hence our construction could straightforwardly be generalized to
include this case. To avoid introducing further notation that would only cloud the main conclusions of the
paper, we refrain from demonstrating this explicitly.
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Σ1

Σ2

Γ12 M12

Γ

Figure 6. We now allow Σ1 and Σ2 to be arbitrary surfaces anchored on Γ; we call Γ12 the portion
of Γ delimited by ∂Σ1 and ∂Σ2, while M12 designates the portion of M delimited by Σ1 and Σ2.

defines a potential (which may depend on Σ) for ΩM . We call ω∂ (resp. θ∂) the bound-
ary presymplectic current (resp. boundary presymplectic potential). We can take advan-
tage of this splitting ambiguity to enforce two additional desirable properties for ΩM ,
namely: its independence from the choice of partial Cauchy surface, and its invariance
under field-dependent gauge transformations. As we shall see, the latter property follows
from the former.

Asking for (5.24) to be conserved across distinct Cauchy surfaces is quite constraining.
Let us consider an initial and final surface Σ1 and Σ2, which we now permit to vary; see
figure 6. We call Γ12 the portion of Γ whose boundary is ∂Σ1∪∂Σ2, andM12 the subregion
of M delimited by Σ1 and Σ2. From dω ≈ 0, it follows by Stokes’ theorem that:∫

Σ2
ω −

∫
Σ1
ω +

∫
Γ12

ω =
∫
M12

dω ≈ 0 . (5.26)

Inserting this relation into the consistency condition∫
Σ1
ω +

∫
∂Σ1

ω∂ ≈̂
∫

Σ2
ω +

∫
∂Σ2

ω∂ , (5.27)

we find ∫
∂Σ2

ω∂ −
∫
∂Σ1

ω∂ ≈̂
∫

Γ12
ω . (5.28)

For this relation to hold for any choice of Σ1 and Σ2, we must have:

ω
∣∣
Γ ≈̂ −dω∂ . (5.29)

Irrespective of the choice of gauge-invariant boundary condition, equations (5.9) and (5.17)
entail that ω

∣∣
Γ ≈̂ ωgauge on SX0 , and therefore:

ωgauge ≈̂ −dω∂ . (5.30)

This fixes ω∂ up to a closed form, provided that ωgauge is itself exact (at least when pulled-
back to the leaf SX0). We will find out that this consistency requirement is fulfilled in
Maxwell, Chern-Simons and Yang-Mills theory. Finally, equation (5.30) implies that

θgauge ≈̂ −dθ∂ − δ`∂ . (5.31)

for some (0, d− 1)-form `∂ .
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In Maxwell theory, this leads to:

dω∂ = −δdϕ ∧ δ ? F = −d(δϕδ ? F ) + δϕδd ? F ≈ −d(δϕδ ? F ) , (5.32)

where we have used the equation of motion d ? F
∣∣
Γ = 0 in the last equality.48 Henceforth,

we can define ω∂ as
ω∂ = −δϕδ ? F + c , (5.33)

where c is some closed form on Γ. If ∂Σ is simply-connected and has no boundary, c is also
exact and does not contribute to the presymplectic form. We will assume we are in this
situation and choose c = 0.49 If we decide to impose a boundary condition on ?F , we find
out that dω∂ ≈̂ 0; ω∂ = 0 is then a consistent choice, as expected. By contrast, as soon as
the boundary condition constrains Arad,50 thereby leaving at least some components of ?F
dynamical on the boundary, the boundary presymplectic current contributes non-trivially.

Let us now consider the question of gauge invariance. In Yang-Mills theories, the
presymplectic current ω and presymplectic potential Θ are gauge-invariant to start with,
but are not invariant under field-dependent gauge transformations. In [3], the authors
postulated such an extended invariance, which in turn motivated the introduction of ab-
stract edge modes and led to the extended presymplectic structure ΩM . In the present
work, we are somewhat reversing the logic. Edge modes are physical from the start and
already present in the global phase space. The way they must contribute to the regional
presymplectic structure ΩM has then been determined by the physical requirement of a
vanishing symplectic flux through Γ. As we will see now, invariance under field-dependent
gauge transformations is a necessary by-product of this construction, but conceptually
secondary.

Field-dependent gauge transformations Xα[A] verify two interesting properties:

(a) Irrespective of the choice of gauge-invariant boundary condition X[φrad] = X0, SX0
M

is stable under the flow of Xα[A], since the latter maps solutions to solutions and
leaves φrad invariant.

(b) Xα[A] generate local gauge symmetries, which can be tuned independently in disjoint
neighborhoods of M .

Given a Cauchy surface Σ, we can always pick up a second Cauchy surface Σ′ such that Σ
and Σ′ are disjoint. By (5.27) and property (a), we know that:∫

Σ
Xα[A] · ω +

∫
∂Σ
Xα[A] · ω∂ ≈ Xα[A] · ΩM ≈

∫
Σ′
Xα[A] · ω +

∫
∂Σ′
Xα[A] · ω∂ . (5.34)

48Note that it is also possible to consistently include boundary matter sources: it is indeed sufficient to
assume that d ? F

∣∣
Γ
≈̂ j where j is some background field for the consistency condition dω∂ ≈̂ ω

∣∣
Γ
to hold.

49Given our working hypotheses, ∂Σ is homeomorphic to S1 in 2 + 1 dimensions, and therefore fails to be
simply-connected. In that case, including a closed form c with

∫
∂Σ c 6= 0 might be relevant to consistently

account for non-trivial winding modes of U(x). However, in our set-up, U(x) is always homotopic to the
identity (

∫
∂Σ dϕ = 0), and c = 0 remains a consistent choice.

50That is, for Dirichlet and Robin boundary conditions, as discussed in section 7.2.
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Furthermore, thanks to property (b), we can always find a gauge transformation α̃[A] that
agrees with α[A] on Σ but vanishes on Σ′:

∀x ∈ Σ , α[A](x) = α̃[A](x) , and ∀y ∈ Σ′ , α̃[A](y) = 0 . (5.35)

It follows from (5.34) that
Xα[A] · ΩM ≈ 0 . (5.36)

Using Cartan’s magic formula, this implies gauge-invariance of the regional presymplectic
structure:

LXα[A]ΩM ≈ 0 , (5.37)

which can be equivalently written as

LXα[A]ΘΣ ≈ δ(Xα[A] ·ΘΣ) . (5.38)

In our main examples of section 7, we will see that Xα[A] · ΘΣ is a constraint (a fact we
will discuss explicitly for Maxwell theory in section 7.2), so that LXα[A]ΘΣ ≈ 0. Such a
formula played the role of a postulate in the construction of the extended phase space for
Yang-Mills theory first outlined in [3]. Our starting point was different, but we recover it
in a second step. One can directly check that (5.36) holds in Maxwell’s theory:

Xα[A] ·ΩM =
∫

Σ
dα[A]∧δ?F −

∫
∂Σ
α[A]δ?F ≈

∫
Σ

d(α[A]δ?F )−
∫
∂Σ
α[A]δ?F = 0 . (5.39)

It is interesting to contrast the invariance of ΩM under field-dependent gauge trans-
formations with its behaviour under the reference frame symmetries U 7→ Ug−1. For
definiteness and simplicity, let us focus on Maxwell theory (Chern-Simons and Yang-Mills
theory will be discussed in section 7, accompanied with a more in-depth discussion of
Maxwell theory). The reference frame symmetries are then generated by the transforma-
tions ∆ρ defined in (5.21); let us denote the associated field-dependent vector fields by
Yρ[A]. The status of Yρ[A] depends on the type of boundary condition one is imposing.
If X[Arad, (?F )rad] = (?F )rad, any Yρ[A] leaves SX0

M invariant, so that condition (a) holds.
Since condition (b) also holds, we are led to the conclusion that the vector fields Yρ[A]
generate gauge transformations rather than symmetries. Indeed, we find that the charge
vanishes by virtue of the boundary condition ?F

∣∣
Γ = X0

Yρ[A] · ΩM =
∫
∂Σ
ρ[A]δ ? F ≈̂ 0 . (5.40)

For field-independent ρ, we can thus define, in addition to the standard U(1) bulk con-
straints C[α] =

∫
Σ αd ? F (see section 7.2 for further details), the edge constraints

C∂ [ρ] :=
∫
∂Σ
ρ(?F −X0) , (5.41)

which, by virtue of ∆ρ ? F = 0, are first-class

{C∂ [σ], C∂ [ρ]} = Yρ · Yσ · ΩM = 0 . (5.42)
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Note that, by (5.33), the edge constraints are conjugate to the edge mode ϕ of Maxwell
theory. Hence, for Neumann boundary conditions in Maxwell theory the edge modes
assume a somewhat redundant role. The phase space has been extended, but also subjected
to another set of first-class momentum-type constraints so that the phase space extension
does not amount to an increase in the number of independent gauge-invariant degrees of
freedom on Γ, despite the presence of edge modes as reference frames.

By contrast, when X[Arad, (?F )rad] = Arad, only the vector fields Yρ[A] with dρ[A] = 0
leave the solution space SX0

M invariant. That is, ρ[A] must be a constant on Γ. For
such transformations, condition (a) still holds but (b) does not. As a consequence, they
escape our general argument. Indeed, we can explicitly verify that such transformations do
generate non-trivial symmetries, recorded by integrable charges Q[ρ] when ρ is furthermore
assumed to be field-independent:51

Yρ · ΩM = δQ[ρ] with Q[ρ] :=
∫
∂Σ
ρ ? F . (5.43)

Finally, transformations Yρ with ρ field-independent but not constant on Γ are neither
symmetries nor gauge: since they affect the boundary conditions themselves, they can be
understood as non-trivial transformations of background fields, which map one solution
space SX0

M to another SX
′
0

M , both descending from the same foliation of the global solution
space S in (5.16). They are symplectomorphisms with non-vanishing charges, but between
different phase spaces. Indeed, Cartan’s magic formula implies LYρΩM = δ (Yρ · ΩM ) =
δ2Q[ρ] = 0; they therefore constitute meta-symmetries.

6 Boundary actions from splitting post-selection

After exploring splitting post-selection directly at the level of solution spaces, let us extend
this discussion by constructing a suitable variational principle for it. Post-selecting the
total space of solutions S of M ∪M̄ on certain boundary conditions X = X0 on Γ will have
the effect of turning the global variational problem for M ∪M̄ into two separate variational
problems for M and M̄ . We will begin by considering a fictitious boundary Γ between the
two subregions M and M̄ , i.e. a boundary which is not physically distinguished through
sources or currents residing on it. In other words, the regular bulk equations of motion
of the theory have to hold on the interface Γ. We shall address the question of physical
boundaries in a follow-up work [101].

In order to have well-defined equations of motion everywhere on the space of field
configurations F , we shall assume the latter to only contain field configurations Φa which
are Cq across M ∪ M̄ (incl. Γ) if the equations of motion are of order q in derivatives.

A variational problem for the subregion M of interest can be formulated in two equiv-
alent ways. (1) If the field configuration space FM associated with M only contains con-

51In particular, note that the Dirichlet boundary condition Arad = X0, in contrast to the case of Neumann
boundary conditions, is now a holonomic constraint (devoid of momentum degrees of freedom) and such
a constraint does not constitute a generator of gauge transformations. Accordingly, the extension of the
phase space through edge modes does in this case lead to additional independent gauge-invariant degrees
of freedom.
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figurations which satisfy the desired boundary conditions, the role of the boundary action
will be limited to canceling the presymplectic potential on the interface Γ on-shell. This is
necessary in order to make the boundary value problem well-defined and consistent with
the global variational problem. (2) If instead FM contains all Cq field configurations in
M , it accordingly requires a second type of contribution to the boundary action, with the
purpose of imposing the desired boundary conditions as boundary equations of motion.
Post-selecting the global solution space on X = X0 will first yield the former formulation,
which we however then use to construct the equivalent one in terms of boundary actions.

Once translated into the covariant phase space language, post-selection will result
in a simple but general algorithm which, given a set of admissible (Dirichlet, Neumann,
Robin or mixed) boundary conditions, produces a family of appropriate boundary actions
implementing these boundary conditions.

6.1 Splitting a global variational problem into local ones via post-selection

Suppose we are given some field theory and would like to formulate its variational principle
for the subregionM subject to the boundary conditions Xa = Xa

0 on the interface Γ, where
the Xa are some functionals locally constructed out of the pullbacks of the radiative fields
φrad and the Xa

0 denote a corresponding choice of background fields.
A natural way to proceed is to start with the space of solutions S ⊂ F associated with

the global action

SM∪M̄ =
∫
M∪M̄

L = SM + SM̄ (6.1)

and post-select (i.e. restrict to) the subset SX0 ⊂ S of solutions satisfying the desired
conditions on Γ. Noting that the boundary conditions are integrable, δX = 0,52 this can
be achieved by imposing them as a holonomic constraint, yielding the total action

Stot := SM∪M̄ +
∫

Γ
λa(Xa −Xa

0 ) , (6.2)

where λa denote a set of Lagrange multiplier densities defined on Γ.53 In order to maintain
gauge-invariance of the total action when there is a gauge symmetry, we shall require the
Lagrange multipliers λa to transform trivially under the relevant gauge transformations.
Furthermore, since we are dealing with an interface between two regions, we will have to
choose a convention as to which orientation of Γ we tacitly invoke in the integral of (6.2);
henceforth, we shall always choose the ‘perspective’ of our subregion of interest M , i.e.
orient Γ relative to the normal pointing outward from M .

52Since X0 is a background field, the condition X − X0 = 0 entails the differential constraint δX = 0,
which thus is integrable and, in turn, holonomic.

53We emphasize that Xa = Xa
0 does not constitute a gluing condition as will be discussed in our follow-up

work [101] (see also [10, 11]) since Xa
0 is a non-dynamical background field and we are here not identifying

a priori independent degrees of freedom from M and M̄ on Γ.
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The action (6.2) constitutes a well-defined variational problem since (assuming asymp-
totic fall-off conditions of Φa in M̄)

δStot =
∫
M∪M̄

(EaδΦa + dΘ) +
∫

Γ
(δλa(Xa −Xa

0 ) + λaδX
a)

=
∫
M∪M̄

EaδΦa +
∫

Σ2∪Σ̄2−Σ1∪Σ̄1
Θ +

∫
Γ

(δλa(Xa −Xa
0 ) + λaδX

a) , (6.3)

where we used the shorthand notation
∫
A−B :=

∫
A−

∫
B. Note that there is no contribution

of the presymplectic potential Θ on Γ; the contribution
∫

Γ θ coming from M cancels the
corresponding

∫
Γ̄ θ = −

∫
Γ θ coming from its complement M̄ because their integrals along

Γ feature opposite orientation.54 In other words, around field configurations satisfying the
bulk equations of motion Ea = 0 and the interface equations of motion Xa = Xa

0 and
λa = 0, the total variation is stationary up to terms on the future and past Cauchy surface

δStot ≈̂
∫

Σ2∪Σ̄2−Σ1∪Σ̄1
Θ . (6.4)

We would like to turn this global variational problem into two independent variational
problems, one for M and one for its complement M̄ , which together are equivalent to the
global one. This can be achieved by noting that the two action contributions for M and
M̄ in (6.1) and (6.2) are only uniquely defined up to the addition and subtraction of a
local integral over their interface Γ. More precisely, we are free to replace SM and SM̄
in (6.2) with

S̃M := SM +
∫

Γ
`corr , S̃M̄ := SM̄ −

∫
Γ
`corr (6.5)

without changing Stot, where `corr is any density locally constructed out of φa, the pullback
of the derivatives of Φa to Γ, as well as the reference frame U .55 This argument is completely
analogous to the one used in section 5 to motivate the Ansatz (5.24), now transposed onto
the level of the action. In fact, we can understand what follows as an off-shell extension
of our previous construction, with respect to both equations of motion and boundary
conditions.

In particular, we can exploit this ambiguity and choose `corr such that

δS̃M ≈̂
∫

Σ2−Σ1
Θ +

∫
∂Σ2−∂Σ1

C , δS̃M̄ ≈̂
∫

Σ̄2−Σ̄1
Θ +

∫
∂Σ̄2−∂Σ̄1

C . (6.6)

We allow for a possible corner contribution C, which we will view below as arising from a
(1, d− 2)-form intrinsic to Γ and locally constructed out of the fields, their variations and
derivatives. Note that we then have

δStot ≈̂ δS̃M + δS̃M̄ (6.7)

since the two corner contributions will cancel one another, seeing as they come with opposite
orientation on ∂Σi and ∂Σ̄i, i = 1, 2. Hence, upon invoking the boundary conditions

54Γ̄ here denotes the interface equipped with the canonical orientation induced by M̄ .
55In both modified actions we oriented Γ according to our convention above and, accordingly, the volume

form εΓ and any normal derivatives in `corr are defined relative to M .
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through post-selection, the global variational problem in (6.3) splits into two independent
subregion variational problems in (6.6), which together are equivalent to the global one.

We can render the condition on `corr in (6.6) more explicit by noting that the first
equality, which is associated to the subregion of interest M , is equivalent to∫

Γ
(θ + δ`corr) ≈̂ −

∫
Γ

dC . (6.8)

Using Stokes’ theorem, the corner terms have been reexpressed as an integral over Γ, where
the extra minus sign is explained by the fact that the orientations of the integrals over ∂Σ2
and ∂Σ1 induced by Σ2 and Σ1 are opposite to the orientation of the integral over ∂Γ which
is induced by Γ. If we require the condition in (6.8) to hold for any choice of initial and
final time slice Σ1 and Σ2 (which is tantamount to varying Γ), it reduces to a local one:

θcorr := θ + δ`corr ≈̂ −dC . (6.9)

That is to say, we have a shifted presymplectic potential θcorr on Γ which is such that it
vanishes up to a corner term on field configurations satisfying the boundary conditions.
Since, however, ωcorr := δθcorr = δθ = ω

∣∣
Γ, we can already see that this will not affect the

symplectic flux through the interface and we shall discuss this further below. A sufficient
condition for equation (6.9) to hold is that

θcorr ≈ −dC + YaδX
a (6.10)

for some suitable set of densities Ya constructed locally out of the φa and the pullbacks of
the derivatives of Φa to Γ, as well as of U and its derivatives.

The conditions (6.9) and (6.10) are similar to the sufficient condition for a well-defined
subregion variational principle put forth in [66], however, are also somewhat different.
Here we arrive at them from a global variational principle using post-selection, and `corr is
a boundary Lagrangian whose role is not to impose the desired boundary conditions, which
are already satisfied in (6.9). `corr rather assumes two different roles for the subregion M
that are otherwise played by the complement M̄ and which are necessary in order to render
the subregion variational problem well-defined and consistent with the global one:

(i) Varying the fields in M generates a presymplectic potential θ on Γ which is cancelled
by the corresponding contribution −θ from varying the fields in M̄ . This is impor-
tant for the global variational problem as θ does not in general vanish (or reduce to a
corner term) individually when the boundary conditions are fulfilled. From the per-
spective of M the interface Lagrangian `corr mimics the effect of the complementary
region M̄ in such a way that θ gets cancelled up to a corner term once the boundary
conditions are satisfied. This enables us to split the global variational problem into
two independent ones. As we shall see below in theories admitting Darboux coor-
dinates, `corr constitutes a generating function of a canonical transformation that
implements a change of polarization on field space. This in turn ensures that the
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boundary conditions Xa = Xa
0 become truly holonomic constraints that only depend

on field configurations, but not their derivatives.56

(ii) In some topological theories, such as Chern-Simons theory (see section 7.3), the action
SM associated with a finite subregion may not be gauge-invariant, with its non-
invariance coming from a boundary piece. This boundary piece has to be cancelled
by the complement SM̄ in order to ensure invariance of the global action in the bulk
of M ∪ M̄ . For such theories, `corr will also mimic the role of the complement M̄ by
cancelling any non-invariance of SM and thereby establishing gauge-invariance of the
subregion variational principle. In other words, `corr is only gauge-invariant if SM is.

So far we have split the global variational problem into independent subregion problems
after globally imposing the boundary conditions. The ensuing variational problem for
subregion M is defined by the action S̃M on the post-selected field configuration space
FM

∣∣
X=X0

, containing all Cq field configurations inM which satisfy the boundary conditions
X = X0 on Γ. As in [67, 109] the boundary conditions are thus directly built into the
field configuration space. Clearly, we can equivalently formulate this subregion variational
problem on the larger space FM of all Cq field configurations inM if we dynamically impose
the boundary conditions through Lagrange multipliers. On FM the variational principle
for the subregion is therefore defined by

S̃M∪Γ := S̃M +
∫

Γ
λa(Xa −Xa

0 ) = SM + Sps , (6.11)

where
Sps :=

∫
Γ

(`corr + λa(Xa −Xa
0 )) (6.12)

is the post-selection boundary action. Condition (6.10) implements a polarization of field
configuration space in which the Xa are configuration degrees of freedom. This guarantees
that we can consistently impose the boundary conditions Xa = Xa

0 as genuine holonomic
constraints. In problems with holonomic constraints the Lagrange multipliers have physical
significance: they can be solved for as the forces imposing the constraints and this solution
can be reinserted into the action, defining the variational principle for the remaining degrees
of freedom. In our case, (6.10) entails that the constraint forces read λa = −Ya which yields
the final subregion action on FM

SM∪Γ := SM + SΓ , (6.13)

with boundary action

SΓ := Sps
∣∣
λ=−Y =

∫
Γ

(`corr − Ya(Xa −Xa
0 )) . (6.14)

As we will illustrate below, this procedure will provide a systematic algorithm for gener-
ating boundary actions, encompassing various well-known ones in the literature as well as
producing new ones. This will also elucidate the appearance of edge modes in boundary
actions.

56Note that, since we are considering canonical transformations of δθ, the relevant field space here is the
space of fields pulled-back to Γ. As a result, constraints involving normal derivatives of the fields but no
intrinsic derivative on Γ are holomomic.
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6.2 Local Darboux coordinates, appearance of edge modes and non-
uniqueness of the boundary action

In this subsection, we shall render the above general construction more concrete, using the
edge mode dressed observables and field space forms of sections 4 and 5. We shall also
discuss the non-uniqueness of the boundary action implementing a specific boundary value
problem.

6.2.1 General algorithm

In order to render this construction more explicit, let us assume we are given a theory
admitting the use of Darboux coordinates on F , so that the presymplectic potential reads

Θ = ΠaδΦa , (6.15)

for some density Πa and where Φa denote the fields in the Lagrangian. Its pullback to Γ
will be denoted by

θ = πaδφ
a. (6.16)

For example, this assumption is true in all theories whose Lagrangian depends on the fields
Φa and their first, but not higher order derivatives [56]; this is the case e.g. in Maxwell,
Chern-Simons and Yang-Mills theory as discussed later. In this case, Πa typically (but not
always) depends on only the first derivatives of Φa. This assumption can, however, also be
realized in theories with Lagrangians featuring higher orders of derivatives, which might
require either a relabeling of field variables or taking care of boundary terms.57

When dealing with a gauge theory, it will be convenient to split the field degrees of
freedom φa and the momenta πa on Γ into pure gauge and radiative parts, as explained in
section 4:

φa = φarad + φagauge and πa = πrad
a + πgauge

a . (6.17)

Owing to the symmetry induced redundancy, this can always be done in many different
ways in the global covariant phase space, but it is uniquely defined once we have specified
a reference frame.

Next, we shall make one further assumption, namely that we can use the split into
pure gauge and radiative degrees of freedom to decompose the presymplectic potential on
solutions to the bulk equations of motion on Γ as

θ = θrad + θgauge , θrad = πrad
a δφarad θgauge ≈ −dθ∂ − δ`∂ , (6.18)

where θ∂ and `∂ have already been introduced in equation (5.31). The extra assumption
we are making is that equation (5.30) (from which (5.31) follows) can be extended off-shell
of the boundary conditions. In other words, the non-invariant part of θ is in the kernel of
δd on-shell of the equations of motion. This assumption holds true in many gauge theories
and we shall illustrate it in Maxwell, Chern-Simons and Yang-Mills theory below. The
assumption is essentially that we can find local Darboux coordinates for the degrees of

57For example, also the presymplectic potential of general relativity can be put into the form of equa-
tion (6.15) by taking care of boundary terms appearing in the Gauss-Codazzi equations [21, 56].
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freedom on Γ that split into gauge-invariant and -variant pairs, where the ‘momenta’ of
the latter pair are simply the constraints of the theory which vanish on-shell. Such a split
is related to a so-called constraint abelianization [58].

The gauge-invariant pairs (φarad, π
rad
a ) constitute the set of degrees of freedom on which

boundary conditions will be imposed. Typically, one imposes boundary conditions either on
the fields (Dirichlet), their normal derivatives (Neumann), or linear combinations (Robin).
Since the latter contain the former two as special cases, we shall directly formulate the
variational problem for Robin boundary conditions. In fact, we shall be even slightly more
general and permit the nature of the boundary conditions to change as ∂Σ evolves through
Γ, so that we encompass mixed boundary conditions, i.e. time-dependent Robin boundary
conditions. To this end, it will suffice to consider linear combinations of ‘position’ and
‘momentum’ variables, which for simplicity we write in matrix notation(

X
y

)
= M

(
φrad
prad

)
, M =

(
a b
c d

)
, (6.19)

where a,b, c,d are real n×n-matrix background fields and prad is the n-vector with scalar
components prad

a , defined by πrad
a = prad

a εΓ, where εΓ is the volume form on Γ, and similarly
y is the n-vector whose components are defined by a new ‘momentum’ density Ya = yaεΓ.
In order for this to define a symplectic transformation, we shall require

ωrad = δπrad.δφrad = δY.δX , (6.20)

where . denotes the dot product between n-vectors, which is equivalent to

d>a − b>c = 1 , c>a = a>c ,
a>d− c>b = 1 , d>b = b>d , (6.21)

so that M ∈ Sp(2n,R).
We are now in a position to determine the shape of the interface action `corr ensuring

consistency of the subregion variational problem from the condition in (6.10)

δ`corr ≈ Y.δX− θ − dC
≈ Y.δX− πrad.δφrad + d(θ∂ − C) + δ`∂ (6.22)

= 1
2δ
(
Y.X− πrad.φrad + 2`∂

)
+ d(θ∂ − C) ,

where we have invoked (6.21) in arriving at the last line. To solve this consistency relation,
we henceforth define C and `corr on FM by:58

C := θ∂ , `corr := `∂ + 1
2
(
Y.X− πrad.φrad

)
. (6.23)

The above observations permit us to shed new light on the so-called extended presym-
pletic potential, as considered, for instance, in [3, 11]:59

θe := θ + dθ∂ + δ`∂ . (6.24)
58It is implicitly assumed here that quantities such as θ∂ and `∂ can be naturally extended from forms

on SM to forms on FM .
59The field-space exact term δ`∂ was not included in those works, as it happens to be irrelevant in many

situations of interest; we keep it for full generality.
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The corner term θ∂ has been added to θ in [3, 11] to render the potential gauge-invariant
even for gauge transformations with support on Γ, and independently of any choice of
boundary conditions. Noting the decomposition (6.18), on-shell the extended potential
becomes the pure radiative contribution

θe ≈ πrad.δφrad = θrad . (6.25)

This is a consequence of our variable split (6.17) which renders the meaning of the extended
potential especially transparent. Similarly, the extended symplectic current ωe := δθe
of [3, 11] then coincides on-shell with the radiative contribution constructed in equa-
tion (5.6),

ωe ≈ ωrad . (6.26)
It is thus the extended symplectic structure which ultimately is post-selected to vanish
boundary on-shell in equation (5.17), ωrad ≈̂ 0, so as to eliminate gauge-invariant symplectic
flux through the interface Γ (see section 5).

The boundary condition X = X0 in (6.12) is clearly the integrated version of the
differential constraint δX = 0, which thus is holonomic. Holonomic constraints can be
written as functions of only the configuration degrees of freedom. This is not the case in
the old variables (φrad, π

rad), unless b = c = 0, but clearly in the new boundary variables
(X,Y). The interface action `corr thus implements a change of polarization of the field
configuration space, as can already be inferred from (6.10). Indeed, `corr − `∂ can be
interpreted as a generating function of a canonical transformation in multiple ways. For
example, if b is invertible and `∂ = 0, one can use (6.19) to rewrite `corr as a type I
generating function of a canonical transformation

`corr = 1
2
(
X.(db−1X)− 2(b−1X).φrad + (b−1aφrad).φrad

)
εΓ ,

which can be checked to satisfy the functional derivative relations
δ`corr(x)
δφarad(y) = −πrad

a (x)δ(d−1)(x, y) , δ`corr(x)
δXa(y) = Ya(x)δ(d−1)(x, y) .

Similarly, when d is invertible, one can write `corr in terms of a type II generating func-
tion, etc.

Finally, we can now also write the boundary action for the subregion variational prin-
ciple on FM in (6.14) explicitly

SΓ =
∫

Γ
` , ` := `corr −Y.(X−X0) = Y.X0 −

1
2
(
X.Y + πrad.φrad

)
+ `∂ . (6.27)

In more detail, we find that

` = `∂+(aφrad +bπrad).X0−
1
2φrad.(a>cφrad)− 1

2π
rad.(b>dπrad)−πrad.(d>aφrad) . (6.28)

When `∂ vanishes, this action is gauge-invariant by construction. This is for instance the
case in Yang-Mills theories. By contrast, in the case that SM is not gauge-invariant, as
for example in Chern-Simons theory, one still has the freedom to add the corresponding
non-invariant piece on Γ to `corr (via `∂) as mentioned under (ii) in section 6.1. Such a
requirement may be imposed in addition to our main on-shell consistency condition (6.22).

This concludes the general procedure for post-selecting on the gauge-invariant vari-
ables X.
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6.2.2 Non-unicity of the boundary action

The boundary action (6.27) was derived from a particular choice of polarization (X,Y)
for the symplectic current ωrad = δπrad.δφrad = δY.δX. Since we are imposing boundary
conditions on X, any other polarization (X′,Y′) such that X′ is related to X by an invertible
transformation is also admissible. More precisely, any two such polarizations are related
by an Sp(2n,R) transformation of the form(

X′

y′

)
= N

(
X
y

)
, N =

(
a 0
c d

)
, (6.29)

where d>a = 1 and c>a = a>c. It is convenient to parametrize such transformations by
the invertible matrix a and the symmetric matrix s = a>c. They generate the subgroup
of Sp(2n,R)

N =
{(

a 0
(a>)−1s (a>)−1

)
|a ∈ GL(n,R) , s ∈ Sym(n,R)

}
. (6.30)

We can view this set as the matrix product N = DT , where

D =
{(

a 0
0 (a>)−1

)
|a ∈ GL(n,R)

}
' GL(n,R) (6.31)

and

T =
{(

1 0
s 1

)
|s ∈ Sym(n,R)

}
' Sym(n,R) . (6.32)

As a group, N is in fact a semidirect product of D and T . Indeed, introducing the notation

N(a, s) :=
(

a 0
(a>)−1s (a>)−1

)
, we are led to the semidirect group multiplication law:

N(a1, s1)N(a2, s2) = N(a1a2,a>2 s1a2 + s2) . (6.33)

We therefore conclude that

N ' GL(n,R) n Sym(n,R) . (6.34)

Among the admissible changes of polarization encoded in N , which transformations
affect the functional form of the boundary action `? From the construction of the previous
subsection, and in particular equation (6.22), it is clear that any canonical transformation
that preserves the flux E := YδX will also preserve δ` (and thereby `, up to an irrelevant
additive ambiguity). Such transformations generate the (normal) stabilizer subgroup D ⊂
N . Ambiguities in the definition of ` are therefore parametrized by the Abelian subgroup
T (which is not normal). Acting with such a transformation on the polarization (X,y)
yields new coordinates

X′ = X , y′ = sX + y , (6.35)
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where s is a real symmetric matrix. By application of (6.27), the boundary Lagrangian
produced by our algorithm in the new coordinates is

`′ = Y′.X0 −
1
2
(
X.Y′ + πrad.φrad

)
+ `∂ = `+ (sX).X0 −

1
2X.(sX) (6.36)

= `− 1
2(X−X0). (s(X−X0)) + 1

2X0. (sX0) , (6.37)

where we have used the fact that s is symmetric in the last line.
We see that `′ only differs from ` by:

• a non-trivial quadratic term −1
2(X−X0). (s(X−X0));

• and a field-independent additive contribution 1
2X0. (sX0).

The second term can be ignored since, by construction, ` is only defined up to such additive
contributions. By contrast, the first term affects the functional form of δ` and is a priori
non-trivial. However, because it is quadratic in (X−X0), we have:

δ`′ = δ`− (X−X0). (sδX) , (6.38)

which implies that δ` and δ`′ coincide on-shell of the boundary conditions. As a result, this
ambiguity only affects the functional form of the boundary action, not the presymplectic
structure that results from it.60 It is then clear that we are not changing anything of
substance when we change polarization. Likewise, we will show in an upcoming paper that
work functionals can be consistently associated to the boundary Lagrangian `, and are not
affected by such quadratic (or higher order) ambiguities.

6.3 Summary of the algorithm

In summary, given a set of boundary conditions X = X0 to be imposed dynamically, a
suitable boundary Lagrangian (0, d− 1)-form ` can be obtained by implementation of the
following steps:

1. Decompose the presymplectic potential on Γ into radiative and gauge contributions,
relative to a frame U : θ = θrad + θgauge.

2. Find local Darboux coordinates for the radiative degrees of freedom, so that θrad =
πrad
a δφarad, where πrad

a = prad
a εΓ is the momentum density dual to the frame-dressed

field φarad = (U−1 . φ)a.

3. Find a (1, d−2)-form θ∂ and a (0, d−1)-form `∂ such that, on-shell: θgauge +dθ∂+δ`∂
≈ 0.

4. Find a linear transformation to new Darboux coordinates (Y,X) such that:61 δθrad =
δY.δX.

60In fact, this ambiguity in δ` is of the general form (Xi − Xi
0)δZi, and such contributions have been

implicitly discarded in the definition (6.10).
61In particular, Xa must be linear in φarad and prad

a , as we have assumed in our construction.
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5. Define the boundary Lagrangian as:

` = Y.X0 −
1
2
(
X.Y + πrad.φrad

)
+ `∂ . (6.39)

Then, as we have explained in the main text, the stationary points of the action SM∪Γ =∫
M L+

∫
Γ ` in the configuration space FM , span the solution space SX0

M .

7 Illustration of splitting post-selection in example field theories

We showcase the splitting post-selection algorithm for generating boundary actions that
impose Robin, Dirichlet and Neumann boundary conditions in the examples of scalar field,
Maxwell, Abelian Chern-Simons, and Yang-Mills theories. The latter three examples will
more specifically illustrate the appearance and role of edge modes on the boundary Γ. We
also emphasize that, given that the matrix M implementing the change of polarization
in (6.19) is a background field, it allows us in principle to continuously interpolate between
different types of boundary conditions along Γ. For clarity of the exposition, we will not
consider such mixed boundary conditions in the following examples.

We emphasize that throughout this section, we consider general Lorentzian spacetimes,
which in particular can be curved and, except in the Chern-Simons theory case, of arbitrary
dimension d ≥ 2.

7.1 Scalar field theory

Varying the Lagrangian
L = −

(1
2∇µΦ∇µΦ + V (Φ)

)
ε (7.1)

of the bulk scalar field theory action SM =
∫
M L[Φ] yields

δL =
(
∇µ∇µΦ− V ′(Φ)

)
εδΦ + dΘ , (7.2)

where ε is the spacetime volume form and the presymplectic potential reads

Θ = θ · ε , with θµ = −∇µΦδΦ . (7.3)

The pullback of Θ to Γ takes the form

θ = Θ
∣∣
Γ = −∂nφδφεΓ , (7.4)

where φ := Φ
∣∣
Γ, ∂nφ := nµ∇µΦ

∣∣
Γ and nµ is the outward pointing normal to Γ. Since there

is no gauge symmetry in this model, we directly have

φrad = φ , prad = −∂nφ , θrad = θ . (7.5)

The coefficient matrices defining X and y in (6.19) are here real functions a,b, c,d ∈ R
satisfying ad− bc = 1, so that M is an SL(2,R) matrix field. The generating function of
this canonical transformation reads `corr = 1

2

(
Y X − πradφrad

)
, where πrad = pradεΓ.
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Equation (6.27) implies that the variational principle for subregion M subject to Robin
boundary conditions X = X0 is thus given by SM∪Γ = SM + SΓ =

∫
M L[Φ] +

∫
Γ `[φ] with

boundary Lagrangian
` =

(
yX0 −

1
2 (yX − φ∂nφ)

)
εΓ . (7.6)

Indeed, varying this action yields the shifted symplectic potential θcorr = θ+ δ`corr = Y δX

and
δSM∪Γ =

∫
M

(
∇µ∇µΦ− V ′(Φ)

)
εδΦ +

∫
Σ2−Σ1

Θ−
∫

Γ
(X −X0) εΓδy , (7.7)

thus dynamically imposing the desired boundary conditions as boundary equations of mo-
tion.

In the special case that a = d = 1 and b = 0, we post-select on X = φ, giving
Dirichlet boundary conditions φ = φ0, therefore a vanishing generating function `corr = 0,
and a boundary Lagrangian (setting for simplicity also c = 0)

` = ∂nφ (φ− φ0) εΓ . (7.8)

The dual case a = 0 and b = −1 = −c amounts to post-selection on the normal derivative
X = ∂nφ and thus generates Neumann boundary conditions ∂nφ = N0 which are imposed
by the simple boundary action (setting d = 0)

` = φN0εΓ . (7.9)

This leads to a change of polarization compared to (7.4)

θcorr = φδ∂nφεΓ . (7.10)

7.2 Maxwell theory

While Maxwell theory is the restriction of the Yang-Mills theory construction in section 7.4
to the special U(1) case, we illustrate it here for clarity and its standalone physical interest.
We start from the bulk Lagrangian in d spacetime dimensions:

L[A] = −1
2F ∧ ?F , (7.11)

where F := dA is the curvature of a U(1) connection. The variation of L gives

δL = −dδA ∧ ?F = −d(δA ∧ ?F )− δA ∧ d ? F , (7.12)

from which we recover the bulk equation of motion, d ? F = 0, and the presymplectic
potential

Θ = −δA ∧ ?F , (7.13)

so A and ?F are conjugated.
On the boundary Γ, we invoke the split of A into a radiative and a pure gauge part

A
∣∣
Γ = Arad + dϕ , (7.14)
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where Arad is defined relative to the edge mode frame in equations (4.8) and (5.18), which
splits the presymplectic potential on Γ into θ = θrad + θgauge, where

θrad = −δArad ∧ ?F , θgauge = (d ? F ) δϕ− d (?Fδϕ) ≈ −d (?Fδϕ) . (7.15)

In order to formulate the decomposition (6.18) at the form level, we have to invoke the
Hodge star operator ∗ on Γ. Using that ∗∗v = (−1)(d−1−q)q+1v for a q-form v on a (d−1)-
dimensional Lorentzian manifold, we can write the radiative piece of the presymplectic
potential as

θrad = −δArad ∧ ?F = (−1)dδArad ∧ ∗ ∗ ?F = (−1)d〈δArad, ∗ ? F 〉εΓ
= (−1)d〈∗ ? F, δArad〉εΓ = (−1)d ∗ ?F ∧ δ ∗Arad , (7.16)

where 〈·, ·〉 denotes the inner product of 1-forms on Γ. Accordingly, the assumption in (6.18)
is realized with θ∂ = ?Fδϕ, `∂ = 0, and gauge-invariant momentum one-form πrad =
(−1)d ∗ ?F .62 Here, ϕ is the phase of a U(1) edge reference frame U(x) = eiϕ(x), see
section 4. Clearly, it transforms as δαϕ := Xα · δϕ = α under the infinitesimal gauge
transformation Xα acting on F (see equation (5.20)). The momentum density conjugated
to the edge mode is a constraint: the bulk equation of motion pulled back to Γ. Likewise,
we find that the contraction of ΘΣ =

∫
Σ Θ +

∫
∂Σ θ∂ with Xα is an on-shell constraint, as

was already anticipated after equation (5.38):

C[α] := Xα ·ΘΣ = −
∫

Σ
αd ? F ≈ 0 . (7.17)

The splitting of the presymplectic current into ω = ωrad + ωgauge can be deduced
from (7.15) by acting with the exterior derivative δ, leading to:

ωrad = δArad ∧ δ ? F , ωgauge = δ(d ? F )δϕ− d(δ ? Fδϕ) ≈ −d(δ ? Fδϕ) . (7.18)

Following our construction of section 5, we obtain a presymplectic structure which is con-
served on-shell, and gauge-invariant independently of any choice of boundary conditions
(see equation (5.37) which here can be directly checked):

ΩM =
∫

Σ
ω +

∫
∂Σ
δθ∂ =

∫
Σ
δA ∧ δ ? F +

∫
∂Σ
δ ? Fδϕ . (7.19)

This expression coincides with the extended presymplectic structure used in [11], but is
here a result of post-selection. As an aside, we note that considering the extended potential
as in [11], but using our variable split (7.14), yields the purely radiative piece

θe = θ + dC = −δArad ∧ ?F + (d ? F )δϕ ≈ −δArad ∧ ?F = θrad , (7.20)

since the gauge part θgauge of θ is cancelled by C on shell, exemplifying (6.25).
62We emphasize that in all expressions defined on Γ, ?F denotes the pullback ?F

∣∣
Γ
which for simplicity of

notation we shall not write explicitly. Moreover, we slightly depart from the notations introduced in (6.18):
we distribute the volume form εΓ differently, so that πrad is a one-form rather than a density. This is for
mere convenience due to our reliance on the form language, which otherwise does not affect the applicability
of the formalism laid out in sections 5 and 6.
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The split in (7.14) permits a transparent understanding of the distinction between
gauge transformations and symmetries, as originally proposed in [3] (see also [11]). Gauge
transformations act as

δαA = dα , δαArad = 0 , δϕ = α , (7.21)

while symmetry transformations can be understood as leaving the vector potential on Γ
invariant, but changing its split into radiative and pure gauge parts:

∆ρA = 0 , ∆ρArad = dρ , ∆ρϕ = −ρ . (7.22)

As frame reorientations, symmetries transform the edge mode and thereby indirectly trans-
form the frame-dressed gauge-invariant observables, such as Arad = A−dϕ (see section 4.5),
while gauge transformations by construction leave all gauge-invariant data invariant. In
the present case, a symmetry transformation exploits the fact that the split into radiative
and gauge parts is only unique up to gauge transformations and changes the physical part
Arad by a total derivative. This has no impact on local gauge-invariant quantities such
as F or ?F in M ∪ Γ, but it does affect the relation between the subregion M and the
(non-locally defined) reference frame U , originating in the complement M̄ .

Let us now illustrate post-selection on Robin boundary conditions, from which we
obtain Dirichlet and Neumann conditions as special cases. If we wanted to proceed in the
general manner of section 6.2.1 we would have to choose a basis field in the cotangent
space of Γ to decompose A

∣∣
Γ into scalar components φa = Aa with a = 0, . . . , d − 2. This

can clearly be done, however, here we choose to work with form language instead, which
provides a more elegant split (7.14) into radiative and gauge parts and a more concise
formulation of the boundary value problem. Since we will now build linear combinations
directly at the form (rather than component) level in order to define Robin boundary
conditions, the matrix M in (6.19) will be a 2× 2 (rather than 2(d− 1)× 2(d− 1)) matrix.
The Robin boundary conditions thereby encompassed will thus only be a subset of all the
possible Robin boundary conditions one can formulate in component language. Besides
offering a more concise formulation, the advantage is that our boundary value problem will
be independent of the choice of spacetime frame field on Γ. More precisely, while the 1-form
X = Xadxa ≈̂ X0, which we will use below for imposing boundary conditions, is invariant
under local frame (coordinate) changes, the components Xa transform covariantly under
the latter. The types of boundary conditions we are excluding by focusing on an SL(2,R)
subgroup of all canonical transformations are those that, in component form, are not even
covariant under local frame transformations.

In order to formulate the linear combinations (6.19) at the form level, we recall equa-
tion (7.16). This suggests to define the fields for Robin post-selection in the form

X := aArad + (−1)d−1 b ∗ ?F , Y := cArad + (−1)d−1d ∗ ?F , (7.23)

for a,b, c,d real functions (d?F should not be confused with the equation of motion d?F ),
so that X and Y are both (0, 1)-forms. Imposing the SL(2,R) constraint ad − bc = 1
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ensures that (7.23) is a canonical transformation of the radiative presymplectic current:63

ωrad = δArad ∧ δ ? F = δX ∧ ∗δY . (7.24)

Let us now determine the generating function `corr. Condition (6.22) translates here
into

δ`corr ≈ −δX ∧ ∗Y − θ − dC
≈ −δX ∧ ∗Y + δArad ∧ ?F − d(C − ?Fδϕ)

= 1
2δ (Arad ∧ ?F −X ∧ ∗Y )− d(C − ?Fδϕ) . (7.25)

In arriving at the last line, we have made use of the various identities above. Henceforth,
we define

`corr := 1
2 (Arad ∧ ?F −X ∧ ∗Y ) , C := ?Fδϕ , (7.26)

in line with (6.23). In turn, we find that

θcorr := θ + δ`corr = −δX ∧ ∗Y + (d ? F )δϕ− d(?Fδϕ) , (7.27)

to be contrasted with (7.15). The post-selection action (6.12) on FM thus reads

Sps =
∫

Γ

(1
2 (Arad ∧ ?F −X ∧ ∗Y ) + λ ∧ (X −X0)

)
, (7.28)

with the gauge-invariant (0, d− 2)-form λ playing the role of Lagrange multiplier.
In conjunction, the subregion variational problem defined by post-selection on Robin

boundary conditions X = X0 is given by the action SM∪Γ =
∫
M L[A] +

∫
Γ ` with gauge-

invariant boundary Lagrangian (see equation (6.27))

` = −X0 ∧ ∗Y + 1
2 (Arad ∧ ?F +X ∧ ∗Y ) , (7.29)

in analogous form to (7.6) of the scalar field case. Variation of this action yields

δSM∪Γ =
∫
M

d ?F ∧ δA−
∫

Σ2−Σ1
δA∧ ?F +

∫
Γ

(
(d ?F )δϕ+ (X −X0)∧ δ ∗Y −d (?Fδϕ)

)
,

(7.30)
hence implementing the Robin boundary conditions as boundary equations of motion and,
in line with our assumption that we are dealing with a fictitious boundary Γ, also imposing
the bulk equation of motion d ? F = 0 on Γ.

Dirichlet boundary conditions are obtained in the special case a = d = 1 and b = 0,
which amounts to post-selection on the radiative part of the connection X = Arad = A0

rad.
The generating function `corr vanishes and the boundary Lagrangian becomes (when setting
also c = 0 for simplicity)

` = (Arad −A0
rad) ∧ ?F =

(
A− dϕ−A0

rad

)
∧ ?F , (7.31)

63We use the above identity for applying the Hodge operator twice, and note that 〈δv, δu〉 = −〈δu, δv〉
since δv, δu are 1-forms on field space.
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where we have restored the standard connection A on Γ and the associated edge mode
via (7.14). This is a generalization of the boundary action for Maxwell theory proposed
in [11, 13], which we thus recover through our post-selection algorithm. In particular, our
procedure demonstrates that the edge mode in the action does not have to be postulated,
but actually is part of the global theory space from the start, and appears thanks to our
variable split into radiative and gauge parts relative to the reference frame U .64

By contrast, post-selection on ?F can be implemented by setting b = 1 and a = 0, so
that X = (−1)d−1 ∗ ?F = (−1)d−1 ∗ f0, for some background (d− 2)-form f0. This yields
Neumann boundary conditions. If we also set c = −1 and d = 0 for simplicity, we have the
‘momentum’ Y = −Arad and the boundary action reads

` = Arad ∧ f0 = (A− dϕ) ∧ f0 . (7.32)

Accordingly, the shifted presymplectic potential on Γ reads on-shell

θcorr ≈ δ ? F ∧Arad − d(?Fδϕ) , (7.33)

which amounts to the dual polarization of equation (7.15), i.e. with the roles of radiative
configuration and momentum degrees of freedom interchanged.

Finally, let us revisit the distinction between gauge transformations and symmetries.
The former yield constraints, while the latter give rise to non-vanishing charges. Indeed,
let Xα denote the vector field on FM inducing the gauge transformation in (7.21). On the
space of solution SM , this defines a degenerate direction of ΩM given in (7.19)

δC[α] := Xα · ΩM = −
∫

Σ
αδd ? F ≈ 0 , (7.34)

so that the constraint takes the expected form (7.17). Since we are dealing with a U(1)
gauge theory, the constraints yield an Abelian Poisson algebra

{C[α], C[β]} = Xβ · (Xα · ΩM ) = 0 . (7.35)

On the other hand, let Yρ with field-independent ρ denote the vector field on FM gen-
erating the symmetry transformation in (7.22). In SM (that is, before boundary conditions
are imposed), this does not define a degenerate direction of the presymplectic form, since

δQ[ρ] := Yρ · ΩM =
∫
∂Σ
ρδ ? F (7.36)

64More precisely, the action in (4.28) of [11] is given for d = 4 in the form `Γ = j ∧ (da + A), where
a is a postulated edge mode transforming as δαa = −α and j is a gauge-invariant dynamical 2-form that
can be viewed as a Lagrange multiplier. One can solve for the Lagrange multiplier, giving j = ?F , and
the equations of motion also yield F

∣∣
Γ

= 0. In our action, we get the edge mode ϕ ≡ −a with correct
transformation property directly from the reference frame construction of section 4, which allows us to split
the boundary degrees of freedom into radiative and gauge parts as in (7.14). Furthermore, the action we
obtained generates the more general boundary value F

∣∣
Γ

= dA0
rad through the background field introduced

via post-selection. Hence, (7.31) is a generalization of the action in [11], evaluated on the solution for the
Lagrange multiplier j = ?F .
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does not vanish in general. Instead, this yields the charge

Q[ρ] =
∫
∂Σ
ρ ? F . (7.37)

This expression is in agreement with the one in [11]. Constituting the generators of a U(1)
frame transformation, the charges likewise form an Abelian Poisson algebra

{Q[ρ], Q[σ]} = Yσ · (Yρ · ΩM ) = 0 (7.38)

and they are clearly gauge-invariant boundary observables, {C[α], Q[ρ]} = Yρ · (Xα · Ω) =
0. Finally, the interpretation of those generators in the regional solution space SX0

M is
contingent on the type of boundary conditions being considered. As it has been discussed
in section 5.2 for gauge field theories, as well as in section 2.3 for a mechanical toy-model,
we have three possibilities.

Symmetries. These are transformations which leave the boundary conditions invariant,
but allow for non-trivial variations of the charge, that is:

∆ρX = Yρ · δX = a dρ ≈̂ 0 , (7.39)

δQ[ρ] =
∫
∂Σ
ρδ ? F 6≈̂ 0 . (7.40)

Since δ ? F —and thereby δQ[ρ]—vanishes for Neumann boundary conditions, this
is only possible for Dirichlet or Robin boundary conditions (a 6= 0), and requires ρ
to be constant on Γ. Up to multiplication, there is therefore a unique charge, which
records variations of the total flux

∫
∂Σ ?F .

Meta-symmetries. This corresponds to the situation in which Yρ fails to leave the bound-
ary condition invariant (i.e. when adρ 6≈̂ 0). In this case, the transformation changes
leaf (or subregion theory) SMX0

in the foliation (5.16) of the global space of solutions S.
This can only happen for a 6= 0, that is for Dirichlet or Robin boundary conditions.
In that case, meta-symmetries include any vector field Yρ with ρ not constant on Γ.

Boundary gauge symmetries. Finally, one can have both ∆ρX ≈̂ 0 and δQ[ρ] ≈ 0, in
which case the generator Yρ is transmuted into a gauge direction due to the boundary
condition. This requires δ ? F ≈̂ 0, hence a Neumann boundary condition, and in
particular a = 0. This is also a sufficient condition, since a = 0 automatically implies
∆ρX ≈̂ 0, so that any generator Yρ constitutes a boundary gauge symmetry. This
case leads to the additional edge constraints C∂ [ρ] ≈̂ 0 discussed in equation (5.41).

Lastly, let us comment on the status of edge modes and the edge-mode-dressed ob-
servables in the presence of these various types of symmetries and boundary conditions,
especially as far as the reduced phase space is concerned. Let us firstly focus on the case
of Dirichlet and Robin boundary conditions. Note that in this case, for any choice of post-
selected subsystem theory SX0

M defined by X = X0, there will exist both symmetries and
meta-symmetries (but not boundary gauge symmetries), the former acting tangentially to
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the leaf, while the latter act transversally. In order to construct the regional reduced phase
space PX0

M from SX0
M , one has to factor out the degenerate directions of the pullback of

ΩM to SX0
M . The symmetry transformation—unique up to multiplication by a constant

(see above)—does not constitute a degenerate direction and meta-symmetries are not even
tangential. The symmetry transformation, which ultimately originates in the edge mode,
thus corresponds to a physical direction and thereby a non-trivial transformation on PX0

M ;
specifically, since Q[ρ] is conjugate to the edge mode variable ϕ by equation (7.19), the
symmetry will transform any non-trivially frame-dressed observable. At least some such
frame-dressed observables must therefore survive on PX0

M . By contrast, the standard gauge
generators Xα will constitute degenerate directions of ΩM . This entails that a physical
solution in M ∪ Γ is specified by the gauge-invariant boundary condition X = X0, as well
as suitable gauge-invariant initial data on some Cauchy slice Σ (cf. the related discussion
in section 3.2) which must have some non-trivial dependence on the edge mode frame U ;
the reduced phase space PX0

M is thus labeled by the boundary conditions and parametrized
by the invariant Cauchy data.

The invariant Cauchy data will thus not only contain regional gauge-invariant data (i.e.
only depending on fields in M), but also non-local observables involving the edge mode
frame (which originates in the complement M̄). For example, it may contain observables
relating the connection A at some bulk point σ of Σ to the edge frame at x ∈ ∂Σ, obtained
by shooting a Wilson line in from x to σ and contracting it with the frame U , similarly
to the constructions in section 4. Note that such non-local observables, which ultimately
relate bulk properties in M to the edge frame U (and thus M̄), cannot all be reconstructed
from purely local gauge-invariant quantities (that is, from the radiative data X,Y on ∂Σ
together with gauge-invariant bulk variables); they thus amount to independent initial
data. In other words, in the case of Dirichlet and Robin boundary conditions, the regional
reduced phase space PX0

M contains frame-dressed observables and therefore more than the
purely regional gauge-invariant data one would find when ignoring edge modes in the first
place. In this case, edge modes are therefore of direct physical significance, besides also
being a prerequisite for deriving the boundary value problem from the global variational
problem through post-selection.

The situation is, however, quite different for Neumann boundary conditions, in which
case all symmetry generators Yρ constitute degenerate directions of the pullback of ΩM

to SX0
M , and correspond to additional boundary gauge symmetries encoded in the addi-

tional edge constraints C∂ [ρ]. Since the edge constraints are essentially what would be the
charges in the case of symmetries, they too are conjugate to the edge mode variable ϕ by
equation (7.19). However, in this case they correspond to gauge directions in SX0

M that are
factored out when constructing the regional reduced phase space PX0

M . The latter will thus
not contain any frame-dressed observables, but exclusively the regional gauge-invariant
data one would find when ignoring edge modes. Intuitively, this can be understood from
the fact that Neumann boundary conditions correspond to reflective boundary conditions,
so that the subregions M and M̄ evolve essentially independently. Note, however, that
even in this case, the edge mode is crucial in order to construct the foliation of the space
of solutions in equation (5.16) and thereby to consistently formulate the boundary value
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problem through post-selection. Through its appearance in the boundary action `, it also
affects the reduced dynamics on PX0

M .

7.3 Abelian Chern-Simons theory

The edge mode construction of [3] was first extended to Chern-Simons theories in [5] (see
also [11]). As we will now illustrate in our post-selection formalism, an interesting feature of
Abelian Chern-Simons theory is that it can support an infinite-dimensional set of boundary
symmetries, even after appropriate boundary conditions have been imposed on Γ. This is
a crucial structural difference between Maxwell (or more generally Yang-Mills) and Chern-
Simons edge modes, but it is important to note that our general construction and its
interpretation apply equally well to both types of theories. In this regard, our formalism
differs from that advocated in [6–9] (see in particular [9] for a nice summary of this series of
works): by relying on specific features of Yang-Mills theories (for instance, the functional
form of the Gauss constraint), this work is not directly exportable to Chern-Simons theories.
We also note that Chern-Simons symmetry algebras were previously studied in the context
of boundaries, e.g. in [110, 111], though in a different formalism and without an explicit
edge mode construction.

The bulk action SM =
∫
M L[A] of Abelian Chern-Simons theory, a topological field

theory in d = 3 spacetime dimensions, features the Lagrangian

L = A ∧ F , (7.41)

where F = dA is the field strength of the U(1) connection 1-form A, which under gauge
transformations transforms as usual: δαA = dα. The variation of the bulk Lagrangian
gives

δL = 2δA ∧ F − d(A ∧ δA) , (7.42)

yielding the bulk equation of motion F = 0 and the presymplectic potential

Θ = δA ∧A . (7.43)

Its pullback to Γ can be written as

θ = 〈δA, ∗A〉εΓ , (7.44)

where ∗ is the Hodge dual on Γ. The presymplectic current

ω = −δA ∧ δA (7.45)

pulls back to Γ in the form
ω = 〈δA,−δ ∗A〉εΓ . (7.46)

In local coordinates, this means that the conjugate of a component Aµ is (∗A)µ. A has
two components once pulled-back to Γ; imposing boundary conditions on a Lagrangian
submanifold amounts to fixing just one of them.65 In local inertial coordinates (t, x),

65While we will ultimately be imposing boundary conditions on the components of the edge-frame-dressed
connection Arad, we will here briefly explore the frame-(in)dependence of boundary conditions for the gauge-
dependent A, as the discussion applies in the same manner to Arad, but is notation wise simpler.
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where x is space-like and t time-like, we could for instance impose a boundary condition
Ax = A

(0)
x for some background field A(0)

x . However, such a condition is neither invariant
nor covariant under local Lorentz transformations. A better option is to impose a boundary
condition on light-cone coordinates A+ = At + Ax or A− = At − Ax. The reason is that
A± only changes by a multiplicative constant under a Lorentz transformation, so that the
type of boundary condition is invariant: two local inertial observers can agree on the fact
that one is imposing a boundary condition on A±, even if they might disagree about the
value of the background field A(0)

± . Furthermore, the boundary condition A± = 0 is fully
invariant. Therefore, boundary conditions of the form A± = A

(0)
± fall in the same class as

those already investigated for Maxwell theory. We shall focus exclusively on such boundary
conditions.

In coordinate-independent language, we can simply define:

A± := A± ∗A (∗A± = ±A±) (7.47)

as the (anti)self-dual part of A. Indeed, in the coordinates (t, x) we used above, one can
check that ∗dt = dx, ∗dx = dt, and therefore:

A± = (At ±Ax)(dt± dx) = A±(dt± dx) . (7.48)

The frame-independent boundary condition A± = A±0 at the form level is thus equivalent
to fixing the component A± in a local inertial frame. We can decompose θ and ω as:66

θ = 1
4
(
δA+ ∧A− + δA− ∧A+

)
= 1

4
(
−〈δA+, A−〉+ 〈δA−, A+〉

)
εΓ , (7.50)

ω = −1
2δA

+ ∧ δA− = 1
2〈δA

+, δA−〉εΓ . (7.51)

On Γ we shall once more invoke the split of the connection into a gauge-invariant
radiative part and a pure gauge part (see equation (4.8))

A
∣∣
Γ = Arad + dϕ . (7.52)

As in the Maxwell case, ϕ is the edge mode, which is part of the global theory space
from the start and clearly has to transform as δαϕ = α (see the discussion in sections 4.1
and 4.2). This permits us to rewrite the pullback of the presymplectic potential to Γ in
the form

θ = θrad + θgauge , (7.53)
θrad = δArad ∧Arad , (7.54)

θgauge = δdϕ ∧Arad + δArad ∧ dϕ+ δdϕ ∧ dϕ . (7.55)
66We make use of the following useful fact:

δA±∧A± = 〈δA±,±A±〉εΓ = ±1
2δ〈A

±, A±〉εΓ = 1
2δ(A

±∧A±) = 1
2
(
δA± ∧A± +A± ∧ δA±

)
= 0 . (7.49)
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In order to implement the post-selection procedure of section 5.2, we now have to
impose boundary conditions on the radiative data. It is clear that one can make ωrad =
−1

2δA
+
rad ∧ δA

−
rad to vanish by imposing

δA+
rad ≈̂ 0 or δA−rad ≈̂ 0 , (7.56)

where
A±rad = A± − (dϕ± ∗dϕ) . (7.57)

To determine the correction term `corr that will need to be included in order for the shifted
presymplectic potential θcorr to reduce to a corner term on-shell (see equation (6.9)) across
Γ, we firstly rewrite the radiative part as:

θrad = 1
2δA

∓
rad ∧A

±
rad + 1

4δ
(
A±rad ∧A

∓
rad

)
. (7.58)

The second term will have to be cancelled by a contribution −1
4

(
A±rad ∧A

∓
rad

)
to `corr, for

otherwise equation (6.9) cannot be realized.
Next, let us turn to θgauge. As in Maxwell theory, this contains the edge mode con-

tributions that will allow us to impose the gauge constraint F = 0 dynamically on Γ.
However, the situation is slightly less trivial here as it requires a change of polarization.
In Maxwell theory, we readily had θgauge = d ? Fδϕ − d(δϕ ? F ); that is, the variation of
the reference frame times a constraint, supplemented with a corner term. This is not so in
Chern-Simons theory, as

θgauge = −2Fδϕ+ d(δϕArad − ϕδArad + δϕdϕ) + δ(ϕF ) . (7.59)

The first term includes the constraint F ≈ 0, the second is a corner contribution, and the
third—the difference to the Maxwell case—an exact field space form resulting from the
change of polarization to radiative and edge mode degrees of freedom. Given that this last
term vanishes on-shell, defining θ∂ = −δϕArad + ϕδArad − δϕdϕ and `∂ = 0 would be in
compliance with the general algorithm summarized in section 6.3. However, recalling the
discussion at the end of sections 6.1 and 6.2.1, we will find it advantageous to cancel the
exact form δ(ϕF ) even off-shell, by means of a non-vanishing `∂ := −ϕF , which in turn
will contribute to `corr. All in all, we are thus led to defining:

`corr := −ϕF − 1
4A
∓
rad ∧A

±
rad . (7.60)

Recalling item (ii) from section 6.1, the term −ϕF can be equivalently motivated by
the desire to restore gauge-invariance of the subregion variational problem. Indeed, an
important feature of Chern-Simons theory as compared to Maxwell theory is that SM
fails to be gauge-invariant on its own. More precisely, for fictitious boundaries SM is
kinematically not gauge-invariant, but on-shell it is because

δαSM =
∫

Γ∪Σ2∪Σ1
αF . (7.61)
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In principle, we thus do not need to add a piece to the action in order to restore gauge-
invariance for a subregion delimited by fictitious boundaries.67 However, it is convenient
to have gauge-invariance built-in at the kinematical level, and therefore require the action
to be gauge-invariant even off-shell. Including a term −ϕF into `corr achieves just that.

Note that the decomposition (7.59) is not unique as one can shift ϕF in the third
term by an exact form dk and compensate this change by a shift −dδk of the second term.
However, this translates into nothing else but the usual ambiguity in the definition of the
boundary Lagrangian ` (which is unique up to integration by parts).

Altogether, we are led to introducing the post-selection action (see equation (6.12)):

Sps =
∫

Γ
−ϕF − 1

4A
∓
rad ∧A

±
rad + λ ∧ (A±rad −A

±
0 ) (7.62)

=
∫

Γ
−ϕF ± 1

2 ∗Arad ∧Arad + λ ∧ (Arad ± ∗Arad −A±0 ) , (7.63)

where A±0 is a background self-dual (resp. antiself-dual) form entering the boundary con-
dition A± ≈̂ A±0 , and λ is a gauge-invariant 1-form that we can furthermore assume
to be antiself-dual (resp. self-dual). After evaluating the Lagrange multiplier on-shell
(λ ≈ 1

2A
∓
rad), we obtain the following boundary Lagrangian (see equation (6.27)):

`± = −ϕF + 1
2A
±
0 ∧A

∓
rad −

1
4A
±
rad ∧A

∓
rad (7.64)

= −ϕF + 1
2A
±
0 ∧ (Arad ∓ ∗Arad)± 1

2Arad ∧ ∗Arad . (7.65)

In terms of the original variables A and ϕ, this is simply:

`± = −ϕdA+ 1
2A
±
0 ∧ (A∓ ∗A− dϕ± ∗dϕ)± 1

2A ∧ ∗A±A ∧ ∗dϕ±
1
2dϕ ∧ ∗dϕ , (7.66)

from which we deduce that the frame field ϕ inherits a non-trivial kinetic term ±1
2dϕ∧∗dϕ.

By construction, this boundary Lagrangian allows us to impose the constraint F = 0 on
Γ together with the boundary condition A±rad = A±0 as dynamical equations of motions.
Indeed, varying the action SM∪Γ =

∫
M L[A] +

∫
Γ `
±
Γ gives

δSM∪Γ =
∫
M

2δA ∧ F +
∫

Σ2−Σ1
δA ∧A (7.67)

+
∫

Γ

(1
2δA

∓
rad ∧ (A±rad −A

±
0 )− 2Fδϕ+ d(δϕArad − ϕδArad + δϕdϕ)

)
, (7.68)

which is stationary up to variation on Σ1 and Σ2 provided that: F = 0 in the bulk as well
as on Γ, and A±rad = A±0 .

We note that our final expression (7.66) coincides with the boundary Lagrangian pro-
posed in [13], up to an irrelevant integration by parts and in the special case of vanishing
background field A±0 . In this, our derivation justifies and generalizes this previous proposal.

67In subsequent work [101], we shall also deal with physical boundaries on which the bulk equation of
motion need not hold in the form F

∣∣
Γ

= 0 on account of possible sources, in which case SM will not be
gauge-invariant by itself on-shell.
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It is also closely related to the boundary action previously introduced in [11]. Translated
in our own notations, the authors of this paper proposed the boundary Lagrangian

˜̀± = −ϕF + j ∧Arad ±
1
2j ∧ ∗j , (7.69)

in which an extra gauge-invariant and dynamical boundary 1-form j has been introduced.
The equation of motion resulting from varying j is ∗j = ∓Arad, and once coupled to the
bulk action, the equation of motion resulting from varying A is j = Arad. Arad is therefore
(anti)self-dual on-shell, and it turns out that we recover the same equations of motion for
(A,ϕ) as with `±, again provided that A±0 = 0. In this sense, our proposal similarly extends
the results of [11] to non-vanishing A±0 (at least at the classical level, which is the main
focus of the present work). In order to accommodate non-vanishing boundary conditions,
the action (7.69) can be augmented to:

˜̀±
Γ =

∫
Γ
−ϕF + j ∧Arad + 1

2A
±
0 ∧ (Arad ∓ ∗Arad)± 1

2j ∧ ∗j , (7.70)

which remains linear in Arad. By varying A we now obtain j = Arad − A±0 , while the
variation of j still yields ∗j = ∓Arad. It follows that A±rad = A±0 , as claimed.

Let us conclude this subsection by disentangling gauge transformations from boundary
symmetries and their charges. Computing ωgauge = δθgauge, we find:

ωgauge = −δdϕ ∧ δdϕ− 2δdϕ ∧ δArad ≈ −d (δϕδdϕ+ 2δϕδArad) . (7.71)

The (on-shell) consistency relation (5.30), dω∂ ≈̂ −ωgauge, can be solved by postulating a
boundary presymplectic current

ω∂ := δϕδdϕ+ 2δϕδArad = 2δϕδA− δϕδdϕ . (7.72)

Vector fields Xα act on ΩM =
∫

Σ ω +
∫
∂Σ ω∂ as

Xα · ΩM = −2
∫

Σ
dα ∧ δA+

∫
∂Σ

(2αδA− 2δϕdα− αδdϕ+ δϕdα) (7.73)

=
∫

Σ
(−2d(αδA) + 2αδF ) +

∫
∂Σ

(2αδA− d(αδϕ)) (7.74)

= 2
∫

Σ
αδF ≈ 0 , (7.75)

and are therefore gauge symmetries. Defining the constraints

C[α] = 2
∫

Σ
αF (7.76)

for field-independent α, we find that they form an Abelian Poisson algebra

{C[α], C[β]} := Xβ · Xα · ΩM = 0 . (7.77)

Next, we can introduce vector fields Yρ that only act on the edge reference frame as
frame reorientations (see section 4.5 for the corresponding general discussion):

∆ρA := Yρ(A) = 0 and ∆ρϕ := Yρ(ϕ) = −ρ , (7.78)
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so that, in particular, the frame-dressed observables vary according to ∆ρArad :=
Yρ(Arad) = dρ and ∆ρA

±
rad := Yρ(A±rad) = dρ± ∗dρ. We then have Yρ · ω = 0, while

Yρ · ω∂ = −2ρδA+ ρδdϕ− δϕdρ = −2ρδArad − d(ρδϕ) . (7.79)

For a field-independent ρ it follows that:

Yρ · ΩM = δQ[ρ] , where Q[ρ] := −2
∫
∂Σ
ρArad , (7.80)

and the charges Q obey a Kač-Moody algebra:

{Q[ρ], Q[σ]} := Yσ · Yρ · ΩM = −2
∫
∂Σ
ρdσ . (7.81)

We would find trivial charges (δQ[ρ] ≈ 0) if one were to naively impose a boundary
condition on the full radiative connection Arad. By contrast, with the weaker (anti)-selfdual
boundary condition A±rad = A±0 , A∓rad is free to fluctuate, so that we can have non-trivial
charges. More precisely, the regional covariant phase space is stable under Yρ provided
that A±rad is left invariant. Such vector fields are labelled by functions ρ on Γ, such that

dρ± ∗dρ = 0 . (7.82)

In the local coordinates (t, x), this is nothing but ∂tρ ± ∂xρ = 0, with general solution of
the form ρ = ρ(t∓ x). Crucially, and in sharp contrast with Maxwell theory, we therefore
obtain an infinite-dimensional space of symmetries.68 This entails a non-trivial regional
reduced phase space PX0

M with propagating edge-mode-dressed degrees of freedom. For
example, as in the case of Dirichlet and Robin boundary conditions in Maxwell theory,
these may include observables relating A in the bulk of M to the edge frame via Wilson
lines. Owing to the topological nature of the theory, such quasi-local observables would
have been absent from the regional reduced phase space had one ignored edge modes in
the first place.

Given that δA±rad = 0, we can define the charges by

Q±[ρ] = −
∫
∂Σ
ρA∓rad , (7.83)

so that Q[ρ] = Q+[ρ]+Q−[ρ], where we have added an explicit superscript ± to distinguish
our two sets of boundary conditions. On solutions to the boundary conditions A±rad = A±0 ,
the charges Q∓[ρ] are no longer dynamical and thereby drop out of the Poisson-bracket
relations in eq. (7.81). The surviving charges Q±[ρ] satisfy the Kač-Moody commutation
relations. Indeed, owing to the (anti)-selfduality condition (7.82):

{Q±[ρ], Q±[σ]} := Yσ · Yρ · ΩM = −
∫
∂Σ
ρ(dσ ∓ ∗dσ) = −2

∫
∂Σ
ρdσ . (7.84)

68This difference holds more generally in comparison to Yang-Mills theories. As we will see below, an
additional specificity of non-Abelian Yang-Mills theories is that the analogue of (7.82) explicitly depends
on the background fields defining the boundary condition. As a result, the dimension of the solution space
itself depends on this background data.
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Finally, the vector fields Yρ parametrized by functions ρ which fail to satisfy the stability
condition (7.82) are to be interpreted as meta-symmetries: owing to (7.80), they do generate
symplectomorphisms, but between distinct regional covariant phase spaces. Note that, as
a result, boundary gauge symmetries are excluded in this example.

7.4 Yang-Mills theory

As our last example, and in complement to section 7.2, let us consider Yang-Mills theory for
a general (compact and connected) matrix Lie group G. This will serve as a non-Abelian
illustration of the post-selection and edge frame formalism.

Yang-Mills theory is also one of the two main models originally studied in the pioneering
work of Donnelly and Freidel on edge modes [3]. Where comparable, our technical results
will be consistent with theirs. At the same time, our work extends their construction and
analysis. For example, 1) by establishing the interpretation of edge modes as internalized
external reference frames (see section 4), we are clarifying their overall physical meaning
and that they are already included in the global theory to start with; 2) we are focusing
on a spacetime region with a non-trivial time-like boundary, rather than a spatial Cauchy
slice, which provides an alternative starting point for the construction of the regional
presymplectic structure ΩM (see section 5.3); 3) we demonstrate how to obtain the regional
phase space and variational principle from the global ones via post-selection on edge-mode-
dressed boundary conditions and clarify the status of edge modes in the context of different
types of boundary conditions. In this regard, our work also complements the discussion
in [6–9], where the fate of edge modes in Yang-Mills theory in causal diamonds subject to
Neumann boundary conditions was studied in a different formalism and we comment on
that below.

The Lagrangian is defined as:

L = −1
2Tr [F ∧ ?F ] (7.85)

where F := dA+A∧A is the curvature two-form of a G-connection A. We also recall that
the covariant exterior derivative dA acts on a Lie-algebra valued form η as dAη := dη +
[A, η].69 The variation of the curvature two-form can be nicely expressed as δF = dAδA,
from which we deduce:

δL = −Tr [dAδA ∧ ?F ] = −Tr [dA (δA ∧ ?F )]− Tr [δA ∧ dA ? F ]
= −dTr [δA ∧ ?F ]− Tr [δA ∧ dA ? F ] . (7.86)

The bulk equations of motion and the presymplectic potential are therefore

dA ? F ≈ 0 and Θ = −Tr [δA ∧ ?F ] , (7.87)

from which we also read out the presymplectic current ω = Tr [δA ∧ δ ? F ].
69Here, [·, ·] is the Lie bracket on Lie-algebra valued forms, which can be defined in terms of the wedge

product as [η1, η2] = η1 ∧ η2 − (−1)pqη2 ∧ η1, where η1 is a p-form and η2 is a q-form.
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The radiative data relative to the reference frame U on Γ is (cf. equations (4.8)
and (4.9)):

Arad = U−1AU + U−1dU and (?F )rad = U−1 ? FU . (7.88)

To determine the radiative presymplectic potential, we first remark that

Uδ(U−1dU)U−1 = d(δUU−1) , (7.89)

Uδ(U−1AU)U−1 = δA+
[
A, δUU−1

]
, (7.90)

and therefore
UδAradU

−1 = δA+ dA(δUU−1) . (7.91)
It follows that

θrad := −Tr [δArad ∧ (?F )rad] = −Tr [δA ∧ ?F ]− Tr
[
dA(δUU−1) ∧ ?F

]
, (7.92)

or, in other words,

θgauge = Tr
[
dA(δUU−1) ∧ ?F

]
= dTr

[
δUU−1 ? F

]
− Tr

[
δUU−1dA ? F

]
. (7.93)

On-shell, the second term vanishes and θgauge is therefore exact. We see in particular, as
anticipated in section 4.7, that the (field-space) right-invariant Maurer-Cartan form δUU−1

is the non-commutative analogue of the variation δϕ that was entering the gauge presym-
plectic structure of Maxwell and Abelian Chern-Simons theories. The main difference is
that δUU−1 is not field-space exact when G is not Abelian, which leads to extra contri-
butions to the gauge part of the presymplectic current (as compared to formula (7.18) in
Maxwell theory):

ωgauge = δθgauge = dTr
[
(δUU−1)(δUU−1) ? F

]
− dTr

[
δUU−1δ ? F

]
− Tr

[
(δUU−1)(δUU−1)dA ? F

]
+ Tr

[
δUU−1δdA ? F

]
. (7.94)

When the equations of motion are satisfied on the boundary, dA ? F
∣∣
Γ ≈ 0, ωgauge becomes

exact:
ωgauge ≈ dTr

[
(δUU−1)(δUU−1) ? F

]
− dTr

[
δUU−1δ ? F

]
. (7.95)

Our consistency condition (5.30) can therefore be solved by the following choice of boundary
presymplectic current:

ω∂ = Tr
[
δUU−1δ ? F

]
− Tr

[
(δUU−1)(δUU−1) ? F

]
. (7.96)

Let us explicitly check that the regional presymplectic structure ΩM =
∫

Σ ω+
∫
∂Σ ω∂ is

invariant under field-dependent gauge transformations, as argued around equation (5.36).
Remember that the vector field Xα acts as Xα(A) = [α,A] − dα = −dAα and Xα(F ) =
[α, F ], where α is Lie-algebra-valued and possibly field-dependent. We can first compute

Xα · ω = −Tr [dAα ∧ δ ? F ] + Tr [δA ∧ [?F, α]] (7.97)
= −dTr [αδ ? F ] + Tr [αdAδ ? F ] + Tr [δA ∧ [?F, α]]
= −dTr [αδ ? F ] + Tr [αδdA ? F ]− Tr [α[δA, ?F ]] + Tr [δA ∧ [?F, α]]
= −dTr [αδ ? F ] + Tr [αδdA ? F ] ≈ −dTr [αδ ? F ] ,
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where we have used Leibniz’s rule for dA in going from the first to the second line, and the
commutation relation [δ, dA]η = [δA, η] (for any Lie-algebra-valued form η) in going from
the second to the third. Owing to the constraint δdA ? F ≈ 0, Xα · ω is exact on-shell and
reduces to a boundary term upon integration, as expected in a local gauge theory. Given
that Xα · δUU−1 = α, we also have

Xα · ω∂ = Tr [αδ ? F ] + Tr
[
δUU−1[?F, α]

]
− Tr

[
[α, δUU−1] ? F

]
= Tr [αδ ? F ] . (7.98)

As anticipated, we conclude that:

Xα · ΩM =
∫

Σ
Tr [αδdA ? F ] ≈ 0 , (7.99)

meaning that the vector field Xα is a gauge direction, even for a field-dependent α. Specif-
ically, invoking Cartan’s magic formula, this entails invariance of the regional presym-
plectic structure, LXαΩM ≈ 0. In [3], such an invariance under field-dependent gauge
transformations was the primary postulate that led to the introduction of the edge field
U , together with the boundary presymplectic structure ω∂ . From a conceptual point of
view, our construction proceeds differently (see section 5.3); in particular, invariance un-
der field-dependent gauge transformation is an output, not an input of our procedure, but
we recover the same results. For a field-independent α, we can furthermore define the
constraint generators

C[α] :=
∫

Σ
Tr [αdA ? F ] , δC[α] = Xα · ΩM . (7.100)

They obey the following Poisson algebra:70

{C[α], C[β]} := Xβ · Xα · ΩM =
∫

Σ
Tr [α[β, dA ? F ]] =

∫
Σ

Tr [[α, β]dA ? F ] = C[[α, β]] .
(7.101)

Hence, the constraints are first-class and define a homomorphism from g to the constraint
Poisson algebra.

On the other hand, the edge reference frame reorientations U → Ug−1 (see section 4.5)
are generated by vector fields Yρ, defined as:

∆ρA := Yρ(A) = 0 and ∆ρUU
−1 := Yρ · δUU−1 = −UρU−1 . (7.102)

They act on the frame-dressed observables Arad and ?Frad like gauge transformations in-
trinsic to Γ, in the sense that:71

∆ρArad := Yρ(Arad) = [ρ,Arad]− dρ = −dAradρ , ∆ρ (?F )rad := Yρ(?Frad) = [ρ, ?Frad] .
(7.103)

Note that these expressions are examples of the frame-reorientation induced relational
observable transformations in equations (4.34) and (4.36), however, in their infinitesimal
form. We then find that Yρ · ω = 0, while

Yρ · ω∂ = −Tr[UρU−1δ ? F ] + Tr[[UρU−1, δUU−1] ? F ] = −Tr[ρδ ? Frad] (7.104)
70Here, it is useful to remember that g . (dA ? F ) = gdA ? Fg−1.
71Although being gauge-invariant, we can view Arad as a vector potential for fields on Γ, which justifies

the slight abuse of notation dAradη := dη + [Arad, η], for any Lie algebra valued form on Γ.
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Restricting to field-independent ρ we can define the charges

Q[ρ] := −
∫
∂Σ

Tr [ρ ? Frad] , δQ[ρ] = Yρ · ΩM , (7.105)

which verify the algebra

{Q[ρ], Q[σ]} := Yσ · Yρ · ΩM = −
∫
∂Σ

Tr [[ρ, σ] ? Frad] = Q[[ρ, σ]] . (7.106)

It is also clear that the charges are gauge-invariant and Poisson-commute with the con-
straints

{Q[ρ], C[α]} = Xα · Yρ · ΩM = 0 . (7.107)

Even though the charges Q and the constraints C obey similar-looking algebras, it is
important to realize that they are not isomorphic. Gauge transformations act in the whole
spacetime region M , and are consequently labelled by Lie-algebra-valued fields (α, β,. . . )
on M . By contrast, the charges act solely on the edge field U , and are therefore labelled
by Lie-algebra-valued fields (ρ, σ,. . . ) on Γ.

Let us now turn to the construction of boundary Lagrangians, following the algorithm
put forward in section 6. As before, we only consider boundary conditions which are co-
variant under local changes of inertial frames and linear in the canonical local Darboux
coordinates of ωrad. Similarly to (7.23), the resulting generalized Robin boundary condi-
tions can be parametrized by the following change of polarization:

X := aArad + (−1)d−1 b ∗ ?Frad , Y := cArad + (−1)d−1d ∗ ?Frad , (7.108)

where the SL(2,R) condition ad− bc = 1 ensures that

ωrad = Tr [δArad ∧ δ ? Frad] = Tr [δX ∧ ∗δY ] . (7.109)

In order to impose the boundary condition X = X0, one should first reduce the on-shell
presymplectic potential on Γ to a corner term as in equation (6.9). This is the role of the
correction term `corr, which by construction must verify (cf. equations (6.22) and (7.25)):

δ`corr ≈ −Tr [δX ∧ ∗Y ]− θrad − θgauge − dC (7.110)

≈ −Tr [δX ∧ ∗Y ] + Tr [δArad ∧ ?Frad]− d
(
C + Tr

[
δUU−1 ? F

])
(7.111)

= 1
2δ (Tr [Arad ∧ ?Frad]− Tr [X ∧ ∗Y ])− d

(
C + Tr

[
δUU−1 ? F

])
(7.112)

This can be satisfied by defining

`corr := 1
2 (Tr [Arad ∧ ?Frad]− Tr [X ∧ ∗Y ]) and C := −Tr

[
δUU−1 ? F

]
. (7.113)

The second step in our algorithm consists in a dynamical imposition of the boundary
condition X = X0, by means of the post-selection action (6.12):

Sps =
∫

Γ
`corr + Tr [λ ∧ (X −X0)] . (7.114)
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After solving for λ, we obtain the following boundary Lagrangian for Robin boundary
conditions:

` = −Tr [X0 ∧ ∗Y ] + 1
2 (Tr [Arad ∧ ?Frad] + Tr [X ∧ ∗Y ]) . (7.115)

This is a straightforward generalization of the boundary Lagrangian (7.29) of Maxwell
theory, the important difference lying in the fact that ?F is not gauge invariant in the
non-Abelian case and therefore needs to be approppriately dressed. As in the Maxwell
case, variation of this Lagrangian yields the boundary conditions as boundary equations of
motion, as well as the bulk equations of motions (incl. on Γ).

We can impose a Dirichlet boundary condition Arad = A0 by specializing to a =
d = 1 and b = c = 0, which leads to a vanishing generating function `corr = 0 and (cf.
equation (7.31) in Maxwell theory)

` = Tr [(Arad −A0) ∧ ?Frad] (7.116)

= Tr
[
(A− UA0U

−1) ∧ ?F
]

+ Tr
[
dUU−1 ∧ ?F

]
. (7.117)

Choosing a = d = 0 and b = −c = 1 instead, yields the Neumann boundary condition
?Frad = f0 := ∗X0 (cf. equation (7.32) in Maxwell theory):

` = Tr [X0 ∧ ∗Arad] + 1
2
(
Tr [Arad ∧ ?Frad] + Tr

[
(−1)d ∗ ?Frad ∧ ∗Arad

])
(7.118)

= Tr [Arad ∧ f0] = Tr
[
U−1AU ∧ f0

]
+ Tr

[
U−1dU ∧ f0

]
. (7.119)

We conclude by analyzing the physical status of the frame reorientations (symmetries)
Yρ and edge modes, which varies depending on the type of boundary condition being
imposed, similar to the Maxwell case at the end of section 7.2. Ignoring mixed types of
boundary conditions for simplicity, we can distinguish two cases.

Suppose first that a = 0 everywhere on Γ. The boundary condition is then of the
Neumann type and reduces to ?Frad = f0 for some background function f0. Owing to
equation (7.103), the vector field Yρ leaves the boundary condition invariant if and only
if [ρ, f0] = 0. However, by virtue of (7.105), any such vector field corresponds to a gauge
direction of ΩM . Indeed, in analogy to the edge constraints (5.41) of Maxwell theory, we
now obtain the first-class edge constraints

C∂ [ρ] := −
∫
∂Σ

Tr [ρ (?Frad − f0)] (7.120)

in addition to the standard bulk constraints in equation (7.100). The condition [ρ, f0] = 0
ensures that the Poisson brackets of such constraints does vanish on SX0

M :

{C∂ [ρ], C∂ [σ]} = −
∫
∂Σ

Tr[[ρ, σ] ? Frad] =
∫
∂Σ

Tr[σ[ρ, ?Frad]] ≈̂
∫
∂Σ

Tr[σ[ρ, f0]] = 0 , (7.121)

that is, they constitute a first-class algebra. By contrast, any C∂ [ρ] with [ρ, f0] 6= 0 is
second-class,72 and therefore generates a frame reorientation Yρ that does not preserve

72This can be observed by computing its Poisson bracket with other constraints C∂ [σ] with [σ, f0] 6= 0.
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the boundary conditions. Such transformations constitute meta-symmetries that induce
a change of subregion theory SX0

M within the foliation (5.16) of the global solution space
S. This is in contrast to the case of Neumann boundary conditions in Maxwell theory,
where, owing to the Abelian character of the group, no such meta-symmetry exists. As in
the Maxwell case, however, Neumann boundary conditions are not compatible with proper
symmetries of the regional solution space SX0

M . We conclude that edge modes are somewhat
redundant with such boundary conditions: even though they play a conceptually enlight-
ening role at intermediate steps of our construction and are crucial in the formulation of
the boundary value problem through post-selection, they do not manifest themselves at
the level of the regional physical phase space PX0

M . Indeed, as emphasized in the Maxwell
case, Neumann boundary conditions correspond to reflecting boundary conditions, in which
caseM and its complement M̄ give rise to largely independent regional dynamics. Inciden-
tally, alternative constructions without edge modes have been proposed in the literature
for this particular class of boundary conditions (see again [6–9], and in particular [9] for a
nice summary).

Suppose instead that a 6= 0 everywhere on Γ, so that we are dealing either with
Dirichlet or Robin boundary conditions. We can then choose a = 1 without any loss
of generality. In order for the vector field Yρ to leave the boundary condition X = X0
invariant, the function ρ must verify:

∆ρX = [ρ,Arad]− dρ+ (−1)d−1b ∗ [ρ, ?Frad] = −dX0ρ = 0 . (7.122)

This generalizes the condition dρ = 0 we already came across for Maxwell theory with
boundary condition on Arad (see section 5.3 and the end of section 7.2). In view of (7.105),
δQ[ρ] does not generally vanish since ?Frad is free to fluctuate. We conclude that the charges
Q[ρ] such that dX0ρ = 0 generate a non-trivial algebra of symmetries, with commutation
relations (7.106). However, equation (7.122) being a first order partial differential equation
for ρ, the dimension of this algebra can at most be equal to dim g,73 and for non-Abelian
groups, it depends on the choice of background field X0.74 For fixed Dirichlet or Robin
boundary conditions, the remaining frame reorientations Yρ will violate equation (7.122)
and thereby correspond to meta-symmetries.

The situation in non-Abelian Yang-Mills theory is therefore very similar to the Abelian
Maxwell theory case, the only difference being that here the dimension of the symmetry
algebra can be anything between zero and dim g, while in Maxwell theory it is always of
dimension dim u(1) = 1. When there are solutions to equation (7.122) and the algebra is of
non-trivial dimension, we can invoke the same argumentation as at the end of section 7.2 to
conclude that edge modes are of direct physical significance in the regional reduced phase
space PX0

M .75 This phase space will contain edge-frame-dressed observables, including non-
local ones that relate bulk properties of M to the edge frame U via Wilson lines. By
contrast, when the symmetry algebra happens to be zero-dimensional, edge modes do not

73A more formal justification of this statement would invoke the Cauchy-Lipschitz theorem.
74For a generic X0, one actually expects dX0ρ = 0 to have no solution.
75In the language of [7], the existence of stabilizers (that is, of transformations Yρ such that (7.122) holds)

leads to a stratification of the reduced phase space generated by the symmetry charges.
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manifest themselves at the level of the regional reduced phase space; the frame-dressed
observables rather parametrize transversal directions to the regional solution space SX0

M in
the foliation of the global space of solutions S.

Our conclusion that edge modes are physically significant in the presence of Dirichlet
or Robin boundary conditions verifying equation (7.122) is consistent with the findings
of [7, 112]. There, it was shown without invoking edge modes that an equation analogous
to (7.122) can be understood as encoding a fundamental ambiguity in the gluing properties
of the system. That is, whenever this equation admits non-trivial solutions, it turns out
not to be possible to reconstruct a unique state for Σ ∪ Σ̄ from the knowledge of the local
states characterizing the gauge-invariant data with support respectively in Σ and Σ̄. The
physical symmetries generated by the analog of Q[ρ] in [7, 112] capture the missing holistic
properties of the global system, and once specified, restore unicity of the gluing procedure.
In our construction of edge modes as reference frames, this holistic nature of the symmetry
charges Q[ρ] is explicit from the outset: U is non-locally defined and is precisely introduced
to account for the gauge-invariant observables of the system which have support on both
M and M̄ . However, it is enlightening to note that the authors of [7, 112] arrived at a
similar conclusion without introducing edge modes per se, but instead relied on a careful
analysis of the gluing properties of partial Cauchy slices.

Altogether, this shows that edge modes, in the sense of [3], do not always manifest
themselves at the physical level in Yang-Mills theory; and when they do, they add a
finite number of parameters to an otherwise infinite-dimensional regional reduced phase
space. In this regard, Yang-Mills theory is dramatically different from (Abelian) Chern-
Simons theory: in the latter case, frame reorientations were giving rise to an infinite-
dimensional algebra of edge symmetries (7.84), owing to the fact that the analog of (7.122),
equation (7.82), admits infinitely many solutions (irrespectively of the background). In this
respect, our conclusions seem consistent with at least some of the views on Yang-Mills edge
modes laid out in [6–9] (see also [112, 113] for a philosophical discussion), and it would be
interesting to compare the two frameworks more closely. Notwithstanding, also in Yang-
Mills and Maxwell theory, edge modes play a conceptually illuminating role and are crucial
for consistently formulating the regional boundary value problem, as well as the foliation
of distinct subregion theories. Ultimately, they provide the proper tools to relate M to its
complement M̄ .

8 Conclusion and outlook

In this paper, we have provided a self-contained and detailed analysis of edge modes in
gauge field theory, which we believe clarifies their physical nature. By embedding a space-
time region M with time-like boundary Γ into a global spacetime M ∪ M̄ , we were able to
view the regional dynamics in M as the result of a post-selection procedure on the global
solution space. This also constitutes a connection between covariant phase space construc-
tions for global spacetimes [56] and bounded subregions as e.g. in [11, 66–68]. This global
perspective allowed us to make precise sense of edge modes as dynamical reference frames,
and thereby elucidate their interpretation. Our main conclusions are the following.
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• Edge modes can be systematically and consistently interpreted as dynamical refer-
ence frames, in the same sense in which they have appeared in the recent quantum
reference frame literature [41–54]. Here, they are in general necessary to specify
gauge-invariant boundary conditions on the time-like boundary Γ of a finite region
M . They are non-local functionals of the global configuration fields (defined e.g.
via systems of Wilson lines with support in the complementary region M̄), which
however materialize themselves as local fields on Γ. See section 4.

• Hence, edge modes are a direct manifestation of the relational character of gauge
field degrees of freedom [102, 103]. Indeed, frame-dressed observables on Γ are gauge-
invariant functionals which relate the region M to its complement M̄ , and that can
be precisely interpreted as relational observables [89–95] in a covariant phase space
setting (see section 4.2).

• Given a suitable set of gauge-invariant boundary conditions on Γ (they can be of
Dirichlet, Neumann, Robin or mixed type), we have developed a systematic algorithm
allowing one to induce a consistent variational principle for subregion M from the
global one on M ∪ M̄ . This includes the definition of a presymplectic form ΩM =∫

Σ ω+
∫
∂Σ ω∂ , and more generally, of an action SM∪Γ =

∫
M L+

∫
Γ `. The presymplectic

structure is made independent from the choice of partial Cauchy slice Σ thanks to the
inclusion of a corner term verifying the on-shell consistency condition ω∂ + dωgauge ≈̂
0 (see section 5). The boundary Lagrangian form ` can be motivated by similar
arguments at the off-shell level (see section 6).

• While edge modes are always useful concepts in the construction of the variational
problem for subregion M , they may sometimes drop out from the resulting on-shell
presymplectic structure. However, this only happens for very specific choices of
boundary conditions (such as a Neumann boundary condition on ?F in Maxwell
theory). For generic boundary conditions, the edge reference frame does contribute
to the regional presymplectic structure.

• As was originally emphasized in [3], symmetries need to be carefully distinguished
from gauge transformations. As we have shown, symmetry transformations of edge
degrees of freedom can be interpreted as reference frame reorientations, which makes
their physical character all the more clear. At the level of the subregion M , the
inclusion of boundary conditions necessitates a refinement of this dichotomy. Frame
reorientations then split into three further subcategories: proper boundary symme-
tries, which leave the regional field space (in particular, the boundary conditions)
invariant and carry non-trivial charges; boundary gauge symmetries, which also leave
the regional field space invariant, but whose charges become trivial on-shell of the
boundary conditions; and finally meta-symmetries, which, by changing the bound-
ary conditions themselves, give rise to symplectomorphisms between distinct regional
field spaces.
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• Our formalism is in principle applicable to any gauge field theory, as examplified in
section 7 (see also section 2 for a mechanical model featuring both gauge symmetries
and edge modes). In particular, we do not see any major difference in the physical
interpretation of Yang-Mills, Maxwell and Chern-Simons edge modes: they can all
be derived in a systematic way by application of our algorithm. However, in contrast
to Yang-Mills theories (including Maxwell), Chern-Simons theories do have the pe-
culiarity of supporting an infinite-dimensional algebra of boundary symmetries, even
after suitable boundary conditions have been imposed on Γ (see section 7.3 for an
illustration of this claim in the Abelian context). In that, the dynamical role of edge
modes is greatly enhanced in such theories.

The present article has been conceived as a first in a series of upcoming publica-
tions [101]. In complement to splitting post-selection, we plan to examine the reverse
process of gluing in the language of dynamical reference frames. It will also be important
to test our formalism on other interesting gauge systems. An obvious example to consider,
that was left out of the present work for simplicity, is non-Abelian Chern-Simons theory.
Finally, beyond the definition of consistent variational principles, our main objective is
to explore the statistical (and, ultimately, quantum) properties of bounded subregions in
field theory, from the point of view of universal fluctuation relations in non-equilibrium
thermodynamics.

Another and related objective we leave for the future is to investigate the nature of
edge modes in gravitational systems from the reference frame perspective advocated in the
present paper. In the context of full Einstein gravity, it will be particularly interesting
to revisit recent proposals such as [20, 21, 26, 30–32, 68]. Finally, in order to test our
construction in the realm of quantum gravity, it will also be enlightening to investigate
symmetry-reduced models which are reasonably well understood at the quantum level
(such as Jackiw-Teitelboim gravity).
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