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1 Introduction

Quantum corrections are known to significantly alter the high-energy properties of the
gauge theory scattering amplitudes. The asymptotic behavior of the amplitudes which
are not suppressed by the ratio of a characteristic infrared scale to the process energy is
governed by the “Sudakov” radiative corrections enhanced by the second power of the large
logarithm of the scale ratio per each power of the coupling constant. Sudakov logarithms
exponentiate and result in a strong universal suppression of the scattering amplitudes in
the limit when all the kinematic invariants of the process are large [1–9]. The structure of
the power suppressed logarithmically enhanced contributions is by far more complex and
the corresponding renormalization group analysis poses a serious challenge to the modern
effective field theory. One of the important problems in this category is the analysis of
the scattering amplitudes involving massive particle in the limit of small mass or high
energy. The mass effects on the leading-power contributions have been extensively stud-
ied in the context of the high-order electroweak and QED radiative corrections [10–20].
The next-to-leading power contributions for a number of key processes in QED and QCD
have been analysed in the leading (double) [21–30] and the next-to-leading logarithmic
approximation [31–33].1

In the processes with massive fermions already at the next-to-leading power the origin
of the logarithmic corrections and the asymptotic behavior of the amplitudes drastically
differ from the leading-power Sudakov case. The double-logarithmic terms in this case are
related to the effect of the eikonal (color) charge nonconservation in the process with soft
fermion exchange and result in asymptotic exponential enhancement for a wide class of

1The next-to-leading power logarithmic contributions corrections have also been recently discussed in
many different incarnations [34–47].
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amplitudes and in a breakdown of a formal power counting [23, 27, 28]. Thus, it is of a
primary theoretical interest to get insight into the asymptotic behavior of the next-to-next-
to-leading power contributions and determine whether any qualitatively new phenomenon
appears in this order. The renormalization group analysis has not yet been extended
beyond the next-to-leading power for any kind of power corrections to the high-energy
processes. In this paper we present for the first time such an analysis of the simplest but
fundamental and phenomenologically important amplitudes of the quark scattering in an
external electromagnetic field and of the light quark mediated Higgs boson production in
gluon fusion. The results of the analysis are used to get a quantitative estimate of the ac-
curacy of the fixed-order calculations [48, 49] and the calculations based on the small-mass
expansion [50, 51] of the light quark contribution to the Higgs boson production and decays.

The paper is organized as follows. In the next section we discuss the scattering of a
massive quark by an external electromagnetic field in the limit of large momentum transfer,
recall the main features of the double-logarithmic result for the next-to-leading power
contribution and extend the analysis to the O(m3

q) amplitude. In section 3 we discuss
the amplitude of the Higgs boson production at O(m3

q), derive the analytic result for the
three-loop double-logarithmic term and extend it to all orders in the large-Nc limit and in
the case of the abelian gauge group. Section 4 is our summary.

2 Quark scattering by electromagnetic field

The amplitude F of a quark scattering in an external field can be parameterized in the
standard way by the Dirac and Pauli form factors

F = eqψ̄(p1)
(
γµF1 + iσµνq

ν

2mq
F2

)
ψ(p2) , (2.1)

where eq is the quark charge. For on-shell quark p2
1 = p2

2 = m2
q and the large Euclidean

momentum transfer Q2 = −(p2 − p1)2 when the ratio ρ ≡ m2
q/Q

2 is positive and small the
form factors can be expanded in an asymptotic series

Fi = Z2
q

∞∑
n=0

ρnF
(n)
i , (2.2)

where the universal Sudakov factor for the external on-shell quark lines which incorporates
all the infrared divergencies of the amplitude. In dimensional regularization with d = 4−2ε
in the double-logarithmic approximation it reads

Z2
q = exp

[
−CF

(
αs
2π

ln ρ
ε

+ x

)]
, (2.3)

where x = αs
4π ln2ρ is the double-logarithmic variable and CF = (N2

c − 1)/(2Nc) for the
SU(Nc) color group. The infrared finite coefficients F (n)

i in a given order of perturbation
theory depends on ρ only logarithmically, and in the double-logarithmic approximation
are functions of x. Due to factorization of Sudakov logarithms into Z2

q these coefficients
include only non-Sudakov double logarithms and the leading-power Dirac form factor with
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the logarithmic accuracy is just F (0)
1 = 1. At the same time the Pauli form factor describe

the scattering with a flip of the quark chirality and therefore has to vanish in the high-
energy or small-mass limit i.e. F (0)

2 = 0.
The next-to-leading power double-logarithmic contribution to the Dirac form factor is

generated by the soft quark pair exchange and starts with two loops. The corresponding
coefficient reads [27, 28]

F
(1)
1 = CF (CA − 2CF )

6 x2f (−z) , (2.4)

where z = (CA−CF )x, CA = Nc and the function f has the following integral representation

f(z) = 12
∫ 1

0
dη1

∫ 1

η1
dη2

∫ 1−η2

0
dξ2

∫ 1−η1

ξ2
dξ1 e

2zη1(ξ1−ξ2)e2zξ2(η2−η1) . (2.5)

Due to the 1/mq factor in the definition of F2 the coefficient F (1)
2 corresponds to the O(mq)

scattering amplitude. However, as we will see in the double-logarithmic approximation
F

(1)
2 = 0 and the Pauli form factor starts to contribute at O(m3

q), i.e. at the next-to-next-
to-leading power in small-mass expansion.

The leading-order contribution to the Pauli form factor is given by the one-loop vertex
diagram and can be written as follows

[F2]1−loop = CFαs
π

1
1 + 4ρI1 , (2.6)

where the scalar integral over the virtual gluon momentum

I1 = −i
∫ d4l

π2
(p1l) + (p2l)

l2
(
(p1 − l)2 −m2

q

) (
(p2 − l)2 −m2

q

) (2.7)

corresponds to a single insertion of the loop momentum in the numerator of a quark
propagator, figure 1(a). At the same time the terms without the loop momentum do not
provide the relevant Lorentz structure. The logarithmically enhanced corrections to the
on-shell (or almost on-shell) amplitudes in the high-energy limit are universally associated
with the emission of the virtual particles which are soft and/or collinear to the large
external momenta. For the one-loop Pauli form factor the virtual gluon momentum in the
numerator cancels one of the eikonal propagators and makes the integrand not sufficiently
singular to develop the double-logarithmic contribution in the leading order in ρ. Hence
the integral generates only a single soft logarithm

I1 = − ln ρ+ . . . , (2.8)

where the ellipsis stands for the power-suppressed terms. Since the higher-order Sudakov
corrections factor out we get F (1)

2 = 0 in the double-logarithmic approximation and

F
(1)
2 = −CFαs

π
ln ρ (2.9)

in the next-to-leading logarithmic approximation to all orders of perturbative expansion.
The absence of the double-logarithmic contribution in the leading-power Pauli form factor

– 3 –
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(a) (b) (c) (d)

Figure 1. (a) the leading-order one-loop Feynman diagram for the O(mq) logarithmic contribution
to the quark Pauli form factor. The Feynman diagrams representing (b) O(mq) and (c), (d) O(m3

q)
double-logarithmic contributions to the ggH amplitude. The black (empty) circle represents the
mass (loop momentum) insertion. The gray blobs correspond to the double-logarithmic off-shell
scalar form factor at O(m0

q) and O(m2
q). Symmetric diagrams and the diagrams with the opposite

direction of the closed quark line are not shown.

can be easily understood. Indeed, in a physical gauge the collinear logarithms are gener-
ated by the self-energy corrections to the on-shell external lines [2] while a new Lorentz
structure in the quark coupling to the external electromagnetic field can only result from a
vertex correction. We, however are interested in the O(ρ2) double logarithms contributing
to F (2)

2 . The analysis of such terms is more complicated since the formal expansion of the
integrand in eq. (2.7) results in more singular integrals, which may have double-logarithmic
scaling. A systematic way to study the mass-suppressed double logarithms has been sug-
gested in [23] and discussed in detail in [25]. It is based on the expansion by regions
approach [52–54] which gives the coefficients of the small-mass expansion in terms of the
singular homogeneous integrals. The coefficient of the double-logarithmic term can be read
of the highest singularity of these integrals. This singularity in turn can be obtained by
the classical method of Sudakov [1] which on its own is blind to the power corrections.
As it has been shown in [23] the exchange by massless soft gauge boson does not produce
double logarithms in the first order in ρ. It can be directly checked for the one-loop integral
which gives [

F
(2)
2

]
1−loop

= O(ln ρ) , (2.10)

and the result extends to an arbitrary number of the soft gluon exchanges (see [25] for
detailed discussion). We would like to emphasize that the above statement is valid only
for the massless soft particles. A presence of a mass in the soft propagator does lead to
the double-logarithmic corrections at O(ρ) as we will see in the next section.

Thus the soft gluon exchanges do not contribute to F
(2)
2 in the double-logarithmic

approximation. At the same time as in the case of the Dirac form factor at O(m2
q) [23]

starting with two loops the double-logarithmic contribution to this coefficient is generated
through the soft virtual quark pair exchange, figure 2(a), where the mass suppression fac-
tor comes from the numerators of the soft propagators, i.e. is associated with the chirality
flip. This makes the soft quark propagators sufficiently singular to produce the double-
logarithmic contribution. In figure 2(a) the large external momenta flow through the edges
of the diagram which for the soft loop momenta form the eikonal lines. Thus the cor-
responding momentum configuration is the opposite of the standard Sudakov case with
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Figure 2. (a) the leading two-loop Feynman diagram for the O(m3
q) double-logarithmic correction

to the quark Pauli form factor. The diagrams with an effective soft gluon exchange which incorpo-
rate the non-Sudakov double-logarithmic corrections (b) to the O(m3

q) Pauli form factor and (c),
(d) to the O(m2

q) scalar form factor of a quark. The effective vertices (gray circles) are defined in
the text.

soft gauge bosons and eikonal fermions. The Pauli form factor structure requires an ad-
ditional chirality flip on an eikonal quark line, which is provided either by the mass term
of the propagator or by an external momentum /pi acting on the corresponding on-shell
quark field. Such terms cancel in the diagrams with the soft gluon exchange but give a
contribution which is not suppressed by the soft momentum in the diagram figure 2(a),
where due to the topology of the fermion flow the operators /pi should be commuted with
the photon vertex before the equation of motion for the initial and final quark states can
be applied. Let us consider the origin of the relevant Lorentz structure in more detail.
Due to chirality conservation the eikonal gauge bosons must have transversal polarization.
By using the property γiγjγiγj = 0 of the Dirac matrices in two-dimensional transversal
space we find that after neglecting the virtual momenta the entire contribution to the Pauli
form factor is generated by the photon vertex /p2γµ/p1 part of the Dirac chain where one
of the external momenta is converted into mq by the equation of motion. The evaluation
of the corresponding two-loop double-logarithmic integral is discussed in detail in [23, 25]
and gives [

F
(2)
2

]
2−loop

= 2
3CF (CA − 2CF )x2 + . . . , (2.11)

where the ellipsis stands for the subleading logarithms, which agrees with the expansion
of the exact result [55]. The higher-order double-logarithmic corrections are generated by
the multiple exchanges of the leading-power soft gluons with light-cone polarization.2 The
emission of a soft gluon with polarization α off the eikonal quark is trivial in the spinor
space due to the identity(

/pi +mq

)
γα
(
/pi +mq

)
= 2pαi

(
/pi +mq

)
. (2.12)

Thus the higher-order double-logarithmic corrections do not affect the spinor part of the
amplitude and the Lorentz structure relevant for the Pauli form factor is generated by the
same vertex part of the Dirac chain as in two loops. As a consequence they are identical to
the double-logarithmic corrections to the coefficient F (1)

1 stemming from the same diagram
figure 2(a). After factoring out the Sudakov corrections to the external quark lines, the

2A covariant gauge is implied.
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remaining non-Sudakov double logarithms are described by the diagram figure 2(b) [27, 28].
The effective soft gluon exchange in this diagram exponentiate and its coupling is obtained
from the standard QCD expression by replacing the quadratic Casimir operator CA of the
adjoint representation (gluon color charge) with the difference CA −CF which reflects the
nonconservation of the color charge along the eikonal lines in the process with soft quark
exchange, which is the physical origin of the non-Sudakov corrections.3 The result for the
F

(2)
2 then reads

F
(2)
2 = 2

3CF (CA − 2CF )x2f (−z) (2.13)

with the function f(z) given by eq. (2.5). The Taylor expansion of this function

f(z) = 1 + z

5 + 11
420z

2 + z3

378 + . . . (2.14)

gives the loop-by-loop double-logarithmic approximation of the Pauli form factor. The
three-loop pure gluon contribution to the massive quark form factors is known so far only
in the large-Nc planar approximation [56]. The nonplanar diagram figure 2(b), however,
has a subleading color factor CA − 2CF . Thus the leading logarithmic power-suppressed
contribution vanishes in the large-Nc limit through O(m3

q) and cannot be explicitly verified
against this result. At the same time the leading-color analysis [56] confirms the absence
of the three-loop mass-suppressed leading logarithms in agreement with eq. (2.4).

In the limit of large momentum transfer the asymptotic behavior of the form factor
crucially depends on the gauge group. The variable z is negative in QED and positive in
QCD. The relevant asymptotic expressions at z →∞ are respectively

f(z) ∼ 6
[
ln
(
z

2

)
+ γE

](2πez

z5

)1/2
(2.15)

and

f(−z) ∼
[
(ln (2z) + γE)2 − π2

2

]
3
z2 , (2.16)

where γE = 0.577215 . . . is the Euler constant. The details of the derivation of the above
asymptotic formulae are given in appendix A.4 Thus in QED the Pauli form factor at
O(m3

q) has the leading asymptotic behavior given by the exponential factor ex/2. At the
same time in QCD it scales with the double-logarithmic variable as ln2 x.

3 Higgs boson production in gluon fusion

A quark loop mediated ggH amplitude can be written as follows

Mq
ggH = TF

αs
π

yqmq

m2
H

(pµ1pν2 − gµν(p1p2))Aaν(p1)Aaµ(p2)HM q
ggH , (3.1)

3The sensitivity to the eikonal color charge variation is characteristic to the soft emission. The single
logarithms resulting from the collinear emission do not have this property [31].

4In [27] the coefficients of the leading powers of logarithms in eqs. (2.15, 2.16) have been estimated
numerically with a rather low accuracy of the fit.
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where yq is the quark Yukawa coupling, mH is the Higgs boson mass, p2
i = 0, (p1p2) =

−m2
H/2, the gauge condition ∂µAaµ = 0 is implied and one can choose the transversal po-

larization of the gluon fields. In the heavy quark limit mq � mH the scalar amplitude
approaches the value M q

γγH = −2/(3ρ), where now ρ = m2
q/m

2
H is a Minkowskian param-

eter. In the opposite limit of light quark mq � mH it can be expanded in an asymptotic
series

M q
ggH = Z2

g

∞∑
n=0

ρnM
(n)
ggH , (3.2)

where the coefficients M (n)
ggH are finite and

Z2
g = exp

[
−CAs

−ε

ε2
αs
2π

]
(3.3)

with s = m2
H is the universal Sudakov factor for the external on-shell gluon lines which

incorporates all the infrared divergencies of the amplitude. Note that as in the case of Pauli
form factor the amplitude is loop generated and in the high-energy (small-mass) limit is
suppressed by the quark mass due to chirality flip at the Higgs boson vertex.

The leading-order one-loop scalar amplitude reduces to[
M q
ggH

]
1−loop

= 2J1 + 8J2 , (3.4)

where
J1 = i

∫ d4l

π2
2(p1p2)

(l2 −m2
q)
(
(p1 − l)2 −m2

q

) (
(p2 − l)2 −m2

q

) (3.5)

and
J2 = i

∫ d4l

π2
l2 − 4(lp1)(lp2)/(p1p2)

(l2 −m2
q)
(
(p1 − l)2 −m2

q

) (
(p2 − l)2 −m2

q

) (3.6)

are the scalar integrals corresponding to no and double insertion of the loop (soft quark)
momentum /l in the numerators of the quark propagators, respectively (cf. the diagrams in
figure 1(b) and figure 1(c) with the leading-order Higgs boson vertex). The integral J1 is
responsible for the leading double-logarithmic contribution to the O(mq) coefficient M (0)

ggH .
For the further analysis it is instructive to recall the evaluation of this contribution (see
e.g. [28]). With the double-logarithmic accuracy the propagators of the soft and eikonal
quarks can be approximated as follows

1
l2 −m2

q

≈ −iπδ(l2 −m2
q) , (3.7)

1
(pi − l)2 −m2

q

≈ − 1
2(pil)

. (3.8)

Then the standard Sudakov parametrization of the soft quark momentum l = up1+vp2+l⊥
is introduced, where the first two terms correspond to the light-cone components and
the last term corresponds to the transversal component in the plane orthogonal to the
gluon momenta. For |u|, |v| ∼> 1 the eikonal approximation in eq. (3.8) breaks down and

– 7 –
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the quadratic dependence of the quark propagators on the virtual momentum is restored
cutting off the logarithmic integral. Thus the logarithmic scaling of the integrand requires
|u|, |v| < 1 and the additional kinematical constraints |uv| > ρ has to be imposed to ensure
that the soft quark propagator in eq. (3.7) can go on the mass shell. After integrating
eq. (3.5) over l⊥ with the double-logarithmic accuracy we get

J1 ≈
∫ 1

ρ

dv
v

∫ 1

ρ/v

du
u

= ln2ρ

∫ 1

0
dξ
∫ 1−ξ

0
dη = ln2ρ

2 , (3.9)

where the normalized logarithmic variables η = ln v/ ln ρ and ξ = ln u/ ln ρ are intro-
duced.5 As in the case of the soft gluon exchange the expansion of J1 to O(ρ) does not
result in a double-logarithmic contribution. However, in the given kinematics this can be
seen immediately since p2

i = 0. Indeed, the expansion of the eikonal quark propagators
then reads

1
(pi − l)2 −m2

q

= − 1
2(pil)

(
1 +

l2 −m2
q

2(pil)
+ . . .

)
(3.10)

so that all the subleading terms cancel soft quark propagator and have no double-logarith-
mic scaling. Thus we get

J1 = 1
2
(
ln2ρ+O(ρ ln ρ)

)
+ . . . , (3.11)

which in double-logarithmic approximation gives[
M

(0)
ggH

]
1−loop

= ln2ρ (3.12)

and does not contribute to M (1)
ggH .

The case of the integral eq. (3.6) is less trivial. It remains finite at mq → 0 but its
expansion to O(ρ) does produce a double-logarithmic contribution. The second term in the
numerator of eq. (3.6) cancels both eikonal quark propagators up to the terms proportional
to l2 −m2

q and can be omitted. In the first term for the on-shell soft quark we can replace
l2 with m2

q and get the same double-logarithmic integral as for J1 up to an overall factor
−ρ, which gives

J2 = −1
2
(
1 + ρ ln2ρ+ . . .

)
, (3.13)

and [
M

(1)
ggH

]
1−loop

= −4 ln2ρ . (3.14)

Let us consider the higher-order double-logarithmic contributions due to dressing of the
one-loop diagram with multiple leading-power gluon exchanges. After factoring out the
external line Sudakov corrections into Z2

g the remaining non-Sudakov mass logarithms are
determined by the effective soft gluon corrections to the Higgs boson vertex which can
be obtained from the double-logarithmic result for the off-shell quark form factor given
in the appendix B. At O(mq) only the leading-power term should be kept in eq. (B.1)

5The contributions of the positive and negative Sudakov parameters are symmetric so we rewrite the
total integral in terms of positive u and v.
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(a) (b) (c) (d)

Figure 3. The three-loop Feynman diagrams for the Higgs boson two-photon decay amplitude
with triple soft quark exchange.

and included into the one-loop integrand of eq. (3.9), see figure 1(b). To account for the
variation of the color charge along the eikonal lines in the process of soft quark emission the
color weight in the Sudakov factor eq. (B.2) for the off-shell quark lines should be changed
from CF to CF − CA [27, 28]. This gives

M
(0)
ggH = ln2ρ g(z) , (3.15)

where
g(z) = 2

∫ 1

0
dξ
∫ 1−ξ

0
dηe2zηξ = 2F2 (1, 1; 3/2, 2; z/2) (3.16)

is the generalized hypergeometric function with the Taylor expansion

g(z) = 2
∞∑
0

n!
(2n+ 2)!(2z)n . (3.17)

AtO(m3
q) the loop momentum insertion do not affect the structure of the leading-power soft

gluon contribution which is represented by the diagram in figure 1(c). As it was discussed
above, the logarithmic integral over the soft quark momentum is identical to the O(mq)
term and the corresponding contribution to M

(1)
ggH is given by −4M (0)

ggH , cf. eqs. (3.12)
and (3.14). In principle in this order of the small-mass expansion one has to consider the
leading power correction to the off-shell form factor itself. However, as it has been pointed
out the soft gluons do not generate the double-logarithmic O(ρ) contribution. At the same
time the power corrections in the off-shell quark momenta ∆i/m

2
H to eq. (B.1) cancel an

eikonal quark propagator up to the terms proportional to l2−m2
q and also can be omitted.

Starting with three loops the diagrams with triple soft quark exchange, figures 3(a–d),
may contribute to O(m3

q) amplitude. The double-logarithmic part of the diagrams fig-
ures 3(b–d) vanishes after taking the spinor trace over the closed quark loop. At the
same time the diagram figure 3(a) includes a two-loop subdiagram corresponding to the
double-logarithmic off-shell scalar form factor eq. (B.1), i.e. has the structure of figure 1(d).
To get the corresponding corrections to the amplitude the next-to-leading power term
Z2
q (η, ξ)F (1)

S (η, ξ) should be included into the one-loop integrand of eq. (3.9) and as before
in the factor Z2

q (η, ξ) the color weight CF should be changed to CF − CA. In this way we
get the double-logarithmic corrections to the coefficient M (1)

ggH

ln2ρ
TFCF

45 x2h(z) , (3.18)
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p1

p2

l1

l k′
1 k1

(a) (b) (c)

(d) (e) (f)

Figure 4. The Feynman diagrams representing (a) the two-loop and (b)–(e) the three-loop
corrections to the ggH amplitude with an additional eikonal gluon emitted by the soft quark.
(f) the Feynman diagram with the effective soft gluon exchange, which represents the total QCD
three-loop non-Sudakov double-logarithmic correction associated with the eikonal gluon emission,
eq. (3.20).

where the function h(z) has the following integral representation

h(z) = 6!
∫ 1

0
dη
∫ 1−η

0
dξ
∫ η

0
dη2

∫ ξ

0
dξ2

∫ η2

0
dη1

∫ ξ2

0
dξ1 e

2z(ηξ−η2ξ2+η1ξ1) . (3.19)

The coefficients of the Taylor series h(z) = 1 +
∑∞
n=1 hnz

n can be computed for any
given n corresponding to the (n+ 3)-loop double-logarithmic contribution. The first eight
coefficients of the series are listed in table 1.

All the double-logarithmic contributions we have considered so far factored out into
the (effective) corrections to the Higgs boson vertex. In three loops a new source of the
double-logarithmic corrections opens up with an additional eikonal gluon connecting one
of the eikonal and the soft quark lines. To trace the origin of this contributions let us
consider first the two-loop diagram in figure 4(a). This diagram formally may have a
double-logarithmic scaling. Indeed, for the virtual momentum l collinear to p1 and for the
soft momentum l1 the gluon propagator becomes eikonal and proportional to 1/(l1l). Thus
we get a standard scalar double-logarithmic integral over l1 with external on-shell momenta
p2 and l which is proportional to the eikonal factor 1/(p2l). To get the double-logarithmic
scaling of the integral over l it must be canceled since the same factor is already present
in the second eikonal quark propagator. However, due to transversal polarization of the
external gluons the relevant structure with the light-cone component of the momentum
l does not appear in the tensor decomposition of the Feynman diagram and the double-
logarithmic contribution of this type does not appear in two loops. At the same time
the relevant tensor structures do appear in three loops. The corresponding abelian and
nonabelian diagrams are given in figures 4(b,c) and (d,e), respectively. The details of the
calculation of the abelian contribution are given in appendix C. Note that for the planar
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n 1 2 3 4 5 6 7 8
n22nn!hn 3

7
8
9

90
77

59392
45045

5360
3861

7559936
5360355

583744
415701

2110652416
1527701175

n!jab
n

17
28

83
175

241
550

47984
105105

3645
7007

97228
153153

772588
944775

19563776
17782765

Table 1. The normalized coefficients of the Taylor series for the function h(z) and jab(z) up to
n = 8.

topology figure 4(c) due to a cancellation specific to three loops the double-logarithmic
contribution vanishes. Moreover, in the diagram figure 4(e) the contribution of the soft
gluon momentum coming from the three-gluon vertex is not included. Though such a term
does produce a double-logarithmic contribution for a given diagram, it is proportional
to the momentum of the on-shell soft gluon and after we cut the corresponding gluon
line it vanishes in the sum of the diagrams by the Ward identity. After separating the
infrared divergencies in the same way as it has been done for the functions f(z) and g(z),
the remaining infrared finite double-logarithmic contribution is described by the diagram
figure 4(f) with the effective soft gluon exchange. The corresponding Feynman integral is
the same as for the abelian diagram in figure 4(b) computed in appendix C, which gives
the following contribution to M (1)

ggH

− ln2ρ
(CA − CF ) (CA − 2CF )

9 x2 . (3.20)

The color structure of eq. (3.20) is quite peculiar. As it has been previously discussed
the factor CA − CF accounts for the eikonal color charge variation caused by a soft quark
emission. The remaining factor CA − 2CF reflects the change of the eikonal quark and
antiquark state into color octet after the emission of the eikonal gluon.

The higher-order double-logarithmic corrections of this type are obtained by dress-
ing the diagram in figure 4(a) with multiple soft gluons. This results in multiplication of
eq. (3.20) by a function of the double-logarithmic variable j(z) = 1 +

∑∞
n=1 jnz

n. Thus
the complete double-logarithmic approximation for the next-to-next-to-leading power co-
efficient can be written as follows

M
(1)
ggH = ln2ρ

[
−4g(z) +

(
TFCF

45 h(z)− (CA − CF )(CA − 2CF )
9 j(z)

)
x2
]
. (3.21)

Calculation of the functions j(z) requires a systematic factorization of the soft emissions
with respect to the emission of the additional eikonal gluon. For QCD this is a rather
complicated computational problem due to the soft interaction of the eikonal gluon, which
starts to contribute in four loops. The full QCD analysis, however, goes beyond the scope
of the present paper. Instead, we consider two complementary limits where such a compli-
cation is absent. First we discuss QCD with the large number of colors Nc → ∞. In this
case the color factor of the diagram figure 4(a) vanishes and the double logarithmic ap-
proximation is entirely determined by the function g(z) where z = Ncx/2. In the opposite
abelian limit CA = 0 the gluon self-coupling is absent but the analysis of the factorization
is nevertheless quite nontrivial, see appendix C. For CA = 0 we get the following integral
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representation of the function j(z)

jab(z) = 72
∫ 1

0
dη
∫ 1−η

0
dξ
∫ 1−ξ

0
dη1

∫ 1−η1−ξ

0
dξ1 ηξ1e

2zη(ξ+ξ1)

×
[
1 + e−2zηξ − 1

2 + e−2zηξ − 1 + 2zηξ
4zηξ1

]
, (3.22)

where in the abelian approximation the double-logarithmic variable reduces to z = −CFx.
The first eight coefficients of the Taylor series for jab(z) are listed in table 1. The pertur-
bative expansion of eq. (3.21) reads

M
(1)
ggH = ln2ρ

[
−4− 2

3(CA − CF )x+
(
TFCF

45 − 14
45C

2
F + 23

45CFCA −
9
45C

2
A

)
x2

+c4x
3 + . . .

]
, (3.23)

where the four-loop coefficient is c4 = −N3
c /840 in the large-Nc approximation and

c4 = −TFC
2
F

210 + 13
90C

3
F (3.24)

in the abelian approximation. The series eq. (3.23) can be compared to the existing fixed-
order results. The two-loop term agrees with the expansion of the exact analytic result [57].
The high-energy expansion of the three-loop ggH amplitude has been obtained numerically
in ref. [48]. Eq. (3.23) corresponds to the following coefficient of the L6

s/z
2 term in eq. (C.1)

of [48]
1

23040
(
−TFCF + 14C2

F − 23CFCA + 9C2
A

)
, (3.25)

which agrees with its numerical value 0.0005738811728. The result eq. (3.21) for the gluon
fusion amplitude can be transformed into the one for the amplitude of the Higgs boson
two-photon decay by changing the color charge of the external lines from CA to zero. This
results in the replacement CA − CF → −CF in the definition of the double-logarithmic
variable z and in the coefficient of eq. (3.20). By adopting the notations similar to the
gluon fusion case we get

M
(1)
Hγγ = ln2ρ

[
−4 + 2

3CFx+
(
TFCF

45 − 14
45C

2
F + CFCA

9

)
x2 + . . .

]
. (3.26)

The three-loop term can be compared to the numerical result for the high-energy expansion
of the amplitude given in ref. [49]. It corresponds to the coefficient

− 1
3840

(
TFCF − 14C2

F + 5CFCA
)

(3.27)

of the L6
s/z

2 term in eq. (C.1) and agrees with its numerical value 0.001099537037. The
agreement holds for the contributions of the individual color factors [58].

Let us consider the all-order asymptotic behavior of the O(m3
q) amplitude in the high-

energy (small-mass) limit. In the large-Nc approximation it reads

M
(1)
ggH = −4 ln2ρ g

(
Ncx

2

)
, (3.28)
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where

g(z) ∼
(2πez

z3

) 1
2

(3.29)

at z → ∞, i.e. the amplitude is exponentially enhanced. Note that the limit Nc → ∞ is
taken first and in general may not commute with the kinematical limit z → ∞. In the
abelian approximation the relevant asymptotic behavior of the functions in eq. (3.21) at
z → −∞ reads

g(z) ∼ − ln(−2z) + γE
z

, h(z) = O(1/z3), jab(z) ∼ 9
2z2 . (3.30)

Thus the coefficient asymptotically approaches the value M (1)
ggH = − ln2ρ, i.e. the double

logarithmic corrections effectively reduce the leading-order coefficient by factor four.
Now we can estimate the effect of the high-order O(m3

q) terms for the physical values
of the parameters. The relative correction to the O(mq) amplitude is given by the factor

1 + ρ

[
−4 +

(
TFCF

45 h(z)− (CA − CF )(CA − 2CF )
9 j(z)

)
x2

g(z)

]
. (3.31)

In the large-Nc approximation eq. (3.31) reduces to 1 − 4ρ with ρ ≈ 1.6 · 10−3, which
amounts of approximately 0.64% negative correction to the O(mq) contribution. It does
not depend on x and is the same for the gluon and photon external lines. Hence it gives
a universal all-order estimate of the next-to-next-to-leading power corrections both for the
production and decay amplitudes.

4 Summary

We have studied the high-energy asymptotic behavior of the electromagnetic quark scatter-
ing and the light quark loop mediated Higgs boson production in the third order of the small
quark mass expansion. To our knowledge this is the first example of the renormalization
group analysis of the next-to-next-to-leading power amplitudes.

For the O(m3
q) quark scattering the asymptotic behavior is determined by the double-

logarithmic corrections to the Pauli form factor with the structure similar to the Dirac
and scalar form factors at O(m2

q). These non-Sudakov double logarithms result from the
eikonal color charge nonconservation in the process with the exchange of the soft virtual
quark pair. They are described by a universal function which shows exponential growth
for the large values of the double-logarithmic variable in QED and a logarithmic scaling
in QCD. We present for the first time the complete analytic asymptotic result for this
function, eqs. (2.15), (2.16).

The double-logarithmic corrections to the O(m3
q) Higgs boson production and decay

amplitudes are induced by single and triple soft quark exchanges. This is the first ex-
ample where the mass suppression of the double-logarithmic contribution is not entirely
associated with the chirality flip on a fermion line. Starting with three loops a new source
of the double-logarithmic corrections opens up with an emission of an additional virtual
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eikonal gluon by the soft quark. Our analytic result agrees with the previous numeri-
cal evaluation of the three-loop QCD corrections to the Higgs boson production [48] and
two-photon decay [49]. Beyond three loops the all-order double-logarithmic asymptotic
behavior of the amplitudes has been derived in two complementary approximations. In the
large-Nc limit, which is supposed to catch the qualitative behavior of real QCD, the struc-
ture of the double-logarithmic corrections significantly simplifies and becomes identical to
the one of the leading O(mq) contribution, which is exponentially enhanced for the large
values of the double-logarithmic variable. The opposite abelian limit CA = 0, though less
phenomenologically relevant, reveals a more complex structure of the double-logarithmic
contributions and represents the general case for the mass-suppressed amplitudes at the
next-to-next-to-leading power.

We have also presented a quantitative estimate of the accuracy of the high-order cal-
culations based on the small-mass expansion for the Higgs boson production and decays
mediated by the bottom quark loop, which may become relevant with the permanently
increasing accuracy of the QCD predictions [59]. On the basis of the double-logarithmic
analysis we conclude that neglecting the terms suppressed by the mass ratio m2

b/m
2
H in

such a calculation introduces a relative error at the scale of one percent in every order of
the perturbative expansion. Our result can also be generalized to estimate the high-order
subleading top quark mass effects on the double Higgs boson production in the high-energy
limit [60, 61], where the role of the next-to-next-to-leading power terms could be significant.
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A Evaluation of the function f(±z) in the limit z →∞

It is more convenient to use an alternative integral representation of f(z)

f(z) = 24
∫ 1

0
dη2

∫ 1−η2

0
dξ2 e

2zη2ξ2

∫ η2

0
dη1

∫ ξ2

0
dξ1 e

−2zη1ξ1 , (A.1)

which is equivalent to eq. (2.5). Then, the integration over ξ1 and η1 can be done explicitly
with the result

1
2z (−Ei(−2zη2ξ2) + ln(2zη2ξ2) + γE) . (A.2)

For the remaining integrals we introduce new variables ξ2 = yλ1/2, η2 = λ1/2/y with the
Jacobian |J | = y and the integration limits

1− (1− 4λ)1/2

2λ1/2 < y <
1 + (1− 4λ)1/2

2λ1/2 , 0 < λ < 1/4 . (A.3)
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The logarithmic integral over y gives

ln
(

1 + (1− 4λ)1/2

1− (1− 4λ)1/2

)
. (A.4)

The further analysis depends on the sign of the argument of f(z). For z → ∞ the factor
e2zη2ξ2 = e2zλ provides exponential enhancement and the integral over λ is saturated with
the region in vicinity of the maximal value λ = 1/4. Thus eq. (A.2) can be approximated
as follows

1
2z (ln(z/2) + γE) , (A.5)

and eq. (A.4) reduces to 2(1− 4λ)1/2. The asymptotic expansion of the resulting integral
is straightforward ∫ 1

4

0
2(1− 4λ)

1
2 e2zλdλ ∼

(
πez

2z3

) 1
2
, (A.6)

which gives eq. (2.15).
For the negative value of the argument f(−z) at z →∞ the asymptotic expansion of

the resulting integral is more involved but can be performed by the standard techniques∫ 1
4

0
ln
(

1 + (1− 4λ)1/2

1− (1− 4λ)1/2

)
(Ei(2zλ)− ln(2zλ)− γE) e−2zλdλ ∼ (ln (2z) + γE)2 − π2/2

4z ,

(A.7)
which gives eq. (2.16)

B Off-shell scalar form factor of massive quark

We consider the scalar form factor of a quark with the off-shell external momenta ∆i =
(pi − l)2 −m2

q 6= 0 and Minkowskian momentum transfer (p2 − p1)2 = m2
H . In the double-

logarithmic approximation we can set l2 = m2
q so that ∆1 = −2(p1l) = vm2

H , ∆2 =
−2(p2l) = um2

H , and consider the case |∆i| � m2
q . The form factor can be simultaneously

expanded in ρ = m2
q/m

2
H and ∆i/m

2
H as follows

FS(η, ξ) = Z2
q (η, ξ)

∞∑
n=0

ρnF
(n)
S (η, ξ) +O(∆i/m

2
H) , (B.1)

where Z2
q (η, ξ), F (n)

S (η, ξ) are the functions of the logarithmic variables η, ξ. Though
formally |∆i| � m2

q we are not interested in the terms vanishing for ∆i = 0 since they do
not produce the double-logarithmic corrections to the Higgs boson decay amplitude. As in
eq. (2.2) the coefficient

Z2
q (η, ξ) = e−2CF xηξ (B.2)

represents the usual Sudakov factor now computed for the off-shell quarks. Thus in the
double-logarithmic approximation the leading-power coefficient is just F (0)

S (η, ξ) = 1. The
next-to-leading power coefficient F (1)

S (η, ξ) gets the double-logarithmic contribution from
the diagrams with the soft quark pair exchange, figures 2(c,d), and has been evaluated for
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the on-shell quarks in [27, 28]. This analysis can be extended to the off-shell case in a
straightforward way by changing the infrared cutoff from m2

q to ∆i. The result reads

F
(1)
S (η, ξ) = 8CFTFx2

∫ η

0
dη2

∫ ξ

0
dξ2

∫ η2

0
dη1

∫ ξ2

0
dξ1 e

−2zη2ξ2e2zη1ξ1 , (B.3)

where the exponential factors corresponding to the diagrams figure 2(c) and figure 2(d)
are given separately. The only difference of the above equation with respect to eqs. (12,13)
of [27] is in the integration limits over the logarithmic Sudakov variables ηi, ξi corresponding
to each loop momenta. Since we perform the calculation for mq = 0 there is no correlation
between the ηi and ξi variables unlike eq. (3.9) and the logarithmic integration intervals
in eq. (B.3) are given just by ordering these variables along the eikonal lines ξ > ξ2 > ξ1,
η > η2 > η1.

C Evaluation of the function j(z) in abelian approximation

Let us begin with the calculation of the leading three-loop term. In the abelian approxima-
tion only two diagrams in figures 4(b,c) may have double-logarithmic scaling. We consider
the nonplanar topology first. Defining the loop momenta l and l1 as in figure 4(a) we intro-
duce the following Sudakov parametrization l1 = u1l+v1p2+l1⊥, k′1 = r′1p1+w′1p2+k′1⊥ and
assume that in the light-cone coordinates p1 = p−1 , p2 = p+

2 . Then the on-shell condition for
the soft quark propagators requires uv > ρ, u1v1 > ρ/u, and the logarithmic scaling of the
integrals over the Sudakov parameters imposes the conditions v < w′1, uu1 < r′1 < u. The
double-logarithmic scalar integral over l1 results in the factor 1/(p2l) = 1/(p+

2 l
−) which

has the same structure as the lower eikonal quark propagator

S(p2 − k′1 − l) = −γ
−

l−
+ . . . , (C.1)

where we used the relation k′1
− � l− valid in the logarithmic integration region. To get

the logarithmic integral over l− one of the 1/l− factors must be cancelled. By taking into
account that the real (virtual) gluons have transversal (light-cone) polarization we find
that the only relevant tensor structure is given by the l− term in the numerator of the
upper eikonal quark propagator

S(p1 − k′1 − l) = − γ+

k′1
+

(
1− k′1

− + l−

p−1

)
+ . . . , (C.2)

as it is indicated in figure 4(b). The integral over r′1 and w′i within the logarithmic limits
specified above results in the standard one-loop Sudakov correction factor 2zηξ1, where
z = −CFx and we introduce the logarithmic variables η1 = ln v1/ ln ρ and ξ1 = ln u1/ ln ρ
in the same way as for the loop momentum l. Then the CA = 0 abelian double-logarithmic
contribution of the diagram figure 4(b) to the coefficient M (1)

ggH reads

− 8 ln2ρ z2
∫ 1

0
dη
∫ 1−η

0
dξ
∫ 1−ξ

0
dη1

∫ 1−η1−ξ

0
dξ1 ηξ1 = −

( lnρ z
3

)2
. (C.3)
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In the case of the planar diagram figure 4(c) the logarithmic intervals for the Sudakov
parameters of the soft gluon momentum k1 = r1p1 +w1p2 +k1⊥ are v < w1, u < r1 and the
integration over k1 gives the factor 2zηξ. In contrast to the nonplanar case the required l−

term is generated in two different ways. Indeed, in the logarithmic integration region now
l− � k1

− and the denominator of the lower quark propagator can be expanded as follows

S(p2 − k1 − l) = − γ−

k1−

(
1− l−

k1−

)
+ . . . , (C.4)

while the upper quark propagator has the expansion similar to eq. (C.2)

S(p1 − k1 − l) = −γ
+

k+
1

(
1− k−1 + l−

p−1

)
+ . . . . (C.5)

The product of l−/k−1 term in eq. (C.4) and k−1 /p
−
1 term in eq. (C.5) generates the relevant

tensor structure which cancels the contribution from the product of the leading term in
eq. (C.4) and l−/p−1 term in eq. (C.5). Thus the total double-logarithmic contribution
of the planar three-loop diagram to the coefficient M (1)

ggH vanishes and eq. (C.3) with the
equal contribution of the symmetric diagram determines the abelian part of eq. (3.20). The
above cancellation, however, does not hold for the multiple soft gluon exchanges.

Let us now consider the case of n soft gluons. In the abelian approximation the double-
logarithmic corrections are generated by the diagrams with m′ leading-power exchanges of
the topology figure 4(b) and m = n − m′ exchanges of the topology figure 4(c), with
all possible permutations of n vertices along the upper quark line. Let k′i and ki be the
momenta of the gluons from the first and the second group, respectively. Each of the n
gluons contributes the term l− from the numerator of the eikonal quark propagator, as
in eqs. (C.2), (C.5). After the summation over all the permutations of the n vertices the
integrals over the k′i+ and k+

i factorize. After the (redundant) summation over m′!m!
permutations of vertices along the lower quark line within each group the integrals over
the k′i− and ki− also factorize. Thus the n-loop soft contribution can easily be evaluated
with the result

n

m′!m! (2zηξ1)m′(2zηξ)m . (C.6)

The analysis of the l− terms originating from the denominators of the eikonal quark prop-
agators, as in eq. (C.4), is more subtle. These terms are generated by the soft gluons from
the second group only and come from the expansion of the following expression

f1k
−
1 + . . .+ fmk

−
m

(k−1 + l−) . . . (k−1 + . . .+ k−m + l−)
, (C.7)

where the gluon momenta are enumerated from the eikonal gluon to the Higgs boson vertex
and fi is the number of the eikonal propagators carrying the momentum ki on the upper
quark line for a given diagram. The numerator of eq. (C.7) can be rewritten as follows

fm(k−1 + . . .+ k−m + l−)
+(fm−1 − fm)(k−1 + . . .+ k−m−1 + l−) + . . .

+(f1 − f2)(k−1 + l−)− f1l
− . (C.8)
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Note that every term in eq. (C.8) except the last one cancels one of the eikonal quark
propagators in eq. (C.7) removing the double-logarithmic scaling of the integrand. Thus
we have to consider only the contribution of last term corresponding to the soft gluon
emitted next to the eikonal gluon vertex and the total result is obtained by summing
up the coefficients f1 over the diagrams with all possible permutations of the remaining
vertices. It is convenient to perform the double-logarithmic integration over k′i and ki first.
Since in the logarithmic region the Sudakov parameters are ordered along the eikonal lines,
for every diagram the n-fold integral over w′i and wi gives ηn/n!, the m′-fold integral over r′i
gives ξm′

1 /m′!, and the m-fold integral over ri gives ξm/m!. This combines into the common
n-loop factor

(2zηξ1)m′(2zηξ)m

n!m′!m! , (C.9)

Since f1 does not depend on the routing of the other loop momenta we can perform sum-
mation over the permutations within the groups of m′ and m−1 remaining vertices on the
lower quark line, which results in the factor m′!(m−1)! for m > 0. Now let j′ and j be the
numbers of the vertex with the soft momentum k1 in a sequence of all n vertices and in a
sequence of m vertices of the second group on the upper quark line, respectively, counted
from the Higgs boson vertex. Then for a given diagram f1 = j′ and the sum over all the
diagrams gives

m∑
j=1

j+m′∑
j′=1

(j′ − 1)!
(j − 1)!(j′ − j)!

(n− j′)!
(m′ + j − j′)!(m− j)!j

′ = n!
m!m′!

(n+ 1)m
2 , (C.10)

where the combinatorial factor corresponds to the number of ways to arrange m′ ordered
vertices from the first group and m− 1 ordered vertices from the second group for a given
j′ and j. Bringing all the factors together we get

− n+ 1
2m′!m! (2zηξ1)m′(2zηξ)m , (C.11)

which after adding the contribution eq. (C.6) gives the total result for m > 0

m+m′ − 1
2m′!m! (2zηξ1)m′(2zηξ)m . (C.12)

The m = 0 result can be obtained directly from eq. (C.6) and reads

(2zηξ1)m′

(m′ − 1)! . (C.13)

The dependence on m and m′ in eq. (C.12) factorizes and the summation over the number
of soft gluons in each group can be directly performed

∞∑
m′=0

(2zηξ1)m′

m′!

[ ∞∑
m=0

m+m′ − 1
2m! (2zηξ)m + m′ + 1

2

]

= e2zη(ξ+ξ1)

2
[(
e−2zηξ − 1 + 2zηξ

)
+ (2zηξ1)

(
e−2zηξ + 1

)]
, (C.14)
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where the second term in the first line provides the correct m = 0 contribution, eq. (C.13).
After factoring out the leading soft gluon contribution 2zηξ1 we obtain the integrand of
eq. (3.22). Note that the contributions of the first and the second group of the soft gluons
completely factorize and exponentiate in the final result.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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