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1 Introduction

The exclusive leptonic decays of the charged B−u -meson are of paramount importance for ex-
ploring the complex quark-flavour dynamics in the Standard Model (SM) and for probing the
nonstandard flavour-changing mechanisms beyond the electroweak scale. However, the helic-
ity suppression of the two-body leptonic B−u → µ ν̄µ decay process is expected to yield the
tiny branching fraction of O(10−7), which prevents the decisive measurements at the BaBar
and Belle experiments with more than 5σ significance (see [1–4] for the available searches
at the e+e− colliders). On the other hand, the radiative leptonic B−u → γ`ν̄` decays with an
energetic photon will evidently lift such unwanted helicity suppression [5–10], at the price of
introducing the additional suppression from the electromagnetic coupling constant and from
the Lorenz invariant three-body phase space factor. Reconstructing the B-meson decay
vertex with just a single charged particle will unfortunately bring about the tremendous
challenges for searching B−u → µ ν̄µ and B−u → γ`ν̄` at the LHCb experiment. It is therefore
advantageous to investigate the four-body leptonic decays B−u → `′ ¯̀′ ` ν̄` with `, `′ ∈ {e, µ}
with three charged tracks for the sake of facilitating the experimental reconstruction of the
bottom-meson candidates in the hadronic collision environment and circumventing the he-
licity suppression mechanism applied to the two-body leptonic decays simultaneously. From
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the QCD perspective, the rare leptonic decays B−u → `′ ¯̀′ ` ν̄` with the invariant mass of the
lepton pair (`′ ¯̀′) of order mb ΛQCD will further provide us with the valuable information on
the inverse moment of the twist-two B-meson distribution amplitude in heavy quark effective
theory (HQET), which serves as an indispensable ingredient for the theory description of a
variety of the exclusive B-meson decay observables [11–19] based upon the heavy quark ex-
pansion as well as the dispersion technique. Moreover, the exclusive four-body decays B−u →
γ∗(→ `′ ¯̀′) ` ν̄` with the four-momentum (pµ) of the intermediate photon state satisfying
p2 ∼ O(m2

b) are apparently of interest for addressing the “notorious” open issue of the system-
atic uncertainty due to the analytical continuation of the (local) operator product expansion
(OPE) from the Euclidean to the Minkowskian domain in the practical applications [20–22].

In analogy to the exclusive electromagnetic penguin decays B → K(∗)`¯̀ [23, 24], the
presence of the vector-meson resonances (e.g., ρ, ω, etc) in the (`′ ¯̀′) invariant mass spectrum
of B−u → `′ ¯̀′ ` ν̄` will invalidate the applicability of the perturbative factorization approach
for evaluating the resulting hadronic tensor in the collinear regime of p2 ∼ O(Λ2

QCD). As
a consequence, we will focus on the kinematical region of the virtuality of the photon
state appearing in B → γ∗ ` ν̄` above the light vector-meson threshold, in contrast to the
previous phenomenological explorations in the entire kinematically allowed regions [25, 26]
by employing the vector-meson-dominance (VMD) ansatz, which permits us to apply
the appropriate OPE techniques for disentangling the strong interaction dynamics at
the separated distance scales. In particular, QCD calculations of the four-body leptonic
B−u -meson decays at leading power in an expansion in terms of ΛQCD/mb with the hard-
collinear dilepton system resemble constructing the soft-collinear factorization formula for
the vacuum-to-bottom-meson correlation function Tµν7B entering in the radiative leptonic
Bd,s → γ`¯̀amplitude [14] generated by the B-type insertion of the effective weak operators.1
In addition, the nonperturbative hadronic dynamics imbedded in the timelike B−u → γ∗`ν̄`
form factors with an off-shell photon carrying the hard momentum pµ ∼ O(mb) will be
characterized by the bottom-meson decay constant fBu , which has been determined from
the lattice-QCD simulation at Nf = 2 + 1 + 1 with the relative precision of approximately
0.68 % [27]. As the power counting scheme for the virtuality of the photon state dictates
factorization properties of the non-hadronic radiative B−u → γ∗`ν̄` decay form factors,
the non-local hadronic matrix element defined by the time-ordered product of the weak
transition current ū γµ (1− γ5) b and the bottom-quark electromagnetic current will result
in an unsuppressed contribution at p2 ∼ O(m2

b) in the heavy quark expansion.
In contrast to the radiative leptonic B−u → γ`ν̄` decays with an on-shell photon state,

it necessitates the introduction of three independent hadronic form factors to parameterize
the non-local matrix element encoding the QCD effects for the four-body leptonic decays
B−u → γ∗(→ `′ ¯̀′) ` ν̄` by implementing the two nontrivial constraints from the Ward-
Takahashi identity.2 Consequently, one of the major technical objectives of the present

1The hard-collinear matching coefficient entering the perturbative factorization formulae of the radiative
B → γ∗ form factors were originally computed at O(αs) in [7] with the strategy of regions.

2Alternatively, this observation can be understood from the Lotentz decompositions of the (axial)-vector
current matrix elements governing the exclusive semileptonic B → V `ν̄` decays [12], where V stands for a
light vector meson.
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paper consists in computing the leading-power contributions to the generalized form factors
of B−u (pB)→ γ∗(p) `(q1) ν̄`(q2) in the heavy quark expansion based upon the soft-collinear
effective theory (SCET) approach and the local OPE technique at p2 ∼ O(mb ΛQCD) and
p2 ∼ O(m2

b) respectively, including the next-to-leading logarithmic (NLL) resummation for
the parametrically large logarithms of mb/ΛQCD in the obtained factorization expression
with the renormalization-group (RG) formalism. The yielding formulae for the radiative
B−u → γ∗ transition form factors with an off-shell hard-collinear photon can be further
evaluated by postulating the complete momentum dependence of the leading-twist B-meson
distribution amplitude rather than by introducing the inverse moment λB and the first
two inverse-logarithmic moments σ(n)

B at the NLL accuracy as in the case of computing
the on-shell B−u → γ form factors [5, 7–9]. Furthermore, we will endeavour to carry out
the factorization analysis for various subleading-power corrections to the exclusive rare
B−u → γ∗W ∗ decay form factors in the hard-collinear p2-regime with the aid of the two-
particle and three-particle higher-twist HQET distribution amplitudes. In addition, the
primary phenomenological new ingredient of our analysis consists in the comprehensive
investigation of the full angular decay distribution for B−u → γ∗(→ `′ ¯̀′)W ∗(→ ` ν̄`) in
terms of five independent kinematical variables for both ` = `′ and ` 6= `′: the invariant
masses of the dilepton system (p2) and of the lepton-neutrino pair (q2), the three angles θ1,
θ2 and φ defined in appendix A, which allows for the systematic construction of a numbers
of observables accessible at the LHCb and Belle II experiments.

The outline of this presentation is as follows. We will set up the computational framework
in section 2 by establishing the general parametrization of the four-body leptonic B-meson
decay amplitude to the lowest non-vanishing order in the electromagnetic interaction and
by exploiting the interesting implications of the Uem(1) gauge symmetry on the emerged
B−u → γ∗W ∗ decay form factors. The matching procedure QCD→ SCETI → SCETII for
the appearing B-meson-to-vacuum correlation function defined by the flavour-changing
b → u weak current and the electromagnetic quark current carrying a hard-collinear
momentum p will be performed at leading power in ΛQCD/mb in section 3 with the
accustomed perturbative factorization technique, where the subleading power contribution
from the virtual photon radiation off the heavy bottom-quark field will be also derived at
leading order (LO) in the strong coupling constant with the OPE technique. In particular,
the Ward-Takahashi relations of the generalized radiative B-meson decay form factors will
be demonstrated explicitly at one loop. The non-local power suppressed corrections from a
number of distinct sources (parametrized by the higher-twist bottom-meson distribution
amplitudes) will be further addressed here by employing the HQET equations of motion
at tree level. In section 4 we will proceed to carry out the QCD→ HQET matching
program for the aforementioned B-meson-to-vacuum correlation function at O(αs), where
the factorization-scale independence of the achieved expressions for all the B−u → γ∗W ∗

form factors will be further verified at next-to-leading order (NLO) in QCD taking advantage
of the RG evolution equation for the effective decay constant f̃B(µ). Having at our disposal
the factorized expressions for these hadronic transition form factors, we will turn to
investigate their numerical implications with the three-parameter ansatz of the HQET
B-meson distribution amplitude as proposed in [9] in section 5, where the phenomenological
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aspects of the four-body leptonic B-meson decays will be subsequently explored with
circumstances on the basis of the corresponding full differential distribution described by the
five independent kinematical variables as previously mentioned. The concluding remarks
and theory perspectives on the future improvements will be presented in section 6. We
collect in appendix A the kinematics of the exclusive reaction B−u → `′ ¯̀′ ` ν̄` with ` = `′

and ` 6= `′ and then present in appendix B the explicit expressions of the angular coefficient
functions entering the interference term of the full differential distribution for the four-body
leptonic decay with identical lepton flavours.

2 Preliminaries

By analogy with the detailed discussions on the B-meson radiative leptonic decays [5–10],
the four-body leptonic B−u → `′ ¯̀′ ` ν̄` decay amplitude can be expressed as

A(B−u → `′ ¯̀′ ` ν̄`)

= GF Vub√
2
〈`′(p1) ¯̀′(p2) `(q1) ν̄`(q2)|

[
¯̀γµ(1− γ5)ν`

]
[ūγµ(1− γ5)b] |B−u (pB)〉 , (2.1)

where pB = mB v = p+ q is the four-momentum of the B-meson momentum with v being
its velocity, p = p1 +p2 and q = q1 +q2 denote the outgoing momenta carried by the off-shell
photon and the W ∗ boson in the cascade decay process B−u → γ∗(→ `′ ¯̀′)W ∗(→ ` ν̄`),
respectively. It further proves convenient to work in the rest frame of the B-meson and to
introduce the two light-cone vectors nα and n̄α fulfilling the general relations n2 = n̄2 = 0
and n · n̄ = 2 such that

pα = n · p
2 n̄α + n̄ · p

2 nα , qα = n · q
2 n̄α + n̄ · q

2 nα , vα = nα + n̄α
2 . (2.2)

Keeping the first-order contribution to the decay amplitude A(B−u → `′ ¯̀′ ` ν̄`) in the
electromagnetic interaction gives rise to following expression

A(B−u → `′ ¯̀′ ` ν̄`) = GF Vub√
2

ig2
emQ`′

p2 + i0
[
¯̀′(p1) γν `′(p2)

]
× {Tνµ(pB, p)

[
¯̀(q1)γµ(1− γ5)ν`(q2)

]
− i fB pµB Lνµ(pB, p)} , (2.3)

where the hadronic matrix element Tνµ and the leptonic rank-two tensor Lνµ are defined by

Tνµ(pB, p) =
∫
d4x eip·x 〈0|T{jem

ν (x), ū(0)γµ(1− γ5)b(0)}|B−u (pB)〉 , (2.4)

Lνµ(pB, p) =
∫
d4x eip·x 〈`(q1) ν̄`(q2)|T{jem

ν (x), ¯̀(0)γµ(1− γ5)ν`(0)}|0〉 . (2.5)

The explicit form of the fermion electromagnetic current is given by

jem
ν (x) =

∑
q

Qq q̄(x)γνq(x) +
∑
`

Q` ¯̀(x)γν`(x) , (2.6)

and the B-meson decay constant in QCD is defined by the local axial-vector matrix element

〈0|ū γµ γ5 b|B−u (pB)〉 = i fB p
µ
B . (2.7)

– 4 –
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Taking advantage of the general decomposition of the hadronic tensor [7, 28]

Tνµ(p, q) = i εµνρσ p
ρ vσ FV (p2, n · p) + v · p gµν F̂A(p2, n · p) + vν pµ F1(p2, n · p)

+ vµ pν F2(p2, n · p) + v · p vµ vν F3(p2, n · p) + pµ pν
v · p

F4(p2, n · p) , (2.8)

and employing the two relations due to the conservation of the electromagnetic cur-
rent [29, 30]

F1(p2, n · p) = −F̂A(p2, n · p)− p2

(v · p)2 F4(p2, n · p) ,

F3(p2, n · p) = −(Qb −Qu) fBmB

(v · p)2 − p2

(v · p)2 F2(p2, n · p) , (2.9)

we can readily derive the following expression for the B−u → `′ ¯̀′ ` ν̄` amplitude

A(B−u → `′ ¯̀′ ` ν̄`) = GF Vub√
2

ig2
emQ`′

p2 + i0
[
¯̀′(p1) γν `′(p2)

] [
¯̀(q1)γµ(1− γ5)ν`(q2)

]
{
i εµνpv FV (p2, n · p) + v · p gµν FA(p2, n · p)

+ pµvν

[
F1(p2, n · p) + v · p

mB
F3(p2, n · p)

]}
, (2.10)

with ε0123 = −1 and the redefinition prescription of the axial-vector form factor [5]

FA(p2, n · p) = F̂A(p2, n · p) + Q` fB
v · p

(2.11)

to account for the second term in (2.3) due to the virtual photon radiation off the lepton
field. Apparently, constructions of the perturbative factorization formulae for the gener-
alized B−u → γ∗ transition form factors FV , F̂A, F1 and F3 constitutes the primary task in
predicting the full differential distributions of the four-body leptonic bottom-meson decays.
To this end, it proves more convenient to introduce an alternative parametrization of the
nonlocal matrix element Tνµ(p, q) for facilitating the practical QCD calculations

Tνµ(p, q) = i εµνρσ p
ρ vσ FV (p2, n · p) + v · p g⊥µν F̂A(p2, n · p) + vν pµ F̂1(p2, n · p)

+ vµ pν F̂2(p2, n · p) + v · p vµ vν F̂3(p2, n · p) + pµ pν
v · p

F̂4(p2, n · p) , (2.12)

by separating the Lorentz structure gµν into the longitudinal and transverse components

gµν = g‖µν + g⊥µν , g‖µν = nµn̄ν + n̄µnν
2 . (2.13)

It is then straightforward to establish the transformation rules between Fi and F̂i (i= 1, . . . ,4)

F1 = F̂1 −
r2

1
r2

1 − 4 r2
F̂A , F2 = F̂2 −

r2
1

r2
1 − 4 r2

F̂A ,

F3 = F̂3 + 4 r2
r2

1 − 4 r2
F̂A , F4 = F̂4 + r2

1
r2

1 − 4 r2
F̂A , (2.14)

– 5 –
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where we have introduced the two dimensionless kinematic variables

r1 = 2v · p
mb

, r2 = p2

m2
b

, (with r2
1 − 4r2 > 0) , (2.15)

allowing for an equivalent formulation of the Ward-Takahashi identities (2.9)

F̂1 = −4r2
r2

1
F̂4 , F̂3 = −4 (Qb −Qu) fBmB

r2
1 m

2
b

− 4r2
r2

1
F̂2 . (2.16)

It is important to stress that these relations hold to all orders in the perturbative expansion
and to all orders in the heavy quark expansion, irrespective of the power-counting behaviour
of the off-shell photon momentum.

3 QCD factorization for B−u → γ∗ ` ν̄` with a hard-collinear photon

3.1 The B-meson decay form factors at leading power

We will proceed to derive the factorized expressions for the radiative leptonic B−u (pB)→
γ∗(p) `(q1) ν̄`(q2) decay form factors in the kinematic region of p2 ∼ O(mb ΛQCD) by
implementing the perturbative matching program QCD → SCETI → SCETII for the
hadronic matrix element Tνµ. Integrating out the hard fluctuation modes with virtualities
of order m2

b for the B-meson-to-vacuum correlation function (2.4) results in the SCETI
representation3

T ‖νµ(p, q) = Qu
[
C

(A0) 2
V (n · p, µ) vµ +

(
C

(A0) 1
V (n · p, µ) + C

(A0) 3
V (n · p, µ)

)
n̄µ
]

×
{∫

d4x eip·x 〈0|T{j(2), ‖
ξqs, ν

(x), (ξ̄Wc)(0) (1 + γ5)hv(0)}|B−v 〉

+
∫
d4x eip·x

∫
d4y 〈0|T{j(0), ‖

ξξ, ν (x), iL(2)
ξqs

(y), (ξ̄Wc)(0) (1 + γ5)hv(0)}|B−v 〉
}

+ Qu
mb

∫ 1

0
dτ
[
C

(B1) 1
V (n · p, τ, µ) vµ + C

(B1) 2
V (n · p, τ, µ) n̄µ

]
×
{
n · p
2π

∫
d4x eip·x

∫
d4y

∫
dr e−in·p τ r

〈0|T{j(0), ‖
ξξ, ν (x), iL(1)

ξqs
(y), (ξ̄Wc)(0) (1 + γ5) (W †c i 6D⊥cWc)(rn)hv(0)}|B−v 〉

}
,

(3.1)

for the longitudinal indices µ and ν, and

T ⊥νµ(p,q) =QuC
(A0)1
V (n·p,µ)

{∫
d4xeip·x 〈0|T{j(2),⊥

ξqs,ν
(x),(ξ̄Wc)(0)γ⊥µ (1−γ5)hv(0)}|B−v 〉

+
∫
d4xeip·x

∫
d4y 〈0|T{j(1),⊥

ξξ,ν (x), iL(1)
ξqs

(y), (ξ̄Wc)(0)γ⊥µ (1−γ5)hv(0)}|B−v 〉
}
,

(3.2)
3For definiteness, here we employ the power counting scheme of the two external momenta

n · p ∼ O(mb) , n̄ · p ∼ O(ΛQCD) ∼ O(λ2)n · p , n · q ∼ n̄ · q ∼ O(mb) ,

where the scaling parameter λ is defined to be of order (ΛQCD/mb)1/2.
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for the transverse indices µ and ν. The explicit expressions of the effective electromagnetic
currents up to the O(λ2) accuracy can be written as

j
(0), ‖
ξξ, ν = ξ̄

6n
2 ξ n̄ν ,

j
(1),⊥
ξξ, ν = ξ̄ γν⊥

1
i n ·Dc

i 6Dc⊥
6n
2 ξ + ξ̄ i 6Dc⊥

1
i n ·Dc

γν⊥
6n
2 ξ ,

j
(2), ‖
ξqs, ν

=
(
ξ̄ Wc

6n
2 Y

†
s qs + q̄s Ys

6n
2 W

†
c ξ

)
n̄ν ,

j
(2),⊥
ξqs, ν

= ξ̄ Wc γ⊥ν Y
†
s qs + q̄s Ys γ⊥νW

†
c ξ . (3.3)

The multipole expanded SCET Lagrangian with the homogenous power counting in the
expansion parameter λ appearing in (3.1) and (3.2) reads [31] (see [32] also for an independent
derivation in the hybrid momentum-position space)

L(1)
ξqs

= q̄sW
†
c i 6D⊥c ξ − ξ̄ i 6

←−
D⊥c Wc qs,

L(2)
ξqs

= q̄sW
†
c

(
i n̄ ·D + i 6D⊥c

1
i n ·Dc

i 6D⊥c
) 6n

2 ξ

− ξ̄ 6n2

(
i n̄ ·
←−
D + i 6

←−
D⊥c

1
i n ·
←−
D c

i 6
←−
D⊥c

)
Wc qs

+ q̄s
←−
Dµ
s x⊥µW

†
c i 6D⊥c ξ − ξ̄ i 6

←−
D⊥c Wc x⊥µD

µ
s qs . (3.4)

In addition, the perturbative matching coefficients of the A0-type and B1-type SCETI
operators at the required accuracy are further given by [33–36]

C
(A0)1
V (n ·p,µ) = 1+ αsCF

4π

{
−2 ln2

(
n ·p
µ

)
+5 ln

(
n ·p
µ

)
−2Li2(1−r)− 3−2r

1−r ln r

− π
2

12 −6
}

+O(α2
s) ,

C
(A0)2
V (n ·p,µ) = αsCF

4π

{ 2r
(1−r)2 ln r+ 2

1−r

}
+O(α2

s) ,

C
(A0)3
V (n ·p,µ) =−αsCF4π

{[
r2

(1−r)2 −
1

1−r +1
]

ln r+ r

1−r

}
+O(α2

s) ,

C
(B1)1
V (n ·p, τ,µ) =−2

r
+O(αs) , C

(B1)2
V (n ·p, τ,µ) =

(
−1+ 1

r

)
+O(αs) , (3.5)

with the two abbreviations r = n · p/mb and αs = αs(µ). It is interesting to remark that
the three-body B1-type effective operators cannot generate the leading-power contribution
to the SCETI correlation function T ⊥νµ in comparison with the hard-collinear factorization
formula for the light-ray matrix element T ‖νµ.

Implementing the SCETI → SCETII matching procedure for (3.1) and (3.2) by integrat-
ing out the hard-collinear fluctuation at the short-distance scale (mb ΛQCD)1/2 subsequently

– 7 –
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yields

T ‖νµ(p, q) = Qu
[
C

(A0) 2
V (n · p, µ) vµ +

(
C

(A0) 1
V (n · p, µ) + C

(A0) 3
V (n · p, µ)

)
n̄µ
]
n̄ν

× f̃B(µ)mB

2

∫ ∞
0

dω
φ−B(ω, µ)

n̄ · p− ω + i0 J
(A0)
‖ (n · p, n̄ · p, ω, µ)

+ Qu
mb

∫ 1

0
dτ
[
C

(B1) 1
V (n · p, τ, µ) vµ + C

(B1) 2
V (n · p, τ, µ) n̄µ

]
n̄ν

× f̃B(µ)mB

2

∫ ∞
0

dω φ+
B(ω, µ)J (B1)

‖ (n · p, τ, n̄ · p, ω, µ) , (3.6)

which can be taken from the analytical expressions of the soft-collinear factorization formulae
for the B-meson-to-vacuum correlation functions Πν, ‖ and Π̃ν, ‖ obtained in [19, 37], and

T ⊥νµ(p, q) = −QuC(A0) 1
V (n · p, µ)

(
g⊥µν − i εµνnv

)
× f̃B(µ)mB

2

∫ ∞
0

dω
φ+
B(ω, µ)

n̄ · p− ω + i0 J
(A0)
⊥ (n · p, n̄ · p, ω, µ) , (3.7)

which allows us to determine the two generalized B−u → γ∗ form factors with a transversely
polarized virtual photon state. The renormalized jet functions entering (3.6) and (3.7) have
been worked out in [7, 19] up to the O(αs) order

J (A0)
‖ (n·p, n̄·p,ω,µ) = 1+αsCF

4π

{
ln2 µ2

n·p(ω−n̄·p)−2 ln µ2

n·p(ω−n̄·p) ln
(

1− ω

n̄·p

)

−ln2
(

1− ω

n̄·p

)
−
(2 n̄·p

ω
+1
)

ln
(

1− ω

n̄·p

)
−π

2

6 −1
}
,

J (B1)
‖ (n·p,τ, n̄·p,ω,µ) = αsCF

2π
n·p
ω

ln
(

1− ω

n̄·p

)
(1−τ)θ(τ)θ(1−τ) ,

J (A0)
⊥ (n·p, n̄·p,ω,µ) = 1+αsCF

4π

{
ln2 µ2

n·p(ω−n̄·p)−
π2

6 −1

− n̄·p
ω

ln n̄·p−ω
n̄·p

[
ln µ2

−p2 +ln µ2

n·p(ω−n̄·p) +3
]}

. (3.8)

Matching the achieved SCET representations (3.6) and (3.7) for T ‖,⊥νµ onto the general
decomposition (2.12) of the nonlocal matrix element Tνµ with the requirement Tνµ =
T ‖νµ + T ⊥νµ leads to the desired expressions of the B−u → γ∗ ` ν̄` form factors with a hard-
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collinear photon

FV,LP = F̂A,LP =−Qu f̃B(µ)mB

n·p
C

(A0)1
V (n·p,µ)

∫ ∞
0

dω
φ+
B(ω,µ)

n̄·p−ω+i0 J
(A0)
⊥ (n·p, n̄·p,ω,µ) ,

(3.9)

F̂1,LP =
(
−4r2
r2

1

)
F̂4,LP , (3.10)

F̂2,LP = Qu f̃B(µ)mB

n·p

{
C

(A0)2
V (n·p,µ)

∫ ∞
0

dω
φ−B(ω,µ)
n̄·p−ω+i0 J

(A0)
‖ (n·p, n̄·p,ω,µ)

+ 1
mb

∫ 1

0
dτ C

(B1)1
V (n·p,τ,µ)

∫ ∞
0

dωφ+
B(ω,µ)J (B1)

‖ (n·p,τ, n̄·p,ω,µ)
}
, (3.11)

F̂3,LP =
(
−4r2
r2

1

)
F̂2,LP+ 4Qu f̃B(µ)

r2
1mB

K(µ) , (3.12)

F̂4,LP = Qu f̃B(µ)mB

n·p

{[
C

(A0)1
V (n·p,µ)+C(A0)3

V (n·p,µ)
] ∫ ∞

0
dω

φ−B(ω,µ)
n̄·p−ω+i0

×J (A0)
‖ (n·p, n̄·p,ω,µ)

+ 1
mb

∫ 1

0
dτ C

(B1)2
V (n·p,τ,µ)

∫ ∞
0

dωφ+
B(ω,µ)J (B1)

‖ (n·p,τ, n̄·p,ω,µ)
}
, (3.13)

where the soft-collinear factorization formulae of the subleading power form factors F̂1 and
F̂3 are obtained by applying the two constraints (2.16) from the Uem(1) gauge symmetry of
the electromagnetic interaction. The perturbative function K(µ) arises from expressing the
QCD decay constant fB in terms of the static decay constant f̃B(µ) [5, 38]

fB = f̃B(µ)K(µ) = f̃B(µ)
[
1− αs(µ)CF

2π

(
3
4 ln µ2

m2
b

+ 1
)

+O(α2
s)
]
. (3.14)

Inspecting the obtained factorization formulae (3.9), (3.10), (3.11), (3.12), (3.13) for
the B-meson radiative decay form factors indicates that it is inevitable to generate the
parametrically enhanced logarithms of mb/ΛQCD by employing a universal value of the
factorization scale µ, which warrant an all-order summation in perturbation theory at the
desired accuracy. To this end, we will set the factorization scale µ of order

√
ΛQCDmb and

take advantage of the RG evolution equations for the hard matching coefficient C(A0), 1
V ,

the conversion function K, and the leading-twist B-meson distribution amplitude φ+
B in

momentum space [35, 36, 39, 40]
d

d lnµ C
(A0), 1
V (n · p, µ) =

[
−Γcusp(αs) ln

(
µ

n · p

)
+ γ(A0)(αs)

]
C

(A0), 1
V (n · p, µ) ,

d

d lnµ K
−1(µ) = γK(αs)K−1(µ) ,

dφ+
B(ω, µ)
d lnµ =

[
Γcusp(αs) ln ω

µ
− γη(αs)

]
φ+
B(ω, µ)

+ Γcusp(αs)
∫ ∞

0
dxΓ(1, x)φ+

B

(
ω

x
, µ

)
+ O(α2

s) . (3.15)
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The perturbative expansions for the various anomalous dimensions read

Γcusp(αs) =
∞∑
n=0

(
αs
4π

)n+1
Γ(n)

cusp , γ(A0)(αs) =
∞∑
n=0

(
αs
4π

)n+1
γ(A0), (n) ,

γK(αs) =
∞∑
n=0

(
αs
4π

)n+1
γ

(n)
K , γη(αs) =

∞∑
n=0

(
αs
4π

)n+1
γ(n)
η , (3.16)

where the series coefficients of our interest are given by

Γ(0)
cusp = 4CF , Γ(1)

cusp =CF

[268
3 −4π2− 40

9 nf

]
,

Γ(2)
cusp =CF

{
1470− 536π2

3 + 44π4

5 +264ζ(3)+
[
−1276

9 + 80π4

9 − 208
3 ζ(3)

]
nf−

16
27 n

2
f

}
,

γ(A0),(0) =−5CF , γ(A0),(1) =CF

[
−1585

18 −
5π2

6 +34ζ(3)+
(

125
27 +π2

3

)
nf

]
,

γ
(0)
K = 3CF , γ

(1)
K =CF

[
127
6 + 14π2

9 − 5
3 nf

]
, γ(0)

η =−2CF , (3.17)

γ(1)
η =CF

{
CF

[
−4+ 14π4

3 −24ζ(3)
]

+
[

254
9 −

55π4

6 −18ζ(3)
]

+
[
−32

27 + 5π2

9

]
nf

}
.

The general solutions to these evolution equations can be further written as follows [5, 41]

C
(A0), 1
V (n · p, µ) = U1(n · p, µh1, µ)C(A0), 1

V (n · p, µh1) ,

K−1(µ) = U2(µh2, µ)K−1(µh2) ,

φ+
B(ω, µ) = eV−2 γE g Γ(2− g)

Γ(g)

∫ ∞
0

dη

η
φ+
B(η, µ0)

[max(ω, η)
µ0

]g
×
[min(ω, η)

max(ω, η)

]
2F1

(
1− g, 2− g, 2, min(ω, η)

max(ω, η)

)
, (3.18)

where the explicit expression of the RG functions U1 and U2 at the NLL accuracy can
be found in the appendix of [5] and the perturbative kernels V and g take the following
forms [41–43]

V ≡ V (µ, µ0) = −
∫ αs(µ)

αs(µ0)

dα

β(α)

[
Γcusp(α)

∫ α

αs(µ0)

dα′

β(α′) + γη(α)
]
,

g ≡ g(µ, µ0) =
∫ αs(µ)

αs(µ0)
dα

Γcusp(α)
β(α) ≈ −2CF

β0
ln αs(µ)
αs(µ0) . (3.19)
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b

ū p

q

(a)

pb

p− k

γ∗
k

W ∗

q

p

(b)

b

ū

pb − p

γ∗

pb

k

W ∗

Figure 1. Diagrammatical representation of the QCD correlation function Tνµ(pB , q) at LO in the
strong coupling constant.

3.2 The B-meson decay form factors beyond leading power

We now turn to evaluate the power suppressed contributions to the radiative B-meson
decay form factors from a number of distinct sources on the basis of the perturbative QCD
factorization technique:

• The subleading correction to the hard-collinear quark propagator at O(α0
s) from the

off-shell photon radiation off the light-flavour constituent of the bottom-meson.

• The two-particle and three-particle higher-twist corrections of the HQET B-meson
distribution amplitudes on the light-cone from the non-vanishing transverse motion of
quarks in the leading partonic configuration and from the non-minimal Fock state
with an additional soft-gluon field.

• The “kinematic” power correction from the subleading component of the hard-collinear
photon momentum n̄ ·p in the hadronic representation of the non-local matrix element
Tνµ as presented in (2.12).

• The power suppressed local contribution from the energetic photon emission off the
heavy bottom-quark field at tree level.

Following the computational strategy detailed in [15], we start with the tree-level
contribution to the QCD correlation function (2.4) from the diagram 1(a)

Tνµ(p, q) ⊃ iQu
∫
d4x

∫
d4k

(2π)4 exp (i k · x) 1
(p− k)2 + i0

×
〈
0 |ū(x) γν ( 6p− 6k) γµ (1− γ5)hv(0)|B−u (v)

〉
. (3.20)
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Expanding the hard-collinear quark propagator appeared in (3.20) at the next-to-leading-
power (NLP) accuracy leads to

6p− 6k
(p− k)2 = 1

n̄ · (p− k)
6 n̄
2︸ ︷︷ ︸ +

{
n · k n̄ · k

n · p [n̄ · (p− k)]2
6 n̄
2 + 1

n · p
6n
2 −

6k⊥
n · p n̄ · (p− k)

}
︸ ︷︷ ︸+ . . . ,

(3.21)LP NLP

where the abbreviation “LP” stands for the leading power term in the heavy quark expansion.
The yielding NLP correction from the first non-local term in curly brackets can be computed
with the well-known operator identity [44, 45]

vµ
∂

∂xµ
[q̄(x) Γhv(0)] = i

∫ 1

0
du ū q̄(x) gsGαβ(ux)xα vβ Γhv(0) + (v · ∂) [q̄(x) Γhv(0)] ,

(3.22)
due to the HQET equations of motion at the classical level (see [46, 47] for further
discussions). Moreover, it proves necessary to implement the improved parametrization of
the vacuum-to-B-meson matrix element of the three-body quark-gluon operator [48]

〈0|q̄α(τ1 n) gsGµν(τ2 n)hv β(0)|B̄q(v)〉

=
f̃Bq(µ)mBq

4

[
(1 + /v)

{
(vµγν − vνγµ) [ΨA(τ1, τ2, µ)−ΨV (τ1, τ2, µ)]− i σµν ΨV (τ1, τ2, µ)

− (nµ vν − nν vµ)XA(τ1, τ2, µ) + (nµ γν − nν γµ) [W (τ1, τ2, µ) + YA(τ1, τ2, µ)]
+ i εµναβ n

α vβ γ5 X̃A(τ1, τ2, µ)− i εµναβ n
α γβ γ5 ỸA(τ1, τ2, µ)

− (nµ vν − nν vµ) /nW (τ1, τ2, µ) + (nµ γν − nν γµ) /nZ(τ1, τ2, µ)
}
γ5

]
β α

. (3.23)

Apparently, the relevant momentum-space distribution amplitudes can be obtained by
performing the Fourier transformation with respect to the light-cone variables τ1 and τ2

ΨX(τ1, τ2, µ) =
∫ ∞

0
dω1

∫ ∞
0

dω2 e
−i (ω1 τ1+ω2 τ2) ψX(ω1, ω2, µ) ,

ΨX ∈
{

ΨV , ΨA, XA, YA, X̃A, ỸA, W, Z
}
. (3.24)

To facilitate the construction of the desired soft-collinear factorization formulae, we express
the eight invariant functions ΨX in terms of the more suitable distribution amplitudes with
the definite collinear twist (see [49] for an alternative proposal of geometric twist)

Φ3 = ΦA−ΦV , Φ4 = ΦA+ΦV ,

Ψ̂4 = ΨA+XA , Ψ̃4 = ΨV −X̃A ,

Φ̃5 = ΨA+ΨV +2YA−2 ỸA+2W , Ψ5 =−ΨA+XA−2YA ,
Ψ̃5 =−ΨV −X̃A+2 ỸA , Φ6 = ΦA−ΦV +2YA+2W+2 ỸA−4Z . (3.25)

We can then readily obtain the factorized expression for such NLP contribution

T
hc, (I)
νµ,NLP(p, q) = −Qu f̃B(µ)mB

n · p

[(
g⊥µν − i εµνnv

)
Ghc, (I)

NLP,L + n̄µn̄ν Ghc, (I)
NLP, n̄ n̄

]
, (3.26)
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where the newly defined “form factors” Ghc, (I)
X are given by

Ghc, (I)
NLP,L =

∫ ∞
0

dω1

∫ ∞
0

dω2

∫ 1

0
du

ū (n̄ · p+ ω1 + uω2)
(n̄ · p− ω1 − uω2)3 ψ4(ω1, ω2, µ)

+
∫ ∞

0
dω

ω

(n̄ · p− ω)2

(
Λ̄− ω

2

)
φ+
B(ω, µ) , (3.27)

Ghc, (I)
NLP, n̄ n̄ =

∫ ∞
0

dω1

∫ ∞
0

dω2

∫ 1

0
du

ū (n̄ · p+ ω1 + uω2)
(n̄ · p− ω1 − uω2)3 ψ5(ω1, ω2, µ)

+
∫ ∞

0
dω

ω

(n̄ · p− ω)2

(
Λ̄− ω

2

)
φ−B(ω, µ) . (3.28)

The hadronic parameter Λ̄ entering (3.27) and (3.28)can be defined in a manifestly covariant
and gauge invariant manner [50]

Λ̄ = 〈0|q̄ i v ·
←−
D Γhv|B̄q(v)〉

〈0|q̄ Γhv|B̄q(v)〉
. (3.29)

The subleading power contribution from the second local term in curly brackets of (3.21)
can be evidently expressed by the B-meson decay constant

T
hc, (II)
νµ,NLP(p, q) = −Qu f̃B(µ)mB

2n · p
[(
g⊥µν + i εµνnv

)
− nµnν

]
. (3.30)

Applying an additional HQET operator identity from the equations of motion

∂

∂xρ
q̄(x) γρ Γhv(0) = −i

∫ 1

0
duu q̄(x) gsGλρ(ux)xλ γρ Γhv(0) , (3.31)

we can proceed to construct the tree-level factorization formula for the third non-local term
in curly brackets of (3.21)

T
hc, (III)
νµ,NLP(p, q) = Qu f̃B(µ)mB

n · p

[
n̄µnν Ghc, (III)

NLP, n̄ n + nµn̄ν Ghc, (III)
NLP, n n̄

]
, (3.32)

where

Ghc,(III)
NLP, n̄n =−

∫ ∞
0

dω
ω

n̄·p−ω
φ−B(ω,µ)

2 −
∫ ∞

0
dω1

∫ ∞
0

dω2

∫ 1

0
du

uφ3(ω1,ω2,µ)
(n̄·p−ω1−uω2)2 , (3.33)

Ghc,(III)
NLP,n n̄ =−

∫ ∞
0

dω1

∫ ∞
0

dω2

∫ 1

0
du

1
(n̄·p−ω1−uω2)2 [uφ4(ω1,ω2,µ)+ψ4(ω1,ω2,µ)]

−
∫ ∞

0
dω

1
n̄·p−ω

(
Λ̄−ω2

)
φ+
B(ω,µ) . (3.34)

Adding the different pieces together, the “dynamical” power corrections to the exclusive
B−u → γ∗ ` ν̄` form factors due to the energetic photon emission from the light quark can be
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summarized in the following

F hc,dyn
V,NLP =−2Qu f̃B(µ)mB

(n·p)2

(
Ghc,(I)

NLP,L−
1
2

)
+O (αs, Λ/mb) ,

F̂ hc,dyn
A,NLP =−2Qu f̃B(µ)mB

(n·p)2

(
Ghc,(I)

NLP,L+ 1
2

)
+O (αs, Λ/mb) ,

F̂ hc,dyn
1,NLP = 4Qu f̃B(µ)mB

(n·p)2

(
Ghc,(III)

NLP, n̄n−
1
2

)
+O (αs, Λ/mb) ,

F̂ hc,dyn
2,NLP = 4Qu f̃B(µ)mB

(n·p)2

(
Ghc,(III)

NLP,n n̄−
1
2

)
+O (αs, Λ/mb) ,

F̂ hc,dyn
3,NLP = 4Qu f̃B(µ)mB

(n·p)2 +O (αs, Λ/mb) ,

F̂ hc,dyn
4,NLP = 2Qu f̃B(µ)mB

(n·p)2

(
Ghc,(I)

NLP, n̄ n̄−G
hc,(III)
NLP, n̄n−G

hc,(III)
NLP,n n̄+ 1

2

)
+O (αs, Λ/mb) . (3.35)

We are now in a position to compute the subleading power corrections to the radiative
B−u → γ∗ ` ν̄` form factors from both the two-particle and three-particle B-meson distribution
amplitudes at tree level by employing the perturbative factorization technique. Implementing
the light-cone expansion of the hard-collinear quark propagator in the background soft-gluon
field [51] (see [52] for an improved discussion on the massive quark propagator)

〈0|T {q̄(x), q(0)}|0〉 ⊃ i gs
∫ ∞

0

d4`

(2π)4
e−i `·x

`2 −m2
q

∫ 1

0
du

uxµ γν − (/̀+mq)σµν
2
(
`2 −m2

q

)
 Gµν(ux) ,

(3.36)
with the gluon-field strength tensor Gµν = Gaµν T

a = DµAν −Dν Aµ, and taking advantage
of the general parametrization of the three-body HQET matrix element (3.23), we can
immediately establish the soft-collinear factorization formulae for the three-particle higher
twist corrections

F 3PHT
V,NLP = F̂ 3PHT

A,NLP = Qu f̃B(µ)mB

(n·p)2

∫ ∞
0

dω1

∫ ∞
0

dω2

∫ 1

0
du

1
(n̄·p−ω1−uω2)2

×
[
(2u−1)ψ4(ω1,ω2,µ)−ψ̃4(ω1,ω2,µ)

]
+O (αs, Λ/mb) ,

F̂ 3PHT
1,NLP = 4Qu f̃B(µ)mB

(n·p)2

∫ ∞
0

dω1

∫ ∞
0

dω2

∫ 1

0
du

uφ3(ω1,ω2,µ)
(n̄·p−ω1−uω2)2 +O (αs, Λ/mb) ,

F̂ 3PHT
2,NLP =−4Qu f̃B(µ)mB

(n·p)2

∫ ∞
0

dω1

∫ ∞
0

dω2

∫ 1

0
du

(1−u)φ4(ω1,ω2,µ)
(n̄·p−ω1−uω2)2 +O (αs, Λ/mb) ,

F̂ 3PHT
3,NLP =O (αs, Λ/mb) ,

F̂ 3PHT
4,NLP = 2Qu f̃B(µ)mB

(n·p)2

∫ ∞
0

dω1

∫ ∞
0

dω2

∫ 1

0
du

1
(n̄·p−ω1−uω2)2

[
(1−2u)ψ5(ω1,ω2,µ)

+ ψ̃5(ω1,ω2,µ)+(1−u)φ4(ω1,ω2,µ)−uφ3(ω1,ω2,µ)
]
+O (αs, Λ/mb) , (3.37)

where the achieved expressions for the two form factors F 3PHT
V,NLP and F 3PHT

A,NLP are in accordance
with the analogous NLP contributions to the double radiative bottom-meson decays in the
kinematic limit n̄ · p→ 0 as displayed in eq. (4.37) in [15].
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For the purpose of evaluating the two-particle higher-twist effects, we will introduce the
generalized decomposition of the two-body non-local B-meson-to-vacuum matrix element
with the off-light-cone corrections up to the O(x2) accuracy [48]

〈0|(q̄sYs)β(x) (Y †s hv)α(0)|B̄q〉

= −
i f̃Bq(µ)mBq

4

∫ ∞
0

dω e−iωv·x
[1 + /v

2

{
2
[
φ+
B(ω, µ) + x2 g+

B(ω, µ)
]

− /x

v · x

[
(φ+
B(ω, µ)− φ−B(ω, µ)) + x2 (g+

B(ω, µ)− g−B(ω, µ))
] }

γ5

]
αβ

. (3.38)

It is then straightforward to write down the resulting factorized expression

T 2PHT
νµ (p, q) = −2Qu f̃B(µ)mB

n · p

{(
g⊥µν − i εµνρσ nρ vσ

) ∫ ∞
0

dω
g+
B(ω, µ)

(n̄ · p− ω)2

− n̄µ n̄ν

∫ ∞
0

dω
g−B(ω, µ)

(n̄ · p− ω)2

}
. (3.39)

Applying the two non-trivial constraints on the subleading twist HQET distribution ampli-
tudes in momentum space [17, 19] (see also [44, 45, 48] for the coordinate-space identities)

−2 d2

dω2 g
+
B(ω, µ) =

[3
2 + (ω − Λ̄) d

dω

]
φ+
B(ω, µ)− 1

2 φ
−
B(ω, µ) +

∫ ∞
0

dω2
ω2

d

dω
ψ4(ω, ω2, µ)

−
∫ ∞

0

dω2
ω2

2
ψ4(ω, ω2, µ) +

∫ ω

0

dω2
ω2

2
ψ4(ω − ω2, ω2, µ) , (3.40)

−2 d2

dω2 g
−
B(ω, µ) =

[3
2 + (ω − Λ̄) d

dω

]
φ−B(ω, µ)− 1

2 φ
+
B(ω, µ) +

∫ ∞
0

dω2
ω2

d

dω
ψ5(ω, ω2, µ)

−
∫ ∞

0

dω2
ω2

2
ψ5(ω, ω2, µ) +

∫ ω

0

dω2
ω2

2
ψ5(ω − ω2, ω2, µ) , (3.41)

the twist-four and twist-five B-meson distribution amplitudes g±B(ω, µ) can be decomposed
into the Wandzura-Wilczek contributions [53] calculable from the lower-twist two-particle
distribution amplitudes φ±B(ω, µ) and the “genuine” three-particle distribution amplitudes
of the same collinear twists

g+
B(ω, µ) = ĝ+

B(ω, µ)− 1
2

∫ ω

0
dω1

∫ 1

0
du

ū

u
ψ4

(
ω,
ω − ω1
u

, µ

)
,

g−B(ω, µ) = ĝ−B(ω, µ)− 1
2

∫ ω

0
dω1

∫ 1

0
du

ū

u
ψ5

(
ω,
ω − ω1
u

, µ

)
, (3.42)

where the manifest expressions of the Wandzura-Wilczek terms are given by

ĝ+
B(ω, µ) = 1

4

∫ ∞
ω

dρ

{
(ρ− ω)

[
φ−B(ρ, µ)− φ+

B(ρ, µ)
]
− 2 (Λ̄− ρ)φ+

B(ρ, µ)
}
,

ĝ−B(ω, µ) = 1
4

∫ ∞
ω

dρ

{
(ρ− ω)

[
φ+
B(ρ, µ)− φ−B(ρ, µ)

]
− 2 (Λ̄− ρ)φ−B(ρ, µ)

}
. (3.43)
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We are then led to an equivalent form of the obtained factorization formula (3.39)

T 2PHT
νµ (p,q) =−Qu f̃B(µ)mB

n·p

{(
g⊥µν−iεµνρσ nρ vσ

)
G2PHT

NLP,L+ n̄µ n̄ν G2PHT
NLP, n̄ n̄

}
, (3.44)

where the newly introduced invariant functions are defined as follows

G2PHT
NLP,L = 2

∫ ∞
0

dω
ĝ+
B(ω,µ)

(n̄·p−ω)2−
∫ ∞

0
dω1

∫ ∞
0

dω2

∫ 1

0
du

(1−u)ψ4(ω1,ω2,µ)
(n̄·p−ω1−uω2)2 ,

G2PHT
NLP, n̄ n̄ =−2

∫ ∞
0

dω
ĝ−B(ω,µ)

(n̄·p−ω)2 +
∫ ∞

0
dω1

∫ ∞
0

dω2

∫ 1

0
du

(1−u)ψ5(ω1,ω2,µ)
(n̄·p−ω1−uω2)2 . (3.45)

Matching the tree-level SCET computation of the correlation function Tνµ (3.44) onto the
appropriate hadronic representation (2.12) yields

F 2PHT
V,NLP = F̂ 2PHT

A,NLP = −2Qu f̃B(µ)mB

(n · p)2 G2PHT
NLP,L +O (αs, Λ/mb) ,

F̂ 2PHT
1,NLP = O (αs, Λ/mb) ,
F̂ 2PHT

2,NLP = O (αs, Λ/mb) ,
F̂ 2PHT

3,NLP = O (αs, Λ/mb) ,

F̂ 2PHT
4,NLP = −2Qu f̃B(µ)mB

(n · p)2 G2PHT
NLP, n̄ n̄ +O (αs, Λ/mb) , (3.46)

where the factorized expression of F 2PHT
V,NLP (F̂ 2PHT

A,NLP) can be alternatively inferred from the
two-particle subleading twist correction to B−u → γ ` ν̄` [9] and the established formula of
F̂ 2PHT

4,NLP is completely consistent with the counterpart contribution to the very correlation
function suitable for constructing the light-cone QCD sum rules for B → π,K form
factors [18].

The “kinematic” power corrections to the radiative B-meson decay form factors can be
determined by employing an equivalent hadronic representation for the correlation function
Tνµ other than (2.8) and (2.12)

Tνµ(p, q) = n · p
2

[
−i (1− κp)εµνρσ nρ vσ FV + (1 + κp) g⊥µν F̂A

]
+ n · p

4

[(
F̂1 + F̂3

2

)
+ κp

(
F̂2 + F̂3

2 + 2 F̂4

)]
n̄µ nν

+ n · p
4

[(
F̂2 + F̂3

2

)
+ κp

(
F̂1 + F̂3

2 + 2 F̂4

)]
nµ n̄ν

+ n · p
4

[(
F̂1 + F̂2 + F̂3

2 + 2 F̂4

)
+ κp

(
F̂3
2 − 2 F̂4

)]
n̄µ n̄ν

+ n · p
4

[
F̂3
2 + κp

(
F̂1 + F̂2 + F̂3

2

)]
nµ nν +O(κ2

p) , (3.47)

where the dimensionless variable κp is explicitly defined by

κp ≡
p2

(n · p)2 ∼ O
(ΛQCD

mb

)
. (3.48)
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Confronting (3.47) with the LP QCD expression for the diagram 1(a) allows for the
determination of the subleading power “kinematic” corrections at tree level

F hc, kin
V,NLP = −κp

Qu f̃B(µ)mB

n · p

∫ ∞
0

dω

n̄ · p− ω
φ+
B(ω, µ) +O

(
αs, κ

2
p

)
,

F̂ hc, kin
A,NLP = κp

Qu f̃B(µ)mB

n · p

∫ ∞
0

dω

n̄ · p− ω
φ+
B(ω, µ) +O

(
αs, κ

2
p

)
,

F̂ hc, kin
1,NLP = −2κp

Qu f̃B(µ)mB

n · p

∫ ∞
0

dω

n̄ · p− ω
φ−B(ω, µ) +O

(
αs, κ

2
p

)
,

F̂ hc, kin
2,NLP = −2κp

Qu f̃B(µ)mB

n · p

∫ ∞
0

dω

n̄ · p− ω
φ−B(ω, µ) +O

(
αs, κ

2
p

)
,

F̂ hc, kin
3,NLP = O

(
αs, κ

2
p

)
,

F̂ hc, kin
4,NLP = 3κp

Qu f̃B(µ)mB

n · p

∫ ∞
0

dω

n̄ · p− ω
φ−B(ω, µ) +O

(
αs, κ

2
p

)
. (3.49)

Furthermore, we derive the power suppressed local contribution from the hard-collinear
photon radiation off the bottom quark as displayed in the diagram 1(b)

FQb, loc
V,NLP = − f̃B(µ)mB

m2
b

Qb
r3 − 1 +O (αs, Λ/mb) ,

F̂Qb, loc
A,NLP = f̃B(µ)mB

m2
b

(
1 + 2 yB

r1

)
Qb

r3 − 1 +O (αs, Λ/mb) ,

F̂Qb, loc
1,NLP = 4 f̃B(µ)mB

m2
b

(
r2
r2

1
+ yB

2 r1

)
Qb

r3 − 1 +O (αs, Λ/mb) ,

F̂Qb, loc
2,NLP = 4 f̃B(µ)mB

m2
b

(
r2
r2

1
+ yB

2 r1

)
Qb

r3 − 1 +O (αs, Λ/mb) ,

F̂Qb, loc
3,NLP = 4 f̃B(µ)mB

m2
b

yB
r1

Qb
r3 − 1 +O (αs, Λ/mb) ,

F̂Qb, loc
4,NLP = − f̃B(µ)mB

m2
b

(
1 + 2 yB

r1

)
Qb

r3 − 1 +O (αs, Λ/mb) , (3.50)

by introducing further three dimensionless quantities

yB = mb/mb , yB = 1− yB , r3 ≡ q2/m2
b = r2 − yB r1 + y2

B . (3.51)

The obtained expressions for the vector and axial-vector form factors are compatible with
the counterpart contributions to the radiative leptonic B−u → γ ` ν̄` decay by taking the
on-shell photon limit p2 → 0 [5].

Collecting the individual NLP corrections discussed so far allows us to write down the
following master formula

Fi,NLP =Fhc,dyn
i,NLP +F3PHT

i,NLP +F2PHT
i,NLP +Fhc,kin

i,NLP +FQb, loc
i,NLP , (Fi = FV , F̂A, F̂1,...,4) , (3.52)

where the detailed expressions of the separate terms appearing on the right-hand side can
be found in (3.35), (3.37), (3.46), (3.49) and (3.50). Prior to concluding the explorations of
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factorization properties for the generalized B−u → γ∗W ∗ form factors with a hard-collinear
photon, we pause for a while to compare our computations of the subleading power terms in
the heavy quark expansion with the previous theory analysis in the QCD framework [54–56].

• To facilitate an exploratory comparison with [55], we first establish the conversion
relation of their “longitudinal” form factor F̂A‖ and a complete set of the exclusive
transition form factors introduced in (2.8)

F̂A‖ = −
[
F1 + v · p

mB
F3 + F̂A

]
, (3.53)

which further implies another advantageous representation with the aid of our equa-
tion (2.14) as well as the two relevant identities in (2.4) and (2.6) of [55]

FA‖ = −
{
F̂1 + v · p

mB
F̂3 +

[
1 + p2

(v · p)2 − p2

(
1− v · p

mB

)]
Q` fB
v · p

}
. (3.54)

Plugging the obtained NLP factorization formulae of F̂1 and F̂3 at tree level into (3.54)
and performing the (hard)-collinear expansion up to the O(ΛQCD/mb) accuracy
leads to

FA‖ = −4Qu f̃B(µ)mB

(n · p)2
n̄ · p

λ−B(n̄ · p, µ)
+ 2 f̃B(µ)

n · p
(Qb −Qu −Q`) +O

(
αs,

ΛQCD
mb

)
,

(3.55)
where the second term vanishes evidently due to the electric-charge conservation
and the inverse moment of the twist-three distribution amplitude φ−B(ω, µ) is defined
by [13]

1
λ−B(n̄ · p, µ)

=
∫ ∞

0
dω

φ−B(ω, µ)
ω − n̄ · p− i 0 . (3.56)

Interestingly, the power suppressed three-particle contribution from the “genuine”
twist-three distribution amplitude φ3(ω1, ω2, µ) disappears at LO in the strong coupling
constant, owing to the complete cancellation of the distinct dynamical mechanisms
entering (3.35) and (3.37). It is straightforward to verify that the yielding expres-
sion (3.55) for the form factor FA‖ reproduces the obtained result of [55] adopting the
Wandzura-Wilczek approximation. Inspecting the soft-collinear factorization formulae
for the “dynamical” power corrections (3.35) reveals that the first term in the curly
brackets of (3.21) will generate the non-vanishing contributions to the form factors F̂1
and F̂3 starting at next-to-next-to-leading-power (NNLP) in an expansion in powers of
ΛQCD/mb, thus supporting the proposed ansatz for the non-perturbative form factor
ξ′(p2, n̄ · p) [55] analytically.

• We leave out the subleading power contributions to the exclusive B−u → γ∗ ` ν̄` decay
form factors with a hard-collinear photon from the light-meson resonances (for instance
ρ and ω) discussed in [54, 55], on account of (i) their insignificant numerical impacts
in the kinematical regions satisfying the constraints p2 ≥ 1.5 GeV2 and n · p ≥ 3.0 GeV
as already observed in [55], (ii) particularly a lack of the rigorous and systematic
formalism to address the resonance contributions. In addition, the OPE-controlled
dispersion technique for evaluating the soft NLP contributions to the γ∗γ → π0 form
factor [57–59] and the on-shell B → γ form factors cannot be straightforwardly applied

– 18 –



J
H
E
P
0
2
(
2
0
2
2
)
1
4
1

to the analogous computation for the generalized B−u (pB)→ γ∗(p)W ∗(q) form factors
in the time-like regime of p2 ∼ O(ΛQCDmb), due to the yielding divergent dispersion
integrals in the vicinity of p2 = s0 with s0 representing the threshold parameter in
the ρ-meson channel

1
π

∫ ∞
s0

ds
ImsFi(s, n · p)
s− p2 − i 0 , (Fi = FV , F̂A, F̂1,...,4) , (3.57)

which is precisely the argument to motivate an implementation of the phenomenological
ansatz for the soft form factor in the so-called B-type contribution to Bd, s → γ`¯̀ [14].

• Applying the principle of gauge invariance of the QED interaction, model-independent
constraints on the radiative B−u → γ∗W ∗ form factors and the resulting phenomeno-
logical implications on the differential distributions for B−u → `′ ¯̀′ ` ν̄` have been
recently explored in [56], reaching the major observation of the vanishing form factor
F2A(p2, n ·p) in the on-shell photon limit based upon their form-factor parametrization
scheme. Switching to our form-factor convention instead implies the following relation

lim
p2→0

[
FA‖ + p2

(v · p)2 − p2

(
1− v · p

mB

)
FA

]
= 0 , (3.58)

which can be readily validated by employing the established result (3.55) for the
transition form factor FA‖ . Actually, the vanishing longitudinal form factor in the
on-shell photon limit can be expected naturally from the very fact that there exists
no longitudinal polarization for an on-shell photon as already mentioned in [55].

4 QCD factorization for B−u → γ∗ ` ν̄` with a hard photon

Now we turn to derive the perturbative factorization formulae for a complete set of the
B−u → γ∗W ∗ form factors with an off-shell photon state possessing the four-momentum
pµ ∼ O(mb) by implementing the QCD→ HQET matching for the B-meson-to-vacuum
correlation function (2.4). Evaluating the tree-level diagrams displayed in figure 1 at leading
power in the heavy quark expansion immediately leads to the factorized expressions

FLO
V =− f̃B(µ)mB

m2
b

[
Qu
r2

+ Qb
r3−1

]
+O (αs, ΛQCD/mb) ,

F̂LO
A =− f̃B(µ)mB

m2
b

[
Qu
r2
−
(

1+2 yB
r1

)
Qb
r3−1

]
+O (αs, ΛQCD/mb) ,

F̂LO
1 =− f̃B(µ)mB

m2
b

4r2
r2

1−4r2

[
Qu
r2
−
(

1+ yB r1
2r2

)
Qb
r3−1

]
+O (αs, ΛQCD/mb) ,

F̂LO
2 =− f̃B(µ)mB

m2
b

4r2
r2

1−4r2

[
Qu
r2
−
(

1+ yB r1
2r2

)
Qb
r3−1

]
+O (αs, ΛQCD/mb) ,

F̂LO
3 = f̃B(µ)mB

m2
b

4r2
r2

1−4r2

[
Qu
r2
−
(

1− yB r1
r2

+ 2(1+yB)
r1

)
Qb
r3−1

]
+O (αs, ΛQCD/mb) ,

F̂LO
4 = f̃B(µ)mB

m2
b

r2
1

r2
1−4r2

[
Qu
r2
−
(

1+2 yB
r1

)
Qb
r3−1

]
+O (αs, ΛQCD/mb) . (4.1)
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(a)

b

ū

(b) (c) (d)

W ∗

γ∗

Figure 2. Diagrammatical representation of the NLO correction to the QCD correlation function
Tνµ(pB , q) due to the hard photon radiation from the light anti-quark.

It is evident that the large-recoil symmetry relation between the vector and axial-vector
form factors at p2 ∼ O(mb ΛQCD) is no longer valid for large p2 of order m2

B even at
O(α0

s), due to the emerged leading-power contribution from the hard photon radiation
off the heavy bottom-quark. In addition, it is straightforward to verify that the resulting
expressions of the four longitudinal form factors F̂1,...,4 satisfy the obtained Ward-Takahashi
identities (2.16). In contrast to the SCET factorization formulae (3.13) for the B−u → γ∗ ` ν̄`
form factors with a hard-collinear photon, the yielding results of F̂1 and F̂3 are observed to
be free of the ΛQCD/mb suppression compared with the remaining transition form factors
at p2 ∼ O(m2

b).
We are now in a position to perform the NLO computation of the non-local matrix

element Tνµ(pB, p) in the hard p2 region by applying the standard perturbative matching
program, which is somewhat more sophisticated than the QCD→ HQET matching for the
heavy-to-light currents at one loop [50, 60]. It is apparent that the gluonic corrections to
the short-distance Wilson coefficients can be conveniently split into two pieces with the
distinct electric charges in the following

FNLO
i = FLO

i + αs(µ)CF
2π

f̃B(µ)mB

m2
b

[(
Qu
r2

)
Hui +

(
Qb

r3 − 1

)
Hbi
]
, (Fi = FV , F̂A, F̂1,...,4) .

(4.2)
The renormalized coefficient function Hui can be readily determined by identifying the
hard contributions of the one-loop QCD diagrams presented in figure 2 (apart from the
wavefunction renormaization of the external bottom quark at O(αs) [61])

HuV =
(

3
4 ln µ2

m2
b

+ 2
)

+ 1
r2

1 − 4r2

{
r1 − 4r2

2 r2 ln(−r2)−
[
r3

1 + r2
2 − r1 r2 (4 + r2)

]
C0, u

+ r1 (r1 + 3 r2)− 2 r2 (3 + 2 r2)
2 r3

(1− r3) ln(1− r3)
}
, (4.3)

ĤuA = HuV + r2
r1 (r2

1 − 4r2)

{
2
[
r2

1 − r2 (2 + r2)
]
C0, u + [r1 (r3 − 3) + 4 r2] ln (−r2)

− (r1 + 2) (1− r3)− 4
r3

(1− r3) ln(1− r3)− r2
1 + 4 r2

}
, (4.4)
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Ĥu1 = 4 r2
r2

1 − 4r2

{(
3
4 ln µ2

m2
b

+ 2
)
−
[

r2
r2

1 − 4r2
(2 + r1 r2 − 2r3) + r1

]
C0, u

+ r3 − 1
r3

[ 2
r2

1 − 4 r2
(r2 − r2

2 + r1 r3)− (r2 − 1)(r3 − 1)
2 r3

]
ln(1− r3)

+ r1
2 (r2

1 − 4r2) (2 + r1 r2 − 2r3) ln(−r2) + 2− r1 − r1 r3
2 r3

}
, (4.5)

Ĥu2 =
(
− r2

1
4 r2

)
Ĥu3 −

(
3
4 ln µ2

m2
b

+ 1
)
, (4.6)

Ĥu3 = − 4 r2
r2

1 − 4r2

{(
3
4 ln µ2

m2
b

+ 2
)

+ 2 r2
r1

[
r2

r2
1 − 4r2

(−4 + r1 − 2r2)− 2
]
C0, u

+ 1− r3
r1 r3

[ 2 r2
r2

1 − 4r2
(−4 + 2 r1 + r1 r3) + (r2 − 1)(r3 − 1)

r3

]
ln(1− r3)

+ r2
r1

[ 2
r2

1 − 4r2
(2 + r1 r2 − 2r3)− 1

]
ln(−r2)− 2 r2 (1 + r3)− r1

r1 r3

}
, (4.7)

Ĥu4 =
(
− r2

1
4 r2

)
Ĥu1 , (4.8)

where we have defined the perturbative loop function

C0, u = 1√
λ

{
Li2

(
(r3 + 1)

√
λ+ ru

(r3 − 1)
√
λ+ ru

)
+ Li2

(
(1 + r3)

√
λ+ ru

(1− r3)
√
λ+ ru

)
− Li2

(
(1− r3)

√
λ+ ru

(r3 − 1)
√
λ+ ru

)

+ 2Li2
(
r1 −

√
λ

r1 +
√
λ

)
+ 2Li2

(
1− r2√

λ

)
+ 1

2 ln2
(
−r1 +

√
λ

r1 −
√
λ

)
+ π2

3

}
, (4.9)

with

λ ≡ λ(1, r2, r3) = 1 + r2
2 + r2

3 − 2 r2 − 2 r3 − 2 r2 r3 = r2
1 − 4 r2 ,

ru ≡ r2 (1 + r3)− (1− r3)2 . (4.10)

The appearance of the second term in the yielding expression (4.6) for Hu2 follows from the
exact Ward-Takahashi relations (2.16) and the matching equation (3.14) for the QCD and
HQET B-meson decay constants.

Along the same vein, we can derive the renormalized hard kernel Hbi by extracting the
perturbative contributions from the one-loop QCD diagrams displayed in figure 3

HbV =
( 4

1−r3
+1
) (3

4 ln µ2

m2
b

+1
)

+
[

r2
r2

1−4r2
(4+8r3 +r2−r1 r2)+2r2 +1

]
C0, b

+ ln(1−r3)
2r3

{
r2

r2
1−4r2

[
−2(7+2r2

2 +5r3)+r1 (8+r2 +10r3)
]
+3r1−2

}
− rb (8+4r3−r1)

2 (r2
1−4r2) ln 2−r2 +rb

2 +1 , (4.11)
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b

ū

(a) (b) (c) (d)

γ∗

W ∗

Figure 3. Diagrammatical representation of the NLO correction to the QCD correlation function
Tνµ(pB , q) due to the hard photon radiation from the heavy bottom-quark.

ĤbA =−HbV + 4
r1

(
3
4 ln µ2

m2
b

+1
)

+
[

r2
r2

1−4r2
(8+8r3−r1 r2)+ r2

r1
(8+r2)−4

] C0, b
2

+ ln(1−r3)
2r3

{
r2

r2
1−4r2

[3r2 (r1−2)−2r3 (8+r2)]− r2 (r2 +8)
r1

+2(2−r2)
}

− rb (3+r3)
r2

1−4r2
ln 2−r2 +rb

2 + r1−r2
r1

, (4.12)

Ĥb1 = 4
1−r3

[
r2 (r2−2r1)
r2

1−4r2
+1
] (3

4 ln µ2

m2
b

+1
)

+ 4r2 (r1−2)
r2

1−4r2

[
r2 (r1−r3−3)

r2
1−4r2

−2
]
C0, b

− 2r2
r3

{ 4r2
(r2

1−4r2)2

[
(2−r1)2 +r3 (r3−2r1)

]
+ 5−4r1 +r3 (2+r3)

r2
1−4r2

}
ln(1−r3)

+ 2rb
r2

1−4r2

[2r2 (r1−2r3−2)
r2

1−4r2
−r3−5

]
ln 2−r2 +rb

2 + 2r2
1−r3

r1 (1+r3)−2r2
r2

1−4r2
,

(4.13)

Ĥb2 =
(
− r2

1
4r2

)
Ĥb3 + r3−1

r2

(
3
4 ln µ2

m2
b

+1
)
, (4.14)

Ĥb3 =
(
−4r2
r2

1

)
Ĥb1 + 4(r3−5)

r2
1

(
3
4 ln µ2

m2
b

+1
)
− 8r2
r2

1

(3−2r2 +r3) (1−r3)
r2

1−4r2
C0, b

+ 4r2
r2

1

[1−r3
r3

2(1+3r3)−r1 (1−r3)
r2

1−4r2

]
ln(1−r3)

− 4rb
r2

1

8r2 +r1 (r3−5)
r2

1−4r2
ln 2−r2 +rb

2 − 4r2
r2

1
, (4.15)

Ĥb4 =
(
− r2

1
4r2

)
Ĥb1 , (4.16)

where for brevity we have introduced the convention

C0, b = 1√
λ

{
Li2

(
ξ1 − r2

√
λ

ξ1 − rb
√
λ

)
+ Li2

(
ξ1 − r2

√
λ

ξ1 + rb
√
λ

)
− Li2

(
ξ1 + r2

√
λ

ξ1 − rb
√
λ

)

− Li2
(
ξ1 + r2

√
λ

ξ1 + rb
√
λ

)
− Li2

(
ξ2

(r3 − 1)(ξ3 −
√
λ)

)
− Li2

(
ξ2

(r3 − 1)(ξ3 +
√
λ)

)

+ Li2
(
ξ3 −

√
λ

ξ3 +
√
λ

)
+ 2Li2

(
1 +

√
λ

r3 − 1

)
− π2

6

}
, (4.17)
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with

ξ1 = r2 (r2 − r3 − 3) , ξ2 = (r3 − 1) (2− r1) + (1 + r3)
√
λ ,

ξ3 = 2− r1 , rb =
√
r2 (r2 − 4)− i 0 . (4.18)

Employing the RG evolution equations of the effective decay constant f̃B(µ) as well as the
bottom-quark mass mb

df̃B(µ)
d lnµ = γhl(αs) f̃B(µ) =

[ ∞∑
k=0

γk, hl

(
αs(µ)

4π

)k+1]
f̃B(µ) ,

dmb(µ)
d lnµ = γm(αs)mb(µ) =

[ ∞∑
k=0

γk,m

(
αs(µ)

4π

)k+1]
mb(µ) , (4.19)

with the first two series coefficients given by [62, 63]

γ0, hl = 3CF , γ1, hl = CF

[
127
6 + 14π2

9 − 5
3 nf

]
, (4.20)

and [64, 65]
γ0,m = 6CF , γ1,m = CF

[
3CF + 97

3 CA −
20
3 nf

]
, (4.21)

it is then straightforward to demonstrate the factorization-scale independence of the resulting
expressions for the exclusive B−u → γ∗ ` ν̄` form factors

dFNLO
i

d lnµ = O(α2
s) , (Fi = FV , F̂A, F̂1,...,4) . (4.22)

In analogy to the SCET factorization for the radiative leptonic B-meson form factors with
a hard-collinear photon, the HQET decay constant f̃B(µ) will be converted to the QCD
decay constant fB by means of the matching relation (3.14). Subsequently, the enhanced
logarithms of order ln (mb/ΛQCD) entering the hard function K−1(µ) will be summed at the
NLL accuracy according to the second identity in (3.18). Importantly, the resulting NLO
expressions (4.2) for the four-body leptonic B-meson form factors are observed to comply
with the Ward-Takahashi constraints (2.16) at the accuracy of O(αs), thus providing a
valuable check of our computation.

5 Numerical results

We are now ready to explore the phenomenological implications of the obtained factorization
formulae for the exclusive B−u → γ∗W ∗ form factors by applying a variety of effective
field theory approaches, with an emphasis on the systematic computations of the angular
observables for the four-body decay process B−u → γ∗(→ `′ ¯̀′)W ∗(→ ` ν̄`) of experimental
importance. To achieve this goal, we will proceed by specifying the different types of theory
inputs (the electroweak parameters, the bottom-quark mass, both the leading-twist and
higher-twist B-meson distribution amplitudes in HQET, and so on) entering the factorized
expressions of the B-meson transition form factors emerged in the general decomposition of
the corresponding decay amplitude (2.10).
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Parameter Value Ref. Parameter Value Ref.

GF 1.166379× 10−5 GeV−2 [66] |Vub| (3.70± 0.10± 0.12)× 10−3 [66]

α
(5)
s (mZ) 0.1188± 0.0017 [66] α

(5)
em(mZ)−1 127.952± 0.009 [66]

me 0.511MeV [66] mµ 105.658MeV [66]

mb(mb) 4.198± 0.012 GeV [66] mPS
b (2 GeV) 4.532+0.013

−0.039 GeV [67]

mBu 5279.34± 0.12MeV [66] τBu (1.638± 0.004) ps [66]

fBu |Nf=2+1+1 190.0± 1.3MeV [27]

λBu(µ0) (350± 150)MeV [14] {0.7, 6.0}

λ2
E(µ0)/λ2

H(µ0) 0.50± 0.10 [9] {σ̂(1)
Bu

(µ0), σ̂(2)
Bu

(µ0)} {0.0, π2/6} [14]

2λ2
E(µ0) + λ2

H(µ0) (0.25± 0.15) GeV2 [9] {−0.7, −6.0}

Table 1. The numerical values of the various input parameters employed in the theory predictions
for the four-body leptonic B-meson decays.

5.1 Theory inputs

In analogy to QCD factorization for the radiative B−u → γ ` ν̄` decay [61], the twist-two
B-meson distribution amplitude in HQET φ+

B(ω, µ) apparently serves as the fundamental
non-perturbative ingredient appearing in the SCET factorization formulae of the exclusive
B−u → γ∗ ` ν̄` form factors with a hard-collinear (off-shell) photon. Following [9], we will
adopt the improved three-parameter ansatz for φ+

B(ω, µ0) with an attractive analytical
behaviour under the RG evolution at the one-loop accuracy

φ+
B(ω, µ0) = Γ(β)

Γ(α) U
(
β − α, 3− α, ω

ω0

)
ω

ω2
0

exp
(
− ω

ω0

)
, (5.1)

where U(a, b, z) stands for the confluent hypergeometric function of the second kind pos-
sessing an integral representation for Re [a] > 0 and Re [z] > 0

U(a, b, z) = 1
Γ(a)

∫ ∞
0

dt e−z t ta−1 (t+ 1)b−a−1 . (5.2)

In the numerical evaluation, we will adjust the shape parameters ω0, α and β to cover the
allowed ranges for the inverse logarithmic moments of the leading-twist HQET distribution
amplitude displayed in table 1 by applying the following identities [15]

λBu(µ0) =
(
α− 1
β − 1

)
ω0 , σ̂

(1)
Bu

(µ0) = ψ(β − 1)− ψ(α− 1) + ln
(
α− 1
β − 1

)
,

σ̂
(2)
Bu

(µ0) =
[
σ̂

(1)
Bu

(µ0)
]2

+ ψ(1)(α− 1)− ψ(1)(β − 1) + π2

6 , (5.3)

where the explicit definitions of λBu , σ̂
(1)
Bu

and σ̂(2)
Bu

read [9]

λ−1
Bu

(µ) =
∫ ∞

0
dω

φ+
B(ω, µ)
ω

,

σ̂
(n)
Bu

(µ) = λBu(µ)
∫ ∞

0

dω

ω

[
ln
(
λBu(µ)
ω

)
− γE

]n
φ+
B(ω, µ) . (5.4)
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Substituting (5.2) into the constructed solution (3.18) to the Lange-Neubert evolution
equation [39] results in (see [9] for the RG evolution function in coordinate space)

φ+
B(ω,µ)

= exp
{
− Γ(0)

cusp
4β2

0

[
4π

αs(µ0)

(
ln αs(µ)
αs(µ0)−1+ αs(µ0)

αs(µ)

)
− β1

2β0
ln2 αs(µ)

αs(µ0) +
(

Γ(1)
cusp

Γ(0)
cusp
− β1
β0

)

×
(
αs(µ)
αs(µ0)−1− ln αs(µ)

αs(µ0)

)]} (
αs(µ)
αs(µ0)

)γ(0)
η /(2β0) ( 1

ω0

) (
µ0 e

2γE

ω0

)κs

×
{
ω

ω0

Γ(β)Γ(2+κs)Γ(α−κs−2)
Γ(α)Γ(β−κs−2) 2F2

(
κs+2, κs+3−β; 2, κs+3−α,− ω

ω0

)

+
(
ω

ω0

)α−κs−1 Γ(β)Γ(2+κs−α)
Γ(β−α)Γ(α−κs) 2F2

(
α,α−β+1;α−κs−1,α−κs,−

ω

ω0

)}
,

(5.5)

where the expansion coefficient κs is explicitly defined by

κs = Γ(0)
cusp

2β0
ln αs(µ)
αs(µ0) . (5.6)

In comparison with QCD factorization for the exclusive non-hadronic B-meson decays B−u →
γ ` ν̄` [5, 7–9] and B̄d, s → γγ [15, 68, 69] in the heavy quark limit, the LP contributions to the
generalized B−u → γ∗W ∗ form factors presented in (3.13) are more sensitive to the precise
shape of the twist-two distribute amplitude φ+

B(ω, µ0) rather than determined by the inverse
moment λB(µ0) completely at the one-loop accuracy. Consequently, the four-body leptonic
B-meson decays under discussion are expected to provide us with abundant opportunities
for probing the partonic landscape of the heavy-quark hadron system delicately.

Moreover, the two-particle and three-particle higher-twist B-meson distribution am-
plitudes in HQET are evidently indispensable for evaluating the LP contributions to the
two radiative form factors F̂2(4),LP collected in (3.11) and (3.13) as well as the sublead-
ing power corrections calculable with the perturbative factorization technique displayed
in (3.35), (3.37), (3.46) and (3.49). Following [9, 15] we will adopt the concrete phe-
nomenological models fulfilling the classical equations of motion and the corresponding
asymptotic behaviour at small quark and gluon momenta from the conformal spin analy-
sis [70] (see [8, 48] for the two sample choices of the higher-twist distribution amplitudes at
the twist-six accuracy)

φ−B(ω,µ0) =φ−,WW
B (ω,µ0)+φ−,tw3

B (ω,µ0)

=
[∫ ∞
ω
dρf(ρ)

]
+ 1

6κ(µ0)
[
λ2
E(µ0)−λ2

H(µ0)
][
ω2f ′(ω)+4ωf(ω)−2

∫ ∞
ω
dρf(ρ)

]
,

φ3(ω1,ω2,µ0) =−1
2 κ(µ0)

[
λ2
E(µ0)−λ2

H(µ0)
]
ω1ω

2
2 f
′(ω1+ω2) ,

φ4(ω1,ω2,µ0) = 1
2 κ(µ0)

[
λ2
E(µ0)+λ2

H(µ0)
]
ω2

2 f(ω1+ω2) ,
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ψ4(ω1,ω2,µ0) =κ(µ0)λ2
E(µ0)ω1ω2 f(ω1+ω2) ,

ψ̃4(ω1,ω2,µ0) =κ(µ0)λ2
H(µ0)ω1ω2 f(ω1+ω2) ,

ψ5(ω1,ω2,µ0) =κ(µ0)λ2
E(µ0)ω2

∫ ∞
ω1+ω2

dηf(η),

ψ̃5(ω1,ω2,µ0) =κ(µ0)λ2
H(µ0)ω2

∫ ∞
ω1+ω2

dηf(η),

φ6(ω1,ω2,µ0) =κ(µ0)
[
λ2
E(µ0)−λ2

H(µ0)
] ∫ ∞

ω1+ω2
dη1

∫ ∞
η1

dη2 f(η2), (5.7)

which further enable us to determine two-particle twist-four and twist-five distribution
amplitudes g±B(ω, µ0) by virtue of the obtained identities (3.42) and (3.43). The non-
perturbative profile function f(ω) and the normalization constant κ(µ0) are given by

f(ω) = Γ(β)
Γ(α) U

(
β − α, 3− α, ω

ω0

) 1
ω2

0
exp

(
− ω

ω0

)
,

κ−1(µ0) = 1
2

∫ ∞
0

dω ω3 f(ω) = Λ̄2 + 1
6
[
2λ2

E(µ0) + λ2
H(µ0)

]
. (5.8)

The appearing HQET parameters λ2
E and λ2

H can be defined in terms of the local
effective matrix element of the dimension-five quark-gluon operator [11, 48, 50]

〈0|q̄(0) gsGµν Γhv(0)|B̄q(v)〉

= −
f̃Bq mBq

6 Tr
{
γ5 Γ

(1 + /v

2

) [
λ2
H (i σµν) + (λ2

H − λ2
E) (vµ γν − vν γµ)

]}
. (5.9)

The RG evolution equations for λ2
E and λ2

H at the one-loop accuracy read [71, 72]

d

d lnµ

(
λ2
E(µ)
λ2
H(µ)

)
+ γEH

(
λ2
E(µ)
λ2
H(µ)

)
= 0 , (5.10)

where the anomalous dimension matrix γEH takes the form

γEH = αs(µ)
4π

(
8
3 CF + 3

2 Nc
4
3 CF −

3
2 Nc

4
3 CF −

3
2 Nc

8
3 CF + 5

2 Nc

)
+O(α2

s) . (5.11)

The manifest solution to (5.10) can be readily constructed by diagonalizing the achieved
2× 2 mixing matrix γEH [19, 71]. The available predictions of these two HQET quantities
from the method of two-point QCD sum rules can be summarized as follows

{
λ2
E(µ0), λ2

H(µ0)
}

=



{
(0.11± 0.06) GeV2, (0.18± 0.07) GeV2} , [11]{
(0.03± 0.02) GeV2, (0.06± 0.03) GeV2} , [72]{
(0.01± 0.01) GeV2, (0.15± 0.05) GeV2} . [73]

(5.12)

Apparently, the yielding results for the chromo-electric and chromo-magnetic matrix elements
deviate from each other significantly despite the implementations of the same calculational
framework. The dominating discrepancies for the numerical values displayed in [11] and [72]
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can be attributed to the sizeable QCD radiative correction to the dimension-five quark-gluon
condensate and the yet higher-power contribution from the dimension-six vacuum condensate
at tree level, which have been included in the updated computation [72] with a further
improvement on the (partial)-NLL resummation of the emerged large logarithms appearing
in the HQET sum rules. Instead of constructing the desired sum rules from the appropriate
correlation functions with one two-body and one three-body local current, the authors of [73]
suggested to employ the diagonal Green functions for the sake of obtaining the alternative
sum rules for λ2

E and λ2
H , with the expectation that the parton-hadron duality approximation

becomes more reliable due to the positive definite property obviously. Introducing the higher
dimensional correlation functions, however, turns out to worsen the OPE convergence in
contrast to the previously adopted non-diagonal ones, as already observed in [73]. In view of
an absence of the satisfactory evaluation for these two non-perturbative parameters, we will
follow closely the strategy of [9, 15] such that the numerical intervals of the combinations
λ2
E/λ

2
H and 2λ2

E + λ2
H collected in table 1 accommodate the obtained results from the two-

point sum rules [11, 72] and particularly lie within the upper bounds for λ2
E and λ2

H derived
from the diagonal correlation functions [73]. In addition, the HQET parameter Λ̄ entering
the soft-collinear factorization formulae (3.35) and (3.46) can be identified as the “effective
mass” of the heavy-meson state [50, 60]: Λ̄ = mBu −mb +O(Λ2

QCD/mb), where we will take
mb = (4.8± 0.1) GeV numerically following the standard arguments presented in [9, 15].

Now we turn to discuss the practical implementations the interesting SM parameters
appeared in the exclusive B−u → γ∗ ` ν̄` decay form factors. The strong coupling constant
αs(µ) in the MS scheme will be computed from the initial condition α(5)

s (mZ) summarized
in table 1 with the associated three-loop RG evolution equation, by further adopting the
quark-flavour threshold scales µ4 = 4.8 GeV and µ3 = 1.2 GeV for crossing nf = 4 and
nf = 3, respectively. Furthermore, the bottom-quark mass entering the perturbative hard
matching functions (3.5) is generally interpreted as the pole mass due to the on-shell
kinematics [13–15, 34]. However, the bottom-quark pole mass suffers from an intrinsic
ambiguity of order ΛQCD known as the infrared renormalon (see [74] for an excellent review).
We will therefore employ the potential-subtracted (PS) renormalization scheme for the
bottom-quark mass [75] and then convert the obtained expressions of the hard functions
from the pole scheme to the PS scheme for the mass parameter accordingly (see [76] for
an overview of the leading renormalon-free and short-distance mass definitions for nearly
on-shell heavy quarks). Another important hadronic quantity governing the factorized
result for the four-body rare B-meson decay amplitude in the entire kinematic region is
the leptonic decay constant of the charged bottom-meson fBu , whose interval collected in
table 1 is borrowed from the lattice-QCD computation with the number of dynamical quark
flavours Nf = 2 + 1 + 1 in the isospin symmetry limit [27] (see [77] for the further discussion
on the strong-isospin violating effect and [78–80] on the technical strategies to address the
more complicated electromagnetic correction).

Apart from the theory input parameters so far discussed, we still need to specify the
hard scales µh1 and µh2 entering the resummation improved hard functions C(A0), 1

V and
K−1 presented in (3.18), which will be varied in the interval µh1 = µh2 ∈ [mb/2, 2mb]
around the default value mb. Additionally, the factorization scale µ in the SCET expres-
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sions (3.9), (3.10), (3.11), (3.12), (3.13) will be taken as µ ∈ [1.0, 2.0] GeV with the central
value 1.5 GeV. By contrast, the allowed interval of the factorization scale µ appearing in the
HQET expression (4.2) will naturally read [mb/2, 2mb] in that the typical short-distance
fluctuation mode carries out the four-momentum pµ ∼ O(mb).

5.2 Theory predictions for the B−u → γ∗ ` ν̄` form factors

We proceed to investigate the numerical impacts of the newly derived QCD radiative correc-
tions and the subleading power contributions to the three transition form factors appearing
in the four-body leptonic decay amplitude (2.10) in the entire kinematic region. To facilitate
detailed explorations of the dynamical patterns dictating the exclusive B−u → γ∗ ` ν̄` form fac-
tors with a hard-collinear photon, we first display the obtained leading-power contributions
at the leading-logarithmic (LL) and NLL accuracy, the power suppressed corrections from
expanding the hard-collinear quark propagator in the small parameter ΛQCD/mb beyond the
LP approximation, the higher-twist contributions from the two-particle and three-particle
B-meson distribution amplitudes, the “kinematic” power corrections presented in (3.49),
and the local NLP contributions due to the off-shell photon radiation from the heavy
bottom quark at 1.5 GeV2 ≤ p2 ≤ 4.0 GeV2 in figure 4, where the perturbative uncertainties
from varying the hard scales µh1 and µh2 as well as the factorization scale µ are further
indicated by the yielding bands. The resulting uncertainties from the NLL resummation
improved predictions are evidently much less than the counterpart LL computations. In
particular, the achieved LL and NLL uncertainty bands for the imaginary part of the vector
form factor ImFV turn out to be well separated in the majority of the hard-collinear p2

regime. The peculiar behaviours of the LP contributions to the two complex-valued form
factors FV and F̂1 + v·p

mB
F̂3 can be traced back to the soft-collinear convolution integrals in

the SCET factorization formulae (3.9), (3.10), (3.11), (3.12), (3.13) which are effectively
controlled by the generalized inverse moments λ±B(n̄ · p, µ) of the two-particle B-meson
distribution amplitudes in HQET.4 Applying the exponential model of φ±B(ω, µ0) [11] as an
illustrative example, the distinctive features of the two inverse moments displayed in figure 5
are indeed observed to dictate the intricate photon-momentum dependence of the transverse
and longitudinal decay form factors, respectively. Furthermore, it is plainly not unexpected
to discover from figure 4 the increasing significance of the “kinematic power corrections”
to the two essential form factors |FV | and

∣∣∣λ (F̂1 + v·p
mB

F̂3
)∣∣∣, when the off-shellness the

hard-collinear photon moves towards higher values. The very prominent subleading power
contributions from the hard-collinear quark propagator at tree level will consistently shift the
LL predictions of |FV | and

∣∣∣λ (F̂1 + v·p
mB

F̂3
)∣∣∣ by an amount of approximately (20–30) % for

1.5 GeV2 ≤ p2 ≤ 4.0GeV2. In addition, they constitute an important source of generating
the large-recoil symmetry violation |FV − F̂A| between the vector and axial-vector form
factors, which is constructed to characterize the power suppressed terms in the heavy quark
expansion conveniently [5]. Our numerical studies of the subleading twist contributions to
the radiative leptonic B-meson form factors summarized in (3.37) and (3.46) imply that the

4The explicit definition of the inverse moment λ+
B(n̄ · p, µ) is in analogy to (3.56) with an obvious

replacement of the twist-three distribution amplitude: φ−B(ω, µ)→ φ+
B(ω, µ).
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Figure 4. Breakdown of the distinct QCD mechanisms contributing to the transverse and longi-
tudinal transition form factors involved in the four-body leptonic decay amplitude (2.10) in the
kinematical region p2 ∈ [1.5, 4.0] GeV2, with the theory uncertainties due to the variations of the
hard and hard-collinear scales indicated by the individual bands. The representative value of the
large component n · p for the virtual photon momentum is taken as 4.0 GeV.

magnitudes of the yielding three-particle higher-twist corrections are at least suppressed
by a factor of twenty when compared with the corresponding two-particle NLP effects in
virtue of the smallness of the two normalization constants λ2

E and λ2
H . Unsurprisingly, the

local subleading power contributions (3.50) from the HQET formalism will bring about
insignificant impacts on the exclusive non-hadronic B−u → γ∗W ∗ decay form factors: (4–6)%
for |FV | and (4–10)% for

∣∣∣λ (F̂1 + v·p
mB

F̂3
)∣∣∣ numerically, which are in accordance with the

previous observation in the context of B → γ ` ν̄` [8].
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Figure 5. The photon-momentum dependence of the generalized inverse moments λ±B(n̄·p, µ) for the
two-particle B-meson distribution amplitudes by employing the exponential model proposed in [11]
for illustration purposes. The uncertainty bands arise from the variation of the non-perturbative
shape parameter ω0 ∈ [300, 400] MeV.

We further present in figure 6 the obtained theory predictions for the individual pieces
contributing to the three form factors of our interest, as the analytical functions of the
inverse moment λBu , by adopting the input kinematic parameters n · p = 4.0 GeV and
n̄ · p = 0.75 GeV. Interestingly, the LP contribution of the vector form factor |FV | turns
out to be significantly more sensitive to λBu than that for the longitudinal form factor∣∣∣λ (F̂1 + v·p

mB
F̂3
)∣∣∣, stemming from the different asymptotic behaviours of the very B-meson

distribution amplitudes at small quark and gluon momenta, which appear in the LP soft-
collinear factorization formulae (3.9), (3.10), (3.11), (3.12), (3.13). It is further worth
mentioning that the two-particle subleading twist corrections to both form factors |FV |
and

∣∣∣λ (F̂1 + v·p
mB

F̂3
)∣∣∣ develop the yet stronger λBu-dependence in comparison with the

counterpart lower-twist contributions from φ+
B(ω, µ) and φ−B(ω, µ). Additionally, the inverse-

moment dependence of the helicity form factor |FV − F̂A| originates from the “kinematic”
power corrections (3.49) entirely, keeping in mind that the NLP dynamical contributions
displayed in (3.35) merely generate the “local” large-recoil symmetry breaking effects
independent of the higher-twist B-meson distribution amplitudes.

In contrast to QCD factorization for B → γ ` ν̄` with an on-shell photon, the LP
contributions of the non-hadronic radiative B−u → γ∗ ` ν̄` form factors in the heavy quark
expansion cannot be determined by the inverse moment λBu(µ0) completely even without
taking into account the higher-order gluonic corrections. It is therefore interesting to explore
the actual dependencies of the exclusive B-meson decay form factors on the intricate shapes
of the HQET distribution amplitudes, along the lines of [16, 37, 55, 81]. To this end, we
show in figure 7 the achieved predictions of the exclusive B−u → γ∗W ∗ form factors with
three sample choices of the model parameters σ̂(1)

Bu
and σ̂(2)

Bu
for fixed λBu(µ0) = 350 MeV in

the kinematic domain p2 ∈ [1.5, 4.0] GeV2. It is not surprising to observe the pronounced
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Figure 6. Theory predictions for the inverse-moment dependencies of all separate pieces contributing
to the radiative B−u → γ∗W ∗ form factors in the decay amplitude (2.10) in the interval λBu

∈
[200, 500] MeV, with the uncertainty bands from varying the hard and hard-collinear scales. The
representative values of the large and small components for the virtual photon momentum are taken
as 4.0 GeV and 0.75 GeV.

sensitivities of both the transverse and longitudinal form factors under discussion to the
precise shapes of the B-meson distribution amplitudes, which are in accordance with the
previous observations on the SCET sum-rule computations for heavy-to-light B-meson decay
form factors at large recoil [18, 19]. We are then led to conclude that the four-body leptonic
bottom-meson decay processes allow us to probe the partonic landscape of the heavy-hadron
system diversely, in a complementary manner to the semi-leptonic and electroweak penguin
decays of B-mesons [23, 24, 82, 83], with the aid of the upcoming sufficient experimental data.
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Figure 7. The predicted photon-momentum dependencies of the three transition form factors
governing the four-body leptonic B-meson decay amplitude (2.10) with three sample choices of the
dimensionless shape parameters σ̂(1)

Bu
and σ̂(2)

Bu
, but with fixed λBu

(µ0) = 350 MeV, characterizing
the non-perturbative behaviours of the leading-twist distribution amplitude φ+

B(ω, µ0).

We now turn to display the LP contributions to the radiative leptonic B−u → γ∗ ` ν̄`
form factors in the kinematic regime p2 ∈ [4.0, 16.0] GeV2 at the LL and NLL accuracy
in figure 8, where the residual perturbative uncertainties from varying the factorization
scale are further represented by the individual bands. Unlike the factorized expressions
for the exclusive B−u → γ∗ ` ν̄` form factors with a hard-collinear photon, the counterpart
contributions of these form factors in the hard p2 region are apparently the real-valued
functions at O(α0

s). The emerged strong phases for FV (A) and
(
F̂1 + v·p

mB
F̂3
)
at the NLL

accuracy are generated perturbatively by the four one-loop diagrams shown in figure 2, which
can be understood from the final-state rescattering mechanism B−u → Xu ū ` ν̄` → `′ ¯̀′ ` ν̄` at
hadronic level with Xu ū standing for the appropriate neutral light-hadron states. Moreover,
the higher-order QCD corrections to both the transverse and longitudinal form factors at
O(αs) will give rise to the very minor impacts on the corresponding tree-level predictions
at 4.0 GeV2 ≤ p2 ≤ 16.0 GeV2 (numerically less than 10% in magnitudes). In particular,
the NLL resummation improved computations are highly beneficial for pining down the
theory uncertainties of the LL QCD predictions effectively.

5.3 Differential decay distribution for B−u → `′ ¯̀′ ` ν̄`

Having at our disposal the theory predictions for the exclusive radiative B−u → γ∗ ` ν̄`
form factors, we are now in a position to address the phenomenological aspects of the
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Figure 8. Theory predictions for the photon-momentum dependencies of the exclusive B−u →
γ∗ ` ν̄` form factors with an off-shell photon carrying the hard momentum pµ ∼ O(mb) in the LP
approximation. The uncertainty bands are obtained by varying the factorization scale in the allowed
intervals of µ ∈ [mb/2, 2mb].

four-body leptonic B-meson decays with an emphasis on the numerous decay observables
of experimental interest. In doing so, we begin to derive the five-fold differential decay
width for the process B−u → `′ ¯̀′ ` ν̄` with non-identical lepton flavours in terms of the two
invariant masses p2 and q2 as well as the three angles θ1, θ2 and φ (see appendix A for the
detailed definitions)

d5Γ(B−u → `′ ¯̀′ ` ν̄`)
dp2 dq2 d cos θ1 d cos θ2 dφ

= G2
F α

2
em |Vub|2

212 π4 p4 m3
B λ1/2(m2

B, p
2, q2)J (p2, q2, θ1, θ2, φ) ,

= N (p2, q2)J (p2, q2, θ1, θ2, φ) , (5.13)

by employing the explicit expression of the obtained decay amplitude (2.10) and by further
summing over spins of the final-state particles. It is straightforward to decompose the
angular distribution J into a set of the trigonometric functions

J (p2, q2, θ1, θ2, φ) = J1 (1+cos2 θ1)(1+cos2 θ2)+J2 sin2 θ1 sin2 θ2+J3 (1+cos2 θ1) cosθ2

+[J4 sinθ2+J5 sin(2θ2)] sin(2θ1) sinφ
+[J6 sinθ2+J7 sin(2θ2)] sin(2θ1) cosφ
+J8 sin2 θ1 sin2 θ2 sin(2φ)+J9 sin2 θ1 sin2 θ2 cos(2φ) , (5.14)
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where the nine independent coefficient functions Ji ≡ Ji(p2, q2) (i = 1, . . . , 9) can be
expressed by the three radiative bottom-meson decay form factors

J1 = 1
4
[
|F̃A|2 + |F̃V |2

]
,

J2 = 1
2
[
|F̃A|2 + |F̃‖|2 + 2 Re

(
F̃A F̃ ∗‖

)]
,

J3 = Re
(
F̃A F̃

∗
V

)
,

J4 = 1
2 Im

(
F̃A F̃

∗
‖

)
,

J5 = 1
4 Im

(
F̃V F̃∗A + F̃V F̃

∗
‖

)
,

J6 = −1
2 Re

(
F̃V F̃∗A + F̃V F̃

∗
‖

)
,

J7 = −1
4
[
|F̃A F̃A|+ Re

(
F̃A F̃

∗
‖

)]
,

J8 = 1
2 Im

(
F̃A F̃

∗
V

)
,

J9 = 1
4
[
|F̃A|2 − |F̃V |2

]
. (5.15)

We have introduced the shorthand notations for the distinct combinations of the transition
form factors with the appropriate kinematic functions

F̃V = 2
√
p̂2 q̂2 λ(1, p̂2, q̂2)FV , F̃A = 2

√
p̂2 q̂2 (1 + p̂2 − q̂2)FA ,

F̃A =
[
(1− q̂2)2 − p̂4

]
FA , F̃‖ = λ(1, p̂2, q̂2)

(
F1 + v · p

mB
F3

)
, (5.16)

where the two dimensionless hadronic variables are defined by p̂2 = p2/m2
B and q̂2 = q2/m2

B .
It remains important to point out that our expressions for the full angular distribution
of B−u → `′ ¯̀′ ` ν̄` coincide with ref. [55] by applying the replacement rules for the helicity
angles and for the exclusive B−u → γ∗W ∗ decay form factors

θγ → θ1, θW → π − θ2, FA⊥ → FA, FA‖ → −
[
F1 + v · p

mB
F3 + (1− q̂2)2 − p̂4

λ(1, p̂2, q̂2) FA

]
.

(5.17)
To facilitate the experimental explorations we proceed to construct the following

weighted angular integrals for the five-fold differential decay width (5.13)

X(p2, q2) =
∫ 1

−1
d cos θ1

∫ 1

−1
d cos θ2

∫ 2π

0
dφ

d5Γ(B−u → `′ ¯̀′ ` ν̄`)
dp2 dq2 d cos θ1 d cos θ2 dφ

ωX(p2, q2, θ1, θ2, φ),
(5.18)

to obtain the double differential distributions in the invariant masses p2 and q2. Adopting
ωX = 1 immediately leads to the familiar differential decay rate

d2Γ
dp2 dq2 = 1

τBu

d2BR
dp2 dq2 = 32π

9 N (p2, q2) (4 J1 + J2) . (5.19)

Inspecting the yielding predictions for the double differential branching fractions of the four-
body leptonic B-meson decay processes displayed in figure 9 implies that the newly obtained
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Figure 9. Theory predictions for the double differential branching fractions of the four-body
leptonic B-meson decays with non-identical lepton flavours in the hard-collinear p2 region (left
panel) and in the hard p2 region (right panel), where the numerical value of the large component of
the virtual photon momentum is taken as 4 GeV. The yielding uncertainty bands are obtained by
adding the individual errors from varying all the theory input parameters in quadrature.

subleading power corrections computable in the perturbative factorization framework appear
to enhance the counterpart LP contribution at the NLL accuracy significantly in the hard-
collinear p2 region (as large as O(40 %) enhancement at p2 = 2.5 GeV2 numerically) for the
fixed value n · p = 4 GeV, where the substantial uncertainties represented by the blue and
pink bands are due to the poorly constrained shape parameters of the two-particle and three-
particle B-meson distribution amplitudes. By contrast, the resulting uncertainties for the
differential branching fractions in the hard p2 region turn out to be insignificant numerically
(at the level of O(10 %)), which can be traced back to the very independence of the HQET
factorization formula (4.2) on the non-local hadronic quantities. Additionally, we predict the
rapidly decreasing branching fractions in the kinematic regime 4.0 GeV2 ≤ p2 ≤ 16.0 GeV2

when the invariant mass of the `′ ¯̀′ pair moves towards the higher values, which provides an
explicit confirmation of the expected numerical features dictated by our power counting
scheme (see [55] for an earlier discussion).

Along the same vein, we can readily define the non-vanishing angular asymmetries
normalized to the differential decay width by taking the appropriate weight functions

Ac2θ1 =
[

d2Γ
dp2 dq2

]−1 ∫ 1

−1
dcosθ1 sgn(cos(2θ1)) d

3Γ(B−u → `′ ¯̀′ ` ν̄`)
dp2 dq2 dcosθ1

= 1− 5
2
√

2
+ 3√

2
J1

4J1+J2
,

Acθ2 =
[

d2Γ
dp2 dq2

]−1 ∫ 1

−1
dcosθ2 sgn(cos(θ2)) d

3Γ(B−u → `′ ¯̀′ ` ν̄`)
dp2 dq2 dcosθ2

= 3
2

J3
4J1+J2

,

As2φ =
[

d2Γ
dp2 dq2

]−1 ∫ 2π

0
sgn(sin(2φ)) d

3Γ(B−u → `′ ¯̀′ ` ν̄`)
dp2 dq2 dφ

= 2
π

J8
4J1+J2

,

Ac2φ =
[

d2Γ
dp2 dq2

]−1 ∫ 2π

0
dφ sgn(cos(2φ)) d

3Γ(B−u → `′ ¯̀′ ` ν̄`)
dp2 dq2 dφ

= 2
π

J9
4J1+J2

,
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Asφ,cθ1 =
[

d2Γ
dp2 dq2

]−1 ∫ 1

−1
dcosθ1

∫ 2π

0
dφ sgn(sin(φ)) sgn(cos(θ1)) d

4Γ(B−u → `′ ¯̀′ ` ν̄`)
dp2 dq2 dcosθ1 dφ

= 3
4

J4
4J1+J2

,

Acφ,cθ1 =
[

d2Γ
dp2 dq2

]−1 ∫ 1

−1
dcosθ1

∫ 2π

0
dφ sgn(cos(φ)) sgn(cos(θ1)) d

4Γ(B−u → `′ ¯̀′ ` ν̄`)
dp2 dq2 dcosθ1 dφ

= 3
4

J6
4J1+J2

,

Asφ,cθ1,cθ2 =
[

d2Γ
dp2 dq2

]−1 ∫ 1

−1
dcosθ1

∫ 1

−1
dcosθ2

∫ 2π

0
dφ

× sgn(sin(φ)) sgn(cos(θ1)) sgn(cos(θ2)) d5Γ(B−u → `′ ¯̀′ ` ν̄`)
dp2 dq2 dcosθ1 dcosθ2 dφ

= 2
π

J5
4J1+J2

,

Acφ,cθ1,cθ2 =
[

d2Γ
dp2 dq2

]−1 ∫ 1

−1
dcosθ1

∫ 1

−1
dcosθ2

∫ 2π

0
dφ

× sgn(cos(φ)) sgn(cos(θ1)) sgn(cos(θ2)) d5Γ(B−u → `′ ¯̀′ ` ν̄`)
dp2 dq2 dcosθ1 dcosθ2 dφ

= 2
π

J7
4J1+J2

, (5.20)

where the sign function reads sgn(±|x|) = ±1 for any non-zero real number x. In contrast to
the established angular observable Acθ2 , we observe the vanishing single forward-backward
asymmetry in the angle θ1 by taking advantage of the derived differential decay distri-
bution (5.13) immediately. In order to determine the underlying mechanism for such an
interesting discrepancy, we recall the well-known expression of the differential forward-
backward asymmetry for the electroweak penguin B → K∗`¯̀ decay process [84]

AFB(B → K∗`¯̀) ∝ Re
(
A‖, LA

∗
⊥, L

)
− (L→ R) , (5.21)

where the four transversity amplitudes in the factorization approximation are given by

A‖, L(R) ∝
(
Ceff

9 ∓ C10
) V (q2)
mB +mK∗

, A⊥, L(R) ∝
(
Ceff

9 ∓ C10
) A1(q2)
mB −mK∗

. (5.22)

Confronting further the exclusive three-body B →W ∗ `′ ¯̀′ decay amplitude

M(B→W ∗ `′ ¯̀′)∝
[
¯̀′(p1)γν `′(p2)

] {
iεµνpv ε

µ
W ∗(q)FV (p2,n·p)+εW ∗ν(q)v ·pFA(p2,n·p)

+ qν
p·εW ∗(q)
mB

[
F1(p2,n·p)+ v ·p

mB
F3(p2,n·p)

]}
, (5.23)

with the analogous formula for the semileptonic B → K∗`¯̀ decay amplitude

M(B → K∗ ` ¯̀) ∝
[
¯̀(q1) γµ

(
Ceff

9 + C10 γ5
)
`(q2)

] {
i εµνpv ε

ν
K∗(p)

[ 2mB

mB +mK∗
V (q2)

]
+
[
εK∗µ(p)− q · εK∗(p)

q2 qµ

]
(mB +mK∗) A1(q2) + . . .

}
, (5.24)
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we are then allowed to express the differential forward-backward asymmetry of B →W ∗ `′ ¯̀′
from (5.21) analytically by implementing necessary replacements for the hadronic form
factors and especially for the short-distance Wilson coefficients

Ceff
9 → 1, C10 → 0 , (5.25)

which leads to the vanishing result apparently due to an exact cancellation between the
left-handed and right-handed contributions.

We now turn to present our predictions for the differential angular asymmetries of
the four-body leptonic B−u → `′ ¯̀′ ` ν̄` decays in the kinematic domain 1.5 GeV2 ≤ p2 ≤
16.0 GeV2 in figure 10, where the uncertainty bands are obtained by adding all the separate
errors from the variations of the essential theory inputs in quadrature. The yielding
pronounced results for the two angular observables Ac2θ1 and Acθ2 in the hard-collinear p2

region will evidently enable us to carry out the dedicated measurements with the encouraging
precision at the LHCb and Belle II experiments. However, the four angular asymmetries
Ac2φ, Asφ,cθ1 , Acφ,cθ1 and Acφ,cθ1,cθ2 can reach at most O(10 %) numerically based upon
our improved calculations for the radiative B−u → γ∗ ` ν̄` decay form factors. In addition,
the resulting predictions for the two remaining asymmetry observables As2φ and Asφ,cθ1,cθ2

appear to be merely at the level of O(5 %), thus rendering their measurements considerably
challenging for the ongoing collision experiments. It remains important to remark that the
achieved uncertainties of the differential angular asymmetries for 1.5 GeV2 ≤ p2 ≤ 4.0 GeV2

are unsurprisingly improved, when compared with the obtained results for the differential
branching fractions presented in figure 9, on account of the substantial cancellation of the
parametric uncertainties from the badly known B-meson distribution amplitudes in HQET.

We are now in a position to investigate the binned distributions for both the branching
fraction and the two promising angular asymmetries with the required kinematic cut on
the large component of the off-shell photon momentum

〈BR [t1, t2]〉 = τBu

∫ t2

t1
dp2

∫ (mB−
√
p2)2

0
dq2 θ (n · p− 3 GeV) d

2Γ(B−u → `′ ¯̀′ ` ν̄`)
dp2 dq2 ,

〈Ac2θ1 [t1, t2]〉 = τBu
〈BR [t1, t2]〉

∫ t2

t1
dp2

∫ (mB−
√
p2)2

0
dq2

∫ 1

−1
d cos θ1 sgn (cos(2 θ1))

× θ (n · p− 3 GeV) d3Γ(B−u → `′ ¯̀′ ` ν̄`)
dp2 dq2 d cos θ1

,

〈Acθ2 [t1, t2]〉 = τBu
〈BR [t1, t2]〉

∫ t2

t1
dp2

∫ (mB−
√
p2)2

0
dq2

∫ 1

−1
d cos θ2 sgn (cos(θ2))

× θ (n · p− 3 GeV) d3Γ(B−u → `′ ¯̀′ ` ν̄`)
dp2 dq2 d cos θ2

, (5.26)

where the conversion relations for the two scalar quantities n · p and n̄ · p are given by

n · p =
m2
B − q2 + p2 +

√
λ(m2

B, p
2, q2)

2mB
, n̄ · p =

m2
B − q2 + p2 −

√
λ(m2

B, p
2, q2)

2mB
.

(5.27)
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Figure 10. Theory predictions for the various angular asymmetries of the four-body leptonic
B-meson decays with non-identical lepton flavours in the hard-collinear p2 region (left panel) and in
the hard p2 region (right panel), where the numerical value of the large component of the virtual
photon momentum is taken as 4 GeV. The yielding uncertainty bands are obtained by adding the
individual errors from varying all the theory input parameters in quadrature.

We collect the numerical results for the LP and NLP computations of these binned ob-
servables in table 2 subsequently with the combined theory uncertainties by adding all
the individual errors in quadrature. Here the matching parameter p2

cut = (4.0± 1.0) GeV2

has been introduced to separate the hard and hard-collinear p2 regimes such that the
factorized expressions of the non-hadronic B−u → γ∗ ` ν̄` form factors summarized in (3.52)
are expected to be applicable for p2 ∈ [1.5 GeV2, p2

cut], whereas the obtained HQET ex-
pressions shown in (4.2) will be employed for evaluating the angular functions Ji in the
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Observables [t1, t2] LP Total
Uncertainties

(GeV2) (NLL) (LP + NLP) µ µh1 σ̂
(1, 2)
Bu

λBu p2
cut |Vub|

〈BR [t1, t2]〉 × 109

[1.5, m2
B

]
0.88+0.24

−0.37 1.23+0.30
−0.52

+0.06
−0.23

+0.07
−0.19

+0.21
−0.24

+0.13
−0.32

+0.05
−0.03

+0.11
−0.10

[2.0, m2
B

]
0.57+0.16

−0.20 0.83+0.15
−0.29

+0.04
−0.14

+0.04
−0.11

+0.02
−0.11

+0.05
−0.17

+0.05
−0.03

+0.07
−0.07

[3.0, m2
B

]
0.32+0.15

−0.09 0.42+0.07
−0.09

+0.02
−0.05

+0.01
−0.03

+0.00
−0.03

+0.00
−0.04

+0.05
−0.03

+0.04
−0.04

[4.0, m2
B

]
0.24+0.02

−0.08 0.24+0.02
−0.04

+0.00
−0.00

+0.00
−0.00

+0.00
−0.00

+0.00
−0.00

+0.00
−0.03

+0.02
−0.02

〈Ac2θ1 [t1, t2]〉

[1.5, m2
B

]
−0.38+0.06

−0.08 −0.45+0.04
−0.05

+0.00
−0.01

+0.00
−0.01

+0.04
−0.03

+0.01
−0.04

+0.01
−0.02 −

[2.0, m2
B

]
−0.40+0.05

−0.08 −0.46+0.04
−0.05

+0.00
−0.01

+0.00
−0.01

+0.02
−0.02

+0.01
−0.03

+0.01
−0.02 −

[3.0, m2
B

]
−0.47+0.05

−0.07 −0.50+0.06
−0.07

+0.00
−0.01

+0.00
−0.04

+0.05
−0.01

+0.01
−0.04

+0.02
−0.04 −

[4.0, m2
B

]
−0.54+0.05

−0.00 −0.54+0.01
−0.00

+0.00
−0.00

+0.00
−0.00

+0.00
−0.00

+0.00
−0.00

+0.01
−0.00 −

〈Acθ2 [t1, t2]〉

[1.5, m2
B

]
0.48+0.09

−0.13 0.38+0.07
−0.10

+0.00
−0.03

+0.01
−0.03

+0.06
−0.05

+0.03
−0.07

+0.02
−0.03 −

[2.0, m2
B

]
0.43+0.07

−0.13 0.36+0.06
−0.10

+0.00
−0.03

+0.01
−0.03

+0.04
−0.04

+0.02
−0.07

+0.03
−0.05 −

[3.0, m2
B

]
0.28+0.08

−0.10 0.28+0.05
−0.10

+0.01
−0.03

+0.01
−0.02

+0.00
−0.02

+0.01
−0.04

+0.05
−0.08 −

[4.0, m2
B

]
0.17+0.06

−0.01 0.17+0.07
−0.01

+0.00
−0.00

+0.00
−0.00

+0.00
−0.00

+0.00
−0.00

+0.07
−0.00 −

Table 2. Theory predictions for the binned distributions of the branching fraction as well as the two
angular asymmetries Ac2θ1 and Acθ2 for the four-body leptonic B-meson decays with non-identical
lepton flavours, where the numerically sizeable uncertainties from varying distinct input parameters
are further displayed for completeness.

kinematic interval p2
cut ≤ p2 ≤ m2

B. Comparing the numerical predictions for the first
and last bins of 〈BR [t1, t2]〉 indicates that the predicted hard-collinear contribution to
the branching fraction in the bin p2 ∈ [1.5 GeV2, 4.0 GeV2] is approximately a factor of
three larger than the counterpart effect from the hard p2 bin [4.0 GeV2, m2

B] within the
sizeable theory uncertainties. Importantly, the factorizable subleading power corrections to
the binned branching fractions of [1.5 GeV2, 2.0 GeV2] and [1.5 GeV2, 4.0 GeV2] with the
SCET factorization technique will bring about the notable enhancements for the correspond-
ing LP predictions, amounting to about O(30 %) and O(50 %) respectively. In addition,
the yielding prediction of the binned decay rate 〈BR [1.5 GeV2, 2.0 GeV2]〉 deduced from
table 2 is observed to be compatible with the previous calculation in the QCD factorization
framework [55]. Apparently, the newly derived subleading power corrections can modify
the corresponding LP predictions for the two binned asymmetries 〈Ac2θ1 [1.5 GeV2, m2

B]〉
and 〈Acθ2 [1.5 GeV2, m2

B]〉 by an amount of approximately O(20 %). We further mention in
passing that the fast-decreasing binned asymmetries 〈Acθ2 [t1, m2

B]〉 with the growing value
of t1 can be actually understood from the distinctive feature of the very differential angular
asymmetry presented in figure 10.

Finally we turn to explore the phenomenological opportunities for the four-body
charged-current bottom-meson decays B−u → `′ ¯̀′ ` ν̄` with identical lepton flavours `′ =
`, which will become quite challenging experimentally due to the very appearance of
the two indistinguishable like-sign leptons in the final state and especially the practical
implementation of the essential cut on the virtual photon momentum for the sake of adopting
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the perturbative QCD factorization theorems. To this end, we will begin with the manifest
expression of the full decay amplitude to lowest non-vanishing order in the electromagnetic
interaction

Atot(B−u → ` ¯̀` ν̄`) = A(B−u (pB)→ γ∗(p)(→ `(p1) ¯̀(p2)) W ∗(q)(→ `(q1) ν̄`(q2)))
− A(B−u (pB)→ γ∗(p̃)(→ `(q1) ¯̀(p2)) W ∗(q̃)(→ `(p1) ν̄`(q2)))
≡ Adir(B−u → ` ¯̀` ν̄`)− Ãexc(B−u → ` ¯̀` ν̄`) , (5.28)

where the relative minus sign evidently stems from the Fermi-Dirac statistic for leptons. It
is then straightforward to write down the desired differential decay width for the exclusive
transition process B−u → ` ¯̀` ν̄`

dΓ(B−u → ` ¯̀` ν̄`) =
(1

2

) (2π)4

2mB

[
|Adir|2 + |Ãexc|2 − 2 Re

(
A∗dir Ãexc

)]
dΦ4,PS , (5.29)

where we have introduced the degeneracy factor 1/2 to prevent the double counting of the
identical particles in the final state and dΦ4,PS stands for an element of relativistically
invariant four-body phase space

dΦ4,PS = λ1/2(m2
B, p

2, q2)
28 (2π)10m2

B

dp2 dq2 d cos θ1 d cos θ2 dφ

= λ1/2(m2
B, p̃

2, q̃2)
28 (2π)10m2

B

dp̃2 dq̃2 d cos θ̃1 d cos θ̃2 dφ̃ . (5.30)

The explicit definitions of the two invariant masses p̃2 and q̃2 together with the three helicity
angles θ̃1, θ̃2 and φ̃ bear resemblance to the counterpart kinematic variables without a tilde
symbol (see appendix A for more details). The yielding full differential decay rate for the
four-body leptonic B-meson decay with identical lepton flavours can be expressed as

d5Γ(B−u → ` ¯̀` ν̄`)
dp2 dq2 d cos θ1 d cos θ2 dφ

= G2
F α

2
em |Vub|2

213 π4 m3
B λ1/2(m2

B, p
2, q2)

{ 1
p4 J (p2, q2, θ1, θ2, φ)

+ 1
p̃4 J (p̃2, q̃2, θ̃1, θ̃2, φ̃)− 2

p2 p̃2 Jint(p2, p̃2, q2, q̃2, θ1, θ̃1, θ2, θ̃2, φ, φ̃)
}
, (5.31)

where the angular distribution J of our interest has been previously derived in (5.14) and
the emerged interference term Jint remains invariant under the following transformation

p2 ↔ p̃2 , q2 ↔ q̃2 , θ1 ↔ θ̃1 , θ2 ↔ θ̃2 , φ↔ φ̃ . (5.32)

We can readily identify the translation rules between the two complete sets of variables
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with and without a tilde for later convenience

p̃2 =
(1

4

) [
− λ1/2(m2

B, p
2, q2) (cos θ1 − cos θ2) + (m2

B − p2 − q2) (1− cos θ1 cos θ2)

+ 2
√
p2 q2 | sin θ1 sin θ2| cosφ

]
,

q̃2 =
(1

4

) [
λ1/2(m2

B, p
2, q2) (cos θ1 − cos θ2) + (m2

B − p2 − q2) (1− cos θ1 cos θ2)

+ 2
√
p2 q2 | sin θ1 sin θ2| cosφ

]
,

cos θ̃1 = 1
λ1/2(m2

B, p̃
2, q̃2)

[
λ1/2(m2

B, p
2, q2)

2 (cos θ1 + cos θ2)− p2 + q2
]
,

cos θ̃2 = 1
λ1/2(m2

B, p̃
2, q̃2)

[
λ1/2(m2

B, p
2, q2)

2 (cos θ1 + cos θ2) + p2 − q2
]
,

sin φ̃ = −λ
1/2(m2

B, p
2, q2)

λ1/2(m2
B, p̃

2, q̃2)

√
p2 q2√
p̃2 q̃2

∣∣∣∣sin θ1 sin θ2

sin θ̃1 sin θ̃2

∣∣∣∣ sinφ ,

cos φ̃ = 2 (p2 + q2)− (m2
B − p̃2 − q̃2) (1− cos θ̃1 cos θ̃2)

2
√
p̃2 q̃2

∣∣∣sin θ̃1 sin θ̃2
∣∣∣ , (5.33)

which will further enable us to derive the analytical form of Jint in terms of the five
independent variables (p2, q2, θ1, θ2, φ) collected in appendix B.

As already pointed out in [55], the two resultant four-momenta p = p1+p2 and p̃ = q1+p2
in this case cannot be distinguished experimentally. We will therefore implement both
kinematic cuts on the light-cone components n · p and n · p̃ simultaneously for constructing
the accessible binned distributions in order to validate the established factorization formulae
for the transverse and longitudinal B−u → γ∗W ∗ form factors. Moreover, the precise
correspondence between the invariant mass of the off-shell photon and the kinematic
variable p2 does not hold anymore for the case of identical lepton flavours. Consequently, we
propose to define the double-binned observables for the branching fraction and the angular
asymmetries with the necessary kinematic constraints

〈BR [t1, t2; t̃1, t̃2]〉= τBu

∫ m2
B

0
dp2

∫ (mB−
√
p2)2

0
dq2

∫ 1

−1
dcosθ1

∫ 1

−1
dcosθ2

∫ 2π

0
dφ

Θmeas(p2, p̃2, t1, t2, t̃1, t̃2) d5Γ(B−u → ` ¯̀` ν̄`)
dp2 dq2 dcosθ1 dcosθ2 dφ

,

〈Acθ1+cθ̃1
[t1, t2; t̃1, t̃2]〉= τBu

2〈BR [t1, t2; t̃1, t̃2]〉

∫ m2
B

0
dp2

∫ (mB−
√
p2)2

0
dq2

∫ 1

−1
dcosθ1∫ 1

−1
dcosθ2

∫ 2π

0
dφ
[
sgn(cos(θ1))+sgn

(
cos(θ̃1)

)]
×Θmeas(p2, p̃2, t1, t2, t̃1, t̃2) d5Γ(B−u → ` ¯̀` ν̄`)

dp2 dq2 dcosθ1 dcosθ2 dφ
,
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〈Ac2θ1+c2θ̃1
[t1, t2; t̃1, t̃2]〉= τBu

2〈BR [t1, t2; t̃1, t̃2]〉

∫ m2
B

0
dp2

∫ (mB−
√
p2)2

0
dq2

∫ 1

−1
dcosθ1∫ 1

−1
dcosθ2

∫ 2π

0
dφ
[
sgn(cos(2θ1))+sgn

(
cos(2θ̃1)

)]
×Θmeas(p2, p̃2, t1, t2, t̃1, t̃2) d5Γ(B−u → ` ¯̀` ν̄`)

dp2 dq2 dcosθ1 dcosθ2 dφ
,

〈Acθ2+cθ̃2
[t1, t2; t̃1, t̃2]〉= τBu

2〈BR [t1, t2; t̃1, t̃2]〉

∫ m2
B

0
dp2

∫ (mB−
√
p2)2

0
dq2

∫ 1

−1
dcosθ1∫ 1

−1
dcosθ2

∫ 2π

0
dφ
[
sgn(cos(θ2))+sgn

(
cos(θ̃2)

)]
×Θmeas(p2, p̃2, t1, t2, t̃1, t̃2) d5Γ(B−u → ` ¯̀` ν̄`)

dp2 dq2 dcosθ1 dcosθ2 dφ
,

〈Acθ1,cθ̃1
[t1, t2; t̃1, t̃2]〉= τBu

〈BR [t1, t2; t̃1, t̃2]〉

∫ m2
B

0
dp2

∫ (mB−
√
p2)2

0
dq2

∫ 1

−1
dcosθ1∫ 1

−1
dcosθ2

∫ 2π

0
dφ
[
sgn(cos(θ1)) sgn

(
cos(θ̃1)

)]
×Θmeas(p2, p̃2, t1, t2, t̃1, t̃2) d5Γ(B−u → ` ¯̀` ν̄`)

dp2 dq2 dcosθ1 dcosθ2 dφ
,

〈Ac2θ1,c2θ̃1
[t1, t2; t̃1, t̃2]〉= τBu

〈BR [t1, t2; t̃1, t̃2]〉

∫ m2
B

0
dp2

∫ (mB−
√
p2)2

0
dq2

∫ 1

−1
dcosθ1∫ 1

−1
dcosθ2

∫ 2π

0
dφ
[
sgn(cos(2θ1)) sgn

(
cos(2θ̃1)

)]
×Θmeas(p2, p̃2, t1, t2, t̃1, t̃2) d5Γ(B−u → ` ¯̀` ν̄`)

dp2 dq2 dcosθ1 dcosθ2 dφ
,

〈Acθ2,cθ̃2
[t1, t2; t̃1, t̃2]〉= τBu

〈BR [t1, t2; t̃1, t̃2]〉

∫ m2
B

0
dp2

∫ (mB−
√
p2)2

0
dq2

∫ 1

−1
dcosθ1∫ 1

−1
dcosθ2

∫ 2π

0
dφ
[
sgn(cos(θ2)) sgn

(
cos(θ̃2)

)]
×Θmeas(p2, p̃2, t1, t2, t̃1, t̃2) d5Γ(B−u → ` ¯̀` ν̄`)

dp2 dq2 dcosθ1 dcosθ2 dφ
, (5.34)

where the newly defined measurement function is explicitly given by

Θmeas =
[
θ(p2−t1)θ(t2−p2)θ(p̃2− t̃1)θ(t̃2−p̃2)+ θ(p2− t̃1)θ(t̃2−p2)θ(p̃2−t1)θ(t2−p̃2)

− θ(p2−t1,max)θ(t2,min−p2)θ(p̃2−t1,max)θ(t2,min−p̃2)
]

×
[
θ (n·p−3GeV) θ (n·p̃−3GeV)

]
,

t1,max = max
{
t1, t̃1

}
, t2,min = min

{
t2, t̃2

}
. (5.35)

It is important to remark that our definitions for the exclusive four-body B−u → ` ¯̀` ν̄` decay
observables differ from the previous strategies suggested in [55] on account of executing
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Observables [t1, t2] LP Total
Uncertainties

(GeV2) (NLL) (LP + NLP) µ µh1 σ̂
(1, 2)
Bu

λBu p2
cut |Vub|

〈BR [t1, t2; t1, t2]〉 × 109

[1.5, m2
B

]
0.76+0.22

−0.33 1.15+0.27
−0.49

+0.05
−0.21

+0.07
−0.18

+0.19
−0.22

+0.12
−0.30

+0.05
−0.02

+0.10
−0.10

[2.0, m2
B

]
0.47+0.16

−0.16 0.74+0.12
−0.26

+0.04
−0.12

+0.04
−0.10

+0.03
−0.10

+0.06
−0.16

+0.05
−0.02

+0.07
−0.07

[3.0, m2
B

]
0.23+0.13

−0.08 0.32+0.06
−0.06

+0.01
−0.03

+0.01
−0.02

+0.00
−0.02

+0.00
−0.03

+0.05
−0.02

+0.03
−0.03

[4.0, m2
B

]
0.15+0.02

−0.06 0.15+0.02
−0.03

+0.00
−0.00

+0.00
−0.00

+0.00
−0.00

+0.00
−0.00

+0.00
−0.02

+0.02
−0.02

〈Ac2θ1+c2θ̃1
[t1, t2; t1, t2]〉

[1.5, m2
B

]
−0.54+0.03

−0.09 −0.60+0.03
−0.05

+0.00
−0.02

+0.00
−0.01

+0.03
−0.02

+0.01
−0.03

+0.00
−0.01 −

[2.0, m2
B

]
−0.64+0.04

−0.05 −0.67+0.02
−0.04

+0.00
−0.01

+0.00
−0.01

+0.01
−0.02

+0.01
−0.03

+0.00
−0.01 −

[3.0, m2
B

]
−0.70+0.02

−0.05 −0.72+0.03
−0.01

+0.01
−0.01

+0.01
−0.00

+0.01
−0.00

+0.01
−0.00

+0.02
−0.00 −

[4.0, m2
B

]
−0.69+0.03

−0.02 −0.70+0.03
−0.00

+0.00
−0.00

+0.01
−0.00

+0.00
−0.00

+0.00
−0.00

+0.03
−0.00 −

〈Acθ1, cθ̃1
[t1, t2; t1, t2]〉

[1.5, m2
B

]
0.25+0.09

−0.05 0.29+0.05
−0.04

+0.03
−0.01

+0.02
−0.01

+0.01
−0.03

+0.03
−0.02

+0.02
−0.00 −

[2.0, m2
B

]
0.31+0.07

−0.06 0.33+0.04
−0.06

+0.02
−0.01

+0.02
−0.01

+0.00
−0.01

+0.02
−0.01

+0.02
−0.00 −

[3.0, m2
B

]
0.42+0.03

−0.04 0.40+0.04
−0.03

+0.01
−0.01

+0.01
−0.01

+0.01
−0.00

+0.02
−0.00

+0.03
−0.02 −

[4.0, m2
B

]
0.50+0.02

−0.01 0.50+0.02
−0.01

+0.00
−0.00

+0.01
−0.00

+0.00
−0.00

+0.00
−0.00

+0.00
−0.01 −

〈Acθ2, cθ̃2
[t1, t2; t1, t2]〉

[1.5, m2
B

]
0.24+0.10

−0.05 0.27+0.09
−0.02

+0.03
−0.00

+0.03
−0.00

+0.04
−0.01

+0.06
−0.01

+0.03
−0.02 −

[2.0, m2
B

]
0.32+0.06

−0.10 0.31+0.08
−0.02

+0.04
−0.00

+0.04
−0.00

+0.03
−0.00

+0.03
−0.00

+0.03
−0.02 −

[3.0, m2
B

]
0.44+0.04

−0.03 0.42+0.03
−0.02

+0.02
−0.01

+0.01
−0.01

+0.00
−0.00

+0.01
−0.00

+0.02
−0.02 −

[4.0, m2
B

]
0.52+0.04

−0.00 0.52+0.00
−0.02

+0.00
−0.00

+0.00
−0.01

+0.00
−0.00

+0.00
−0.00

+0.00
−0.00 −

Table 3. Theory predictions for the binned distributions of the branching fraction 〈BR〉 as well
as the three angular asymmetries 〈Ac2θ1+c2θ̃1

〉, 〈Acθ1, cθ̃1
〉 and 〈Acθ2, cθ̃2

〉 for the four-body leptonic
B-meson decays with identical lepton flavours, where the numerically sizeable uncertainties from
varying distinct input parameters are further displayed for completeness.

the essential kinematic cuts distinctly. As displayed in table 3, the yielding double-binned
branching fraction in the kinematic domain {p2 , p̃2} ∈

[
1.5 GeV2,m2

B

]
is predicted to

be (1.15+0.27
−0.49) × 10−9, which lies well below the upper limit 1.6 × 10−8 for BR(B−u →

µ+ µ− µ− ν̄µ) reported by the LHCb Collaboration with the lowest of the two µ+ µ−

invariant masses below 0.96 GeV2 [85]. Despite of the different implementations of kinematic
constraints, our result for the partially integrated decay rate in the hard-collinear interval
{p2 , p̃2} ∈

[
1.5 GeV2, 2.0 GeV2] turns out to be comparable with the numerical value

achieved in [55]. In particular, the subleading power corrections to the binned branching
fractions of {p2 , p̃2} ∈ [1.5 GeV2, 2.0 GeV2] and {p2 , p̃2} ∈ [1.5 GeV2, 4.0 GeV2] tend to
enhance the counterpart LP predictions significantly. Comparing the numerical predictions
for 〈BR〉 collected in tables 2 and 3 further leads us to conclude that the coherent interference
of the direct and exchange amplitudes merely generates the minor corrections to the
double-binned branching fractions of B−u → ` ¯̀` ν̄` for all the hard-collinear {p2 , p̃2}-bins.
Furthermore, our numerical computation indicates that only three of the six asymmetry
observables 〈Ac2θ1+c2θ̃1

〉, 〈Acθ1, cθ̃1
〉 and 〈Acθ2, cθ̃2

〉 shown in table 3 can reach O(50 %) in
magnitudes and the yielding theory predictions suffer from the relatively lower uncertainties
than those for 〈BR〉, mainly due to the anticipated cancellation of the non-perturbative
uncertainties from the HQET distribution amplitudes and of the perturbative uncertainties
from the residual factorization/renormalization scale dependencies.
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6 Summary and conclusions

In this paper we have performed the improved QCD calculations of the exclusive radiative
B−u → γ∗ ` ν̄` form factors with an off-shell photon carrying either the hard-collinear
momentum pµ ∼ mb (1, λ2, λ) or the hard momentum pµ ∼ mb (1, 1, 1) by taking advantage
of the modern SCET factorization program and the traditional local OPE technique,
respectively. Applying further the renormalized jet functions in the factorized expressions
of the analogous B-meson-to-vacuum correlations for constructing the light-cone sum rules
of the semileptonic B → V transition form factors [19] as well as the soft contribution to
the on-shell B → γ form factors [7], we constructed explicitly the soft-collinear factorization
formulae for both the transverse and longitudinal B → γ∗ ` ν̄` form factors at the NLL
accuracy in the hard-collinear p2-region with the aid of the Ward-Takahashi identities
due to the Uem(1) gauge symmetry and the standard momentum-space RG formalism.
Subsequently, we evaluated the distinct subleading-power contributions to the generalized
B → γ∗W ∗ form factors at p2 ∼ O(mb ΛQCD) from expanding the hard-collinear quark
propagator beyond the LP approximation, from the two-particle and three-particle higher-
twist HQET distribution amplitudes, from the “kinematic” power corrections suppressed
by the small (but non-vanishing) component of the virtual photon momentum, and from
the energetic photon radiation off the bottom quark at LO in the strong coupling constant.
The yielding HQET factorization formulae of the non-hadronic B → γ∗ form factors were
then derived in the NLL approximation for p2 ∼ O(m2

b) with the effective decay constant
f̃B encoding the non-perturbative dynamics of the composite bottom-meson system.

Having at our disposal the desired expressions for the exclusive B → γ∗ ` ν̄` decay form
factors, we proceeded to explore their numerical implications with the three-parameter
ansatz for the essential B-meson distribution amplitudes whose RG evolution behaviours
can be determined analytically in terms of hypergeometric functions at one-loop order [9].
It has been observed that the resulting non-local power corrections from the subleading
terms in the expanded hard-collinear quark propagator can shift the counterpart LP
predictions by an amount of approximately (20–30)% in magnitudes in the kinematic
domain p2 ∈ [1.5, 4.0] GeV2. In particular, the predicted LP contribution to the vector
form factor |FV | appeared to develop the yet stronger sensitivity on the inverse moment
λBu in comparison with the obtained longitudinal form factor

∣∣∣λ (F̂1 + v·p
mB

F̂3
)∣∣∣, which can

be traced back to the quite distinct asymptotic behaviours of the two HQET distribution
amplitudes φ±B(ω, µ) at small partonic momentum ω. Unsurprisingly, the generalized
radiative B → γ∗W ∗ form factors dependent on the invariant masses of both γ∗ and W ∗
turned out to be rather sensitive to the precise shape of the B-meson distribution amplitudes.
By contrast, the resulting theory predictions for such non-hadronic decay form factors in
the hard p2-regime suffered from the enormously reduced uncertainties due to the apparent
independence of the non-perturbative light-ray distributions. We then turned to investigate
systematically the angular observables for the four-body leptonic decays B−u → `′ ¯̀′ ` ν̄`
with non-identical lepton flavours ` 6= `′ and (more complicated) identical ones ` = `′.
Our numerical results indicated that the dominant contribution to the branching fraction
of B−u → `′ ¯̀′ ` ν̄` indeed arises from the hard-collinear p2-region rather than from the
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kinematic regime of pµ ∼ mb (1, 1, 1) as anticipated by the power-counting analysis. It
is also interesting to remark that the newly computed subleading power contributions to
the binned branching fractions resulted in the sizeable enhancements of the corresponding
LP computations based upon the SCET factorization approach. Additionally, the two
promising asymmetry observables 〈Ac2θ1 [t1 t2]〉 and 〈Acθ2 [t1 t2]〉 for non-identical lepton
flavours have been predicted to be as large as O(20 − 50)% for all the selected p2-bins
with the substantially improved precision. Furthermore, we quote our theory prediction
for the double-binned branching fraction of B−u → ` ¯̀` ν̄` as (1.15+0.27

−0.49) × 10−9 in the
kinematic interval {p2 , p̃2} ∈

[
1.5 GeV2,m2

B

]
with the additional cuts on the large light-

cone components of the two indistinguishable lepton-pair momenta n · p ≥ 3 GeV and
n · p̃ ≥ 3 GeV.

Confronting our theory predictions for the binned decay rates and the angular asymme-
tries with the upcoming dedicated measurements at the LHCb and Belle II experiments
will be evidently beneficial for advancing our knowledge of the poorly constrained B-meson
distribution amplitudes in a complementary manner to the previous determination from the
exclusive radiative B → γ`ν̄` decays. In this respect, it will be in high demand to carry out
a global fit of all the key exclusive channels including further a variety of semileptonic and
nonleptonic bottom-meson decays for the sake of obtaining the more stringent constraints
on the fundamental HQET distribution amplitudes (see also [86] for an alternative strategy).
Further theoretical investigations of the non-hadronic B → γ∗W ∗ form factors can be also
pursued by constructing the soft-collinear factorization formulae for their subleading power
contributions systematically with the QCD→ SCETI → SCETII matching procedure [87].
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A Kinematics for the four-body decays B−u → `′ ¯̀′ ` ν̄`

In this appendix, we will begin with the essential kinematics for the four-body leptonic decays
B−u (pB)→ γ∗(p)(→ `′(p1) ¯̀′(p2))W ∗(q)(→ `(q1) ν̄`(q2)) with non-identical lepton flavours
`′ 6= `. Following the discussion for the exclusive B → K∗(→ Kπ) ` ¯̀ decays [84], it is
customary and convenient to express the full differential decay distribution of B−u → `′ ¯̀′ ` ν̄`
in terms of the five kinematic variables: the two invariant masses p2 and q2, the helicity
angles θ1 and θ2, as well as the azimuthal angle φ (see figure 11).

More explicitly, we choose the z-axis along the flight direction of the off-shell photon
momentum p in the B-meson rest frame. The angle θ1 is then defined as the angle between
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B

γ∗(p)

ℓ′−(p1)

ℓ′+(p2)

W ∗(q)

ℓ−(q1)

ν̄ℓ(q2)

z

x
y

θ1
θ2

φ

Figure 11. Kinematics of the four-body leptonic decay B−u → `′ ¯̀′ ` ν̄`.

the `′− direction of flight and the z-axis in the dilepton rest frame. As a consequence, the
leptonic momenta in the dilepton rest frame (2 `′-RF) in the massless limit are given by

p1|2 `′−RF =
√
p2

2 (1, sin θ1, 0, cos θ1) ,

p2|2 `′−RF =
√
p2

2 (1, − sin θ1, 0,− cos θ1) . (A.1)

In addition, θ2 is the angle between the `−-momentum q1 and the negative z direction in
the W ∗-boson rest frame. The azimuthal angle φ is defined by the relative angle between
the decay plane of the `′ ¯̀′ system and the ` ν̄` decay plane. Accordingly, the two momenta
q1 and q2 in the ` ν̄` rest frame (` ν̄`-RF) can be written as

q1|` ν̄`−RF =
√
q2

2 (1, sin θ2 cosφ, sin θ2 sinφ, − cos θ2) ,

q2|` ν̄`−RF =
√
q2

2 (1, − sin θ2 cosφ, − sin θ2 sinφ, cos θ2) . (A.2)

Now we proceed to investigate the more complicated kinematics for the exclusive
four-body bottom-meson decays B−u → `′ ¯̀′ ` ν̄` with identical lepton flavours `′ = `. In
order to evaluate the so-called exchange amplitude Ãexc displayed in (5.28), it proves more
convenient to introduce further the two invariant masses in the following

p̃2 = (q1 + p2)2 , q̃2 = (p1 + q2)2 , (A.3)

as well as the three alternative helicity angles θ̃1, θ̃2 and φ̃ such that

q1|` ¯̀′−RF =
√
p̃2

2 (1, sin θ̃1, 0, cos θ̃1) ,

p2|` ¯̀′−RF =
√
p̃2

2 (1, − sin θ̃1, 0,− cos θ̃1) , (A.4)
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correspond to the four-momenta of the final-state leptons from the cascade decay process
γ∗(p̃)→ `(q1) ¯̀′(p2) in the dilepton rest frame (` ¯̀′-RF), and

p1|`′ ν̄`−RF =
√
q̃2

2 (1, sin θ̃2 cos φ̃, sin θ̃2 sin φ̃, − cos θ̃2) ,

q2|`′ ν̄`−RF =
√
q̃2

2 (1, − sin θ̃2 cos φ̃, − sin θ̃2 sin φ̃, cos θ̃2) , (A.5)

coincide with the four-momenta of the final-state particles produced from the cascade weak
transition W ∗(q̃)→ `′(p1) ν̄`(q2) in the `′ ν̄` rest frame (`′ ν̄`-RF), respectively.

B Explicit expressions for the angular function Jint

Here we will present the detailed expressions for Jint entering the differential decay distri-
bution of the exclusive four-body bottom-meson decay with identical lepton flavours (5.31)
due to the coherent interference of the direct and exchange amplitudes. By analogy with
the result (5.14) for the non-hadronic process B−u → `′ ¯̀′ ` ν̄` with `′ 6= `, the yielding
decomposition for the intricate angular function Jint can be cast in the form of

Jint = J̃1 (cos θ1 + cos θ2)2 + J̃2 (cos θ1 + cos θ2) (1 + cos θ1 cos θ2)

+ J̃3 (cos θ1 + cos θ2) sin2 θ1 sin2 θ2 + J̃4 (cos θ1 + cos θ2)
(
sin2 θ1 + sin2 θ2

)
+ J̃5 (1 + cos θ1 cos θ2)

(
sin2 θ1 + sin2 θ2

)
+ J̃6 sin2 θ1 sin2 θ2

+ J̃7 (cos θ1 + cos θ2) sin θ1 sin θ2 sinφ
+ J̃8 (cos θ1 + cos θ2) (1 + cos θ1 cos θ2) sin θ1 sin θ2 sinφ
+ J̃9 (1 + cos θ1 cos θ2) sin θ1 sin θ2 sinφ

+ J̃10 sin θ1 sin θ2
(
sin2 θ1 + sin2 θ2

)
sinφ

+ J̃11 (cos θ1 + cos θ2) sin θ1 sin θ2 cosφ
+ J̃12 (1 + cos θ1 cos θ2) sin θ1 sin θ2 cosφ
+ J̃13 (cos θ1 + cos θ2)2 sin θ1 sin θ2 cosφ
+ J̃14 (cos θ1 + cos θ2) sin(2θ1) sin(2θ2) cosφ
+ J̃15 sin2 θ1 sin2 θ2 sin(2φ) + J̃16 (cos θ1 + cos θ2) sin2 θ1 sin2 θ2 sin(2φ)
+ J̃17 sin2 θ1 sin2 θ2 cos(2φ) + J̃18 (cos θ1 + cos θ2) sin2 θ1 sin2 θ2 cos(2φ) . (B.1)

The coefficient functions J̃i (with i = 1, 2, . . . 18) can be further expressed in terms of
the generalized B−u → γ∗W ∗ transition form factors Fk ≡ Fk(p2, q2) and Fk ≡ Fk(p̃2, q̃2)
together with the suitable kinematic functions (k = V,A, ‖)

J̃1 =− p̂2 q̂2 (1+ p̂2− q̂2) Re
[
(1+ ˆ̃p2− ˆ̃q2)FAF∗A+FAF∗‖

]
,

J̃2 =− p̂2 q̂2λ1/2(1, p̂2, q̂2) Re
[
(1+ ˆ̃p2− ˆ̃q2)FV F∗A+FV F∗‖

]
,
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J̃3 =−1
8 λ

3/2(1, p̂2, q̂2)
{[

1+ 6 p̂2 q̂2

λ(1, p̂2, q̂2)

]
(1+ p̂2− q̂2)Re(FAF∗V )

+ (1− p̂2− q̂2) Re
(
F‖F∗V

)}
,

J̃4 = 1
2 p̂

2 q̂2 (1+ p̂2− q̂2)λ1/2(1, p̂2, q̂2) Re(FAF∗V ) ,

J̃5 = 1
2 p̂

2 q̂2λ(1, p̂2, q̂2) Re(FV F∗V ) ,

J̃6 =
[

1
2−

(1− p̂2− q̂2)2

4 p̂2 q̂2

]
J̃1− J̃5−

1− p̂2− q̂2

2
√
p̂2 q̂2 J̃12 + λ2(1, p̂2, q̂2)

4 Re
(
F‖F∗‖

)
,

J̃7 = 1
2

√
p̂2 q̂2λ(1, p̂2, q̂2) Im

[
(1+ p̂2− q̂2)FAF∗‖+(1+ ˆ̃p2− ˆ̃q2)F‖F∗A+F‖F∗‖

]
,

J̃8 =−1
4

√
p̂2 q̂2 (1− p̂2− q̂2)λ(1, p̂2, q̂2) Im(FV F∗V ) ,

J̃9 =−
√
p̂2 q̂2

[
1− p̂2− q̂2

p̂2 q̂2 J̃15−
λ3/2(1, p̂2, q̂2)

2 Im
(
FV F∗‖

)]
,

J̃10 =−1
4

√
p̂2 q̂2λ3/2(1, p̂2, q̂2) Im

(
F‖F∗V

)
,

J̃11 =−1
2

√
p̂2 q̂2

[
1− p̂2− q̂2

p̂2 q̂2 J̃2 + λ3/2(1, p̂2, q̂2)
2 Re

(
F‖F∗V +2FV F∗‖

)]
,

J̃12 =−
√
p̂2 q̂2

{
λ(1, p̂2, q̂2)

2 Re
[
(1+ p̂2− q̂2)FAF∗‖− (1+ ˆ̃p2− ˆ̃q2)F‖F∗A− F‖F∗‖

]

+ 1− p̂2− q̂2

p̂2 q̂2 J̃1

}
,

J̃14 = 1
8

√
p̂2 q̂2λ3/2(1, p̂2, q̂2)

[
(1− q̂2)2− p̂4

λ(1, p̂2, q̂2) Re(FAF∗V )+
(1

2

)
Re
(
F‖F∗V

)]
,

J̃15 = 1
2 p̂

2 q̂2λ1/2(1, p̂2, q̂2) Im
[
(1+ p̂2− q̂2)FAF∗V + (1+ ˆ̃p2− ˆ̃q2)FV F∗A+ FV F∗‖

]
, (B.2)

where for convenience we have introduced the shorthand notations

F‖ ≡ F1(p2, q2) + v · p
mB

F3(p2, q2) , F‖ ≡ F1(p̃2, q̃2) + v · p̃
mB

F3(p̃2, q̃2) ,

ˆ̃p2 = p̃2/m2
B , ˆ̃q2 = q̃2/m2

B . (B.3)

The remaining four angular coefficients appearing in (B.1) turn out to be linearly dependent
of those already derived in (B.2) by virtue of the following relations

J̃13 = 1− p̂2 − q̂2

2
√
p̂2 q̂2 J̃5 , J̃16 = −

√
p̂2 q̂2

1− p̂2 − q̂2 J̃8 ,

J̃17 = 1
2 J̃1 − J̃5 , J̃18 = −1

2 J̃4 . (B.4)
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