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1 Introduction

Via the AdS/CFT correspondence, correlation functions in holographic CFTs are mapped
to on-shell scattering amplitudes in AdS space. These fundamental observables encode
important theoretical data, and play a central role in testing and exploiting the correspon-
dence. Computing these holographic objects was once a notoriously difficult task because
the complexity of perturbation theory is amplified by the spacetime curvature. Explicit
results were available only in a handful special examples. In recent years, however, the
application of bootstrap ideas has led to drastic simplifications in the calculation, prompt-
ing a great deal of new developments. A vast amount of results for amplitudes have now
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been obtained in a variety of supergravity theories, both at tree level [1–12] and at loop
level [13–23]. The results exhibit a remarkable simplicity which is obscured by the dia-
grammatic expansion and is reminiscent of the situation in flat space. Moreover, these
AdS supergravity amplitudes display many unexpected interesting structures, such as hid-
den conformal symmetries [5, 6, 9] and Parisi-Sourlas-like dimensional reduction [24]. By
contrast, amplitudes of super Yang-Mills theory in AdS so far have received much less atten-
tion. Tree-level four-point amplitudes were computed only very recently in [25] for a class
of backgrounds of the form AdSd+1 × S3, generalizing the result of an earlier work [26].1
Many aspects of AdS supergravity amplitudes have not been similarly explored in the gluon
context. Nevertheless, there is a lot of incentives to further pursue the study of AdS gluon
scattering. On the one hand, gluon amplitudes in general have simpler structures compared
to graviton amplitudes. This makes them easier targets to study and also more suitable
arenas for new ideas. On the other hand, gluon and graviton amplitudes are known to be
intimately connected in flat space by double copy relations.2 Gluon amplitudes are in a
sense more fundamental, as graviton amplitudes can be constructed by “squaring” them.
It is conceivable that some of these flat space properties extend to AdS space as well.

In this paper, we continue the investigation of gluon scattering in AdS and initiate the
study of loop-level amplitudes. For concreteness, we focus on the cases where the hyperbolic
space is AdS5 and require the system to preserve eight Poincaré supercharges (i.e., the dual
SCFTs have 4d N = 2 superconformal symmetry). Such backgrounds arise in several top-
down constructions. For example, we can consider a stack of D3-branes probing F-theory
singularities [32, 33], or a large number of D3-branes with a few probe D7-branes [34]. In
the near horizon geometry, both classes of theories contain an AdS5×S3 locus which carries
localized degrees of freedom organized into an eight dimensional N = 1 vector multiplet.
This vector multiplet transforms in the adjoint representation of the flavor group GF which
is a gauge group from the bulk perspective. The Kaluza-Klein reduction of this multiplet
onto AdS5 gives rise to an infinite tower of states which have at most Lorentz spin 1.
These are the massless and massive gluons and their super partners. An important feature
of these theories is that the coupling between the gluons with gravitons is parametrically
smaller than the gluon self-coupling in the large central charge limit. Therefore, it is natural
to decouple gravity and consider a spin-1 gauge theory on AdS5 × S3 which describes the
leading order dynamics of the gluonic sector. Furthermore, we can also consider a consistent
truncation of the gluon theory to its lowest Kaluza-Klein level (the massless sector). This
gives rise to an AdS5 toy model without the S3 internal manifold.

Specifically, we will consider scattering amplitudes of super gluons. They are scalar
super partners of the spin-1 gluons, and are the super primaries of the superconformal
multiplets. The super gluons are labelled by an integer Kaluza-Klein level k = 2, 3, . . .,
which determines their squared masses in AdS to be m2 = k(k − 4). Furthermore, we
will use the Mellin representation [35, 36] to facilitate the computation. In this formalism
AdS scattering amplitudes become Mellin amplitudes, which share a lot of similarities

1For AdS gluon amplitudes in bosonic Yang-Mills theory with four or more points, recent works in-
clude [27–30].

2See [31] for a recent review.

– 2 –



J
H
E
P
0
2
(
2
0
2
2
)
1
0
5

Figure 1. The unitarity method in AdS. The 〈2222〉 one-loop super gluon amplitude in AdS5×S3

can be constructed by “gluing” together all 〈22pp〉 tree-level amplitudes. For the case of AdS5
without internal manifold, there are no higher Kaluza-Klein modes and p is restricted to 2.

with flat space amplitudes. Thanks to supersymmetry, we can further express the Mellin
amplitudes in terms of simpler reduced Mellin amplitudes. In flat space, this reduction is
analogous to extracting a fermionic delta function from the super amplitudes. One of the
main results of this paper is a closed form expression for the four-point one-loop reduced
Mellin amplitude of ki = 2 super gluons, for any gauge group GF . To obtain this result,
our main technical tool is the AdS unitarity method developed in [37], which is illustrated
in figure 1. Intuitively, the one-loop amplitude can be obtained by “gluing” together pairs
of tree-level four-point amplitudes and summing over all the modes which run in the loop.
From the figure, we can see that the necessary tree-level input for AdS5× S3 is the 〈22pp〉
amplitudes for arbitrary values of p, which have already been computed in [25]. The gluing
procedure will be made precise in the paper, and its realization in Mellin space turns out to
be similar to the supergravity case [17, 19]. However, a major difference is that the super
gluons transform in the adjoint representation of the color group. This makes the amplitude
contain multiple independent color structures which are reshuffled under crossing. These
color structures add an extra layer of complication which is absent in the supergravity case.
We will perform gluing in each color channel, which gives part of the answer. By further
using crossing symmetry we will show that the one-loop reduced amplitude is uniquely
fixed. However, this procedure does not make it clear whether the result should sensitively
depend on the chosen gauge group. To answer this question, we find that the reduced
Mellin amplitude can be rewritten in the following remarkably simple form

M̃(s, t) ∼ dstBst(s, t) + dsuBsu(s, t) + dtuBtu(s, t) (1.1)

where the three terms are related by crossing symmetry. The function Bst(s, t) is essentially
a box diagram depicted in the l.h.s. of figure 1, and has the form of an infinite sum of
simultaneous simple poles

Bst(s, t) =
∞∑

m,n=2

cmn
(s− 2m)(t− 2n) (1.2)

where cmn are constants independent of the Mellin-Mandelstam variables. Interestingly,
similar building block amplitudes also appeared in the supergravity one-loop reduced am-
plitudes [17, 19]. In this paper we give a closed form expression for Bst(s, t) in terms of
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special functions, see (5.26). On the other hand, the factors dst, dsu, dtu are “box dia-
grams” in color space and are formed by contracting the structure constants of GF in the
following way

dst = fJI1KfKI2LfLI3MfMI4J . (1.3)

Note that the dependence on the gauge group only enters the reduced amplitude through
the structure constants f IJK (and also in the overall constant suppressed here). Therefore
the answer above is in fact valid for any choice of the gauge group. One might also
notice that the structure of the above result is reminiscent of the gluon one-loop amplitude
in flat space. In fact, we can take the zero-curvature limit of the AdS amplitude and
show that M̃(s, t) reproduces exactly the 8d flat space amplitude. As another interesting
example, we will also compute the super gluon one-loop amplitude in the AdS5 toy model
with no internal manifold. In applying the unitarity method, the Kaluza-Klein level p is
now restricted to 2 because the higher Kaluza-Klein modes have been excluded from the
spectrum. It turns out that this modification does not alter the structure of the reduced
Mellin amplitude but changes only the cmn coefficients. Taking the flat space limit, we find
that the amplitude Bst(s, t) becomes the 5d one-loop box diagram instead.

The rest of the paper is organized as follows. In section 2 we review the setup of the
problem and the basic kinematics of four-point functions. In section 3 we analyze the tree-
level super gluon amplitudes and extract data from them. The one-loop computation was
first performed for the simpler AdS5 toy model in section 4 and then for the full-fledged
AdS5 × S3 theory in section 5. In section 6, we consider another contribution to the
super gluon four-point function, which arises from coupling to gravity and is at the same
order as the one-loop gluon contribution. We conclude with a brief discussion of future
directions in section 7. Various technical details are relegated to the three appendices. In
appendix A and B we collect some useful results for superconformal blocks and D-functions.
In appendix C we explain how to take the flat space limit of one-loop Mellin amplitudes
and how they reduce to flat space box integrals.

2 Preliminaries

2.1 Setup

In this paper, we study scattering amplitudes of super gluons in AdS5. Such super gluons
can arise in two basic setups. The first is to consider a stack of N D3-branes probing an
F-theory 7-brane singularity [32, 33]. The near horizon geometry has a metric identical
to that of AdS5 × S5, except that one of the angular coordinates of S5 has a changed
periodicity. More precisely, we have

ds2 = dθ2 + sin2 θdφ2 + cos2 θdΩ2
3 (2.1)

where dΩ2
3 is the metric of S3, and 0 ≤ θ ≤ π

2 . The angular variable φ has a period of
2π(1− ν/2), where ν takes values

ν = 1
3 ,

1
2 ,

2
3 , 1 , 4

3 ,
3
2 ,

5
3 , (2.2)
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depending on the type of the 7-brane singularity. The 7-brane is located at the slice θ = 0,
which fills the AdS5 and occupies an S3 in the compact space. On this singular locus, there
is a 7+1 dimensional N = 1 vector multiplet which transforms in the adjoint representation
of a gauge group GF . Corresponding to the values of ν in (2.2), GF is given by

GF = U(1) , SU(2) , SU(3) , SO(8) , E6 , E7 , E8. (2.3)

The Kaluza-Klein reduction of the N = 1 vector multiplet gives rise to an infinite tower
of states which are organized into different 1

2 -BPS super multiplets of the 4d N = 2
superconformal algebra. We refer to the superprimaries of these 1

2 -BPS super multiplets
as the super gluons. The SU(2)R R-symmetry of the 4d N = 2 superconformal group is
identified with one of the SU(2) factors of the S3 isometry group SO(4) ' SU(2)R×SU(2)L,
while the other SU(2)L factor is a global symmetry. On the other hand, gravity is not
restricted to this subspace. Instead, it propagates in the full ten dimensional space. The
Kaluza-Klein reduction of the ten dimensional supergravity multiplet gives rise to an infinite
tower of super graviton multiplets in AdS5. An interesting feature of such systems is that
at large N the self-interactions of the super gluons are parametrically larger than their
couplings with the super gravitons. More precisely, the cubic couplings of super gluons
scale as 1/

√
N , while the couplings involving two super gluons and one super graviton scale

as 1/N . Therefore, in 1/N expansion the super gluon four-point functions have the form

G4−gluon = Gdisc + 1
N
Ggluon tree + 1

N2 (Ggluon 1-loop +Ggraviton tree) + . . . , (2.4)

where Gdisc is the disconnected contribution, Ggluon tree and Ggraviton tree respectively come
from tree-level gluon and graviton exchanges, and Ggluon 1-loop is the gluon one-loop con-
tribution.

The second setup is to consider a stack of NF D7-branes wrapping an AdS5 × S3

subspace in the AdS5 × S5 near horizon geometry of N D3-branes [34]. In the limit
NF � N , the probe D7-branes do not back-react the AdS5 × S5 geometry. The theory is
conformally invariant and preserves a 4d N = 2 superconformal symmetry. The low energy
degrees of freedom on the D7-branes are again described by an eight dimensional N = 1
vector multiplet which transforms in the adjoint representation of a gauge group SU(NF ).
Reducing this multiplet onto AdS5 leads to the same spectrum of super gluons. Just as
in the previous setup, there is a separation of scales in the super gluon self-couplings and
their couplings to the super gravitons at large N . These couplings also have the same 1/N
scaling. Therefore at O(1/N), the super gluon four-point functions consist of only tree-level
exchange contributions of super gluons. As was shown in [25], the tree-level gluon exchange
amplitudes are completely determined by the spectrum and superconformal symmetry, and
have the same form for all choices of gauge groups. Therefore the super gluon tree-level
amplitudes at O(1/N) are the same in both setups up to an overall constant.

Finally, we can also consistently truncate the AdS5 × S3 super gluon theory to the
lowest Kaluza-Klein mode, and obtain an AdS5 theory without an internal S3. The tree-
level super gluon exchange amplitude of the lowest Kaluza-Klein mode remains the same
after the truncation. We will use this truncated theory as a toy model when studying the
super gluon amplitudes at one loop.
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2.2 Super gluon four-point functions

The above mentioned super gluons are dual to scalar superprimaries OI;a1...ak;ā1...āk−2
k of

the 1
2 -BPS multiplets with k = 2, 3, . . .. Here I = 1, . . . , dim(GF ) is the color index, in the

adjoint representation of the flavor group GF . The SU(2) indices ai = 1, 2 and āi = 1, 2
are respectively for SU(2)R and SU(2)L. The former is the R-symmetry group of the 4d
N = 2 superconformal algebra, while the latter is an additional global symmetry. These
operators have spin k

2 under SU(2)R and spin k
2 − 1 under SU(2)L. Because the operators

are 1
2 -BPS, their conformal dimensions are determined by the SU(2)R spins to be k.
It is convenient to keep track of the SU(2) indices by contracting them with auxiliary

two-component spinors va and v̄ā

OIk(x; v, v̄) = OI;a1...ak;ā1...āk−2
k va1 . . . vak v̄ā1 . . . v̄āk−2 (2.5)

where indices are lowered with ε tensors va = vbεab, v̄ā = v̄b̄εāb̄. We can then consider
four-point correlators of such operators

GI1I2I3I4k1k2k3k4
(xi; vi, v̄i) = 〈OI1k1

(x1; v1, v̄1)OI2k2
(x2; v2, v̄2)OI3k3

(x3; v3, v̄3)OI4k4
(x4; v4, v̄4)〉 , (2.6)

which are functions of both the spacetime and the internal coordinates. For the purposes
of this paper it is enough to consider pairwise equal external weights k1 = k2 = p and k3 =
k4 = q, and will focus on such correlators from now on. For a discussion on the kinematics
of correlators with most general weights, see [25]. Exploiting conformal symmetry and the
two SU(2) symmetries, we can write the correlators as functions of four cross ratios

GI1I2I3I4ppqq = (v1 · v2)p(v3 · v4)q(v̄1 · v̄2)p−2(v̄3 · v̄4)q−2

x2p
12x

2q
34

GI1I2I3I4ppqq (U, V ;α, β) . (2.7)

Here xij = xi − xj , vi · vj = vai v
b
jεab, v̄i · v̄j = v̄āi v̄

b̄
jεāb̄, and the cross ratios are defined as

U = x2
13x

2
24

x2
12x

2
34
, V = x2

14x
2
23

x2
12x

2
34
, (2.8)

α = (v1 · v3)(v2 · v4)
(v1 · v2)(v3 · v4) , β = (v̄1 · v̄3)(v̄2 · v̄4)

(v̄1 · v̄2)(v̄3 · v̄4) . (2.9)

It is easy to see that GI1I2I3I4ppqq is a polynomial of degree min{p, q} in α, and a polynomial
of degree min{p, q} − 2 in β.

We have so far only exploited the bosonic symmetries. The fermionic generators in
the superconformal group generate extra constraints known as the superconformal Ward
identities [38]. To write down these identities, we make a change of variables

U = zz̄ , V = (1− z)(1− z̄) . (2.10)

Then superconformal Ward identities read

(z∂z − α∂α)GI1I2I3I4ppqq (z, z̄;α, β)
∣∣
α=1/z = 0 ,

(z̄∂z̄ − α∂α)GI1I2I3I4ppqq (z, z̄;α, β)
∣∣
α=1/z̄ = 0 .

(2.11)

– 6 –



J
H
E
P
0
2
(
2
0
2
2
)
1
0
5

These constraints can be solved and lead to solutions of the form

GI1I2I3I4ppqq = GI1I2I3I40,ppqq +RHI1I2I3I4ppqq (2.12)

where R is a factor determined by superconformal symmetry

R = (1− zα)(1− z̄α) , (2.13)

and GI1I2I3I40,ppqq is a function that contains coupling-independent information and becomes
holomorphic (or anti-holomorphic) when setting α = 1/z̄ (or α = 1/z). The function H
is called the reduced correlator and contains all the dynamical information. It is always
possible to find G0 and H such that each of them separately enjoys Bose symmetry.3 More
precisely, we can restore the stripped kinematic factor and rewrite (2.12) as

GI1I2I3I4ppqq = GI1I2I3I40,ppqq + RHI1I2I3I4
ppqq (2.14)

where
R = (v1 · v2)2(v3 · v4)2x2

13x
2
24R (2.15)

is crossing symmetric. The protected part G0 has the original conformal dimensions and
SU(2)R × SU(2)L weights. On the other hand, H can be viewed as a four-point correlator
of operators with shifted conformal dimensions ki → ki + 1 and SU(2)R R-symmetry spins
ki
2 →

ki
2 − 1. These shifts are due to the nontrivial weights carried by the factor R under

conformal and SU(2)R transformations. Note that in particular the reduced correlator with
ki = 2 is a singlet under both SU(2)R and SU(2)L.

A convenient language to discuss holographic correlators is the Mellin formal-
ism [35, 36]. In this representation, holographic correlators have simple analytic structure
which closely resembles that of flat space scattering amplitudes. The Mellin amplitudes
are defined by4

GI1I2I3I4ppqq =
∫ i∞

−i∞

dsdt

(4πi)2U
s
2V

t−p−q
2 MppqqΓ

[2p− s
2

]
Γ
[2q − s

2

]
Γ2
[
p+ q − t

2

]
Γ2
[
p+ q − u

2

]
(2.16)

where s+ t+u = ∑
i ki = 2(p+q). However, we can also define a reduced Mellin amplitude

from the reduced correlator

HI1I2I3I4ppqq =
∫ i∞

−i∞

dsdt

(4πi)2U
s
2V

t−p−q
2 M̃ppqqΓ

[2p− s
2

]
Γ
[2q − s

2

]
Γ2
[
p+ q − t

2

]
Γ2
[
p+ q − ũ

2

]
.

(2.17)
Note that the u variable is replaced by its shifted version ũ = u − 2, and this shift is
necessary due to the nontrivial conformal weights of R. Bose symmetry then acts on the
Mellin amplitudeM by permuting s, t, u, in addition to permuting the quantum numbers of
each operator. However, acting on the reduced Mellin amplitudes Bose symmetry permutes
instead s, t, ũ. Thanks to the superconformal Ward identities, the reduced amplitude

3In the case of identical operators, Bose symmetry is just crossing symmetry.
4Here we have restricted the discussion to 〈ppqq〉 correlators. For the most general weight configurations,

we refer the reader to [25] for details.
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determines the full amplitude. The protected part G0 for holographic correlators turn out
to take a form resembling Wick contractions in mean field theories. As was argued in [2],
such functions do not contribute to Mellin amplitudes. By translating (2.12) into Mellin
space, we find

Mppqq = R ◦ M̃ppqq (2.18)

where R is a difference operator descending from the factor R. The explicit action of this
operator can be found in [25] but is not needed in this paper. When computing one-loop
correlators, we will focus on the reduced Mellin amplitudes which have already taken into
account superconformal symmetry.

2.3 Flavor symmetry

As noted in the previous subsection, the four-point correlators of super gluons carry flavor
indices. This adds an extra layer of complication on top of the superconformal kinematics
discussed above. Below we give a detailed discussion about how to deal with the flavor
structures.

A concrete way to discuss these structures is to decompose the correlator into different
flavor channels that appear in the tensor product of adjoint representations in the s-channel

GI1I2I3I4 =
∑

a∈adj⊗adj
PI1I2|I3I4a Ga . (2.19)

Here PI1I2|I3I4a are projectors which project the external indices to the irreducible repre-
sentation a appearing in adj ⊗ adj, and form a complete basis for flavor structures. For
example, the projectors associated with exchanging the identity and adjoint representations
are given by

PI1I2|I3I41 = 1
dim(GF )δ

I1I2δI3I4 , PI1I2|I3I4adj = 1
ψ2h∨

f I1I2I5f I5I3I4 (2.20)

where h∨ is the dual Coxeter number, ψ2 is the length squared of the longest root, and
f IJK are the structure constants of the flavor group GF . The projectors satisfy symmetry
properties

PI1I2|I3I4a = (−1)RaPI2I1|I3I4a , PI1I2|I3I4a = PI3I4|I1I2a (2.21)

where Ra is the parity of the exchanged representation, i.e., Ra = 0 for symmetric repre-
sentations and Ra = 1 for antisymmetric representations. They are also idempotent

PI1I2|I3I4a PI4I3|I5I6b = δabPI1I2|I5I6a . (2.22)

Contracting the external indices gives a delta function for the internal representations

PI1I2|I3I4a PI1I2|I3I4b = δabdim(Ra) . (2.23)

We can use this property to compute the dimension of representation a.
We will also encounter the problem of decomposing exchanged flavor representation in

a different channel. This amounts to performing a change of basis. Consider exchanging the
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Figure 2. Decomposition of a t-channel projector into s-channel projectors. The projectors in the
two channels are related by the flavor crossing matrix Ft. Note that here the vertices are oriented,
and we read the lines around a vertex anti-clock-wisely.

representation a′ in the t-channel, which is captured by the t-channel projector PI3I2|I1I4a′ .
We can decompose it into various s-channel representations as

PI3I2|I1I4a′ =
∑
a

µaPI1I2|I3I4a , (2.24)

using the completeness of the basis. To get the overlap coefficients, we use (2.23) and get

µa = 1
dim(Ra)

PI3I2|I1I4a′ PI1I2|I3I4a . (2.25)

Let us define the t-channel flavor crossing matrix

(Ft)aa
′ ≡ 1

dim(Ra)
PI3I2|I1I4a PI1I2|I3I4a′ , (2.26)

then we can express the overlap coefficients as

µa = (Ft)aa
′
. (2.27)

Diagrammatically, this is represented by figure 2.
Therefore, it follows that a t-channel “exchange” can be expressed in the s-channel as∑

a′∈(adj⊗adj)t

PI3I2|I1I4a′ H
(t)
a′︸︷︷︸

t-channel coefficients

=
∑

a∈(adj⊗adj)s

PI1I2|I3I4a

∑
a′∈(adj⊗adj)t

(Ft)aa
′
H

(t)
a′︸ ︷︷ ︸

s-channel coefficients

. (2.28)

Similarly, for the u-channel we define the crossing matrix

(Fu)aa
′ ≡ 1

dim(Ra)
PI4I2|I3I1a PI1I2|I3I4a′ . (2.29)

Then the u-channel decomposition can be rewritten in the s-channel as∑
a′∈(adj⊗adj)u

PI4I2|I3I1a′ H
(u)
a′︸ ︷︷ ︸

u-channel coefficients

=
∑

a∈(adj⊗adj)s

PI1I2|I3I4a

∑
a′∈(adj⊗adj)u

(Fu)aa
′
H

(u)
a′︸ ︷︷ ︸

s-channel coefficients

. (2.30)

The elements of these flavor crossing matrices can be expressed in terms of the 3j and
6j symbols of the flavor group. We will not go into the details of computing the matrix
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elements. Instead we will refer the reader to the book [39] for techniques of performing
such computations, and table 6 of [40] for a list of examples.

Finally, in this paper we will use the group E8 as a nontrivial explicit example to
demonstrate various computations — although all our results can also be phrased abstractly
without reference to the explicit crossing matrices, as we will show. We record here the
crossing matrices of E8 [41]

Ft =



1
248

125
8

3375
31 1 245

2
1

248 −
3
8

27
31

1
5 − 7

10
1

248
1
8

23
62 − 1

30 −
7
15

1
248

25
8 −225

62
1
2 0

1
248 −

5
56 −

90
217 0 1

2


, Fu =



1
248

125
8

3375
31 −1 −245

2
1

248 −3
8

27
31 −

1
5

7
10

1
248

1
8

23
62

1
30

7
15

− 1
248 −

25
8

225
62

1
2 0

− 1
248

5
56

90
217 0 1

2


(2.31)

where from top to bottom along each column (or from left to right in each row) the represen-
tations are a = 1,3875,27000,248 (adj),30380. Note that the first three representations
are symmetric, while the last two are anti-symmetric.

2.4 Superconformal block decomposition

To be able to reconstruct the one-loop correlator, we need to decompose correlators into
superconformal blocks. In order to understand the contribution of each superconformal
multiplet, we study the fusion rules of the operators O appearing in our four-point func-
tion. Operators in N = 2 SCFTs are organized into different superconformal multiplets
which have been classified in [38]. Here we will encounter three types of them: B̂R, ĈR,( `2 , `2)
and A∆

R,( `2 , `2).
5 The B̂ multiplets are 1

2 -BPS (known as short multiplets), and the confor-
mal dimensions of the super primaries as fixed by the SU(2)R spin R is R

2 . The super
gluons belong to this type of multiplets and are the corresponding super primaries. The Ĉ
multiplets are also protected, and are known as semi-short. The super primary has SU(2)R
spin R

2 , Lorentz spin ` and dimension 2 + 2R + `. The multiplets A are long multiplets,
and the conformal dimensions are not protected by supersymmetry. These are the only
three types of multiplets which appear in the fusion rules of two B̂ [38]

B̂ k1
2
× B̂ k2

2
'

k1
2 + k2

2⊕
p= k2

2 −
k1
2

B̂p +
⊕
`≥0


k2
2 + k1

2 −1⊕
p= k2

2 −
k1
2

Ĉp,( `2 , `2) +
k2
2 + k1

2 −2⊕
p= k2

2 −
k1
2

A∆
p,( `2 , `2)

 . (2.32)

The exchanged multiplets in the four-point function are those residing in the overlap of
B̂ k1

2
×B̂ k2

2
and B̂ k3

2
×B̂ k4

2
. This is the most general fusion rules, but we will only need a less

general setup to study the four point correlator (2.7). In particular, it is more convenient
to write the solution to the superconformal Ward identities in a slightly different form [38]

G(U, V ;α) = (y − x̄)f(x̄)− (y − x)f(x)
x− x̄

+ (y − x)(y − x̄)K(U, V ; y) (2.33)

5See appendix A of [42] for a summary of the unitary representations and different notations used in the
literature.
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where we defined the new cross ratios

y = 2α− 1 , x = 2
z
− 1 , x̄ = 2

z̄
− 1 . (2.34)

We have also temporarily suppressed the flavor indices in (2.7), as well as the SU(2)L
dependence, to lighten the notation. These extra structures are independent of the super-
conformal properties, and therefore can be easily restored. Given a four-point correlator G,
we can first obtain f(x) by setting y = x̄. Then from (2.33) we can easily determine K. In
contrast to the function H defined in (2.12), K alone is not invariant under Bose symmetry.
Instead, there is an inhomogeneous term coming from the single-variable function f under
crossing.

The contribution of exchanging a superconformal multiplet to the four-point function
is captured by superconformal blocks, which are linear combinations of bosonic conformal
blocks of the super primary and super descendants of the superconformal multiplet. They
were obtained in [38] and are recorded in appendix A. In practice, it is most convenient to
present them in terms of contributions to f and K in (2.33). Furthermore, the function K
can be decomposed into different SU(2)R channels. For computing the one-loop amplitude
of 〈2222〉, only the R-symmetry singlet contributions are relevant.

To write down these contributions, let us first introduce the bosonic conformal blocks

G∆,`(z, z̄) =
(−1

2)`zz̄
z − z̄

(
k∆+`

2
(z)k∆−`−2

2
(z̄)− k∆+`

2
(z̄)k∆−`−2

2
(z)
)

(2.35)

where
kh(z) = zh2F1(h, h; 2h; z) , (2.36)

and this expression is valid in any four-point function with ∆1 = ∆2, ∆3 = ∆4. The long
super multiplets A∆

R,( `2 ,
`
2 ) do not contribute to f(x). Moreover, only the long multiplets

with R = 0 contribute to the singlet channel of K by6

KA∆,R,`
∣∣
sing = 1

4δR,0G∆+2,`(z, z̄) . (2.37)

The semi-short multiplets ĈR,( `2 , `2 ) contribute

fCR,`(x) =
(−1)`−122R−`Γ

(
R+ 1

2

)
√
πΓ(R+ 1) kR+2+`(z) ,

KCR,`
∣∣
sing =

(−1)R+123R−2Γ
(
R+ 1

2

)
√
πΓ(R+ 1) GR+`+4,R+`(z, z̄) .

(2.38)

Finally, the short multiplets B̂R contribute

fBR(x) =
4RΓ

(
R+ 1

2

)
√
πΓ(R+ 1) kR(z) , KBR

∣∣
sing =

(−1)R23R−4Γ
(
R+ 1

2

)
√
πΓ(R+ 1) GR+2,R−2(z, z̄) . (2.39)

6We introduced a factor of 1
4 such that when we expand the superconformal block into bosonic conformal

blocks the conformal block of the super primary appears with a unit coefficient.
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From these expressions, it is easy to see that the contributions to f from short and
semi-short multiplets satisfy the following relations

fCR,` =
(−1)`+12−3`−4Γ

(
R+ 1

2

)
Γ(R+ `+ 3)

Γ(R+ 1)Γ
(
R+ `+ 5

2

) fBR+`+2 , (2.40)

fCR+a,`−a =

(
−1

8

)−a
Γ(R+ 1)Γ

(
a+R+ 1

2

)
Γ
(
R+ 1

2

)
Γ(a+R+ 1)

fCR,` . (2.41)

These relations arise from the fact that short and semi-short multiplets can recombine and
form long multiplets at unitarity bounds [38]. As a result, their contributions to f cancel
and they only contribute to the function K.

Generalized free field theory. As a simple application, let us consider the supercon-
formal block decomposition of generalized free field (GFF) theory correlators. The result
is also needed later for computing the one-loop amplitudes.

The GFF correlators give the disconnected contribution of holographic correlators,
which are leading in the 1/N -expansion. We are interested in the correlators of four
identical operators with dimension k

GGFF
kkkk = δI1I2δI3I4 + δI1I3δI2I4GGFF,(u)

kkkk + δI1I4δI2I3GGFF,(t)
kkkk . (2.42)

where
GGFF,(t)
kkkk = (α− 1)k(β − 1)k−2U

k

V k
, GGFF,(u)

kkkk = αkβk−2Uk . (2.43)

Let us look at the three independent flavor structures δI1I2δI3I4 , δI1I3δI2I4 , δI1I4δI2I3 sepa-
rately. The coefficient functions of these structures can be straightforwardly rewritten in
the form of (2.33). Note that the first term δI1I2δI3I4 just corresponds to exchanging the
identity operator in the s-channel. For the other two terms, we denote the SU(2)R×SU(2)L
singlets of functions K from GGFF,(t,u)

kkkk by K(t,u)
k,sing. We would like to know the OPE co-

efficients of long multiplets in these functions. To this end, we decompose K(t,u)
k,sing into

conformal blocks and find

K(t)
k,sing =

∞∑
n=−k+1

∞∑
`=0

A
(k)
n,`G2k+2+2n+`,`(z, z̄) , (2.44)

K(u)
k,sing =

∞∑
n=−k+1

∞∑
`=0

(−1)`A(k)
n,`G2k+2+2n+`,`(z, z̄) , (2.45)

where

A
(k)
n,` =π(−1)`(n+ 1)k−2(k + n+ 1)k−2(n+ `+ 2)k−2(k + n+ `+ 2)k−2

24(k+n)+`Γ(k)4Γ
(
k + n− 1

2

)
× (`+ 1)(2(k + n) + `)Γ(k + n)Γ(k + n+ `+ 1)

Γ
(
k + n+ `+ 1

2

) .

(2.46)
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Note that due to the aforementioned multiplet recombination, there is an ambiguity in
interpreting these conformal blocks. On the other hand, we note that recombination only
happens at the unitarity bound. Since we are restricting ourselves to the R = 0 sector,
the conformal twist of the recombined long multiplets is τ = 2, i.e., the conformal blocks
G4+`,`(z, z̄).7 In the holographic limit to be discussed, which corresponds to turning on
interactions for the generalized free field theory, we expect that all long multiplets are
double-trace operators with minimal twist 4.8 Therefore, their coefficients are not affected
by recombination and are simply given by (2.46) with n ≥ 0.

3 Data from tree-level gluon amplitudes

Let us proceed to tree level. The four-point super gluon Mellin amplitudes were computed
in [25] for arbitrary external weights. To compute the 〈2222〉 correlator at one loop, we
will only need the 〈22kk〉 tree-level correlators.

3.1 Correlators in position space

To extract the CFT data, it is more convenient to rewrite the Mellin space result in position
space. Let us first give the result written in the form of (2.14), before outlining how the
translation was performed. The protected parts for correlators 〈22kk〉 with k > 2 are
related to the k = 2 case by

G0,22kk = (v3 · v4)k−2(v̄3 · v̄4)k−2

x
2(k−2)
34

G0,2222 , (3.1)

and the dynamical parts have the form

H22kk = (C2,2,2)2(csH(s)
22kk + ctH

(t)
22kk + cuH

(u)
22kk

)
. (3.2)

Here cs,t,u are color structures

cs = f I1I2JfJI3I4 , ct = f I1I4JfJI2I3 , cu = f I1I3JfJI4I2 , (3.3)

which are related to the projectors defined in (2.3) by

cs = ψ2h∨PI1I2|I3I4adj , ct = −ψ2h∨PI3I2|I1I4adj , cu = −ψ2h∨PI4I2|I3I1adj . (3.4)

Thanks to the Jacobi identity, they satisfy

cs + ct + cu = 0 . (3.5)

The function G0,2222 has the form of Wick contractions

G0,2222 = (v1 · v2)2(v3 · v4)2

3x2
12x

2
34

(C2,2,2)2
(

cs
(α− 1)x2

13x
2
24 + 2αx2

14x
2
23 + α(1− α)x2

12x
2
34

x2
13x

2
14x

2
23x

2
24

+ ct
(1− α)x2

13x
2
24 + αx2

14x
2
23 + 2α(1− α)x2

12x
2
34

x2
13x

2
14x

2
23x

2
24

)
, (3.6)

7In fact, we observe that the above A
(k)
n,` coefficients with n < 0 are all zero except for one value

n = −k + 1, which corresponds to τ = 2.
8For the conformal block G6+2n+`,`(z, z̄), the associated operators have conformal twist τ = 4 + 2n and

are linear combinations of the double-trace operators : O2�n∂`O2 :, O3�n−1∂`O3 :, . . ., : On+2∂
`On+2 :.
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while H(s,t,u)
22kk can be expressed in terms of D-functions (see appendix B for their definition

and properties)

H
(s)
22kk = 2(k − 1)k

3π2

(
D1,2,k+1,k
x2

12x
2
14
− D1,2,k,k+1

x2
12x

2
13

)
(v3 · v4)k−2(v̄3 · v̄4)k−2 ,

H
(t)
22kk = 4(k − 1)

3π2

(
D1,3,k,k
x2

13x
2
14
− k

2
D1,2,k+1,k
x2

12x
2
14

)
(v3 · v4)k−2(v̄3 · v̄4)k−2 , (3.7)

H
(u)
22kk = 4(k − 1)

3π2

(
k

2
D1,2,k,k+1
x2

12x
2
13
− D1,3,k,k
x2

13x
2
14

)
(v3 · v4)k−2(v̄3 · v̄4)k−2 .

Note that H(s,t,u)
22kk satisfy the relation

H
(s)
22kk +H

(t)
22kk +H

(u)
22kk = 0 , (3.8)

which parallels the Jacobi relation (3.5). Finally, C2,2,2 is related to the cubic coupling of
the AdS5 × S3 SYM, and appears in the three-point function of O2 as

〈O2(x1; v1)O2(x2; v2)O2(x3; v3)〉 = C2,2,2
(v1 · v2)(v2 · v3)(v3 · v1)

x2
12x

2
13x

2
23

. (3.9)

It can be expressed in terms of flavor central charge as9

(C2,2,2)2 = 6
CJ

. (3.10)

The translation from Mellin space to position space was done in two steps. One
writes down an ansatz for G in terms of exchange and contact Witten diagrams which
are expressed in terms of D-functions using the method of [43]. The coefficients of these
diagrams are found by matching the Mellin amplitudes. Similarly, one finds a position
space expression for the reduced correlator H in terms of D-functions. Then the protected
piece G0 can be solved from (2.14), and can be simplified into the form (3.6) after using a
few D-function identities which are summarized in appendix B.

Moreover, the D-functions in (3.7) satisfy a set of differential recursion relations which
shifts their weights. These relations are collected in appendix B, and allow us to relate
H

(s,t,u)
22kk with k > 2 to H(s,t,u)

2222 by differential operators. Let us define

H
(s,t,u)
22kk (xi, vi, v̄i) = (v3 · v4)k−2(v̄3 · v̄4)k−2

x6
12x

2+2k
34

UH(s,t,u)
22kk (U, V ) . (3.11)

Then using the formulae in appendix B, one can show

UH(s,t,u)
22kk = 1

(k − 2)!

k−2∏
i=1

(i+ 2− U∂U )
(
UH(s,t,u)

2222
)
. (3.12)

9Here the flavor current two-point functions are

〈J Iµ (x)J Jν (0)〉 = CJ
2π2

δIJ
(
δµν − 2x

µxν

x2

)
x6 .

For the N = 2 SCFTs arising from D3-branes probing F-theory singularities, CJ is given by CJ = 12
2−νN ,

where N is the number of D3-branes, and ν is determined by the type of the singularity according to (2.2).
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3.2 Extracting tree-level data

We are interested in the tree-level anomalous dimensions which are encoded in the logU
coefficients of the reduced correlators in the small U expansion. Let us first focus on
the case with k = 2. Using the differential recursion relations, we find that the reduced
correlator can be compactly written as

H(s)
2222 = U2

3
(
2∂U + (1 + V )∂U∂V + U∂2

U

)
Φ(z, z̄) ,

H(t)
2222 = −U

2

3
(
2∂V + V ∂2

V + (1 + U)∂U∂V
)
Φ(z, z̄) , (3.13)

H(u)
2222 = U2

3
(
2∂V + V ∂2

V − 2∂U + (U − V )∂U∂V − U∂2
U

)
Φ(z, z̄)

where Φ(z, z̄) = D̄1,1,1,1 is the well known scalar one-loop box diagram. The logU coeffi-
cient of Φ(z, z̄) is given by

Ψ(z, z̄) ≡ Φ(z, z̄)
∣∣
logU = log(1− z)− log(1− z̄)

z − z̄
. (3.14)

It is then straightforward to obtain the logU coefficients of H(s,t,u)
2222 , simply by replacing Φ

with Ψ in (3.13), as differential operators acting on logU would lead to rational functions.
Similarly, the logU coefficients of H(s,t,u)

22kk are obtained by further acting on H(s)
2222

∣∣
logU with

the differential operators in (3.12). It is not difficult to decompose these logU coefficients
into conformal blocks, and we find10

H(s)
22kk

∣∣
logU =

∑
n,`

(
1
2 −

(−1)`
2

)
ω

(k)
n,`U

−1G2k+2+2n+`,`(z, z̄) , (3.15)

H(t)
22kk

∣∣
logU =

∑
n,`

(1
2 + (−1)`

)
ω

(k)
n,`U

−1G2k+2+2n+`,`(z, z̄) , (3.16)

H(u)
22kk

∣∣
logU = −

∑
n,`

(
1 + (−1)`

2

)
ω

(k)
n,`U

−1G2k+2+2n+`,`(z, z̄) , (3.17)

where

ω
(k)
n,` = π(−1)k+1(n+ 1)k−12−4k−4n−`+3Γ(2k + n− 1)Γ(k + n+ `+ 1)

3Γ(k − 1)Γ(k)Γ
(
k + n− 1

2

)
Γ
(
k + n+ `+ 1

2

) . (3.18)

The coefficients ω(k)
n,` are proportional to the schematic averaged quantity 〈a(0)

n,`γ
(1)
n,`〉a in each

color channel
1
2
∑
n,`

〈a(0)
n,`γ

(1)
n,`〉aU

−1G2k+2+2n+`,`(z, z̄) = PI1I2|I3I4a H22kk
∣∣
logU (3.19)

where a(0)
n,` are generalized free field theory OPE coefficients and γ

(1)
n,` are the tree-level

anomalous dimensions of the double-trace operators.
10We remind the reader the difference between K and H. The factor (x − y)(x̄ − y) in (2.33) is 4U−1R

where R was defined in (2.13). Therefore a long multiplet of which the super primary has dimension ∆
and spin ` contributes to H by U−1G∆+2,`.
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4 Toy model: AdS5 without internal S3

In this section, we first study one-loop amplitudes in a toy model where the AdS5 super
gluon theory does not have an internal S3 manifold. This amounts to setting all k > 2 fields
to zero in the AdS5 × S3 theories, which consistently truncates the theory to the k = 2
sector. As a result, there is no operator mixing in this model. All the double-trace operators
are of the schematic form : O2�n∂`O2 :, and there is a one-to-one correspondence between
the conformal twist and n.11 We will use this simplified model to explore the analytic
structure of super gluon one-loop amplitudes in AdS, and to see what color structures can
arise. We will first perform calculations in the E8 theory where we use the explicit crossing
matrices of E8 and apply the AdS unitarity method in each independent flavor channel.
The AdS unitarity method was first developed in [37]. Here we will use the Mellin version
of this method, originally presented in [37] and further developed in [17, 19], to manifest
the simple analytic structure of the one-loop amplitude. After solving the E8 example, we
show the result can be cast in a form agnostic of the color group choice. We then prove
that this form of the answer holds for general gauge groups.

4.1 One-loop amplitude with E8 color group

As was pointed out in [37], one-loop correlators are determined by the log2 U coefficients in
the small U expansion. Our first task is to compute these coefficients in each independent
color channel.

Our starting point is the disconnected correlator. We use (2.20) to express δI1I4δI2I3
and δI1I3δI2I4 as t- and u-channel projectors, and then the crossing matrices (2.28)
and (2.30) to decompose them in the s-channel. Using the results in section 2.4, we find
that the contributions of long operators are the same in channels of the same parity

H(0)
2222,long,1 = H(0)

2222,long,3875 = H(0)
2222,long,27000

=
∞∑

n,`=0

(
1 + (−1)`

2

)
(8A(2)

n,`)U
−1G6+2n+`,`(z, z̄) ,

H(0)
2222,long,248 = H(0)

2222,long,30380 =
∞∑

n,`=0

(
1− (−1)`

2

)
(8A(2)

n,`)U
−1G6+2n+`,`(z, z̄) . (4.1)

Similarly, at tree level we use (2.20), (3.4), (2.28) and (2.30) to find the following s-channel
decompositions of the logU coefficients
H(1)

2222,1
∣∣
logU

H(1)
2222,3875

∣∣
logU

H(1)
2222,27000

∣∣
logU

= (C2,2,2)2ψ2h∨

 −3
−3

5
1
10

× ∞∑
n,`=0

(
1 + (−1)`

2

)
ω

(2)
n,`U

−1G6+2n+`,`(z, z̄) ,

(4.2)

11By contrast, the AdS5 × S3 theories allow, e.g., operators of the form : O3�n−1∂`O3 : which have the
same conformal twist when n ≥ 1 and lead to a degeneracy. We will discuss more about operator mixing
in section 5.
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H(1)
2222,248

∣∣
logU

H(1)
2222,30380

∣∣
logU

= (C2,2,2)2ψ2h∨
(

3
2
0

)
×

∞∑
n,`=0

(
1− (−1)`

2

)
ω

(2)
n,`U

−1G6+2n+`,`(z, z̄) .

(4.3)

Note that in the adjoint (248) channel, there are two types of contributions. The logU
coefficient receives contributions not only from the two crossed channels, but also from the
s-channel.

Because there is no operator mixing, the log2 U coefficients at one loop are simply given
by squaring the tree-level coefficients and then dividing by the disconnected coefficients.
We find that they can be written as

H(2),5d
2222,1

∣∣
log2 U

H(2),5d
2222,3875

∣∣
log2 U

H(2),5d
2222,27000

∣∣
log2 U

 = (C2,2,2)4(ψ2h∨)2

 9
9
25
1

100

×Feven(z, z̄) , (4.4)

H(2),5d
2222,248

∣∣
log2 U

H(2),5d
2222,30380

∣∣
log2 U

 = (C2,2,2)4(ψ2h∨)2
(

9
4
0

)
×Fodd(z, z̄) , (4.5)

where the two basic functions of cross ratios are

Feven(z, z̄) =
∞∑

n,`=0

1
2

(ω(2)
n,`)2

8A(2)
n,`

(
1 + (−1)`

2

)
U−1G6+2n+`,`(z, z̄) ,

Fodd(z, z̄) =
∞∑

n,`=0

1
2

(ω(2)
n,`)2

8A(2)
n,`

(
1− (−1)`

2

)
U−1G6+2n+`,`(z, z̄) .

(4.6)

We now follow the strategy of [17, 19] and look for a Mellin amplitude that reproduces
these log2 U coefficients. To achieve this, we look at the small V expansion of Feven and
Fodd. We find that they contain at most log2 V singularities in the V → 0 limit. Such
log2 U log2 V singularities of the four-point correlator require the reduced Mellin amplitudes
to have simultaneous poles of the form12

1
(s− 2m)(t− 2n) , m, n = 2, 3, 4, . . . . (4.7)

We then make the following simple ansatz which is consistent with the symmetry in the
even and odd channels

M̃even =
∞∑

m,n=2
ceven
mn

( 1
(s− 2m)(t− 2n) + 1

(s− 2m)(ũ− 2n)

)
,

M̃odd =
∞∑

m,n=2
codd
mn

( 1
(s− 2m)(t− 2n) −

1
(s− 2m)(ũ− 2n)

)
. (4.8)

Here we have assumed that ceven
mn and codd

mn are numbers independent of Mandelstam vari-
ables. Taking the residues in the inverse Mellin transformation, we can extract the

12Recall that the Gamma function factor already have double poles at these locations. The inverse Mellin
integrand then has in total triple poles, which give rise to log2 U log2 V singularities upon taking residues.
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log2 U log2 V coefficients as a power expansion in U and V . By matching them with the
log2 V coefficients Feven,odd in the small U , V expansion, we can obtain the coefficients
ceven,odd
mn . We find they are the same function up to a sign

codd
mn = −ceven

mn = −c5d
mn , (4.9)

and

c5d
mn =

√
πΓ(m− 1)Γ(n− 1)Γ

(
m+ n− 5

2

)
18Γ

(
m+ 1

2

)
Γ
(
n+ 1

2

)
Γ(m+ n− 1)

×
(
3m2n− 2m2 + 3mn2 − 11mn+ 6m− 2n2 + 6n− 3

) (4.10)

is symmetric under n ↔ m. Note that so far we have only used and matched the log2 V

coefficients of Feven,odd. However, it turns out that the amplitudes (4.8) with these coeffi-
cients reproduce the full functions Feven,odd, which include log V singularities and regular
terms as well. This implies that there are no additional single poles in s in the reduced
Mellin amplitude, confirming the assumption that ceven

mn and codd
mn are independent of the

Mandelstam variables.
Let us denote the above building block amplitudes as

B5d
st =

∞∑
m,n=2

c5d
mn

(s− 2m)(t− 2n) ,

B5d
su =

∞∑
m,n=2

c5d
mn

(s− 2m)(ũ− 2n) , (4.11)

B5d
tu =

∞∑
m,n=2

c5d
mn

(t− 2m)(ũ− 2n) ,

which are the AdS5 box diagrams. This interpretation of the amplitudes becomes clear
when we examine their behavior in the flat space limit. The flat space limit corresponds
to the high energy regime of the Mellin amplitude where s, t are taken to be large [36]. As
we show in appendix C, any Mellin amplitude which has the form of B5d

st and coefficients
with the following scaling behavior

c5d
mn = (mn)D2 −3

(m+ n)D2 −2
+ · · · (4.12)

in the large m, n limit, becomes the D-dimensional scalar one-loop box diagram in flat
space. In the current case the coefficients (4.10) scale as 1/(mn(m + n)) 1

2 and there-
fore (4.11) become the 5d box diagrams in the flat space limit.

Continuing the above discussion, the one-loop reduced amplitude of 〈2222〉 should be

M̃AdS5
2222 = (C2,2,2)4(ψ2h∨)2


9(B5d

st + B5d
su + λ1B5d

tu )
9
25(B5d

st + B5d
su + λ2B5d

tu )
1

100(B5d
st + B5d

su + λ3B5d
tu )

9
4(B5d

su − B5d
st )

0

 , (4.13)
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Figure 3. Box diagrams for colors. Each vertex represents a structure constant and the lines are
in the adjoint representation.

in order to be consistent with the log2 U coefficients. Note that in the symmetric channels,
we have also included the box diagram B5d

tu which is compatible with the symmetry of these
channels. This box diagram does not contribute the log2 U coefficients, and therefore the
parameters λi are not fixed by them. However, the one-loop reduced amplitude should also
be crossing symmetric

MAdS5
2222,a(s, t) =

∑
a′

(Ft)aa
′MAdS5

2222,a′(t, s) , (4.14)

MAdS5
2222,a(s, t) =

∑
a′

(Fu)aa
′MAdS5

2222,a′(u, t) . (4.15)

Imposing these conditions uniquely solves the unknown coefficients, and gives

λ1 = 1
2 , λ2 = −3

2 , λ3 = 16 . (4.16)

Let us also make a comment regarding the completeness of the ansatz. As pointed out ear-
lier, the fact that the reduced Mellin amplitude reproduces the complete log2 U coefficient
rules out single poles in the s variable. Via the full crossing symmetry, this also rules out
single poles in t and ũ. Therefore, the only ambiguities are regular contact terms.

Written as (4.13), the color structure of the one-loop amplitude is quite obscure and the
answer appears to sensitively depend on the specific choice of the gauge group. However,
we claim that the amplitude can be rewritten in a more illuminating form as

M̃AdS5
2222 = 9(C2,2,2)4(dstB5d

st + dsuB5d
su + dtuB5d

tu

)
(4.17)

where

dst = fJI1KfKI2LfLI3MfMI4J ,

dsu = fJI1KfKI2LfLI4MfMI3J ,

dtu = fJI1KfKI3LfLI2MfMI4J ,

(4.18)

are box diagrams for the color part (see figure 3). Clearly, this form of the answer can be
generalized to any color group.

To show that the two representations (4.13) and (4.17) are equivalent, we decompose
the color structures dst, dst, dtu into s-channel projectors and compare the coefficients in
each channel. This can be done by following the procedure outlined in figure 4. We first cut
open the box diagram vertically, and view it as the contraction of two t-channel projectors
associated with the adjoint representation. We then use the crossing matrix to express
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Figure 4. Writing the color box function Bst as s-channel projectors. The box diagram can
be obtained as the product of two t-channel projectors in which the adjoint representations are
exchanged. We then use the crossing matrix to expand each t-channel projector in the s-channel,
and idempotence of projectors to write the function as a linear combination of s-channel projectors.

each t-channel projector as a linear combination of the s-channel projectors. Finally, using
the idempotence of projectors (2.22) we reduce the color box to be a linear combination of
s-channel projectors, and find

dst = (ψ2h∨)2∑
a

(
(Ft)aadj)2PI1I2|I3I4a . (4.19)

The other two color boxes can be obtained by substituting I3 ↔ I4 and I2 ↔ I3 respectively
and then applying crossing relations of projectors. Using these relations and the explicit
form of the E8 crossing matrices, it is straightforward to verify that (4.13) and (4.17) agree.

4.2 One-loop amplitude with general color group

In the previous subsection we worked out the explicit example of E8 gauge group. The
answer was then rewritten in a different form (4.17), which depends only on the structure
constants of the group and indicates a straightforward generalization to any color group.
In this subsection, we prove that the one-loop reduced amplitude for general color groups
is indeed given by (4.17).

Let us first start with some simple facts about projectors. From (2.22), (2.23) and the
definition (2.20), it follows that

(Ft)a1 = 1
dim(GF ) (4.20)

for any representation a in the tensor product. Similarly, we also have

(Fu)a1 = (−1)Ra

dim(GF ) . (4.21)

Therefore, the contribution of the disconnected correlator is always

H(0)
2222,long,even =

∞∑
n,`=0

(
1 + (−1)`

2

)
(8A(2)

n,`)U
−1G6+2n+`,`(z, z̄) (4.22)
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Figure 5. Jacobi identity in the diagrammatic form. The second term has a minus sign because
vertices are oriented.

for the even channels, and

H(0)
2222,long,odd =

∞∑
n,`=0

(
1− (−1)`

2

)
(8A(2)

n,`)U
−1G6+2n+`,`(z, z̄) (4.23)

for the odd channels, regardless of the gauge group GF . Note that the 1/dim(GF ) factor
is cancelled out due to the appearance of the same factor in the definition (2.20).

At tree level, the t- and u-channel exchanges H(t)
22kk

∣∣
logU and H(u)

22kk
∣∣
logU together con-

tribute

(C2,2,2)2ψ2h∨ × (−3(Ft)aadj)
∞∑

n,`=0

(
1 + (−1)`

2

)
ω

(2)
n,`U

−1G6+2n+`,`(z, z̄) , (4.24)

in the even channels, and

(C2,2,2)2ψ2h∨ × (Ft)aadj
∞∑

n,`=0

(
1− (−1)`

2

)
ω

(2)
n,`U

−1G6+2n+`,`(z, z̄) , (4.25)

in the odd channels. To proceed, we need to compute the (Ft)aadj matrix elements for a
odd. We look at the Jacobi identity which is diagrammatically represented by figure 5.
We contract both sides with the s-channel projector PI1I2|I3I4a . The second and third terms
respectively give −(Ft)aadj and −(Fu)aadj. Because a is odd, the last two terms contribute
equally. On the other hand, due to the delta function in (2.22) the first term is only nonzero
and equals to one when a is the adjoint representation. We then find

(Ft)adj
adj = (Fu)adj

adj = 1
2 , (4.26)

and
(Ft)adj

a = (Fu)adj
a = 0 , a ∈ odd , a 6= adj . (4.27)

On the other hand, we note that in the adjoint channel there is also another contribu-
tion from the s-channel tree-level exchange H(s)

22kk
∣∣
logU . This allows us to write the total

contribution in the odd channels as

(C2,2,2)2ψ2h∨ × (3(Ft)aadj)
∞∑

n,`=0

(
1− (−1)`

2

)
ω

(2)
n,`U

−1G6+2n+`,`(z, z̄) , (4.28)

which have the same form as the even channels (4.24) up to an overall minus sign.
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Let us now move on to the one-loop level. It follows from the above discussion that
the log2 U coefficients are

H(2),5d
2222,a

∣∣
log2 U

= 9(C2,2,2)4(ψ2h∨)2((Ft)aadj)2 ×
{
Feven , a ∈ even
Fodd , a ∈ odd (4.29)

where Feven,odd were defined in (4.6). Then from (4.19) and the discussion of the Mellin
amplitudes of Feven,odd, we know that M̃AdS5

2222 must include 9(C2,2,2)4(dstB5d
st + dsuB5d

su) as
part of the answer. By requiring that the one-loop reduced amplitude is crossing symmetric,
we arrive at (4.17). Note that in the above derivation, we have not used any special
properties that are specific to certain groups. Therefore, (4.17) is the one-loop reduced
Mellin amplitude for any gauge group.

5 One-loop gluon amplitude on AdS5× S3

Let us now compute the super gluon one-loop amplitudes in the theories of D3-branes
probing F-theory singularities. Compared with the AdS5 toy model studied in the previous
section, here the space is AdS5×S3. The S3 factor gives rise to infinitely many additional
massive super gluons from Kaluza-Klein reduction, which must be summed over in the one-
loop amplitude. The existence of these massive modes leads to a degeneracy in double-trace
operators, and presents additional complexity in using the AdS unitarity method. We will
first review how to solve this mixing problem, and then compute the one-loop reduced
Mellin amplitude for an arbitrary gauge group GF . A remarkable feature of our result is
that it admits a closed form expression, unlike the case without S3. We will also show that
the answer reproduces the 8d box diagrams in the flat space limit, which agrees with the
fact that our background is now eight dimensional.

5.1 Mixing problem

For a fixed engineering conformal twist τ = 4+2n and Lorentz spin `, the space of SU(2)R×
SU(2)L invariant double-trace operators in each flavor channel is (n+1)-dimensional. Since
operators with different flavor representations do not mix, we will suppress the flavor indices
in this subsection to simplify the notation. Schematically, these operators can be written as

: O2�
n∂`O2 : , : O3�

n−1∂`O3 : , . . . : On+2∂
`On+2 : (5.1)

where we have also suppressed the SU(2)R×SU(2)L indices. For computing the 〈2222〉 one-
loop amplitude, only the singlets are relevant. Turning on interactions lifts the degeneracies,
and we will denote the eigenstates On,`,i.

At the disconnected level, these double-trace operators contribute to the reduced cor-
relator 〈kkkk〉 as

H(0)
kkkk,long =

∞∑
n=0

∑
`

a
(k)
n,`U

−1G2k+2n+2+`,`(z, z̄) (5.2)

where a(k)
n,` are related to three-point function coefficients by

a
(k)
n,` =

k+n−1∑
i=1

C
(0)
kkOk+n−2,`,i

C
(0)
kkOk+n−2,`,i

. (5.3)
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We remind the reader that there is a shift in dimension by 2 in the conformal blocks
according to (2.37) because we are looking at the reduced correlators. At tree level, we will
focus on the logU coefficients of the reduced correlator of 〈22kk〉. They can be decomposed
into long operator conformal blocks as

H(1)
22kk

∣∣
logU =

∞∑
n=0

∑
`

ω
(k)
n,`U

−1G2k+2n+2+`,`(z, z̄) (5.4)

where ω(k)
n,` is given by

ω
(k)
n,` =

k+n−1∑
i=1

C
(0)
22Ok+n−2,`,i

γ
(1)
k+n−2,`,iC

(0)
kkOk+n−2,`,i

(5.5)

with γ(1)
k+n−2,`,i being the tree-level anomalous dimension of Ok+n−2,`,i.

Let us now look at the 〈2222〉 correlator at one loop. The key object is the log2 U

coefficient of its reduced correlator, which is computed by

H(2)
2222

∣∣
log2 U

=
∞∑
n=0

∑
`

Fn,`U
−1G6+2n+`,`(z, z̄) , (5.6)

with

Fn,` = 1
2

n+1∑
i=1

C
(0)
22On,`,i

(
γ

(1)
n,`,i

)2
C

(0)
22On,`,i . (5.7)

Due to operator mixing, we cannot compute Fn,` using only the 〈2222〉 correlator at dis-
connected and tree levels. However, this quantity can still be expressed in terms of the
lower-order data extracted from H(0)

kkkk,long and H(1)
22kk

∣∣
logU if we consider arbitrary k. To

see this, let us rewrite the above results in matrix notation. We first define a (q + 1) by
(q + 1) matrix

Cq,` =


C

(0)
22Oq,`,i
. . .

C
(0)
q+2,q+2Oq,`,i

 , (5.8)

which involves the double-trace operators with conformal twist 2q + 4. Then CCT gives
the long multiplet coefficients of the following matrix of disconnected correlators

Cq,`

(
Cq,`

)T =

 〈2222〉(0) . . . 〈2, 2, q + 2, q + 2〉(0)

. . . . . . . . .

〈q + 2, q + 2, 2, 2〉(0) . . . 〈q + 2, q + 2, q + 2, q + 2〉(0)


long coef.

(5.9)

Note that due to large N factorization, 〈rrss〉(0) contains no long operators unless r = s.
Therefore, the matrix CCT is diagonal, and we will denote it as

Cq,`

(
Cq,`

)T = Nq,` . (5.10)

Moreover, we can collect the q + 1 eigenvalues of tree-level anomalous dimensions into a
diagonal matrix

Γq,` = diag(γ(1)
q,`,1, . . . γ

(1)
q,`,q+1) . (5.11)
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We can then consider the matrix

Cq,`Γq,`
(
Cq,`

)T =

 〈2222〉(1) . . . 〈2, 2, q + 2, q + 2〉(1)

. . . . . . . . .

〈q + 2, q + 2, 2, 2〉(1) . . . 〈q + 2, q + 2, q + 2, q + 2〉(1)


logU coef.

(5.12)
The first row (or the first column) are ω(k)

q−k+2,` with k = 2, 3, . . . q+ 2, which appear in the
tree-level 〈22kk〉 correlators. Furthermore, it is easy to see that quantity (5.7) corresponds
to the matrix elements

Fn,` = 1
2

(
Cn,`Γn,`

(
Cn,`

)T)N−1
n,`

(
Cn,`Γn,`

(
Cn,`

)T)
. (5.13)

Since N is diagonal, it follows that this matrix element can be expressed as

Fn,` = 1
2

n+2∑
k=2

(
ω

(k)
n−k+2,`

)2
a

(k)
n−k+2,`

. (5.14)

This gives the correct answer for the average of the squared tree-level anomalous dimen-
sions, with operator mixing properly taken into account.

5.2 One-loop amplitude

Because the color structure is independent of mixing, the discussion in section 4.2 directly
applies here. The log2 U coefficients of AdS5×S3 four-point correlator take the same form
as in the AdS5 case (4.29)

H(2),8d
2222,a

∣∣
log2 U

= 9(C2,2,2)2(ψ2h∨)2((Ft)aadj)2 ×
{
F8d

even , a ∈ even
F8d

odd , a ∈ odd . (5.15)

The only difference is that Feven,odd are now replaced by

F8d
even(z, z̄) =

∞∑
n,`=0

Fn,`

(
1 + (−1)`

2

)
U−1G6+2n+`,`(z, z̄) ,

F8d
odd(z, z̄) =

∞∑
n,`=0

Fn,`

(
1− (−1)`

2

)
U−1G6+2n+`,`(z, z̄) .

(5.16)

where Fn,` is given by (5.14) as

Fn,` =
n+2∑
k=2

Ek,n,` , (5.17)

with

Ek,n,` = 1
2 ×

(
ω

(k)
n+2−k,`

)2

8A(k)
n+2−k,`

= π(k − 1)2(n+ 1)2−4n−`−6(n+ `+ 2)
9(`+ 1)(2n+ `+ 4)Γ

(
n+ 3

2

)
× Γ(n+ 3)Γ(k + n+ 1)Γ(n+ `+ 4)Γ(−k + n+ `+ 4)

Γ(−k + n+ 3)Γ
(
n+ `+ 5

2

)
Γ(k + n+ `+ 2)

.

(5.18)
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Following the same procedure, we find that the log2 V coefficients of F8d
even and F8d

odd can
be respectively matched by the reduced Mellin amplitudes

M̃8d
even = B8d

st + B8d
su , M̃8d

odd = B8d
su − B8d

st . (5.19)

Here we have defined the eight dimensional AdS5 × S3 box diagrams as

B8d
st =

∞∑
m,n=2

c8d
mn

(s− 2m)(t− 2n) ,

B8d
su =

∞∑
m,n=2

c8d
mn

(s− 2m)(ũ− 2n) , (5.20)

B8d
tu =

∞∑
m,n=2

c8d
mn

(t− 2m)(ũ− 2n) ,

with the coefficients given by

c8d
mn = 4

(
3m2n− 4m2 + 3mn2 − 16mn+ 15m− 4n2 + 15n− 12

)
27(m+ n− 4)(m+ n− 3)(m+ n− 2) . (5.21)

Using this solution we can check that the functions F8d
even and F8d

odd are completely re-
produced by the amplitudes (5.19). This implies that the simultaneous poles are again
sufficient. It follows from the discussions in section 4.2 that the one-loop reduced Mellin
amplitudes for AdS5 × S3 are

M̃AdS5×S3

2222 = 9(C2,2,2)4(dstB8d
st + dsuB8d

su + dtuB8d
tu

)
. (5.22)

We also note that the coefficients c8d
mn scale as

c8d
mn ∼

mn

(m+ n)2 + . . . (5.23)

in the largem, n limit. According to the results in appendix C, the Mellin amplitudes (5.20)
become eight-dimensional box integrals in the flat space limit. There is actually a more
explicit way to see this. It turns out that the AdS5 × S3 box diagrams can be computed
in a closed form. The basic building block is the following double sum

Θ(s, t) =
∑

m,n=1

1
(m+ n)(s− 2m)(t− 2n) (5.24)

which can be performed in terms of polygamma functions

Θ(s, t) = 1
4(s+ t)

{
ψ(1)

(
−s2

)
+ ψ(1)

(
− t2

)
−
[
ψ(0)

(
−s2

)]2

−
[
ψ(0)

(
− t2

)]2
+ 2ψ(0)

(
−s2

)
ψ(0)

(
− t2

)}
+ 2
st(s+ t) −

π2

4(s+ t) −
ψ(0) (− s

2
)

+ γ

t(s+ t) −
ψ(0) (− t

2
)

+ γ

s(s+ t) . (5.25)
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Here γ is the Euler-Mascheroni constant. Mellin amplitudes in various examples, including
the ones in this paper, can be written in terms of this building block, upon shifting the s,
t variables, plus edge terms involving a single sum. For the case at hand the double sum
is divergent, but it can be regularized in different ways. The difference between different
regularizations is simply a constant. This can be seen as follows. Both ∂sB8d

st and ∂tB8d
st

are given by convergent sums, and they lead to B8d
st up to a constant of integration which

depends on a single variable. This together with symmetry under s↔ t implies the constant
of integration is actually independent of both s and t. The final result is given by

B8d
st =R0(s, t)

(
ψ(1)

(
2− s

2

)
+ ψ(1)

(
2− t

2

)
−
(
ψ(0)

(
2− s

2

)
− ψ(0)

(
2− t

2

))2
)

+R1(s, t)ψ(0)
(

2− s

2

)
+R1(t, s)ψ(0)

(
2− t

2

)
+ π2R2(s, t)− 32

27(s+ t−8) + a (5.26)

where different choices of regularization would lead to different values of a and the rational
functions are given by

R0(s, t) = −4
(
3s2t− 8s2 + 3st2 − 32st+ 60s− 8t2 + 60t− 96

)
27(s+ t− 8)(s+ t− 6)(s+ t− 4) , (5.27)

R1(s, t) = 8
(
3s2 + 3st− 26s− 10t+ 48

)
27(s+ t− 8)(s+ t− 4) , (5.28)

R2(s, t) = 4
(
3s2t− 8s2 + 3st2 − 32st+ 60s− 8t2 + 60t− 96

)
27(s+ t− 8)(s+ t− 6)(s+ t− 4) . (5.29)

Given this explicit expression it is straightforward to compute the flat space limit where
−s, −t are large. We obtain

B8d
st ∼

4st log2
(
−s
−t

)
9(s+ t)2 + 8(s log(−s) + t log(−t))

9(s+ t) + 4π2st

9(s+ t)2 + β , (5.30)

for some constant β which depends on a. This precisely agrees with the eight dimensional
box function in flat space! Note that also in this case the computation involves the in-
troduction of a regulator, and we have a corresponding ambiguity. The method presented
here can also be used to resum the AdS5×S5 one-loop reduced Mellin amplitudes obtained
in [17, 19].13

6 Coupling to gravity

In section 5, we considered the gluon one-loop contribution to the four-point function
〈2222〉 which is of order O(N−2). However, at the same order there is another independent
contribution arising from the tree-level exchange of the massless supergravity multiplet.
Such contributions to super gluon four-point functions were considered for AdS6 and AdS7

13Due to the different form of the cmn coefficients, this strategy does not immediately apply to the 5d
amplitude (4.17) with just the AdS5 factor. However, we expect similar ambiguity structure which contains
contact terms affecting only the CFT data of double-trace operators with low-lying spins.
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theories in [26],14 and the correlators were shown to be fixed by the superconformal Ward
identities up to an overall normalization determined by the stress tensor central charge.
Here we similarly compute the super graviton exchange amplitude for AdS5.

The exchanged supergravity multiplet includes an SU(2)R singlet scalar super primary
field of dimension 2, a vector field of dimension 3 and SU(2)R spin 1, and an SU(2)R neutral
graviton field of dimension 4.15 We can compute the amplitude due to super graviton
multiplet exchange using the position space method developed in [1, 2]. We write down an
ansatz for the four-point function as the linear combination of all exchange diagrams and
contact diagrams with no more than two derivatives

GI1I2I3I42222,gravity = δI1I2δI3I4Gs + δI1I4δI2I3Gt + δI1I3δI2I4Gu +GI1I2I3I4con . (6.1)

In this ansatz, Gs is the s-channel exchange contribution

Gs = (v1 · v2)2(v3 · v4)2

x4
12x

4
34

(
λsW2,0 + λv

(
α− 1

2

)
W3,1 + λgW4,2

)
, (6.2)

where
(
α− 1

2

)
is an SU(2)R polynomial capturing the exchange contribution of the spin-1

contribution, and λs, λv, λg are unknown parameters. The exchange Witten diagrams
W∆,` can be expressed as a finite sum of the D-functions, and formulae for computing
such diagrams can be found in appendix A of [2]. Gt and Gu are related to Gs by crossing
symmetry. We have assumed the contact part GI1I2I3I4con contains all R-symmetry and color
structures, i.e., it is a degree-2 polynomial in α after extracting the factor (v1 ·v2)2(v3 ·v4)2

and contributes to all color channels. Furthermore, we assume that the contact term
contains at most two derivatives, so that the correlator has the correct behavior in the
flat space limit. This means we have only D2,2,2,2, and x2

12D3,3,2,2 with its crossing images.
Imposing the superconformal Ward identities (2.11), we can fix all coefficients in the ansatz
up to an overall constant.16 The answer is given by

GI1I2I3I42222,gravity = RHI1I2I3I4
2222,gravity (6.3)

where

HI1I2I3I4
2222,gravity = 24(C2,2,g)2

π2

(
δI1I2δI3I4

D2,2,3,3
x2

12
+ δI1I4δI2I3

D2,3,3,2
x2

14
+ δI1I3δI2I4

D2,3,2,3
x2

13

)
.

(6.4)
The coefficient C2,2,g appears in the three-point function two O2 and the super primary of
the massless supergravity multiplet as

〈O2(x1, v1)O2(x2, v2)Og(x3)〉 = C2,2,g
(v1 · v2)2

x2
12x

2
13x

2
23
, (6.5)

14However, in these theories the super graviton exchange contributions are not of the same order as the
super gluon one-loop contributions.

15Note that supergravity multiplets of higher Kaluza-Klein levels are not exchanged in this correlator.
16Equivalently, one could also write down the ansatz in Mellin space, and then solve the ansatz by

imposing the Mellin space superconformal Ward identities [4, 11].
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and is related to the stress tensor central charge by

(C2,2,g)2 = 80
3CT

. (6.6)

Here the central charge appears in the stress tensor two-point function as

〈Tµν(x)Tρσ(0)〉 = CT
4π2x8

(
IµσIνρ + IµρIνσ −

1
2δµνδσρ

)
(6.7)

where Iµν = δµν − 2xµxν
x2 . In the theories of D3 probing F-theory singularities, the central

charge is [44]

CT = 35N2

2π2(2− ν) +O(N) (6.8)

where ν characterizes the singularity type (see foonote 9). Note an interesting feature
of (6.3) is that it does not contain a protected part. Under the twist α = 1/z or α = 1/z̄,
the four-point correlator vanishes.

Let us also express this correlator in Mellin space. The Mellin amplitude of the four-
point function is

MI1I2I3I4
2222,gravity = δI1I2δI3I4Ms + δI1I4δI2I3Mt + δI1I3δI2I3Mu (6.9)

where

Ms = −3(C2,2,g)2(v1 · v2)2(v3 · v4)2
((u− 4)2 + 2s(u− 1)α− 8α

s− 2 + (s− 4)α2
)
, (6.10)

andMt,Mu can be obtained by using crossing symmetry. This Mellin amplitude can be
further expressed in terms of a compact reduced Mellin amplitude defined from H

M̃I1I2I3I4
2222,gravity = −12(C2,2,g)2

(
δI1I2δI3I4

s− 2 + δI1I4δI2I3

t− 2 + δI1I3δI2I4

ũ− 2

)
(6.11)

where we recall ũ = u− 2 = 6− s− t.

7 Discussion and outlook

In this paper, we initiated the study of AdS gluon amplitudes at loop levels. Our main
results are the simple Mellin space formulae (4.17) and (5.22) for four-point one-loop am-
plitudes of SYM on AdS5 and AdS5 × S3. For the case of AdS5 × S3, we performed the
sums in the amplitude and obtained a closed form expression, see (5.26). These results
are reminiscent of the flat space amplitudes, with logarithms replaced by polygamma func-
tions, and reproduce the latter in the large AdS radius limit. Our work leads to a number
of natural research avenues for the future. We list some of them below.

• In this paper, we focused on the simplest one-loop amplitude with the lowest Kaluza-
Klein level ki = 2. To further explore the loop-level dynamics, we should also study
more general amplitudes with higher Kaluza-Klein levels. Computing these ampli-
tudes requires a thorough analysis of the mixing problem at the tree level which is
so far missing in the literature.
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• Relatedly, the tree-level super gluon amplitudes on AdS5×S3 was shown to display a
hidden eight dimensional conformal symmetry [25]. It would be interesting to explore
how this structure can help to organize the loop-level amplitudes.

• Recently, a double-copy-like relation was found in [45] which relates all tree-level
four-point amplitudes of AdS5×S5 IIB supergravity, AdS5×S3 SYM, and bi-adjoint
scalars on AdS5×S1. It would be very interesting to see if the tree-level relation can
be extended to the loop level as well.

• For super gluon four-point functions at O(N−2) the only loop contribution is the
one which we computed in this paper with gluons running in the loop. However, at
O(N−4) we can also have one-loop box diagrams where two internal legs are glu-
ons and the other two legs are gravitons. Since the gluons are restricted to the
eight dimensional subspace while the gravitons can propagate in the full ten dimen-
sional space, it will be particularly interesting to examine the flat space limit of this
amplitude. Presumably, it should match a ten dimensional flat space one-loop box in-
tegral where the two of the four internal propagators are confined to a codimension-2
subspace.

• It would also be interesting to extend the one-loop analysis to other backgrounds
which have AdS factors other than AdS5, and to explore the structure of one-loop
amplitudes across different spacetime dimensions. Similar supergravity one-loop four-
point amplitudes have been computed for eleven dimensional supergravity on AdS7×
S4 [20] and AdS4 × S7 [23].

• We can also apply the AdS unitarity method to compute all-loop contributions that
correspond to the iterated s-cuts in flat space, as has been done in the supergravity
case [21, 22]. However, to fully determine these higher-loop correlators knowing
just tree-level four-point functions is no longer sufficient. We would also need the
information of multi-trace operators which are encoded in higher-point correlators.
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A N = 2 superconformal blocks

For reader’s convenience, we record below the expressions for superconformal blocks which
were obtained in [38].
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Long multiplet A∆
R,( `

2 , `
2):

SA∆,R,` = (y − x)(y − x̄)PR(y)G∆+2,` (A.1)

where PR(y) is the Legendre polynomial.

Semi-short multiplet ĈR,( `
2 , `

2):

SCR,` = PR(y)
(
G2R+`+2,` + 1

4aRG2R+`+4,` + aR+`+2G2R+`+4,`+2

)
+PR−1(y) R

2R+ 1

(
G2R+`+3,`+1 + 1

4G2R+`+3,`−1 + 1
4aR+`+2G2R+`+5,`+1

)
+PR−2(y) (R− 1)R

4(2R− 1)(2R+ 1)G2R+`+4,` + PR+1(y) R+ 1
2R+ 1G2R+`+3,`+1 (A.2)

where
aR = R2

(2R− 1)(2R+ 1) . (A.3)

Short multiplet B̂R:

SBR = PR(y)G2R,0 + R

2R+ 1PR−1(y)G2R+1,1 + (R− 1)R
4(2R− 1)(2R+ 1)PR−2(y)G2R+2,0 . (A.4)

Using these expressions, it is straightforward to extract the single variable function f
and the two variable function K in the representation (2.33). In the singlet channel, we
find (2.37), (2.38) and (2.39).

B Properties of D-functions

In this appendix, we collect a few useful formulae of the D-functions. The D-functions are
defined as a four-point contact Witten diagram in AdSd+1 with no derivatives

D∆1,∆2,∆3,∆4(xi) =
∫
ddzdz0

zd+1
0

4∏
i=1

G∆i
B∂(z, xi) , G∆i

B∂(z, xi) =
(

z0
z2

0 + (~z − ~xi)2

)∆i

(B.1)

Contact diagrams with derivatives can also be expressed as D-functions with shifted weights
by using the identity

∇µG∆1
B∂∇µG

∆2
B∂ = ∆1∆2(G∆1

B∂G
∆2
B∂ − 2x2

12G
∆1+1
B∂ G∆2+1

B∂ ) . (B.2)

It is convenient to write the D-functions as functions of cross ratios by extracting a kine-
matic factor∏4

i=1 Γ(∆i)
Γ
(

1
2Σ∆− 1

2d
) 2
π
d
2
D∆1,∆2,∆3,∆4(xi) = (x2

14) 1
2 Σ∆−∆1−∆4(x2

34) 1
2 Σ∆−∆3−∆4

(x2
13) 1

2 Σ∆−∆4(x2
24)∆2

D̄∆1,∆2,∆3,∆4(U, V ) ,

(B.3)
where Σ∆ = ∑4

i=1 ∆i. The D̄-functions are independent of the spacetime dimension.
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The D-functions satisfy the derivative relations such as

D∆1,∆2+1∆3+1,∆4(xi) = d− Σ∆
2∆2∆3

∂

∂x2
23
D∆1,∆2,∆3,∆4(xi) . (B.4)

We can rewrite the relations in terms of D̄-functions and get
D̄∆1+1,∆2+1,∆3,∆4 = − ∂U D̄∆1,∆2,∆3,∆4 ,

D̄∆1,∆2,∆3+1,∆4+1 =
(

∆3 + ∆4 −
1
2Σ∆ − U∂U

)
D̄∆1,∆2,∆3,∆4 ,

D̄∆1,∆2+1,∆3+1,∆4 = − ∂V D̄∆1,∆2,∆3,∆4 ,

D̄∆1+1,∆2,∆3,∆4+1 =
(

∆1 + ∆4 −
1
2Σ∆ − V ∂V

)
D̄∆1,∆2,∆3,∆4 ,

D̄∆1,∆2+1,∆3,∆4+1 = (∆2 + U∂U + V ∂V )D̄∆1,∆2,∆3,∆4 ,

D̄∆1+1,∆2,∆3+1,∆4 =
(1

2Σ∆ −∆4 + U∂U + V ∂V

)
D̄∆1,∆2,∆3,∆4 .

(B.5)

These identities allow us to shift the weights of D̄-functions by taking derivatives. Another
set of useful identities arise from the invariance of (B.1) under permutation of operators.
It is straightforward to find

D̄∆1,∆2,∆3,∆4(U, V ) =V −∆2D̄∆1,∆2,∆4,∆3(U/V, 1/V )

= V ∆4− 1
2 Σ∆D̄∆2,∆1,∆3,∆4(U/V, 1/V )

= D̄∆3,∆2,∆1,∆4(V,U)

= V ∆1+∆4− 1
2 Σ∆D̄∆2,∆1,∆4,∆3(U, V )

= U∆3+∆4− 1
2 Σ∆D̄∆4,∆3,∆2,∆1(U, V ) .

(B.6)

Let us now focus on the special D-function with ∆i = 1. The associated D̄-function is
the well known scalar one-loop box integral in four dimensions, and evaluates to [46]

D̄1,1,1,1 ≡ Φ(z, z̄) = 1
z − z̄

(
2Li2(z)− 2Li2(z̄) + log(zz̄) log

(1− z
1− z̄

))
. (B.7)

Using this explicit formula, it is straightforward to check that in the small U expansion
(i.e., small z and fixed z̄), the logU coefficient of Φ(z, z̄) is given by

Φ(z, z̄)
∣∣
logU = log(1− z)− log(1− z̄)

z − z̄
. (B.8)

Finally, from this expression we can verify the following differential recursion relations

∂zΦ(z, z̄) =− Φ(z, z̄)
z − z̄

+ logU
(z − 1)(z − z̄) −

log V
z(z − z̄) ,

∂z̄Φ(z, z̄) =Φ(z, z̄)
z − z̄

− logU
(z̄ − 1)(z − z̄) + log V

z̄(z − z̄) .
(B.9)

These relations imply that any D̄-function obtained from D̄1,1,1,1 by using the “weight-
shifting” operators in (B.5) can be written as a linear combination of the basis functions
Φ(z, z̄), logU , log V and 1, with rational coefficients in z and z̄. This property was useful
for manipulating the tree-level correlators in position space and extracting the protected
part of correlators.
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C Flat space limit of Mellin amplitudes

Let us consider a holographic CFT in 1/c expansion. Its four-point correlators at one loop
can be reconstructed following [37] and in a wide class of examples [17, 19] they have a
remarkable structure in Mellin space, namely, the Mellin amplitudes have only simultaneous
simple poles. We consider a (partial)-Mellin amplitude of such a form

M(s, t) =
∑
m,n

cmn
(s− 2m)(t− 2n) (C.1)

where cmn has the following large m,n behavior

cmn = (mn)D2 −3

(m+ n)D2 −2
+ · · · . (C.2)

We would like to obtain the flat space limit of M(s, t), defined as the limit where s, t
become large. Naively, we would expect M(s, t) ∼ 1/(st). However, this behavior is
enhanced provided ∑

m,n

(mn)D2 −3

(m+ n)D2 −2
= divergent, (C.3)

which happens for D > 4. In this case, the leading contribution to the Mellin amplitude
at large s, t arises from the region with large m,n ∼ s, t, and the Mellin amplitude in the
flat space limit is well approximated by

Mflat(s, t) =
∫ ∞

0
dmdn

(mn)D2 −3

(m+ n)D2 −2
1

(s− 2m)(t− 2n) . (C.4)

Note that this integral is real and finite for s, t < 0 and 4 < D < 6. We can compute
Mflat(s, t) in this region, and then analytically continue it to other regions. This integral
can be performed as follows. First, we perform the integral over m to obtain

Mflat(s, t) = −
∫ ∞

0
dn

2nD2 −3
2F1

(
1, D−4

2 ; D−2
2 ; 2n

t + 1
)

(D − 4)t(2n− s) . (C.5)

The integral over n can be performed by first using the integral representation for the
hypergeometric function

2F1(a, b; c; z) = Γ(c)
Γ(b)Γ(c− b)

∫ 1

0
dζζb−1(1− ζz)−a(1− ζ)c−b−1 (C.6)

and then integrating over n and over ζ, in that order. The result appears to be quite
complicated, but using standard identities for hypergeometric functions it can be written
in the following compact form

Mflat(s, t) =
π
(
s2(−t)D/2 2F1

(
1, D2 −2; D2 −1; s+ts

)
+ t2(−s)D/2 2F1

(
1, D2 −2; D2 −1; s+tt

))
2D2 −3(D − 4) sin

(
πD
2

)
s3t3

(C.7)
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where the analytic continuation s→ s+ iε, t→ t+ iε is understood. We see that Mflat(s, t)
is a function of s/t up an overall factor

Mflat(s, t) ∼
sD/2−3

t
f(s/t) (C.8)

which indeed displays an enhanced behavior with respect to 1/(st) for D > 4. Furthermore,
up to an overall coefficient, Mflat(s, t) exactly agrees with the flat space massless scalar
box integral in D dimensions

Mflat(s, t) =
2D2 −3Γ

(
D−3

2

)
√
π

I
(D)
box (s, t) (C.9)

where

I
(D)
box (s, t) = Γ

(
4− D

2

)∫ 1

0

4∏
i=1

daiδ

( 4∑
i=1

ai − 1
)

(−sa1a3 − ta2a4)
D
2 −4 . (C.10)

In summary, the partial Mellin amplitude (C.1) with the behavior (C.2) reduces to the
D-dimensional massless scalar box integral in the flat space limit.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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