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1 Introduction and summary

Within the web of recent Quantum Gravity Conjectures, reviewed in [1, 2], the Swampland
Distance Conjecture [3] plays a central role. It postulates that as one approaches a point at
infinite distance in the moduli space of any theory of quantum gravity, a tower of infinitely
many states becomes asymptotically massless. The resulting breakdown of the original
effective theory explains microscopically why the critical point is located at infinite distance
in moduli space. In the context of a gauge theory, the infinite tower of states becoming light
in the weak coupling limit includes states that satisfy the Weak Gravity Conjecture [4], thus
linking the two conjectures quite directly [5–7] (see also [8, 9]). This has been confirmed
by detailed investigations of the towers of massless states appearing at infinite distance
in string theory [10–18]. The arguments do in general not rely on BPS properties of the
particles [11, 12, 15] and hence even apply to theories with N = 1 supersymmetry in
four dimensions, as analyzed in [15, 19]. Refined versions of the Swampland Distance
Conjecture [7, 20], examined further in string theory in [21], have potentially important
consequences for cosmological models relying on super-Planckian excursions of scalar fields.
Emergent towers of states have been proposed in [22] as a rationale behind the recent de
Sitter conjectures [23] at weak coupling. An extensive account of the role of such towers
of states, along with a survey of the recent literature, can be found in [2].

A celebrated result in string theory [24] is the logarithmic divergence of gauge cou-
plings in four-dimensional string compactifications, which arises from a finite number of
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states becoming massless at special finite distance points in moduli space. By contrast, in
a situation at infinite distance, an infinite number of states is supposedly becoming asymp-
totically massless. As a result the logarithmic divergence can turn into a polynomial one.
This phenomenon is tied to the idea of emergence [2, 10, 25–27]: the fields whose inverse
couplings diverge at the infinite distance point are understood as a collective phenomenon
associated with the appearance of a tower of massless states. Specifically, for a gauge field
that becomes weakly coupled at infinite distance, one may in principle successively inte-
grate in the infinite tower of states as one passes to higher and higher energy scales. The
effect is to make the gauge field eventually strongly coupled and disappear as a fundamental
field at high energies [2]. Such behaviour by itself is not limited to four dimensions.

What has been studied in great detail in the literature up to this point is the infinite
distance regime in moduli space near the weak coupling limit of some gauge field, which is
a 1-form potential. The resulting nearly massless tower of states a priori refers to particles
that are charged under this gauge field and contribute to the renormalization of the gauge
coupling. This manifestation of emergence is tied to a gauge subsector and the respective
charged particles.

In this note we widen the scope of emergence and systematically analyze the weak
coupling regime for 2-form gauge potentials. The most natural setting for such theories is
in six dimensions, which is the focus of this work.1 Since 2-forms couple to strings, the
tower of states associated with them are not just certain charged fields, but the whole string
excitation spectrum. Within the framework of string theory, six-dimensional theories with
2-forms can be constructed by compactifying Type IIB strings on complex 2-folds, denoted
by B2. If B2 is a K3 surface, the theory preserves 16 supercharges and corresponds to
an effective N = (2, 0) supergravity theory. On suitably curved Kähler surfaces, extra
7-branes are needed for consistency and supersymmetry is broken to N = (1, 0). Models
of the latter type fall into the framework of F-theory [49–51]. By duality, the latter type
of theories may also be described in terms of heterotic strings, but our starting point will
be the Type IIB/F-Theory perspective.

One of our main results is that for such six-dimensional Type IIB or F-Theory theories,
any weak coupling limit of some 2-form gauge potential leads to a tensionless solitonic
string which couples precisely to that weakly coupled 2-form. As we will see, this string
corresponds to a weakly coupled, critical fundamental string. The weak coupling limit of
the 2-form hence forces, in a sense, the change to a new duality frame, in terms of which
most excitations of the original perturbative string decouple from the low energy spectrum,
while the excitations of the new fundamental string become light. The degenerations
required to take the weak coupling limit occur on the boundary of the Kähler moduli
space.2 As we will show, the weak coupling limit of the 2-form potential inevitably requires
the shrinking of a curve of vanishing self-intersection. The asymptotically tensionless string
then arises as a soliton obtained by wrapping a D3-brane along this shrinking cycle.

1In four dimensions, 2-forms are dual to axionic fields, and Quantum Gravity Conjectures such as
generalizations of the Weak Gravity Conjecture and others may have important implications e.g. for the
structure of instanton corrections [20, 21, 28–48]. The recent [17] studies such instanton corrections in the
context of emergence and the Swampland Distance Conjecture.

2For K3 this is true as long as we focus on attractive K3s as will be explained in section 3.
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As mentioned above, the objects which become mass- or tensionless in such weak cou-
pling limits are not just strings per se, but these come together with the entire tower of their
particle excitations (as viewed from the dual, perturbative frame). The only other potential
source of nearly massless states are Kaluza-Klein excitations of these string states, which
may arise if in the infinite distance limit some submanifold of the compactification space si-
multaneously becomes large. We will show that this in fact happens generically; the Kaluza-
Klein scale of these states turns out to be linked to the new fundamental string scale, but
it is relatively suppressed by the volume V of the internal space B2. To the extent that the
volume is kept fixed so as to keep gravity dynamical, both towers of states become massless
in the same large distance limit. Thus for fixed V, there is no regime where a Kaluza-Klein
tower is the only tower becoming light, and in this sense no new dimensions open up in the
effective field theory. The appearance of a tensionless string is crucial for this behaviour.

Our observations appear interesting also from the perspective of the purported phe-
nomenon of emergence: the computational challenge behind providing evidence for this
proposal is to show how the tower of light states reproduces the observed singularities
in the couplings of the effective theory at infinite distance. This has been demonstrated
qualitatively in various explicit string realizations [10, 11, 13, 14, 26, 27], without detailed
knowledge of the contributions of the nearly massless states at each mass level. On the
other hand, for the types of large distance limits that we will discuss in this note, emergence
is manifest: the perturbative effective theory at large distance is by definition the result of
integrating out the full tower of fundamental string excitations and of Kaluza-Klein excita-
tions. In the weak coupling limit, non-perturbative effects play no role. The states which
become light are precisely the fundamental string excitations plus their Kaluza-Klein tower
in the new duality frame — be it the dual heterotic or the dual Type IIB frame. Inte-
grating out these states is guaranteed, by construction, to exactly reproduce the effective
supergravity couplings.

To appreciate the role of the emergent strings, it is fruitful to compare the situation for
Type IIB/F-theory to the corresponding situation in Type IIA/M-theory. The analogous
question to study is the weak coupling limit for 1-form gauge potentials of M-theory on
K3. The limit is again controlled by the Kähler parameters, at least as long as we focus
on attractive K3s. In such cases the weak coupling limit will be found to be identical to
taking the F-theory limit. More specifically, the tower of asymptotically massless states
are now particles (with no strings attached), which arise from M2-branes that wrap a
shrinking curve. As we will show, the shrinking curve corresponds to a genus-one fiber
within the attractive K3. This is a consequence of the geometry of the weak coupling
limit even without further assumptions on the details of an elliptic fibration structure.3
Interpreting these states as Kaluza-Klein states of a dual F-theory on S1, one encounters
an extra dimension unfolding in the weak coupling limit. Interestingly, the unfolding of
an extra dimension has also been argued in [52] to be a consequence of a strong version
of the scalar gravity conjecture [53]. By contrast, for the Type IIB version of the Kähler

3The F-theory limit of shrinking fiber volume for elliptically fibered Calabi-Yau 3-folds has been studied
in [14] as a special case within a more general analysis of infinite distance singularities in Kähler moduli
space.

– 3 –



J
H
E
P
0
2
(
2
0
2
2
)
0
9
6

moduli degeneration we consider here, where certain 2-forms become weakly coupled in
the presence of gravity and tensionless strings emerge, the large distance limit is physically
very different and, in particular, no extra dimension opens up, in the sense described above.

In summary, the main results of our analysis of weak coupling limits of 2-forms are as
follows:

• In section 2 we will show that in N = (1, 0) supersymmetric F-theory compactifi-
cations to six dimensions, tensionless heterotic strings emerge in the weak coupling
limit of 2-forms. This is closely related to our previous work [11, 12] which was aimed
at weakly coupled gauge fields.

• The main body of our work is in section 3, where we consider six-dimensional com-
pactifications of Type IIB strings with N = (2, 0) supersymmetry. Out of the five
possible large distance limits (two of which are trivial), we will focus on one par-
ticular of such limits, and find that the tensionless string that arises is again dual
to the Type IIB string, probing some elliptically fibered K3 surface. Thus, in some
sense, the theory reproduces itself at large distance, upon a change of duality frame.
This yields a six-dimensional analog of the famous picture of the moduli space of 10-
dimensional M-theory, where all large distance limits correspond to emerging weakly
coupled strings (except, of course, for 11-dimensional supergravity). This is consis-
tent with the intuition that a gravitational theory with a weakly coupled 2-form must
be a theory of critical, fundamental strings.

• In section 4 we contrast the previous analysis with M-Theory compactifications to
seven dimensions. Here we see that in the respective large distance limits, towers of
asymptotically massless particles arise, which are associated with an emerging extra
dimension rather than with a tensionless string in the same number of dimensions.

• A similar picture of an emerging fundamental string governs at least some of the weak
coupling limits also for F-theory/Type IIB compactifications to four dimensions, as
we briefly sketch in section 5.

Note added. While this work was readied for publication, we received [17] and [18],
which partially overlap with our results in that they study aspects of large distance limits in
relation to tensionless strings and instantons in four-dimensional string compactifications.

2 Emergent heterotic string from 6d F-theory

We begin by analyzing weak coupling limits for 2-form potentials in general six-dimensional
F-theory compactifications with N = (1, 0) supersymmetry. The main result of this section
can be summarized as follows:

Claim 1 Consider a limit where some 2-form gauge potential in F-theory compactified to
six dimensions becomes asymptotically weakly coupled, while gravity is kept dynamical. This
limit is at infinite distance in Kähler moduli space, and there emerges an asymptotically
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tensionless heterotic string, which is charged under the weakly coupled 2-form potential in
question. The weak coupling limit corresponds to a change of duality frame to the one of a
perturbative heterotic string.

The relevant limit in Kähler moduli space will be found to be identical to the weak
coupling limits for 7-brane gauge theories in F-theory studied already in [11, 12]. The new
aspects of the discussion in this section refer to the relation of this degeneration limit to the
weak coupling regime of 2-form fields. It furthermore paves the way for an understanding
of the weak coupling limits of Type IIB strings on K3 surfaces, which will be studied in
section 3.

2.1 Geometric setup

Consider compactifications of F-theory to six dimensions [49–51]. The compactification
space is given by a Calabi-Yau threefold, which is an elliptic fibration over some Kähler
surface B2 with non-trivial anti-canonical bundle, K̄B2 .4 The low-energy effective theory is
described by a six-dimensional, chiral N = (1, 0) supergravity theory. The various 2-form
gauge potentials result from the dimensional reduction of the Type IIB Ramond-Ramond
4-form, C4, with respect to some basis of harmonic (1, 1) forms on B2:

C4 = Bα ∧ ωα , ωα ∈ H1,1(B2) . (2.1)

The dual basis {ωα} of curve classes on B2, defined via ωα · ωβ = δαβ , is related to {ωα} as

ωα = Ωαβωβ . (2.2)

Here Ωαβ = ωα · ωβ is the inverse of the intersection form

Ωαβ = ωα · ωβ ≡
∫
B2
ωα ∧ ωβ . (2.3)

The volume of B2 is computed in terms of the Kähler form

J = jαωα (2.4)

as
V = 1

2J · J , (2.5)

and throughout this article we keep V at a fixed value to ensure that gravity remains
dynamical. The kinetic terms for the collection of 2-form fields Bα,

Skin =
∫
R1,5

M4
Pl

2
√
−gR− 2π

4

∫
R1,5

gαβ dB
α ∧ ∗dBβ + . . . with M4

Pl = 4πV , (2.6)

are then controlled by the following coupling matrix:

gαβ =
∫
B2
ωα ∧ ∗ωβ = jαjβ

V
− Ωαβ . (2.7)

4For an introduction to some of the techniques used to describe such backgrounds, we refer e.g., to [54, 55]
and references therein.
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The pseudo-action (2.6) follows by dimensional reduction from the 10d action in the Ein-
stein frame with `s ≡ 1. Note that (2.7) is an immediate consequence of the fact that on
a Kähler surface of volume V

∗ ωα = J · ωα
V

J − ωα . (2.8)

As usual for six-dimensional N = (1, 0) supergravity, the gauge invariant field strengths,
Hα, derived from the 2-form potentials Bα, are subject to the self-duality condition

gαβ ∗Hβ = ΩαβH
β , (2.9)

where the field strengths involve in addition suitable Chern-Simons terms which are respon-
sible for the correct cancellation of local anomalies. Details can be found e.g. in [56] and
in the references therein.

The 2-form gauge potentials couple to effective strings in R1,5 which arise from D3-
branes which wrap holomorphic curves on B2. To discuss this, it is useful to introduce
another basis of curve classes

CI = CIα ω
α , (2.10)

and their dual divisors CJ = CαJ ωα such that CI ·CJ = δIJ . We will also need the intersection
form

ΩIJ = CI · CJ = CαI C
β
JΩαβ , (2.11)

as well its inverse, ΩIJ , in order to lower and raise the I index.
In terms of these, the coupling of the 2-forms to the string obtained by wrapping a

D3-brane along the curve CI derives from the D3-brane Chern-Simons couplings as follows:

SCS = 2π
∫
R1,1×CI

C4 = 2π
∫
R1,1×B2

(Bα ∧ ωα) ∧ (CIβ ωβ) (2.12)

=: 2π
∫
R1,1

BI . (2.13)

Here, the 2-forms BI are related to the fields Bα as

BI = CIαB
α . (2.14)

The matrix gIJ of kinetic terms associated with these linear combinations BI is then
obtained by equating

Skin = −2π
4

∫
R1,5

gαβ dB
α ∧ ∗dBβ = −2π

4

∫
R1,5

gIJdB
I ∧ ∗dBJ , (2.15)

which yields
gIJ = CαI C

β
J gαβ = 1

V
(J · CI)(J · CJ)− CI · CJ . (2.16)

As long as the divisors CI are effective, the matrix gIJ depends on the volumes of CI via

vol(CI) = J · CI . (2.17)

Note however that the expression (2.16) holds also for more general divisor classes, irre-
spective of whether they admit a holomorphic representative.

– 6 –



J
H
E
P
0
2
(
2
0
2
2
)
0
9
6

2.2 Weak coupling limit for 2-form potentials

With this preparation we can now analyse the possible weak coupling limits for the 2-form
potentials, BI , under the side condition that gravity is not decoupled. On general grounds,
a tensor field can only be weakly coupled if it is a linear combination of a self-dual and anti-
self-dual tensor field. Sten-dimensionalix-dimensional N = (1, 0) supergravity contains one
self-dual tensor, which is part of the gravity multiplet, along with nT anti-self-dual tensors
in tensor multiplets. A weak coupling limit must thus single out some linear combination
of anti-self-dual tensors to combine with the gravitensor to form the desired weakly coupled
tensor field, T. In a suitable basis, its kinetic terms can be written as

Skin =
∫
R1,5

M4
Pl

2

√
−|g|R−2π

4
(
S2 dT ∧ ∗dT + S−2 dT̃ ∧ ∗dT̃

)
+. . . for S →∞ . (2.18)

Here S can be interpreted as a “dilaton” that couples to the weakly coupled tensor field T
and determines its inverse gauge coupling. On the other hand, the dual tensor T̃, defined
by5

d(T + . . .) = S−2 ∗ d(T̃ + . . .), (2.19)

becomes strongly coupled in the limit S → ∞. Note that in this limit, the remaining
anti-self-dual tensors do not mix with T nor with T̃.

To identify such a limit for the system of tensor fields in (2.15), we analyze the matrix of
gauge kinetic terms, gIJ , for the 2-form gauge fields, BI . In order for a weak coupling limit
for (at least) one linear combination of potentials to be attained, (at least) one eigenvalue
of gIJ must tend to infinity. At the same time, we must keep the volume of the base, B2,
fixed as in (2.5), in order to keep gravity dynamical. This means that there must exist at
least one divisor class, C, for which

J · C →∞ , with 1
2J · J = V fixed . (2.20)

This type of geometric degeneration limit coincides precisely with the type of infinite dis-
tance limits that were analyzed in full generality in refs. [11, 12]. The motivation of [11, 12]
to study this limit was a priori independent of the goal of the present paper: these refer-
ences consider the weak coupling limit for 1-form gauge fields localised on 7-branes that
wrap certain divisors, C, of B2. The inverse coupling of these gauge theories is proportional
to J · C, and therefore (2.20) governs their weak coupling limit as well. We thus see that
the same geometric limit also governs the weak coupling regime of the 2-form potentials,
whose inverse coupling matrix is given by (2.16).

It was shown in [11, 12] that whenever a limit of the form (2.20) can be taken, the
Kähler form must behave asymptotically as

J = tJ0 +
∑
i

ai
2tJi for t→∞ , (2.21)

5The dots stand for the Chern-Simons corrections to the field strength, which play no role for us. They
will be omitted in the sequel.
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where J0 and Ji are generators of the Kähler cone and C · J0 6= 0. Here J0 is singled
out as the generator of the Kähler cone whose coefficient scales to infinity, which is thus
responsible for the volume of some curve class to diverge. As proven in [11], eq. (2.21)
is the most general ansatz that realises the limit (2.20). In order for the base volume to
remain finite in the limit t→∞, as in (2.5), the Kähler generators J0 and Ji must satisfy

J0 · J0 = 0 ,
∑
i

ai
2 Ji · J0 = V +O(1/t2) , (2.22)

where ai are parameters that stay finite in the limit t→∞.
An important property of the asymptotic behavior (2.21) is that the class associated

with J0 necessarily contains a holomorphic, rational curve

C0 := J0 with C0 · C0 = 0 , (2.23)

whose volume vanishes in the limit as

vol(C0) =
∑
i

ai
2tJi · J0 = V

t
+O(1/t3) for t→∞ . (2.24)

This implies that a D3-brane wrapping this curve C0 gives rise to a solitonic string in R1,5

with tension
TC0 = 2π vol(C0) = 2πV

t
+O(1/t3) , (2.25)

in the frame defined via (2.6).
Before giving an interpretation of this solitonic string in section 2.3, we now show

that it becomes weakly coupled in the tensionless limit. Viewing the string as the object
charged under some given, definite linear combination of 2-forms, it becomes weakly cou-
pled whenever the diagonal kinetic term (2.16) of the relevant 2-form diverges and there
is no significant kinetic mixing involving this 2-form. To check this explicitly, consider the
following basis of curve classes

{CI} = {C0 := J0, Ci := Ji} . (2.26)

Note that we are only using the property that C0 contains a holomorphic curve class, as
established in [11], while the remaining classes, Ci, need not have this property. We are
interested in the kinetic terms for the linear combination B0 of 2-forms that couples to C0

as shown in (2.12). In particular, we need to analyze the limit t→∞ of the kinetic terms
g00 and g0i, where gIJ is defined in (2.16).

To this end, introduce the following dual basis of divisors CI which has the properties

C0 · C0 = 1 , Ci · C0 = 0 , C0 · Ci = 0 , Ci · Cj = δji . (2.27)

In the limit (2.21),

J · C0 = tJ0 · C0 +
∑
i

ai
2tJi · C0 = t , (2.28)

J · Ci = tJ0 · Ci +
∑
j

aj
2t Jj · Ci = ai

2t , (2.29)
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where we used (2.26). As a result, the metric (2.16) becomes

g00 = t2

V
− C0 · C0 , g0i = ai

2V − C0 · Ci (2.30)

gij = aiaj
4Vt2 − Ci · Cj . (2.31)

In the limit t → ∞, the mixing of the 2-form B0 with the remaining 2-forms becomes
negligible in the sense that g0i/g00 → 0. Together with the fact that g00 ∼ t2 → ∞, this
guarantees that the string associated with C0 becomes weakly coupled. Importantly, the
remaining kinetic couplings, gij , stay finite in the limit t → ∞, and do not exceed values
of order one. This means that in the specific basis we have chosen, {ωα} = {J0, Ci}, B0 is
the only 2-form gauge field that becomes weakly coupled as t→∞, while all other linear
combinations of fields Bi become strongly coupled.

To make contact with (2.18) and (2.19), we fist recall that the split of 2-form potentials
into self-dual and anti-self-dual tensors can be found by diagonalizing the duality matrix,6

DI
J := (g−1)IKΩKJ = 1

V
(J · CI)(J · CJ)− δIJ , (2.32)

which obeys
∗HI = DI

JH
J . (2.33)

Then, in an appropriate basis of curves, {C ′I}, the duality matrix can be taken in a diagonal
form,

D′IJ = diag(+1,−1,−1, · · · ,−1) . (2.34)

Upon a further change of basis one can find another basis of curves, {C ′′I}, with respect
to which the duality matrix takes the form

D′′IJ =



0 S−2 0 · · · 0
S2 0 0 · · · 0
0 0 −1 · · · 0
...

...
... . . . ...

0 0 0 · · · −1


. (2.35)

Correspondingly, the set of 2-forms, {B′′I}, comprises T, T̃, plus the remaining anti-self-
dual 2-forms, B(−)

i=2,··· ,nT
. The form of (2.30) guarantees that in this latter basis,

C ′′0 = C0 +O(1/t) := J0 +O(1/t) . (2.36)

We can hence identify the weakly coupled tensor and its associated coupling parameter as

T = B0 +O(1/t) , S = t√
V
. (2.37)

6A detailed discussion of the split of 2-form potentials into self-dual and anti-self-dual tensors can be
found in section 2 of [57].
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Most importantly, the string from the D3-brane wrapping C0 is identified with a weakly
coupled string, S, whose tension satisfies the relation

TS
M2

Pl
=
√
πS−1 . (2.38)

The existence of this tensionless string in the weak coupling limit is in agreement with
expectation from the Swampland Distance Conjecture. Even though we have not explicitly
constructed it in full generality, it is clear that the D3-brane on the curve C ′′1 gives rise to
a dual string, S̃, with tension

TS̃
M2

Pl
=
√
πS . (2.39)

This can be confirmed by investigating explicit examples.

2.3 Emergent heterotic string at weak coupling

As discussed in our previous work [11], the correct interpretation of the tensionless string is
that it takes the role of the weakly coupled heterotic string in a new duality frame, that is:

F-theory on B2
limit (2.21), (2.22)=⇒ Heterotic on K3 withS2

het := Vhete
−Φhet = t2

V
.

(2.40)
Indeed, an analysis of the N = (0, 4) supersymmetric worldsheet theory of the solitonic

string from the D3-brane wrapped on C0 identifies it with the critical heterotic string
compactified to six dimensions [11] on a certain K3 surface. This realizes the well-known
phenomenon that the critical heterotic string can be viewed as a soliton [58] and serves as
the microscopic rationale behind standard F-theory-heterotic duality [49–51]. The novel
insight of our analysis is that a weak coupling limit for any 2-form in F-theory inevitably
realises a version of this duality: in the limit (2.21) the theory switches duality frame
from the original Type IIB/F-theory frame to a dual heterotic frame, where the role of the
fundamental string is played by the solitonic string associated with C0.

This implies that in the duality frame defined by the weakly coupled string, the specific
linear combination T = B0 of 2-forms to which this string couples plays the role of the
“universal” 2-form Kalb-Ramond field B that couples to the fundamental string. To set
the notation, recall that dimensional reduction to six dimensions on K3 of the heterotic
10d Einstein frame action (with `het ≡ 1) yields

S
(E)
het,6d =

∫
R1,5

(
M4

Pl
2
√
−gR− 2π

4 (S2
hetdB ∧ ∗dB + S−2

hetdB̃ ∧ ∗dB̃)
)
, (2.41)

where
M4

Pl = 4πVhet , S2
het = Vhet e

−Φhet . (2.42)

We have written the kinetic terms in a democratic fashion by introducing the “magneti-
cally” dual field, ∗dB̃ = S2

hetdB. It couples to a dual string which arises as an NS5-brane
wrapping the K3 on the heterotic side. Since we have kept the physical Planck mass fixed
in taking the weak coupling limit on the F-theory side, the volume of the dual heterotic
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K3 surface emerging as the weakly coupled description must equal the volume of B2 on
the F-theory side,

Vhet = V . (2.43)

The identification (2.40) then follows by identifying the tension of the fundamental heterotic
string in the above frame,

TFhet

M2
Pl

=
√
π
eΦhet/2
√
V

=
√
πS−1

het , (2.44)

with the tension of the asymptotically weakly coupled string, S, obtained on the F-theory
side:

S = Shet → eΦhet = V
2

t2
. (2.45)

To summarize, whenever we take a weak coupling limit for some (linear combination
of) 2-form potentials in F-theory, which we denote by B0 ≡ T, while keeping gravity
dynamical, a tensionless, weakly coupled string S arises, which is dual to a heterotic string
propagating in six dimensions. The 2-form potential under which this string is charged is
precisely the 2-form B0 which becomes weakly coupled. The theory is then best described
by switching the duality frame to the frame where the asymptotically weakly coupled string
acts as the fundamental string, and where B0 takes the role of the heterotic Kalb-Ramond
2-form potential.

Since in the weak coupling limit the heterotic string becomes tensionless, all its exci-
tation modes become massless. Integrating out these modes reproduces the perturbative
supergravity effective action. In this sense, the running of the coupling constants in the
effective action is emergent: it can either be understood from the perspective of the origi-
nal supergravity theory, or by integrating out the full tower of asymptotically light modes
arising from the emergent fundamental (here, heterotic) string.

Note that in addition to the modes of the nearly tensionless string, the theory poten-
tially contains an extra tower of Kaluza-Klein modes, which are simply the Kalzua-Klein
modes of the nearly tensionless string along any submanifold that simultanously happens
to become large in the limit (2.21). We will elaborate further on this point at the end of
section 3.4, where we will encounter a similar emergence of a fundamental string, together
with a Kalzua-Klein tower, in the weak coupling limit of a different theory.

3 Emergent fundamental strings from Type IIB strings on K3

In this section we analyze the weak coupling limit for 2-form potentials of Type IIB string
theory compactified on an “attractive” K3 surface.7 Our main result is summarised in

Claim 2 Consider a certain limit where a 2-form gauge potential in Type IIB string theory
compactified on an attractive K3 becomes asymptotically weakly coupled, while gravity is
kept dynamical. In this limit, there emerges an asymptotically tensionless solitonic string
which is charged under the weakly coupled 2-form potential. Via duality it corresponds to
a critical Type IIB string propagating on an elliptic K3 surface.

7We will explain this notion further below.
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Thus, in a sense the theory reproduces itself in the duality frame relevant at infinite
distance in moduli space, which is of considerable significance for the proposal of emer-
gence [2, 10, 25–27].

3.1 Large distance limits in the moduli space M(5,21)

Type IIB string theory compactified on a K3 surface is approximated, at low energies, by an
effective 6d supergravity theory with N = (2, 0) supersymmetry. Many important proper-
ties of K3 surfaces as probed by Type IIB string theory can be found in [59] and references
therein. The bosonic part of the gravity multiplet of 6d N = (2, 0) supergravity contains
the metric degrees of freedom as well as five self-dual tensors B(+)

i , i = 1, . . . 5, which trans-
form as 5 of the R-symmetry group Sp(4). The remaining degrees of freedom organize into
tensor multiplets, each of which containing, at the bosonic level, one anti-self dual tensor
along with 5 real scalars. For Type IIB string theory on K3, there are altogether 21 such
tensor multiplets, into which the 105 moduli fields organize. This 105 dimensional, non-
perturbative moduli space of Type IIB string theory on K3 can be written as the coset space

M(5,21) = O(Γ5,21)\O(5, 21)/O(5)×O(21) , (3.1)

where O(Γ5,21) represents the discrete U -duality group of the theory.
The total of 26 self-dual or anti-self-dual tensor fields of the theory arise as follows:

the 10d Kalb-Ramond field B2 and the Ramond-Ramond cousin C2 give rise to a 6d tensor
field each, which is neither self-dual nor anti-self-dual and is accompanied by its respective
dual counterpart, B̃2 and C̃2. In addition, the theory contains h2(K3) = 22 massless
self-dual or anti-self-dual tensor fields, BA, which arise from dimensional reduction of the
Ramond-Ramond 4-form C4 field via

C4 = BA ∧ ωA , ωA ∈ H2(K3,R) , A = 1, . . . , 22 . (3.2)

Our interest is in the general structure of the possible weak coupling limits for the
tensor fields at infinite distance in moduli space. The moduli space (3.1) contains five non-
compact directions, which we parametrize by moduli Si, i = 1, . . . , 5. Moving to infinite
distance along any of these five directions gives rise to a generally different weak coupling
limit.8 Each of the five non-compact scalars Si sits in a separate tensor multiplet. The as-
sociated anti-self-dual 2-forms, B(−)

i , i = 1, . . . , 5, pair up with the 5 self-dual tensors in the
gravity multiplet, B(+)

i , to produce a six-dimensional 2-form tensor field Ti (which is neither
self-dual nor anti-self-dual), plus its dual, T̃i. In a given weak coupling limit parametrized
by Si, the tensor field Ti becomes weakly coupled (resp. its dual, T̃i, in the opposite limit).

More specifically, let us fix our notation by taking the kinetic terms for the given
weakly coupled system of tensors to be

S6d =
∫
R1,5

(1
2M

4
Pl

√
−|g|R− 2π

4 (S2
i dTi ∧ ∗dTi + S−2

i dT̃i ∧ ∗dT̃i) + . . .

)
(3.3)

8Note that for taking such limits, one must specify how precisely the boundary ofM(5,21) is approached.
We will come back to this point below.
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Figure 1. Dynkin Diagram of the U -duality group SO(5, 21), which encodes the non-perturbative
moduli spaceM(5,21), as per ref. [60]. The black dots denote five non-compact directions in which
one can take large distance limits. The directions V1 and V2 correspond to the standard limits of
weak 10d dilaton and large volume, respectively. Note that the basis of the Vi is not the same as
the basis of Si which correspond to the weak coupling limits of 2-forms that we consider.

with
∗ dTi = S−2

i dT̃i (3.4)
and no significant kinetic mixing of the weakly coupled tensor Ti with the other tensor
fields in the limit Si →∞. This corresponds to the conventions

Si →∞ : Ti becomes weakly coupled , i = 1, . . . , 5 , (3.5)
S−1
i →∞ : T̃i becomes weakly coupled , i = 1, . . . , 5 . (3.6)

As Si →∞, the string Si to which Ti couples “electrically” becomes tensionless, while the
dual string S̃i, to which T̃i couples, becomes heavy. That is, the scalar Si is related to the
tension of the string Si that couples electrically to Ti in the following way:

TSi/M
2
Pl =

√
π S−1

i (3.7)
TS̃i

/M2
Pl =

√
π Si. (3.8)

The division by the squared Planck mass normalizes the tension of the strings with respect
to the six-dimensional Planck scale, and the numerical factors are chosen such that the
tension of the string and its dual satisfy the canonical relation

TSiTS̃i
= πM4

Pl . (3.9)

The possible non-compact limits of the moduli space M(5,21) in (3.1) have been ana-
lyzed in [60] in terms of splitting the Dynkin diagram of SO(5, 21) into pieces by removing
the respective relevant black dots [61] (see figure 1). This analysis mostly focused on the
resulting moduli spaces but not on tensionless strings that may arise in the various limits.
The point of our work is to analyze the appearance of tensionless strings from the view-
point of dually weakly coupled tensionless Type IIB strings, in agreement with the idea of
emergence.

For two out of these five possible weak coupling limits, the appearance of tensionless
strings is evident, because these limits are nothing but the standard limits for the six-
dimensional 2-form tensor fields that descend from the various ten-dimensional tensor fields.
More specifically, let us fix our conventions by starting from the ten-dimensional action in
the Einstein frame, with `s ≡ 1,

SE
10d = 2π

∫
R1,9

(√
−|g|R− 1

2e
−ΦdB2 ∧ ∗dB2 −

1
2e

ΦdC2 ∧ ∗dC2 −
1
4dC4 ∧ ∗dC4 + . . .

)
,

(3.10)
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in terms of which the tensions of the various branes read

TDp = 2πeΦ ( p+1
4 −1) , Φ : 10d Einstein frame dilaton (3.11)

TF1 = 2πeΦ/2 , TNS5 = 2πe−Φ/2 . (3.12)

Then, after compactifying on a K3 surface with volume V, the relevant part of the action is

SE
6d =

∫
R1,5

(1
2M

4
Pl

√
−|g|R− 2π

4 (S2
2dB2 ∧ ∗dB2 + S−2

2 dB̃2 ∧ ∗dB̃2) (3.13)

−2π
4 (S2

1dC2 ∧ ∗dC2 + S−2
1 dC̃2 ∧ ∗dC̃2) + . . .

)
(3.14)

with
M4

Pl = 4πV , S2 = e−Φ/2√V , S1 = eΦ/2√V . (3.15)

We have expressed the kinetic terms in a democratic fashion by employing the dual fields B̃2
and C̃2, which arise from the ten-dimensional six-form fields, B6 and C6, and which satisfy:

∗ dB2 = S−2
2 dB̃2 , ∗ dC2 = S−2

1 dC̃2 . (3.16)

The properly normalised tensions9 of the F1 and D1 strings and of their magnetic duals,
F̃1 and D̃1, are then

TF1
M2

Pl
=
√
π
eΦ/2
√
V
≡
√
π S−1

2
TF̃1
M2

Pl
=
√
π

√
V

eΦ/2 ≡
√
π S2 , (3.17)

TD1
M2

Pl
=
√
π

1
eΦ/2
√
V
≡
√
π S−1

1
TD̃1
M2

Pl
=
√
πeΦ/2√V ≡

√
π S1 . (3.18)

Thus S2 →∞ is the weak coupling limit for the six-dimensional field B2 (or strong coupling
limit for its dual B̃2), as follows from the kinetic terms in (3.13). Consistently, the funda-
mental string S2 ≡ F1 becomes asymptotically tensionless, while its “magnetically” dual
string, F̃1, becomes heavy and decouples. On the other hand, the tension of the D1/D̃1
string system, compared to the F1/F̃1 string system, depends on the priori independent
value of

eΦ ≡ S1
S2

=: V1 . (3.19)

If we keep S1 fixed and finite, we have that eΦ ≡ S1
S2
� 1 as S2 →∞, and so the F1 string is

indeed the lightest string and can be properly viewed as the fundamental Type IIB string.
Conversely, in the weak coupling limit of the field C2, where S1 → ∞, the string

S1 ≡ D1 becomes light and eventually tensionless, while its dual D̃1 decouples. As long as
we are in the geometric regime, where the volume

V ≡ S1 S2 =: V2 (3.20)
9Alternatively we can preform a 6d Weyl rescaling to bring the Einstein-Hilbert term into the form

1
2

∫
R1,5
√
−gR. The resulting rescaling of the string tensions corresponds to division by M2

Pl in (3.17). Note
furthermore that Φ refers to the dilaton in the 10d Einstein frame.
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is fixed and large, the D1-string is furthermore parametrically lighter than the string F̃1,
while its dual, F1, decouples.

The two limits, S1 → ∞ or S2 → ∞, are of course S-dual to each other, in the sense
of ten-dimensional SL(2,Z) symmetry: the ten-dimensional S-duality transformation maps
Φ→ −Φ in the 10d Einstein frame dilaton, and hence acts as interchange

10d S-duality: S1 ↔ S2 . (3.21)

It is important to note that in order to properly define infinite distance limits, one
must precisely specify in which way variables become large, ie., how their ratios behave.
Mathematically this is tied to the notion of a proper compactification of the moduli space,
M̄(5,21). In the present work, we consider limits for which the volume of K3 stays fixed
in order to keep gravity dynamical, which is of importance for our investigation of the
Swampland Distance Conjectures for 2-form fields. This amounts to considering the limits
Si → ∞, as opposed to products thereof such as (3.20), as it is the Si which canonically
couple to the 2-form fields.

As is evident from (3.19) and (3.20), this basis of non-compact moduli is different
from the basis of the Vi which are tied to the eponymous nodes in the Dynkin diagram
in figure 1. The Vi figure in the discussion [60] of how the moduli spaceM(5,21) splits up
upon taking non-compact limits by removing dots in the Dynkin diagram. These limits
are different to the less singular limits in the Si that we take, and correspond to a different
compactification of the moduli space.

More precisely, in the infinite distance limit where V1 = S1/S2 → 0, we recover
the weakly coupled perturbative string on K3, whose moduli space is the moduli space
of N = (4, 4) supersymmetric sigma-models on K3. The latter is given by M(4,20) =
O(4, 20)/O(4) × O(20) (modulo discrete identifications), which is obtained from the full
moduli space (3.1) by removing the node V1 in the Dynkin diagram of figure 1 [60].
Similarly, for V2 = S1S2 → ∞, one obtains the 10d Type IIB string compactified on a
large volume K3, whose moduli space contains M(3,19)×(1,1) = O(3, 19)/(O(3) × O(19)) ×
SU(1, 1)/U(1). The first factor is the geometric moduli space of a K3 surface of fixed vol-
ume and the second is the non-perturbative moduli space of the eight-dimensional Type
IIB string. Note that this large volume limit is compatible with the SL(2,Z) action (3.21).

3.2 Geometric weak coupling limits in Kähler moduli space of K3

The upshot of the previous section is that two of the five possible weak coupling limits
of Type IIB string theory on K3 have a straightforward explanation that involves only
combinations of the 10d dilaton eΦ and the overall volume V of K3. The remaining three
weak coupling limits must correspond to non-trivial degeneration limits of the K3 surface
as such. We will analyze one of these in detail now, and make the relation between the
weak coupling regime and the appearance of a solitonic tensionless string, which will turn
out to be a Type IIB string again.
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The remaining weak coupling limits must involve three combinations of the 22 tensor
fields BA from decomposing C4 as in (3.2), with kinetic terms

Skin = −2π
4

∫
R1,5

gABdB
A ∧ ∗dBB (3.22)

governed by
gAB =

∫
K3

ωA ∧ ∗ωB . (3.23)

It is convenient to pick an arbitrary complex structure on K3 and consider the resulting
Hodge decomposition of H2(K3,R). For any such chosen complex structure, the Hodge
numbers of K3 are

h(2,0)(K3) = 1 , h(1,1)(K3) = 20, h(0,2)(K3) = 1 . (3.24)

Let us specify a basis of 2-forms by

{ωA} = {Ω, Ω̄, ωα} , ωα ∈ H(1,1)(K3) , Ω ∈ H(2,0)(K3) . (3.25)

Here Ω and Ω̄ denote the unique (2, 0) form and its complex conjugate.
The space H2(K3,R) can also be decomposed into spaces of self-dual and anti-self-dual

2-forms with respect to the Hodge star operator on K3,

H2(K3,R) = H2
+(K3,R)⊕H2

−(K3,R) , (3.26)
dimH2

+(K3,R) = 3 , dimH2
−(K3,R) = 19 . (3.27)

The space of self-dual 2-forms is spanned by the real and imaginary parts of Ω and the
Kähler form J . According to the discussion of the previous section, the tensors which
become weakly coupled in the three remaining weak coupling limits must involve linear
combinations of the self-dual tensors associated with reduction of C4 along these three
directions in H2

+(K3,R), together with three anti-self-dual tensors form expansion of C4
along three directions in H2

−(K3,R).
In the given complex structure, one of the weak coupling limits therefore involves only

a tensor field and its dual associated with the (1, 1) forms on K3. It is this weak coupling
limit on which we focus in the sequel.10 On the space H1,1(K3), the matrix of kinetic
terms of the 2-forms Bα takes the form

gαβ = 1
V
jαjβ − Ωαβ , (3.28)

where J = jαωα and Ωαβ = ωα · ωβ . The weak coupling limit for the system of tensor-
multiplet 2-forms is therefore characterized by demanding that the kinetic matrix gαβ has
at least one entry which tends to infinity.

Note that the Kähler form implicitly depends on the choice of complex structure with
respect to which the Hodge type of the 2-forms is defined. In this sense, the matrix gαβ

10The remaining two infinite distance limits necessarily involve complex structure deformations, which
are beyond the scope of our analysis.
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depends on all geometric moduli of the K3 and not only on the moduli entering J . A
related peculiarity of K3 surfaces is that the rank of the Picard group

Pic(K3) = H1,1(K3) ∩H2(K3,Z) (3.29)

depends on the choice of complex structure. The elements of the Picard group describe
the curve classes H2(K3,Z) which have a holomorphic representative.

A simplification occurs when the rank of Pic(K3) takes its maximal value: rkPic(K3) =
20. This means that all curve classes have holomorphic representatives, and their volume
reduces to the Kähler volume with respect to the Kähler form J of the K3 surface, viewed
as a Kähler manifold with vanishing anti-canonical bundle K̄ = 0. Such K3 surfaces are
referred to as singular K3s in mathematics, and as attractive K3s in the physics litera-
ture [62]. Attractive K3 surfaces lie dense in the period domain of K3 surfaces, in a similar
way as Qn lies dense in Rn. The complex structure of an attractive K3 is completely
fixed. In particular, the kinetic matrix (3.28) depends solely on the Kähler moduli of the
attractive K3. We will for now focus on such K3 surfaces.

On an attractive K3, the weak coupling limit for (3.28) takes a completely analogous
form as for the F-theory two-fold bases, which were discussed in section 2. Indeed in order
for at least one eigenvalue of (3.28) to become large, the Kähler form J of the compact K3
must asymptote to

J = tJ0 +
∑
i

ai
2tJi t→∞ , subject to (2.22). (3.30)

In the basis
{CI} = {C0 := J0, Ci := Ji} (3.31)

the matrix of kinetic terms takes the asymptotic form (2.30) and (2.31), and the unique
2-form potential which becomes weakly coupled is precisely B0. It couples to the solitonic
string that arises from wrapping a D3-brane on the holomorphic curve C0. The latter has
the property

C0 · C0 = 0 , (3.32)

and moreover its volume vanishes in the weak coupling limit,

vol(C0) =
∫
C0
J = V

t
as t→∞ . (3.33)

Indeed, since the Kähler cone generators are dual to the Mori cone of effective curves, they
are by themselves integral (1,1) classes, and on an attractive K3 every such class has a
representative as a holomorphic curve. The novelty for this limit for K3, as compared to a
Kähler base B2 with non-trivial anti-canonical bundle, is that the genus of C0 equals

g(C0) = 1 + 1
2(C0 · C0 − C0 · K̄) = 1 . (3.34)
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The existence of a class C0 ∈ H1,1(K3)∩H2(K3,Z) with vanishing self-intersection implies
that the K3 surface is a genus-one fibration, with fiber C0, i.e. there exists a projection

π : C0 → K3
↓
Cb . (3.35)

See e.g. [63] for a proof of this theorem, which is the analogue of Kollar’s conjecture for K3
surfaces.11

We can summarize these findings by stating that, in the notation of section 3.1, the
tensor field

T3 := B0 (3.36)
is singled out as the tensor which is weakly coupled in the geometric limit t → ∞. Its
kinetic terms can asymptotically be written as

Skin = −2π
4

∫
R1,5

(S2
3dB

0 ∧ ∗dB0 + S−2
3 dB̃0 ∧ ∗dB̃0) (3.37)

with
S3 = t√

V
. (3.38)

If we also introduce the notation

S3 := String from a D3− brane onC0 , (3.39)

then the normalised tension of S3 scales as

TS3/M
2
Pl =

√
π

√
V
t

=:
√
π S−1

3 . (3.40)

In (3.37) we have exhibited also the magnetically dual field B̃0 ≡ T̃3. Correspondingly
the solitonic string S3 has a magnetic dual S̃3 arising from a D3-brane wrapping a dual
cycle on K3. This cycle can be obtained in principle by carefully going through the pro-
cedure outlined at the end of section 2.2: we need to bring the duality matrix associated
with the kinetic matrix (2.30) obtained in the limit into the form (2.35), which conforms
with (3.37). Let us denote the cycle associated with B̃0 as C ′′1, as in section 2.2. Even
without determining its cycle class explicitly we anticipate from the expected tension of
the dual string that its volume must scale as

volC̃′′1 ∼ t . (3.41)

Clearly such cycles are present in the Picard lattice: in the limit (3.30) this is the behaviour
of a cycle with

J0 · C ′′1 6= 0 . (3.42)
This string becomes heavy and strongly coupled in the limit t → ∞ for fixed V, and
effectively decouples.

11This can be seen as a physical proof for the geometrical statement that attractive K3 surfaces are genus-
one fibered, under the assumption that weak coupling limits exist in the Kähler moduli space. Indeed, it
is an established fact in mathematics that a K3 surface with Picard number ρ is genus-one fibered if ρ ≥ 5
and is elliptic with a section if ρ ≥ 13; see e.g. [64].
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Fermions Bosons N = (4, 4) Multiplicity
(2,1)1 + c.c. ψ+ + c.c. (1,1)0, (1,1)0 ā, σ̄

Hyper h0,1(C0) = g = 1
(1,2)−1 + c.c. ρ̃− + c.c. (1,1)0, (1,1)0 a, σ

(1,2)1 + c.c. µ+ + c.c. (2,2)0 ϕ
Vector h0,0(C0) = 1

(2,1)−1 + c.c. λ− + c.c. (1,1)±2 v±

Table 1. Spectrum of massless 2d N = (4, 4) multiplets on the worldsheet of a string obtained
by wrapping a D3-brane on the genus-one curve C0 ⊂ K3 with C0 · C0 = 0. The first column
indicates the representations with respect to SU(2)L × SU(2)R × SO(1, 1). We denote by +/− the
2d left/right-moving chiralities.

3.3 The solitonic string as a Type IIB fundamental string

The tensionless string S3, in fact, describes a critical, fundamental Type IIB string propa-
gating on R1,5×K3. This follows from (3.34) in view of the findings of [65], which we now
briefly review from the perspective of our purposes.

The worldsheet theory of S3 is derived via dimensional reduction of the worldvolume
theory on a single D3-brane wrapped on the genus-one curve C0. The latter is, of course,
given by 4d N = 4 Super-Yang-Mills theory with gauge group U(1). Compactification on
C0 ⊂ K3 breaks one half of the 16 supercharges on the D3-brane and results in a string
worldsheet theory with N = (4, 4) supersymmetry.

This can be made manifest by performing a standard topological twist along C0: the
SU(4)R symmetry of the D3-brane theory, which is identified with the SO(6)T rotation
group acting on the dimensions transverse to the D3-brane, decomposes as

SO(6)T → SO(4)T ×U(1)R , SO(4)T = SU(2)L × SU(2)R , (3.43)

where SO(4)T acts on the four extended directions R4
T normal to the string. The Lorentz

group parallel to the D3-brane decomposes into

SO(1, 3)→ SO(1, 1)×U(1)C , (3.44)

where the two factors act on the extended and internal dimensions of the string, respec-
tively. The topological twist is defined with respect to the combination

U(1)tw = 1
2(U(1)C + U(1)R) . (3.45)

Only the supercharges which are singlets under this U(1)tw are preserved. Twisted dimen-
sional reduction of the N = 4 vector multiplet leads to one N = (4, 4) hypermultiplet along
with one N = (4, 4) vector multiplet, as displayed in table 1.12

Following the arguments of [67], in the limit of vanishing curve volume for C0 the gauge
kinetic term for the U(1) potential v± along the string decouples and the worldsheet theory

12More details can be found e.g. in section 3.1.1 of [66]. This reference performs, in addition to the
standard topological twist, a duality twist, which must be omitted for K3 with trivial canonical bundle.
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reduces to a non-linear sigma model. If we ignore the non-dynamical vector field v±, the
field content agrees precisely with that of a critical, fundamental Type II string propagating
on R1,5×K3: the four real scalars ϕ transform as a vector under SO(4)T and describe the
fluctuations in the transverse directions R4

T ⊂ R1,5. Together with their superpartners they
are associated with a free sector of the worldsheet theory. The remaining four real scalars
a, ā, σ, σ̄ and their superpartners are the fundamental fields of an interacting non-linear
sigma model. Two of these, a and ā, are associated with the string motion along C0, while
σ and σ̄ describe the fluctuations in the internal directions normal to C0.

The target space of the of non-linear sigma model is identified with the moduli space
of the string [67]. Apart from the external directions transverse to the string, this moduli
space coincides precisely the original manifold K3 [65]. To see this, one makes use of
the fact that the wrapped curve C0 is the elliptic fiber of K3, according to (3.35). The
moduli space of C0 as a holomorphic curve is identical to the base Cb over which it is
fibered. In addition, the sigma-model moduli space includes the moduli space of flat gauge
backgrounds on a D3-brane on C0. The latter are described by the Jacobian of the curve,
which gives back the curve itself (or rather its dual). As a result, one recovers the full
fibration of C0 over Cb as the internal part of the moduli space of the string on C0 [65].
Together with the external part this yields a non-linear sigma-model on R4

T ×K3.

3.4 Emergent strings and duality in the geometric weak coupling limit

The previous considerations make it evident that, as we take the large distance, weak cou-
pling limit (3.30), we can switch to a new duality frame, denoted by hatted quantities in the
sequel. The solitonic string S3 (D3 brane wrapped on C0) in the original frame turns into
the weakly coupled, fundamental Type IIB string F̂1 ≡ Ŝ2 propagating on K3. The weakly
coupled 2-form field T3 := B0 with coupling S3 given in (3.40) in the old frame takes the role
of the fundamental field T̂2 ≡ B̂2 in the new frame, with corresponding ‘dilaton’ Ŝ2 = S3:

Type IIB on K3 limit (3.30)=⇒ Type IIB on K3 with Ŝ2
2 := V e−Φ̂ = t2

V
(3.46)

As in the analogous F-theory/heterotic correspondence we are identifying the volume of the
original theory with the volume of the new theory to the extent that we insist on keeping
the Planck scale fixed.

In the duality frame defined by the string S3 = Ŝ2, there must also arise a heavy
S-dual string D̂1 ≡ Ŝ1. Its associated coupling Ŝ1 follows from the coupling Ŝ2 = S3 by
demanding that

Ŝ1Ŝ2 = V̂ ≡ V (3.47)

in analogy to the standard relation (3.20) for the S-dual tensions in the weakly coupled
fundamental frame. Together with (3.46) this gives

Ŝ−1
1 = t

V3/2 . (3.48)

Such a string can arise from a D3-brane wrapping a curve Σ on K3 with

vol(Σ) = t

V
. (3.49)
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The magnetic dual of this string, ̂̃D1 ≡ ̂̃S1 has normalised tension

T̂̃S1

M2
Pl

=
√
πŜ1 =

√
π
V3/2

t
= V

TŜ2

M2
Pl
, (3.50)

which vanishes in the limit t→∞, even though it is enhanced compared to the tension of
the new fundamental string S3 ≡ Ŝ2 by a factor of V.

It is interesting to wonder which curve Σ can give rise to the behaviour (3.49). All
curves in the Picard lattice obtain their volume exclusively from the intersection with the
Kähler form J . As pointed out already, the volumes of such curves which become large in
the limit t → ∞ are the ones with non-zero overlap with the Kähler cone generator J0,
but their volumes scale as t as opposed to t/V. This argument seems to suggest that the
curve Σ obtains its volume rather from the overlap with the (2, 0) form Ω, in the sense of
a symplectic integral. A natural conjecture is therefore that the S-dual curve lies in the
overlap of (H2,0(K3)⊕H0,2(K3))∩H2(K3,Z), or at least receives contributions from this
space. Note that for attractive K3s, this space is 2-dimensional [68].

An important point to keep in mind is that the moduli space of six-dimensional theories
with N = (2, 0) supersymmetry is not corrected by worldsheet and D1-instanton effects.
Hence even though Euclidean F1 and D1 strings (of the original duality frame) wrapped
on the vanishing cycle(s) on K3 might look like giving rise to a non-suppressed instanton
effect, they will not affect the classical couplings in the limit we are considering. The
magnetic duals of such instantons in six dimensions are (3+1)-dimensional objects in R1,5

and correspond to the original D5 or NS5-brane wrapping curves on K3. For the vanishing
curve C0, the tension of these objects scales as T3+1 ∼ vol(C0) = V/t and hence vanishes
at the same time as the tension of the new fundamental string Ŝ2 goes to zero. However,
the associated mass scales compare as

M3+1 = T
1/4
3+1 ∼

(V
t

)1/4
�
(V
t

)1/2
∼ T 1/2

Ŝ2
= MŜ2

=⇒ M3+1
MŜ2

∼
(V
t

)−1/4
→∞ . (3.51)

Hence these objects decouple in the duality frame defined by the new fundamental string Ŝ2.
Even though the string S3 takes the role of the new fundamental string Ŝ2 on K3, the

limit t → ∞ at fixed V, i.e. S3 → ∞ at fixed V, is different from the weak coupling limit
S2 → ∞ at fixed V studied in section 3.1. The reason is that in addition to the tower of
excitations from S3 which becomes massless, there is a tower of asymptotically light Kaluza-
Klein (KK) states which arises because we are considering Type IIB on a K3 in a very special
deformation limit. The origin of the KK tower are the cycles which become large in the
limit (3.30), i.e. all curves with Clarge · J0 6= 0. Since their volume scales as vol(Clarge) ∼ t,
the mass scale of the Kaluza-Klein excitations associated with these curves is

M2
KK ∼ vol(Clarge)−1 = 1

t
∼ TS3

V
≡
TŜ2

V
. (3.52)

The states with mass scale MKK are the Kaluza-Klein excitations of the new fundamental
string Ŝ2 in the new Type IIB frame. This is consistent in that Ŝ2 arises from a D3-brane
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wrapped on the elliptic fiber C0 of K3, and it therefore makes sense to consider the Kalzua-
Klein spectrum of its excitations, at each excitation level, along the remaining directions
on K3.

Let us contrast the limits S3 →∞ versus S2 →∞ as follows:

Limit S2 →∞, V � 1 fixed : eΦ → 0 (3.53)

(M2
S2 = eΦ/2) < (M2

S̃1
= eΦ/2V) <

(
M2
KK = 1√

V

)
< (M2

Pl =
√
V)

Limit S3 →∞, V � 1 fixed : 1
t
→ 0 (3.54)(

M2
KK = 1

t

)
<

(
M2
Ŝ2

= V
t

)
<

(
M2̂̃S1

= V
2

t

)
< (M2

Pl =
√
V)

The interesting feature of the geometric weak coupling limit (3.54) is that for fixed
V, the KK excitations sit at the same parametric scale as the excitations of Ŝ2 itself, as
far as the scaling with the weak coupling parameter t is concerned. In particular, as the
new string tension TŜ2

= 2πV
t asymptotes to zero, so does the KK scale, albeit relatively

suppressed by a factor of V. Hence the limit t → ∞ governs both the asymptotically
massless tower of oscillator excitations of the new fundamental weakly coupled string,
Ŝ2, as well as simultaneously its Kaluza-Klein tower of states. In both situations (3.53)
and (3.54) there arises in addition the tower of the magnetic version of the S-dual string,
which is enhanced by another factor of V. Despite the appearance of the KK tower in the
limit (3.54) we would not call this a decompactification limit in the usual sense: such a limit
is detected by a encountering only a tower of light KK states, without an accompanying
tower of extra string modes.

The observation that the tower of massless states here includes the tower of a funda-
mental string sheds some light on the proposal of emergence put forward in [2, 10, 25–27]:
according to the general lore, in the weak coupling limit at infinite field distance, a tower
of states becomes massless exponentially fast [3]; integrating out this tower of states leads
to the running of the coupling constants of the theory and reproduces the polynomial sin-
gularity at infinite distance in moduli space, as encountered in the effective supergravity
description. Evidence for this proposal has been provided in [10, 11, 14, 25–27] by esti-
mating, at a qualitative level, the contribution of the integrated tower of particle states
to the renormalization of the couplings. On the other hand, an exact computation repro-
ducing the observed supergravity coupling constants near infinite distance has not been
obtained in the literature, as it is a priori much more difficult to quantify the spectrum of
the asymptotically massless states.

What we are observing here is that the massless tower of states has a very clear
interpretation as exactly the excitations of the critical fundamental string Ŝ2 in the new
duality frame plus its Kaluza-Klein excitations. Importantly, the new fundamental string is
again the Type IIB string probing the same K3 (in the specific geometric limit). Integrating
out the entire tower of string excitations together with the KK modes reproduces, by
construction, the coupling dependence of the original supergravity theory in the weak
coupling limit. This is true not only parametrically, but at an exact level, by the very
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definition of the low-energy effective supergravity as the consequence of integrating out
the heavy string states and the Kaluza-Klein/winding modes on the internal space. In this
sense, even without explicitly evaluating this integration, it is manifest that the polynomial
divergence in the coupling constants at infinite distance is exactly reproduced and, in fact,
caused by the tower of states which become asymptotically massless.

4 Emergent F-theory from M-theory on K3 in weak coupling limit

As we have shown in the previous sections, following refs. [11, 12], weak coupling limits
in the Kähler moduli space of F-theory and Type IIB compactifications lead to emergent
critical, nearly tensionless strings along with their towers of oscillator and Kaluza-Klein
excitations. As we will show in this section, the same geometrical limits in Kähler moduli
that we have analyzed above have a strikingly different effect as probed by M-theory or
Type IIA string theory. A detailed analysis of infinite distance limits in Kähler moduli
space from the perspective of Type IIA/M-theory has been provided before in [14], and we
will comment on the relation of this work to our findings below.

Consider thus M-theory compactified on a K3 surface to d=7 dimensions, which leaves
16 supercharges unbroken. The crucial difference to the situation in F-theory or Type IIB
theory is that this theory contains h2(K3) = 22 1-form gauge fields, as opposed to 2-form
fields, 3 of which are part of the gravity multiplet. These 1-form fields are obtained by the
reduction of the M-theory 3-form C3:

C3 = Aα ∧ ωα ωα ∈ H1,1(K3) . (4.1)

The same coupling matrix of kinetic terms as in (3.28) now applies to the 1-form gauge
fields Aα, as opposed to the 2-forms Bα in Type IIB/F-theory.

For simplicity, let us restrict ourselves to attractive K3 surfaces with a Picard group
of maximal rank, as in the previous section. Then, despite the different interpretation, the
analysis of the weak coupling limit at fixed 7d Planck scale proceeds in an entirely identical
fashion: it corresponds to taking the limit

J = tJ0 +
∑
i

ai
2tJi , t→∞ , subject to (2.22). (4.2)

In the basis of (1,1)-forms {ωα} = {J0, Ji}, the gauge field A0 is the only linear combination
of 1-form potentials which becomes asymptotically weakly coupled as t→∞. The pertinent
gauge kinetic matrix can be found in (2.30).

Thus, a unique genus one curve C0 := J0 shrinks at the rate vol(C0) = V
t . What be-

comes massless in the weak coupling limit is now a tower of particles (as opposed to a string
and its excitations), which arise from M2-branes wrapping the shrinking curve C0. Impor-
tantly, the Gopakumar-Vafa invariants for an n-fold wrapped genus-one curve on K3 are [65]

NGV
n·C0 = 24 ∀n ≥ 1 . (4.3)

This fact guarantees the existence of a tower of asymptotically massless states in the effec-
tive theory.
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As we have discussed around eq. (3.35), in order for the K3 to admit the weak coupling
limit (4.2), it must be fibered with a genus one curve C0,

π : C0 → K3
↓
Cb . (4.4)

The weak coupling limit hence amounts to shrinking the genus one fiber of the K3 while
keeping its total volume fixed. This limit coincides exactly with the F-theory limit associ-
ated with M-theory on K3:

F-theory on Cb × S1

S1-radius R
⇐⇒

M-theory on K3 as in (4.4)
vol(C0) = 1

R

Recall that F-theory on a genus-one fibered K3-surface over the base Cb gives rise to an
eight-dimensional theory with 16 supercharges. Upon compactification on a circle S1 with
radius R, we obtain a 7d theory which is identified with M-theory on the same K3, in the
limit where the fiber volume scales as 1

R . Each 8d field maps to a full Kaluza-Klein tower
of excitations in the 7d M-theory, which are in turn interpreted as M2-branes wrapping the
fiber C0 n-times. These M2-branes are charged under the Kaluza-Klein gauge potential
AKK.

We therefore see that the weak coupling limit for an — a priori arbitrary — 1-form
gauge field in M-theory on K3, inevitably enforces the F-theory limit: the asymptotically
weakly coupled gauge field, A0 is identified with the Kaluza-Klein U(1)KK gauge group in
the F-theory/M-theory correspondence, and the tower of asymptotically massless particles
from M2-branes along the curve n · C0 represent the Kaluza-Klein tower associated with
the 8d supergravity modes of F-theory.

Hence, we encounter an emergent extra dimension in the weak coupling limit, in which
the duality frame of the theory switches from that of 7d M-theory to the duality frame of
8d F-theory:

7d M-theory on K3 limit (4.2)=⇒ 8d F-theory onCb (4.5)

Importantly, the gauge fields in the F-theory are not in a weak coupling regime. Rather
the weakly coupled M-theory 1-form has become part of the 8d metric, since it refers to
the U(1) gauge field associated with the Kaluza-Klein reduction.

Note that infinite distance limits in Kähler moduli space and their interpretation in
Type IIA and M-theory have been analyzed in detail in [14]. This reference includes a study
of infinite distance limits on elliptically fibered Calabi-Yau 3-folds, and, as a special case of
such limits, the F-theory limit of vanishing fiber volume. The key point of our discussion
is that whenever one considers a weak coupling limit in the Kähler moduli space, on an
attractive K3, the shrinking curve is automatically a genus one fiber of the K3, and the
weak coupling limit reduces to the F-theory limit, even without making any assumption
about the fibration structure of the K3 surface. In this sense the emergence of the extra
dimension in F-theory is a consequence of the weak coupling limit.
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5 Conclusions, and prospects for four-dimensional strings

In this work we have explored the behavior of effective theories near infinite distance
points in moduli space where 2-form gauge fields become weakly coupled, in the presence
of gravity. Specifically we have systematically analyzed such weak coupling limits for six-
dimensional compactifications of F-theory and Type IIB theory, with N = (1, 0) and N =
(2, 0) supersymmetry, respectively. Two universal phenomena have emerged in the limit:

1) A critical string becomes tensionless, be it the fundamental string in the original
duality frame or, generically, a solitonic string which takes the role of the fundamental
string in a dual frame.

2) An infinite tower of asymptotically massless particles arise as the excitations of the
emergent critical string, in agreement with the Swampland Distance Conjecture.

For F-theory compactifications, we have obtained the general form of the weak coupling
limits of 2-forms. The limit turns out to be identical to the weak coupling limits of 1-form
gauge fields studied in [11], in the Kähler moduli space of the internal complex surface.
By the same arguments as in [11] a solitonic string emerges as a critical, weakly coupled
heterotic string.

On the other hand, for Type IIB compactifications, the moduli space has five different
types of non-compact directions. Two obvious directions correspond to the limits where
the ten-dimensional Kalb-Ramond and Ramond-Ramond 2-forms are weakly coupled, and
hence where the fundamental string or the D1 string becomes tensionless, respectively.
Amongst the remaining three ‘geometric’ weak coupling limits, we have systematically
analyzed the one reachable within the Kähler moduli space of the internal K3 surfaces,
upon restricting to geometries with maximal Picard number ρ = 20. We have singled out
a unique elliptic curve class with non-negative normal bundle whose volume vanishes in
the weak coupling limit. A D3 brane wrapping this curve leads to an emergent tensionless
string, which we have identified as a weakly coupled Type IIB string in yet another Type IIB
duality frame. Its quantum excitations give rise to an infinite tower of massless particles
in the limit. The remaining two non-compact weak coupling limits lie in the complex
structure moduli space and we leave their further investigation to future work.

An interesting aspect of weak coupling limits in the Kähler moduli space, for both
F-theory and Type IIB compactifications, is that another set of particles become asymp-
totically massless, in addition to the tower arising from the quantization of the relevant,
nearly tensionless string. These are the Kaluza-Klein modes that become light in the ge-
ometric limits we consider. The masses of these KK modes exhibit the same suppression
factor by the large Kähler parameter as the string modes, although an additional suppres-
sion by the volume, V, of the K3 is inevitable. Since the KK tower becomes massless at
the same rate as the string tower, the limit should not be interpreted as the unfolding
of a new dimension. We have contrasted this situation with the weak coupling limits of
1-form potentials in M-theory compactifications on K3 surfaces, once again restricting the
discussion to geometries with maximal Picard number. In such limits, the fiber class of
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an elliptic fibration shrinks, uplifting the seven-dimensional M-theory compactification to
F-theory in eight dimensions.

While this work has focused on effective theories in d = 6 dimensions, many of our
conclusions pertaining the nature of tensionless strings carry over to four dimensions, as
we now briefly discuss: for the four-dimensional compactifications of both F-theory and
Type IIB theory, the 2-form fields BI arise from expanding C4 over a basis CI of H1,1(B3)
and have the kinetic coupling matrix

gIJ = − 1
4VCI · CJ · J +

( 1
4V

)2
(CI · J · J)(CJ · J · J) , (5.1)

where V = 1
6
∫
B3
J3 is the volume of the internal three-fold B3. This B3 is the base of

an elliptic four-fold in F-theory, while on the other hand it coincides with the internal
Calabi-Yau three-fold when we talk about a Type IIB string compactification. In the weak
coupling limit, at least one entry of gIJ diverges (and hence at least one of the Kähler
parameters goes to infinity) while V is kept fixed. Geometric limits of this kind have been
considered in section 6.1 of [15] and classified as limits of Class A and Class B, respectively.

In the weak coupling limits of Class A, the Kähler form takes the following non-negative
expansion in terms of the Kähler cone generators,

J = tJ0 +
∑
ν

aν
t2
Jν +

∑
r

crJr , with J0 · J0 6= 0 , t→∞ , (5.2)

where J0 · J0 · J0 = 0 and J0 · J0 · Jν > 0 for ν in a certain index set, while J0 · J0 · Jr = 0
and J0 · Jr · Js = 0 for r and s in another index set. It was then proven that there exists
a curve C0 := J0 · J0 with a trivial normal bundle which shrinks in such a geometric limit.
For F-theory compactifications, as argued in [15], such a curve has to be a rational curve
and hence a D3 brane wrapping C0 plays the role of the tensionless critical heterotic string
in the heterotic duality frame.

If B3 is itself a Calabi-Yau three-fold, on the other hand, the existence of the Kähler
cone generator J0 implies [69–71] that B3 is necessarily genus-one fibered; the shrinking
curve C0 is the fiber of this fibration. The world-sheet theory associated with a D3-brane
wrapped on C0 can be determined by methods similar to those spelled out in [66]: the result
is a world-sheet theory with N = (2, 2) supersymmetry. Its bosonic excitations include
two real scalars parametrizing the motion of the string in the two extended directions
transverse to the string, two complex scalars transforming as sections of the normal bundle
NC0/B3 = O ⊕O to the wrapped curve and one complex scalar transforming as a section
of OC0 , corresponding to the Wilson line degrees of the freedom. The moduli space of
the D3-brane along C0 is the fibration of C0 over the base of the fibration, and hence
coincides with B3. In the limit of shrinking curve volume we therefore manifestly arrive
at a sigma-model with target space B3, which we interpret as the critical Type IIB string
propagating on B3. By the same logic as in section 3 of the present paper, we conclude that
the emerging tensionless string is the Type IIB string in another Type IIB duality frame.
The theory, again, reproduces itself in the dual weak coupling limit at infinite distance.
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It is intriguing to see that the Calabi-Yau three-fold is necessarily elliptic in order to
admit a weak coupling limit of the form (5.2). For five-dimensional M-theory compactifica-
tions, the existence of such a geometric limit corresponds to a weak coupling limit for 1-form
potentials. As for M-theory on K3 analysed in this paper, we can immediately conclude
that a weak coupling limit of Class A for 5-dimensional M-theory is a decompactification
limit which coincides with the F-theory uplift to six dimensions. This is a consequence of
the properties of the limit (5.2) and holds without making any a priori assumptions about
the existence of an elliptic fibration.

The situation is more complicated for the weak coupling limits of Class B [15], however,
which we leave to future work.

In view of these results in the context of F-theory and Type IIB theory, it is natural
to wonder about the nature of the tensionless strings that emerge in weak coupling limits
for 2-forms in Type IIA compactifications. Six-dimensional Type IIA compactifications
on K3 surfaces do not have 2-forms which can become weakly coupled in the geomet-
ric moduli space. On the other hand, in four-dimensional Type IIA compactifications on
Calabi-Yau three-folds 2-forms arise from expanding either the Ramond-Ramond 5-forms
over harmonic 3-forms or the dual 6-form of the Kalb-Ramond 2-form over harmonic 4-
forms. These respectively admit weak coupling limits in the complex structure and Kähler
moduli space [10, 13, 14, 18] of the Calabi-Yau three-folds. Mirror symmetry suggests
that analogous phenomena as in the Type IIB case should occur. The pressing question
in this context is whether the resulting nearly tensionless strings are dual to some weakly
coupled strings, similarly to what we have found here for six-dimensional compactifications
of F-theory and Type IIB theory.
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