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1 Introduction

Many of the special features of the String Landscape seem to emerge from the exceptional
structure of the compactification geometry, which a priori seems inaccessible to a low
energy observer. These are, in turn, directly related to many of the conjectures made in
the context of the Swampland program [1]. Thus one path to establishing the Swampland
criteria would be to somehow make the internal string geometry “visible” to the low energy
observer. This may sound like an impossible task, as it may appear we need access to the
KK modes to “see” the internal geometry.

However, this idea was recently accomplished for 8d supersymmetric theories in [2]
by studying brane probes and using black hole physics to argue for the compactness of
their moduli space which in turn leads to the internal F-theory geometry [3–5]. The
main aim of this work is to extend this to the study of all supersymmetric theories in
d ≥ 6. In particular, the combination of compactness of the moduli of supersymmetric
brane probe as well as the structure of CFT’s which arise for the probes associated with
gauging instantons is a powerful tool in classifying all the possible consistent quantum
gravity theories with supersymmetry. We complete this program, and show that the String
Lamppost Principle (SLP) holds for supersymmetric theories in d > 7. For theories with
maximal supersymmetry, there is not much to show as the low energy theory is fixed by
supersymmetry. For theories with minimal supersymmetry, in the cases in d ≤ 9 this
was not known before. The brane probe that we consider is the gauge instanton probe or
equivalently the (d−5)-brane probe, which is the magnetic dual object of the 1-brane probe.
We argue that their moduli are connected through their Coulomb branch. Moreover, the
Coulomb branch should include CFT points arising from the gauge instantons. In this way,
we get a handle on what gauge groups can occur in the theory. In d = 9 we use particular
facts of 5d SCFT’s, as was done in the case of d = 8 for 4d SCFT’s in [2]. In particular
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we explain why in the d = 9 case the Sp(n) gauge symmetry is not part of any quantum
gravity landscape (for n > 1),1 despite the fact that there is nothing a priori wrong with
the corresponding supersymmetric field theory without gravity and is indeed realized in
string theory (up to a “stringy Landau pole”). We extend the work of [2] in d = 8 to also
complete the SLP in that dimension. For d = 7, we show this also completes the SLP
modulo a few facts which has yet to be established for 3d N = 4 SCFT’s. We also discuss
the SLP in d = 6.

The organization of this paper is as follows: in section 2 we review the general setup
for this paper. In section 3 we apply the general setup to various dimensions 6 ≤ d ≤ 9.
Finally in section 4 we close with some concluding thoughts.

2 General discussion

We begin with a general outline and discussion of the basic idea underlying this project,
which was initiated in [2]. A consistent quantum theory of gravity often includes long-range
gauge forces as part of its low-energy description. This is particularly true of supersym-
metric theories, where these are often required by supersymmetry. For instance, in theories
with sixteen supercharges, the gravity multiplet includes a massless 2-form field. Complete-
ness of the spectrum [6] then requires that all possible values of the charges are populated
by physical objects in the theory. Studying the worldvolume theory of these branes, which
map in the context of the String Landscape to “probe branes” has been the source of
much recent progress [2, 7–11] and can be used to banish to the Swampland some naively
consistent theories of quantum gravity that do not appear in the String Landscape.

When the branes are supersymmetric, they often have exact moduli spaces — exactly
massless directions of their worldvolume field theory. Some of these moduli have a direct
spacetime interpretation, like the scalars parametrizing the “center of mass” degrees of
freedom of the object in spacetime. But others characterize purely internal degrees of
freedom. For instance, in theories of quantum gravity arising via compactification from a
higher-dimensional theory, we will often have additional scalars parametrizing the position
of the branes in the compact space. Of course, scalars can also have other interpretations,
such as Wilson lines of higher-dimensional gauge fields or more exotic origins. In any case,
the low-energy effective field theory controlling the dynamics of the moduli is simply a
sigma model from the brane worldvolume to the moduli spaceM:

L ⊃
∫

brane

√
−gGIJ2 ∂µφ

I∂νφ
J , (2.1)

where greek indices run over brane’s worldvolume directions, φ are the moduli, and Latin
uppercase indices live in the tangent bundle ofM. To understand the dynamics of (2.1), it
is often useful to compactify all spatial worldvolume directions of the p-brane on the torus
T p to obtain an effective quantum mechanics with target space M (times any additional
degrees of freedom that may arise due to compactification, such as Wilson lines, etc.).
Here we assume p < d − 2, so the resulting 0-brane has codimension more than 2 in

1The notation Sp(1) = SU(2) is used.

– 2 –



J
H
E
P
0
2
(
2
0
2
2
)
0
8
2

the uncompactified spacetime. Canonical quantization then produces a spectrum whose
energies are equal to the eigenvalues of the Laplacian onM. We reach the conclusion that
the sigma model (2.1) has a spectrum dictated by the Laplacian onM (times any additional
space). In particular, ifM is non-compact and the Laplacian has a continuous spectrum,
the set of asymptotic states of the theory described in (2.1) has infinitely many modes of
any given finite energy range. In particular, this means that the entropy density is infinite.
Such behavior is fine in quantum field theory, but it is unacceptable in a quantum theory of
gravity, where the entropy is upper bounded by that of the corresponding Schwarzschild’s
black hole or black brane, as specified by Bekenstein’s bound. Thus, the consistency of
quantum gravity leads us to the basic claim [2] which is the main tool we use in this paper:

Compactness of brane moduli space

The moduli space of any p-brane with p < d−2 is compact (or more
precisely has a discrete spectrum of the Laplacian) in a consistent
quantum theory of gravity.

Throughout this paper, we will apply this principle to the magnetic (d−5)-brane associated
with the magnetic dual of the B field in the gravity multiplet of d-dimensional theory with
16 supercharges, extending the results in [2]. These branes preserve half the supercharges
in their worldvolume, and when the d-dimensional moduli are tuned such that the d-
dimensional theory has non-Abelian gauge fields, the (d − 5)-branes correspond to the
zero-size limit of gauge theory instantons. An example is the heterotic NS5 brane in 10
dimensions [12–14].

When the instanton is of finite size, larger than the cutoff of the low-energy super-
gravity description, the low-energy dynamics can be read off from the set of zero modes of
supergravity fields in the instanton background. This can be efficiently analyzed using su-
persymmetry and the index theorem to obtain the number of fermion zero modes. The cor-
responding theory, including the modulus ρ that parametrizes the instanton size, is known
as the “Higgs branch” of the brane worldvolume theory. It connects to another branch of
the moduli space, the “Coulomb branch”, at ρ = 0 (figure 1). The Higgs branch receives
its name because the low-energy effective field theory description there does not contain
worldvolume gauge fields, while at low energies on the Coulomb branch, the low-energy
effective description is a supersymmetric gauge theory. The phase transition between the
two at ρ = 0 is described by a (possibly free) SCFT. While the Higgs branch can be
described via supergravity, the small instanton SCFT and the Coulomb branch cannot.

The basic question about the Coulomb branch of the theory is its dimension, known as
the rank of the theory (see [15] for a recent review). Even though this cannot be addressed
from bulk supergravity, the dimension of the Coulomb branch for a small instanton can
be accessed by supersymmetry due to constructions like ADHM for classical groups or
Minahan-Nemeschansky theories [16, 17] for exceptional groups. Specifically, the ADHM
construction for classical groups allows one to parametrize the low-energy dynamics in
terms of linear degrees of freedom (which gives a natural description of the low-energy dy-
namics of zero-size instantons, see [18]) and includes one scalar parametrizing the Coulomb
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Figure 1. The above figure shows a path between two instantons in the instanton moduli space.
The path connects a G1 instanton to a G2 instanton where G1 and G2 are independent non-Abelian
components of the spacetime gauge group G. We first shrink the G1 instanton down to zero-size,
which corresponds to moving along its Higgs branch to the Coulomb branch. Then we move in the
Coulomb branch to deform a G1 zero-size instanton to a G2 zero-size instanton. Finally, we can
move in the G2 instanton Higgs branch by increasing the size of the instanton.

branch. As a result, for branes that can arise as a small instanton limit, the Coulomb branch
will be rank one.2

Although it never happens in known string constructions, a priori, we may also consider
the case where a given brane never arises as a small instanton of a non-Abelian group.
In this case, the non-commutative geometry version of the ADHM construction works
for U(1) instantons in non-commutative space [19], and again yields a one-dimensional
Coulomb branch.

We emphasize that the argument outlined there essentially is that there is a unique
field theory description of the moduli space of instantons, including zero-size configurations,
that predicts a one-dimensional Coulomb branch. This and its exceptional versions are pure
field theory phenomena, even though some were first discovered in the context of string
backgrounds, that we use as building blocks in the construction of quantum theories of
gravity below.

The moduli space theory is not only rank one: it is also connected. In [2], this was
argued via a strengthened version of the Cobordism Conjecture [20] which was argued
there to hold for theories with 8 supercharges because no superpotential is allowed for
scalar fields.3

2A priori one may think that this does not exclude the possibility that, e.g., an exotic small E8 instanton
can be described by a yet to be discovered SCFT which has a rank higher than 1. However, since there is a
unique moduli space of E8 instantons, studying the small E8 moduli space, using string theory is perfectly
allowed to deduce that its Coulomb branch is one dimensional. This is a local statement that does not
rely on the existence of quantum gravity in particular. We will provide another supporting argument in
section 3.2.

3The only way scalar fields pick up mass in theories with eight supercharge is via coupling to vector
multiplets, as in going to their Coulomb branch, and not through self-interaction of the scalar multiplets.
See also the discussion in [21].
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Connectedness of the moduli space refers to instantons of a fixed charge — components
of different charge are obviously disconnected –. In some string compactifications, like the
rank 10 theory in eight dimensions, where one can have symplectic groups where the small
instanton has a zero-dimensional Coulomb branch. This corresponds to fractional D3
branes stuck at O7+ planes. However, crucially, there is never more than one non-Abelian
factor with a zero-dimensional Coulomb branch.4 In the stringy description, this is due
to the fact that we have a single O7+ plane. The corresponding moduli space is therefore
a single point, which is connected. For these theories, we consider the more interesting
instanton moduli space with an instanton number of two, where the Coulomb branch is
again one-dimensional.

Finally, we also note that the connectedness of the moduli space for the small instanton
limit of every possible non-Abelian gauge group with eight supercharges is deeply connected
with the fact that they all carry the same physical brane charge. As discussed in [22], this
is related to demanding absence of Chern-Weil global symmetries.

To sum up, we end up with the conclusion that the space of the (d − 5)-branes in
theories with 16 supercharges is a connected moduli space, corresponding to a rank one
Coulomb branch. The basic consistency principle that will allow us to fully classify these
Coulomb branches is just the simple fact that brane worldvolume couplings should be well
defined on the moduli space, up to duality transformations.

This seemingly mild principle will turn out to have far-reaching consequences, to the
extent that we can determine the full moduli space of theories with sixteen supercharges
in seven and higher dimensions!

3 Swampland constraints in various dimensions

In this section, we consider rank one worldvolume theories with 8 supercharges that describe
codimension-4 small instantons in various spacetime dimensions. By imposing consistency
conditions on worldvolume theories, we derive new swampland constraints and are even
able to reconstruct, purely from the brane perspective, the internal geometries that are
familiar from string theory.

3.1 9d

In this section, we show that the SLP holds for 9-dimensional supergravity theories.
The gauge instantons are 4-branes, which are described by 5d N = 1 theory. The

consistency conditions on the brane theory impose strong restrictions on the gauge algebras.
In particular, we argue that theories with sp(n) gauge symmetry are in the swampland for
n > 1 with dynamical quantum gravity, but fine without gravity. We also reconstruct the
internal space S1/Z2 of type I ′ string theory [23] from the viewpoint of the 4-brane.

Consistency condition from 4-brane. We consider a 5d N = 1 rank one theory as a
worldvolume theory of 4-brane. This theory has a Coulomb branch of real dimension one.
The Coulomb branch is parametrized by the expectation value of the real scalar field φ

4A redundant Swampland prediction coming out of this picture is that there can never be a point in
moduli space with more than one Sp(n) factor in the rank 10 8d theory. As was shown in [2], this prediction
is correct.
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belonging to the vector multiplet A. The gauge symmetry is U(1) on a generic point of
the Coulomb branch.

The 9d theory with sixteen supercharges has gauge symmetry, with propagating gauge
bosons. This spacetime gauge symmetry is seen as a global symmetry of the worldvolume
theory of the brane. If there are non-Abelian factors in the spacetime gauge group, there
is a point of symmetry enhancement at the Coulomb branch in the worldvolume theory.
At this special point, the Coulomb branch connects to a Higgs branch, in which the brane
“fattens up” as an instanton of the spacetime gauge group.

As discussed in the previous section, the Coulomb branch moduli space must be com-
pact and connected. The compactness of the moduli space is required by the finiteness
of the black hole entropy, and the connectedness is required by the stronger cobordism
conjecture. Therefore, the Coulomb branch moduli space is connected, one dimensional,
and compact, and so it is either S1 or S1/Z2.

We will now argue that the case of 16 supercharges we are interested in corresponds
to S1/Z2, while the S1 moduli space corresponds to nine-dimensional theories with 32
supercharges. Take the 9d theory and compactify on T 2, to obtain an N = 1 eight-
dimensional theory. The instanton moduli space is now complex one-dimensional, with the
additional scalar coming from the Wilson line of the photon. In compactifications coming
from theories where the instanton Coulomb branch in 9d is S1/Z2, the 8d geometry is an
elliptic K3, and in particular, it has curvature. By contrast, if the 9d instanton Coulomb
branch is S1, the 8d instanton Coulomb branch has geometry T 2, which is flat.

String theory makes a prediction for the possible Coulomb branches of the probe brane
worldvolume theory, and these can be studied by analyzing noncompact configurations
of branes in string theory. The stringy prediction for the moduli space geometry from
this noncompact analysis is always that the moduli space geometry is not flat and has
singularities at a finite distance (consider, for instance, a D3 probing a D7). We will
take this prediction that string theory makes for field theory as an assumption; from this,
it follows that the moduli space geometry can only be K3, which uplifts to S1/Z2 in
nine dimensions.

We can provide another heuristic argument for the same conclusion, which may have
wider applicability than the current context. From the brane point of view, the basic
difference between S1 and an interval is that the former has an isometry.5 The Coulomb
branch parameter φ is then actually an axion with a continuous shift symmetry. This
means that the currents

J1 = dφ, J4 = ∗dφ (3.1)

are exactly conserved, d ∗ J1 = d ∗ J4 = 0, and generate a 0-form and a 4-form global
symmetry on the brane worldvolume. The object charged under the 4-form current is
simply solitonic membranes of φ, i.e. field configurations φ(x5) that depend nontrivially on

5As one can see by the arguments later in the section, there cannot be any points on the moduli space
where the 4-brane theory corresponds to a gauge instanton when the moduli space is S1. So indeed, the
Coulomb branch has no special points, and it will automatically have continuous shift symmetry, at least
in the IR.
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one spatial coordinate transverse to the membrane and that wind around the target space
circle once.

Because we have these symmetries, we can include topological couplings in the world-
volume brane action, ∫

∗J1 ∧A1,

∫
∗J4 ∧A4, (3.2)

which introduce a coupling to the corresponding background connections. This is a stan-
dard procedure in field theory. We will now give an argument that, whenever this happens
in the worldvolume theory of a brane coupled to quantum gravity, the background connec-
tions must correspond to dynamical fields of the bulk theory. Otherwise, the worldvolume
symmetry becomes an exact global symmetry, which is forbidden in quantum gravity. We
can argue for this in a manner similar to Sen’s construction of branes within branes via
tachyon condensation [24]. Consider a brane- antibrane pair, with a worldvolume charged
state on the brane. The two branes condense, but the condensation cannot be complete
since otherwise, the global charge on the worldvolume theory would be violated. More
concretely, the winding of the worldvolume scalar forces the tachyon condensation to re-
main incomplete in an appropriate locus. As a result, one is left with a remnant solitonic
object in the bulk spacetime. Whichever process can make this object break or decay
would uplift to the original field theory, contradicting the assumption that the theory had
a global symmetry.

In the case under consideration, we would therefore conclude that the bulk theory has
a 4-form field. Such a field (or rather, its dual 3-form) is part of the 9d N = 2 supergravity
multiplet, but not part of the 9d N = 1 multiplet. As a consequence, S1 is only compatible
with 32 supercharges, as advertised.

An important caveat is that this argument only applies to exact symmetries of the
worldvolume brane theory. One could have worldvolume accidental IR symmetries, which
will not be coupled to a dynamical bulk field. An example is the BPS string in the rank 1
component of the 9d moduli space obtained as M theory on the Möbius strip [25], where
there is accidental supersymmetry enhancement from (8, 0) to (8, 8) at low energies. While
we believe the above is morally correct, we cannot argue that these symmetries must be
exact in the worldvolume theory; this is why the previous argument using the geometry
of the U(1) instanton moduli space is required. Furthermore, only in the S1/Z2 case
non-Abelian symmetries arise [25]. In the following, we will consider only this case.

The low energy U(1) theory at the general point of the Coulomb branch is specified
by the prepotential F(φ), which is at most cubic. The prepotential of 5d N = 1 rank 1
theory is

F = 1
2g2φ

2 +
∑
i

ci
6

Å
|φ− φi|3 + |φ+ φi|3

ã
, (3.3)

where we take φ = 0 and φe are the endpoints of the interval S1/Z2, and g, ci are param-
eters. If the endpoint theory is a SCFT, then the gauge coupling is infinite. The cubic
term ci is only generated by a one-loop computation [26], where the field which becomes
light at φ = ±φi contributes. In principle, there could be a tree-level contribution to the
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cubic term, but it is absent due to the Z2 quotient. Note that the effective prepotential on
the Coulomb branch is valid even if SCFTs do not admit a gauge theory description. The
effective gauge coupling is given by the second-order derivative of prepotential:

1
g2(φ) = ∂2F

∂φ2 = 1
g2 +

∑
i

ci

Å
|φ− φi|+ |φ+ φi|

ã
. (3.4)

The Coulomb branch moduli space metric is

ds2 = 1
g2(φ)dφ

2. (3.5)

The Chern-Simons term is given by the third-order derivative of a prepotential:

∂3F
∂φ3

1
24π2A ∧ F ∧ F =

∑
i

ci

Å
sign (φ− φi) + sign (φ+ φi)

ã 1
24π2A ∧ F ∧ F. (3.6)

Thus, the coefficient ci represents the “jump” ∆ki in the Chern-Simons term.
The consistency condition can be obtained as follows: consider a double cover S1 with

the interval S1/Z2. Let us move the scalar field φ around S1 once. At this time, the level of
the Chern-Simons term (or the gauge coupling) must come back to its original value. Since
the coefficient c of the cubic term corresponds to the jump in level, the well-definedness of
the level, when we come back to the same point, requires that∑

i

ci =
∑
i

∆ki = 0. (3.7)

This equation, which comes from the compactness of the brane moduli, which in turn
comes from the finiteness of black hole entropy, can be used to constrain the bulk gauge
symmetry.6 At any point in the Coulomb branch, the worldvolume theory flows to SCFT
or IR free theory at low energy. Suppose we have a complete classification of 5d rank-1
theories and know the coefficients ci and the extended global symmetry. Then from (3.7),
we can restrict the possible global symmetries. This translates into a restriction to the bulk
gauge symmetry. Interestingly, as we will soon review, the classification of 5d theory has
developed significantly in recent years. This helps us to obtain new swampland constraints.

In the following, we first review the classification of 5d SCFTs. Then, we list the
IR-free theories whose Higgs branch is isomorphic to the instanton moduli space.

Classification of 5d SCFTs. A 5d gauge theory is not renormalizable, because the
gauge coupling has a negative mass dimension. However, if the theory has nontrivial UV
fixed points, it can become UV complete as a field theory. Originally, 5d SCFTs were
discovered as theories on D4-branes [27]. A large class of 5d SCFTs is obtained by M-
theory on local CY threefold with shrinking 4-cycle [28], and (p, q) 5-brane webs in type
IIB string theory [29].

In recent years, there has been significant progress in the classification of 5d SCFTs [30–
44]. There are several classification methods. For example, there is a classification based

6This condition can also be used to exclude the existence of non-Abelian symmetries when the Coulomb
branch geometry is S1.
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SU(2) + 8F

E8 : SU(2) + 7F

E7 : SU(2) + 6F

E6 : SU(2) + 5F

E5 : SU(2) + 4F

E4 : SU(2) + 3F

E3 : SU(2) + 2F

E2 : SU(2) + 1F

E1 : SU(2)0 Ẽ1 : SU(2)π

E0 : SU(2) + "-1"F

SU(2)π + Ad

O8(−1) : SU(2) + Ad + "-1"F

Figure 2. The RG flow among 5d rank 1 SCFTs obtained by mass deformations. The shaded boxes
correspond to 5d KK theories which are UV completed by 6d SCFTs. Each box represents a gauge
theory description. Since it is rank 1, the gauge group is SU(2) in all cases, where F represents
matter in the fundamental representation and Ad represents matter in the adjoint representation.
In the case of pure gauge theory and adjoint matter only, discrete theta angles are possible, which
are denoted by subscripts. There are no gauge theory descriptions for E0 and O8(−1) theories, but
we write “−1”F because RG flow corresponds to formally removing the fundamental representation
matter.

on geometry [32, 38], a classification based on gauge theory description [31, 43], and a
classification based on the S1 compactification of the 6d SCFT (which may involve a
twist) [32–34, 41, 44]. In particular, all 5d SCFTs are conjectured to be obtained as RG
flows of the 5d KK theory (which is a compactification of 6d SCFT) [32].

Here we sketch the classification based on 5d gauge theories obtained from supersym-
metry preserving relevant deformations. The necessary conditions for obtaining nontrivial
SCFTs are proposed in [31], which is an improved version of [45]. The conditions are that
there exists a physical Coulomb branch where the monopole string has positive tension
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and the instanton particle has positive mass squared and that the gauge coupling there is
positive. The possible gauge groups of rank 1 are U(1),O(2), and SU(2), of which only
SU(2) satisfies the necessary condition. The SU(2) gauge theories with Nf = 0, 1, · · · , 7
fundamental matters correspond to the gauge coupling deformation of ENf +1 theory, as
listed in figure 2. For Nf = 0, there exists a freedom to add discrete theta angle [28]. The
SCFT that corresponds to the theory with discrete theta angle π is Ẽ1 theory. The Ẽ1
theory is amenable to further relevant deformation, which yields the E0 theory. Note that
the SU(2) gauge theory with Nf = 8 fundamental matters is UV completed by a 6d SCFT.
All En and Ẽ1 theories are obtained from the RG flow of the 6d SCFT, and the Coulomb
branch geometries are locally R/Z2. The SCFTs are realized at the fixed point.

Similarly, the SU(2) gauge theories with an adjoint matter and discrete theta angle π
is UV completed by 6d SCFT. The relevant deformation of this theory flows to another 5d
SCFT in the IR (right side of figure 2). This theory was found in [38]. We call this O8(−1)

theory because, as we will see below, it is natural to regard this as the worldvolume theory
of the D4-brane probing the O8(−1)-plane. Here the O8(−1)-plane is the orientifold plane
whose D8-brane charge is −1 [25]. The Coulomb branch geometry of the O8(−1) theory
is R/Z2.

If we include the matter in the SU(2) gauge theory with representations that do not
appear in figure 2, the value of ci becomes negative. This makes the gauge coupling negative
and does not satisfy the necessary condition in [31].

In this paper, we derive a consistency condition of the worldvolume theory of probe
branes, assuming that the classification above is complete. In principle, it is possible
that there exist unknown SCFTs which do not admit a gauge theory description and are
associated with unknown geometry, although we believe that this is unlikely.

The values of ci in the SCFTs described above are as follows: [27, 38, 46]

c

cA0
=


9− n for En theory (n = 0, 1, · · · , 8)
8 for Ẽ1 theory
1 for O8(−1) theory

, (3.8)

where cA0 is the value of c for A0 theory (U(1) gauge theory with one electron).

IR free theories. The theory of the symmetry enhanced point on the 4-brane can be an
IR-free theory as well as a SCFT. Here we list the rank-1 free theories in which the Higgs
branch is isomorphic to an instanton moduli space.

There are two theories in which the Higgs branch is a one-instanton moduli space: An
theory and Dn theory. The An theory is a U(1) gauge theory containing (n+1) “electrons”
as matter. This theory has an su(n + 1) global symmetry. A Dn theory is a SU(2) gauge
theory containing n “quarks” as matter. This theory has an spin(2n) global symmetry. The
Coulomb branch geometry of An theory is R and that of Dn theory is R/Z2 considering the
Weyl group. Compactifying the An theory to S1 results in a 4dN = 2 theory corresponding
to the su(n + 1) small instanton in 8d spacetime. This corresponds to the In singularity
of the 4d Coulomb branch. Similarly, the S1 compactification of the Dn theory is the I∗n
singularity of the 4d Coulomb branch.
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For the Cn case, the one-instanton Higgs branch is simply given by a free half-
hypermultiplet, and has a zero-dimensional Coulomb branch. This means that the cor-
responding probe brane is “stuck”, and indeed this theory is realized by the worldvolume
of a stuck D4 branes. By contrast, the theory with instanton number of two has a one-
dimensional Coulomb branch, and as argued in [2] it is the one describing mobile probe
branes that connect to small instantons of other non-Abelian factors. Therefore, we will
focus on this theory, which is given by an O(2) = U(1) o Z2 gauge theory containing two
hypermultiplets of charge 2 and sp(n) hypermultiplets of fundamental representation as
matter [47]. The global symmetry of this theory is sp(n). The Coulomb branch geometry
of Cn theory is R/Z2 because of a discrete gauging. The S1 compactification of this theory
is the frozen I∗n+8 singularity in the 4d Coulomb branch. The lack of mass deformation due
to Z2 gauging in the O(2) gauge symmetry corresponds to the singularity being frozen [47].

The jump in the level of the Chern-Simons term (which is the same as the change in
the slope of the gauge coupling) can be obtained exactly by a 1-loop calculation [26]. The
result is

c

cA0
=


− (n+ 1) for An theory
8− n for Dn theory
−(8 + n) for Cn theory

. (3.9)

One could also ask why these are all the possibilities for the global symmetry of IR
free theories. Naively, these are easy to construct: For any G, just consider U(1) gauge
theory with matter in a representation of G. At low energies, the scalars in the matter
sector are described just by a kinetic term

L ⊃
∫ √
−g
ï
κab
2 ∂µφ

a∂µφb
ò
, (3.10)

where the indices a, b take values in some representation of G, and κab is the corresponding
quadratic form. At low energies, this theory has a G global symmetry. In particular, there
seems to be no obstacle to things like G = G2 in eight dimensions, which we know does
not arise in the landscape of known 8d N = 1 theories [2].

However, for any theory with lagrangian (3.10), the global symmetry in the IR enhances
to Spin(n), Sp(n), or U(n), according to whether the representation under consideration
is real, pseudoreal, or complex, respectively. The point is that any finite-dimensional
representation of any group comes with the quadratic form κab that one uses to construct
the non-degenerate kinetic term, and that the symmetry of the lagrangian (3.10) is that
of the quadratic form. When the representation is real, κab is a real symmetric matrix,
and the corresponding symmetry group is the orthogonal group. When the representation
is pseudoreal, it preserves a symplectic form; the symmetry is the symplectic group. And
when the representation is complex, κab preserves a Hermitian form, whose symmetry group
is unitary.

So, assuming there is no accidental symmetry enhancement in the deep IR, the only
possibilities are the ones we have listed. We will now use these to classify the possible
consistent quantum gravity vacua that one can have in nine dimensions.
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Name free or CFT Symmetry Geometry Brane c/cA0

An(n = 0, · · · ) free su(n+ 1) R (n+ 1)D8 −(n+ 1)

Cn(n = 0, · · · ) free sp(n) R/Z2 O8+ + nD8 −(8 + n)

Dn(n = 0, · · · ) free spin(2n) R/Z2 O8− + nD8 8− n

En(n = 1, · · · , 8) CFT caption R/Z2 O8− + (n− 1)D8 9− n

Ẽ1 CFT u(1) R/Z2 O8− 8

E0 CFT ∅ R/Z2 O8(−9) 9

O8(−1) CFT ∅ R/Z2 O8(−1) 1

Table 1. List of 4-brane worldvolume theories with one-dimensional Coulomb branch. Global
symmetries of En and Ẽ1 theories are E8 = e8, E7 = e7, E6 = e6, E5 = spin(10), E4 = su(5), E3 =
su(3) + su(2), E2 = su(2) + u(1), E1 = su(2), Ẽ1 = u(1), E0 = ∅. The Higgs branch is given by
one-instanton moduli space (two-instantons moduli space for Cn). The geometry column refers to
the local geometry around the symmetry enhanced point. See eqs. (3.8) and (3.9) for the details of
the c/cA0 column, and the text after (3.13) for details behind the brane column.

Comparison of (3.7) and string vacua. So far, we have listed the possible brane world-
volume theories that can arise at the endpoints or singular points of the S1/Z2 Coulomb
branch moduli space. These are summarized in table 1. Since the overall geometry is
S1/Z2, there are worldvolume theories with a geometry of R/Z2 at the two endpoints. It is
important to emphasize that there should be exactly two worldvolume theories with R/Z2
geometries.

Only the An theory can appear as a singularity inside a line segment. The fact that
the cubic coefficient ci in An theory is negative is important in obtaining the bound.

The different choices of theories on the two endpoints correspond to different classes
of vacua. There are 10 ways to choose two endpoints from Cn, Dn, En (including Ẽ1), and
O8(−1) theories. However, in order to satisfy (3.7), given that cAn is negative, the sum of
ci of the theory on the endpoints must be non-negative. This excludes the case where both
endpoint theories are Cn and the case where Cn and O8(−1) are chosen. The remaining
eight patterns are as follows:

2D,D + E, 2E : Rank 17 theories,

D +O8(−1), E +O8(−1) : Rank 9 theories,

2O8(−1) : Rank 1 theories A,
C +D,C + E : Rank 1 theories B. (3.11)

Here, on the right side, we have written the rank of the symmetry group, which is consistent
with the result in [48].

The non-Abelian symmetry can be read from the global symmetry groups at the sin-
gularity, but it is not a priori clear how to count the number of u(1) symmetries. Here we
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make two important comments about the counting of u(1) factors. Later in the subsection,
we will provide a more complete and systematic study of the u(1) factors.

First, there are u(1)’s associated with the relative positions of An singularities. This is
understood by starting from the A1 singularity and deforming it. The 5d theory at the A1
singularity has an su(2) global symmetry that rotates the two electrons, which corresponds
to the bulk gauge symmetry. Then, let us consider breaking the su(2) symmetry. This is
achieved, in the bulk, by giving the vacuum expectation value to the Cartan component
of the scalar field in the vector multiplet. On the brane, on the other hand, it is achieved
by giving a mass difference to the two electrons (corresponding to an A1 singularity splits
into two A0 singularities). Therefore, we see that the u(1) vector multiplet in the bulk is
coupled to the mass difference operator on the brane. Similar arguments show that the
relative position of An and Dm singularities are also associated with u(1)’s.

Next, there may be an additional u(1) corresponding to the 5d instanton number. If a
5d theory at the fixed point is IR free, then there is a conserved current [27]

j = ∗Tr (F ∧ F ) . (3.12)

This generates an u(1) symmetry under which the BPS instanton particle is charged. As
before, this must couple to the 9d bulk vector multiplet in a supersymmetric way. This
means that there is a u(1) gauge symmetry in the bulk and that the 5d gauge coupling
(and the mass of instanton particle) is controlled by the corresponding 9d scalar field.

We will now explain how the gauge group (including its Abelian factor) can be com-
pletely determined from the data of the Coulomb branch of the brane theory. The data that
we are interested in is the collection of global symmetries of the brane worldvolume theory
and the points where those global symmetries are realized on the Coulomb branch. But for
now, we consider theories where the relative positions of all points of symmetry enhance-
ment on the Coulomb branch are frozen. The positions can freeze due to the continuity of
the brane coupling constant g across the brane moduli space. For example, consider the
case where there are two E8 theories at the endpoints and an A0 theory somewhere in the
middle. In such a theory, the location of the A0 is forced to be exactly at the center of the
interval. This is because 1/g2 vanishes at the E8 endpoints and symmetrically increases in
the middle. Therefore, the tipping point of 1/g2, where A0 is located, must be at the center.

In theories where the relative positions of points of symmetry enhancement for a fixed
gauge group are completely frozen, enhancing the symmetry algebra is impossible.7 Later
we will show that these theories are the only maximally enhanced theories. In other words,
we show that the gauge group can always be enhanced to one of these symmetry groups.

In most cases, the maximally enhanced theory has a semisimple symmetry algebra of
rank of 17, 9, or 1. However, in a few cases, the rank of the semisimple algebra is off by
one. Therefore, for such theories to be realized, there must be an extra u(1) in the gauge
group. All the frozen geometries in the sense discussed above and their corresponding

7Note that our definition for maximally enhanced theory is one where the gauge group cannot be further
enhanced to a larger group. This is different from the definition in [49] where maximal enhancement refers
to the absence of u(1) factors.
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gauge algebras are listed in the following tables. The theories with ranks 17, 9, and 1, are
respectively listed in tables 2, 3, and 4.

Let us compare the above with string compactifications. In string theory, there are four
classes of vacua [9, 25, 49–52]. To make the comparison with (3.11) easier to understand,
we write each class as follows.

2O8− + 16D8 : Rank 17 theories,
O8− +O80 + 8D8 : Rank 9 theories,
2O80 : Rank 1 theories A,
O8− +O8+ : Rank 1 theories B, (3.13)

where O80 is the shift orientifold [25, 52], and O8± are the orientifold planes with D8-
charge ±8.

Theories with rank 17 are obtained by circle compactification of heterotic/type I

strings, as well as type I ′ string where there are two O8−-planes and 16 D8-branes [23].
In this context, the 4-brane obtained as a small instanton is a D4-brane. The theory on
the D4-brane that probes the (n + 1)D8-branes is the An theory, and the theory on the
D4-brane that probes the O8− + nD8 is the Dn theory. When the dilaton diverges at
the position of O8− + (n − 1)D8, then the En theory is realized. It is also possible for
O8− to emit D8 non-perturbatively (O8− → O8(−9) + D8).8 The worldvolume theory of
a D4-brane that probes the O8(−9) becomes the E0 theory. This is not captured by the
perturbative type I ′ description, but it can be understood from the language of geometry
in real K3 [53]. Table 11 of [49] lists all the patterns of the maximally enhanced gauge
groups in the 9-dimensional heterotic string vacuum, which matches the ones in table 2.

Theories with rank 9 are obtained from the CHL string [54, 55], M-theory on the
Möbius strip [56, 57], and IIA string with O8− + O80 + 8D8 [25]. Again, when the O-
plane emits D8 non-perturbatively (O8− → O8(−9) + D8 and O80 → O8(−1) + D8), the
maximally enhanced gauge symmetries are realized. By comparing with (3.11), we can
see that the O8(−1) theory in table 1 is naturally interpreted as a worldvolume theory for
D4-brane probing the O8(−1) plane. Table 3 of [50] lists all the patterns of the maximally
enhanced gauge groups in the 9-dimensional CHL string vacuum, which matches the ones
in table 3.

Finally, there are two inequivalent theories that have rank-1. One is M-theory on the
Klein Bottle [57], the Asymmetric Orbifold of IIA, and is IIA with 2O80 [25]. The other
is IIB on the Dabholkar-Park background [57], the Asymmetric Orbifold of IIB, and IIA
with O8− + O8+ [25]. It is known that in both classes of theories, the symmetry can be
enhanced to SU(2), which matches the list in table 4.

Spacetime gauge theory and instanton moduli space. For brane moduli spaces
listed in tables 2, 3, and 4, we found the corresponding spacetime gauge group and showed
that the gauge group is maximally enhanced. In the following, we complete our analysis by
determining the spacetime gauge group for the ones not listed in the tables. The semisimple

8The superscript corresponds to D8-brane charge.
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# Placement of enhanced
theories on the Coulumb branch Gauge algebra Root lattice

1 E8 A1 E8 e8 + e8 + su(2) 2E8 +A1

2 E8 A2 E7 e8 + e7 + su(3) E8 + E7 +A2

3 E8 A3 E6 e8 + e6 + su(4) E8 + E6 +A3

4 E8 A4 E5 e8 + spin(10) + su(5) E8 +D5 +A4

5 E8 A5 E4 e8 + su(6) + su(5) E8 +A5 +A4

6 E8 A6 E3 e8 + su(7) + su(3) + su(2) E8 +A6 +A2 +A1

7 E8 A8 E1 e8 + su(9) + su(2) E8 +A8 +A1

8 E8 A9 E0 e8 + su(10) E8 +A9

9 E7 A3 E7 e7 + e7 + su(4) 2E7 +A3

10 E7 A4 E6 e7 + e6 + su(5) E7 + E6 +A4

11 E7 A5 E5 e7 + spin(10) + su(6) E7 +D5 +A5

12 E7 A6 E4 e7 + su(7) + su(5) E7 +A6 +A4

13 E7 A7 E3 e7 + su(8) + su(3) + su(2) E7 +A7 +A2 +A1

14 E7 A9 E1 e7 + su(10) + su(2) E7 +A9 +A1

15 E7 A10 E0 e7 + su(11) E7 +A10

16 E6 A5 E6 e6 + e6 + su(6) 2E6 +A5

17 E6 A6 E5 e6 + spin(10) + su(7) E6 +D5 +A6

18 E6 A7 E4 e6 + su(8) + su(5) E6 +A7 +A4

19 E6 A8 E3 e6 + su(9) + su(3) + su(2) E6 +A8 +A2 +A1

20 E6 A10 E1 e6 + su(11) + su(2) E6 +A10 +A1

21 E6 A11 E0 e6 + su(12) E6 +A11

22 E5 A7 E5 spin(10) + spin(10) + su(8) 2D5 +A7

23 E5 A8 E4 spin(10) + su(9) + su(5) D5 +A8 +A4

24 E5 A9 E3
spin(10) + su(10)
+su(3) + su(2) D5 +A9 +A2 +A1

25 E5 A11 E1 spin(10) + su(12) + su(2) D5 +A11 +A1

26 E5 A12 E0 spin(10) + su(13) D5 +A12

27 E4 A9 E4 su(10) + su(5) + su(5) A9 + 2A4

28 E4 A10 E3
su(11) + su(5)
+su(3) + su(2) A10 +A4 +A2 +A1

29 E4 A12 E1 su(13) + su(5) + su(2) A12 +A4 +A1

30 E4 A13 E0 su(14) + su(5) A13 +A4

31 E3 A11 E3
su(12) + su(3) + su(3)

+su(2) + su(2) A11 + 2A2 + 2A1

32 E3 A13 E1
su(14) + su(3)
+su(2) + su(2) A13 +A2 + 2A1

33 E3 A14 E0 su(15) + su(3) + su(2) A14 +A2 +A1

Table 2. (Part 1 of 2) List of possible maximally enhanced rank 17 theories in nine dimensions
which is obtained by Swampland considerations. The first 44 lines where the algebra is semisimple
match with table 3 in [49] which have string theory realizations.
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34 E1 A15 E1 su(16) + su(2) + su(2) A15 + 2A1

35 E1 A16 E0 su(17) + su(2) A16 +A1

36 E0 A17 E0 su(18) A17

37 E8 D9 e8 + spin(18) E8 +D9

38 E7 D10 e7 + spin(20) E7 +D10

39 E6 D11 e6 + spin(22) E6 +D11

40 E5 D12 spin(24) + spin(10) D12 +D5

41 E4 D13 su(5) + spin(26) D13 +A4

42 E3 D14 su(3) + su(2) + spin(28) D14 +A2 +A1

43 E1 D16 su(2) + spin(32) D16 +A1

44 E0 D17 spin(34) D17

45–53 0 ≤ n ≤ 8 : Dn D16−n
spin(2n) + spin(32− 2n)

+u(1) Dn +D16−n

Table 2. (Part 2 of 2) List of possible maximally enhanced rank 17 theories in nine dimensions
which is obtained by Swampland considerations. The first 44 lines where the algebra is semisimple
match with table 3 in [49] which have string theory realizations.

# Placement of enhanced
theories on the Coulumb branch Gauge algebra Root lattice

1 E8 A1 O8(−1) e8 + su(2) E8 +A1

2 E7 A2 O8(−1) e7 + su(3) E7 +A2

3 E6 A3 O8(−1) e6 + su(4) E6 +A3

4 E5 A4 O8(−1) spin(10) + su(5) D5 +A4

5 E4 A5 O8(−1) su(6) + su(5) A5 +A4

6 E3 A6 O8(−1) su(7) + su(3) + su(2) A6 +A2 +A1

7 E1 A8 O8(−1) su(9) + su(2) A8 +A1

8 E0 A9 O8(−1) su(10) A9

9 D9 O8(−1) spin(18) D9

Table 3. List of possible maximally enhanced rank 9 theories in nine dimensions which is obtained
by Swampland considerations. The above table matches with table 3 in [50] which have string
theory realizations.

# Placement of enhanced
theories on the Coulumb branch Gauge algebra Root lattice

1 O8(−1) A1 O8(−1) su(2) A1

2 E1 C0 su(2) A1

3 E0 C1 su(2) A1

4 D0 C0 u(1) ∅

Table 4. List of possible maximally enhanced rank 1 theories in nine dimensions which is obtained
by Swampland considerations.

– 16 –



J
H
E
P
0
2
(
2
0
2
2
)
0
8
2

part of the gauge algebra is easy to find as it is given by the global symmetries of the brane
theory. However, counting the number of additional u(1) components turns out to be non-
trivial. Moreover, we will show that the theories listed in the tables are the only maximally
enhanced theories. In other words, the gauge group of any theory with a different brane
moduli space could be enhanced to one of the entries of tables 2, 3, or 4.

To show any other theory can be a=enhanced, we look at the deformations of the
Coulomb branch of the brane resulting from moving around in the Coulomb branch of
the bulk theory. In addition to the continuous change in the position of An points in the
interior of the interval, multiple groups can fuse or break up. These can be most easily
read off from the string theory realization of these theories. Note that this is a field theory
statement, even though we use the string theory realizations of these theories to verify it.
We find that the following transitions are allowed:

1. E0 and A0 ↔ Ẽ1 corresponding to O8(−9) +D8 ↔ O8−.

2. E1 and A0 ↔ E2 corresponding to moving away a D8 from the E2 point.

3. Am and An ↔ Am+n+1 corresponding to joining/separating two stack of m+ 1 and
n+ 1 D8 branes .

4. Am and Dn ↔ Dm+n+1 corresponding to moving to/away a stack of m+1 D8 branes
to/from a stack of O8− and n D8 branes.

5. C0 and A0 ↔ C1 corresponding to moving joining/separating a D8 brane to/from
the O8+ brane.

We did not include transitions involving Cn>1 since, as we will see later, including such
theories makes it impossible to satisfy the condition (3.7).

Note that the first two transitions do not change the rank of the semisimple Lie algebra
of the gauge group. However, the last three transitions change the rank of the semisimple
Lie algebra by one. Since the total rank of the group is invariant, these transitions must
also involve the appearance of additional u(1). In other words, the rank change comes from
(un)Higgsing mechanism that absorbs/breaks up a u(1) to/from the Lie algebra.9

Following, we implement an algorithmic series of these transitions that will maximally
enhance the gauge group.

One can first use transitions 1 and 2 to convert the enhanced theories on both ends
into one of {C0 or 1, En 6=2, Dn}. Then, one can use transition 3 to fuse all the A-type points
of symmetry enhancement into one. If one of the endpoints is a D theory, one can use
transition 4 to absorb the remaining A-singularity into the D. If one of the endpoints is
C0, either there is nothing in the middle, or there is just an A0. In the latter case, one can
use transition 5 to absorb the A0 fiber into C0 and change it into C1. At the end of this
series of transitions, the condition 3.7 is still satisfied, and none of the transitions 1-5 can
be done anymore. The only configurations that have these properties are the ones listed
in tables 2, 3, and 4. Therefore, any gauge group can be enhanced to a semisimple group

9This is consistent with the argument below (3.11).
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A4 A6E2 D3
Transition 2

A4 A6E1 D3A0
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Figure 3. The above graph demonstrates the algorithm to deform a theory consistent with the
condition (3.7) to a maximally enhanced theory in table 2.

listed in the third column of tables 2, 3, and 4. An example of this algorithm is illustrated
in figure 3.

Note that for transitions 3-5, the brane theory encodes the data of the U(1) gauge cou-
pling through the relative position of the enhanced global symmetry points on its Coulomb
branch. When the distance between these points is shrunk to zero, the appropriate ad-
joint vector bosons become massless, and the symmetry is enhanced. In the string theory
language, this corresponds to the string states connecting the D-branes becoming massless.

The above algorithm offers an easy way to count the number of u(1)’s. The number
of u(1)’s is the number of transitions 3-5 used plus the number of u(1) at the end of
the algorithm! This allows us to read off the full gauge group by looking at the brane’s
Coulomb branch.

There is a small loophole in the above argument that we address below. In the above
algorithm we assumed that we can arbitrarily move the position of the points of symmetry
enhancement to perform the transitions 3.1, as long as they are consistent with equa-
tions (3.4) and (3.7). However, we might not have such a control over the brane moduli
space through variations of the spacetime moduli. In the following we show that variations
of bulk moduli indeed allow for such arbitrary deformations of the brane moduli space.
Our argument has two steps. First we show that as long as the points do not cross, we can
arbitrarily move them around subject to the equations (3.4) and (3.7). Then we show that
after moving two points corresponding to one of the transitions arbitrarily close to each
other, they can be fused by changing bulk moduli.

First step: in subsection 3.3, we will show that by varying the vev of bulk u(1) scalars,
any sufficiently small movement of the points of symmetry enhancement that satisfies (3.4)
and (3.7) is possible. Now we argue that any large movement must also be possible.
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Suppose we have a canonically normalized bulk modulus φ9d that controls the distance
between two points of symmetry enhancement. We assume that increasing φ9d corresponds
to bringing the two points closer to each other. The unwanted scenario happens when even
by taking φ9d to infinity, the points do not get arbitrarily close to each other and stop at
some finite distance. As we will explain next, this cannot happen.

The 9d supersymmetry fixes the moduli space of the spacetime theory to be the moduli
of the Γ17,1 Narain lattice, for which all infinite distance limits are decompactification limits.
Fortunately, we understand the decompactification limits for the brane theory. When two
points of symmetry enhancement that cannot be fused are brought closer to one another, we
get a theory that does not have any 5d UV completion and decompactifies into a 6d theory.
For example, this happens when we try to fuse A0 point to an E8 endpoint. Therefore,
the decompactification limit corresponds to the situation when two points of symmetry
enhancement converge but cannot be fused. Therefore, the worrisome situation mentioned
before where the points stop at some finite distance from each other never happens. This
completes the first step of the argument. Now we prove the second step.

Second step (fusibility of points): we want to show that suppose a pair of points
corresponding to one of the transitions are brought sufficiently close to each other, they
can be fused. To see why, note that we can always perform the transitions in the direction
of splitting a point of symmetry enhancement into two. This can be done by Higgsing
the spacetime gauge symmetry. Thus, at sufficiently small distances between two points
of symmetry enhancement, the relation between the canonical distance of two points of
symmetry enhancement on the brane moduli and the spacetime moduli is such that the
points can be fused at a finite distance of the 9d moduli space. Doing it in reverse must
also be possible at finite distance of bulk moduli space.

This completes the argument that closes the loophole. We showed that any movement
of the points of symmetry enhancement that satisfies equations (3.4) and (3.7) in addition
to all of the five transitions (in both directions) are always possible through variations
of the spacetime moduli. In particular, this shows that all the rank 17 gauge groups are
connected by the spacetime moduli space.

Excluding 9d supergravity theories with sp(n) symmetry. Here we show that
theories with sp(n ≥ 2) symmetry can be excluded using (3.7) and table 1. In order to
achieve sp(n) symmetry, we must take the Cn theory as one of the endpoints of S1/Z2. At
this time, in order to satisfy (3.7)

− (8 + n) +
cS1/Z2

cA0
≥ 0, ⇒ n ≤

cS1/Z2

cA0
− 8, (3.14)

is required, where cS1/Z2 is the value of ci at the other endpoint. From here, we can see
that the upper bound of n for sp(n) symmetry is determined by the maximum value of
cS1/Z2/cA0 that can be taken. Table 1 shows that cS1/Z2/cA0 is maximized in the E0 theory,
where the value is 9. This means that

n ≤
cS1/Z2

cA0
− 8 ≤ 1. (3.15)
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Thus, theories with sp(1) = su(2) symmetry are feasible, but theories with sp(n ≥ 2)
symmetry are not. Note that there is nothing problematic with a supersymmetric sp(n)
symmetry without coupling to gravity. Indeed the O8+ orientifold in string theory realizes
it on a non-compact space, where 9d gravity is decoupled, except for the running of the
dilaton which leads to infinitely strong coupling at finite distance. In the string construc-
tion, the point at strong coupling can only be probed by very long strings stretching out of
O8+, which have a high energy. Therefore, this singularity can be interpreted as a stringy
version of the Landau pole.

Also, note that supersymmetry is essential for the conclusions reached here. It is known
that in a non-supersymmetric gravity theory, one can obtain a theory with sp(n) gauge
symmetry in 10 dimensions [58], and by compactifying it to S1 one can obtain the same
symmetry in 9 dimensions.

3.2 8d

In this section, we review the argument for the 8d case discussed in [2], and extend it to
derive the SLP in 8d supergravity theories.

The gauge instantons in 8d are 3-branes, which are described by a 4d N = 2 rank-
1 theory. The coupling constant is represented by an elliptic curve, and the total space
is an hyperkähler geometry. The only known compact and connected hyperkähler man-
ifolds with real dimension 4 are the torus T 4 or K3, and only the latter produces non-
Abelian symmetry. A direct application of the arguments in section 3.1 shows that only
K3 is relevant for theories with 16 supercharges. In this way, the elliptic K3 geometry of
the F-theory compactification [3–5] is reconstructed from the 3-brane [2]. Moreover, by
studying the structure of the Coulomb branch for gauge instantons from the bottom-up
perspective [59], one recovers the dictionary between K3 singularities and enhanced gauge
symmetries. See [48, 60–62] for swampland constraints on the global structure of the gauge
group in 8d.

In section 2, we have provided the argument that the rank of the brane theory is
one. As remarked in the footnote there, we used the extra input from the string theory
constructions to exclude the possibility of the yet-to-be-discovered SCFT. In 8d, we can
exclude such a possibility in yet another way based on the central charge.10 It is known that
other gauge algebras cannot be realized [2, 63], so in the following, we will only consider
the case of the simply-laced gauge algebra and the sp(n) gauge algebra. Assuming that the
Higgs branch is given by that of the one-instanton moduli space, the central charges a and
c of SCFT are determined [64, 65]. This is because the Higgs branch corresponds to a non-
Abelian instanton of nonzero size, and the low-energy dynamics is uniquely determined by
supergravity and the index theorem. Moreover, an upper bound to the rank can be obtained
by using the relationship [66] between the central charge and the scaling dimension of the
Coulomb branch coordinates: [2]

(Rank) ≤ 4(2a− c). (3.16)

This can be used to rule out the existence of nontrivial SCFTs with ranks greater than
one that we do not yet know about. For sp(n), the central charges are those of the trivial

10This statement applies to 9d as well, since it is related by a simple S1 compactification.
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SCFTs, and there are no nontrivial SCFTs. For simply-laced gauge algebras, by giving the
bulk scalar a vacuum expectation value, we can always break the symmetry to SU(2). The
central charges of the interacting SCFT on the corresponding small instanton 3-brane are
a = 11/24 and c = 1/2. By substituting these values into (3.16), this leads to (Rank) ≤ 5/3,
which means that ranks higher than one are excluded.

We will now briefly comment on the reduced rank cases, which are related to frozen
singularities in F-theory. In eight dimensions, there are three theories of rank 18, 10, and
2 [48]. The gauge group of the theory with rank 18 is completely reproduced from the
3-brane. A theory of smaller rank corresponds to the case with D8+n frozen singularities,
and the theory on the 3-brane that probes this singularity is a S1 compactification of the
Cn theory of table 1. A theory with rank 10 corresponds to geometry with a single frozen
D8+n singularity, while a theory with rank 2 corresponds to geometry with two. This
mapping allows us to reproduce the gauge symmetry in theories with reduced rank too,
which completes the SLP in 8d supergravity theories as well.

3.3 7d

In this section, we apply the methodology of previous sections to 7d theories with 16
supercharges. In 7d, the brane is magnetically charged under the 3-form field in the
gravity multiplet. Therefore, the brane is a 2-brane instanton. Assuming the brane is
BPS, the worldvolume theory of the 2-brane is a 3d N = 4 theory, which becomes U(1) in
the Coulomb branch and at low energies.

Following the black hole argument and the strong version of the cobordism conjecture
reviewed in section 2, we can respectively argue that the moduli space is compact and
connected. Moreover, from the N = 4 supersymmetry, we know that the moduli space
is hyperkähler [67]. To sum up, we are led to conclude that the moduli space is a four-
dimensional compact, connected hyperkähler manifold. As mentioned above, only two
such examples are known: T 4 and K3. The case of T 4 has no symmetry enhancement
at any point in the moduli space and corresponds to seven-dimensional theories with 32
supercharges. We will therefore focus on the remaining case of 16 supercharges described
by K3.

In principle, we can use this knowledge of moduli space to constrain the landscape
of gauge theories, similar to what we did in the 9d case in section 2. To systematically
classify the possible 7d theories of maximal rank, we will need to construct all possible
SCFT’s that arise at singular points in the Coulomb branch, just as we did in the 9d case
and was done for the 7d case in [68]. Unlike in the 9d case in section 2, we do not have a
systematic classification of 3dN = 4 SCFT’s, so we cannot use it to produce a list of allowed
singularities (including the frozen ones); this means that strictly speaking our results here
are weaker than the 9d and 8d cases. What we will do instead is list the known 3d rank
N = 4 SCFT’s that arise at singular points in known string theory constructions,11 and
use these singularities to reconstruct all 7d N = 1 maximal enhancement points. We can
then reverse the field and string theory roles: Rather than using a field theory construction

11The M2 brane probing M-theory on K3 was discussed in [69, 70].
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to construct all 7d N = 1 theories, we will employ the known existing constructions to
predict a classification of those rank-1 3d N = 4 SCFT’s which have the instanton moduli
space as the Higgs branch!

Before embarking on the classification, we must discuss a subtlety that is absent in
the 8d and 9d cases. The local singularities that can arise in K3 are codimension 4. The
geometry, in a neighborhood of the singularity, looks like R4/Γg, where Γg is an ADE
group. The four scalars in the worldvolume of the brane are the three scalars that live
in the 3d N = 4 vector multiplet, and the dual photon. Since the low-energy theory is a
sigma model into K3, there is a possibility of including a topological coupling in the brane
worldvolume, ∫

CIJKε
αβγ∂αX

I∂βX
J∂γX

K =
∫
π∗(C), (3.17)

where {α, β, γ} are brane worldvolume indices, Latin uppercase indices correspond to the
K3 tangent space, and the notation π∗(C) just denotes the pullback, to the 2-brane world-
volume, of the K3 3-form C. A smooth K3 has no nontrivial 3-cycles, and so in such a case
C = 0. But in a singular K3, one can excise the local singularity, and the resulting space
has a nontrivial linking 3-cycle of topology S3/Γg. It follows that, if in a given quantum
theory of gravity, we find a brane with C 6= 0 around some singularity, it will not be
possible to deform the K3 to be smooth: the corresponding singularity must be frozen.

What we have just given is a Swampland derivation of the existence of frozen singu-
larities, which are very familiar from F and M theory constructions [51]. In particular, we
have recovered their M-theory description as geometric singularities frozen by 3-form flux.
In a sense, the brane perspective is telling us that any consistent 7d N = 1 theory can arise
from K3 with frozen singularities, and so, it gets us tantalizingly close to the statement
that M-theory is the unique quantum theory of gravity in seven dimensions.

From the definition (3.17), it is pretty clear that the 3-form C is only defined modulo an
integer, since the coupling remains the same upon shifting C by a 3-form that integrates to 1
on the relevant 3-cycle. Furthermore, 3d N = 4 supersymmetry requires that the coupling
is topological, which amounts to the statement that the 3-form C is closed, dC = 0. This
local condition must be true globally in the compact K3 (with singularities removed), so if
there are p = 1, . . . frozen singularities in K3, the holonomies

∫
S3/Γ(p)

g
C around each of the

frozen singularities must satisfy ∑
p

∫
S3/Γ(p)

g

C ≡ 0mod 1. (3.18)

The constraint (3.18) can also be recovered in known compactifications to seven dimensions:
it just becomes the condition that there cannot be G4 flux on M-theory on K3 [51].

Armed with the above, we can reproduce the list of maximal enhancements in known
theories in seven dimensions [51, 68]. The following table lists all known (possibly frozen)
local singularities that can arise in K3, the global symmetry on the brane theory at that
point (corresponding to the non-Abelian enhanced symmetry), the local geometry of the
Coulomb branch near the singularity and taken from [51, 71], and the corresponding discrete
flux threading the singularity.
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Unfrozen Algebra Flux
∫
C3 Frozen Algebra

so(2n+ 8) 1/2 sp(n)

e6 1/2 su(3)

e6 1/3, 2/3 ∅

e7 1/2 so(7)

e7 1/3, 2/3 su(2)

e7 1/4, 3/4 ∅

e8 1/2 f4

e8 1/3, 2/3 g2

e8 1/4, 3/4 su(2)

e8 1/5, 2/5, 3/5, 4/5 ∅

e8 1/6, 5/6 ∅

Table 5. The frozen singularities in the context of the compactification of M-theory on K3 [51, 71].

These have to be combined in all possible ways to form a K3 with singular fluxes.
We list all the possibilities in the table below, matching the known list of 7d theories
with reduced rank [9, 51, 68]. So assuming this table can be derived independently from
the classification of 3d SCFT’s with N = 4, this would complete the SLP program for
supergravity theories in 7d as well.

As we have seen so far, much information about the spacetime theory is encoded in
the small instanton moduli space. For example, the gauge group of the spacetime theory is
related to the singularities of the brane moduli space. An ambitious improvement of this
relationship would be to understand how the Coulomb branch of the brane moduli deforms
by changing the spacetime moduli. In fact, in 7d, we can make an elegant connection
between the geometry of the brane moduli space and the spacetime moduli.

Take a 2-cycle in the small instanton moduli space and consider a skyrmion where the
brane moduli wrap around the 2-cycle on the spatial slices of the brane. Suppose we can
localize the 2+1 dimensional skyrmion so that it pinches off from the brane worldvolume.
The pinched-off skyrmion is a 0+1 spacetime particle. Note that the mass of the scalar
field corresponding to this particle controls the size of the 2-cycle. Therefore, we can locally
control the complex structure of the K3 moduli space subject to the frozen singularities by
changing the periods of K3 through varying the spacetime moduli. This establishes a direct
relationship between the brane moduli space and spacetime moduli using only field theory.

The above result holds for higher dimensions as well. For example, take the 9d theory
and compactify it on a T 2 down to 7d. The points of symmetry enhancements on the brane
Coulomb branch map to singularities of K3. Therefore, we can locally move the location
of the singularities subject to the K3 geometry by changing the spacetime moduli. If we
decompactify one S1, the path in the 7d moduli space lifts to a path in the 8d moduli
space, which moves the location of the singular fibers on the brane moduli space subject
to the geometry of the elliptic K3. Suppose we further decompactify the extra S1. In that
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Rank Flux
∫
C3 Freezing rule Dual description

11 1
2 + 1

2

so(2n+ 8)⊕ so(2m+ 8)→ sp(n)⊕ sp(m)
2 e6 → 2 su(3), 2 e7 → 2 so(7), 2 e8 → 2 f4

so(2n+ 8)⊕ (e6, e7, e8)
→ sp(n)⊕ (su(3), su(7), f4)
e6 ⊕ e7 → su(3)⊕ so(7),

e6 ⊕ e8 → su(3)⊕ f4, e7 ⊕ e8 → so(7)⊕ f4

Hetero Z2 triple
CHL string

IIA 6O6− + 2O6+

no vector structure
F on K3×S1/Z2

7 1
3 + 2

3

2 e6 → ∅, 2 e7 → 2 su(2), 2 e8 → 2 g2

e6 ⊕ e7 → su(2), e6 ⊕ e8 → g2,
e7 ⊕ e8 → su(2)⊕ g2

Hetero Z3 triple
F on K3×S1/Z3

5 1
4 + 3

4
2 e7 → ∅ , 2 e8 → 2 su(2)

e7 ⊕ e8 → su(2)
Hetero Z4 triple
F on K3×S1/Z4

3 1
5 + 4

5 2 e8 → ∅
Hetero Z5 triple
F on K3×S1/Z5

3 1
6 + 5

6 2 e8 → ∅
Hetero Z6 triple
F on K3×S1/Z6

3 1
2 + 1

2 + 1
2 + 1

2
so(8)⊕ so(2n+ 8)⊕ so(2m+ 8)⊕ so(2`+ 8)

→ sp(n)⊕ sp(m)⊕ sp(`)
IIA 4O6− + 4O6+

3 1
2 + 1

2 + 1
2 + 1

2
so(8)⊕ so(2n+ 8)⊕ so(2m+ 8)⊕ so(2`+ 8)

→ sp(n)⊕ sp(m)⊕ sp(`)
IIA 4O6− + 4O6+

F on T 4 × S1/Z2

1 1
3 + 1

3 + 1
3 3 e6 → ∅, 2 e6 ⊕ e7 → su(2) F on T 4 × S1/Z3

1 1
2 + 1

4 + 1
4

so(8 + 2n)⊕ e7 ⊕ (e7, e8)
→ sp(n)⊕ (∅, su(2))

F on T 4 × S1/Z4

1 1
2 + 1

3 + 1
6 so(2n+ 8)⊕ (e6, e7)⊕ e8 → sp(n)⊕ (∅, su(2)) F on T 4 × S1/Z6

Table 6. List of 7d theories with reduced rank [9, 51, 68]. The reduced rank theories are obtained
by putting the flux in table 5, where the total flux must vanish mod 1 in the compact manifold. The
gauge algebra is obtained by the replacement of the maximal rank theories (the list of maximally
enhanced gauge algebra is given in [68]). The number of inequivalent rank-3 theories is not entirely
certain. It may be four rather than three (see footnote 22 in [51]). Applying the freezing rule to
the list provided in [68], we see that the gauge algebra of all rank-1 theories can be enhanced to
su(2). The only maximal enhanced gauge algebra of rank-3 theories corresponding to 4O6− +4O6+

is 3 su(2). The maximal gauge algebra of the other cases is given in [68].

case, the path lifts to a local movement of the points of symmetry enhancement on the
brane Coulomb branch subject to the single valuedness of gauge coupling g in (3.4) and∑
i ci = 0 from (3.7).
If the spacetime gauge group of the 9d theory differs from the ones listed in tables 2, 3,

and 4, two things happen simultaneously:

1. Given that the entries of the tables have maximal semisimple algebras, the gauge
algebra must be a subalgebra of one of the entries with an additional u(1) factor.
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2. Since the entries of the tables are the only configurations where the relative positions
of the points of symmetry enhancement are completely frozen, the relative position
between at least two of the points of symmetry enhancement must be tunable.

Therefore, we conclude the relative position between two points of symmetry enhance-
ments is tunable if and only if the gauge algebra has an additional u(1) factor. In other
words, the Coulomb branch of the brane moduli space is sensitive to the scalars of the
vector multiplets corresponding to the Abelian u(1)’s.

3.4 6d

In 6d, there are two types of theories with 16 supersymmetries: chiral (N = (2, 0)) and
non-chiral (N = (1, 1)). Of these, the chiral N = (2, 0) theory is known to have such a
strong restriction that the massless spectrum is determined by symmetry alone [72], so we
will consider the non-chiral N = (1, 1) theory.

The initial analysis of the 6d theories parallels that of the 7d. The brane is (1 + 1)
dimensional and has N = (4, 4) supersymmetry by studying the gauge instanton solution
in the bulk 6d theory. From a combination of the strong cobordism conjecture and the
ADHM construction, we find that the moduli space of the 1-brane is a connected two-
dimensional complex manifold. Moreover, from the black hole argument reviewed in 2, we
know that the moduli space must be compact. Contrary to the 7d case, the N = (4, 4)
supersymmetry does not lead to an hyperkähler manifold as the target space of the sigma
model in general [73–75]. Only when there is an extra U(1) isometry does the target space
becomes hyperkähler.

If we assume an additional U(1) isometry, these facts collectively narrow down the
possibilities to either K3 or T 4. Like the 7d case, T 4 corresponds to theories with 32
supercharges. Thus, we conclude that the moduli space of the 1-brane is K3. As in the
cases of the other dimensions, by classifying 2d N = (4, 4) theories, the possible gauge
algebras of 6d theories are obtained. It would be interesting to complete the classification.

In fact, without assuming U(1) isometry, we can see the appearance of K3 geometry
from another argument. Since the 1-brane we are considering has rank-1 and N = (4, 4),
the worldsheet theory has four scalars and four fermions, and the total central charge is
c = 6. In [76], by calculating the elliptic genus of the N = (4, 4) theory with c = 6, it is
shown that this theory is interpreted as a string propagating on K3.12 In this sense, we
can reconstruct the K3 geometry as the target space of the sigma model. Note that this
argument can only be applied to smooth K3 and not to singular K3 with frozen singularities.

The arguments above indicate that the geometry is morally K3, but we can not rule
out the possibility that there is a N = (4, 4) SCFT which is different from the SCFT we
get from K3 (despite that fact that at least in the smooth case it must have the same
elliptic genus as K3).13 Modulo the assumption that all the N = (4, 4) SCFT’s with c = 6
and compact target spaces are somehow equivalent (e.g., T-duality) to the SCFT with K3
target space (possibly with singularities), the SLP is valid.

12As a technical assumption, it is required that the massless representations with isospin l = 0 and l = 1/2
do not mix [76]. This rules out torus compactifications.

13It would be interesting to study the patterns of frozen singularities which will appear in [77] from this
point of view.
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4 Conclusions

In this paper, we have focused on theories with 16 supercharges and have used the existence
of universal brane, which also corresponds to the small instanton limit for non-Abelian
gauge fields, to complete the SLP for supersymmetric theories in dimensions above 7.
In the 7-dimensional case, the SLP is more or less complete for supergravity theories,
modulo a conjecture we have made about the structure of certain 3d SCFT’s with N = 4
supersymmetry. We have also made progress in establishing the SLP for theories with 16
supercharges in 6d. The main tool has been the combination of local knowledge about the
structure of branes associated with small gauge instantons with the global knowledge of
compactness and connectedness of the Coulomb branch of the brane theory. In this way,
we have been able to reconstruct the internal geometry of string compactifications directly
from the EFT coupled to supergravity.

One aspect of the present work which is left for future work is to bring to life the
meaning of the coincidence of the brane moduli with the internal stringy geometry. In
particular, we need to show a relation between the KK towers and the eigenspectrum of
Laplacian on the brane moduli. Progress in this direction will be reported elsewhere [78].
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