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Abstract: Stochastic gravitational wave background (SGWB) is a promising tool to probe
the very early universe where the standard model of particle physics and cosmology are
connected closely. As a possible component of SGWB, gravitational waves (GW) from
bubble collisions during the first order cosmological phase transitions deserve comprehensive
analyses. In 2017, Ryusuke Jinno and Masahiro Takimoto proposed an elegant analysis
approach to derive the analytical expressions of energy spectra of GW from bubble collisions
in Minkowski spacetime avoiding large-scale numerical simulations for the first time [26].
However, they neglect the expansion of the universe and regard the duration of phase
transitions as infinity in their derivation which could deviate their estimations from true
values. For these two reasons, we give a new expression of GW spectra by adopting their
method, switching spacetime background to FLRW spacetime, and considering a finite
duration of phase transitions. By denoting σ as the fraction of the speed of phase transitions
to the expansion speed of the universe, we find when σ is around O(10), the maxima of
estimated GW energy spectra drop by around 1 order of magnitude than the results given
by their previous work. Even when σ = 100, the maximum of GW energy spectrum is
only 65% of their previous estimation. Such a significant decrease may bring about new
challenges for the detectability of GW from bubble collisions. Luckily, by comparing new
spectra with PLI (power-law integrated) sensitivity curves of GW detectors, we find that
the detection prospect for GW from bubble collisions is still promising for DECIGO, BBO,
LISA, and TianQin in the foreseeable future.
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1 Introduction

Since the first gravitational wave signal has been detected by LIGO on September 14th,
2015 [1], the study of GW is becoming more and more popular and important. As a brand
new detection tool, GW plays a vital role to study astrophysics and cosmology in this
golden era of multi-messenger astronomy. Although the GW events we have detected are
all generated from the inspiral-merger-ringdown processes of binary systems, there exists
abundant different GW sources especially in the very early universe which inspire our
curiosity to a great extent, see ref. [9] and ref. [39] for a comprehensive understanding of the
whole picture. The superposition of tremendous amount of GW signals from the very early
universe constitutes a stochastic gravitational wave background, where the GW from the
first order cosmological phase transitions is a possible component and has been attracting
us for a long time because of its relationship to the physics beyond standard model and
also the formation of Primordial black holes(PBH), e.g. [4–6, 13, 15, 21, 27, 30–32].

Noticing that GW is a promising tool to probe the very early universe, which in turn is
an ideal place to study particle physics, studying GW is of great significance from many
different perspectives. As we know, the highest energy scale of LHC (Large Hardron
Collider) [14] is around 10TeV which is much less than the energy scale in the very early
universe. So there has been no direct means to study particle physics processes happened in
that period of time in earth-based laboratories in the foreseeable future. Besides, according
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to the thermal history of the universe, the oldest photons we can receive are CMB (Cosmic
Micro Background) photons which were free from the Thomson scattering and propagated
in the universe without restriction when the redshift was around 1100. However, the very
early universe we want to study corresponds to the time when the redshift was much larger
than 1100. From this point of view, we cannot use electromagnetic waves to probe the
universe at that era, because the universe hasn’t been transparent for photons at that time.
Nevertheless, GW provides a special probe to it from a definitely different dimension. After
the generation of GW, it has nearly no interaction with the contents of the universe [38], so
GW contains a huge amount of precious information from the very early universe compelling
us to explore the cosmology and particle physics by studying the properties of GW generated
at that epoch.

The first order cosmological phase transitions proceed by the nucleation, expansion
and collision of bubbles, at the same time, amount of GW signals are generated. Although
nowadays people pay more attention to GW from sound waves [18–20] and regard it as the
main source of GW from the first order phase transitions, there still are cases like runaway
transitions, where the energy density stored in the scalar field can play a really important
role i.e. the study of GW from bubble collisions cannot be neglected. The study on GW
from bubble collisions needs to be traced back to 1990s, Kosowsky et al. did numerical
simulations of bubble collisions in Minkowski spacetime with thin wall approximation and
envelope approximation and gave energy spectra of GW [29, 33–35]. The subsequent works
by others using numerical simulations can refer to refs. [12, 22]. However, considering that
large-scale numerical simulations spend lots of computational resources and time, people
have been trying to understand the physics of bubble collisions from an analytical view as
well. In 2008, Caprini et al. proposed an alternative analytical method to study the GW
from bubble collisions relying on a different treatment of the nature of stochasticity [8]. In
2017, Caprini’s ansatz for correlator function has been adopted by Jinno and Takimoto [26]
who developed a brand new analysis method to study GW spectra from bubble collisions in
Minkowski spacetime by studying the past cones of the spacetime points x and y which show
up in two-point correlator of energy-momentum tensor 〈Tij(x)Tij(y)〉. Their method not
only gives a perspicuous physical picture, but also saves computational sources by avoiding
large-scale numerical simulations and averts accompanying numerical errors. However, their
work is based on Minkowski spacetime rather than FLRW spacetime which is definitely a
better choice to take the expansion of the universe into account. Besides, they neglect the
effect brought about by the finite duration of the phase transitions which could make the
energy density of GW they estimated larger than the real value.

In this paper, we discuss GW from bubble collisions during the first order cosmological
phase transitions in FLRW spacetime during RD(Radiation Dominated) era via the analysis
method proposed by Jinno and Takimoto in ref. [26] and also take the effect of finite duration
of phase transitions into account. As the analyses in Minkowski spacetime, the core quantity
for GW spectrum calculation is still the transverse and traceless part of two-point correlator
of energy-momentum tensor 〈Tij(x)Tij(y)〉. With the help of thin wall approximation and
envelope approximation, we successfully obtain the analytical expressions of GW spectra
described by two triple integrations which can be integrated numerically. By comparing the
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GW spectra with PLI (power-law integrated) sensitivity curves of several space-borne GW
detectors and pulsar timing arrays, we can estimate if GW from bubble collisions in FLRW
spacetime during RD era can be detected or not, which has important practical significance
for future detection. Although our derivation is limited to the phase transitions happened
in RD era, the analytical expressions of GW spectra we obtain is model-independent, and
the derivation in other eras can be extended easily by specifying the relationship between
Hubble parameters, conformal time and scale factor.

The organization of this paper is as follows. In section 2, a brief retrospection and
summary of Jinno and Takimoto’s work is given. In section 3, we introduce the basic
ingredients that the subsequent analyses need, including our assumptions and derivations
of GW spectra. In section 4, we obtain the analytical expressions of ∆F(s) and ∆F(d) which
can both be written as a triple integration, where ∆F(s) and ∆F(d) are defined in section 2.
At the end of this section, we also prove our integration expression of ∆F can return to
Jinno and Takimoto’s expression analytically when σ → ∞. In section 5, we introduce
our method to determine the “effective duration” of phase transitions and then show the
numerical estimations of ∆F(s) and ∆F(d) and a comparison between our results and the
results obtained in Minkowski spacetime. To testify the detectability of GW, we compare
GW spectra with PLI sensitivity curves of several GW detectors in the end of section 5. A
thorough conclusion of this work and some extra discussion are given in section 6.

2 A brief retrospection of Jinno and Takimotos’ work

In this section, we give a brief retrospection and summary of their work. Because our
analyses and calculations are all based on their model, we summarize the assumptions and
approximations adopted by them at here and directly list the result they’ve obtained. The
calculation details won’t be shown in this section, so for those readers who are interested in
those details can read ref. [26] to get a more in-depth understanding.

Their calculations are based on Minkowski spacetime, including tensor perturbation
the metric can be written as:

ds2 = −dt2 + (δij + 2hij)dxidxj (2.1)

where hij are all transverse and traceless. The speed of light c has been set to 1, we’ll adopt
this convention as well in our own derivation. As for the convention of indices, the Greek
indices run over 0, 1, 2, 3 and the Latin indices run over 1, 2, 3 throughout our paper.

2.1 Assumptions and approximations

They adopt thin wall approximation and envelope approximation in their work. The so-
called thin wall approximation means that we assume all energy of the bubble is located in
the bubble wall with an infinitesimal width `B. With the help of this approximation, they
write the energy momentum tensor TB of the uncollided wall of a single bubble nucleated
at xN ≡ (tN ,xN ) as:

Tij(x) = ρ(x) ̂(x− xN )i ̂(x− xN )j (2.2)
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Figure 1. 2D explanation of envelope approximation, the black lines represent bubble walls. Only
uncollided parts of bubbles are regarded as GW sources, and the energy-momentum tensor of the
collided parts of bubbles vanish at once.

where

ρ(x) =


4π
3 rB(t)3κρ0

4πrB(t)2`B
rB(t) < |x− xN | < r′B(t)

0 Other regions
(2.3)

and
rB(t) = v(t− tN ) r′B(t) = rB(t) + `B (2.4)

At here, x ≡ (t,x) denotes the spacetime point, •̂ indicates the unit vector in the same
direction of ~•, v is the speed of the bubble wall, ρ0 represents the energy density released
by the phase transitions, and κ denotes the fraction of the energy localized in the bubble
wall to the released energy during the phase transition.

Envelope approximation means that as long as two or more bubbles collide, the colliding
parts of bubble walls and corresponding energy-momentum tensor vanish at once. With the
guarantee of envelope approximation, every spatial point(x) can be passed by bubble only
once. Since once a spatial point enter the inner part of any single bubble, it will transform
from the false vacuum state to the true vacuum state and the inverse process is forbidden.
See figure 1 for a straightforward understanding of this important approximation.

Besides these two approximations, they denote the bubble nucleation rate per unit time
per volume as:

Γ(t) = Γ?eβ(t−t?) (2.5)

where t? denotes a time point typically around the transition time, Γ? is the transition rate
at t?, and β is a constant.

In order to obtain the GW spectrum, they define equal-time correlator of GW and
unequal-time correlator of energy momentum tensor given by eq. (2.6), which we’ll also
take use of in our own derivation.

〈ḣij(t,k)ḣ∗ij(t, q)〉 = (2π)3δ(3)(k − q)Pḣ(t, k)

〈Πij(tx,k)Π∗ij(ty, q)〉 = (2π)3δ(3)(k − q)Π(tx, ty, k)
(2.6)

Where Πij is the transverse-traceless part of the energy-momentum tensor Tij .
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2.2 GW spectrum

According to the assumptions and approximations given by the previous subsection, they find
the core quantity we need to obtain for describing the GW spectrum is the transverse and
traceless part of 〈Tij(x)Tij(y)〉 i.e. 〈Πij(x)Πij(y)〉. After figuring it out, we can get Π(tx, ty, k)
with the help of eq. (2.6) and Fourier transformation. As long as we have Π(tx, ty, k), we
can calculate the dimensionless GW energy density per logarithmic frequency ΩGW by:

ΩGW := 1
ρtot

dρGW
d ln k = κ2

(
H?

β

)2(
α

1 + α

)2

∆(k/β, v) ≡ κ2
(

α

1 + α

)2

∆M(k/β, σ, v) (2.7)

σ := β

H?
∆M(k/β, σ, v) ≡ ∆(k/β, v)

σ2 (2.8)

The superscript M indicates Minkowski spacetime. The definition of ∆(k/β, v) is given by

∆(k/β, v) = 3
4π2

β2k3

κ2ρ2
0

∫ tf

ti

dtx
∫ tf

ti

dty cos[k(tx − ty)]Π(tx, ty, k) (2.9)

Here ρtot = ρ0 + ρrad, α := ρ0/ρrad represents the fraction of the released energy density
from the phase transitions to the energy density of radiation, H? denotes the typical value
of Hubble parameter around the transition time, ti and tf denote the start time and end
time of phase transitions. σ is defined as the ratio of β and H?, which can characterize the
speed of phase transitions to the expansion speed of the universe. For the convenience of
latter comparison, we define a new variable ∆M at here, we’ll see that ∆M is the specific
variable that we’ll use to compare with our results in section 5 rather than ∆ itself. To
prevent possible confusion, we’ll explicitly write superscript M to distinguish ∆ and ∆M.

According to analyses, ∆ can be divided into two parts as ∆ = ∆(s) + ∆(d). ∆(s) and
∆(d) correspond to the contribution to ∆ from the single bubble case and double bubble case
respectively. The so-called single bubble case and double bubble case need to be understood
by considering the relative positions of bubble walls and two spatial points x and y. It
is easy to realize that only if Tij(x) 6= 0 and Tij(y) 6= 0 can this situation contributes to
〈Tij(x)Tij(y)〉, which means that the spatial points x and y must be in the bubble wall(s) at
the time points tx and ty, respectively. So we can find that there are two possible situations.
The first one is that x and y are passed by the same bubble at tx and ty respectively, and
the second one is that x and y are passed by two different bubbles at tx and ty respectively.
Figure 2 displays these two possible situations, the left panel and right panel correspond to
the single bubble case and double bubble case, respectively. Because tx can be equal or
not equal to ty, for each case there are two more possibilities. The upper left panel shows
the situation where tx = ty. The spatial points x and y are passed by the same bubble at
t = tx = ty. The lower left panel shows the situation where the bubble firstly passes the
spatial point x at t = tx and lately passes the spatial point y at t = ty. The right panel
can be understood similarly.

In order to calculate ∆(s) and ∆(d), we need to study the past cones of x and y to decide
the permitted spacetime points for bubbles to nucleate. For each possible nucleation point,
we need to figure out two quantities. The first one is the probability of such a situation,
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Single Bubble Case Double Bubble Case

Figure 2. Sketch of single bubble case and double bubble case. x and y are two spacetime points
we are studying, bubble(s) is/are denoted by B, the superscripts (s) and (d) distinguish the single
bubble case and double bubble case. The subscripts tx and ty denote t = tx or t = ty, subscript 1 and
2 denote the first bubble and the second bubble in double bubble case. The left panel corresponds
to the single bubble case, and the right panel characterizes the double bubble case. Note that we
don’t require the spatial points x and y to stay in the bubble walls at the same time, so they can
be in the bubble walls at different time as the lower panel of this figure displays.

and the second one is the contribution to 〈Tij(x)Tij(y)〉 from this situation. By summing
up all of the possible situations, we can get the final result of 〈Tij(x)Tij(y)〉. In a word,
calculation process can be described by 〈TT〉(x, y) =

∑
situation

P(situation)TT(x, y)
∣∣∣
situation

.

The detailed calculation idea can be found in their appendix A.
As a result of their work, Jinno and Takimoto find that the GW spectrum can be

described as two double integrations which can be calculated numerically. The shape of GW
spectrum they’ve got is consistent with the result given by numerical simulations. They
also give the fitting formula of ∆ as:

∆ = ∆peak

cl
(

f
fpeak

)−3
+ (1− cl − ch)

(
f

fpeak

)−1
+ ch

(
1

fpeak

) (2.10)

with ∆peak = 0.043, fpeak/β = 1.24/2π and (cl, ch) = (0.064, 0.48). We’ll use this formula
to calculate ∆ and compare it with our results in section 5.

3 Basic setup

Because our discussion is based on FLRW spacetime, let’s recall the FLRW metric at the
very beginning:

ds2 = a2(η)(−dη2 + dx2 + dy2 + dz2) (3.1)
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where x, y, z are comoving coordinates, a(η) is scale factor and the argument η is conformal
time whose definition is given by:

dη := dt
a(t) =⇒ η :=

∫ t dt
a(t) (3.2)

with t being called cosmic time. In the latter parts of this section, we firstly specify the
approximations and assumptions we use in this paper, and then we give the GW spectrum
at the end of phase transitions and nowadays which we can detect directly.

3.1 Assumptions and approximations

In this work, we adopt thin wall approximation and envelope approximation as Jinno and
Takimoto’s choice in their work. The concrete definitions of these two approximations have
been discussed in section 2. According to Jinno and Takimoto’s setup, we can write the
energy-momentum tensor of an uncollided bubble nucleated at xN ≡ (ηN ,xN ) as:

Tij(x) = a2(η)
(
ρ(x) ̂(x− xN )i ̂(x− xN )j

)
(3.3)

where

ρ(x) =


4π
3 rB(η)3κρ0

4πrB(η)2a(η)`B
rB(η) < ∆x < r′B(η)

0 Other regions
(3.4)

with ∆x ≡ a(η)|x− xN |. To remind, the expressions of Tij given by eq. (3.3) is a modeling
rather than a rigorous expression by derivation. The physical meanings of ρ0 and κ are both
the same as which has been given in the previous section. In our work, we only consider
the situation where the speed of bubble walls equals to the speed of the light, i.e. v = c = 1.
So we have:

rB(η) = η − ηN r′B(η) = rB(η) + `B (3.5)

Note that `B is the comoving width of the bubble wall. For the future convenience, we
define Ψij(η,x) and Ψij(η,k) as:

Ψij(η,x) :=
TTT
ij (η,x)
a2(η) =⇒ Ψij(η,k) :=

TTT
ij (η,k)
a2(η) (3.6)

where superscript TT is the abbreviation of Transverse-Traceless. Ψij(η,k) and TTT
ij (η,k) are

the Fourier modes of Ψij(η,x) and TTT
ij (η,x) with wave vector k, respectively. In this work,

our conventions of Fourier transformation are given by
∫

d3xeik·x and
∫

d3k/(2π)3e−ik·x.
We can extract the TT parts of Tij(η,k) by contracting it with Lambda tensor whose
definition is given by eq. (3.12).

The transition ratio per unit conformal time per comoving volume we use in our paper
is given by [8]:

Γ(η) = Γ?eβ̃(η−η?) (3.7)

– 7 –
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where η? denotes the conformal time corresponding to the start of phase transitions, and
Γ? is the value of Γ(η) at this specific time. Note that the definition of β̃ is given by
β̃ := a(η)β

∣∣∣
η=η?

=const. where β is more common to be used in the literature e.g. ref. [33].
At here, it is necessary to explain that eq. (3.7) only holds when η ∼ η?, so in our work, we
consider a finite length of phase transitions to make sure this relationship can be satisfied.
Actually, later we’ll see the choice of FLRW spacetime itself gives us a relatively natural
way to determine the duration of phase transitions which will directly influence the final
GW spectrum. In most literature, people estimate the duration of the phase transitions by
β−1, and in Jinno and Takimoto’s work they set the phase transitions start at ti = −∞
and end at tf = +∞ which itself means that they regard the duration of phase transitions
as infinite long in their actual derivation and numerical calculation. Although they give an
argument to this point that this treatment doesn’t change their final results, in our view, a
finite duration might be a better choice and could make the results more reliable. The exact
method to determine the length of phase transitions will be discussed in the latter section.

Without loss of generality, we will set β̃ ≡ 1 in the rest of this paper which is just a
choice of the unit like setting the speed of light c ≡ 1. Besides, it’s also worth mentioning
that although β̃ is a constant given a certain value of β and a i.e. given a specific physical
scenario, we are not allowed to compare any dimensional physical quantity by comparing
the number of them in different scenarios. Because the physical meaning of “1” in each
particular scenario is different. However, by the virtue of dimensionless property of the
quantity h2

0ΩGW, we can compare it safely in different physical scenarios.

3.2 GW power spectrum derivation

In this part we begin to derive the analytical expressions of GW spectrum using the model
proposed by ref. [26].

Let’s consider the equation of motion of the metric perturbation satisfy at first. As
we have stated already, our spacetime background is FLRW spacetime. Including tensor
perturbations, we have the spacetime metric as:

ds2 = a2(η)[−dη2 + (δij + hij)dxidxj ] (3.8)

Here hij are all traceless and transverse. By calculating the Christoffel symbol, Riemman
tensor and Ricci tensor, we have the linearized Einstein’s equation to the first order in hij ,
over the FLRW spacetime as [9]:

ḧij(x, t) + 3Hḣij(x, t)−
∇2

a2 hij(x, t) = 16πGΨij(x, t) (3.9)

Where H is Hubble parameter at t, ∇2 ≡ ∂i∂i indicates the Laplacian associated with
comoving coordinates xi and •̇ denotes the derivative of • respective to cosmic time t.
Define Hij(η,x) = a(η)hij(η,x) and eq. (3.9) in Fourier space becomes

H ′′ij(k, η) +
(
k2 − a′′

a

)
Hij(k, η) = 16πGa3Ψij(k, η) (3.10)

– 8 –
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where •′ denotes the derivative of • with respect to conformal time η. For the convenience of
subsequent derivation, we define ζ ≡ kη at here. Since we assume that the phase transitions
happen in RD era, we can use the relationship of scale factor and conformal time a(η) = χη

to simplify the equation of motion and obtain eq. (3.11) where χ is a constant.

d2Hij(k, ζ)
dζ2 +Hij(k, ζ) = 16πGχ3

k5 ζ3Ψij(k, ζ) (3.11)

As we have stated before, Ψij(η,x) is related to the TT part of energy-momentum
tensor Tij , and we can use Lambda tensor to extract the TT part of Tij . The definition of
Lambda tensor is given by:Λij,kl(k̂) := Pik(k̂)Pjl(k̂)− 1

2Pij(k̂)Pkl(k̂)

Pij(k̂) := δij − k̂ik̂j

(3.12)

It’s easy to check that the Lambda tensor has a basic property which is of great use:

Λij,kl(k̂)Λij,mn(k̂) = Λkl,mn(k̂) = Λmn,kl(k̂) (3.13)

So we can rewrite Ψij in terms of Tij with the help of Lambda tensor:

Ψij(η,k) = Λij,kl(k)Tkl(η,k)
a2(η) (3.14)

Assuming that the phase transitions begin at ζi = kηi and end at ζf = kηf . Ψij = 0
before the phase transitions. Let’s consider a time point ζi < ζ < ζf during the phase
transitions, we can get the solution of Hij by Green’s function method:

Hij(k, ζ < ζf ) = 16πGχ3

k5

∫ ζ

ζi

dψ ψ3 sin(ζ − ψ)Ψij(k, ψ) (3.15)

When phase transitions finish, Ψij = 0 (no bubbles anymore, all spacetime points stay in
the true vacuum state), so we have

Hij(k, ζ > ζf ) = Aij(k) cos ζ +Bij(k) sin ζ (3.16)

We require Hij to satisfy the connection requirements at ζ = ζf , i.e. Hij |ζf
and H ′ij |ζf

given
by eq. (3.15) and eq. (3.16) should be equal to each other. Using these requirements, we
can arrive at 

Aij(k) = 16πGχ3

k5

∫ ζf

ζi

dψ ψ3 sin(−ψ)Ψij(k, ψ)

Bij(k) = 16πGχ3

k5

∫ ζf

ζi

dψ ψ3 cos(ψ)Ψij(k, ψ)
(3.17)

Insert eq. (3.17) into eq. (3.16), we can get the final expression of Hij . Note that this
solution only holds during the RD era, so our results cannot be extended to the phase
transitions that happen in MD (Matter Dominated) or ΛD (Λ Dominated) eras.

– 9 –
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Now let’s discuss the power spectrum of GW. First of all, we define the equal-time
two-point correlator of GW by

〈h′ij(η,k)(h′ij)∗(η, q)〉 := (2π)3δ(3)(k − q)Ph′(η, k) (3.18)

Where 〈. . .〉 denotes ensemble average and we will use spatial and time average to substitute
ensemble average in the actual calculation. (2π)3 is a coefficient putting at here out of
convenience for future derivation. δ(3)(k − q) shows up out of the homogeneity of the
system. Interested readers could refer to chapter 7 of ref. [38] to know more details and
more properties of stochastic gravitational wave background.

We define the unequal-time correlator of energy-momentum tensor by:1

〈Ψij(ηx,k)Ψ∗ij(ηy, q)〉 := (2π)3δ(3)(k − q)Ψ(ηx, ηy, k) (3.19)

we can expand the left hand side of eq. (3.19) as:

〈Ψij(ηx,k)Ψ∗ij(ηy, q)〉 =
∫

d3Xd3rei(k−q)·Xei(k+q)· r2 〈Ψij(ηx,x)Ψij(ηy,y)〉 (3.20)

Where we have defined X := (x + y)/2 and r := x−y to simplify our derivation. Note that
the correlator itself doesn’t rely on x or y, on the contrary, it only depends on (x− y) ≡ r.
So we have

l.h.s. = (2π)3δ(3)(k − q)
∫

d3reik·r〈Ψij(ηx,x)Ψij(ηy,y)〉 (3.21)

which tells us the factor Ψ(ηx, ηy, k) appeared in eq. (3.19) can be written as:

Ψ(ηx, ηy, k) =
∫

d3reik·r〈Ψij(ηx,x)Ψij(ηy,y)〉 (3.22)

We know that the energy density of GW is given by [10]:

ρGW(t/η) = 〈ḣij(t,x)ḣij(t,x)〉
32πG =

〈h′ij(η,x)h′ij(η,x)〉
32πGa2(η) (3.23)

Note that the t/η above means t or η rather than t by η, and here hij are all transverse and
traceless. Now insert eq. (3.16) and eq. (3.17) into eq. (3.18) and make an inverse Fourier
transformation. Substitute the numerator of eq. (3.23) by the result we’ve got, finally we
can arrive at:

ρGW(η) = 2Gχ6

πa4(η)

∫ dk
k6

∫ ζf

ζi

∫ ζf

ζi

dψdφ ψ3φ3 cos(ψ − φ)Ψ(ψ, φ, k) (3.24)

Now we define the dimensionless energy density per logarithmic comoving wave number of
GW by:

ΩGW(η, k) := 1
ρtot

dρGW
d log k (3.25)

The definition of ρtot is unchanged comparing with the definition given in section 2. Since
we consider the spatial curvature equals to zero, the total energy of the universe specifically

1For simplicity, we call Tij and Ψij both as energy-momentum tensor.
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equals to the energy needs to close the universe i.e. ρcr = ρtot. We assume that the phase
transitions happen during RD era, so we can neglect the contribution of energy density by
matter ρmat and cosmological constant ρΛ at here.

Substitute ρGW by eq. (3.24), we can rewrite ΩGW as:

ΩGW(η, k) = κ2
(

α

1 + α

)2

∆F(k/β̃;σ; η) (3.26)

Here, we use superscript F to indicate FLRW spacetime. The dimensionless quantity
σ := β̃

H = β
H denotes the fraction of speed of the phase transitions to the expansion speed

of the universe as the same with the definition given in the previous section. Define τ as the
effective duration of phase transitions, since τ itself is dependent on σ, different values of σ
will influence the upper limit of integral of ηx and ηy in eq. (3.28), so ∆ is also a function of σ.

At this stage, we must remind readers again that our definition of ∆F is a little bit
different with the definition of ∆ given by the first line of eq. (2.7). Our ∆F is a function
of k/β̃, σ and η, while the ∆ defined by Jinno and Takimoto is a function of k/β and the
speed of bubble wall v. The difference appears because of the different treatments of the
duration of the phase transitions. In their previous work, they regard the phase transitions
start at ti = −∞ and end at tf = +∞ in their calculation, which indeed simplify their
analyses and decouple σ from ∆, but also could bring about a practical problem in latter
numerical integration. In the actual integration, we cannot use ∞ as the upper limit, on
the contrary, we have to artificially specify a finite value which is large enough to confirm
the convergence of the integral. However, if we don’t know the specific relationship between
τ and σ, then we may specify a too large number as upper limit of integration which can
definitely lead to a longer time for computation. On the other hand, if we pick a too small
value as the upper limit of integration, the result we get will be inaccurate and lack of
value for reference. Besides the reasons above, there is another important motivation to
consider a finite duration of phase transitions. Guo et al. consider a finite life time of
the sources in their work to study the GW spectrum from sound waves during the first
order cosmological phase transitions in an expanding universe. [17] As a result, they find
an additional suppression factor Υ(y) should be included in the new expression of GW
spectrum which could decrease GW spectrum significantly when the life time of sources
is quite short. This point can be easily checked according to the figure 15 of ref. [17].
Be inspired by their work, we think it is necessary to take the finite duration of phase
transitions into account. So in our work, τ itself is a function of σ which induces that σ
cannot be decoupled from ∆F anymore. As a result, the value of ∆F in our work cannot
compare with ∆ in ref. [26] directly. In fact ∆F and ∆M are two quantities we will make a
comparison later, where ∆F represents our result and ∆M represents Jinno’s result.

Using Friedmann equation [42]:

H2 = 8πG
3 ρtota

2(η) (3.27)

∆F(k/β̃;σ; η) can be rewritten as:

∆F(k/β̃;σ; η) = 3k3H8(η)
4π2κ2ρ2

0

∫ ηf

ηi

∫ ηf

ηi

dηxdηy ×
(
η3
xη

3
y cos[k(ηx − ηy)]Ψ(ηx, ηy, k)

)
(3.28)
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Now, by comparing our eq. (3.28) with eq. (2.9), we can easily find the difference between
these two equations out of two different choices of spacetime background. We’ll see the
difference more clearly later from eq. (4.16) and eq. (4.23). At here, we adopt the eq. (22)
of ref. [29] to describe the functional relationship between κ and α for latter numerical
estimation as a benchmark:

κ = 1
1 + 0.715α

[
0.715α+ 4

27

√
3α
2

]
(3.29)

Note that this equation only holds for the case of Jouguet detonation, readers can adopt
the expressions given by ref. [16] to do more estimations when α and v take different values.
In ref. [16], Espinosa et al. studied all of the bubble expansion regimes without specifying
any particle physics model and gave the fitting formulas of κ(v, α) in their appendix A.
Note that since our derivation is only valid for phase transitions happen during the RD era,
so we artificially restrict α ∈ [0, 1]. The work considering other eras and other ranges of α
needs to be done in the future.

Now we can clearly discover that the most important quantity we need to focus on is
∆F(k/β̃;σ; η). The coefficients κ and α should be uniquely specified by choosing a specific
model. In our work, we don’t choose any specific model and regard α as a free variable, κ is
a function of α described by eq. (3.29). Through this approach, we can obtain a general un-
derstanding of the behavior of GW spectrum without being restricted by any specific model.

Note that the ΩGW given by eq. (3.25) denotes the dimensionless energy density of GW
per logarithmic comoving wave number when GW has just been generated after the phase
transitions rather than nowadays. Considering the effect of cosmological redshift yields:

h2
0ΩGW = 1.60× 10−5κ2

(
g?

106.75

)−1/3(
α

1 + α

)2

∆F(k/β̃;σ; η) (3.30)

f = k

2πa0
= 1

2π

(
k

β̃

)(
β̃

H

)(
a?
a0

)
H?

= 2.63× 10−6Hz
(
k

β̃

)(
β̃

H

)(
T?

100GeV

)(
g?

106.75

)1/6 (3.31)

where k is the magnitude of comoving wave vector k, T? is the temperature after the phase
transitions and g? is the relativistic degrees of freedom in the universe corresponding to the
temperature T?.

3.3 Notations

For the simplicity of comparison, we adopt the notation system defined in ref. [26]. The
only difference are listed below. We define two new time variables Ξ and ξ rather than the
choice of T and td:

Ξ := ηx + ηy
2 ξ := ηx − ηy (3.32)

Besides these two variables, we only need to replace t with η in our derivation. The specific
physical meaning of these quantities can refer to the figure 3 and figure 5 of ref. [26]. Out of
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the special property of FLRW metric, we find that light still move along the 45 degree line in
the η − x plane of the spacetime diagram, which indicates that we can still use the physical
picture given by Jinno and Takimoto directly and make our analyses easier to follow.

4 Analysis and derivation

In this section, we begin to derive the analytical expressions of ∆F(s) and ∆F(d) by making
use of the method proposed by Jinno and Takimoto.

We define the phase transitions start when the probability for a bubble to nucleate
in a Hubble volume during a Hubble time reaches O(1). Our definition of the end of
phase transitions is a little bit tricky which will be shown later. Firstly, let’s consider
the information that can be derived from our definition of the moment when the phase
transitions start. According to the definition, we have:

Γ?
H4
?

' 1 (4.1)

Without loss of generality, we can take the approximate equal sign as equal sign at here. So
we have

Γ? = H4
? = 1

σ4 (4.2)

where we have set β̃ = 1. Besides this, we know that the Hubble parameter related with
scale factor during RD era by H(a) = χ/a2. So we can find that

β̃ = a?β = a?σH? = σχ

a?
= σ

η?
≡ 1 (4.3)

Now we have found that the conformal time corresponding to the start of the phase
transitions is η? = σ. Insert η? = σ, β̃ = 1 and Γ? = 1/σ4 into eq. (3.7), we have

Γ(η) = 1
σ4 e

η−σ (4.4)

At this stage, we could see the advantage to adopt FLRW spacetime is twofold. On the one
hand, we take a more realistic spacetime background which can reflect the expansion of the
universe and then directly influence the final GW spectrum. On the other hand, we have a
relatively natural way to connect η and H which could help us determine the start point of
phase transitions and therefore we can try to figure out the duration of phase transitions
rather than take ηi = −∞ and ηf = +∞ or manually specify a cutoff which might bring
about errors or lead to a longer integration time.

To prepare for the latter calculation, we need to study the false vacuum probability
at first.

4.1 False vacuum probability

According to eq. (42) and eq. (43) of ref. [26], we have the probability of two spacetime
points staying in the false vacuum state as:

P (x, y) = e−I(x,y) I(x, y) =
∫
Vxy

d4zΓ(z) (4.5)
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Where the integral of I(x, y) can be expanded as two terms:
I(y)
x =

∫ ηxy

σ

π

3 r
3
xΓ(η)(2 + cx)(1− cx)2dη +

∫ ηx

ηxy

4π
3 r3

xΓ(η)dη

I(x)
y =

∫ ηxy

σ

π

3 r
3
yΓ(η)(2− cy)(1 + cy)2dη +

∫ ηy

ηxy

4π
3 r3

yΓ(η)dη
(4.6)

After integration, we have I(x, y) = I
(y)
x + I

(x)
y :

I(x, y) = π

12rσ4

{[
− 12ξ2

(
Ξ2 − 2(Ξ + 1)σ + 2Ξ + σ2 + 2

)
− 3r2

(
ξ2 + 4(Ξ2 − 2(Ξ + 1)σ

+ 2Ξ + σ2 + 2)
)

+ r4 − 4r
(
3ξ2(Ξ− σ + 1) + 24(Ξ− σ + 1) + 4(Ξ− σ)2(Ξ− σ

+ 3)
)]

+ 24eΞ− r
2−σ

(
ξ2 − r(r + 4)

)
+ 48reΞ−σ cosh

(
ξ

2

)}
(4.7)

Before we go ahead, let’s explain the reason why we need to discuss the probability of
spacetime points staying in the false vacuum. Remember that under the so-called envelope
approximation, any spatial point can be passed by a bubble for only once. Assuming
that a bubble wall passes spatial point x at η = ηx, we must confirm that there are no
bubbles nucleated inside the past cones of x, otherwise the spatial point x must have already
transformed from the false vacuum state to the true vacuum state before η = ηx and cannot
be passed by another bubble by the second time. For the sake of the reason above, we have
to figure out the probability of spacetime points staying in the false vacuum at the very
first step of our calculation.

4.2 Contributions from single bubble case and double bubble case

So far, we have every ingredient prepared to analyze the energy spectrum of GW. Just
as the definition given by Jinno and Takimoto, ∆F can be decomposed as ∆F(s) + ∆F(d),
where ∆F(s) indicates the contribution to ∆F from single bubble case and ∆F(d) denotes
the contribution from double bubble case. The specific meaning of these two cases have
been discussed in section 2. Here we only simply introduce the calculation procedure taking
the single bubble case for an example and directly give our results, the detailed calculation
ideas can refer to the appendix A of ref. [26]. Remember that our ultimate target is to
get the GW spectrum which can be calculated by eq. (3.25) and eq. (3.28). In order to
use these two equations we must figure out Ψ(ηx, ηy, k) defined by eq. (3.22) at first, which
requires us to find all of the possible spacetime points for bubbles to nucleate which can
lead to non-vanishing energy-momentum tensor at two spacetime points x and y to make
〈Ψij(x)Ψij(y)〉 nonzero. When we consider the single bubble case, we’ll easily find that only
if the bubble nucleates at some special points which are belonging to the intersection part
of the past cones of x and y (in ref. [26], they call it δVxy), may this situation contribute
to ∆F(s). By taking the possibility for bubbles to nucleate in these spacetime points into
consideration and calculating the contributions given by every single configuration, we can
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write the two-point correlator of energy-momentum tensor as below:

〈Ψij(ηx,x)Ψij(ηy,y)〉(s) = 2π
9r5σ4κ

2ρ2
0P (ηx, ηy, r)×

[
1
2F0 + 1

4(1− c2
rk)F1 + 1

16(1− c2
rk)F2

]
(4.8)

where F0, F1 and F2 are given by:

F0 =−(r2−ξ2)2e−
r
2−σ

16

{
e

r
2 +σ

[
16(Ξ−σ)2

(
Ξ2−2(Ξ+2)σ+4Ξ+σ2+12

)
+384(Ξ−σ+1)−

8r2(Ξ2−2(Ξ+1)σ+2Ξ+σ2+2)+r4
]
−32eΞ(r(r+6)+12)

}
(4.9)

F1 =−(r2−ξ2)e−
r
2−σ

8

{
e

r
2 +σ

[
(80ξ2(Ξ−σ)

[
Ξ2(4−3σ)+Ξ3+Ξ(σ(3σ−8)+12)−σ((σ−4)σ

+12)+24
]
+1920ξ2+r4(ξ2−8(Ξ2−2(Ξ+1)σ+2Ξ+σ2+2))+8r2

(
−3ξ2(Ξ2−2(Ξ

+1)σ+2Ξ+σ2+2)−2(Ξ−σ)2(Ξ2−2(Ξ+2)σ+4Ξ+σ2+12)−48(Ξ−σ+1)
)

+3r6
]

+16eΞ(r2(r×(r(r+4)+12)+24)−ξ2(r(r(r+12)+60)+120))
}

(4.10)

F2 =− 1
16

{
560ξ4(Ξ4+4Ξ3+12Ξ2−4(Ξ+1)σ3+6(Ξ(Ξ+2)+2)σ2−4(Ξ(Ξ(Ξ+3)+6)+6)σ

+24Ξ+σ4+24)+2r6(ξ2+4(Ξ2−2(Ξ+1)σ+2Ξ+σ2+2))+3r4(16ξ2(Ξ2−2(Ξ+1)σ
+2Ξ+σ2+2)+ξ4+16(Ξ−σ)2(Ξ2−2(Ξ+2)σ+4Ξ+σ2+12)+384(Ξ−σ+1))
−120ξ2r2(ξ2Ξ2−2(Ξ+1)σ+2Ξ+σ2+2)+4(Ξ−σ)2(Ξ2−2(Ξ+2)σ+4Ξ+σ2+12)
+96(Ξ−σ+1))+(16ξ2(r(r(r(r+12)+84)+360)+720)r2−8(r(r(r(r+4)+20)+72)

+144)r4−8ξ4(r(r(r(r+20)+180)+840)+1680))eΞ− r
2−σ+3r8

}
(4.11)

So Ψ(s)(ηx, ηy, k) can be rewritten as following:

Ψ(s)(ηx, ηy, k) =
∫

d3reik·r
2π

9r5σ4κ
2ρ2

0×P (ηx, ηy, r)
[

1
2F0 + 1

4(1− c2
rk)F1 + 1

16(1− c2
rk)2F2

]
(4.12)

Here crk is the shorthand of cos
(
〈r̂, k̂〉

)
, where 〈a, b〉 denotes the angle between a and b

rather than ensemble average.
The integration of φ is trivial, since all of the terms show up in the integrand are

independent with φ. However, the integration of r and θ need to be paid more attention.
Let’s consider the integration of r first. The determination of lower and upper limit of the
integration of r needs to be careful. Note that the separation of x and y must be space-like,
one can easily find that if the separation is time-like, there must exist a spatial point (x

– 15 –



J
H
E
P
0
2
(
2
0
2
2
)
0
7
7

Case 1: Case 2:

Figure 3. Determination of the upper limit of r in the integral eq. (4.12). (ηx, ~x) and (ηy, ~y) denote
two spacetime points, Sx, Sy are their past cones, Σσ and Σσ+τ characterize two hyperplanes where
η = σ and η = σ + τ respectively. Case 1 corresponds to the situation where ηxy > σ, under such a
circumstance, the bubble can nucleate after the beginning of the phase transitions and influence
two spacetime points x, y. Case 2 corresponds to the situation where ηxy < σ, so the bubble must
nucleate before the start of the phase transitions which is forbidden.

or y) which has transformed from the false vacuum state to the true vacuum state before
ηx or ηy. According to this requirement, we have rmin = |ηx − ηy| = |ξ|. Without loss of
generality, we can assume ηx > ηy, so we are permitted to throw away the absolute sign,
and denote rmin = ξ directly. The process of deciding the upper limit of r is a little bit
complicated. We can see figure 3 for a straightforward understanding.

According to figure 3, we can find that only if ηxy > σ can this configuration contributes
to the integration, so we have:

ηxy := ηx + ηy − r
2 > σ =⇒ r 6 2(Ξ− σ) (4.13)

With the upper and low limits for the integration of r being decided, we can perform
integration and rewrite Ψ(s)(ηx, ηy, k) as following:

Ψ(s)(ηx,ηy,k) =
∫ 2(Ξ−σ)

ξ
dr 4π2κ2ρ2

0
9r3σ4 e−I(x,y)×

[
j0(kr)F0+ j1(kr)

kr
F1+ j2(kr)

(kr)2 F2

]
(4.14)

where j0(kr), j1(kr), j2(kr) are spherical Bessel functions. Here we have used integration
formula to perform the integration of θ:∫ +1

−1
dc eicx = 2j0(x)

∫ +1

−1
dc eicx(1− c2) = 4j1(x)

x

∫ +1

−1
dc eicx(1− c2)2 = 16j2(x)

x2

(4.15)
Recall eq. (3.28) and insert Ψ(s)(ηx, ηy, k) into it, we have

∆F(s)(k/β̃;σ; ηf ) = 2k3

3σ4(σ + τ)8

∫ σ+τ

σ
dΞ
∫ τ

0
dξ
∫ 2(Ξ−σ)

ξ
dr×[

e−I(x,y)

r3

(
Ξ2 − ξ2

4

)3

cos(kξ)J (s)(k, r,Ξ, ξ, σ)
] (4.16)

where J (s)(k, r,Ξ, ξ, σ) is defined by:

J (s)(k, r,Ξ, ξ, σ) ≡
[
j0(kr)F0 + j1(kr)

kr
F1 + j2(kr)

(kr)2 F2

]
(4.17)
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Now we have got the energy spectrum contributed by the single bubble case successfully.
We can see that the final expression of ∆F(s) can be described by a triple integration, while
in Jinno and Takimoto’s work ∆M(s) is given by a double integration. At here, we can
compare eq. (4.16) with eq. (54) of ref. [26] to see the difference brought by the different
choices of spacetime background. Neglecting the difference of constant coefficients like 2/3
and 1/12, we can find the significant difference between two denominators. Factors (σ+ τ)8

and (Ξ2 − ξ2/4)3 appear because we choose FLRW spacetime and hij thereby satisfy a
different equation of motion which could make an impact to the final result. The factor τ in
(σ + τ)8 especially shows the dilution effect led by the expansion of the universe. Although
the collision of bubbles generally emits a bunch of energy, the lapse of time also keeps
diluting it.

Next, we’re going to directly show the contribution to the total ∆F from double bubble
case i.e. ∆F(d). Readers can turn to the Part D of sectionIII of ref. [26] for the calculation
ideas and details.

As the same with the single bubble case, in order to obtain ∆F(d), we need to find the
expression of Ψ(d):

Ψ(d)(ηx,ηy,k) = 16π
∫ 2(Ξ−σ)

ξ
r2drP (ηx,ηy, r)×B(d)

x (ηx,ηy, r)B(d)
y (ηx,ηy, r)

j2(kr)
(kr)2 (4.18)

where B(d)
x (ηx, ηy, r) and B(d)

y (ηx, ηy, r) are given by:

B(d)
x (ηx, ηy, r) = −πκρ0(r2 − ξ2)e−

r
2−σ

24r3σ4 (e
r
2 +σ(−8ξ × (Ξ− σ)(Ξ2 + Ξ(3− 2σ) + (σ − 3)σ

+ 6)− 48ξ + 2r2(ξ(Ξ− σ + 1)− 2(Ξ2 − 2(Ξ + 1)σ + 2Ξ + σ2 + 2)) + r4)
+ 4eΞ(12ξ + r(6ξ + r(ξ + r + 2)))) (4.19)

B(d)
y (ηx, ηy, r) = −πκρ0(r2 − ξ2)e−

r
2−σ

24r3σ4 (e
r
2 +σ(8ξ × (Ξ− σ)(Ξ2 + Ξ(3− 2σ) + (σ − 3)σ + 6)

+ 48ξ − 2r2(−σ(ξ + 4Ξ + 4) + ξΞ + ξ + 2Ξ2 + 4Ξ + 2σ2 + 4) + r4) + 4eΞ

× (r2(r + 2)− ξ(r(r + 6) + 12))) (4.20)

Rearrange the equations above, we’ll find

Ψ(ηx, ηy, k)(d) =
∫ 2(Ξ−σ)

ξ
dr 16π3κ2ρ2

0
r4σ8 P (ηx, ηy, r)J (d)(k, r,Ξ, ξ, σ) (4.21)

where we have defined three new quantities whose definitions are given below:

B(d)
x/y = πκρ0

r3σ4 B̃
(d)
x/y J (d)(k, r,Ξ, ξ, σ) = B̃(d)

x (ηx, ηy, r)B̃(d)
y (ηx, ηy, r)

j2(kr)
(kr)2 (4.22)

Insert eq. (4.21)–(4.22) into eq. (3.28) and then we have the final form of ∆(d)(k/β̃;σ; ηf )
given by eq. (4.23):

∆F(d)(k/β̃;σ; ηf ) = 24πk3

σ8(σ + τ)8

∫ σ+τ

σ
dΞ
∫ τ

0
dξ
∫ 2(Ξ−σ)

ξ
dr×[(

Ξ2 − ξ2

4

)3

cos(kξ)e
−I(x,y)

r4 J (d)(k, r,Ξ, ξ, σ)
] (4.23)
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Adding ∆F(s) and ∆F(d) up, we can get the analytical expression of ∆F, which is specifically
the quantity we want to obtain. At this step, we have no idea about how to go forward by
analysis anymore. The analytical expressions of two triple integrations given by eq. (4.12)
and eq. (4.21) are too complicated that we cannot integrate them directly. However, we
can integrate them numerically to see the behavior of ∆F versus different values of σ. We’ll
show the result in the next section and make comparison between our results with the
results in Minkowski spacetime.

So far we have successfully obtained the analytical expressions of ∆F, but how can
we know the validity of our derivation? One of the good approaches is to consider a
limiting case: does our results converge to the results given in Minkowski spacetime when
σ → ∞? When σ → ∞, we have τ/σ → 0 which means that the impact brought by the
expansion of the universe disappears, as a result we don’t need to consider it anymore. So
in principle, our results are supposed to converge to the expressions given in Minkowski
spacetime in the limiting case of large σ. We can prove it in two steps. Firstly, let’s recall
eq. (3.28) and compare it with eq. (2.9). We can find that if we ignore the difference between
Ψ(ηx, ηy, k) and Π(tx, ty, k), then the only difference between two integrations is that ∆F

has an additional factor H8η3
xη

3
y . By derivation, we have:

σ3σ3

(σ + τ)8 6 H8(ηf )η3
xη

3
y 6

(σ + τ)3(σ + τ)3

(σ + τ)8 (4.24)

When σ →∞, the phase transitions finish instantly, as a result τ/σ → 0, so we can rewrite
eq. (4.24) as:

H8(ηf )η3
xη

3
y '

1
σ2 (for large σ) (4.25)

At this stage, we have successfully extracted the factor 1/σ2 out of the expression of
∆F. Recall that in eq. (2.7) we specially define ∆M by dividing ∆ with σ2 to make
the definition of ∆M and ∆F consistent with each other. Now the only integrand left is
cos[k(ηx−ηy)]Ψ(ηx, ηy, k) which looks really similar to cos[k(tx−ty)]Π(tx, ty, k) and the next
step we need to do is to prove Ψ(ηx, ηy, k)→ Π(tx, ty, k) when σ →∞. However, don’t forget
a very important point, in our derivation the duration of phase transitions τ is finite while in
Jinno and Takimoto’s previous paper, they regard it as infinity to simplify their derivation.
When σ →∞, we will also have τ →∞ although these two infinity are not the same order.
So we can naturally set the upper limit of integral ηf = σ + τ as ∞. The lower limit also
can be set as −∞ because when η < σ, there doesn’t exist the collision of bubbles, so they
won’t contribute to the integral. So we can set ηi = −∞, ηf = +∞ and ignore the difference
of t and η, actually we’ll obtain the totally same expressions of I(x, y), F0, F1 and F2 as
in ref. [26], thereby leading to the same expressions of Ψ(ηx, ηy, k) and Π(tx, ty, k). Since t

and η are both integration variables,
∫ +∞

−∞

∫ +∞

−∞
cos[k(ηx − ηy)]Ψ(ηx, ηy, k)dηxdηy certainly

equals to
∫ +∞

−∞

∫ +∞

−∞
cos[k(tx − ty)]Π(tx, ty, k)dtxdty. Now we can definitely confirm that

our results indeed converge to the results given in Minkowski spacetime by taking large σ.
Later, we’ll directly give the numerical simulation to show this point.
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From the instructions above, actually we can clearly see that the difference of the final
results of GW spectrum are contributed by two sources. The first one is the different choices
of spacetime metric: our derivation takes the expansion of the universe into consideration,
the factor H8(ηf )η3

xη
3
y in integrand shows up for this reason. When σ ∼ O(1) this term

can play an important role and dilute the energy density of GW. The second source is the
different treatments of phase transitions duration. Intuitively, the approximation of infinite
duration works worse when σ is really small, so to consider a more realistic length of phase
transitions is important.

5 Numerical calculation

In the previous section, we have obtained the final form of ∆F(s) and ∆F(d) given by
eq. (4.16) and eq. (4.23). However, we have not discussed the way to get the “duration”
of phase transitions. Now, let’s observe the eq. (4.16) and eq. (4.23), there is a special
factor(σ + τ)8 in the denominator of both expressions of ∆F(s) and ∆F(d). This factor
coming from H8(ηf ≡ σ + τ) directly shows the influence of the expansion of the universe.
Although the collision of bubbles emits energy, the expansion of the universe dilute it all the
time. In another perspective, we can rewrite H8(σ+τ) as 1/[H−1(σ+τ)]8 where H−1(σ+τ)
can be understood as the Hubble horizon at time σ+τ . As time elapses, the Hubble horizon
keeps growing while the released energy from bubble collisions won’t increase all the time,
as a result, the energy density of GW from bubble collisions in this process will increase
first and decrease later. If we only pay attention to the triple integrations in the eq. (4.16)
and eq. (4.23), we can find that two integrals increase first and converge to specific values
at last with increasing τ , nevertheless the prefactor decreases monotonously in this process.
So we can expect the value of ∆F = ∆F(s) + ∆F(d) will increase first and decrease after
it reaching the maximum. Before the maximum point, the new released energy is more
powerful than the dilution effect of the expansion of the universe, so we can regard that the
phase transition has not finished. After the maximum point, the new released energy is not
enough to compensate for the dilution effect of the expansion of the universe, so we can
regard that the phase transition has finished. Now, let’s call τ as “effective duration” of
phase transitions. For a given σ, we need to study the behavior of ∆F first to figure out the
exact value of effective duration τ and then to calculate the corresponding energy density.
In a word, we define τ by the following equation:

τ := argmax
τ

(
∆F(s) + ∆F(d)

)
(5.1)

After numerically finding the exact value of τ , we can integrate ∆F(s) and ∆F(d)

numerically to study the concrete dependence of ∆F on σ. At the same time, we are
supposed to compare our results with the results given by ref. [26] to estimate the influence
brought by the differences between two background spacetime and finite duration.

Firstly, a comparison between our results in FLRW spacetime with a finite duration
and results in Minkowski spacetime with an infinite duration is given by figure 4. Here,
we have shown 7 pairs of curves where solid curves indicate our results of ∆F estimated
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Figure 4. Plot of GW spectrum. The solid curves indicate our results of ∆F in FLRW spacetime,
while the dashed curves indicates Jinno and Takimoto’s results of ∆M in Minkowski spacetime.
When σ = 2 ∼ O(1), two curves deviate a lot. With increasing σ, two curves become more and
more close. When σ & 200, two curves almost coincide with each other as our expectation.
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Figure 5. The step plot of the fraction of the maximum value of ∆F to the maximum value of
∆M versus σ. When σ . O(10), the corresponding GW spectrum is significantly influenced by the
expansion of the universe. Even when σ ∼ 100, the GW spectrum is still be depressed by 50%
compared to the results estimated in Minkowski spacetime. When σ increases, this ratio increase as
well and will finally converge to 100% when σ →∞, in which regime the expansion of the universe
can be totally neglected.

by eq. (4.16) and eq. (4.23) in FLRW spacetime while dashed curves indicate Jinno and
Takimoto’s results of ∆M estimated by eq. (2.10) in Minkowski spacetime. It’s apparent
that when σ is relative small i.e. we cannot neglect the expansion of the universe, the
dashed curves and solid curves deviate a lot. When σ generally increase, we can also find
the deviation between the dashed curves and solid curves decreases as our expectation.
When σ & 200, two curves almost coincide with each other.

According to our numerical estimation, we obtain the behavior of the quantity max(∆F)
over max(∆M) versus σ shown by figure 5. Noticing that with the guarantee of eq. (3.30),
∆F is proportional to h2

0ΩGW, so the significant decrease in ∆F can directly lead to weaker
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signals for detection. Observing figure 5, we can clearly find the trend of this curve is
the same as our previous expectation. When σ is small i.e. the expansion speed of the
universe is comparable to the speed of phase transitions, the corresponding GW spectrum
is significantly influenced. When σ = 1 a.k.a. β̃ = H, the ratio is only equal to 0.2%. Even
when σ = 100, this ratio is still as small as 64.5% which shows the big impact brought
by the expansion of the universe and also the consideration of finite duration of phase
transitions. When σ keeps increasing, this ratio will also increase monotonously and finally
converge to 100% when σ →∞. As our analytical derivation in the end of the last section,
when σ →∞, our results should return to the results estimated in Minkowski spacetime
and our numerical calculation successfully shows this point.

Since GW spectrum is indeed depressed compared to Jinno and Takimoto’s estimation
in Minkowski spacetime when we consider a more realistic spacetime background and also
take the finite duration of phase transitions into account, we are supposed to review the
detectability of GW from bubble collisions in FLRW spacetime again by comparing GW
spectra with PLI sensitivity curves of GW detectors. Out of the frequency band of GW we
are considering about, we neglect the terrestrial-based detectors like LIGO and Virgo whose
sensitive band is around hundred hertz. We choose five space-borne GW detector proposals
at here including TianQin [37], LISA [2], DECIGO [40], B-DECIGO [40] and BBO [11] and
three Pulsar Timing Arrays including EPTA [36], NanoGrav [3] and SKA [23]. The results
are shown by figure 6.

According to figure 6, we can find that although the maximum values of GW energy
density do decrease a lot than in Minkowski spacetime, there still are many possible
parameter combinations whose corresponding GW can be detected by TianQin, LISA,
DECIGO and BBO which is really an impressing result. Even when σ = 100, the energy
density of GW from bubble collision is still large enough to be detected in the promising
future. Again, we remind readers that for the little understanding of the precise physical
processes happen in the era of phase transitions, we don’t adopt any specific physical model
to describe it. Under such a circumstance, σ, α and T? are all free parameters. However,
we still need to confirm that the phase transitions happen during the RD era, since our
derivation is based on this elementary assumption.

Then we can go forward a small step to calculate the possible parameter combinations
whose corresponding GW can be detected by the above detectors. Observing the shape
of the sensitivity curves shown in figure 6, we can find that as long as the curves of GW
spectra fall above the sensitivity curves of BBO, this GW signal may be detected. Based
on such a consideration, we can get the figure 7. Observing figure 7, we can see that as
the temperature after the phase transitions T? becomes higher and higher, the area of
parameter combinations whose corresponding GW can be detected (salmon pink parts in
figure 7) is becoming bigger and bigger, which is definitely what we could predict before
the calculation. Recall eq. (4.16), eq. (4.23) and combine our numerical estimations, we can
see in two situations where the values of ∆F decrease monotonously. Firstly, ∆F drops with
the increase of σ, when σ & 2. Secondly, ∆F drops with the decrease of σ, when σ . 2. We
can try to understand this phenomenon by considering about two limiting cases. Note that
σ denotes the speed of the phase transitions with respect to the speed of the expansion
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Figure 6. Plot of GW spectra and PLI sensitivity curves [41] of EPTA [36], NanoGrav [3], SKA [23],
TianQin [37], DECIGO [40], LISA [2], B-DECIGO [40], DECIGO [40] and BBO [11]. At here, we
didn’t choose any specific model of phase transitions, so σ, T, α are three free variables which can
change without restrictions. The solid lines are calculated by numerically integrating and dotted
lines are given by fitting.
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Figure 7. Plotting of the parameter combinations in σ − α plane with different values of T?. The
upper left Lyons blue area denotes the pairs of (σ, α, T?) whose corresponding GW can not be
detected, while the lower right salmon pink area denotes the pairs of (σ, α, T?) whose corresponding
GW can be detected.

of the universe. If σ → ∞ i.e. the phase transitions finish instantly, we can assume that
every single spacetime point transform from the false vacuum state into the true vacuum
state at once where the spherical symmetry of the system is conserved and there are almost
no uncollided bubbles left, so there isn’t any detectable GW signal. On the other hand,
if σ → 0 which means the phase transitions proceed very slowly, we still cannot expect a
detectable GW signal for the low probability of bubble collisions. So we can expect that
when σ ' 2, the needed α is the smallest. For other cases, we all need a larger α to make
sure the resulting GW could be detected. When σ > 2, we can clearly see that the larger σ
is, the larger α is needed to have a detectable signal.

Now, let’s discuss the difference between the four sub-figures of figure 7. The only
difference of the parameter for these four figures is the value of T?, we can discover that with
the increase of T?, the corresponding salmon pink area becomes bigger. Actually, we can
recall eq. (3.31) to obtain a straightforward understanding. When T? is larger than 100GeV,
the frequency of GW will increase and move toward the sensitive band of space-borne GW
detectors. Although the values of h2

0ΩGW will be lower with higher T?, the increase of the
GW frequency can totally compensate for this negative impact.
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To remind, at here we only adopt a special case of κ(α) for calculation whose results
should be regarded as a benchmark rather than holding in all different cases. Nevertheless,
the method we’ve taken is very straightforward and could be realized easily.

6 Conclusion and discussion

In this work, we explored the energy spectra of GW from bubble collisions in FLRW
spacetime during RD era with a finite duration of phase transitions. We adopted the
analysis method proposed by Ryusuke Jinno and Masahiro Takimoto in 2017 and extended
it to a conformal flat spacetime background.

In the very first beginning, we gave a brief retrospection and summary of Jinno and
Takimoto’s work. For the convenience of readers, we also listed some useful equations and
results of their work. Then by adopting their elegant approach, we derived the analytical
expression of ∆F(s) and ∆F(d) as eq. (4.16) and eq. (4.23), respectively. Later, we discussed
the behavior of ∆F qualitatively and claimed that it would increase to the maximum value
first and decrease later when τ increases. By the virtue of this property, we defined the
so-called “effective duration” of phase transitions by finding the specific τ which could
maximize ∆F. By numerical integration, we found that the maximum values of ∆ depressed
to only 10% of Jinno and Takimoto’s estimation in Minkowski spacetime when σ ∼ O(10).
Even when σ is large as 100, the ratio max (∆F)/max (∆M) is still as small as 64.5%. The
significant difference shows up out of two different reasons. Firstly, we chose a more realistic
spacetime metric — FLRW metric — to describe an expanding universe. When the speed of
phase transitions and the speed of the expansion of the universe was comparable, we could
not neglect the “dilution” effect brought by the expansion of the universe. Secondly, we
didn’t assume the phase transitions start from ηi = −∞ and end at ηf =∞, on the contrary,
we defined an effective duration of phase transitions to realize numerical estimation.

The big decrease in the energy density of GW might bring about some new challenges
for future detection. So we thought it was necessary to review the detectablity of GW
generated from bubble collisions in FLRW spacetime. We regarded σ, α and T? as three free
variables and compared the GW spectra corresponding to different parameter combinations
with the PLI sensitivity curves of several gravitational waves detectors. After comparison,
we found that albeit the overall decrease of GW spectra, there were still many possible
parameter combinations whose corresponding GW spectra curves fell above the sensitivity
curves of GW detectors. Considering the shape of the sensitivity curves of GW detectors, we
could find that as long as the GW spectrum curves fell above the sensitivity curve of BBO,
the corresponding GW might be detected by us in the future. Based on such a criterion,
we got figure 7 and found that with the increase of T?, the possibility for us to detect
GW increased as well. Note that not every point (σ, α, T?) in figure 7 is permitted by the
theories of the first order cosmological phase transitions, provided we have chosen a specific
model to describe the phase transitions, and then α, σ and T? are all specified uniquely.
However, since we have little knowledge about the real physics processes happened around
transition time, we don’t think it is necessary to choose a model. On the other hand, our
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result is very general. Given a specific model, we can calculate the energy spectrum and
compare it with PLI sensitivity curves of GW detectors to testify the detectability of GW.

Besides these, there are many other works waiting to be done. Firstly, our derivation is
limited to the phase transitions happen in RD era and the calculation in other eras are also
demanded. Secondly, we only considered the situation where the bubble wall moved with
the speed of light. Actually, in many models, the speed of the bubble wall doesn’t need
to be c, so it is a problem should be focused on the future research. Finally, we still used
envelope approximation in our work, while there are several paper which have abandoned
this approximation, see e.g. [28]. In a word, more detailed and elaborate discussions of GW
from bubble collisions in FLRW spacetime still are needed to be done.
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