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1 Introduction

The Quark-Gluon Plasma (QGP), an exotic state of strongly interacting matter, is cur-

rently investigated in heavy-ion collision experiments. Its experimental characterization

and the accompanying theoretical activity proceed along the axes of bulk properties and

hard probes. The former is the study of the behavior of the many lower-energy produced

particles, which are understood to arise from the hadronization of a hydrodynamically-

evolving, near-equilibrium medium, while the latter concentrates on the few particles which

are very energetic or weakly coupled to the medium.
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Jets, a key hard probe, are important experimental sources of evidence about the

nature of the strong nuclear interaction under extreme conditions — see [1, 2] for recent

reviews. Jets are generated by colored particles at high energies, a regime where the

theory of the strong nuclear force, Quantum Chromodynamics (QCD), is supposed to be

weakly coupled and accessible to perturbative methods. Here we focus on jets created by

light constituents such as light quarks (u, d, s) or gluons. It was found by Klimov [3, 4] and

independently by Weldon [5, 6] that — though being massless — high-energy particles with

momentum k follow the dispersion relation of massive particles when traversing the QGP

ω2
k = k2 + m2

k . (1.1)

By scattering with the medium they acquire an effective mass, which, at very large mo-

mentum, is called the asymptotic mass. To one-loop order these masses are composed of

the gauge condensate Zg and the fermion condensate Zf :

m2
∞,q = g2CF

(

Zg + Zf

)

, m2
∞,g = g2CAZg + 2g2TFNfZf , (1.2)

where m2
∞,q applies for quarks and m2

∞,g applies for gluons. Here CF = (N2
c − 1)/(2Nc) is

the quadratic Casimir of the quark representation, CA = Nc is the adjoint Casimir, Nf is

the number of light (Dirac) quark species, an TF = 1/2 is the Dynkin index for the quarks.

The condensates Zg and Zf are non-local and have a gauge-invariant definition1 in terms

of correlators [7, 8]

Zf ≡
1

2dR

〈

ψ
vµγµ

v · D
ψ

〉

, (1.3)

Zg ≡ −
1

dA

〈

vαF αµ 1

(v · D)2
vνF ν

µ

〉

, (1.4)

where vµ = (1, v) is the light-like four-velocity of the hard particle, dR,A are the dimensions

of the fermion and adjoint representations respectively, and the expectation value 〈. . . 〉 de-

notes a thermal expectation value. Our conventions are that the metric is the mostly-plus

one, the covariant derivative is Dµ = ∂µ − igAµ (with the gauge coupling g) and the field

strength tensor is F µν = i
g [Dµ, Dν ]. Since we are interested in QCD, henceforth we will

specialize to the gauge group SU(3), with CF = 4/3, CA = 3, dR = 3, dA = 8, and TF = 1/2

where not indicated differently.

Eq. (1.4) can be rewritten in coordinate space, where the inverse powers of derivatives

describe an integral over separations, with a Wilson line to reflect that they are covariant

derivatives. That is, Zg is an integral over the lightlike separation x+ ≡ (x0 + v · x)/2 of a

1Eq. (1.2) can be seen as arising from integrating out the energy scale of the jet E ≫ T and truncating

at first order in T/E, as well as determining the matching coefficients at first order in g. If the scale of

the hard parton is E & T rather than E ≫ T , higher orders in the T/E expansion become relevant. These

additional operators could spoil the factorization into fermionic and bosonic condensates as of (1.2). We will

return to this issue when discussing the contribution of the scale T at higher orders in an upcoming paper.
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correlator of two covariant Lorentz-force insertions

Zg = −
1

dA

∫ ∞

0
dx+x+

〈

vµF µν
a (x+) Uab

A (x+; 0) vρF ρ
b ν(0)

〉

, (1.5)

where UA(x+; 0) is an adjoint, lightlike Wilson line.2

Despite the jet momentum being much larger than the temperature of the medium

that it traverses, the interaction between jet and medium still receives contributions from

the infrared (IR) regime, i.e. from energy-momentum regions of O(gT ) or smaller. These

contributions can, for many quantities such as the interaction rate, be dominant. Indeed,

the emergence of these IR scales causes the perturbative series to be an expansion in g

rather than in αs; furthermore, at an operator-dependent order in g, the perturbative

expansion breaks down, due to the presence of the so-called magnetic or non-perturbative

scale g2T [9]. In our case, the IR contributions affect the two operators at different orders.

The fermionic condensate Zf is well under perturbative control, with no IR contribution

appearing as an O(g) correction to the leading order (LO) result [8]

Zf = ZLO

f + δZf =
T 2

12
+ 0 + O(g2) . (1.6)

Only at higher orders it receives contributions from the IR regime. However, the gauge

condensate Zg receives IR contributions already at O(g): the next-to-leading order (NLO)

result reads [8]

Zg = ZLO

g + δZg =
T 2

6
−

TmD

2π
+ O(g2) , (1.7)

where at leading order the Debye screening mass m2
D is given by [5]

m2
D =

g2T 2

3
(CA + TFNf) + O(g4) . (1.8)

Formally m2
D is a parameter of an infrared effective description, EQCD, which we will in-

troduce momentarily. At leading order it equals twice the gluonic asymptotic mass, m2
D =

2m2
∞,g. For the values of T and therefore g which are relevant in any conceivable heavy-ion

experiment, the Debye mass is large enough for the two known terms in (1.7) to be compa-

rable. Therefore, the IR contribution spoils the convergence of the perturbative expansion.

In a remarkable set of papers [8, 10] it was however shown that the leading soft in-

teractions of a very hard, hence light-like, parton with a soft thermal bath can be greatly

simplified, both for the interaction rate [10] and for Zg [8]. In more detail, they can be

isolated and treated in a dimensionally-reduced Effective Field Theory of thermal QCD,

2The Wilson line structure of (1.5) is a somewhat delicate issue that requires further clarification. Group-

theoretically, an adjoint line is equivalent to a pair of fundamental Wilson lines with the same endpoints,

but they may differ in terms of operator ordering or endpoints, as the fundamental lines may stretch back

to x+ = −∞. If we treat v = 1 + ǫ then all operators along the Wilson line commute, and there is no

difference between the treatments. But if collinear physics becomes important at some higher order in the

4-dimensional treatment, then there will be a discontinuity between a v = 1 + ǫ and a v = 1 − ǫ treatment

and the distinction between Wilson line types may become important. This cannot occur in eq. (3.4), the

EQCD version of eq. (1.5) which we study in this paper, because of the time-independence of EQCD. We

will come back to this issue when addressing the T -scale contribution at O(g2) in an upcoming paper.
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called Electrostatic QCD (EQCD) [11–15]. Its effective parameters encode the ultraviolet

(UV) behavior of thermal QCD as a function of temperature T and number of massless

quark flavors Nf. This is achieved by matching the Green’s functions of both theories in the

IR. To investigate a QCD operator using this effective field theory, we must determine the

EQCD counterpart of that operator; for us, this means determining the EQCD equivalent

of the correlator of eq. (1.5).

Our long-term goal, started in [16], is to determine Zg by a matching between full

QCD and EQCD and by computing the EQCD contribution non-perturbatively on the

lattice. This paper will take two steps in this direction, leaving one step for future work.

First, we will update the lattice part of the EQCD equivalent to eq. (1.5). Second, we

will calculate the EQCD correlator to next-to-leading order in EQCD perturbation the-

ory. This improves the fitting necessary in the lattice determination, and it also sets the

groundwork for the matching to full QCD, by gaining a better analytical understanding of

the (unphysical) UV divergences in EQCD, and how these divergences are appropriately

dealt with. We argue on dimensional grounds that NLO is the last order at which po-

tentially UV-divergent terms from EQCD in (1.5) can arise. When supplied with a full

four-dimensional perturbative calculation at the same order, the matching of our lattice

EQCD results back to full QCD would be complete, and entirely IR-resummed values for

m2
∞ can be provided. The four-dimensional calculation is spared for a separate publica-

tion, however. Moreover, one can finally only interpret the UV divergences in EQCD in the

context of the full four-dimensional framework. Therefore, a fully consistent subtraction

scheme also has to be postponed to another publication.

This paper is organized as follows: section 2 clarifies the power counting scheme(s)

used throughout this present publication. Section 3 details the transition from full QCD to

EQCD. We present the analytical calculation of the force-force correlator in EQCD at NLO

in section 4 and update the existing lattice calculation in section 5. Section 6 discusses

our results with an outlook to future interesting research. Details of our perturbative

calculation are found in appendix A.

2 Power-counting scheme

To shed light on the at first sight opaque power counting scheme of our result, we find it

instructive to parametrize our result before actually diving into the computation. Let us

start with a power-counting analysis of Zg. Its leading order form is

ZLO

g = 2

∫

d3p

(2π)3

nB(p)

p
, (2.1)

where nB is the Bose-Einstein distribution. This form shows how the LO term in eq. (1.7)

is obtained: it is the leading contribution from the momentum region p ∼ T . The first IR

contribution arises from p ∼ gT , which is Bose-enhanced, i.e. nB(p) ≈ T/p ∼ 1/g. This,

together with d3p/p ∼ g2T 2, suggests an O(g) contribution from this scale, corresponding

to the contribution to Zg from the leading order in EQCD. Going further to the IR, we can

expect the first contribution from the non-perturbative scale g2T at O(g2). This is precisely

– 4 –
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the order reached by our NLO-in-EQCD perturbative calculation, as well as that of the

second-order contribution from the scale p ∼ T . Hence, a strict perturbative expansion of

Zg in the QCD coupling g would yield

scale T scale gT scale g2T

Zg =

[

T 2

6
−

µh

π2

]

(2.2)

+

[

−
TmD

2π
+

µh

π2

]

(2.3)

+

[

cln
hard ln

T

µh
+cT +cln

hard ln
µh

mD

+cln
soft ln

mD

µs
+cgT +cln

soft ln
µs

g2T
+c

gT 2

]

(2.4)

+O(g3) , (2.5)

where the three lines correspond to O(g0)-O(g2), respectively, whereas columns correspond

to the originating scale. At O(g2) all scales contribute, and the contribution of each of them

is scheme-dependent: we indicate this through the intermediate regulators T ≫ µh ≫ gT

and gT ≫ µs ≫ g2T .3 These should not be taken as indicating the choice of a cutoff

scheme, but rather as generic placeholders for an arbitrary choice of scheme to separate

the contribution of the scales. This scheme dependence also affects the coefficients cT ,

cgT and cg2T , with the latter being non-perturbative. Through our calculation we will be

able to determine cln
hard and cln

soft from the logarithmic divergences of the NLO-in-EQCD

calculation.4 That is not, however, our main aim, which is instead to incorporate the

all-order EQCD contribution to Zg through lattice EQCD.

Finally, we remark that, due to the super-renormalizable nature of EQCD, the EQCD

contributions of O(g3) and higher will not present further UV divergences. In the language

of this section, we can expect the UV behavior at O(gn) to be µ2−n
h , so that, after the leading

linear and subleading log divergences we can only find negative power laws in the UV cutoff.

3 Light-cone observables and dimensionally-reduced theories

As we noted, it was found by Caron-Huot that the infrared, non-perturbative part of the

jet-medium interaction can be isolated in the framework of electrostatic QCD (EQCD) [10].

Since the gluonic Matsubara zero-mode contributes a factor of 1/g for each closed thermal

loop, the perturbative power counting scheme of a g2-suppression per loop is spoiled. In

other words, the loop and coupling expansions misalign, which is known as Linde’s infrared

problem [9]. This problem can be bypassed by reorganising the perturbative expansion,

which is most economically achieved by treating the zero mode separately in a three-

dimensional effective theory [17, 18]. The transition from fundamental four-dimensional,

3The zeroth- and first-order terms in g are also in principle regulator-dependent. This corresponds to the

linear UV divergence of the LO-in-EQCD result, which is in general dealt with through a simple subtraction

scheme, so that a cutoff does not appear explicitly.
4The form of eq. (2.4) is to be taken as a sketch, derived from dimensional considerations only, which

suggest the presence of a logarithmic sensitivity between the scales. Our explicit evaluation finds a single-

and double-logarithmic sensitivity between the g2T and gT scales.

– 5 –
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thermal QCD to its three-dimensional effective theory EQCD is dubbed dimensional re-

duction. The continuum action of this effective theory reads5

SEQCD,c =

∫

x

{

1

2
Tr FijFij + Tr [Di, Φ][Di, Φ] + m2

DTr Φ2 + λE(Tr Φ2)2
}

, (3.1)

where
∫

x = 1
g4ǫ

3d

∫

ddx, d = 3 − 2ǫ and Di = ∂i − ig3dAi is the EQCD covariant derivative.

The former temporal component of the gauge field turns into the scalar field viz. Φ = iA0

in the adjoint representation of SU(3) with the acquired thermal mass m2
D.

Since the resulting theory is static in three dimensions, derivatives in temporal direction

are absent. Similarly, gauge invariance does not protect the A0 or Φ field from acquiring a

mass. The quartic coupling of Φ is a remnant of the four-A0-interaction that arises at two-

loop level in full-QCD perturbation theory. This effective theory was originally proposed by

Appelquist and Pisarski [17, 18]. Braaten and Nieto [12] presented a rigorous perturbative

procedure for constructing the effective theory and determining its parameters m2
D, λE, and

g2
3d by matching; they also named the theory ‘Electrostatic Quantum Chromodynamics’

(EQCD). The current matching is available at O(g6) for g2
3d [19], m2

D [20] and λE [21],

with further improvements in [22, 23]. The matching of these effective parameters and the

running coupling g(µ̄/ΛMS)2 are employed at O(g4), while we use a renormalization scale

of ΛMS = 341 MeV [24], obtained from (2 + 1)-flavor lattice simulations.

Since EQCD is a super-renormalizable theory, all amplitudes can be rendered finite

by a finite number of counterterms. In our case, only the scalar mass m2
D receives a

renormalization and therefore carries the only scale dependence of any parameter in the

action. Using the dimensionful gauge coupling to set the scale µ = g2
3d, one can re-phrase

all EFT parameters as dimensionless ratios

x ≡
λE

g2
3d

, y ≡
m2

D

g4
3d

∣

∣

∣

µ̄=g2
3d

. (3.2)

Concerning the matching of the operators in (1.5), dimensional reduction involves

replacing F i0 → i
[

Di, Φ
]

, as mostly already outlined in [16]. Furthermore, we replace the

lightlike Wilson line UA with its EQCD counterpart [10]

ŨA(L; 0) = P exp
(

ig3d

∫ L

0
dz

(

Aa
z(z) + iΦa(z)

)

T a
A

)

, (3.3)

oriented along the z-axis and suppressed constant transverse coordinates (x⊥). With rota-

tional invariance in the transverse plane, we find

Z3d

g = −
2T

dA

∫ ∞

0
dL L

〈(

F a
xz(L) + i(DxΦ(L))a

)

Ũab
A (L, 0)

(

F b
xz(0) + i(DxΦ(0))b

)〉

= −
4T

dA

∫ ∞

0
dL L

(

−〈EE〉 + 〈BB〉 + i〈EB〉
)

, (3.4)

5The kinetic term commutators ensure the adjoint representation of the Φ-fields. Henceforth, we will

keep commutators implicit. In principle, a second quartic Φ-operator λ2Tr Φ4 is conceivable but linearly

independent only for Nc > 3. By focusing on QCD and in favour of numerical simplicity, we safely disregard

the latter.

– 6 –
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where the explicit factor of T accounts for the different normalisation of the EQCD fields

and the three different correlators are abbreviated as

〈EE〉 ≡
1

2

〈

(DxΦ(L))a Ũab
A (L, 0) (DxΦ(0))b〉

, (3.5)

〈BB〉 ≡
1

2

〈

F a
xz(L) Ũab

A (L, 0) F b
xz(0)

〉

, (3.6)

i〈EB〉 ≡
i

2

〈

(DxΦ(L))a Ũab
A (L, 0) F b

xz(0)
〉

+
i

2

〈

F a
xz(L) Ũab

A (L, 0) (DxΦ(0))b〉

. (3.7)

An adjoint Wilson line between two operator insertions O and O′ can be related to a pair

of fundamental Wilson lines via

〈Oa(x) Uab
A (x; 0) O′

b(0)〉 = 2 Tr 〈O(x) UF(x; 0) O′(0) U−1
F (x; 0)〉 . (3.8)

On the lattice it is more convenient to evaluate the correlators contributing to (3.4) in

the fundamental representation. By absorbing a factor of 1/2 from eq. (3.4) into the

correlators (3.5)–(3.7), they can naturally be considered as living in the fundamental rep-

resentation.

We will approach computing Z3d
g from (3.4) from two different sides: perturbatively to

NLO in EQCD or O(g2
3d), and non-perturbatively in lattice EQCD. At short separations

L, we expect the perturbative and non-perturbative lattice results to agree. Treating short

distances on the lattice is challenging. The lattice spacing must be kept several times

smaller than the separation of interest to avoid contamination from higher-dimension op-

erators. The lattice volume must be kept larger than a certain physical scale to ensure that

one maintains the right phase structure (the symmetric phase of EQCD is only metastable,

and the metastability is lost when the volume gets too small [16]). And the precision we

demand becomes prohibitive, as the 〈EE〉 and 〈BB〉 correlators each diverge as 1/L3, while

the errors must be smaller than of order 1/L2 for eq. (3.4) to converge. At large separations,

however, perturbation theory is supposed to become unreliable, and data points directly

obtained from lattice simulations or fits of large-g2
3dL models can provide further insight.

4 Perturbative determination of Z3d

g
at NLO in EQCD

As motivated above, our task is to match the gluonic EQCD correlator (3.4) to its full

QCD counterpart. In fact, the UV contributes to Zg since the latter contains an integral

over length scales in the domain L ∈ [0, ∞). The ultraviolet (UV) region is precisely

where we expect corrections from full QCD that are not included in EQCD. Fortunately,

these contributions should be under better perturbative control than the IR regime due to

asymptotic freedom. The corresponding diagrams are compiled in figure 1.

Computing the three correlators in EQCD, 〈EE〉, i〈EB〉, and 〈BB〉, is only possible

at finite values of g2
3dL on the lattice. Beyond the feasible range of g2

3dL on the lattice,

one has to rely on models. For large g2
3dL, one can fit the largest-g2

3dL lattice data points

to asymptotic models, as done in [16] and updated in section 5. This regime produces

– 7 –
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(a) (b) (c) (d1) (d2) (e)

(f) (g) (h) (i) (j)

Figure 1. Diagrams contributing to leading and next-to-leading order to the EQCD force-force

correlator Z3d
g (3.4). An external gray shaded vertex denotes a DxΦ or F xz insertion; internal

2-point blobs the respective self-energy; a double line a Wilson line; and a curly line a spatial

gauge boson (Ai). A solid line is a placeholder for either an adjoint scalar (Φ) or a spatial gauge

boson (otherwise curly).

a small contribution because the correlators decay exponentially here. For small g2
3dL,

perturbation theory is supposed to work in EQCD. Since the three-dimensional coupling

g2
3d carries mass dimension one, and the correlators carry mass dimension three, dimensional

analysis tells us that the tree-level EQCD expressions can go as 1/L3 in the small-g2
3dL-

limit at worst, whereas the one-loop level can contain g2
3d/L2 at worst, and all higher loop

levels are O(g4
3d/L) at worst. The L dL integration leading to Z3d

g in (3.4) can therefore

receive UV-divergent contributions only from the O(1/L3) LO terms or from the O(g2
3d/L2)

NLO terms.6 All higher-order contributions to Z3d
g are short-distance finite. Therefore, a

one-loop analytical calculation of the three correlators is not only required quantitatively

for increasing the agreement of lattice data and perturbation theory at small g2
3dL, but also

qualitatively for a comprehensive treatment of all possible UV divergences. Note that this

short-distance region is where EQCD no longer provides a good description of full QCD.

Nevertheless, an accurate treatment of this region will be needed when we carry out the

matching to the full four-dimensional theory, which we leave to a future publication.

Below, we present the next-to-leading order perturbative calculation in EQCD. Its mass

parameter m2
D is fully resummed and not treated as a perturbation of O(g2), while also not

assuming that λE ∼ g4 but fully taking the quartic Φ-vertex into account. Furthermore,

we employ momentum-space gauge and adjoint scalar propagators

〈Aa
i (p)Ab

j(q)〉 =
δab(2π)3δ(3)(p + q)

p2

(

δij − (1 − ξ)
pipj

p2

)

, (4.1)

〈Φa(p)Φb(q)〉 =
δab(2π)3δ(3)(p + q)

p2 + m2
D

, (4.2)

where the former is in general covariant gauge with gauge fixing parameter ξ and p is

a three-dimensional vector with modulus |p| = 0. We will generally use Feynman gauge

ξ = 1, and this should be assumed except in expressions with explicit ξ dependence.

6When we talk about leading or next-to-leading order in the following, we refer to orders in the EQCD

perturbative expansion in g2
3d, being related but not to be confused with the full QCD perturbative expan-

sion in g. We will thus drop the previously adapted -in-EQCD specifiers.
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4.1 The leading order

The leading O(g0
3d) contribution is also the free solution to Z3d

g , consists of the graphs from

figure 1(a), and was calculated in [16].

After inserting the propagators from eqs. (4.1) and (4.2), and explicitly separating

integration momenta as p = p⊥ + pzez, the remaining integrals are Fourier transforms of

the form
∫

p

eiLpz

[p2 + m2
D]α

(

p2 − p2
z

)

,

∫

p

eiLpz

[p2]α
(

p2 + (d − 2)p2
z

)

, (4.3)

where the gauge dependence of 〈BB〉 cancels due to the antisymmetry of the field strength

tensor. The integrals over pz and p⊥ can be evaluated with the residue theorem and

in dimensional regularization respectively with d = 3 − 2ǫ, and results are collected in

appendix A.1. Contracting color indices δaa = 2CACF yields for the diagonal correlators

= 2×(a)EE = ∂x∂x′Tr
〈

Φa(x, L)Φa(x′, 0)
〉∣

∣

x,x′→0

=
2CACF

4πL3
e−m

D
L (1 + mDL) , (4.4)

= 2×(a)BB = ∂x∂x′Tr
〈

Aa
z(x, L)Aa

z(x′, 0)
〉∣

∣

x,x′→0
+ ∂z∂z′Tr

〈

Ax(0, z)Ax(0, z′)
〉∣

∣

z=L
z′→0

= −
2CACF

4πL3
, (4.5)

with Wilson line endpoints x = (0⊥, L) and x′ = (0⊥, 0). Here and in the following we draw

and evaluate each diagram (e.g. (a)) in its adjoint form which is, as we argued, twice the fun-

damental form in the definitions of 〈EE〉, 〈BB〉, and i〈EB〉 below eq. (3.5). This simplifies

the graphical notation and color evaluation. In turn, we account for the factor of 2 explicitly

in contributions of adjoint diagrams to any channel e.g. 〈EE〉, as 2 × (a)EE. Henceforth,

a curly line denotes a spatial gauge boson (Ai) and a solid line an adjoint scalar (Φ).

The Z2 symmetry of EQCD requires the number of Φ fields to be even.7 Therefore, at

leading order the mixed i〈EB〉 correlator vanishes and at next-to leading order only graphs

with a single Φ sourced from the Wilson line contribute. Similarly, only graphs with zero

or two Φ fields sourced from the Wilson line contribute at NLO to the 〈EE〉 and 〈BB〉

operators (cf. figure 1).

The physical short distance behavior of the (four-dimensional) gauge condensate Zg

is perturbative, as detailed in section 2. Therefore the UV of Zg is described in four-

dimensional thermal QCD, as it is dominated by energy scales of order T rather than mD.

When it comes to an IR-consistent treatment of longer-range corrections, EQCD comes into

play. Since both lattice and perturbative EQCD results for Z3d
g contain an (unphysical)

UV limit, while conversely the T -scale contributions contain an incorrect IR limit, as they

integrate over the IR momentum region without resummation (see eq. (2.1)), a subtraction

scheme is needed to avoid double counting.

7The Z2 symmetry of EQCD arises from its action, eq. (3.1), being an even function of Φ. It is not to

be confused with the Z3 center symmetry of full QCD, which is explicitly broken in EQCD [25].
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The UV limit of the EQCD correlators (3.4), can be extracted from the small mDL

asymptote of the perturbative contributions. At leading order starting from (4.4) and (4.5)

and taking 〈. . . 〉subtr = limmDL→0〈. . . 〉 this gives rise to the subtractions

〈EE〉subtr

LO = −〈BB〉subtr

LO =
CACF

4πL3
, (4.6)

which contain all non-resummed (i.e. mD → 0) EQCD contributions at this order and

should be removed from Z3d
g . These subtractions also eliminate the UV divergences in the

EQCD result, which are not considered to be physical: they correspond to the linear-in-µh

term in eq. (2.3) (see footnote (3)) and are already included in the unresummed zero-mode

contribution to the LO-in-QCD contribution to Zg.

4.2 Relation to momentum broadening kernel

We now comment on the relation between Zg and the transverse momentum broadening

coefficient q̂. The latter is defined as the second moment of the broadening probability

P (q⊥) or of the transverse scattering kernel C(q⊥) up to some UV cutoff qmax. Both can be

derived from a Wilson loop in the (x+, x⊥) plane [10, 26–28]. Upon writing q2
⊥ as transverse

derivatives acting on this Wilson loop, one obtains for a fundamental source [28]

q̂ =
g2

Nc

∫

d2q⊥

(2π)2

∫

d2x⊥

∫ ∞

−∞
dx+eiq⊥·x⊥

〈

Tr ŪF(0; x⊥)−∞UF(−∞; x+)x⊥
vµF µν

a (x+, x⊥)

× UF(x+; +∞)x⊥
ŪF(x⊥; 0)+∞UF(+∞, x+)0vρF ρ

b ν(0, 0)UF(0; −∞)0

〉

, (4.7)

where UF(b+; a+)y⊥
is a fundamental Wilson line in the + direction from a+ to b+ at

fixed y⊥ coordinate, while the − coordinate is fixed to the same value for all fields in the

expression above. ŪF(b⊥; a⊥)y+ is instead a fundamental Wilson line in the ⊥ direction

from a⊥ to b⊥ at fixed y+ coordinate. If the q⊥ integration is taken with infinite cutoff,

i.e. in dimensional regularization, the resulting δ(2)(x⊥) will squeeze the Wilson loop in

eq. (4.7) into a Wilson line, viz. [28]

q̂ =
g2

Nc

∫ ∞

−∞
dx+

〈

Tr UF(−∞; x+)vµF µν
a (x+) UF(x+; 0) vρF ρ

b ν(0) UF(0; −∞)
〉

, (4.8)

where we dropped the — now fixed — transverse coordinate of the Wilson lines. We can

now apply dimensional reduction on eq. (4.8) to find the soft, three-dimensional contribu-

tion to q̂

q̂3d =
2g2

3dCF

dA

∫ ∞

−∞
dL

{

−
〈

(DxΦ(L))aŨab
A (L; 0)(DxΦ(0))b

〉

+
〈

F a
xz(L)Ũab

A (L; 0)F b
xz(0)

〉

+ i
〈

(DxΦ(L))aŨab
A (L; 0)F b

xz(0)
〉

+ i
〈

F a
xz(L)Ũab

A (L; 0)(DxΦ(0))b
〉

}

. (4.9)

This shows that q̂ is related to Z3d
g by a change in the overall prefactor and in the integration,

which is
∫ +∞

−∞ dL rather than
∫ +∞

0 dL L.
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We stress that eq. (4.9) is to be understood in dimensional regularization only. If

this regularization is not taken, divergences arise at L = 0 in the dL integration. This is

apparent at LO from eqs. (4.4) and (4.5), which would diverge as dL/L3 at the origin. We

have however checked that, if eqs. (4.4) and (4.5) are evaluated in d dimensions and then

plugged in eq. (4.9) and integrated in dL, they yield

q̂3d

LO =
g2

3dCFm2
D

4π

(

1

ǫ
+ ln

µ̄2

m2
D

)

, (4.10)

where our conventions for dimensional regularization are summarized in appendix A.1.

This agrees with a dimensionally-regularized evaluation of the LO soft contribution to

q̂ [10, 29], i.e.

q̂3d

LO = g2
3dCF

∫

q⊥

q2
⊥

(

1

q2
⊥

−
1

q2
⊥ + m2

D

)

, (4.11)

where
∫

q⊥
≡ µ3−d

∫ dd−1q
⊥

(2π)d−1 . This evaluation highlights another aspect that will become

relevant when performing the same check for our NLO evaluation of Z3d
g , namely that

squeezing the Wilson loop onto itself through dimensional regularization obfuscates some

cancellations that would be apparent had the integrals been performed in a different order.

With that we mean that the UV divergence of q̂3d
LO is logarithmic, as it is well known and

clear from eq. (4.11). However, inserting eqs. (4.4) and (4.5) in eq. (4.9) leads to severe

dL/L3 UV divergences: the cancellation of the leading UV behavior between the magnetic

and electric contributions — made explicit by the two terms in brackets in eq. (4.11) —

seems lost. However, let us return to eq. (4.5): had we taken the dL integration before

taking the d3p integrals in eq. (4.3), the ∂z∂z′ part would simply vanish due to the δ(pz)

resulting from the dL integration, thereby making apparent the cancellation between the

leading UV behavior of 〈EE〉 and 〈BB〉.

4.3 The next-to-leading order

At next-to-leading-order (NLO) multiple graphs contribute to Z3d
g in EQCD as depicted

in figure 1(b)–(j). Relegating their explicit evaluation to appendix A, here we merely sum

their individual contributions which yields for the 〈EE〉-correlator

(4πL)2mDL

g2
3dC2

ACF

× 〈EE〉NLO = e−2mDL(1 + mDL) + emDL(1 − mDL)E1(2mDL)

− e−mDL
[

1 − γE − (mDL)2
(

3

2
− γE

)]

− (mDL) e−mDL[

(1 + mDL)E1(mDL) − ln 2 + mDL ln(mDL)
]

+ e−mDL ln(2mDL) − x (mDL) e−mDL CA − 6CF

48CA

, (4.12)
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where E1 is the exponential integral function (A.5) and x = λE/g2
3d the dimensionless scalar

self-coupling. For the 〈BB〉-correlator, we find

(4πL)2mDL

g2
3dC2

ACF

× 〈BB〉NLO = −e−mDL −
1

12
e−2mDL(

1 + 2(mDL) − 4(mDL)2)

+
13

12
(4.13)

− mDL
(

1 − γE − ln(mDL) − E1(mDL)
)

−
2

3
(mDL)3E1(2mDL) .

Finally, our perturbative prediction for i〈EB〉 reads

i〈EB〉LO = 0 , (4.14)

(4πL)2

g2
3dC2

ACF

× i〈EB〉NLO = −2e−mDLShi(mDL) , (4.15)

where the hyperbolic sine integral function is defined as Shi(x) =
∫ x

0 dt sinh(t)
t .

Both the LO (see eqs. (4.4) and (4.5)) and NLO correlators have undergone several

crosschecks. One immediate crosscheck is gauge independence. While individual contribu-

tions are indeed explicitly gauge dependent, in the overall summation of the integrand of

Z3d
g the gauge fixing parameter ξ of eq. (4.1) duly cancels at the integral level.

Another possible source of error is the regularization of divergences. To this end, we

extracted UV and IR divergences separately by computing diagrams both in position and

momentum space. Where possible we verified individual results by comparison to literature

in the soft limit p2

m2
D

≪ 1, for instance to [30] for diagram (c).

In a final non-trivial crosscheck, we recovered the NLO result for the jet quenching

parameter q̂ from [10] by relying on its relation with Z3d
g ; see section 4.2. As we discuss

there, that relation holds in principle in dimensional regularization only. However, we have

not performed the entire NLO determination of Z3d
g in an arbitrary number of dimensions,

so we cannot simply take the final dL integral as in eq. (4.9). We have instead worked at

the integral level: as the previous subsection discusses, these integrals simplify greatly if the

dL integral is taken before the d3p ones. Finally, we have been able to exploit the fact that

the NLO soft contribution to q̂, due to the super-renormalizable nature of EQCD, is free

of logarithmic divergences. It only contains a linear divergence and is finite in dimensional

regularization, so that we have been able to carry out the remaining d2p⊥ integrals and

recover the result of [10].

The determination of the UV limit of the EQCD correlators at next-to-leading or-

der changes qualitatively compared to leading order (4.6). The correlator i〈EB〉 is non-

vanishing, the scalar self-coupling x = λE/g2
3d contributes, and the expressions become

more complicated. The asymptotic small-mDL limit of the 〈EE〉

〈EE〉subtr

NLO =
g2

3dC2
ACF

(4πL)2

[

2 + x
6CF − CA

48CA

]

, (4.16)

indeed diverges in the UV (L → 0) and can therefore be subtracted from the EQCD result

for Z3d
g . Correlators 〈BB〉 and i〈EB〉 are at worst O(L−1) in the UV at NLO in EQCD and

therefore do not contribute any divergences to Z3d
g and thus require no subtraction. The
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two correlators containing E-field insertions give an IR-finite contribution to Z3d
g , since they

are not directly connected to the (inherently non-perturbative) magnetic sector of QCD at

O(g2) of the perturbative expansion, while 〈BB〉 has such direct connection at this order:

it behaves as (ln(L) + c)/L2 for large L and gives thus rise to an IR-divergent contribution

to Z3d
g . Lattice EQCD data does not suffer from IR divergences, therefore we are not

impacted by perturbative IR divergences as long as we switch from perturbation theory to

the lattice at sufficiently small g2
3dL. However, the necessary subtraction 〈EE〉subtr

NLO in (4.16)

additionally introduces, if integrated to infinite L, an IR divergence which will remain

necessary for a lattice EQCD treatment due to UV divergences of the lattice data. In the

definition of Z3d
g (3.4) the final integration over dL L of O(L−2) terms delivers a logarithmic

IR divergence which we expect to cancel in the matching with a corresponding IR divergence

in full QCD. Consequently, Z3d
g , the result within EQCD presented in this publication, will

still depend on an IR cutoff which we will introduce in the next section, even though the

dependence on the regulator should vanish in the final, fully matched result for Zg.

5 EQCD lattice results

In this section, we extend the results of [16] to include i〈EB〉 and then compare the

contiuum-extrapolated data to our perturbative determination. We then provide a UV-

subtracted, scheme-dependent number for the IR contribution to Zg; the scheme depen-

dence will disappear once the NLO T -scale contribution will become available. For the de-

tails of the used implementation of lattice EQCD we ask the reader to consult appendix B

and the references therein.

5.1 Lattice determination and continuum extrapolation

Having identified i〈EB〉 as an additional non-trivial, but numerically subdominant correla-

tion function contributing to Zg, there is a need to measure i〈EB〉 from the lattice. Just as

in the continuum case, non-trivial operator mixing also occurs beyond leading order in lat-

tice perturbation theory. The operator-mixing of the three different continuum operators

〈. . . 〉c into a single lattice operator 〈. . . 〉L follows from










〈EE〉L

i〈EB〉L

〈BB〉L











= eZ
P

g4
3d

La











1 + 2g2
3daZE,E g2

3daZE,B 0

g2
3daZB,E 1 + g2

3da(ZE,E + ZB,B) g2
3daZE,B

0 g2
3daZB,E 1 + 2g2

3daZB,B





















〈EE〉c

i〈EB〉c

〈BB〉c











+ O(g4
3da2) , (5.1)

with four multiplicative renormalization constants ZE,E, ZE,B, ZB,E, ZB,B, and the perimeter-

law contribution of the modified Wilson line ZP. It is necessary to have four constants since

the coefficient associated with turning an E-field into a B-field does not have to be the same

as vice versa. Adapting the fitting procedure outlined in [16] to (5.1), we can repeat the

grand fit and end up with a decent fit likelihood corresponding to χ2/d.o.f. = 400/247 ≈

1.6. The continuum results are displayed in table 1.8 Beyond the operator mixing that also

8To avoid confusion, we updated the values of table 2 in the arXiv-version of [16], except from the i〈EB〉

measurement and the g2
3dL = 0.25 data point of 〈BB〉.
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Figure 2. Continuum-extrapolated 〈EE〉L3 (left) and −〈BB〉L3/g2
3d (right) from leading-order

perturbative (LO PT), next-to-leading-order perturbative (NLO PT), and lattice data at T =

100 GeV and Nf = 5 (cf. table 1). Correlators are multiplied by (g2
3dL)3 to balance the leading

divergence.

involves the i〈EB〉-contribution, the convergence of the 〈BB〉-operator to the continuum

was accelerated compared to [16] by replacing the clover-clover 〈BB〉-correlator with a

single-plaquette expectation value. Although this decreases statistical power (4 instead of

16 combinations of single plaquettes), it renders all four measured correlators at the correct

lattice spacing, there are no more contaminations of operators at the wrong separation.

With this in hand, we were able to also achieve a valid continuum limit for 〈BB〉 at

g2
3dL = 0.25. The discussion of different sources for errors in [16] also applies here.

5.2 Lattice vs. perturbation theory

At T = 100 GeV and Nf = 5, we expect to be deeply in the perturbative regime. Therefore,

this serves as a good starting point for comparing our perturbative results to the updated

lattice data in table 1.

Figure 2 (left) shows that our 〈EE〉 lattice measurements agree with the NLO ana-

lytical result within few multiples of the error up to separations of g2
3dL = 2.0. Although

the LO estimate was already quite close to the analytical data, the NLO shifted it by a

small margin on top of the non-perturbative solution. The relative correction induced by

the NLO is small, so it seems reasonable to assume good convergence of the perturbative

series at small g2
3dL.

The same holds for 〈BB〉 in figure 2 (right). In fact, the agreement of the lattice

data with the perturbative result is surprisingly good, as one would expect contributions

from the generically non-perturbative magnetic sector to affect 〈BB〉 the most of the three

correlators.

The correlator i〈EB〉 vanishes at leading order. Therefore an analysis of its conver-

gence would require a NNLO result, which is not available as of now.

Figure 3 collects lattice data at all four pairs of (T, Nf) and includes their corresponding

NLO predictions. It can be seen that with smaller temperatures — and larger coupling
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T = 250 MeV, Nf = 3 T = 500 MeV, Nf = 3

x = 0.08896, y = 0.452423 x = 0.0677528, y = 0.586204

g2
3dL 〈EE〉 〈BB〉 i〈EB〉 〈EE〉 〈BB〉 i〈EB〉

0.25 22.761(41) −20.136(47) — 22.559(35) −20.107(53) —

0.5 3.1275(60) −2.5672(98) 0.1202(60) 3.0230(61) −2.519(10) 0.0255(50)

0.75 1.0116(32) −0.756(11) 0.0458(52) 0.9436(30) −0.7349(91) −0.0042(37)

1.0 0.4539(25) −0.3217(33) 0.0187(30) 0.4092(19) −0.3057(33) −0.0115(23)

1.5 0.1470(19) −0.0995(51) 0.0013(27) 0.1186(20) −0.0822(40) −0.0107(28)

2.0 0.0713(31) −0.0255(72) 0.0066(34) 0.0448(19) −0.0217(56) −0.0046(46)

2.5 0.033(13) 0.005(42) −0.026(20) 0.020(11) 0.027(30) −0.013(19)

3.0 0.036(20) 0.034(46) 0.076(39) 0.023(17) 0.060(56) −0.002(27)
(

Z3d
g

g4

3d

)

latt

1.910(48)(14)(2) 1.776(34)(15)(2)

(

Z3d
g

g4

3d

)

subtr

0.817(48)(14)(2) 0.623(34)(15)(2)

T = 1 GeV, Nf = 4 T = 100 GeV, Nf = 5

x = 0.0463597, y = 0.823449 x = 0.0178626, y = 1.64668

g2
3dL 〈EE〉 〈BB〉 i〈EB〉 〈EE〉 〈BB〉 i〈EB〉

0.25 22.290(33) −19.989(53) — 21.588(34) −19.849(51) —

0.5 2.8991(48) −2.4833(88) −0.0487(43) 2.6111(59) −2.4214(88) −0.1474(46)

0.75 0.8686(22) −0.7150(69) −0.0431(27) 0.7107(35) −0.673(10) −0.0813(40)

1.0 0.3574(18) −0.2922(30) −0.0345(15) 0.2616(20) −0.2750(30) −0.0534(20)

1.5 0.0957(15) −0.0831(50) −0.0205(24) 0.0530(12) −0.0580(32) −0.0179(16)

2.0 0.0317(21) −0.02885(59) −0.0048(33) 0.0133(16) −0.0232(38) −0.0072(19)

2.5 0.0179(93) −0.033(33) −0.011(17) −0.0020(59) −0.006(25) −0.0119(84)

3.0 0.0223(13) −0.010(35) −0.008(16) −0.0012(64) −0.024(20) −0.0157(92)
(

Z3d
g

g4

3d

)

latt

1.793(31)(4)(8) 1.650(15)(6)(1)

(

Z3d
g

g4

3d

)

subtr

0.619(36)(14)(2) 0.420(34)(15)(2)

Table 1. Continuum-extrapolated results for the correlators 〈EE〉/g6
3d, 〈BB〉/g8

3d, and i〈EB〉/g7
3d,

at four tuples (T, Nf) of temperature and number of massless quark flavors over a range of sep-

arations g2
3dL. (Z3d

g )latt sums the integrated correlators according to (3.4) with small-g2
3dL cutoff

for 〈EE〉 and 〈BB〉 at g2
3dLmin = 0.25 and for i〈EB〉 at g2

3dLmin = 0.5. Note that the scalar field

Φ on the lattice is rescaled such that it is dimensionless. Therefore, the three correlators on the

lattice — and Z3d
g accordingly — feature slightly different normalizations than in perturbation the-

ory (cf. (3.4), appendix B). (Z3d
g )subtr subtracts from (Z3d

g )latt contributions of the gluon zero-mode

that are included in perturbative four-dimensional QCD and would otherwise be double-counted

(cf. section 5.3). The subtraction of subleading O(dL L/L2) divergences still contains a logarithmic

dependence on the IR cutoff at the respective g2
3dLmin, which will be removed when supplied with

four-dimensional results. The data for Z3d
g have three errors: the Monte-Carlo integration causes

an error for the integration range in which lattice points are available (first bracket), the error for

the integration of the tail caused by the Monte-Carlo error of the points to which the functional

form is fitted (second bracket), and finally the error introduced by the finite difference integration

via the trapezoidal rule (third bracket).
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Figure 3. Continuum-extrapolated EQCD lattice data on the three separate correlators 〈EE〉L3,

−〈BB〉L3/g2
3d, i〈EB〉L/g5

3d, (cf. table 1) and the dL L integrand of eq. (3.4) with modelled long

L-tail (short dashes) and our NLO perturbative estimate (long dashes). Powers of g2
3dL balance the

expected leading divergence of the respective correlator, again.

— the onset of perturbative behavior in the UV decreases to smaller g2
3dL. Figure 3

also shows that perturbation theory qualitatively predicts well i〈EB〉 at small g2
3dL and

high temperatures where the coupling is small due to asymptotic freedom. With lower

temperatures and larger separations the agreement with our lattice data becomes gradually

worse until perturbation theory even fails to predict the correct sign of i〈EB〉 at small

separations and the smallest two temperatures. What saves the day is that on the one

hand, i〈EB〉 is numerically suppressed compared to 〈EE〉 and 〈BB〉, so its overall impact

on Z3d
g is not large, as seen from figure 3(lower right). On the other hand, the tree-level

contribution for i〈EB〉 vanishes. Therefore, we evaluate only one non-trivial order for

i〈EB〉 and cannot analyze how well the perturbative series converges or assess the quality

of our perturbative estimate for i〈EB〉. Bearing this reasoning in mind, we accept the

mismatch of the lattice data for i〈EB〉 and its perturbative prediction in figure 3.

As elaborated in [16], it is necessary to model the large-g2
3dL tail of the correlators in

order to perform the dL L integration up to ∞. For 〈EE〉 and 〈BB〉, the functional form,
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motivated by [21], is

A
(

g2
3dL

)2 exp(−B · g2
3dL) , (5.2)

with the fitting constants A and B. Considering i〈EB〉, we find that the data rather follows

A′ exp(−B′ · g2
3dL) , (5.3)

with the respective fitting constants A′ and B′. As already argued above, the impact of

i〈EB〉 on Zg is small. Also, the error associated with the large-g2
3dL tail given in table 1

amounts to roughly 100% of the contribution of the large-g2
3dL tail. Therefore, one can

exercise a bit of freedom in the choice of the large-g2
3dL tail modeling. Moreover, we found

that switching between an effective asymptotic description and our lattice data was best

performed at g2
3dL = 3.0 for 〈EE〉 and 〈BB〉, but for the fit of i〈EB〉 it was most stable

when neglecting the noisy g2
3dL = 3.0 points and switching already at g2

3dL = 2.5.

5.3 Subtraction scheme

As explained in section 4, we need to subtract the UV-divergent limiting behavior from

the EQCD calculation. That is because, in dealing with the contribution of the scale

T at O(g0) and O(g2) (which we have not computed yet), it is impractical to separate

the contribution of the Matsubara zero mode from that of the other modes. Hence, that

T -scale contribution ends up containing a zero-mode contribution computed without any

resummation of the screening mass: it thus must agree with the mD → 0 limit of the EQCD

calculation. Hence, this mD → 0 or UV limit of the resummed EQCD calculation must be

subtracted from our non-perturbative evaluation, so that the latter could, in our upcoming

paper, be summed with the contribution of the scale T at order O(g2).

This subtraction poses no problem for the leading 1/L3 UV behavior in eq. (4.6), which

can be safely integrated in dL L up to infinity. As we argued, that is not the case for the sub-

leading 1/L2 terms in eq. (4.16), which are IR divergent. We introduce an IR cutoff for the

NLO subtraction, to be absorbed once the T -scale contribution becomes available. For con-

venience, we set this cutoff to the respective smallest lattice separation g2
3dLmin of each cor-

relator, i.e. 0.25 for 〈EE〉 and 〈BB〉, and 0.5 for i〈EB〉; see table 1. Therefore, we modify

the values for the correlators in table 1 by adding the UV-subtracted perturbative contribu-

tion below the IR cutoff and by subtracting the leading UV counterterm (4.6) above it, i.e.

(Z3d

g )subtr ≡ (Z3d

g )lat + (Z3d

g )ct . (5.4)

The precise form of the counterterm (Z3d
g )ct is given in table 2. The counterterms integrated

over the different ranges can be found in table 3. The final results of this paper, the gauge

condensate with all necessary subtractions of unresummed zero-mode-contributions, and

the IR divergence induced by the 1/L2-subtraction regulated by the respective g2
3dLmin, are

displayed as (Z3d
g )subtr in table 1.
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[

0, g2
3dLmin

) [

g2
3dLmin, ∞

)

〈EE〉 〈EE〉LO − 〈EE〉subtr
LO + 〈EE〉NLO − 〈EE〉subtr

NLO −〈EE〉subtr
LO

〈BB〉 〈BB〉NLO −〈BB〉subtr
LO

i〈EB〉 i〈EB〉NLO —

Table 2. Definition of (Z3d
g )ct, as given in eq. (5.4). The second and third columns give the

integrands for the three contributions — which are to be added as per eq. (3.4) — in different

intervals of g2
3dL and with IR cutoff g2

3dLmin. We recall that at leading order 〈BB〉LO agrees with its

subtraction and i〈EB〉LO vanishes. Moreover, 〈BB〉subtr
NLO and i〈EB〉subtr

NLO vanish since the respective

correlators are UV-finite.

[

0, g2
3dLmin

) [

g2
3dLmin, ∞

)

(T, Nf) (250 MeV, 3) (500 MeV, 3) (1 GeV, 4) (100 GeV, 5) all
∫

dL L 〈EE〉 0.0110 0.0123 0.0143 0.0192 −1.2732
∫

dL L 〈BB〉 −0.0316 −0.0386 −0.0505 −0.0881 1.2732
∫

dL L i〈EB〉 −0.0435 −0.0485 −0.0556 −0.0724 —

Table 3. Counterterms according to table 2 integrated over the two different intervals with IR

cutoff g2
3dLmin. The quoted numbers are in units of g4

3d.

6 Discussion

The correlator of two insertions of the color-force is a crucial ingredient for the computation

of asymptotic jet masses. In particular, it receives non-perturbative contributions from the

magnetic and electrostatic sector of hot thermal QCD. In the present paper, we provided a

twofold calculation of this correlator in EQCD: an analytical calculation to next-to-leading

order as well as a non-perturbative simulation of all involved correlators.

The NLO calculation is needed for the final goal of integrating the force-force correlator

from zero to infinite separation. On the one hand, it matches well at small separations with

the non-perturbative lattice data for the numerically dominant contributions. Therefore,

the NLO result improves the modelling of the small g2
3dL region, which is inaccessible to

lattice simulations. On the other hand, it allows to understand the nature of UV behavior

of the EQCD result. On dimensional grounds, the NLO in EQCD is the last order which

can give rise to UV divergent terms in Z3d
g . These divergences need to be subtracted to

avoid double-counting of degrees of freedom in EQCD and in the outstanding parts of

full QCD. Ultimately, our goal is to subtract the UV limit from the analytical EQCD

calculation, since we know that EQCD is unphysical in the UV, and replace it with the

correct UV behavior obtained from full (perturbative) QCD.

We found that presenting the complete EQCD result seemed a natural part of the

required work, which has to be finally supplied with the aforementioned perturbative cal-

culation of the contribution of the scale T at O(g2) in full QCD to deliver a meaningful

non-perturbative result for Zg and consequently m2
∞. In particular, having the full QCD

result at hand allows one to remove the unphysical UV behavior of EQCD, which has been
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recast by the subtraction procedure of section 5.3 as a dependence on an intermediate

regulator g2
3dLmin.

In an upcoming paper, we will deal with that missing contribution by determining Zg at

NLO in a naive perturbative expansion in full QCD, which is appropriate for capturing the

contribution of the scale T . We anticipate that practicality concerns will most likely force

us to tackle such a computation in momentum space, forgoing the possibility of keeping

the L dependence in intermediate steps. Hence, the expected IR divergence would show up

at small momenta, and we would need to translate that in the L-space form of section 5.3.

That would lift the logarithmic, unphysical dependence on g2
3dLmin introduced by eq. (5.4),

leading to a finite, scheme-independent result for the asymptotic mass which incorporates

the IR EQCD contribution to all orders.
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A NLO contributions

This appendix collects the integrals and technical details of the contributions of figure 1

leading up to the next-to-leading order contribution of the Z3d
g correlators in section 4.3.

In the arising diagrams, a curly line denotes a spatial gauge boson (Ai) and a solid line an

adjoint scalar (Φ). If not explicitly stated otherwise, all results are collected in Feynman

gauge with (ξ = 1) in the gauge propagator (4.1). For convenience, we perform calculations

in the adjoint representation which corresponds to twice the results in the fundamental

representation (3.8).

A.1 Master integrals

With momenta p = (p⊥, pz), we regularize integrals in d = 3 − 2ǫ dimensions employing

the MS renormalization scale µ̄2 = 4πe−γEµ2 and
∫

p ≡ µ3−d
∫ ddp

(2π)d ,
∫

p⊥
≡ µ3−d

∫ dd−1p
⊥

(2π)d−1 .

Thus, the position space free massless and massive propagators with general powers (cf. sec-

tion 4.1) follow from the Fourier transform:

Iα;0(r) =

∫

p

eip·r

[

p2
]α =

(

µ̄2eγE

4π

)ǫ

2d−2α [r2]α− d
2

(4π)
d
2

Γ(d
2 − α)

Γ(α)
, (A.1)

Iα;m(r) =

∫

p

eip·r

[

p2 + m2
]α =

(

µ̄2eγE

4π

)ǫ 2
d
2

+1−α

(4π)
d
2

[

m

r

]

d
2

−α K d
2

−α(mr)

Γ(α)
. (A.2)
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Here Kν(z) is the modified Bessel functions of second kind and coordinates are chosen so

that r points in the z-direction with r = |r|.

A.2 Diagram (b)

The simplest NLO contribution is diagram (b) which is depicted and calculated as follows:

+ = 2 × (b)EE

= 2g2
3dC2

ACF

∫

pk

eipzL

[p2 + m2
D]

(p2 − p2
z)

2

∫ L

0
dz1

∫ L

z1

dz2 eikz(z1−z2)
[

1

k2 + m2
D

−
1

k2

]

= −
2g2

3dC2
ACF

(4πL)2

e−mDL(1 + mDL)

mDL

×
[

1 − e−mDL − mDL
(

1 − γE − ln(mDL) − E1(mDL)
)

]

, (A.3)

+ = 2 × (b)BB

=
2g2

3dC2
ACF

(4πL)2

1

mDL

×
[

1 − e−mDL − mDL
(

1 − γE − ln(mDL) − E1(mDL)
)

]

, (A.4)

using the free propagator integrals (A.1) and (A.2) and the exponential integral function

with respective limits:

E1(x) ≡

∫ ∞

x
dt

e−t

t
, E1(x)

x≫1
≈

e−x

x
, E1(x)

x≪1
≈ ln

1

x
− γE , (A.5)

with E1(x) = −Ei(−x) for x > 0. In both contributions the corresponding LO operator

interaction of diagram (a) factorizes from the internal propagator between the two Wilson

line insertions. As exemplified in the internal z1,2 integration of (b)EE in eq. (A.3), a UV

divergence of individual integrals is of opposite sign which renders the overall 〈EE〉 and

〈BB〉 contributions separately finite.

A.3 Diagram (c)

As depicted in figure 1, diagram (c) requires the self-energies of the adjoint scalar Φa and

the spatial gauge bosons Aa
i ; diagrammatically given by

1 = + + , (A.6)

1 = + + + − , (A.7)
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where a curly line is a spatial gauge boson, a solid line an adjoint scalar, and a dotted

directed line a ghost field. The analytical forms of the self-energies are

ΠΦaΦb(p2) = δabg2
3dCA

{
∫

q

1

[q2 +m2
D]

[

(d−1)−(d−2)ξ +
6CF −CA

24CA

λE

g2
3d

]

(A.8)

−

∫

q

p2 −m2
D

[q2 +m2
D](p−q)2

[

(d−1)−(d−3)ξ
]

}

d=3−2ǫ
= δab g2

3dmDCA

16π

(

4(ξ −2)−
6CF −CA

6CA

λE

g2
3d

−8
p2 −m2

D

pmD

arctan

(

p

mD

))

, (A.9)

ΠT

Aa
i

Ab
j

(p2) = δab g2
3dCA

(d−1)

{
∫

q

(d−2)

[q2 +m2
D]

+
1

2

∫

q

p2 +4m2
D

[q2 +m2
D][(p−q)2 +m2

D]
(A.10)

−

∫

q

p2

q2(p−q)2

[

7d2 −19d+16

8
+(d−1)

4(ξ +5)−d(ξ +6)

8
ξ

]}

d=3−2ǫ
= δab g2

3dCA

16π

(

−2mD −
11+(ξ +2)ξ

4
πp+

p2 +4m2
D

p
arctan

(

p

2mD

))

, (A.11)

where the gauge boson self-energy, Π
Aa

i
Ab

j

(p2) =
(

δij −
pipj

p2

)

ΠT

Aa
i

Ab
j

(p2), is transverse in three

dimensions. Addtionally, we set d = 3 − 2ǫ and employ the master integral [30]

∫

q

1

[q2 + m2
1][(p − q)2 + m2

2]
=

1

4πp
arctan

(

p

m1 + m2

)

, for m1 + m2 > 0 . (A.12)

The gauge boson self-energy agrees with [19] in the limit of soft external momenta p2

m2
D

≪ 1

and [10] in Feynman gauge (ξ = 1). For the latter one needs to account for an additional

relative minus sign between spatial and temporal correlators.

Inserting the self-energies and sources of the 〈EE〉 and 〈BB〉 correlators à la eq. (4.3)

in their corresponding diagrams yields in momentum space

= 2 × (c)EE =

∫

p

eixzpz

[p2 + m2
D]2

(

p2 − p2
z

)

δab [

−ΠΦaΦb(p2)
]

, (A.13)

= 2 × (c)BB =

∫

p

eixzpz

[p2]2
(

p2 + (d − 2)p2
z

)

δab [

−ΠT

Aa
i

Ab
j

(p2)
]

. (A.14)

The emergent integrals are again free propagators according to appendix A.1. To

reduce the number of integrals, one can make use of integration-by-parts identities
∫

p⊥

d
dp⊥

p⊥
pβ

z

[p2
z+p2

⊥
+m2]α

= 0 among transverse momenta in p2 = p2
⊥ + p2

z

∫

p⊥

pβ+2
z

[p2 + m2]α+1
=

(2α − d + 1)

2α

∫

p⊥

pβ
z

[p2 + m2]α
− 2m2

∫

p⊥

pβ
z

[p2 + m2]α+1
. (A.15)

The remaining integrals needed for the p-integration of eqs. (A.9) and (A.11) follow by
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inserting eq. (A.12) in the following

Iα;mm0 =

∫

p

eip·r

[p2 + m2]α

∫

q

1

[q2 + m2](p − q)2
, (A.16)

Iα;0mm =

∫

p

eip·r

[p2]α

∫

q

1

[q2 + m2][(p − q)2 + m2]
, (A.17)

I0;mm0 =
e−mr

(4πr)2
, (A.18)

I1;mm0 =
e−mr

(4π)2

1

2mr

[

ln(2mr) + γE + e2mrE1(2mr)
]

, (A.19)

I2;mm0 =
e−mr

(4πm)2

1

4mr

[

(1 + mr)
(

ln(2mr) + γE

)

+ (1 − mr)e2mrE1(2mr)
]

, (A.20)

I0;0mm =
e−2mr

(4πr)2
, (A.21)

I1;0mm =
1

(4π)2

1

2mr

[

1 − e−2mr + 2mrE1(2mr)
]

, (A.22)

∂2
r I2;0mm =

1

(4π)2

1

12(mr)3

[

−1 + e−2mr(

1 + 2mr + 2(mr)2)

− 4(mr)3E1(2mr)
]

, (A.23)

which we evaluated using the residue theorem along the integration contour as in [31]. For

the last integral I2;0mm only its finite second r-derivative is needed. As a result, we obtain

for the diagonal contributions in Feynman gauge:

2 × (c)EE =
2g2

3dCFC2
A

(4πL)2
e−mDL

[

2 +
6CF − CA

48CA

λE

g2
3d

(A.24)

+ mDL

(

3

2
− γE − ln(2mDL) − e2mDLE1(2mDL)

)]

L→0
=

2g2
3dCFC2

A

(4πL)2

[(

2 + x
6CF − CA

48CA

)

− mDL
24CA + x(6CF − CA)

48CA

(A.25)

+(mDL)2 CA(−240 + 192γE + 192 ln(2mDL)) + x(6CF − CA)

96CA

]

+ O(L) ,

2 × (c)BB = −
2g2

3dC2
ACF

(4πL)2

1

12mDL

[

e−2mDL(

1 + 2mDL − 4(mDL)2)

− 1 + 8(mDL)3 E1(2mDL)

]

(A.26)

L→0
=

2g2
3dC2

ACF

(4πL)2

[

mDL

2
+

2(mDL)2

9

(

ln(2mDL) + 3γE − 4
)

]

+ O(L) , (A.27)

with x = λE/g2
3d. To understand their UV asymptotics we expand for small mDL → 0

which vanishes for (c)BB in (A.26).

A.4 Diagrams (d), (i), (j)

Diagrams (d1), (d2), (i), and (j) each feature at least one momentum integration with an

odd integrand, which therefore vanishes. Thus none of these diagrams contribute.
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A.5 Diagram (e)

Conveniently diagram (e) is finite. The scalar contribution originates from the non-Abelian

part of DxΦ and the gauge contribution originates from the non-Abelian part of the field-

strength-tensor F a
xz ⊃ g3dfabcAb

xAc
z. Their momentum space integral representations are

= 2 × (e)EE = 2g2
3dC2

ACF

(d − 1)

2

∫

p

eipzL

[p2 + m2
D]

∫

k

eikzL

k2

=
2g2

3dCFC2
A

(4πL)2
e−mDL , (A.28)

= 2 × (e)BB = 2g2
3dC2

ACF

(d − 1)

2

[

∫

p

eipzL

p2

]2

=
2g2

3dCFC2
A

(4πL)2
, (A.29)

where we implicitly used that the gluon propagator is spatially diagonal in Feynman gauge.

The result is logarithmically divergent which, however, vanishes after considering opposing

signs of 〈EE〉 and 〈BB〉 in (3.4).

A.6 Diagrams (f), (h)

Diagram (f) corresponds to the Fourier transform of the EQCD three-point vertices. Start-

ing from the electric scalar contribution in momentum space integral representation, the

strategy is to first integrate over the z-coordinate of the single Az field sourced from the

Wilson line

= 2 × (f)EE

= −g2
3dC2

ACF

∫

pk

[

eipzL − eikzL] pz + kz

pz − kz

p · k − pzkz

[p2 + m2
D][k2 + m2

D](p − k)2

= −2g2
3dC2

ACF

∫

pk
eipzL

P
pz + kz

pz − kz

p⊥ · k⊥

[p2 + m2
D][k2 + m2

D](p − k)2
. (A.30)

In obtaining the final line, we have exploited the p ↔ k symmetry of the integrand to

reshuffle the eikzL term into an eipzL. As the integrand was, prior to this step, well behaved

for pz = kz, we can treat the apparent pole at pz − kz introduced by this reshuffling with

a principal value prescription P (cf. [32]). To perform the momentum integrations in

eq. (A.30), we proceed as follows. We

(i) combine the two k-dependent denominators with a Feynman parameter x,

(ii) perform the d2k⊥ and the P-regulated dkz integrals, followed by the one over the

Feynman parameter x which yields

2 × (f)EE = −2g2
3dC2

ACF

∫

p

eipzL

p2 + m2
D

[

−
pz

(

m2
D + p2

z

)

tan−1
( pz

mD

)

2π (m2
D + p2)

−
mDp2

⊥

8πp2
(A.31)

+

(

m2
Dp2

⊥ − p4
⊥ + 3p2

⊥p2
z + 4p4

z

)

tan−1
( p

mD

)

8πp3

]

,

– 23 –



J
H
E
P
0
2
(
2
0
2
2
)
0
5
8

(iii) perform the d3p integrations as in appendix A.3.

We obtain

2 × (f)EE = −
2g2

3dC2
ACF

(4πL)2

e−mDL

mDL

[

mDL(4 + mDL)

−
(

3 + 3mDL + (mDL)2
)(

ln(2mDL) + γE

)

− e2mDL
(

3 − 3mDL + (mDL)2
)

E1(2mDL)

]

,

L→0
=

2g2
3dC2

ACF

(4πL)2

1

3

[

6 − 2(mDL)2
]

+ O(L) . (A.32)

Diagram (h)EE and its mirrored partner vanish because each transverse-momentum inte-

gration has an odd integrand,

= 2 × (h)EE = 0 . (A.33)

The magnetic contribution (f)BB is strategically analogous to its electric counterpart.

The z-integration over the single Az drawn from the Wilson line yields

= 2 × (f)BB

= −2g2
3dC2

ACF

∫

pk
eipzL 1

p2k2(p − k)2

×

[

P
pz + kz

pz − kz

1

2

(

p2 + k2 + (p − k)2 + 2(d − 2)pzkz
)

−
(

p2 − k2)

]

. (A.34)

The corresponding master integrals of the Fourier transform are

Iab
αβγ =

∫

pk
eipzL

P
pz + kz

pz − kz

pa
zkb

z

[p2]α[k2]β(p − k)2γ
, (A.35)

such that

I11
111 =

3

2(4πL)2
, (A.36)

I00
011 =

(

µ̄2eγE

4π

)2ǫ (3d−7)Γ
(

d
2 −1

)

Γ(d−3)

2d+1πd−1/2Γ
(

d−1
2

)

[L2]d−2
=

1

(2πL)2

(

−
1

4ǫ
+

3

4
−γE − ln(µ̄L)

)

, (A.37)

I00
101 = 0 , (A.38)

I00
110 =

(

µ̄2eγE

4π

)2ǫ cot(πd)Γ(2d−4)

2(4π)d−2Γ
(

d−1
2

)2
[L2]d−2

=
1

(2πL)2

(

−
1

4ǫ
+1−γE − ln(µ̄L)

)

. (A.39)

The sum over the corresponding terms in eq. (A.34) is not finite, i.e.

2 × (f)BB = −g2
3dC2

ACF

[

I00
011 + I00

101 + I00
110 + 2(d − 2)I11

111 − 2 I0;000

]

=
2g2

3dC2
ACF

(4πL)2

[

1

ǫ
+ 4 ln(µ̄L) + 4γE − 4

]

, (A.40)
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where the final term on the first line is the contribution of the simpler, final two terms on

eq. (A.34) and its master is the massless I0;000 = 1/(4πL)2 from eq. (A.17). As we now

show, this UV divergence is cancelled by an opposite one from diagram (h)BB, which reads

= 2 × (h)BB

= 2g2
3dC2

ACF(d − 1)

∫

pk
eipzL 1

p2k2(p − k)2
P

[

p2kz

pz − kz
+

k2pz

pz − kz

]

= g2
3dC2

ACF

(

µ̄2eγE

4π

)2ǫ L4−2dΓ(d − 3)Γ(d)

22d−3πd−1Γ
(

d−1
2

)2

= −
2g2

3dC2
ACF

(4πL)2

[

1

ǫ
+ 4 ln(µ̄L) + 4γE − 3

]

, (A.41)

so that the combined result is finite again

2 ×
(

(f)BB + (h)BB
)

= −
2g2

3dCFC2
A

(4πL)2
. (A.42)

At NLO two contributions to i〈EB〉 of mixed electric-magnetic correlations arise. One

of them is (f)EB and its mirrored partner (f)BE. Their result in momentum space is

integrated over the z′-coordinate of the Φ field sourced by the Wilson line

+ = 2i × ((f)EB + (f)BE) (A.43)

= 2ig2
3dC2

ACF

∫ L

0
dz′

×

∫

pk

eipzLe−i(pz−kz)z′

p2[k2 + m2
D][(p − k)2 + m2

D]

(

(p2 + k2 − (p − k)2)kz − 2k2pz
)

.

The first three terms can be evaluated by using a bare (mD → 0) subtraction scheme

(f)EB =
(

(f)EB − (f)EB
∣

∣

mD→0

)

+ (f)EB
∣

∣

mD→0
, (A.44)

where the first bracketed term is evaluated in d = 3 and the second in d = 3−2ǫ dimensional

regularization. The last term in eq. (A.43) splits into a part treatable with the same scheme

and an additional finite part proportional to

im2
D

∫ L

0
dz′

∫

pk

pzeipzLe−i(pz−kz)z′

p2[k2 + m2
D][(p − k)2 + m2

D]
= −

e−mDL

(4πL)2
(mDL) Shi(mDL) , (A.45)

with the hyperbolic sine integral function Shi(x) defined below eq. (4.14). To evaluate

this finite contribution, we went to position space and inspected its asymptotic behavior

for small and large values of mDL. Thus, we could extract the analytic form of eq. (A.45)

which agrees with the numerically integrated result. After summing all terms in eq. (A.43),

we obtain

2i × ((f)EB + (f)BE)

= −
2g2

3dC2
ACF

(4πL)2

[

1

ǫ
− 3 − 2E1(mDL) + 2 ln

(µ̄L)2eγE

mDL
+ 2e−mDLShi(mDL)

]

. (A.46)
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The second mixed i〈EB〉 contribution is (h)EB which has the momentum space represen-

tation after the z-integration of the single Wilson-line sourced field

+ = 2i × ((h)EB + (h)BE)

= −2ig2
3dC2

ACF(d − 1)

∫ L

0
dz′

∫

pk

pzeipzL

p2

eikz(z′−L)

[k2 + m2
D]

= −2g2
3dC2

ACF(d − 1)

∫ L

0
dz′

(

∂LI1;0(L)
)

I1;m(L − z′)

=
2g2

3dC2
ACF

(4πL)2

[

1

ǫ
− 3 − 2E1(mDL) + 2 ln

(µ̄L)2eγE

mDL

]

. (A.47)

Its scale dependence and ǫ-poles are compensated by diagram (f)EB (A.46). We collect

here the sum of all EB-terms, which is

2i × ((f)EB + (h)EB + [BE]) = −
4g2

3dC2
ACF

(4πL)2
e−mDLShi(mDL)

L→0
= −

4g2
3dC2

ACF

(4πL)2

[

mDL − (mDL)2
]

+ O(L) , (A.48)

where [BE] collects mirrored contributions.

A.7 Diagram (g)

The scalar electric contribution (g)EE gives rise to the following Fourier transform

= 2 × (g)EE

= −2g2
3dC2

ACF

∫

pk
eipzL 1

[p2 + m2
D][k2 + m2

D](p − k)2

×
1

2

[

3p2 + k2 − (p − k)2 − 2(pz + kz)pz

]

, (A.49)

including the evaluation of the master integrals

2 × (g)EE = −
2g2

3dC2
ACF

(4πL)2

e−mDL

mDL

[

2(1 + mDL)(γE + ln(2mDL)) − mDL (A.50)

+ 2e2mDL(1 − mDL)E1(2mDL)
]

L→0
=

2g2
3dC2

ACF

(4πL)2

[

−2 + mDL − (mDL)2 −29 + 24γE + 24 ln(2mDL)

18

]

+ O(L) .
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The magnetic contribution (g)BB vanishes in contrast to its (g)EE-counterpart. This is

seen explicitly in

= 2 × (g)BB

= −2g2
3dC2

ACF

∫

pk
eipzL 1

p2k2(p − k)2

×
1

2

[

3p2 + k2 − (p − k)2 + 2(d − 2)pz(pz + kz)
]

= −2g2
3dC2

ACF

3(d − 3)(d − 1)

(d − 4)

∫

pk
eipzL 1

k2(p − k)2
, (A.51)

where the last line holds in dimensional regularization and vanishes for d = 3 since the

integrand is finite. It was derived using integration-by-parts identities at two-loop level

similar to eq. (A.15). The relevant relation is

∫

p⊥k

pz(pz + kz)

p2k2(p − k)2
=

3

2

(2d − 5)

(d − 4)

∫

p⊥k

1

k2(p − k)2
. (A.52)

B Simulation details

In order to carry out non-perturbative computations, we discretize the continuum action

of EQCD (3.1) on a three-dimensional numerical grid with lattice spacing a,

SEQCD,L = β
∑

x,i>j

(

1 −
1

3
�x,ij

)

+ 2
∑

x,i

Tr
(

Φ2
L(x) − ΦL(x)Ui(x)ΦL(x + aî)U †

i (x)
)

+
∑

x

[

Z4(x + δx)
(

Tr Φ2
L(x)

)2
+ Z2(y + δy)Tr Φ2

L(x)

]

(B.1)

�x,ij ≡ Ui(x)Uj(x + aî)U †
i (x + aĵ)U †

j (x) , (B.2)

where Ui(x) is the gauge link in spatial direction i, connecting lattice sites x and x+aî. We

rescaled the adjoint scalar field to its lattice version ΦL such that its wave-function normal-

ization ZΦ = 1 is always enforced. The subscript L will be dropped in the context of lattice

calculations. Analytical calculations in EQCD lattice perturbation theory yield expressions

for the counterterm of the inverse gauge coupling β, the quartic coupling δx, and the multi-

plicative mass (Z2) and quartic (Z4) renormalization that compensate for discretization er-

rors up to O(a) [33]. A semi-analytical computation of δy completes the O(a)-improvement

at the Lagrangian level [34]. At the operator level, we use the lattice implementation of the

modified Wilson line (3.3) described in [35], with the O(a)-improvement delivered in [36],

to connect the respective pairs of operators. The ‘color-electric’ field operator is discretized

using gauge-invariant central derivative (see [16]), whereas the ‘color-magnetic’ field op-

erator is calculated using the clover discretization [37, 38]. For the 〈BB〉-correlator, only

the single-plaquette correlations of the pair of clover operators are used, as elaborated in
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section 5. Consequently, the only remaining sources of errors at O(a) are of the form (5.1)

and can be determined in an overall fit, as outlined in section 5.

Our numerical implementation is based on openQCD-1.6 by Martin Lüscher [39]. Using

a combined update of one heatbath sweep succeeded by four over-relaxation sweeps through

the volume, we update the lattice sites in a checkerboard ordering. We use the multi-level

algorithm proposed by Lüscher and Weisz [40] to reduce the noise in relation to the signal

for non-local operators in lattice gauge theories. In particular, we divide our volume in

four sub-volumes along the z-axis and freeze the surfaces between them for 80 combined

heatbath/over-relaxation sweeps, before we allow a single combined sweep through the

entire volume. For further details, see [16, 34, 41]. We give the raw data at finite lattice

spacings a in an online repository [42].

We provide the parameters of our simulations in table 4. As argued in [43], EQCD

possesses a mass gap and therefore finite volume effects are exponentially suppressed. Thus,

one can keep finite volume effects under control by maintaining a sufficiently large volume

along the rules of thumb given in [43]. We measured all three correlators on the same lattice

configurations introducing correlations among different g2
3dL and correlators that had to be

accounted for in the jackknife error analysis by keeping the binned jackknife data until the

numerical integration and calculating the error thereafter. Equal computational resources

were spent on all four scenarios (T, Nf); the difference in statistics can be explained by a

slight increase in the acceptance rate for smaller x, since the quartic self-coupling of the

scalars is taken into account via a Metropolis step in the scalar heatbath-update.
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g2
3da xcont ycont NxNyNz L/a statistics

1/4 0.08896 0.452423 242 × 48 4, 6, 8, 10, 12 14260

1/6 0.08896 0.452423 362 × 72 6, 12, 18 8440

1/8 0.08896 0.452423 482 × 96 4, 6, 8, 12, 16, 20, 24 8709

1/12 0.08896 0.452423 722 × 144 6, 12, 18, 24, 30, 36 5720

1/16 0.08896 0.452423 962 × 192 4, 8, 12, 16, 24, 32, 40 6060

1/24 0.08896 0.452423 1442 × 288 6, 12, 18, 24 780

1/32 0.08896 0.452423 1922 × 384 4, 8, 16, 24, 32 440

1/4 0.0677528 0.586204 242 × 48 4, 6, 8, 10, 12 17940

1/6 0.0677528 0.586204 362 × 72 6, 12, 18 8700

1/8 0.0677528 0.586204 482 × 96 4, 6, 8, 12, 16, 20, 24 8620

1/12 0.0677528 0.586204 722 × 144 6, 12, 18, 24, 30, 36 6820

1/16 0.0677528 0.586204 962 × 192 4, 8, 12, 16, 24, 32, 40 6060

1/24 0.0677528 0.586204 1442 × 288 6, 12, 18, 24 1400

1/32 0.0677528 0.586204 1922 × 384 4, 8, 16, 24, 32 820

1/4 0.0463597 0.823449 242 × 48 4, 6, 8, 10, 12 18000

1/6 0.0463597 0.823449 362 × 72 6, 12, 18 10680

1/8 0.0463597 0.823449 482 × 96 4, 6, 8, 12, 16, 20, 24 8620

1/12 0.0463597 0.823449 722 × 144 6, 12, 18, 24, 30, 36 6120

1/16 0.0463597 0.823449 962 × 192 4, 8, 12, 16, 24, 32, 40 5160

1/24 0.0463597 0.823449 1442 × 288 6, 12, 18, 24 1420

1/32 0.0463597 0.823449 1922 × 384 4, 8, 16, 24, 32 640

1/4 0.0178626 1.64668 242 × 48 4, 6, 8, 10, 12 19380

1/6 0.0178626 1.64668 362 × 72 6, 12, 18 10680

1/8 0.0178626 1.64668 482 × 96 4, 6, 8, 12, 16, 20, 24 8600

1/12 0.0178626 1.64668 722 × 144 6, 12, 18, 24, 30, 36 6500

1/16 0.0178626 1.64668 962 × 192 4, 8, 12, 16, 24, 32, 40 3400

1/24 0.0178626 1.64668 1442 × 288 6, 12, 18, 24 1300

1/32 0.0178626 1.64668 1922 × 384 4, 8, 16, 24, 32 680

Table 4. Parameters for all EQCD multi-level simulations. We give the continuum expressions for

the rescaled quartic scalar self-coupling xcont and the rescaled screening mass ycont. A conversion

into lattice units is done using the respective lattice-continuum relations [33, 34].

Open Access. This article is distributed under the terms of the Creative Commons
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