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1 Introduction

The asymptotic properties of gravity have been studied for decades [1–4] in the context
of asymptotically flat spacetimes at null infinity, see [5–10] for recent reviews. Much of
these studies are rightly motivated by the need to understand the intricate nature of
gravitational radiation. One remarkable outcome of these studies was the discovery of
the infinite-dimensional Bondi-Metzner-Sachs (BMS) group of asymptotic symmetries in
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asymptotically flat spacetimes at null infinity. Recent works have shown that the BMS
group is related to the infrared properties of gravity, namely soft-theorems and memory
effects [8]. See references [11–13] for earlier works on these issues and the reviews [8, 9]
for further references. The exploration of the connections between the BMS group, soft-
theorems, and memory effects have led to enormous activity. Further enlargements of the
BMS group [10, 14–17] have also been argued to be relevant.

The BMS symmetries are exact symmetries of General Relativity, in the sense that
they leave the action invariant up to a surface term. This strongly suggests that they
should be visible in any description, in particular at spatial infinity and timelike infinity,
provided boundary conditions at spatial and timelike infinity are compatible with boundary
conditions at null infinity. This poses the dynamical question: how to relate boundary
conditions at null, spatial, and timelike infinity? The answer to this question remains
poorly understood, and therein lies the key to many unresolved issues. The importance of
understanding these issues has been stressed by Friedrich in a recent article [18].

On the specific question of BMS symmetries at spatial infinity there has been a lot
of progress in recent years, motivated in part by the need to understand the relation
between the BMS group, soft-theorems, and memory effects. Earlier investigations of the
asymptotic symmetries at spatial infinity [19–22] successfully found boundary conditions
that gave Poincaré group as asymptotic symmetries.

This situation was exhilarating on one hand and disappointing on the other. Exhil-
arating because at least at spatial infinity there are consistent boundary conditions that
lead to Poincaré group as asymptotic symmetries whereas at null-infinity this does not
seem desirable. Disappointing because the lack of understanding of the BMS symmetries
at spatial infinity means that the relation between boundary conditions at null and spatial
infinity is incomplete. This had remained a deep puzzle for many years.

Henneaux and Troessaert [23–25] in a series of paper have resolved this tension, both
in the cylindrical representation and the hyperbolic representation of spatial infinity. They
have proposed boundary conditions at spatial infinity that are invariant under BMS sym-
metries. The BMS symmetries have non-trivial action on the fields and have generically
non-zero charges. They have also related BMS generators at spatial infinity to BMS gen-
erators at past and future null infinity. Other works in this direction include [26, 27].

The situation at timelike infinity remains much less developed. Following works at
spatial infinity [21, 22], earlier work [28–30] had proposed boundary conditions that gave
Poincaré group as asymptotic symmetries. To the best of our knowledge, no attempt
has been made to realise BMS symmetries at timelike infinity in the non-linear theory.
Motivated by the relation between the BMS group and soft-theorems, these issues were
addressed in the linearised gravity in [31, 32], though the main focus in these papers is
somewhat different. The main aim of this paper is to present boundary conditions in non-
linear general relativity at timelike infinity that realise BMS symmetries in the sense that
BMS symmetries have non-trivial action on the fields and have generically non-zero charges.
Our work in motivated by the corresponding developments at spatial infinity [23–27].

Such a study is important for several reasons. Over the last two decades, it has been
argued in a variety of contexts that stationary black holes also possess an infinite number
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of symmetries in the near horizon region [33–38].1 Typically a class of these symmetries
is similar to supertranslations at null infinity. It is believed that global charges associ-
ated with supertranslations receive contributions from the horizon as well as from null
infinity. Clearly, a complete discussion of conservation laws associated with supertransla-
tions requires a detailed understanding of how the symmetries at the horizon relate to the
symmetries at null infinity. However, this has not been understood.2 Toy model studies
include [39, 40]. It has been suggested by several authors, specifically by Chandrasekaran,
Flanagan, and Prabhu in [38] that timelike infinity can be used to relate symmetries at the
horizon to symmetries at null infinity.

In this paper we only focus on timelike infinity with perhaps the simplest boundary
conditions that allow for the BMS symmetries. The dynamical questions on the relationship
of our boundary conditions to null and spatial infinity is beyond the scope of this work.
Issues related to further enlargement of BMS symmetries [14–17] are also beyond the scope
of this work. We hope to return to these questions in future works.

The rest of the paper is organised as follows. In section 2, we introduce our notion of
asymptotic flatness at timelike infinity. Many of the calculations here are direct translations
of those at spatial infinity. Having said so, we must add that the literature at spatial infinity
is fairly large and confusing. Therefore, it is absolutely essential to work-out things from
the start to the end for timelike infinity separately. In section 3, a detailed study of the
asymptotic equations of motion is presented. In section 4, expressions for supertranslation
and Lorentz charges are proposed. In section 5, the Schwarzschild solution is written in a
form such that it manifestly satisfies our boundary conditions. In section 6, some general
remarks on supertranslations are made. We close with a brief discussion in section 7.
Dynamical questions regarding the non-triviality of our construction, i.e., whether non-
trivial radiative spacetimes exist that satisfy our boundary conditions at timelike infinity
requires a separate investigation.

2 Asymptotic flatness at timelike infinity

In this section we introduce our notion of asymptotic flatness at timelike infinity. It is
based on the corresponding notion introduced by Beig and Schmidt [41, 42] at spatial
infinity, which has been extensively studied over the years [43–47]. We work with a co-
ordinate based definition. If needed, our results can be readily translated to geometric
frameworks. A notion of asymptotic flatness at timelike infinity in the geometrical frame-
work of Ashtekar-Hansen [21] was introduced by Cutler [28] and Porrill [29]. A closely
related notion in the geometrical framework of Ashtekar-Romano [22] was discussed by

1The symmetry groups in these papers do not coincide. This is so because different authors preserve
different structures: some prefer to preserve a particular geometric structure on the null surface, whereas
others preserve the near horizon geometry.

2To some extent these issues were explored in [35, 36]. In these references, advanced Bondi coordinates
are used; however, since advanced Bondi coordinates do not cover future null infinity, the relation between
symmetries at future null infinity and the future horizon remains unexplored. These points were recently
emphasised in [39, 40].
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Gen and Shiromizu [30]. Our notion is different from all these previous works, as we allow
a class of spi-supertranslations to act as asymptotic symmetries at timelike infinity.

2.1 Asymptotic metric

To introduce our notion of asymptotic flatness at timelike infinity we start by introducing
a set of “polar coordinates” for Minkowski spacetime {τ, ρ, θ, ϕ} as follows

ηµνx
µxν = −τ2,

r

t
= ρ√

1 + ρ2 , (2.1)

where ηµν = diag{−1, 1, 1, 1} and xµ are a standard set of cartesian coordinates and
r2 = (x1)2 + (x2)2 + (x3)2. In these coordinates flat spacetime metric takes the form

ds2 = −dτ2 + τ2
(

dρ2

1 + ρ2 + ρ2(dθ2 + sin2 θdϕ2)
)
, (2.2)

≡ −dτ2 + τ2h
(0)
ab dφ

adφb (2.3)

where we denote coordinates {ρ, θ, ϕ} collectively as φa. Metric h(0)
ab is the unit metric on

Euclidean AdS3 hyperboloid H.
We start by considering a general class of spacetime admitting an expansion at timelike

infinity of the form

gµν = ηµν +
m∑
n=1

`
(n)
µν

τn
+ o(τ−m), (2.4)

where `(n)
µν , for each n, is a function of xσ

τ . Following Beig and Schmidt [42], this metric
can be put in the following more convenient form

ds2 = −N2dτ2 + habdφ
adφb, (2.5)

where

N = 1 + σ(φa)
τ

, (2.6)

hab = τ2
[
h

(0)
ab (φc) + 1

τ
h

(1)
ab (φc) + 1

τ2h
(2)
ab (φc) +O

( 1
τ3

)]
. (2.7)

A derivation of the form of the metric eq. (2.5)–eq. (2.7) starting from eq. (2.4) is given
in appendix A. We define asymptotically flat spacetimes at timelike infinity as spacetimes
admitting an asymptotic expansion as in eq. (2.5)–eq. (2.7). Further boundary conditions
will be specified below. We will comment on the smoothness of fields σ, h(1)

ab , h
(2)
ab , etc. on

EAdS3 hyperboloid H at a later stage.

2.2 Supertranslation at timelike infinity

A natural question to ask is what is the set of diffeomorphisms preserving the form of the
metric eq. (2.5)–eq. (2.7).3 In particular, if supertranslations are genuine symmetries of

3In the context of spatial infinity this question has been analysed in great detail by many authors over
the years; see [44, 45] for a concise summary of the earlier results.
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general relativity then they should also be realisable at timelike infinity. In order to spell out
our boundary conditions explicitly, we start by looking at the action of supertranslations
on asymptotic fields.

2.2.1 First order

As shown in detail in appendix B, the diffeomorphism

τ = τ̄ − ω(φ̄a) +O
(1
τ̄

)
, (2.8)

φa = φ̄a + 1
τ̄
h(0)ab∂bω(φ̄c) +O

( 1
τ̄2

)
, (2.9)

preserves the asymptotic form of the metric to order 1
τ . Here ω(φa) is an arbitrary function

on H that determines the higher order terms in the diffeomorphism uniquely. When ω(φa)
is in the four-parameter class of solutions of

DaDb ω − ωh
(0)
ab = 0, (2.10)

withDa being the covariant derivative onH compatible with metric h(0)
ab , the transformation

eq. (2.8)–eq. (2.9) correspond to a translation. More generally, the above diffeomorphism
corresponds to a supertranslation. The four functions satisfying eq. (2.10) are{√

1 + ρ2, ρ cos θ, ρ sin θ sinφ, ρ sin θ cosφ
}
, (2.11)

representing respectively, the time-translation and three-spatial translations.
Under general supertranslation eq. (2.8)–eq. (2.9), the zeroth order field h(0)

ab does not
transform,

h
(0)
ab → h

(0)
ab , (2.12)

whereas the first order fields transform as,

σ → σ, (2.13)

h
(1)
ab → h

(1)
ab + 2DaDb ω − 2ωh(0)

ab . (2.14)

We define,
kab := h

(1)
ab + 2σh(0)

ab . (2.15)

It follows from eq. (2.14) that under general supertranslation,

kab → kab + 2DaDbω − 2ωh(0)
ab . (2.16)

Now, there are two natural set of boundary conditions to consider. First, one can dispose
of all the supertranslations by demanding

kab = 0. (2.17)

These are the boundary conditions used in [28–30]. As is clear from eq. (2.16) that with
these boundary conditions, supertranslations are not allowed asymptotic symmetries. In
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the class of diffeomorphisms eq. (2.8)–eq. (2.9) only translations (cf. eq. (2.10)) are allowed
asymptotic symmetries.

Second, motivated by the work on spatial infinity [46] and [23, 24] one can choose,

k := h(0)abkab = 0. (2.18)

The requirement that the trace of kab vanishes should be invariant under supertransla-
tions. From eq. (2.16) we therefore deduce that the following differential equation for the
function ω,

(�− 3)ω = 0. (2.19)

This is the class of supertranslations we work with in this paper. Here � is the Laplacian
on H: � = DaDa.

There can be other classes of transformations with appropriately modified notions
of asymptotic flatness, e.g., logarithmic translations, superrotations, more general super-
translations, that one can explore. We do not study them in this work. Very likely, our
considerations can be extended to include a study of logarithmic translations following,
say, [46]. However, how superrotations [31, 32, 53] at timelike infinity can feature in such
an analysis is not clear to us. Naively, the introduction of superrotations does not look
compatible with the zeroth order equations of motion in the 1/τ expansion.4

2.2.2 Second order

It is of interest to study the action of supertranslations on the second order fields. At
second order the diffeomorphism presented in eq. (2.8)–eq. (2.9) generalises to,

τ = τ̄ − ω(φ̄a) + 1
τ̄
F (2)(φ̄a) +O

( 1
τ̄2

)
, (2.20)

φa = φ̄a + 1
τ̄
h(0)ab∂bω(φ̄c) + 1

τ̄2G
(2)a(φ̄c) +O

( 1
τ̄3

)
, (2.21)

where the functions F (2)(φ̄a) and G(2)a(φ̄c) are uniquely fixed in terms of the function
ω(φ̄a) by the requirement that the form of the metric should remain the same to order
1
τ2 . We apply the above transformations and expand the metric in eq. (2.5)–eq. (2.7) upto
second order. Using the boundary condition k = 0, we find,

h
(2)
ab → h

(2)
ab − ωkab + ωcDc kab + 1

2ω
c
b kac + 1

2ω
c
a kbc −

1
2ω

c (Da kbc)−
1
2ω

c (Db kac)

+ 2σωh(0)
ab + σ(aωb) − σωab − σc(aωcb) − σcω

c
(ab) + (σ ↔ ω)

+ ω2h
(0)
ab − 2ωωab + ωcaωbc . (2.22)

Here σa = Daσ,DaDbσ = σba,DaDbDcσ = σcba etc. and similarly for ω. A detailed
derivation is given in appendix B.

4We thanks the anonymous referee for suggesting us to add these comments.
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A non-trivial consistency check on this expression is presented in appendix D. There
we consider doing a supertranslation on flat spacetime. We begin with (for flat spacetime)

σ = 0, h
(1)
ab = 0, h

(2)
ab = 0. (2.23)

We note that σ does not change under supertranslations. Thus for the supertranslated
spacetime too σ = 0. From eq. (2.14), it follows that for the supertranslated spacetime

h
(1)
ab = kab = −2ωh(0)

ab + 2ωab, (2.24)

and from eq. (2.22), it follows that

h
(2)
ab = ω2h

(0)
ab − 2ωωab + ωcaωbc. (2.25)

In appendix D, we check that the expression in eq. (2.24) for kab and eq. (2.25) for h(2)
ab are

consistent with the second order equations of motion.5

3 Asymptotic expansion of the equation of motion

Einstein’s equations can be split into 3+1 form, providing a set of three equations appro-
priately projected along normal direction to constant τ hypersurface. The split provides
the Hamiltonian and momentum constraints, and the evolution equation for the metric on
the 3-dimensional τ = constant hypersurface. These equations read,

H ≡ 1
N
∂τK +KabK

ab − 1
N
habDaDbN = 0, (3.1)

Ha ≡ DbK
b
a −DaK = 0, (3.2)

Hab ≡ Rab + 1
N
∂τKab − 2KacK

c
b +KKab −

1
N
DaDbN = 0. (3.3)

Here D is the covariant derivative compatible with metric hab and Kab = 1
2N ∂τhab is the

extrinsic curvature of the constant τ hypersurface.
These equations can be expanded in inverse powers of τ as,

H ≡ H(0)

τ2 + H(1)

τ3 + H(2)

τ4 +O
( 1
τ5

)
, (3.4)

Ha ≡
H

(0)
a

τ
+ H

(1)
a

τ2 + H
(2)
a

τ3 +O
( 1
τ4

)
, (3.5)

Hab ≡ H
(0)
ab + 1

τ
H

(1)
ab + 1

τ2H
(2)
ab +O

( 1
τ3

)
. (3.6)

The expansion coefficients at zeroth, first, and second order are summarised in the following
subsections. A detailed derivation of these results is given in appendix C.

5An expression for corresponding transformation of h
(2)
ab at spatial infinity was reported in equa-

tion (4.111) of [46]. All the ω–ω-terms, the analog of the third line in eq. (2.22), are missing there. We
note that the action of supertranslations at the second order has not been much discussed in the literature;
comments appear in [46, 47], though neither of these papers present any details on this specific calculation.
We hope that the reader will find our appendices B and D useful. The action of translations was discussed
in [42].
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3.1 Zeroth and first order

At zeroth order, the Hamiltonian and the momentum constraints are identically satisfied.
The evolution equation implies that the three-dimensional metric h(0)

ab on H must satisfy,

H
(0)
ab = R(0)

ab + 2h(0)
ab = 0. (3.7)

This condition implies that H is maximally symmetric with R(0) = −6 and the Riemann
tensor is given by,

R(0)
abcd = R

(0)

6
(
h(0)
ac h

(0)
bd − h

(0)
ad h

(0)
bc

)
= −h(0)

ac h
(0)
bd + h

(0)
ad h

(0)
bc . (3.8)

Thus H is Euclidean AdS3 space, as noted earlier.
At first order, the Hamiltonian constraint gives,

H(1) = (−� + 3)σ = 0. (3.9)

The momentum constraint gives,

Dbkab = Dak. (3.10)

The evolution equations H(1)
ab = 0 gives,

(� + 3) kab = DaDbk + kh
(0)
ab . (3.11)

Boundary conditions presented in eq. (2.18) further simplify these equations to

Dbkab = 0, (� + 3) kab = 0. (3.12)

3.2 Second order

At second order, the Hamiltonian constraint takes the form,

h(2) = 12σ2 + 1
4k

ab kab − kabDaDbσ −DcσDcσ, (3.13)

where h(2) is the trace of h(2)
ab , h(2) = h(0)abh

(2)
ab . In arriving at this equation we have used

the boundary condition k = 0 cf. eq. (2.18) and the first order equations of motion. The
momentum constraint reads,

Dbh(2)b
a = 1

2k
bp (Db kpa) +Da

(
−1

8 k
bc kbc + 8σ2 − kabDaDbσ −DcσDcσ

)
. (3.14)

The evolution equation H(2)
ab = 0 yields,

(� + 2)h(2)
ab = S

(kk)
ab + S

(kσ)
ab + S

(σσ)
ab , (3.15)
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where the non-linear source terms have the following expressions,

S
(kk)
ab =

(
Dc kd(aDb) kcd

)
− 1

2Da k
cdDb kcd + (Dc kad)

(
Dckdb

)
− (Dc kad)

(
Dd kbc

)
− kpa kpb + kcd

(
DcDd kab −DcD(a kb)d

)
, (3.16)

S
(kσ)
ab = −DaDb

(
kcdDcDdσ

)
+ 4Dcσ

(
−Dckab +D(a kb)c

)
− 4σkab

+
(
−2h(0)

ab k
cdDcDdσ + 4kcdh(0)

d(aDb)Dcσ
)
, (3.17)

S
(σσ)
ab = DaDb

(
5σ2 −DcσDcσ

)
+ h

(0)
ab

(
18σ2 + 4DcσDcσ

)
+ 4σDaDbσ . (3.18)

The second order equations of motion, in the form presented above, with more re-
strictive boundary condition kab = 0 take a particularly nice form and can be concisely
presented in terms of the electric and magnetic parts of the Weyl tensors, as is the case at
spatial infinity [45, 48, 49]. These results are presented in appendix E.

4 Charges at timelike infinity

Next we would like to understand contributions from timelike infinity to the Iyer-Wald
global charges [50, 51] (see also [38]) for supertranslations and Lorentz symmetries. To this
end, we compute contributions from timelike infinity to the Lee-Wald symplectic form.
This computation is presented in section 4.1. We find that with our boundary conditions
this contribution vanishes. It has been suggested by several authors6 that this should be the
case with appropriate boundary conditions at timelike infinity. As a result, “future charges”
can be computed on any two-dimensional topologically-spherical surface surrounding the
“sources” at timelike infinity. We present charge expressions in section 4.2. Some further
properties of these charges are studied in section 4.3.

What are these sources at timelike infinity? Note that bound objects (and fields) reach
timelike infinity. Fields close to these bound objects do not become weak and cannot be
regarded as asymptotic fields in the usual sense. In the τ → ∞ limit, it is convenient to
regard individual bound systems, gravitationally unbound relative to each other, as finite
number of points on the timelike infinity hyperboloid H. These points serve as sources for
the charge integrals. This picture will become more clear in section 5 where we discuss the
Schwarzschild solution in the τ →∞ limit.

4.1 Contributions to the Lee-Wald symplectic form

Consider a spacetime with no horizons. The components of the boundary are the past and
future null infinity J −, J + and the points (in the Penrose diagram in figure 1) past and
future timelike infinity i−, i+, and spatial infinity i0. Since the global charge variation is
invariant under local deformations of the Cauchy surface Σ, one can deform Σ in the far
future to i+ ∪ J +. Then, the first variation of the Iyer-Wald global charges satisfies

δQξ(Σ) = δQξ(J +) + δQξ(i+). (4.1)
6See for example section 7 of [38].
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i+ [ J +

<latexit sha1_base64="9iPO8Xohg6uRLL5krim5nu2qXYA=">AAAB9HicbVDLSsNAFL2pr1pfVZduBosgCCWRoi6LbsRVBfuANpbJdNIOnUzizKRQQr7DjQtF3Pox7vwbJ20W2npg4HDOvdwzx4s4U9q2v63Cyura+kZxs7S1vbO7V94/aKkwloQ2SchD2fGwopwJ2tRMc9qJJMWBx2nbG99kfntCpWKheNDTiLoBHgrmM4K1kdxegPWIYJ7cpY9n/XLFrtozoGXi5KQCORr98ldvEJI4oEITjpXqOnak3QRLzQinaakXKxphMsZD2jVU4IAqN5mFTtGJUQbID6V5QqOZ+nsjwYFS08Azk1lItehl4n9eN9b+lZswEcWaCjI/5Mcc6RBlDaABk5RoPjUEE8lMVkRGWGKiTU8lU4Kz+OVl0jqvOhfV2n2tUr/O6yjCERzDKThwCXW4hQY0gcATPMMrvFkT68V6tz7mowUr3zmEP7A+fwCj3JIG</latexit>
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<latexit sha1_base64="y8+6M0ATlW5H6x++6WQMGcxcnjM=">AAAB9HicbVDLSsNAFL2pr1pfVZduBovgxpJIUZdFN+Kqgn1AG8tkOmmHTiZxZlIoId/hxoUibv0Yd/6NkzYLbT0wcDjnXu6Z40WcKW3b31ZhZXVtfaO4Wdra3tndK+8ftFQYS0KbJOSh7HhYUc4EbWqmOe1EkuLA47TtjW8yvz2hUrFQPOhpRN0ADwXzGcHaSG4vwHpEME/u0sezfrliV+0Z0DJxclKBHI1++as3CEkcUKEJx0p1HTvSboKlZoTTtNSLFY0wGeMh7RoqcECVm8xCp+jEKAPkh9I8odFM/b2R4ECpaeCZySykWvQy8T+vG2v/yk2YiGJNBZkf8mOOdIiyBtCASUo0nxqCiWQmKyIjLDHRpqeSKcFZ/PIyaZ1XnYtq7b5WqV/ndRThCI7hFBy4hDrcQgOaQOAJnuEV3qyJ9WK9Wx/z0YKV7xzCH1ifP6bkkgg=</latexit>J�

<latexit sha1_base64="X/AGX85LHLstYhW9IJFIXaP2J/4=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMgCGFXgnoMevEY0TwgWcPspJMMmZ1dZmaFsOQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7glhwbVz328mtrK6tb+Q3C1vbO7t7xf2Dho4SxbDOIhGpVkA1Ci6xbrgR2IoV0jAQ2AxGN1O/+YRK80g+mHGMfkgHkvc5o8ZK9/zxrFssuWV3BrJMvIyUIEOtW/zq9CKWhCgNE1TrtufGxk+pMpwJnBQ6icaYshEdYNtSSUPUfjo7dUJOrNIj/UjZkobM1N8TKQ21HoeB7QypGepFbyr+57UT07/yUy7jxKBk80X9RBATkenfpMcVMiPGllCmuL2VsCFVlBmbTsGG4C2+vEwa52Xvoly5q5Sq11kceTiCYzgFDy6hCrdQgzowGMAzvMKbI5wX5935mLfmnGzmEP7A+fwB7RiNkw==</latexit>

i+

<latexit sha1_base64="eeKN1mcMhNB8m9OFGzNbfIy8Up0=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgxbArQT0GvXiMaB6QrGF20kmGzM4uM7NCWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSy4Nq777eRWVtfWN/Kbha3tnd294v5BQ0eJYlhnkYhUK6AaBZdYN9wIbMUKaRgIbAajm6nffEKleSQfzDhGP6QDyfucUWOle/541i2W3LI7A1kmXkZKkKHWLX51ehFLQpSGCap123Nj46dUGc4ETgqdRGNM2YgOsG2ppCFqP52dOiEnVumRfqRsSUNm6u+JlIZaj8PAdobUDPWiNxX/89qJ6V/5KZdxYlCy+aJ+IoiJyPRv0uMKmRFjSyhT3N5K2JAqyoxNp2BD8BZfXiaN87J3Ua7cVUrV6yyOPBzBMZyCB5dQhVuoQR0YDOAZXuHNEc6L8+58zFtzTjZzCH/gfP4A8CCNlQ==</latexit>

i�

<latexit sha1_base64="Ytl5b6l/UwuWpUxz+2ZZH+7ik9Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaWDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuLaiFg94DjhfkQHSoSCUbTSvXh0e+WKW3VnIMvEy0kFctR75a9uP2ZpxBUySY3peG6CfkY1Cib5pNRNDU8oG9EB71iqaMSNn81OnZATq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieOVnQiUpcsXmi8JUEozJ9G/SF5ozlGNLKNPC3krYkGrK0KZTsiF4iy8vk+ZZ1buont+dV2rXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AH0rI2Y</latexit>

i0

Figure 1. Consider a spacetime with no horizons. The components of the boundary are J−, J +

and the points at infinity i−, i0, and i+. Since the first variation of global charges is invariant under
local deformations of the Cauchy surface Σ, one can deform Σ in the far future to i+ ∪ J +. Then,
the first variation of the Iyer-Wald global charges satisfies δQξ(Σ) = δQξ(J +) + δQξ(i+). With
our boundary conditions δQξ(i+) = 0.

With our boundary conditions we now show that δQξ(i+) = 0. This is schematically shown
in figure 1. Recall that

δQξ(Σ) = Ω(g, δg,£ξg). (4.2)

The computation proceeds as follows. The Lee-Wald symplectic form [50, 51] is

Ω(g, δ1g, δ2g) =
∫

Σ
ω(g, δ1g, δ2g) =

∫
Σ
ωγnγ

√
h d3x, (4.3)

where

ωγ = P γναβµδ [δ2gνα∇βδ1gµδ − (1↔ 2)] ,

P γναβµδ = gγµgδνgαβ − 1
2g

γβgνµgδα − 1
2g

γνgαβgµδ − 1
2g

ναgγµgδβ + 1
2g

ναgγβgµδ, (4.4)

and where nγ is the unit normal to the hypersurface Σ,

n = −Ndτ, (4.5)

and ∇α is the covariant derivative compatible with the spacetime metric gµν . We choose
the hypersurface Σ to be a τ = constant surface. The volume factor

√
h d3x grows as τ3

in the τ →∞ limit. The aim, therefore, is to determine how ωγnγ behaves in the τ →∞
limit. On τ = constant hypersurface,

− ωγnγ = Nωτ = ωτ (1 +O(1/τ)) . (4.6)
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As a result, the problem simply reduces to analysing the behaviour of ωτ in the τ → ∞
limit. For our purposes, the ωγ expression can be written in a more convenient form as
follows,

ωγ = gγµgδνgαβ (δ2gνα∇βδ1gµδ)−
1
2g

γβgνµgδα (δ2gνα∇βδ1gµδ)−
1
2g

γνgαβgµδ (δ2gνα∇βδ1gµδ)

− 1
2g

ναgγµgδβ (δ2gνα∇βδ1gµδ) + 1
2g

ναgγβgµδ (δ2gνα∇βδ1gµδ)− (1↔ 2)

= gγµ
(
gδνgαβδ2gνα

)
∇βδ1gµδ −

1
2
(
gνµgδαδ2gνα

)
∇γδ1gµδ −

1
2
(
gγνgαβδ2gνα

)
∇β
(
gµδδ1gµδ

)
− 1

2 (gναδ2gνα)
(
gγµgδβ∇βδ1gµδ

)
+ 1

2g
γβ (gναδ2gνα)

(
gµδ∇βδ1gµδ

)
− (1↔ 2)

= 1
2
[
δ2g

αβ (∇γδ1gαβ) + δ2 ln g
(
∇βδ1g

γβ
)

+ δ2g
γβ (∇βδ1 ln g) + δ2 ln g (∇γδ1 ln g)

−2δ2gαβ
(
∇αδ1g

γβ
)
− (1↔ 2)

]
(4.7)

where we have simply raised and lowered the indices in a convenient form and have con-
verted some terms to the determinant g of the metric. In this form, each of the terms in
ωτ can be easily evaluated. The following expressions are useful:

δgττ = −2δσ
τ

+ o(1/τ), δgττ = 2δσ
τ

+ o(1/τ), (4.8)

δgab = τδh
(1)
ab + o(τ), δgab = − 1

τ3 δh
(1)ab + o(1/τ3), (4.9)

and for the four-dimensional Christoffel symbols the following expressions are useful:

Γcτa = 1
2h

cd∂τhad = 1
τ
δca + o(1/τ), (4.10)

Γτττ = 1
2h

ττ∂τhττ = − σ

τ2 + o(1/τ2), (4.11)

Γτab = −1
2h

ττ∂τhab = τh
(0)
ab + o(τ). (4.12)

Using these expressions, the first term in eq. (4.7) for γ = τ becomes,

δ2g
αβ (∇τδ1gαβ) = δ2g

ττ (∇τδ1gττ ) + δ2g
ab (∇τδ1gab)

= −
(2δ2σ

τ
+ · · ·

)(2δ1σ

τ2 + · · ·
)
−
(
− δ2h

(1)ab

τ3 + · · ·
)(

δ1h
(1)
ab + · · ·

)
= 1
τ3

(
δ2h

(1)abδ1h
(1)
ab − 4δ1σδ2σ

)
+ o(1/τ3)

= 1
τ3

(
δ2k

abδ1kab − 2δ2σδ1k − 2δ1σδ2k + 8δ1σδ2σ
)

+ o(1/τ3) . (4.13)

The second term becomes,

δ2 ln g
(
∇βδ1g

τβ) =
(2δ2σ

τ
+ h

(0)
ab δ2h

(1)ab

τ
+ · · ·

)(4δ1σ

τ2 −
h

(0)
ab δ1h

(1)ab

τ2 + · · ·
)

= 1
τ3

(
− 40δ1σδ2σ + 4δ1kδ2σ + 10δ2kδ1σ − δ1kδ2k

)
+ o(1/τ3) . (4.14)
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The third term becomes,

δ2g
τβ(∇βδ1 ln g

)
= δ2g

ττ ∂τ
(
δ1 ln g

)
=
(2δ2σ

τ
+ · · ·

)(
− 2δ1σ

τ2 −
h

(0)
ab δ1h

(1)ab

τ2 + · · ·
)

= 1
τ3
(
8δ1σδ2σ − 2δ2σδ1k

)
+ o(1/τ3) . (4.15)

The fourth term becomes

δ2 ln g∇τδ1 ln g = −
(2δ2σ

τ
+ h

(0)
ab δ2h

(1)ab

τ
+ · · ·

)
∂τ

(2δ1σ

τ
+ h

(0)
ab δ1h

(1)ab

τ
+ · · ·

)

= 1
τ3

(
16δ1σδ2σ − 4δ1σδ2k − 4δ1kδ2σ + δ1kδ2k

)
+ o(1/τ3) . (4.16)

The fifth term becomes

δ2gαβ
(
∇αδ1g

τβ
)

= δ2gττ (∇τδ1g
ττ ) + δ2gab

(
∇aδ1g

τb
)

=
(2δ2σ

τ
+ · · ·

)(
−2δ1σ

τ2 + · · ·
)

+ 2
τ3

(
δ1σδ2h

(1)
ab h

(0)ab + · · ·
)

= 1
τ3

(
2δ1σδ2k − 16δ1σδ2σ

)
+ o(1/τ3) . (4.17)

Most of these terms cancel out upon (1↔ 2) anti-symmetrisation. The final expression for
ωτ reads,

ωτ = 2
τ3
(
δ1σδ2k − δ1kδ2σ

)
+ o(1/τ3) . (4.18)

Using the boundary condition, k = 0, the O(1/τ3) term in eq. (4.18) vanishes. Hence, in
the τ →∞ limit

Ω(g, δ1g, δ2g) = 0. (4.19)

This implies,
δQξ(i+) = 0. (4.20)

To summarise: we have shown that with our notion of asymptotic flatness, timelike infinity
does not contribute to the Lee-Wald symplectic form. Hence, the contribution to the first
variations of the Iyer-Wald charges from timelike infinity is zero. It has been suggested by
several authors that this should be the case. The result is entirely expected on physical
grounds. Thus, eq. (4.1) simplifies to

δQξ(Σ) = δQξ(J +). (4.21)

The contribution from null infinity, δQξ(J +), is well studied; for a review see [5]. One
of key ideas in the subject is that the integral over null infinity can be written as the
difference of the localised charges [38]

Qξ(J +) = Qloc
ξ (J +

− )−Qloc
ξ (J +

+ ), (4.22)
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where J +
± are respectively the future and past 2-sphere limits of null infinity J +. In

the following we will be interested in Qloc
ξ (J +

+ ), which is what we call “future charges”.
Timelike infinity hyperboloid H reaches J +

+ in the ρ→∞ limit.

4.2 Charges

Since the contributions to the Lee-Wald symplectic form from timelike infinity vanishes,
it follows that “future charges” can be computed on any two-dimensional topologically-
spherical surface surrounding the “sources” at timelike infinity. To keep the notation
simple, we denote them by simply Qξ, instead of Qloc

ξ (J +
+ ).

Motivated by the corresponding expressions at spatial infinity [46], we propose expres-
sions for supertranslation and Lorentz charges at timelike infinity and show appropriate
conservation properties. We do not present a first principal derivation for these expres-
sions. Such a derivation can be given, for example, by relating the expressions below to
the corresponding expressions to null infinity, but such a calculation is not attempted in
this work.

We begin by observing some elementary properties of the 1/τ expansion of the Weyl
tensor projected on τ = constant hypersurface. In four spacetime dimensions, the Weyl ten-
sor expressed in terms of the Riemann tensor, Ricci tensor and Ricci scalar takes the form,

Wαβµν = Rαβµν −
1
2 (gαµRβν +Rαµgβν − gανRβµ −Rανgβµ) + R

6 (gαµgβν − gανgβµ) .

(4.23)

Let (τ, φa) be the four-dimensional spacetime coordinates associated to the 3+1 split. Then,
for a general spacetime coordinates xµ = xµ(τ, φa) we define

eµa = ∂xµ

∂φa
. (4.24)

The vectors eµa with {a = 1, 2, 3} are tangent to τ = constant hypersurface. The projected
electric part of the Weyl tensor on τ = constant hypersurface is defined as,

Eab = Wαβµνe
α
an

βeµb n
ν . (4.25)

For vacuum spacetimes, with Rαβ = 0 = R, Gauss-Codazzi equations give,

Eab = Rαβµνe
α
an

βeµb n
ν = −£nKab +KacK

c
b +N−1DaDbN , (4.26)

where £n is the Lie-derivative with respect to the unit normal nµ.
Given the expansions for the extrinsic curvature components and the lapse function N

in powers of 1/τ , we can obtain the expansion of the electric part of the Weyl tensor. A
calculation gives,

Eab ≡
1
τ
E

(1)
ab + 1

τ2E
(2)
ab + · · · , (4.27)

where the zeroth order expansion coefficient identically vanishes and the first order expan-
sion coefficient is,

E
(1)
ab = σab − σh

(0)
ab . (4.28)
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The first order electric part of the Weyl tensor satisfies the following properties on H,

E
(1)
ab = E

(1)
ba , (symmetric) (4.29)

E(1)a
a = �σ − 3σ = 0, (traceless) (4.30)

DbE(1)b
a = 0, (divergence-free) (4.31)

upon using the first order equations of motion. It then follows that for conformal Killing
vectors ξa on H, E(1)

ab ξ
a is a conserved current. The four translations induce four conformal

Killing vectors ξa = Daω on H (recall when ω represents a translation for ωab−h
(0)
ab ω = 0),

and this conserved current can be used to construct “future charges” [29, 30],

Qξ = − 1
8πG

∫
C

√
q d2xE

(1)
ab ξ

arb (4.32)

where C is a two dimensional topologically-spherical surface surrounding sources on H.
The induced metric on C is qab and ra is the unit outward normal to C in H. These
charges are “conserved” in the sense that the integral can be done on any topologically-
spherical surface C of H surrounding the sources, and the answer is independent of the
choice of C.

Clearly for supertranslations, such a construction does not work as Daω is not a confor-
mal Killing vector on H. Fortunately, a slight modification of this construction works [46].
We have,

E
(1)
ab ξ

a = E
(1)
ab ω

a = σabω
a − σωb. (4.33)

Next consider 2Da(ω[aσb]) for translations ωab − h
(0)
ab ω = 0, i.e.,

2Da(ω[aσb]) = Da(ωaσb)−Da(ωbσa) = 3ωσb + ωaσb
a − ωbaσa − ωb(3σ) (4.34)

= 3ωσb + ωaσab − ωσb − 3ωbσ (4.35)
= σabω

a + 2ωσb − 3σωb . (4.36)

Hence, for translations,

E
(1)
ab ξ

a − 2Da(ω[aσb]) = 2(σωb − ωσb). (4.37)

The key point is that the term Da(ω[aσb])ξarb when integrated over C only contributes a
total divergence and therefore is zero. Hence,∫

C

√
q d2x (E(1)

ab ξ
a − 2Da(ω[aσb]))ξarb =

∫
C

√
q d2xE

(1)
ab ξ

arb = 2
∫
C

√
q d2x (σωb − ωσb)rb.

(4.38)
This last expression admits generalisation for supertranslations. The current (σωb − ωσb)
is conserved for supertranslations as well, since (�− 3)ω = 0, implying

Db(σωb − ωσb) = 0. (4.39)

Hence, we can define a charge for supertranslation ω as

Qω = − 1
4πG

∫
C

√
q d2x (σωb − ωσb)rb. (4.40)

For translations this expression reduces to the previous expressions [29, 30].

– 14 –



J
H
E
P
0
2
(
2
0
2
2
)
0
2
2

Expression for Lorentz charges is relativity easier to propose. One of the second order
equation of motion, namely eq. (3.14), automatically gives a conserved tensor,

Jab = −h(2)
ab + 1

2k
c
akbc + h

(0)
ab

(
−1

8kcdk
cd + 8σ2 − kcdDcDdσ −DcσDcσ

)
(4.41)

with DaJab = 0. For a Killing vector ξa on H representing a four-dimensional rotation or
boost we define,

Qξ = 1
8πG

∫
C

√
qd2xJabξ

arb. (4.42)

These charges match with [29, 30] upon setting kab = 0 and noting the fact that the second
order magnetic part of the Weyl tensor is related to Jab by the curl operation defined in
appendix E.

4.3 Commutator of charges

In the previous section, we wrote expressions for supertranslation and Lorentz charges.
The Poisson bracket between two charges is defined as (see e.g., [38, 52]),

{Qχ, Qχ′} = −δχQχ′ (4.43)

where the variation δχ acts on the fields as the transformation induced by the asymptotic
symmetry. Supertranslation charges defined in eq. (4.40) can also be written as

Qω = 1
4πG

∫
C
d2x
√
q (σaω − σωa) ra = 1

4πG

∫
V
d3x ∂a

[√
−h(0) (σaω − σωa)

]
, (4.44)

where V is the part of H surrounded by C. Now, we wish to compute the Poisson bracket
between Lorentz charges and supertranslation charges. Identifying χ = ξ (a Lorentz trans-
formation) and χ′ = ω (a supertranslation), eq. (4.43) becomes,

{Qξ, Qω} = −δξQω . (4.45)

Using which the Poisson bracket becomes,

{Qξ, Qω} = − 1
4πG

∫
V
d3x ∂a

{
δξ

[√
−h(0) (σaω−σωa)

]}
= − 1

4πG

∫
V
d3x ∂a

[√
−h(0)

{
ξbDb (σaω−σωa)−

(
σbω−σωb

)
Dbξa

}]
= − 1

4πG

∫
V
d3x ∂a

[√
−h(0)

{
σa
(
ξbDbω

)
+ωξbDbσa−

(
ξbDbσ

)
ωa−σ

(
ξbDbωa

)
−
(
σbω−σωb

)
Dbξa

}]
= 1

4πG

∫
V
d3x ∂a

[√
−h(0)

{
σa
(
−ξbDbω

)
−σ

(
−ξbDbωa−ωbDaξb

)}]
− 1

4πG

∫
V
d3x ∂a

[√
−h(0)

{
ωξbDbσa−

(
ξbDbσ

)
ωa−σbωDbξa

}]
= 1

4πG

∫
V
d3x ∂a

[√
−h(0) {σa (£−ξω)−σDa (£−ξω)}

]
− 1

4πG

∫
V
d3x ∂a

[√
−h(0)

{
ωξbDbσa−

(
ξbDbσ

)
ωa−σbωDbξa

}]
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= Qω′ + 1
4πG

∫
V
d3x

√
−h(0)Da

[
ωξbDbσa−

(
ξbDbσ

)
ωa−σbωDbξa

]
= Qω′ + 1

4πG

∫
V
d3x

√
−h(0)

[
ωξbDaDbσa−

(
ξbDbσ

)
�ω−σbωDaDbξa

]
= Qω′ + 1

4πG

∫
V
d3x

√
−h(0)

[
ωξb[Da,Db]σa + 3ωξbσb− 3

(
ξbDbσ

)
ω−σbω[Da,Db]ξa

]
= Qω + 1

4πG

∫
V
d3x

√
−h(0)

[
ωξbR

(0)
ab σ

a + 3ωξbσb− 3
(
ξbDbσ

)
ω−σbωR(0)

ab ξ
a
]

= Qω′ (4.46)

where ω′ = £−ξω. We have used the result, δξ
√
−h(0) = (1/2)

√
−h(0)h(0)abδξh

(0)
ab = 0.

One could attempt the calculation the other way round, i.e., identifying χ′ = ξ (a
Lorentz transformation) and χ = ω (a supertranslation). That calculation is more involved.
We expect to recover Qω′ possibly with terms that only contribute to a total divergence on
C. At spatial infinity the technology for identifying total divergence on the cuts of de Sitter
hyperboloid is fairly well developed, see e.g., [49]; at timelike infinity some further technical
work is required.

5 The Schwarzschild solution near timelike infinity

In this section, we write the Schwarzschild solution near timelike infinity in the Beig-
Schmidt form eq. (2.5)–eq. (2.7). The Schwarzschild metric in standard static coordinates
takes the form

ds2 = −
(

1− 2GM
r

)
dt2 +

(
1− 2GM

r

)−1
dr2 + r2dΩ2, (5.1)

where dΩ2 = (dθ2 + sin2 θdϕ2) is the round metric on the unit two-sphere. We begin by
introducing (τ0, ρ0) coordinates defined as follows:

t = τ0

√
1 + ρ2

0, (5.2)
r = ρ0τ0. (5.3)

These coordinates do not bring the Schwarzschild solution near timelike infinity in the
Beig-Schmidt form as in eq. (2.5)–eq. (2.7). A chain of further coordinate transformations
outlined in appendix A are required (as expected). In coordinates (τ0, ρ0) the non-zero
components of the metric takes the form to leading order in 1/τ0:

gτ0τ0 = −1 + (2GM)
(
ρ−1

0 + 2ρ0
) 1
τ0

+O(τ−2
0 ) (5.4)

gρ0τ0 = 4GM +O(τ−1
0 ) (5.5)

gρ0ρ0 = τ2
0 (1 + ρ2

0)−1 + (2GM)(1 + ρ2
0)−1

(
ρ−1

0 + 2ρ0
)
τ0 +O(1) (5.6)

gθθ = ρ2
0τ

2
0 +O(1) (5.7)

gϕϕ = ρ2
0τ

2
0 sin2 θ +O(1). (5.8)
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Since gρ0τ0 term does not fall-off as O(τ−1
0 ), the metric is not in the Beig-Schmidt form at

O(τ−1
0 ). To fix this, following appendix A we do the transformation,

ρ0 = ρ1 + G(ρ1)
τ1

, (5.9)

G(ρ1) = 4GM(1 + ρ2
1), (5.10)

τ0 = τ1. (5.11)

In the new coordinates (τ1, ρ1) the non-zero metric components take the form,

gτ1τ1 = −1 + (2GM)
(
ρ−1

1 + 2ρ1
) 1
τ1

+O(τ−2
1 ) (5.12)

gρ1τ1 = O(τ−1
1 ) (5.13)

gρ1ρ1 = τ2
1 (1 + ρ2

1)−1 + (2GM)(1 + ρ2
1)−1

(
ρ−1

1 + 6ρ1
)
τ1 +O(1) (5.14)

gθθ = ρ2
1τ

2
1 + 8GMρ1(1 + ρ2

1)τ1 +O(1) (5.15)

gϕϕ = ρ2
1τ

2
1 sin2 θ + 8GMρ1(1 + ρ2

1) sin2 θτ1 +O(1). (5.16)

The above metric is in the Beig-Schmidt form, though it does not satisfy our boundary
condition k = 0. To bring the metric in the requisite form, we do a general supertranslation
and call the final coordinates (τ, ρ):

τ1 = τ − F (ρ), (5.17)

ρ1 = ρ+ 1 + ρ2

τ
∂ρF (ρ), (5.18)

F (ρ) = −GM
(
ρ+ 2

√
1 + ρ2 sinh−1 ρ

)
. (5.19)

F (ρ) does not satisfy �F = 3F . The resulting metric is in the requisite Beig-Schmidt form
at first order in the expansion in inverse powers of τ , and

h
(1)
ab = −2σh(0)

ab . (5.20)

That is, not only k = 0, but the full kab is zero. The field σ takes the value,

σ = −(GM)
(
ρ−1 + 2ρ

)
, �σ = 3σ. (5.21)

From these transformations, we see that as τ goes to ∞ for fixed r, ρ goes to 0. Thus,
the horizon r = 2GM intersects the timelike infinity hyperboloid H at the origin ρ = 0.
Note that the function σ is singular at ρ = 0.

The four functions satisfying

DaDbω − h
(0)
ab ω = 0, (5.22)

are
{√

1 + ρ2, ρ cos θ, ρ sin θ sinφ, ρ sin θ cosφ
}
representing respectively, the time-transla-

tion and three-spatial translations. The charge integral

Qω = − 1
4πG

∫
C

√
q d2x (σωb − ωσb)rb, (5.23)

on ρ = constant spherical surface C for time-translation ω =
√

1 + ρ2 gives M .
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Figure 2. Horizon H+ intersecting the timelike infinity hyperboloid H. In the limit τ → ∞ the
intersection shrinks to a point.

6 Some final remarks

In the previous section we saw that for the Schwarzschild solution the fields σ and h(1)
ab =

−2σh(0)
ab are singular at ρ = 0. The singularity is such that the charge integral is finite

even on a ρ = ε surface C. Thus, for the region r > 2GM of the Schwarzschild solution,
timelike infinity is the hyperboloid H minus the origin. This indicates that for a system
composed of individually bound systems, gravitationally unbound relative to each other,
timelike infinity for the spacetime region describing outside the world-tubes of these system
can be taken to be H minus one point each for the individually bound system. These points
act as sources for the charge integrals.

For simplicity we focus on only one bound system, represented as a black hole, and
take the horizon to intersect the timelike infinity hyperboloid H at the origin ρ = 0. We
excise the point ρ = 0: i+ = H\{ρ = 0}. The horizon is a blow up of the point ρ = 0 as
schematically shown in figure 2. Having excised the point ρ = 0, the fields are all smooth
at timelike infinity. The considerations of section 4 can be carried over. The first variation
of the Iyer-Wald charges at timelike infinity vanishes

δQξ(i+) = 0. (6.1)

This is schematically shown in figure 3.
Let us comment on the general form of the solutions for ω, σ and relate it to the

Green’s function discussion of [53]. The supertranslation function ω and the field σ both
satisfy the equation (�− 3)f = 0. Expanding in spherical harmonics, we have

f(ρ, θ, ϕ) =
∞∑
l=0

l∑
m=−l

fl(ρ)Ylm(θ, ϕ). (6.2)

The equation for functions fl(ρ) admits two classes of solutions. The first set takes the form,

f
(I)
l (ρ) = ρl

cl
2F1

(
l − 1

2 ,
3 + l

2 ; 3
2 + l;−ρ2

)
, (6.3)
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⌃

J +

i+ [ J + [H+
H+

Figure 3. For a black hole formed by gravitational collapse, components of the boundary are J−,
J +, H+ and the points at infinity i−, i0, and i+. Since the first variation of global charges is
invariant under local deformations of the Cauchy surface Σ, one can deform Σ to J + ∪ i+ ∪ H+

in the far future. Then, δQξ(Σ) = δQξ(J +) + δQξ(i+) + δQξ(H+). With our boundary conditions
δQξ(i+) = 0.

where 2F1 is the standard hypergeometric function where cl = Γ(l+ 3
2 )

Γ(2+ l
2 )Γ( 3+l

2 ) is a convenient

normalisation. In the ρ→ 0 limit these solutions go as f (I)
l (ρ) ∼ 1

cl
ρl. In the ρ→∞ limit

they behave as f (I)
l (ρ) ∼ ρ. These functions correspond to supertranslations:

ω(ρ, θ, ϕ) =
∞∑
l=0

l∑
m=−l

clmf
(I)
l (ρ)Ylm(θ, ϕ). (6.4)

This can be seen as follows. For Minkowski space, in outgoing coordinates (u, r, θ, ϕ) =
(t− r, r, θ, ϕ), the time-translation takes the form,

∂u = ∂t = ∂τ

∂t
∂τ + ∂ρ

∂t
∂ρ =

√
1 + ρ2 ∂τ −

ρ
√

1 + ρ2

τ
∂ρ. (6.5)

In the τ → ∞ limit and then ρ → ∞ limit, ∂u ∼ ρ ∂τ . Thus the expected behaviour
of f(θ, ϕ)∂u is indeed the one captured by the supertranslations eq. (2.8)–eq. (2.9) with
ω(ρ, θ, ϕ) given in eq. (6.4). A general null infinity supertranslation f(θ, ϕ)∂u correspond to

f(θ, ϕ)∂u =
∞∑
l=0

l∑
m=−l

clmYlm(θ, ϕ)∂u. (6.6)
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This construction, from the function f(θ, ϕ) to ω(ρ, θ, ϕ) via eq. (6.4), is the same as the
Green’s function construction of reference [53].7

The second independent set of solutions for the functions fl(ρ) takes the form

f
(II)
l (ρ) = ρ−l−1

2F1

(
−1 + l

2 , 1−
l

2; 1
2 − l;−ρ

2
)
. (6.7)

In the ρ → 0 limit these solutions go as f (II)
l (ρ) ∼ ρ−l−1. Explicitly first few of these

functions are

f
(II)
0 (ρ) = ρ−1 + 2ρ (6.8)

f
(II)
1 (ρ) = ρ−2(1− 2ρ2)

√
1 + ρ2, (6.9)

f
(II)
2 (ρ) = ρ−3, (6.10)

etc. For l > 2, in the ρ → ∞ limit they behave as f (II)
l (ρ) ∼ const. ρ−3. Our σ for the

Schwarzschild solution matches with f (II)
0 (ρ). Motivated by the corresponding discussion

at spatial infinity, it is natural to speculate that the most general σ consists of the linear
sum of the functions f (II)

l (ρ)Ylm(θ, ϕ)

σ(ρ, θ, ϕ) =
∞∑
l=0

l∑
m=−l

dlmf
(II)
l (ρ)Ylm(θ, ϕ). (6.11)

Note that such a σ is singular at ρ = 0.

7 Conclusions

In this paper, we have initiated the study of supertranslations at timelike infinity. Largely
developing on the previous works at spatial infinity, we have proposed a definition of
asymptotic flatness at timelike infinity in four spacetime dimensions. We presented a
thorough study of the asymptotic equations of motion and the action of supertranslations
on asymptotic fields. We showed that the Lee-Wald symplectic form Ω(g, δ1g, δ2g) does
not get contributions from the future timelike infinity with our boundary conditions. As a
result, the “future charges” can be computed on any two-dimensional surface surrounding
the sources at timelike infinity. We presented expressions for supertranslation and Lorentz
charges. For general spacetimes we expect

future charges u→+∞←−−−− Bondi charges at J + u→−∞−−−−→ spatial infinity charges. (7.1)

Whether radiative spacetimes with non-trivial supertranslation charges exist that satisfy
this hierarchy is open to argument [9].

Our work offers several opportunities for future research. We list a few directions.
It is very much desirable to understand the relation between timelike infinity and null

infinity. We expect our charge expressions can be matched with appropriate expressions
for supertranslation and Lorentz charges at J +

+ (the future endpoint of the future null
infinity) following [23, 26].

7A proof can be explicitly written using the addition theorem of spherical harmonics.
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Can our boundary conditions we used to give a prescription for relating supertransla-
tions at future null infinity to supertranslations at the horizon, thereby making the general
idea mentioned in section 7 of [38] more precise? Note that this viewpoint differs from that
of [36] where global Bondi coordinates were used to link generators at the past null infinity
J − and the future horizon H+.

Finally, there are other classes of transformations, e.g., logarithmic translations, su-
perrotations, more general spi-supertranslations etc. that we have not considered in this
work. One would like to understand their action/role at timelike infinity. For much of
our non-linear analysis we used the boundary condition k = 0. Is it desirable to relax this
condition?

We hope to return to some of these problems in our future work.
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A Asymptotic form of the metric

We begin by considering a general class of spacetimes admitting an expansion at timelike
infinity of the form

gµν = ηµν +
m∑
n=1

`(n)
µν

(
xσ

τ

) 1
τn

+ · · · , (A.1)

where
τ2 = −ηµνxµxν , (A.2)

and where xµ are a set of Cartesian coordinates on flat spacetime at infinity. This class
of the spacetimes can be put in a more convenient form as in eq. (2.5)–eq. (2.7). In this
appendix we do so explicitly, following Beig and Schmidt [41]. The form eq. (2.5)–eq. (2.7)
is our starting point for defining asymptotically flat spacetimes at timelike infinity.

The ten functions in `
(n)
µν at any given order n are functions of the dimensionless

coordinate (xσ/τ). To avoid cumbersome notation, henceforth in all the expressions we
shall simply write `(n)

µν without mentioning its dependence on (xσ/τ).
Instead of the Cartesian coordinates xµ, it is more convenient to use (τ, φa) as a new

set of coordinates, with τ defined in eq. (A.2) and φa are coordinates on hyperboloid H.
For any set of φa we define functions ωµ(φa), such that,

ωµ(φa) = xµ

τ
. (A.3)

– 21 –



J
H
E
P
0
2
(
2
0
2
2
)
0
2
2

Using this relation we get,
dxµ = ωµdτ + τ(∂aωµ)dφa. (A.4)

Inserting the above equation in eq. (A.1) we obtain the following expression for the line
element,

ds2 = gµνdx
µdxν =

[
ηµν +

m∑
n=1

`(n)
µν

1
τn

+ · · ·
]
dxµdxν

=
[
ηµν +

m∑
n=1

`(n)
µν

1
τn

+ · · ·
]

(ωµdτ + τ(∂aωµ)dφa)
(
ωνdτ + τ(∂bων)dφb

)

=
[
ηµν +

m∑
n=1

`(n)
µν

1
τn

+ · · ·
]

×
[
ωµωνdτ2 + των(∂aωµ)dφadτ + τωµ(∂aων)dφadτ + τ2(∂aωµ)(∂bων)dφadφb

]
= −

[
−ηµνωµων −

m∑
n=1

`(n)
µν ω

µων
1
τn

+ · · ·
]
dτ2

+ 2τ
[
ηµνω

µ(∂aων) +
m∑
n=1

`(n)
µν ω

µ(∂aων) 1
τn

+ · · ·
]
dτdφa

+ τ2
[
ηµν(∂aωµ)(∂bων) +

m∑
n=1

`(n)
µν (∂aωµ)(∂bων) 1

τn
+ · · ·

]
dφadφb. (A.5)

Using ηµνωµων = −1 and ηµνω
µ(∂aων) = (1/2)∂a(ωµωµ) = 0, along with the following

definitions,

σ̄(n)(φc) ≡ −`(n)
µν ω

µων , (A.6)

A(n)
a (φc) ≡ `(n)

µν ω
µ(∂aων) , (A.7)

h
(n)
ab (φc) ≡ `(n)

µν (∂aωµ)(∂bων) (A.8)

h
(0)
ab (φc) ≡ ηµν(∂aωµ)(∂bων) , (A.9)

the asymptotic form of the line element at timelike infinity takes the form,

ds2 = −
[
1 +

m∑
n=1

σ̄(n)(φc)
τn

+O
(
τ−m−1

)]
dτ2 + 2τ

[
m∑
n=1

A
(n)
a (φc)
τn

+O
(
τ−m−1

)]
dτdφa

+ τ2
[
h

(0)
ab +

m∑
n=1

h
(n)
ab (φc)
τn

+O
(
τ−m−1

)]
dφadφb , (A.10)

= −
[
1 +

m∑
n=1

σ(n)(φc)
τn

+O
(
τ−m−1

)]2

dτ2 + 2τ
[
m∑
n=1

A
(n)
a (φc)
τn

+O
(
τ−m−1

)]
dτdφa

+ τ2
[
h

(0)
ab +

m∑
n=1

h
(n)
ab (φc)
τn

+O
(
τ−m−1

)]
dφadφb . (A.11)

Here, σ(n)(φc) are functions of σ̄(n)(φc), e.g., σ(1) = (σ̄(1)/2).
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Next we show that there exist a coordinate transformation that brings the metric in
eq. (A.11) to a form where,

σ(n)(φc) = 0 , for n ≥ 2, (A.12)

A(n)
a (φc) = 0, for n ≥ 1. (A.13)

We achieve this order by order. At first order, we take

φa = φ̄a + G(1)a(φ̄b)
τ̄

, (A.14)

τ = τ̄ . (A.15)

This yields,

dφa = dφ̄a − G(1)a

τ̄2 dτ̄ + 1
τ̄

(
∂bG

(1)a
)
dφ̄b, (A.16)

and
σ(n)(φc) = σ(n)(φ̄c) + G(1)a(φ̄b)

τ̄
∂aσ

(n) +O(τ̄−2). (A.17)

In these new coordinates, line element eq. (A.11) takes the form (keeping track of all the
first order terms),

ds2 = −
[
1 + 2σ(1)(φ̄c)

τ̄
+O

(
τ̄−2)] dτ̄2 + 2τ̄

[
A

(1)
a (φ̄c)
τ̄

+O
(
τ̄−2)] dτ̄dφ̄a

+ τ̄2

[
h

(0)
ab +

h
(1)
ab (φ̄c)
τ̄

+O
(
τ−2)] dφ̄adφ̄b− 2τ̄2

[
h

(0)
ab +

h
(1)
ab (φ̄c)
τ̄

+O
(
τ−2)] G(1)a

τ̄2 dτ̄dφ̄b

+ 2τ̄2

[
h

(0)
ab +

h
(1)
ab (φ̄c)
τ̄

+O
(
τ−2)] 1

τ̄

(
∂cG

(1)a
)
dφ̄cdφ̄b

= −
[
1 + 2σ(1)(φ̄c)

τ̄
+O

(
τ̄−2)] dτ̄2 + 2

[
A(1)
a (φ̄c)−h(0)

ab G
(1)b +O

(
τ̄−1)] dτ̄dφ̄a

+ τ̄2

[
h

(0)
ab +

h
(1)
ab (φ̄c)
τ̄

+ 2
τ̄
h

(0)
cb

(
∂aG

(1)c
)

+O
(
τ−2)] dφ̄adφ̄b . (A.18)

Thus setting,

A(1)
a = h

(0)
ab G

(1)b , (A.19)

the line element takes the requisite form at the first order in the inverse powers of τ .
Keeping track of the second order terms, we have

ds2 = −
[
1 + 2σ(1)(φc)

τ
+ (σ1)2 + 2σ(2)

τ2 +O
(
τ−3

)]
dτ2 + 2τ

[
A

(2)
a (φc)
τ2 +O

(
τ−3

)]
dτdφa

+ τ2
[
h

(0)
ab + h

(1)
ab (φc)
τ

+ h
(2)
ab (φc)
τ2 +O

(
τ−3

)]
dφadφb . (A.20)
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The following coordinate transformation,

τ = τ̄ + F (2)(φc)
τ̄

, (A.21)

φ̄a = φa, (A.22)

yields

ds2 = −
[
1 + 2σ(1)

τ̄
+ (σ1)2 + 2σ(2)

τ̄2 − 2F (2)

τ̄2 +O
(
τ̄−3

)]
dτ̄2 + 2τ̄

[
A

(2)
a − ∂aF (2)

τ̄2 +O
(
τ̄−3

)]
dτ̄dφa

+ τ̄2
[
h

(0)
ab + h

(1)
ab

τ̄
+ h

(2)
ab

τ̄2 + 2F (2)

τ̄2 h
(0)
ab +O

(
τ̄−3

)]
dφadφb .

(A.23)
Thus, no (1/τ̄) term has been generated in the coefficient of the dτ̄dφa term and hence the
condition A(1)

a = 0 continues to hold. Furthermore, if we choose,

2F (2) = 2σ(2) , (A.24)

then the (1/τ̄2) term in the coefficient of the dτ̄2 in the metric can be set to (σ1)2. Thus
the modified metric has only [(σ1)2/τ̄2] term in the coefficient of the dτ̄2 and no (1/τ̄) term
in the coefficient of the dτ̄dφa. We can now use,

φa = φ̄a + G(2)a(φ̄b)
τ̄2 , (A.25)

τ = τ̄ , (A.26)

and choose the function G(2)a(φ̄b), such that A(2)
a h(0)ab = G(2)b and hence the (1/τ̄2) term

in the coefficient of the dτ̄dφa can be made to vanishes. Next, setting

τ = τ̄ + F (3)(φc)
τ̄2 (A.27)

we can eliminate (1/τ̄3) term in the coefficient of the dτ̄2.
Proceeding in an identical manner, we can eliminate all terms in the coefficient of

dτ̄dφa and all terms beyond τ̄−2 in the coefficient of dτ̄2. Thus, metric eq. (A.11) can be
reduced to the one satisfying conditions eq. (A.12)–eq. (A.13). Thereby, we arrive at our
final form eq. (2.5)–eq. (2.7).

B Action of supertranslation on asymptotic fields

We apply the following transformation,

τ = τ̄ − ω(φ̄a) + 1
τ̄
F (2)(φ̄a) +O

( 1
τ̄2

)
, (B.1)

φa = φ̄a + 1
τ̄
h(0)ab∂bω(φ̄c) + 1

τ̄2G
(2) a(φ̄c) +O

( 1
τ̄3

)
. (B.2)
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We obtain,

dτ =
[
1− 1

τ̄2F
(2) +O

( 1
τ̄3

)]
dτ̄ +

[
−∂aω + 1

τ̄
∂aF

(2) +O
( 1
τ̄2

)]
dφ̄a , (B.3)

dφa =
[
δac + 1

τ̄
∂c
(
h(0)ab∂bω

)
+ 1
τ̄2

(
∂cG

(2)a
)

+O
( 1
τ̄3

)]
dφ̄c

+
[
− 1
τ̄2

(
h(0)ab∂bω

)
− 2
τ̄3G

(2)a +O
( 1
τ̄4

)]
dτ̄ . (B.4)

The following relations are also obtained,

σ(φa) = σ(φ̄a) + 1
τ̄
h(0)ab∂bω∂aσ +O

( 1
τ̄2

)
, (B.5)

h
(0)
ab (φc) = h

(0)
ab (φ̄c) + 1

τ̄
h(0)cd∂dω

(
∂ch

(0)
ab

)
+ 1
τ̄2

[
G(2) c

(
∂ch

(0)
ab

)
+ 1

2
(
h(0)cp∂pω

) (
h(0)dq∂qω

)
∂c∂dh

(0)
ab

]
+O

( 1
τ̄3

)
, (B.6)

h
(1)
ab (φc) = h

(1)
ab (φ̄c) + 1

τ̄
h(0)cd∂dω

(
∂ch

(1)
ab

)
+O

( 1
τ̄2

)
. (B.7)

Inserting these expressions in the full metric we can read the changes in the first order
fields,

σ → σ (B.8)

h
(1)
ab → h

(1)
ab − 2ωh(0)

ab + h(0)cd∂dω
(
∂ch

(0)
ab

)
+ h

(0)
pb ∂a

(
h(0)pq∂qω

)
+ h(0)

pa ∂b
(
h(0)pq∂qω

)
.

(B.9)

This last expression can be more conveniently written as,

h
(1)
ab → h

(1)
ab + 2DaDbω − 2ωh(0)

ab . (B.10)

In order to preserve the original form of the metric, we must choose,

F (2) = σω + h(0)ab∂bω∂aσ −
1
2h

(0)
ab

(
h(0)ac∂cω

) (
h(0)bd∂dω

)
, (B.11)

2G(2)
a = −∂aF (2) + 2σ∂aω − (∂bω) ∂a

(
h(0)bp∂pω

)
+ 2ω∂aω − h(1)

ab ∂
bω − ∂bω∂cω

(
∂ch

(0)
ab

)
.

(B.12)

This results in the transformation for h(2)
ab as

h
(2)
ab → h

(2)
ab −DaωDbω +

[
−ωh(1)

ab +DcωDch(1)
ab + 2h(1)c

(a Db)Dcω
]

+
(
2F (2) + ω2

)
h

(0)
ab

+ 2D(aG
(2)
b) − 4ω DaDbω +DaDcω DbDcω + 2D(aDcω Ddω Γ(0)

b)cd

+Dcω Ddω
(
DcΓ(0)

(ba)d + Γ(0)p
cd Γ(0)

(ba)p − Γ(0)p
(ac Γ(0)

b)dp

)
, (B.13)

where we have used the following notation

DcΓ(0)
pqr := ∂cΓ(0)

pqr − Γ(0)i
cp Γ(0)

iqr − Γ(0)i
cq Γ(0)

pir − Γ(0)i
cr Γ(0)

pqi , (B.14)
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and the following results

Γ(0)
qab + Γ(0)

aqb = ∂bh
(0)
qa , (B.15)

Γ(0)
cad + Γ(0)

dca = ∂ah
(0)
cd , (B.16)

∂pω ∂ah
(0)cp + h(0)cp∂a∂pω = DaDcω −Ddω Γc (0)

ad . (B.17)

Next we simplify eq. (B.13). Defining φa = Daφ, for any scalar function φ, we obtain,

δωh
(2)
ab =− ωaωb − ωkab + 2σωh(0)

ab + ωcDc kab + ωcb kac + ωca kbc − 2σcωch(0)
ab − 4σωab

+
(
2σω + 2ωcσc − ωcωc + ω2

)
h

(0)
ab − 4ωωab + ωcaωbc + ωcaω

dΓ(0)
bcd + ωcbω

dΓ(0)
acd

− 1
2 (DaDb +DbDa)F (2) + σaωb + 2σωab + σbωa

− 1
2ω

c (Da kbc) + σaωb −
1
2kbcω

c
a + 2σωab −

1
2ω

c (Db kac) + σbωa −
1
2 kacω

c
b

− ωacωcb −
1
2ωc (DaDb +DbDa)ωc + 2ωaωb + 2ωωab

− 1
2ω

pωq
(
DaΓ(0)

bpq +DbΓ(0)
apq

)
− ωpaωqΓ

(0)
bpq − ω

p
bω

qΓ(0)
apq

+ ωcωd
(
DcΓ(0)

(ba)d + Γ(0) p
cd Γ(0)

(ba)p − Γ(0) p
(ac Γ(0)

b)dp

)
. (B.18)

We further obtain,

(DaDb +DbDa)F (2) = 2σabω + 2ωaσb + 2σaωb + 2σωab
+ ωc (DaDb +DbDa)σc + 2σcaωcb + 2σcbωca + σc (DaDb +DbDa)ωc

− ωacωcb − ωbcωca − ωc (DaDb +DbDa)ωc. (B.19)

Combining these expressions we obtain,

δωh
(2)
ab =− ω kab + ωcDc kab + 1

2ω
c
bkac + 1

2ω
c
a kbc −

1
2ω

c (Da kbc)−
1
2ω

c (Db kac)

+ 2σωh(0)
ab + σ(aωb) − σωab − σc(aωcb) − σcω

c
(ab) + (σ ↔ ω)

+ ωaωb +
(
−ωcωc + ω2

)
h

(0)
ab − 2ωωab + ωcaωbc

+ 1
2ω

cωd
[ (
DcΓ(0)

bad −DaΓ
(0)
bcd − Γ(0) p

ac Γ(0)
bdp + Γ(0) p

cd Γ(0)
bap

)
+
(
DcΓ(0)

abd −DbΓ
(0)
acd + Γ(0) p

cd Γ(0)
abp − Γ(0) p

bc Γ(0)
adp

) ]
. (B.20)

Using

DcΓ(0)
bad −DaΓ

(0)
bcd − Γ(0) p

ac Γ(0)
bdp + Γ(0) p

cd Γ(0)
bap = R

(0)
bdca = −h(0)

bc h
(0)
da + h

(0)
ba h

(0)
dc , (B.21)

DcΓ(0)
abd −DbΓ

(0)
acd + Γ(0) p

cd Γ(0)
abp − Γ(0) p

bc Γ(0)
adp = R

(0)
adcb = −h(0)

ac h
(0)
bd + h

(0)
ab h

(0)
cd , (B.22)
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we obtain our final form for δωh(2)
ab ,

δωh
(2)
ab =− ω kab + ωcDc kab + 1

2ω
c
b kac + 1

2ω
c
a kbc −

1
2ω

c (Da kbc)−
1
2ω

c (Db kac)

+ 2σωh(0)
ab + σ(aωb) − σωab − σc(aωcb) − σcω

c
(ab) + (σ ↔ ω)

+ ω2h
(0)
ab − 2ωωab + ωcaωbc. (B.23)

C Expansion of the equations of motion

Given the previous series of coordinate transformations, we arrive at the following form of
the asymptotic metric, near timelike infinity,

ds2 = −N2dτ2 + habdφ
adφb, (C.1)

where

N = 1 + σ(φa)
τ

, (C.2)

hab = τ2
[
h

(0)
ab (φc) + 1

τ
h

(1)
ab (φc) + 1

τ2h
(2)
ab (φc) +O

( 1
τ3

)]
. (C.3)

The future directed unit normal vector to a τ = constant surface is,

nµ = −N∇µτ, nµ = 1
N
δµτ . (C.4)

The induced metric on τ = constant hypersurface is hab, while the inverse spatial metric
has the following expansion,

hab = 1
τ2h

(0)ab − 1
τ3h

(1)ab − 1
τ4

(
h(2)ab − h(1)a

c h(1)cb
)

+O
( 1
τ5

)
. (C.5)

For any spatial tensor T (n)
ab at order n in the expansion, we raise and lower indices with

h
(0)
ab , for example,

T (n)ab = h(0)ach(0)bdT
(n)
cd . (C.6)

For a general spatial tensor Tab, we have T ab = hachbdTcd.

The extrinsic curvature Kab. The extrinsic curvature of τ = constant hypersurface
takes the form,

Kab = 1
2N ∂τhab = τh

(0)
ab +

(1
2h

(1)
ab − σh

(0)
ab

)
+ 1
τ

(
σ2h

(0)
ab −

σ

2h
(1)
ab

)
+O

( 1
τ2

)
. (C.7)

Upon raising one and two indices respectively we have

Ka
b = hacKcb = 1

τ
δab + 1

τ2

(
−1

2h
(1)a
b − σδab

)
+ 1
τ3

(
σ2δab + σ

2h
(1)a
b − h(2)a

b + 1
2h

(1)aph
(1)
pb

)
+O

( 1
τ4

)
(C.8)

Kab = hacKb
c = 1

τ3h
(0)ab + 1

τ4

(
−3

2h
(1)ab − σh(0)ab

)
+ 1
τ5

(
−2h(2)ab + 2h(1)aph(1)b

p + 3σ
2 h(1)ab + σ2h

(0)
ab

)
+O

( 1
τ6

)
. (C.9)

– 27 –



J
H
E
P
0
2
(
2
0
2
2
)
0
2
2

The trace of the extrinsic curvature becomes,

K = δbaK
a
b = 3

τ
+ 1
τ2

(
−1

2h
(1) − 3σ

)
+ 1
τ3

(
3σ2 + σ

2h
(1) − h(2) + 1

2h
(1)abh

(1)
ab

)
+O

( 1
τ4

)
.

(C.10)

Asymptotic expansion of intrinsic geometry. For any perturbed symmetric, spatial
tensor S(n)

ab , we note the following identity

−∂dS
(n)
bc + ∂bS

(n)
dc + ∂cS

(n)
bd = −DdS

(n)
bc +DbS

(n)
dc +DcS(n)

bd + 2Γ(0)p
bc S

(n)
pd , (C.11)

where D denotes covariant derivative compatible with h(0)
ab on H. Using the above identity,

the asymptotic expansion of the Christoffel symbol takes the form,

Γabc = 1
2h

ad (−∂dhbc + ∂bhdc + ∂chbd) (C.12)

≡ Γ(0)a
bc + 1

τ
Γ(1)a
bc + 1

τ2 Γ(2)a
bc +O

( 1
τ3

)
, (C.13)

where

Γ(1)a
bc = −h(1)a

d Γ(0)d
bc + 1

2h
(0)ad

(
−Ddh

(1)
bc +Dbh

(1)
dc +Dch(1)

bd + 2Γ(0)p
bc h

(1)
pd

)
, (C.14)

Γ(2)a
bc = −

(
h

(2)a
d − h(1)a

p h
(1)p
d

)
Γ(0)d
bc + 1

2h
(0)ad

(
−Ddh

(2)
bc +Dbh

(2)
dc +Dch(2)

bd + 2Γ(0)p
bc h

(2)
pd

)
− 1

2h
(1)ad

(
−Ddh

(1)
bc +Dbh

(1)
dc +Dch(1)

bd + 2Γ(0)p
bc h

(1)
pd

)
. (C.15)

Here, Γ(0)a
bc is the non-tensorial Christoffel symbol associated with the zeroth order spatial

metric h(0)
ab . The other expansion coefficients are tensors and have the following simplified

expressions,

Γ(1)a
bc = 1

2
(
−Dah(1)

bc +Dbh(1)a
c +Dch(1)a

b

)
, (C.16)

Γ(2)a
bc = 1

2
(
−Dah(2)

bc +Dbh(2)a
c +Dch(2)a

b

)
− 1

2h
(1)ad

(
−Ddh

(1)
bc +Dbh

(1)
dc +Dch(1)

bd

)
.

(C.17)

The three-dimensional Ricci tensor takes the form,

Rab = ∂cΓcab − ∂bΓcca + ΓcabΓdcd − ΓcadΓdbc

≡ R(0)
ab + 1

τ
R(1)
ab + 1

τ2R
(2)
ab +O

( 1
τ3

)
. (C.18)
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Here, R(0)
ab is the Ricci tensor associated with the spatial metric h(0)

ab , while the other two
expansion coefficients are,

R(1)
ab = 1

2
(
DcDah(1)c

b +DcDbh(1)c
a −DcDch(1)

ab −DaDbh
(1)
)
, (C.19)

R(2)
ab = 1

2
(
DcDah(2)c

b +DcDbh(2)c
a −DcDch(2)

ab −DaDbh
(2)
)

+ 1
2Db

(
h(1)cdDah(1)

cd

)
− 1

2Dc
[
h(1)cd

(
−Ddh

(1)
ab +Dbh

(1)
da +Dah(1)

bd

)]
+ 1

4Dch
(1)
(
−Dch(1)

ba +Dbh(1)c
a +Dah(1)c

b

)
− 1

4Dah
(1)c
d Dbh

(1)d
c + 1

2D
ch

(1)
adDch

(1)d
b − 1

2D
ch

(1)
adD

dh
(1)
bc . (C.20)

These expressions will be used extensively in what follows.

The Hamiltonian constraint. The Hamiltonian constraint takes the form,

H ≡ 1
N
∂τK +KabK

ab − 1
N
habDaDbN = 0, (C.21)

where Da is the covariant derivative compatible with hab. Expanding out each of these
terms we obtain,

H = H(0)

τ2 + H(1)

τ3 + H(2)

τ4 +O
( 1
τ5

)
. (C.22)

where

H(0) = 0, (C.23)

H(1) = (−� + 3)σ = 0, (C.24)

H(2) = h(2) − 9σ2 − 1
4h

(1)abh
(1)
ab −

1
2σh

(1) + h(1)abDaDbσ + σ�σ + h(0)abΓ(1)c
ab Dcσ = 0.

(C.25)

Using, kab = h
(1)
ab + 2σh(0)

ab , cf. eq. (2.15), the second order coefficient can be simplified,
yielding,

H(2) = h(2) − 12σ2 − 1
4k

abkab + kabDaDbσ +DcσDcσ

+ 1
2σk − σ (�− 3)σ − 1

2Dcσ (Dck) +DcσDakac . (C.26)

Now upon using our boundary condition k = 0 and lower order equations of motion it
simplifies to

H(2) = h(2) − 12σ2 − 1
4k

abkab + kabDaDbσ +DcσDcσ = 0. (C.27)
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The momentum constraint. The momentum constraint Ha = 0 takes the form,

Ha ≡ DbK
b
a −DaK = 0. (C.28)

This can be expanded as,

Ha = 1
τ
H(0)
a + 1

τ2H
(1)
a + 1

τ3H
(2)
a + . . . (C.29)

where

H(0)
a = 0 (C.30)

H(1)
a = − 1

2Db
(
kba − kδba

)
(C.31)

H(2)
a = −Dbh(2)b

a + 1
2k

bp (Dbkpa) + 1
2kpa

(
Dbkbp

)
− 3

2σ
(
Dbkba

)
− 1

4k
c
a (Dck) + σ

2 (Dak)

+Da
[
h(2) − 3

8k
bckbc + σk − 4σ2

]
. (C.32)

Using second order Hamiltonian constraint H(2) = 0 and boundary condition k = 0,
together with first order equations of motion, we get

H(2)
a = −Dbh(2)b

a + 1
2k

bp (Dbkpa) +Da
(
−1

8k
bckbc + 8σ2 − kabDaDbσ −DcσDcσ

)
= 0.

(C.33)

Asymptotic expansion of the evolution equation. The evolution equation of the
spatial metric hab takes the following form,

Hab := Rab + 1
N
∂τKab − 2KacK

c
b +KKab −

1
N
DaDbN = 0. (C.34)

Expanding in powers of 1
τ we have,

Hab ≡ H
(0)
ab + 1

τ
H

(1)
ab + 1

τ2H
(2)
ab + . . . , (C.35)

where

H
(0)
ab = R(0)

ab + 2h(0)
ab = 0, (C.36)

H
(1)
ab = −1

2 (� + 3) kab = 0, (C.37)

H
(2)
ab = −1

2 (� + 2)h(2)
ab + T

(kk)
ab + T

(kσ)
ab + T

(σσ)
ab = 0, (C.38)
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and where the non-linear terms are

T
(kk)
ab = 1

2

[(
Dckd(aDb)kcd

)
− 1

2Dak
cdDbkcd + (Dckad)

(
Dckdb

)
− (Dckad)

(
Ddkbc

)
− kpakpb + kcd

(
DcDdkab −DcD(akb)d

)]
, (C.39)

T
(kσ)
ab = 1

2
[
−DaDb

(
kcdDcDdσ

)
+ 4Dcσ

(
−Dckab +D(akb)c

)
− 4σkab

+
(
−2h(0)

ab k
cdDcDdσ + 4kcdh(0)

d(aDb)Dcσ
)]
, (C.40)

T
(σσ)
ab = 1

2
[
DaDb

(
5σ2 −DcσDcσ

)
+ h

(0)
ab

(
18σ2 + 4DcσDcσ

)
+ 4σDaDbσ

]
, (C.41)

where we have used the boundary condition k = 0 and the first order equations of motion.

D A consistency check

In this appendix we perform a non-trivial consistency check on our asymptotic equations
of motion and expression eq. (B.23) for δωh(2)

ab . We consider doing a supertranslation on
flat spacetime. Thus to begin with we have (for flat spacetime)

σ = 0, h
(1)
ab = 0, h

(2)
ab = 0. (D.1)

We note that σ = 0 does not change under supertranslations. Thus for the supertranslated
spacetime too σ = 0 and from eq. (B.10) it follows that

h
(1)
ab = δωh

(1)
ab = kab = −2ωh(0)

ab + 2ωab. (D.2)

From eq. (B.23) it follows that

h
(2)
ab = ω2h

(0)
ab − 2ωωab + ωcaωbc. (D.3)

We check that expression eq. (D.2) for kab and eq. (D.3) for h(2)
ab are consistent with second

order equations of motion.
Recall that �ω = 3ω, and also we note the following useful relation,

�ωa = DbDbDaω = DbDaDbω = [Db,Da]Dbω +Da�ω

= R
(0)b
cbaD

cω + 3ωa = −2h(0)
ca ω

c + 3ωa = ωa . (D.4)

Hamiltonian constraint. The Hamiltonian constraint eq. (C.27) becomes,

h(2) = 1
4kabk

ab. (D.5)

Given expression eq. (D.2) for kab, we have

1
4kabk

ab = 3ω2 − 2ω�ω + ωabω
ab = −3ω2 + ωabω

ab, (D.6)

which matches with the trace of eq. (D.3), viz.,

h(2) = 3ω2 − 2ω�ω + ωabωab = −3ω2 + ωabωab. (D.7)
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Momentum constraint. The momentum constraint presented in eq. (C.33) becomes,

Dbh(2)
ab = 1

2k
bpDbkpa −

1
4k

bcDakbc. (D.8)

On the one hand, the right hand side of eq. (D.8) is
1
2k

bpDbkpa −
1
4k

bcDakbc = −2ωbωba + ωbcDbDcωa + 3ωωa − ωbcR(0)
cdabω

d

= −2ωbωba + ωbcDbDcωa + 3ωωa − ωbc
(
−h(0)

ac h
(0)
bd + h

(0)
bc h

(0)
ad

)
ωd

= −ωbωba + ωbcDbDcωa. (D.9)

On the other hand, the divergence of eq. (D.3) yields for the left hand side of eq. (D.8)

Dbh(2)
ab = Db

(
ω2h

(0)
ab − 2ωωab + ωcaωcb

)
= 2ωωa − 2ωbωab − 2ω�ωa + ω cb

a ωcb + ωca�ωc

= −ωbωab + ω cb
a ωcb, (D.10)

which matches with eq. (D.9).

Evolution equation. The evolution equation as presented in eq. (C.38) is decomposed
into several terms,

(� + 2)h(2)
ab = 1

2

Dc kdaDb kcd︸ ︷︷ ︸
Term 1

+Dck(1)
db Da k

cd︸ ︷︷ ︸
Term 2

−1
2Da k

cdDb kcd︸ ︷︷ ︸
Term 3

+ (Dc kad)
(
Dc kdb

)
︸ ︷︷ ︸

Term 4

− (Dc kad)
(
Dd kbc

)
︸ ︷︷ ︸

Term 5

− kpa kpb︸ ︷︷ ︸
Term 6

+

kcdDcDd kab︸ ︷︷ ︸
Term 7

−
1

2 k
cdDcDa kbd︸ ︷︷ ︸

Term 8

+1
2 k

cdDcDb kad︸ ︷︷ ︸
Term 9

 . (D.11)

We first evaluate the right hand side using eq. (D.2) and then evaluate the left hand side
using eq. (D.3) and show the match.

We obtain the following expression for various terms on the right hand side. For
“Term 1” we have,

1
2Dc kdaDbk

cd = 2Dc
(
−ωh(0)

da + ωda
)
Db
(
−ωh(0)cd + ωcd

)
= −2ωc[Db,Dc]ωa − 2ωcωabc + 2ωadc[Db,Dc]ωd + 2ωadcω dc

b

= 2h(0)
ab (ωcωc)− 4ωcωabc + 2ωadcω dc

b , (D.12)

while “Term 2” follows from interchange of (a, b) in “Term 1”. For “Term 3” we have,
1
2Dak

cdDb kcd = 2Da
(
−ωh(0)cd + ωcd

)
Db
(
−ωh(0)

cd + ωcd
)

= −6ωaωb + 2
{

[Da,Dc]ωd + ω dc
a

}
{[Db,Dc]ωd + ωbdc}

= 2ωcωch(0)
ab − 4ωcωabc + 2ωadcω dc

b . (D.13)
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For “Term 4” we have,

(Dckad)
(
Dckdb

)
= 4Dc

(
−ωh(0)

ad + ωad
)
D(0)
c

(
−ωδdb + ω d

b

)
= 4ωcωch(0)

ab − 8ωcωabc + 4ωadcω dc
b . (D.14)

For “Term 5” we have,

(Dc kad)
(
Dd kbc

)
=4Dc

(
−ωh(0)

ad +ωad

)
Dd
(
−ωh(0)

bc +ωbc

)
=4ωaωb− 4ωc[Db,Dc]ωa− 8ωcωabc− 4ωc[Da,Dc]ωb + 4[Dc,Dd]ωaω cd

b + 4ωacdω cd
b

=−4ωaωb + 8ωcωch(0)
ab − 12ωcωabc + 4ωacdω cd

b + 4ωcωbca
=−4ωaωb + 8ωcωch(0)

ab − 8ωcωabc + 4ωacdω cd
b + 4ωc[Da,Dc]ωb

=4ωcωch(0)
ab − 8ωcωabc + 4ωacdω cd

b . (D.15)

For “Term 6” we have,

kpa kpb = 4 (−ωδpa + ωpa)
(
−ωh(0)

pb + ωpb
)

= 4ω2h
(0)
ab − 8ωωab + 4ωpaωpb . (D.16)

For “Term 7” we have,

kcdDcDd kab = 4
(
−ωh(0)cd + ωcd

)
DcDd

(
−ωh(0)

ab + ωab
)

= 12ω2h
(0)
ab − 4ωcdωcdh

(0)
ab − 4ω�ωab + 4ωcdωabdc , (D.17)

and finally for “Term 8” we have,

1
2k

cdDcDa kbd = 2
(
−ωh(0)cd +ωcd

)
DcDa

(
−ωh(0)

db +ωbd
)

= 2ωωab− 2ωacωcb − 2ωh(0)cdDc {[Da,Dd]ωb}− 2ω�ωab + 2ωcdωbadc + 2ωcdDc {[Da,Dd]ωb}

= 6ω2h
(0)
ab − 2ω�ωab + 2ωcdωbadc− 2ωcdωcdh

(0)
ab .

(D.18)
“Term 9” is obtained by interchanging (a, b) in “Term 8”. Collecting all these expressions
we get,

(� + 2)h(2)
ab = −4ω2h

(0)
ab + 8ωωab + 2h(0)

ab (ωcωc)− 4ωcaωcb − 4ωcωabc + 2ωadcω dc
b . (D.19)

On the other hand, using expression eq. (D.3) for h(2)
ab we obtain,

(� + 2)h(2)
ab = 2ω2h

(0)
ab − 4ωωab + 2ωcaωcb + h

(0)
ab D

cDcω2 − 2DcDc (ωωab) +DcDc
(
ωdaωdb

)
= 8ω2h

(0)
ab − 10ωωab + 2h(0)

ab (ωcωc) + 2ωcaωcb − 4ωcωabc + 2ωacdω cd
b

+ ωcb�ω
c
a + ωca�ωcb − 2ω�ωab . (D.20)
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We now have the following identity,

�ωab = DcDcDaDbω

= Dc
(
R

(0)
bpcaω

p
)

+DcDaDbωc

=
(
−h(0)

bc h
(0)
pa + h

(0)
ba h

(0)
pc

)
ωpc + [Dc,Da]Dbωc +DaDcDbωc

= −ωab + h
(0)
ab �ω +R

(0)
bpcaω

cp +R(0)
pa ω

p
b +Da [Dc,Db]ωc +DaDb�ω

= −ωab + 3ωh(0)
ab +

(
−h(0)

bc h
(0)
pa + h

(0)
ba h

(0)
pc

)
ωcp − 2ωab +R

(0)
pb ω

p
a + 3ωab

= −3ωab + 6ωh(0)
ab . (D.21)

Thus we obtain,

(� + 2)h(2)
ab = 8ω2h

(0)
ab − 10ωωab + 2h(0)

ab (ωcωc) + 2ωcaωcb − 4ωcωabc + 2ωacdω cd
b

+ ωcb (−3ωca + 6ωδca) + ωca

(
−3ωcb + 6ωh(0)

cb

)
− 2ω

(
−3ωab + 6ωh(0)

ab

)
= − 4ω2h

(0)
ab + 8ωωab + 2h(0)

ab (ωcωc)− 4ωcaωcb − 4ωcωabc + 2ωacdω cd
b , (D.22)

which matches with eq. (D.19). A similar calculation at spatial infinity was done in [47].

E Expansion of the Weyl tensor

In four spacetime dimensions, the Weyl tensor expressed in terms of the Riemann tensor,
Ricci tensor and Ricci scalar takes the form,

Wαβµν = Rαβµν −
1
2 (gαµRβν +Rαµgβν − gανRβµ −Rανgβµ) + R

6 (gαµgβν − gανgβµ) .

(E.1)

Let (τ, φa) be the four-dimensional spacetime coordinates associated to the 3+1 split. Then,
for a general set of spacetime coordinates xµ = xµ(τ, φa) we define

eµa = ∂xµ

∂φa
. (E.2)

The vectors eµa with {a = 1, 2, 3} are tangent to the τ = constant hypersurface. The
projected electric part of the Weyl tensor on τ = constant hypersurface is defined as,

Eab = Wαβµνe
α
an

βeµb n
ν . (E.3)

For vacuum spacetimes, with Rαβ = 0 = R, it simplifies to,

Eab = Rαβµνe
α
an

βeµb n
ν = −£nKab +KacK

c
b +N−1DaDbN , (E.4)

where £n is the Lie-derivative with respect to the unit normal eq. (C.4). We have used
the fact that τ = constant surface is spacelike.
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The projected magnetic part of the Weyl tensor is defined as,

Bab = 1
2
(
εαβρσW

ρσ
µν

)
eαan

βeµb n
ν

= 1
2
(
eαan

βεαβρσ
)
gργgσδWγδµνe

µ
b n

ν

= 1
2
(
eαan

βεαβρσ
)

(hργ + εnρnγ)
(
hσδ + εnσnδ

)
Wγδµνe

µ
b n

ν

= 1
2
(
eαan

βεαβρσ
) (
hργhσδWγδµνe

µ
b n

ν
)
. (E.5)

For vacuum spacetimes,

Bab = 1
2
(
eαan

βεαβρσ
) (
hργhσδRγδµνe

µ
b n

ν
)

= −1
2εacd

(
DcKd

b −DdKc
b

)
= −εacdDcKd

b .

(E.6)

Note that we have used the result, εραβµnρ = εabce
a
αe
b
βe
c
µ, where εabc is the three-dimensional

Levi-Civita tensor. In what follows we will expand both the electric and magnetic parts of
the Weyl tensor.

Expansion of the electric part of the Weyl tensor. Given the expansions for the
extrinsic curvature components and the lapse function N in powers of 1/τ , we can obtain
the expansion of the electric part of the Weyl tensor. A calculation gives,

Eab ≡
1
τ
E

(1)
ab + 1

τ2E
(2)
ab + · · · (E.7)

where the zeroth order expansion coefficient identically vanishes and the first order expan-
sion coefficient is,

E
(1)
ab = −σh(0)

ab +DaDbσ, (E.8)

while the second order expansion coefficient is,

E
(2)
ab = 3σ2h

(0)
ab − h

(2)
ab + 1

4h
(1)p
a h

(1)
pb − σDaDbσ − Γ(1)c

ab Dcσ −
σ

2h
(1)
ab

= − h(2)
ab + 5σ2h

(0)
ab + 1

4k
p
akpb − σkab −

σ

2 kab − σDaDbσ

− 1
2 (−Dc kab +Dakcb +Dbkca)Dcσ + 2DaσDbσ − h

(0)
ab DcσD

cσ. (E.9)

For the first order term, we have the following properties,

E
(1)
ab = E

(1)
ba , (symmetric) (E.10)

E(1)a
a = −3σ + �σ = 0, (traceless) (E.11)

DbE(1)b
a = 0. (divergence-free) . (E.12)
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We consider the following combination at the second order

E
(2)
ab − σE

(1)
ab = − h(2)

ab + 6σ2h
(0)
ab − 2σDaDbσ + 2DaσDbσ − h

(0)
ab DcσD

cσ

− 1
2 (−Dckab +Dakcb +Dbkca)Dcσ + 1

4k
p
akpb −

3σ
2 kab (E.13)

For kab = 0,

E
(2)
ab − σE

(1)
ab = −h(2)

ab + 6σ2h
(0)
ab − 2σDaDbσ + 2DaσDbσ − h

(0)
ab DcσD

cσ , (E.14)

is also symmetric, traceless, and divergence free upon using second order equations of
motion. The trace and divergence equations for h(2)

ab can equivalently be thought of as
tracefree and divergence free conditions for E(2)

ab − σE
(1)
ab .

Expansion of the magnetic part of the Weyl tensor. We now compute the expan-
sion of the magnetic part of the Weyl tensor starting from eq. (E.6),

Bab = −εacdhcmDmK
d
b ≡

1
τ
B

(1)
ab + 1

τ2B
(2)
ab + · · · . (E.15)

The first order expansion coefficient is,

B
(1)
ab = ε

(0)
acd

(1
2D

ch
(1)d
b + δdbDcσ

)
= ε

(0)
acd

[1
2D

c
(
kdb − 2σδdb

)
+ δdbDcσ

]
= 1

2ε
(0)
acd

(
Dckdb

)
, (E.16)

while the second order expansion coefficient is,

B
(2)
ab = ε

(0)
acd

{[
Dch(2)d

b − 2δdbDc
(
σ2
)]
− 1

2 (kcm + σδcm)Dmkdb + 1
2h

(0)cmΓ(1)d
mp k

p
b

− 1
2h

(0)cmΓ(1)p
mb k

d
p −Dc

(
σ

2 k
d
b

)
−Dc

(1
2k

dp kpb

)
+Dc

(
2σkdb

)}
(E.17)

where, we have used the result, h(1)dph
(1)
pb = (kdp − 2σh(0)dp)(kpb − 2σh(0)

pb ) = kdp kpb −
4σkdb + 4σ2δdb . These expressions become much simpler for kab = 0, in which case, we have,

B
(1)
ab = 0, (E.18)

B
(2)
ab = ε

(0)
acdD

c
(
h

(2)d
b − 2δdbσ2

)
. (E.19)

B
(2)
ab in eq. (E.19) is symmetric,

ε(0)abpB
(2)
ab = ε(0)abpε

(0)
acdD

c
(
h

(2)d
b − 2δdbσ2

)
(E.20)

=
(
δbcδ

p
d − δ

b
dδ
p
c

)
Dc
(
h

(2)d
b − 2δdbσ2

)
=
(
Dbh(2)p

b

)
+ 4

(
Dbσ2

)
−Dp

(
h(2)

)
= Dp

(
8σ2 −DcσDcσ

)
+ 4

(
Dbσ2

)
−Dp

(
12σ2 −DcσDcσ

)
= 0, (E.21)
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where we have used the second order equations of motion. B(2)
ab is traceless,

B(2)a
a = ε

(0)
acdD

c
(
h(2)ad − 2h(0)adσ2

)
= 0, (E.22)

furthermore B(2)
ab is divergence-free,

DaB(2)a
b = ε(0)acdDa

[
Dc
(
h

(2)
bd − 2h(0)

bd σ
2
)]

= ε(0)acdDa
[
Dc
(
h

(2)
bd − 2h(0)

bd σ
2
)]

= 1
2ε

(0)acd[Da,Dc]h(2)
bd − 2h(0)

bd ε
(0)acdDaDcσ2

= 1
2ε

(0)acd
(
Rbpach

(2)p
d +Rdpach

(2)p
b

)
= 1

2ε
(0)acd

[(
−h(0)

ab h
(0)
pc + h

(0)
bc h

(0)
pa

)
h

(2)p
d +

(
−h(0)

da h
(0)
pc + h

(0)
dc h

(0)
pa

)
h

(2)p
b

]
= 0.

(E.23)

The trace and divergence equations for h(2)
ab can equivalently be thought of as tracefree and

divergence free conditions for B(2)
ab .

Evolution of the electric and magnetic parts of the Weyl tensor. Here we describe
the evolution equation for the electric and magnetic parts of the Weyl tensor. It will be
advantageous to define,

curl Tab = ε
(0)
acdD

cT db . (E.24)

It follows that,

curl (curl Tab) = ε
(0)
acdD

c
(
ε(0)dpq DpTqb

)
= ε

(0)
dacε

(0)dpq DcDpTqb = (δpaδqc − δqaδpc )DcDpTqb
= DcDaTcb −�(3)Tab

= [Dc,Da]Tcb +Da (DcTcb)−�(3)Tab

= R(0) mc
c a Tmb +R

(0) mc
b a Tcm +Da (DcTcb)−�(3)Tab

= −2Tab +
(
−δcbδma + h

(0)
ab h

(0)mc
)
Tcm +Da (DcTcb)−�(3)Tab

= − (� + 3)Tab +Da (DcTcb) + h
(0)
ab T

c
c . (E.25)

Thus, if the tensor Tab is traceless and divergence free, the above expression yields,

curl (curl Tab) = − (� + 3)Tab . (E.26)

Since the combination (E(2)
ab −σE

(1)
ab ) and B(2)

ab are both traceless and divergence free, both
of them satisfy the above identity. A calculation then shows that

curl
(
E

(2)
ab − σE

(1)
ab

)
= −B(2)

ab − 4ε(0) cd
(a (Dcσ)E(1)

b)d . (E.27)

– 37 –



J
H
E
P
0
2
(
2
0
2
2
)
0
2
2

On the other hand,

curl B(2)
ab = ε(0) cd

a DcB
(2)
db

= ε(0) cd
a Dc

[
ε
(0)
dpq D

p
(
h

(2)q
b − 2δqbσ

2
)]

= −h(2)
ab + 6σ2h

(0)
ab − h

(0)
ab (DcσDcσ) + 2DaσDbσ − 2σDaDbσ

= E
(2)
ab − σE

(1)
ab . (E.28)

As a result, the evolution equation in terms of the electric part of the Weyl tensor takes
the form (

� + 2
) (
E

(2)
ab − σE

(1)
ab

)
= 4 curl

[
ε
(0) cd

(a

(
Dcσ

)
E

(1)
b)d

]
. (E.29)

and equivalently in terms of the magnetic part of the Weyl tensor takes the form

(� + 2)B(2)
ab = 4ε(0)

cd(aE
(1)d
b) D

cσ. (E.30)

Eq. (C.38) can equivalently be thought of as eq. (E.29) or eq. (E.30). In terms of the
electric and magnetic parts of the Weyl tensor, the second order equations take much
simpler forms. The above analysis is inspired by the corresponding results at spacelike
infinity [45, 48, 49].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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