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1 Introduction

Holographic correlators are correlation functions of single trace operators in CFTs with
holographic duals, such that the large N limit of the CFT correlators is dual to scattering
of gravitons or KK modes in weakly coupled AdS gravity. One reason to study these
correlators is to learn about quantum gravity on curved spacetime. Another motivation is
that there is a concrete limit [1–6] of the AdS correlator that gives the flat space S-matrix,
so we can use CFT to study quantum gravity in flat space. For CFTs with M-theory duals,
which is the subject of this paper, this motivation is especially compelling, because the
M-theory S-matrix cannot be computed from flat space methods even in principle beyond
the lowest few terms in the small Planck length expansion [7–9]. Instead, [10] proposed
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that the M-theory S-matrix could be defined to all orders by first computing the dual CFT
correlator at large N and then taking the flat space limit.

Holographic correlators were originally computed at large N using Witten diagrams
derived from the explicit AdS supergravity action, see e.g. [11–16]. Recently, a more power-
ful analytic bootstrap approach was introduced in [17] that computes tree level holographic
correlators in the leading supergravity approximation purely based on crossing symmetry,
analyticity, superconformal symmetry, and the flat space limit. This approach was gener-
alized to higher derivative corrections to tree level supergravity in [18, 19] following the
general discussion in [20], where the coefficients of these corrections are no longer completely
determined by symmetry, but can be fixed using theory-specific inputs like supersymmetric
localization [10, 21–27] for 3d and 4d CFTs or protected sectors [28] for 6d CFTs.

The cutting edge of the large N analytic bootstrap is 1-loop, which can be computed up
to a finite number of contact terms by “squaring” the tree level CFT data of all double-trace
operators in the correlator [29]. More precisely, we apply crossing symmetry to this data to
compute the double-discontinuity, which according to the Lorentzian inversion formula [30]
determines the entire correlator up to a finite number of contact terms discussed in [20] that
contribute to CFT data of low spins.1 This program was carried out for 1-loop diagrams
involving the supergravity R and first higher derivative correction R4 vertices for 4d SU(N)
N = 4 SYM [33–43], which is dual to Type IIB string theory on AdS5 × S5, and 6d (2, 0)
theory [44], which is dual to AdS7 × S4 for the AN−1 theories and AdS7 × S4/Z2 for the
DN theories.2 The R|R diagram has a single contact term ambiguity that was fixed using
localization for N = 4 SYM in [27]. However, higher loops diagrams such as R|R4 have
too many ambiguities to be fixed using localization, and for 6d (2, 0) theory there are no
localization results available. These ambiguities also cannot be fixed by comparing to the
known S-matrix in the flat space limit, which was used to fix tree level higher derivative
terms in [19, 22, 24–26], since the contact term ambiguities are purely AdS features that
disappear in the flat space limit.

In this paper we will extend the 1-loop analytic bootstrap to 3d maximally supersym-
metric ABJ(M) theory [50, 51] with Chern-Simons level k = 2, which is holographically
dual to M-theory on AdS4×S7/Z2, and propose how to fix 1-loop contact term ambiguities
using an analytic continuation of the Lorentzian inversion formula. There are two such max-
imally supersymmetric CFTs with gauge groups U(N)2×U(N)−2 or U(N + 1)2×U(N)−2,
which are called ABJM or ABJ respectively, but they are identical when expanded at large
central charge3 cT ∼ N

3
2 ,4 so we will refer to both theories collectively as ABJ(M). We will

1At finite N the Lorentzian inversion formula in fact converges for CFT data of all spins [30–32], but
this convergence gets worse in the large N expansion.

2For CFTs dual to higher spin gravity, 1-loop terms were also computed in 3d in [45], see also [46–49]
for tree level results.

3The central charge is defined in (2.10) as the coefficient of the canonically-normalized stress-tensor two
point function, which has been calculated to all orders in 1/N through supersymmetric localization [52]
using the results of [53] and [54].

4This is because from the M-theory point of view, the two theories differ by a torsion flux, i.e. a discrete
holonomy of the 3-form field on a torsion 3-cycle of S7/Z2 [51]. This torsion flux affects the CFT data only
through non-perturbative effects.
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study the stress tensor multiplet correlator 〈2222〉, where 〈pppp〉 denotes the correlator of
the bottom component of the pth lowest single trace half-BPS multiplet, which are dual to
the corresponding pth lowest scalar KK mode in the dimensional reduction of M-theory on
AdS. We will find it convenient to work with the Mellin transform M(s, t;σ, τ) of 〈2222〉,
where σ, τ parameterize the R-symmetry dependence and s, t are Mellin variables that are
related to the 11d Mandelstam variables in the flat space limit. The large cT expansion of
M is constrained by the analytic bootstrap to take the form

M(s, t;σ, τ) = c−1
T MR + c

− 5
3

T BR4
4 M4 + c−2

T (MR|R +B
R|R
4 M4)

+ c
− 7

3
T (BD6R4

4 M4 +BD6R4
6 M6 +BD6R4

7 M7)

+ c
− 23

9
T (BD8R4

4 M4 +BD8R4
6 M6 +BD8R4

7 M7 +BD8R4
8 M8)

+ c
− 8

3
T (MR|R4 +B

R|R4

4 M4 +B
R|R4

6 M6 +B
R|R4

7 M7 +B
R|R4

8 M8) + . . . ,

(1.1)

where the M ’s are functions of s, t, σ, τ with numerical coefficients B that can depend on
k. The tree level terms5 at orders c−1

T , c−
5
3

T , and c−
7
3

T were previously computed for both
k = 1, 2 ABJ(M) in [10, 55], and [21], respectively, while this paper will focus on the 1-loop
terms R|R at order c−2

T and R|R4 at order c−
8
3

T for k = 2 ABJ(M).6

As in the 4d and 6d cases, double trace long operators are degenerate in the generalized
free field theory (GFFT) at cT → ∞ limit, so their tree level CFT data at orders c−1

T for
R and c−

5
3

T for R4 must be unmixed to get the 1-loop corrections we consider. For k = 2
ABJ(M), this unmixing requires the average of GFFT OPE coefficients obtained from
〈pppp〉 for even p, as well as the average of c−1

T and c−
5
3

T anomalous dimensions obtained
from 〈22pp〉 for even p. For k = 1 ABJM, the 1-loop double discontinuity would also receive
contributions from the OPE coefficients of double trace long operators with odd twists,
which generically contribute to the 1-loop double discontinuity of large N 3d CFTs [45].
These degenerate contributions must be similarly unmixed using GFFT OPE coefficients
in 〈pppp〉 for odd p as well as the average of c−1

T and c
− 5

3
T OPE coefficients from 〈22pp〉

for odd p. These odd p terms do not contribute to the k = 2 theory, because they are
projected out by the orbifold.7 We computed the average GFFT OPE coefficients from
〈pppp〉 for general p by computing the full superconformal block expansion up to p = 9
using the superconformal Ward identities in [56] and then guessing the general p formula,
similar to what we did in [44] for the 6d case. For the tree 〈22pp〉 data for even p, we
extracted the average anomalous dimension from the R correlator given in [57] as well

5Since cT is the only expansion parameter, we can only distinguish between tree and loop terms at low
orders where they have different power of cT .

6We will also show some results for the R4|R4 term at order c−10/3
T , but we will not consider the R|D6R4

term that contributes at the same order.
7In the 4d and 6d cases, all double trace multiplets have even twists, so only anomalous dimensions

contribute to the 1-loop double discontinuity. The only difference between the orbifold and the non-orbifold
cases is that we restrict the sum over tree level anomalous dimensions to even p for the orbifold cases.
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as the R4 correlator that we compute here using the known M-theory term in the flat
space limit. The odd p case is technically much harder, because the tree level supergravity
〈22pp〉 cannot be written in terms of a finite number of D̄r1,r2,r3,r4(U, V ) functions, unlike
the even p case in 3d or the general p case in 4d and 6d.8 We will thus only discuss k = 2
ABJ(M) in this paper, where we use the even p data to compute R|R, R|R4 and R4|R4

using the Lorentzian inversion formula up to the finite number of contact terms discussed
above, extract the low-lying CFT data for spins unaffected by these contact terms, and
successfully compare to the M-theory S-matrix terms computed in [7, 8, 44] in the flat
space limit, which is unaffected by these contact terms.

We then analytically continue the Lorentzian inversion formula to extract CFT data of
spins that are affected by the contact term ambiguities. For R|R, we find that this analytic
continuation works for all CFT data, and in particular allows us to fix the contact term
B
R|R
4 M4 in (1.1) to zero, where MR|R is defined so that its CFT data is analytic in spin

for all values. For R|R4, we find that the analytic continuation of the inversion formula
works for all CFT data except that affected by the BR|R4

4 M4 contact term, which allows
us to fix the other three contact terms in (1.1). We then apply two localization constraints
from [10, 58] and [21, 23] to further constrain the amplitude. For R|R we find that one
of the localization constraints independently fixes BR|R

4 = 0,9 which confirms the result
from the conjectured analytic continuation, while for R|R4 we use one constraint to fix the
remaining BR|R4

4 coefficient and the second constraint as a nontrivial check.
Finally, we compare the CFT data extracted from the 1-loop Mellin amplitudes to the

numerical bootstrap. In [58], it was conjectured that the k = 2 ABJ(M) theory saturates
the numerical bootstrap bounds for 〈2222〉, which was motivated by comparing the bounds
to the all orders in 1/cT calculation of short operator OPE coefficients computed from
supersymmetric localization [58–61]. This conjecture was further checked in [62], where
the c−1

T correction to all CFT data in 〈2222〉 was found to saturate the bootstrap bounds
at sufficiently large cT , but this correction does not depend on k. To compare higher order
in 1/cT corrections that depend on k, one must keep in mind that the large cT expansion
is asymptotic, so either one must look at very high values of cT , which require extremely
high numerical bootstrap accuracy, or focus on terms in the 1/cT expansion where the
asymptotic expansion still converges (i.e. subsequent terms have decreasing coefficients).
We focus on the c−2

T terms in the OPE coefficients of semishort operators, which are
the most converged corrections beyond O(c−1

T ), and find that these corrections noticeably
improve the saturation of the bootstrap bounds, which we compute at much higher accuracy

8In 4d and 6d, the correlator can be written in terms of just a few D̄r1,r2,r3,r4 (U, V ) with integer
arguments for any p. In 3d and even p, the number of D̄r1,r2,r3,r4 (U, V ) grows with p and has negative and
half-integer arguments, as we will show in the main text.

9We are only able to write MR|R up to a finite number of polynomial in s, t ambiguities that are in
principle fixed by superconformal symmetry, but are difficult to fix in practice. As such we could not impose
the localization constraint in [21, 23] that requires us to integrate MR|R, but we were still able to impose
the localization constraint from [10, 58] that simply fixes certain protected OPE coefficients, which can be
extracted from R|R using the Lorentzian inversion formula without knowing the explicit Mellin amplitude
as we will discuss in the main text. For MR|R4

, we managed to compute the complete Mellin amplitude,
so we could impose both localization constriants.
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than the previous studies [52, 58, 63, 64]. We do not have enough accuracy yet to extract
sufficient CFT data to fix the D8R4 term in (1.1), which would fulfill the goal of [10] of
deriving new terms in the M-theory S-matrix from CFT. Nevertheless, this is the first
successful comparison of analytic c−2

T terms to numerical bootstrap, which improves the
many tree level checks performed in various other contexts in [46, 62, 65–67], and is a
necessary step toward the goal of deriving D8R4.

The rest of this paper is organized as follows. In section 2 we compute the explicit
superblock decomposition of 〈qqpp〉 for q ≤ p and p ≤ 9. We use these superblock expan-
sions to extract the average GFFT OPE coefficients and tree level anomalous dimensions
that we will need to compute the 1-loop data for k = 2 ABJM. In section 3, we use this
data to compute the 1-loop corrections to the stress tensor correlator up to contact term
ambiguities. We then match these 1-loop terms to the M-theory S-matrix in the flat space
limit. We also extract CFT data from the 1-loop correlators using the Lorentzian inversion
formula as well as a projection method. In section 4, we fix the contact term ambiguities
at orders c−2

T and c−
8
3

T by combining constraints from supersymmetric localization with an
analytic continuation of the Lorentzian inversion formula. In section 5 we compare some
of these 1-loop analytic results to bounds from the numerical conformal bootstrap, which
we compute at much higher accuracy than previous studies. Finally, in section 6 we dis-
cuss future directions. Several technical details are given in various appendices. We also
include a Mathematica notebook as supplementary material, which includes many of our
more complicated explicit results.

2 Four-point functions at large cT

We start by discussing the large cT ∼ N3/2 expansion of four-point functions of the di-
mension p

2 scalar bottom component of half-BPS supermultiplets in N = 8 ABJ(M) the-
ory, and derive the data needed for the 1-loop terms for k = 2 ABJ(M) in the following
sections. First we will review the constraints of the 3d N = 8 superconformal algebra
osp(8|4) ⊃ so(5) ⊕ so(8)R on 〈ppqq〉 following [64], and we explicitly perform the su-
perblock expansion for p, q ≤ 9. We then discuss the generalized free field theory (GFFT)
that describes the cT → ∞ limit, which we use to compute average OPE coefficients of
double-trace singlet long multiplets in 〈qqpp〉. Afterwards, we consider tree level correc-
tions to 〈22pp〉 for even p, which we use to derive the average anomalous dimension of
singlet long multiplets at orders 1/cT and 1/c5/3

T that correspond to tree level supergravity
and R4, respectively. Finally, we discuss higher orders in the large cT expansion of 〈2222〉,
which will be our main focus in the rest of the paper.

2.1 Block expansion of 〈qqpp〉

We consider half-BPS superconformal primaries Sp in 3d N = 8 SCFTs that are scalars
with ∆ = p

2 and transform in the [00p0] of so(8)R,10 where p = 1, 2, . . . . The first such

10The convention we use in defining these multiplets is that the supercharges transform in the 8v = [1000]
irrep of so(8)R.
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interacting operator is S2, which is the bottom component of the stress tensor multiplet.
We can denote these operators as traceless symmetric tensors SI1...Ip(x) of so(8)R, where
Ii = 1, . . . 8. We can avoid indices by introducing an auxiliary polarization vector Y I that
is constrained to be null, Yi · Yi = 0, and then define

Sp(x, Y ) ≡ SI1...IpY
I1 · · ·Y Ip . (2.1)

Consider the four-point functions 〈qqpp〉 of four Sp(x, Y )’s, where q ≤ p. Conformal
and so(8)R symmetry fixes these correlators to take the form

〈Sq(x1, Y1)Sq(x2, Y2)Sp(x3, Y3)Sp(x4, Y4)〉 = (Y1 · Y2)q(Y3 · Y4)p

|x12|q|x34|p
Gqp(U, V ;σ, τ) , (2.2)

where we define

U ≡ x2
12x

2
34

x2
13x

2
24
, V ≡ x2

14x
2
23

x2
13x

2
24
, σ ≡ (Y1 · Y3)(Y2 · Y4)

(Y1 · Y2)(Y3 · Y4) , τ ≡ (Y1 · Y4)(Y2 · Y3)
(Y1 · Y2)(Y3 · Y4) ,

(2.3)

with xij ≡ xi − xj . Since (2.2) is a degree q polynomial in each Yi separately, the quantity
Gqp(U, V ;σ, τ) is a degree q polynomial in σ and τ . We parametrize these polynomials
in terms of eigenfunctions Y[0m 2n−2m 0](σ, τ) of the so(8)R quadratic Casimir for irreps
[0m 2n− 2m 0] that appear in the tensor product of [00q0]⊗ [00q0], so that n = 0, 1, . . . q
and m = 0, . . . n. The polynomials Y[0m 2n−2m 0](σ, τ) can be computed explicitly [68],
and we give the explicit values for q = 2, . . . 9 in Mathematica notebook attached as
supplementary material. We then expand Gqp(U, V ;σ, τ) in terms of this basis as

Gqp(U, V ;σ, τ) =
q∑

n=0

n∑
m=0

Y[0m 2n−2m 0](σ, τ)G[0m 2n−2m 0]
qp (U, V ) , (2.4)

and furthermore expand G[0m 2n−2m 0]
qp (U, V ) in conformal blocks G∆,`(U, V ) as

G[0m 2n−2m 0]
qp (U, V ) =

∑
∆,`

λqqO∆,`,[0 m 2n−2m 0]λppO∆,`,[0 m 2n−2m 0]G∆,`(U, V ) , (2.5)

where O∆,`,[0m 2n−2m 0] are conformal primaries with scaling dimension ∆ and spin ` in
irrep [0m 2n − 2m 0] that appear in Sq × Sq with OPE coefficient λqqO∆,`,[0 m 2n−2m 0] . The
3d conformal blocks were computed in various series expansions in [69–71], which we review
in our conventions in appendix A.

The correlator is further constrained by the superconformal Ward identities [56]:[
z∂z −

1
2α∂α

]
Gqp(z, z̄;α, ᾱ)|α= 1

z
=
[
z̄∂z̄ −

1
2 ᾱ∂ᾱ

]
Gqp(z, z̄;α, ᾱ)|ᾱ= 1

z̄
= 0 , (2.6)

where z, z̄ and α, ᾱ are written in terms of U, V and σ, τ , respectively, as

U = zz̄ , V = (1− z)(1− z̄) , σ = αᾱ , τ = (1− α)(1− ᾱ) . (2.7)

– 6 –
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We can satisfy these constraints by expanding Gqp in superconformal blocks as

Gqp(U, V ;σ, τ) =
∑

M∈Sq×Sq

λqqMλppMGM(U, V ;σ, τ) , (2.8)

where GM are superblocks for each supermultipletM that appears in Sq×Sq (and Sp×Sp)
with OPE coefficients λqqM (and λppM). The multiplets that can appear in the OPE
are [64, 72]:

Sq ×Sq = Id+
q∑

n=1
(B,+)[0 0 2n 0]

n,0 +
q∑

n=1

∑
m=2,4,...,n

(B, 2)[0m 2n−2m 0]
n,0

+
∑

`=0,2,...

q−1∑
n=1

(A,+)[0 0 2n 0]
n+1+`,` +

q−1∑
n=1

 ∑
`=0,2,...

∑
m=2,4,...,n

(A, 2)[0m 2n−2m 0]
n+1+`,` +

∑
`=1,3,...

∑
m=1,3,...,n

(A, 2)[0m 2n−2m 0]
n+1+`,`


+
q−2∑
n=0

 ∑
`=0,2,...

∑
m=0,2,...,n

(A, 0)[0m 2n−2m 0]
∆>n+1+`,` +

∑
`=1,3,...

∑
m=1,3,...,n

(A, 0)[0m 2n−2m 0]
∆>n+1+`,`

 ,
(2.9)

where we denote superconformal multiplets other than the identity Id by X [a1 a2 a3 a4]
∆,` , with

(∆, `) and [a1 a2 a3 a4] representing the so(3, 2) and so(8)R quantum numbers of the super-
conformal primary, whileX denotes the type of shortening condition. The (A, 0)[0m 2n−2m 0]

∆>n+`+1,`
multiplets that appear here are unprotected. When ∆ saturates the bound we in general
get semishort multiplets (A, 2)[0m 2n−2m 0]

n+`+1,` or (A,+)[0 0 2n 0]
n+`+1,`, which are 1

4 or 1
8 BPS, respec-

tively. The only exception is (A, 0)[0000]
∆>`+1,` whose unitarity bound gives conserved currents

that cannot appear in the interacting theories we consider. Finally, the (B, 2)[0n−m 2n 0]
n,0

and (B,+)[0 0 2n 0]
n,0 are short multiplets, where the former is 1

4 BPS, while the latter are
the half-BPS multiplets whose bottom component we called Sp. The lowest such multiplet
is always the stress tensor multiplet (B,+)[0020]

1,0 , whose OPE coefficient squared is fixed
by the conformal Ward identity [73] to be inversely proportional to the coefficient of the
canonically normalized stress tensor two-point function:

〈Tµν(~x)Tρσ(0)〉 = cT
64 (PµρPνσ + PνρPµσ − PµνPρσ) 1

16π2~x2 , Pµν ≡ ηµν∇2 − ∂µ∂ν ,

(2.10)

where cT is normalized so that cfreeT = 16 for the free N = 8 theory of eight massless real
scalars and Majorana fermions. In this normalization we get the precise relationship

λ
pp(B,+)[0020]

1,0
= 8p
cT

. (2.11)

We will be mostly interested in 〈2222〉, whose multiplets are summarized in table 1. Note
that we introduce simpler notation for these multiplets, e.g. (B,+)[0040]

2,0 ≡ (B,+), since
not counting the stress tensor multiplet, only one operator of each type appears.

We then compare (2.8) to (2.4) and (2.5) to see that the superblocks are finite linear
combinations of conformal blocks

GM =
q∑

n=0

n∑
m=0

Y[0m 2n−2m 0](σ, τ)
∑
O∈M

λqqO∆,`,[0 m 2n−2m 0]λppO∆,`,[0 m 2n−2m 0]

λqqMλppM
G∆,`(U, V ) ,

(2.12)
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Type (∆, `) so(8)R irrep spin ` Name

(B,+) (2, 0) 294c = [0040] 0 (B,+)

(B, 2) (2, 0) 300 = [0200] 0 (B, 2)

(B,+) (1, 0) 35c = [0020] 0 Stress

(A,+) (`+ 2, `) 35c = [0020] even (A,+)`
(A, 2) (`+ 2, `) 28 = [0100] odd (A, 2)`
(A, 0) ∆ ≥ `+ 1 1 = [0000] even (A, 0)∆,`

Id (0, 0) 1 = [0000] even Id

Table 1. The possible superconformal multiplets in the OStress×OStress OPE. The so(3, 2)⊕so(8)R

quantum numbers are those of the superconformal primary in each multiplet.

where O∆,`,[0m 2n−2m 0] are conformal primaries that appear in M, which can be derived
using the Racah-Speiser algorithm in [74]. For 〈qqpp〉, we fixed all of the pairs of OPE
coefficients λqqO∆,`,[0 m 2n−2m 0]λppO∆,`,[0 m 2n−2m 0] in terms of the single pair of OPE coeffi-
cients λqqMλppM in (2.8) by applying the Ward identities to the small z, z̄ expansion of
the superblocks, where we used the small z, z̄ expansion of the conformal blocks as given
in [70] and reviewed in appendix A. We give the results for the s-channel of 〈qqpp〉 for
q = 2, . . . , 9 in the Mathematica notebook attached as supplementary material.

2.2 Generalized free field theory at cT → ∞

We now use the superblocks computed in the previous section to perform the superblock
expansion for the GFFT that describes the cT →∞ limit of 〈qqpp〉 and 〈pppp〉 for k = 1, 2
ABJ(M) theory. Recall from the Introduction that in fact both k = 1, 2 ABJ(M) have
the same half-BPS correlators at this order, except that all correlators involving Sp for
odd p vanish for the k = 2 theory. In particular, both theories are described by a GFFT
where the operators Sp are treated as generalized free fields with two point functions
〈Sp(x1, Y1)Sq(x2, Y2)〉 = δpq

(Y1·Y2)p

|x12|p . We can then compute 〈qqpp〉 (for q ≤ p) using Wick
contractions to get

G(0)
qp = 1 + δqp

(
U

p
2σp + U

p
2

V
p
2
τp
)
, (2.13)

which can be expanded in the superblocks of the previous section to extract OPE coeffi-
cients. If several operators have the same quantum numbers at this order, then we can
only compute the average of their OPE coefficients. Such a degeneracy occurs for the
double trace long multiplet (A, 0)[0000]

∆,` operator Sp∂µ1 . . . ∂µ`
(∂2)nSp with spin ` and twist

t ≡ ∆− ` = p+ 2n ≥ 2. For t ≥ 2, there are t− 1 such degenerate operators because of the
different ways of adding p and n to get the same twist, which we label using the degeneracy
label I. We denote the GFFT OPE coefficient of these operators in the Sp × Sp OPE by
λ

(0)
p,t,`,I , and note that only twists t = p, p+ 2, . . . appear in this OPE at leading order. By
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expanding in superblocks for p = 2, . . . , 9 we found the general formula

〈(λ(0)
p,t,`)

2〉 =
45
√
π(2`+ 1)4p−2(p− 1)pΓ

(
t−1

2

)
Γ
(
`+ t

2
)

Γ(`+ t+ 3)Γ
(p

2 + t
2 + 2

)
Γ
(
`+ p

2 + t
2 + 5

2

)
Γ(p+ 2)Γ(p+ 4)Γ

(
t+6

2

)
Γ
(
`+ t+ 5

2

)
Γ
(
`+ t

2 + 7
2

)
Γ
(
−p

2 + t
2 + 1

)
Γ
(
`− p

2 + t
2 + 3

2

) ,

(2.14)
which reproduces the p = 2, 3 values given in [52, 64]. Note that the average 〈λ(0)

q,t,`λ
(0)
p,t,`〉

trivially vanishes because Gqp = 1 for q 6= p at GFFT.

2.3 Tree level 〈22pp〉

We now consider the 1/cT and 1/c5/3
T terms in 〈22pp〉, which corresponds to tree level

supergravity R and R4 in the bulk description, respectively, and whose CFT data is needed
to compute loops with these vertices in the following section. We expand G2p (which we
will denote as Gp) in (2.2) as well as the long multiplet CFT data to this order as

Gp(U, V ;σ, τ) = G(0)
p + c−1

T G
R
p + c

− 5
3

T G
R4
p + . . .

∆t,`,I = t+ `+ c−1
T γRt,`,I + c

− 5
3

T γR
4

t,`,I + . . . ,

(λp,t,`,I)2 = (λ(0)
p,t,`,I)

2 + c−1
T (λRp,t,`,I)2 + c

− 5
3

T (λR4
p,t,`,I)2 + . . . .

(2.15)

A similar expansion exists for the OPE coefficients of the protected operators, although
of course their scaling dimensions are fixed. Using these expansions, we can write the
superblock expansion for Gp in (2.8) at large cT as

GRp (U, V ) = 128pGStress(U, V ;σ, τ) +
∑

M∆,`∈{(B,+),(B,2),(A,2)`,(A,+)`}
λR22Mλ

R
ppMGM(U, V ;σ, τ)

+
∑
t,`,I

[
λR2,t,`,Iλ

R
p,t,`,I + λ

(0)
2,t,`,Iλ

(0)
p,t,`,Iγ

R
t,`,I

(
∂no-logt + 1

2 logU
)]

Gt+`,`(U, V ;σ, τ) .

(2.16)

Here, the first line includes the protected multiplets, and the OPE coefficient for the stress
tensor multiplet was written explicitly using (2.11). In the second line we denote the singlet
long multiplet superblock by G∆,` and ∂no-logt Gt+`,`(U, V ;σ, τ) denotes that we consider
the term after taking the derivative that does not include a logU , which has already been
written separately. The expansion of GR4

p takes the same form with R → R4, except the
stress tensor block does not appear.

While the superblock expansion is best expressed in position space, in the large cT
expansion it is also useful to consider the Mellin transform Mp(s, t;σ, τ) of the connected
correlator Gconp (U, V ;σ, τ) ≡ Gp(U, V ;σ, τ)− G(0)

p (U, V ;σ, τ), which is defined as [55]:

Gconp (U, V ;σ, τ) =
∫

ds dt

(4πi)2U
s
2V

t
2−

p
4−

1
2Mp(s, t;σ, τ)

× Γ
[
p

2 −
s

2

]
Γ
[
1− s

2

]
Γ2
[
p

4 + 1
2 −

t

2

]
Γ2
[
p

4 + 1
2 −

u

2

]
,

(2.17)
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where u = p + 2 − s − t and the integration contours here is defined to include all poles
of the Gamma functions on one side of the contour. The Mellin amplitude is defined such
that a bulk contact Witten diagram coming from a vertex with 2m derivatives gives rise to
a polynomial in s, t of degree m, and similarly an exchange Witten diagrams corresponds
to a Mellin amplitude with poles for the twists of each exchanged operator. The Mellin
amplitude must also obey the crossing relations

Mp(s, t;σ, τ) = Mp(s, u; τ, σ) , M2(s, t;σ, τ) = τ2M2(t, s;σ/τ, 1/τ) , (2.18)

which follow from interchanging the first and second operators, and, for p = 2, the first
and third. Lastly, Mp(s, t;σ, τ) must satisfy the Ward identities (2.6), which can be im-
plemented in Mellin space as shown in [55]. Using all these constraints, Mp(s, t) can be
expanded similar to the position space expression (2.15) to get

Mp(s, t) = c−1
T MR

p + c
− 5

3
T BR4(p)MR4

p + . . . , (2.19)

where MR4
p is a complicated degree 4 polynomial in s, t whose explicit form we give in the

Mathematica notebook attached as supplementary material, while the tree level supergrav-
ity amplitude MR

p was written in [57] as an infinite sum of the supergravity multiplet and
its descendents:

MR
p =

∞∑
m=0

22m+5p((p− 2t+ 2)(p+ 2(s+ 2)σ− 2(s+ t− 1))− 2(s+ 2)τ(p− 2(s+ t− 1)))
π2(2m+ 3)(2m− s+ 1)Γ

(
1
2 −m

)
Γ(2m+ 2)Γ

(
1
2(−2m+ p− 1)

)
+

16pτΓ
(p

2 + 1
)

((p+ 2t+ 2)(p(2σ− 1) + 2(−σs+ s+ t− 1)) + 2τ(p− s)(p− 2(s+ t− 1)))

πΓ
(

1
2 −m

)2
Γ(m+ 1)Γ

(
p−1

2

)
(4m+ p− 2t)Γ

(
m+ p+3

2

)
+22m+5p((p− 2t+ 2)(p+ 2(s+ 2)σ− 2(s+ t− 1))− 2(s+ 2)τ(p− 2(s+ t− 1)))

π2(2m+ 3)(2m− s+ 1)Γ
(

1
2 −m

)
Γ(2m+ 2)Γ

(
1
2(−2m+ p− 1)

)
 ,

(2.20)
where the overall coefficient was fixed by extracting the stress tensor OPE coefficient and
comparing to (2.11). Note that this expression is independent of k. For even p, the sum can
be performed to get an expression in terms of Gamma functions, which can then be written
in terms of a finite sum of D̄r1,r2,r3,r4(U, V ) functions using its Mellin space definition in
appendix A, as was pointed out in a similar case in [46]. For instance, for p = 2 first we
resum to get

MR
2 =

32τ
(

4Γ( 1
2−

t
2)

Γ(1− t
2) −

√
π(t+ 4)

)
((t+ 2)(−σs+ s+ 2σ+ t− 2) + (s− 2)τ(s+ t− 2))

π5/2t(t+ 2)

+
32σ

(√
π(s+ t− 8) + 4Γ( 1

2 (s+t−3))
Γ( 1

2 (s+t−2))

)
((t− 2)(−σs+ s+ 2σ+ t− 6) + (s− 2)τ(s+ t− 6))

π5/2(s+ t− 6)(s+ t− 4)

+
32
(

4Γ( 1
2−

s
2)

Γ(1− s
2) −

√
π(s+ 4)

)
((t− 2)(−(s+ 2)σ+ s+ t− 2) + (s+ 2)τ(s+ t− 2))

π5/2s(s+ 2)
.

(2.21)
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Note that the Gamma functions that appear in the denominator exactly cancel one of the
Gamma functions in the Mellin transform (2.17), while the poles just shift the arguments
of the Gamma functions. We can thus use (A.9) to write this expression in terms of a finite
number of D̄(U, V ) functions. For instance, the contribution to the [0040] irrep in (2.4) is

AR[0040](U, V ) = − 32U3

3π5/2V 2

[
2
√
πV 2D̄1,3,−1,1(U, V )− 2V 2D̄1, 52 ,−1, 12

(U, V )

+
√
πV 2D̄1,3,0,2(U, V ) +

√
πV 2D̄2,3,−1,2(U, V )− 2V

3
2 D̄1, 52 ,

1
2 ,−1(U, V )

+ 3
√
πD̄3,1,−1,1(U, V )−

√
πD̄4,1,−1,2(U, V )

]
.

(2.22)

While the appearance of half integer and negative arguments might seem nonstandard,
in fact these have standard expansions to all orders in U and V , including a logU term,
as shown in [75] and reviewed in appendix A. We can then easily expand this and the
other channels in superblocks to get the average anomalous dimensions 〈λ(0)

2,t,`λ
(0)
p,t,`γt,`〉 ≡∑

I λ
(0)
2,t,`,Iλ

(0)
p,t,`,Iγt,`,I weighted by OPE coefficients for p = 2:

〈λ(0)
2,t,`λ

(0)
2,t,`γ

R
t,`〉 =− 64

π2

√
π(2`+ 1)Γ

(
t−1

2

)
Γ
(
`+ t

2
)

Γ(`+ t+ 3)

8Γ
(
t
2
)

Γ
(
`+ t

2 + 1
2

)
Γ
(
`+ t+ 5

2

)
×
((

2`2 + 2`t+ 6`+ t2 + 5t+ 4
)

(ψ(`+ t+ 3)−ψ(`+ 1)) + (−t− 2)(2`+ t+ 3)
)
,

(2.23)
whichmatches the values originally computed in [62].We can similarly compute 〈λ(0)

2,t,`λ
(0)
p,t,`γ

R
t,`〉

for higher even p, and we show the results for p ≤ 36 in the Mathematica notebook attached
as supplementary material. Since the MR

p did not depend on k, these average anomalous
dimensions are also the same for k = 1, 2.

For the R4 amplitude, we need to fix the overall coefficient BR4(p), which will depend
nontrivially on k unlike MR

p . For p = 2 this was fixed using localization in [10], and this
derivation could in principle be extended to p > 2 for k = 1 using the localization results
from [76]. For k = 2 and p > 2 however, which is our primary interest, we can only fix the
coefficient by comparing to the known 11d M-theory S-matrix term in the flat space limit,
as was done for the 6d (2, 0) theory in [44]. In particular, the 11d M-theory S-matrix A
can be expanded at small Planck length `11 as

A(s, t) = `911AR + `15
11AR4 + `18

11AR|R + `21
11AD6R4 + `23

11AD8R4 + `24
11AR|R4 + . . . , (2.24)

where s, t, u are 11d Mandelstam variables. The lowest few terms AR, AR4 , and AD6R4

are protected, and so can be computed from Type IIA string theory by compactifying on
a circle [7–9]11 to get

AR4

AR
= stu

3 · 27 ,
AD6R4

AR
= (stu)2

15 · 215 . (2.25)

11AD4R4 can also be computed in this way, but it vanishes and so we did not write it. Also, the 1-loop
supergravity term AR|R was computed in [7, 8], while AR|R4 and AR4|R4 were computed in [44].
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The small `11 expansion in 11d maps to the large N expansion in the CFT according to
the dictionary [50, 51]:

L6

`611
=
(3πcTk

211

) 2
3

+O(c0
T ) . (2.26)

The flat space limit formula [1, 10] then relates a Mellin amplitude Ma
p (s, t) of large s, t

degree a to the 11d amplitude defined in (2.24) as

c
2(1−a)

9
T

π5/22−a−p−3Γ(p− 1)
Γ
(

1
2(2a+ p− 1)

) lim
s,t→∞

st(s+ t)Ma(s, t)
(t(−σs+ s+ t) + sτ(s+ t))2 = `2a−2

11
A2a+7
AR

, (2.27)

where A2a+7 is a term in the amplitude with length dimension (2a+ 7), and `11 is the 11d
Planck length. For instance, A15 ≡ AR4 has length dimension 15 in (2.24) and corresponds
to M4

p ≡MR4
p . The 11d amplitude of course is the same for all p, and the ratio of AR4/AR

was given in (2.25). Using this 11d amplitude and the flat space limit we find

BR4(p) = 32 · 2
1
3 (p− 1)(p+ 1)(p+ 3)(p+ 5)

3 32/3π8/3k2/3Γ
(p

2
) , (2.28)

which matches the p = 2 result computed from localization in [10]. Note that the simple k
dependence comes from the AdS/CFT dictionary (2.26). Since MR4

p is just a polynomial
Mellin amplitude for every p, we can convert to a finite number of D̄(U, V ) to get

AR
4

[0040](U, V ) = 64 · 2
1
3
(
p2− 1

)
Up/2

38/3π8/3k2/3Γ
(p

2
) [6(p− 2)pD̄ p

2 ,
p
2 ,1,1

(U, V ) + 4(p− 3)(p− 2)(p+ 2)D̄ p
2 ,

p
2 ,2,2

(U, V )

+ 192D̄ p
2 ,

p
2 ,3,3

(U, V )− 312D̄ p
2 ,

p
2 ,4,4

(U, V ) + p(p− 1)((p− 1)p− 26)D̄ p
2 ,

p
2 ,3,3

(U, V )

+ 4p(p(p+ 2)− 29)D̄ p
2 ,

p
2 ,4,4

(U, V ) + 4p(p+ 8)D̄ p
2 ,

p
2 ,5,5

(U, V ) + 60D̄ p
2 ,

p
2 ,5,5

(U, V )
]
,

(2.29)
and similarly for the other channels. We can then expand in superblocks to get the even p
average anomalous dimensions

〈λ(0)
2,t,`λ

(0)
p,t,`γ

R4
t,` 〉 =δ`,0(−1)

p
2

(t+ 1)2p+t+
25
3 Γ

(
t
2 + 2

)
Γ
(
t
2 + 4

)
Γ
(

1
2(p+ t+ 5)

)
35/3π8/3k2/3Γ(p− 1)Γ

(
t+ 5

2

)
Γ
(

1
2(−p+ t+ 2)

) , (2.30)

which are only nonzero for zero spin, and for p = 2 match the results in [10].

2.4 Large cT expansion of 〈2222〉

Finally, we restrict to the stress tensor correlator 〈2222〉, which is our primary interest. For
simplicity, we will drop the p = 2 subscript from all further expressions. The Mellin ampli-
tude M(s, t) is fixed by the analytic structure, growth at infinity, and crossing symmetry
to take the form (1.1) given in the Introduction, where the coefficient of each c−bT must
include all allowed Mellin amplitudes of large s, t degree (9/2b − 7/2) or less. These can
include the polynomial Mellin amplitudes Ma given in [10], which we also include in the
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Mathematica notebook attached as supplementary material. For the amplitudes we con-
sider above, this implies one allowed polynomial Mellin amplitude of each degree a, which
correspond to contact Witten diagrams with 2a derivatives. These contact diagrams only
contribute to a finite number of spins that grows with the degree [20]. For the multiplets in
〈2222〉, the contribution from each Ma in (1.1) is summarized in table 4 of [10], which we
repeat here in table 2. The other Mellin amplitudes shown in (1.1) include the tree level
supergravity term MR discussed in the previous section, which includes poles for the single
trace supergravity multiplet and its descendents, as well as the 1-loop Mellin amplitudes
MR|R and MR4|R of degrees 5.5 and 8.5, respectively, that we will discuss more in the
following section.

The coefficient BR4
4 ≡ BR4(2) was fixed in the previous section. The three BD6R4 coef-

ficients were fixed in [21] from the two localization constraints and the flat space limit (2.27)
to get

BD6R4
4 = −1352960 62/3

9π10/3k
4
3

, BD6R4
6 = −220528 62/3

π10/3k
4
3

, BD6R4
7 = 16016 62/3

π10/3k
4
3

. (2.31)

There are not enough constraints to fully fix the other tree amplitudes, while the 1-loop
amplitudes will be considered in the next section, so for now we will only extract CFT
data up to order c−

7
3

T and leave the R|R term unknown for now. The short multiplets OPE
coefficients λ2

(B,+) and λ
2
(B,+) were in fact computed to all orders in 1/cT using localization

in [58], and take the form for k = 2:

λ2
(B,2) = 32

3 −
1024

(
4π2− 15

)
9π2cT

+
20480

(
2
3

) 2
3

π8/3c
5/3
T

+ 16384
(
2π2− 25

)
9π4c2

T

−
327680

(
2
3

) 1
3

3π
10
3 c

7/3
T

+
7536640

(
2
3

) 2
3

9π
14
3 c

8/3
T

+O(c−3
T ) ,

λ2
(B,+) = 16

3 −
1024

(
π2 + 3

)
9π2cT

+
4096

(
2
3

)2/3

π8/3c
5/3
T

+ 16384
(
2π2− 25

)
45π4c2

T

−
65536

(
2
3

) 1
3

3π
10
3 c

7/3
T

+
1507328

(
2
3

)2/3

9π14/3c
8/3
T

+O(c−3
T ) ,

(2.32)
where note that these OPE coefficients are related due to crossing in the 1d topological
sector as [63]

1024
cT
− 5λ2

(B,+) + λ2
(B,2) + 16 = 0 , (2.33)

so in fact only one is independent. For the other multiplets in S2×S2 we get for k = 1, 2

λ2
(A,+)`

= πΓ(`+ 3)2

Γ
(
`+ 5

2
)2 −

64Γ(`+ 3)2(−2`+ 2(`(`+ 5) + 5)ψ(1)(`+ 3)− 5)
πcT Γ

(
`+ 5

2
)2

+ c−2
T (λR|R

(A,+)`
)2− δ`,0

1835008 62/3

27π10/3c
7/3
T k4/3

+O
(
c
− 23

9
T

)
,

λ2
(A,2)`

= πΓ(`+ 2)Γ(`+ 4)
Γ
(
`+ 3

2
)

Γ
(
`+ 7

2
) +

64Γ(`+ 4)2 ((2`+ 3)(`(`+ 7) + 11)− 2(`+ 2)2(`+ 3)2ψ(1)(`+ 2)
)

πcT (`+ 2)2(`+ 3)2Γ
(
`+ 3

2
)

Γ
(
`+ 7

2
)

+ c−2
T (λR|R

(A,2)`
)2− δ`,1

8388608 62/3

5π10/3c
7/3
T k4/3

+O
(
c
− 23

9
T

)
,
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CFT data: M4 M6 M7 M8

λ2
(B,+)

256
35 −59392

693 −477184
429

4022091776
4448925

λ2
(B,2)

256
7 −296960

693 −2385920
429

4022091776
889785

λ2
(A,+)0

0 16384
1485

950272
6435 −131396796416

467137125

λ2
(A,+)2

0 0 0 67108864
557375

λ2
(A,2)1

0 131072
1155

21889024
15015 −3848847491072

1089986625

λ2
(A,2)3

0 0 0 268435456
121275

γ2,0 −192 15360
11

192000
11 −18059264

1521

γ2,2 0 −1536 −18432 509591552
12675

γ2,4 0 0 0 −32768

Table 2. Contributions from large s, t degree a contact Mellin amplitudes Ma(s, t) to the OPE
coefficients squared λ2

22M of some protected multiplets (B,+), (B, 2), (A,+)` for even `, and (A, 2)`

for odd `, as well as to the anomalous dimensions γt,` for even ` of the lowest twist t = 2 unprotected
multiplet (A, 0)t+`,`. Adapted from [10] with typos fixed.

∆2,` = 2 + `− 256(2`+ 3)(2`+ 5)(2`+ 7)
π2cT (`+ 1)(`+ 2)(`+ 3)(`+ 4) −

71680 · 6 1
3 δ0,`

π8/3c
5/3
T k2/3

+ c−2
T γ

R|R
2,` + c

− 7
3

T

(
δ`,0

1433600 62/3

3π10/3k4/3 + δ`,2
43524096 62/3

π10/3k4/3

)
+O

(
c
− 23

9
T

)
,

(2.34)

where ` is even for ∆2,` and λ2
(A,+)`

, odd for λ2
(A,2)`

, and for ∆2,` we only wrote the result for
the lowest twist because recall that higher twists are degenerate and so require unmixing
beyond leading order. In the following section, we will determine the 1-loop corrections to
some of this non-trivial CFT data.

3 〈2222〉 at 1-loop

We now discuss the 1-loop terms R|R at c−2
T , R|R4 at c−

8
3

T , and R4|R4 at c−
10
3

T for k = 2
ABJ(M) theory. For each term we compute the double-discontinuity (DD) from the tree and
GFFT data derived in the previous sections, and then use it as well as crossing symmetry
and the superconformal Ward identity to write the entire correlator in Mellin space up to
contact term ambiguities. We then take the flat space limit and match these correlators
to the relevant 1-loop corrections to the 11d S-matrix. Finally, we extract low-lying CFT
data using two methods: the Lorentzian inversion integral applied to the DD [30, 77]
and a projection method applied to the entire Mellin amplitude [20, 62]. The inversion
method does not converge for low spins that are affected by contact term ambiguities,
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while the projection method can be used to compute that CFT data in terms of those
ambiguities. In the next section, we will discuss how to use localization and a conjectured
analytic continuation of the inversion method to fix all the contact term ambiguities for
R|R and R|R4.

3.1 One-loop from tree level

We begin by expanding the correlator G for 〈2222〉 to 1-loop order at large cT using the
block expansion described in section 2.1. For R|R at order c−2

T , this takes the form

GR|R =
∑

t=2,4,...

∑
`∈Even

[1
8〈(λ

(0)
t,` )2(γRt,`)2〉(log2 U + 4 logU∂no-logt + 4(∂no-logt )2)

+1
2〈(λ

R)2
t,`γ

R
t,`〉(logU + 2∂no-logt )

+1
2〈(λ

(0)
t,` )2γ

R|R
t,` 〉(logU + 2∂no-logt ) + 〈(λR|Rt,` )2〉

]
Gt+`,`(U, V ;σ, τ)

+
∑

M∆,`∈{(B,+),(B,2),(A,2)`,(A,+)`}
(λR|R22M)2GM(U, V ;σ, τ) ,

(3.1)

where ∂no-logt Gt+`,`(U, V ;σ, τ) was defined in (2.16). The first three lines describe the double
trace singlet long multiplets (A, 0)[0000]

t+`,` , where 〈〉 denotes the average over the (t− 1)-fold
degenerate operators. The fourth line includes all the protected multiplets in 〈2222〉 except
the stress tensor multiplet, which is 1/cT exact. The expression for GR4|R4 at order c−

10
3

T is
identical except we replace R → R4 and the sum for the long multiplets is now restricted
to ` = 0, while for GR|R4 at order c−

8
3

T we furthermore replace the 1
8 in the first line by 1

4 ,
since the vertices are different.

As shown in [29], the entire 1-loop term up to the contact term ambiguities described
in section 2.4 can in fact be constructed from the log2 U terms shown above, which are
written in terms of GFFT and tree data, since under 1↔ 3 crossing

G(U, V ;σ, τ) = U

V
τ2G(V,U ;σ/τ, 1/τ) , (3.2)

the log2 U terms are related to log2 V terms that are the only contributions at this order to
the DD, which fixes the entire correlator according to the Lorentzian inversion formula [30,
77]. Note that the average 〈(λ(0)

t,` )2γAt,`γ
B
t,`〉 for 1-loop vertices A,B is what appears in the

log2 U term, whereas the different averages 〈(λ(0)
t,` )2γAt,`〉 and 〈(λ

(0)
t,` )2γBt,`〉 are what appear

at tree level. As shown in [33, 34, 38, 78] for N = 4 SYM and [44] for 6d (2, 0), one can
compute 〈(λ(0)

t,` )2γAt,`γ
B
t,`〉 from GFFT 〈ppqq〉 and tree level 〈22pp〉 data as

〈(λ(0)
t,` )2γAt,`γ

B
t,`〉 =

t∑
p=2,4,...

〈λ(0)
2,t,`λ

(0)
p,t,`γ

A
t,`〉〈λ

(0)
2,t,`λ

(0)
p,t,`γ

B
t,`〉

〈(λ(0)
p,t,`)2〉

, (3.3)

where we summed over each p for which a given twist t long multiplet appears. Unlike
the 4d and 6d cases, in 3d the sum only runs over even p regardless of the orbifold.12

12As discussed in the introduction, for k = 1 ABJM the DD would receive additional contributions from
the OPE coefficients of odd twist long multiplets that appear for odd p.
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We computed 〈(λ(0)
p,t,`)2〉, 〈λ(0)

2,t,`λ
(0)
p,t,`γ

R
t,`〉, and 〈λ

(0)
2,t,`λ

(0)
p,t,`γ

R4
t,` 〉 in (2.14), (2.23), and (2.30),

respectively, which is sufficient to compute R|R, R|R4, and R4|R4 for the k = 2 ABJ(M)
theory. The p, t, ` sums for the log2 U term in R|R can be done by expanding at small U
in each R-symmetry channel to get:

1
8

∑
t=2,4,...

∑
`∈Even

t∑
p=2,4,...

〈λ(0)
2,t,`λ

(0)
p,t,`γ

R
t,`〉2

〈(λ(0)
p,t,`)2〉

Gt+`,`(U, V ;σ, τ) =

Y[0000](σ, τ)
[
Uh

(1),[0000]
R|R (V ) + · · ·

]
+ Y[0100](σ, τ)

[
Uh

(1),[0100]
R|R (V ) + · · ·

]
Y[0020](σ, τ)

[
Uh

(1),[0020]
R|R (V ) + · · ·

]
+ Y[0120](σ, τ)

[
U2h

(2),[0120]
R|R (V ) + · · ·

]
Y[0200](σ, τ)

[
U2h

(2),[0200]
R|R (V ) + · · ·

]
+ Y[0040](σ, τ)

[
U3h

(3),[0040]
R|R (V ) + · · ·

]
,

(3.4)

where the different powers of U in each channel correspond to the lowest twists that appear
in each channel for the (A, 0)[0000]

t+`,` superblock as given in table 8 of [52]. The U -slices in
each channel take the form

h
(n),[0ab0]
R|R (V ) = P

[0ab0]
1,R|R (V ) log2 V + P

[0ab0]
2,R|R (V )Li2(1− V ) + P

[0ab0]
3,R|R (V ) log V + P

[0ab0]
4,R|R (V ) ,

(3.5)

where P [0ab0]
i,R|R (V ) are polynomials in V divided by monomials of (1 − V ) whose precise

degree varies in each channel. The expressions for R|R4 and R4|R4 are also given by (3.3),
except the ` sum is trivially ` = 0 in those cases, and R|R4 has an extra factor of 2. The
U -slices for R|R4 take the simpler form

h
(n),[0ab0]
R|R4 (V ) = P

[0ab0]
1,R|R4(V ) log V + P

[0ab0]
2,R|R4(V ) , (3.6)

for similarly defined polynomials divided by monomials, and a similar expression holds for
R4|R4. We give the explicit expressions for many n in the Mathematica notebook attached
as supplementary material.

3.2 Mellin amplitude and comparison to 11d

We now show how to complete the position space DD to the entire correlator using crossing
symmetry and the superconformal Ward identity in Mellin space. For R|R4 and R4|R4 we
will find closed form expressions up to the expected contact term ambiguities, while for
R|R we are able to compute a closed form up to a certain polynomial in s, t that in principle
can be fixed from the Ward identity, but is difficult to fix in practice. The expressions we
find in all cases are sufficient to check the flat space limit comparison to 11d, as well as to
extract all CFT data except for some low spins.

We can compute the Mellin amplitudes from the resummed DD’s following a similar
but more complicated version of the calculation in the 4d [35] and 6d [44] cases. In the
previous section, we computed the coefficient of log2 U in the s-channel, which gave the DD
in the t-channel as an expansion in small U . From the definition of the Mellin transform
in (2.17), we can then convert Un log2 Uh(n)(V ) to an s-pole in M(s, t) as

Un log2 Uhn(V )↔ resn−1(t)
s− 2(n− 1) , (3.7)
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where the residues resn−1(t) follows from the t-integral in (2.17). For R4|R and R4|R4,
resn−1(t) is analytic because the slices (3.6) do not contain any log2 V terms. In these cases,
we can then use crossing symmetry (2.18) to fix the other parts of the Mellin amplitude
that are analytic in s to get

MR|R4(s, t;σ, τ) =
∞∑
m=1

[
1

(s− 2m)

 ĉ(m, s, t;σ, τ)
m

+ d̂(m, s, t;σ, τ)Γ(m)
Γ
(
m+ 1

2

)


+ crossed
]

+
50∑
i=1

k̂iP(8),i(s, t;σ, τ) ,

MR4|R4(s, t;σ, τ) =
∞∑
m=1

 ˆ̂
d(m, s, t;σ, τ)Γ(m)
(s− 2m)Γ

(
m+ 1

2

) + crossed

+
84∑
i=1

ˆ̂
kiP(11),i(s, t;σ, τ) ,

(3.8)

where ĉ(m, s, t;σ, τ), d̂(m, s, t;σ, τ), and ˆ̂
d(m, s, t;σ, τ) are quadratic in σ, τ and polynomials

in m, s, t, while P(8),i(s, t;σ, τ) and P(11),i(s, t;σ, τ) parameterize all crossing symmetric
degree 8 and 11 polynomials in s, t, respectively, whose coefficients k̂i and ˆ̂

ki should be
fixed by the superconformal Ward identity in terms of the physical contact term ambiguities
in (1.1). Note that one can swap s for 2m in these expressions to get the same residues
at the poles, which only changes the k̂i and ˆ̂

ki. The only rule in performing this swap is
that the degree of MR|R4(s, t) and MR4|R4(s, t) at large s, t does not exceed 8.5 and 11.5,
respectively. In practice we can simply set s = 2m and similarly for the crossed terms,
which allows us to resum to get

MR|R4 =

ψ (1− s
2
)

s
p1(s, t;σ, τ) +

3F2
(
1, 1, 1− s

2 ; 3
2 , 2−

s
2 ; 1
)

2− s p2(s, t;σ, τ)

+ crossed

+
50∑
i=1

k̂iP(8),i(s, t;σ, τ) ,

MR4|R4 =

 3F2
(
1, 1, 1− s

2 ; 3
2 , 2−

s
2 ; 1
)

2− s p3(s, t;σ, τ) + crossed

+
84∑
i=1

ˆ̂
kiP(8),i(s, t;σ, τ) ,

(3.9)

where pi(s, t;σ, τ) are various polynomials in s, t, σ, τ that are given in the Mathematica

notebook attached as supplementary material, along with the explicit k̂i and ˆ̂
ki that we fix

using the Mellin space Ward identity. At large s, t these amplitudes take the form

lim
s,t→∞

MR|R4(s, t;σ, τ) = 655360 · 2
1
6 (−s)9/2(t(−σs+ s+ t) + sτ(s+ t))2

35/3π19/6 + crossed ,

lim
s,t→∞

MR4|R4(s, t;σ, τ) = 63078400 · (−s)15/2(t(−σs+ s+ t) + sτ(s+ t))2

2
1
6 3

4
3π23/6

+ crossed ,

(3.10)
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where we assumed s, t < 0. We can then use the flat space limit formula (2.27) for p = 2
and a = 8.5 and a = 11.5 for MR|R4 and MR4|R4 , respectively, as well as the relation
between `11 and cT in (2.26) for k = 2, to get precisely the expected 11d amplitudes as
given in equations (4.28) and (4.29) of [44].

For R|R, the residues resn−1(t) in (3.7) now contain poles in t because the slices (3.5)
contain log2 V terms. The resulting Mellin amplitude thus contains both single and double
pole terms

MR|R(s, t;σ, τ) =

 ∞∑
m,n=1

c(m,n, s, t;σ, τ)
(s− 2m)(t− 2n)

Γ(m)Γ(n)Γ
(
m+n− 11

2

)
Γ(m+n− 1)Γ

(
n− 1

2

)
Γ
(
m− 1

2

)
+
∑
m=1

1
s− 2m

 d(m, s, t;σ, τ)Γ(m)
Γ
(
m+ 1

2

)
(m− 4)(m− 3)(m− 2)(m− 1)

+ e(m, s, t;σ, τ)
(m− 4)(m− 3)(m− 2)(m− 1)(2m− 3)(2m− 5)(2m− 7)(2m− 9)



+ crossed

+ P̂(s, t;σ, τ) +
24∑
i=1

kiP(5),i(s, t;σ, τ) .

(3.11)

Here, c(m,n, s, t;σ, τ), d(m, s, t;σ, τ), and e(m, s, t;σ, τ) are quadratic in σ, τ and polyno-
mials in m, s, t, while P(5),i(s, t;σ, τ) are all crossing symmetric degree 5 polynomial in s, t,
which in principle should be fixed by the superconformal Ward identity in terms of just
one of the 24 ki. For the double pole residues we can swap s for 2m and t for 2n to get the
same residue at the poles, but which will change the single pole residues and the ki. When
swapping we must be careful that the resulting sums are all finite, and that the large s, t
growth does not exceed 5.5. In fact, for all choices of swaps the large s, t degree exceeds
5.5, which is why we must also include the polynomial P̂(s, t;σ, τ) that generically will
have degree greater than 5.5, and is fixed to cancel the corresponding large s, t terms from
the single and double sum terms.

It is difficult to check the large s, t limit of (3.11) with the constraints just discussed,
because we must compute the double sum term to subleading order in large s, t to take
into account the cancellations of the leading terms by P̂(s, t;σ, τ). Instead, we can more
easily compute the large s, t limit by considering the ansatz (3.11) but with coefficients
with unphysical poles at s, t, u = 0:

cflat(s, t;σ, τ) ≡ 4mn
st

c(s/2, t/2, s, t;σ, τ) ,

dflat(s, t;σ, τ) ≡ 1
t
d(s/2, s, t;σ, τ) , eflat(s, t;σ, τ) ≡ 1

t
e(s/2, s, t;σ, τ) ,

(3.12)

as well as replacing the P(5),i(s, t;σ, τ) by a higher degree polynomial multiplied by 1
st , and

without the now unnecessary P̂(s, t;σ, τ). The resulting explicit Mellin amplitude is given
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in the Mathematica notebook attached as supplementary material. In principle, we can
completely fix the ki using the superconformal Ward identity, which should cancel all the
unphysical poles at s, t, u = 0. In practice, we checked that all the residues for both the
double and single poles in s, t are satisfied by the Ward identity, but did not carefully fix
the ki since the terms they multiply are by definition subleading in the large s, t limit and
we only use this formulation to check the flat space limit. In particular, to get the leading
large s, t term that appears in the flat space limit formula (2.27), we should look at the
regime where m,n, s, t all scale equally large, in which case we can replace the sums over
m,n by integrals. For the double pole term we get

lim
s,t→∞

∞∑
m,n=1

cflat(m,n, s, t;σ, τ)
(s− 2m)(t− 2n)

Γ(m)Γ(n)Γ
(
m+ n− 11

2

)
Γ(m+ n− 1)Γ

(
n− 1

2

)
Γ
(
m− 1

2

) + crossed

=
∫ ∞

0
dmdn

5120m3/2n3/2st(s+ t)(t(−σs+ s+ t) + sτ(s+ t))2

3π7/2(m+ n)9/2(s− 2m)(t− 2n)
+ crossed

= −1024
√

2st(t(−σs+ s+ t) + sτ(s+ t))2

63π5/2(s+ t)4
√
st

[
6(−t)9/2 − 41s2(−t)5/2 + 88s3(−t)3/2

+ 88(−s)3/2t3 − 8
√
−st4 − 45(−s)7/2t− 45s(−t)7/2 + 6(−s)9/2 − 8s4√−t− 41(−s)5/2t2

+ 105s2t2
√
−s− t log

[(√
−s− t+

√
−s
) (√
−s− t+

√
−t
)

√
st

] ]
+ crossed ,

(3.13)

where we assumed that s, t < 0. For the single pole terms the dflat term is leading at large
s, t and gives

lim
s,t→∞

∑
m=1

1
s− 2m

dflat(m, s, t;σ, τ)Γ(m)
Γ
(
m+ 1

2

)
(m− 4)(m− 3)(m− 2)(m− 1)

+ crossed

= −
∫ ∞

0
dm

18
7
√
πm3/2

(
4m2τ + 2mt(−σ + τ + 1) + t2

)2
+ crossed

= 4096
√

2
7π5/2 (t(−σs+ s+ t) + sτ(s+ t))2

(
it
√
−s− t+ is

√
−s− t+ (−s)3/2 + (−t)3/2

)
.

(3.14)

We then plug these large s, t expressions into the flat space limit formula (2.27) for p = 2
and a = 5.5 and use the relation between `11 and cT in (2.26) for k = 2 to precisely get the
expected 11d amplitudes as given in equations (4.19) of [44].

So far, we have a choice of coefficients (3.12) in (3.11) that gives a putative 1-loop
amplitude MR|R

flat that we know has the correct flat space limit, but which has unphysical
poles at s, t, u = 0 that in principle could be cancelled by subtracting a polynomial divided
by stu, but in practice are hard to fix using the superconformal Ward identity because
of the double sums. We can avoid these unphysical poles by choosing c(m,n, s, t;σ, τ),
d(m, s, t;σ, τ), and e(m, s, t;σ, τ) in (3.11) that are in fact polynomials in m,n, s, t as orig-
inally defined, and then demanding that the resulting expression for MR|R matches MR|R

flat
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up to the degree 5 polynomial ambiguities P(5),i(s, t;σ, τ). The resulting expressions for
c, d, e are given in the Mathematica result attached as supplementary material, and are now
guaranteed to have both the correct flat space limit and only physical poles. Finally, the
coefficients ki can in principle be fixed using the superconformal Ward identity in terms of
just a single coefficient, which corresponds to the single physical degree 4 contact term am-
biguity in (1.1). In practice this is difficult due to the double sums, so instead we fix most
of these coefficients in the next section by demanding a consistent superblock expansion,
which is equivalent to imposing the superconformal Ward identity but easier in practice.

3.3 Extracting CFT data

We now extract all low-lying CFT data from the R|R, i.e. c−2
T , and R|R4, i.e. c−

8
3

T , corre-
lators using two independent methods. Firstly, we derive an inversion integral formula for
each DD in position space, which lets us to extract all CFT data above a certain spin in
terms of a single integral, as expected from the Lorentzian inversion formula [30]. Secondly,
we expand each entire correlator as written in Mellin space in superblocks to extract all
CFT data for all spins up to the physical contact term ambiguities that appear in (1.1),
as well as some unphysical ambiguities for R|R that in principle can be fixed by the su-
perconformal Ward identity. We find that both methods agree in their respective regimes
of applicability. We do not extract CFT data from the R4|R4, i.e. c−

10
3

T , correlator, since
we anyway do not know the R|D6R4 term that would contribute at the same order, but it
would be simple to extract the R4|R4 data as well from the formulae provided here.

To extract CFT data, we will look at the superblock expansion in the lightcone limit
of small U ∼ z, where conformal blocks are expanded as

G∆,`(U, V ) =
∞∑
n=0

U
∆−`

2 +ng
[n]
∆,`(1− V ) . (3.15)

Here, the lowest so-called lightcone block in our normalization is

g
[0]
∆,`(1− V ) = Γ(`+ 1/2)

4∆√π`! (1− V )` 2F1

(∆ + `

2 ,
∆ + `

2 ,∆ + `, 1− V
)
, (3.16)

and we see that the expansion is naturally organized in terms of twist t ≡ ∆− `. Applying
this expansion to the superblocks, we observe that blocks in different supermultiplets with
the same twist can appear in the same R-symmetry channel, so it is convenient to look at
channels with the least mixing between different supermultiplets. For instance, the lowest
twist long multiplet (A, 0)`+2,` contributes at greater than twist two in the [0200], [0120],
and [0040] channels, while all the protected multiplets contribute at lower twists in these
channels, so these channels are the simplest for extracting OPE coefficients of protected
operators. In particular, if we focus on the lowest twist 2 conformal blocks at O(U), then
from [52] we see that the short superblocks contain the blocks

twist = 2: G
[0040]
(B,+) = G2,0 , G

[0120]
(B,+) = −4

3G3,1 , G
[0200]
(B,+) = 0 ,

G
[0040]
(B,2) = 0 , G

[0120]
(B,2) = −8

3G3,1 , G
[0200]
(B,2) = G2,0 + 64

45G4,2 ,

(3.17)
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while the semishort superblocks contain

twist = 2: G
[0040]
(A,+)`

= 16
3 G`+4,`+2 , G

[0120]
(A,+)`

= −4G3+`,1+` −
64(`+ 3)4G5+`,3+`
(2`+ 5)2(2`+ 7)2 ,

G
[0200]
(A,+)`

= 32(`+ 2)(`+ 3)
3(2`+ 3)(2`+ 7)G4+`,2+` ,

G
[0040]
(A,2)`

= 0 , G
[0120]
(A,2)`

= − 32(`+ 2)2

(2`+ 3)(2`+ 5)G`+4,`+2 ,

G
[0200]
(A,2)`

= 4G`+3,`+1 + 64(`+ 2)2(`+ 3)2

(2`+ 3)(2`+ 5)2(2`+ 7)G`+5,`+3 .

(3.18)
For the long superblock, we will only extract its lowest twist 2 anomalous dimension, for
which it is convenient to consider the [0040] channel where only a single block at twist 6
appears:

G
[0040]
`+2,` = 16(2`+ 2)(2`+ 4)

(2`+ 3)(2`+ 5) G`+6,` . (3.19)

We can now use this explicit block decomposition to extract CFT data, first using
the Lorentzian inversion formula. In appendix B we review following the similar 4d case
in [37] how to use the inversion formula to extract CFT data from the DD of a 3d CFT
by comparing to its conformal block expansion in the large cT limit. We can apply this to
the twist 2 block expansion in the [0040] channel (3.18) for general ` where only (A,+)`
appears, so that we get

λ2
(A,+),` = 12(2`+ 5)Γ(`+ 3)4

Γ
(
`+ 5

2

)2
Γ
(
`+ 7

2

)2

∫ 1

0

dz̄

z̄
g`+4,`+2(z̄)dDisc[G[0040](zz̄, 1− z̄)|z] , (3.20)

where G[0040](zz̄, 1 − z̄)|z denotes the leading z term in the basis (2.4), we dropped the
superscript from the leading lightcone block in (3.16), and the overall normalization was
fixed using the known GFFT term in (2.34) as discussed in appendix B. The (B,+) super-
multiplet also appears at leading twist in this channel, and comparing (3.17) to (3.18) we
see corresponds to the limit13

G
[0040]
(B,+) = 3

16 lim
`→−2

G
[0040]
(A,+)`

, (3.21)

so can be considered a special case of (3.20). We can similarly analyze the [0200] and [0120]
channels to get

12(`+ 1)2(`+ 2)2

(2`+ 1)(2`+ 3)2(2`+ 5)λ
2
(A,2)`−1

+ 2(`+ 2)(`+ 3)
(2`+ 3)(2`+ 7)λ

2
(A,+)`

+ 3
4λ

2
(A,2)`+1

=

12(2`+ 5)Γ(`+ 3)4

Γ
(
`+ 5

2

)2
Γ
(
`+ 7

2

)2

∫ 1

0

dz̄

z̄
g`+4,`+2(z̄)dDisc[G[0200](zz̄, 1− z̄)|z] ,

(3.22)

13In other channels negative spins blocks appear in this limit as discussed in [52], so the comparison is
more subtle.

– 21 –



J
H
E
P
0
2
(
2
0
2
2
)
0
0
5

and

12(`+ 2)4

(2`+ 3)2(2`+ 5)2λ
2
(A,+)`−1

+ 6(`+ 2)2

(2`+ 3)(2`+ 5)λ
2
(A,2)`

+ 3
4λ

2
(A,+)`+1

=

− 12(2`+ 5)Γ(`+ 3)4

Γ
(
`+ 5

2

)2
Γ
(
`+ 7

2

)2

∫ 1

0

dz̄

z̄
g`+4,`+2(z̄)dDisc[G[0120](zz̄, 1− z̄)|z] ,

(3.23)

where the minus sign is expected because the spin is odd. These two equations give
an overconstrained system for λ2

(A,2)`
in terms of λ2

(A,+)`−1
and λ2

(A,+)`+1
, which can be

extracted seperately from (3.20). From comparing (3.17) to (3.18), we see that (B, 2)
corresponds to the limit

G
[0200]
(B,2) = 1

4 lim
`→−1

G
[0200]
(A,2)`

, (3.24)

and similarly for the [0040] and [0120] channels, so its OPE coefficient can be extracted
from 4λ2

(A,2)−1
. Finally, we can apply the inversion analysis in appendix B for the R|R

correction to the anomalous dimension to the long superblock in the [0040] channel (3.19)
to get

γ
R|R
2,` = 1

(λ(0)
2,` )2

(
4R[0040]

1,R|R(`) + 1
2∂`

[
(λ(0)

2,` )
2(γR2,`)2]− (λR2,`)2γR2,`

)
, (3.25)

where we have the inversion integral

R
[0040]
1,R|R(`) = 512(`+ 1)(`+ 2)(2`+ 3)Γ(`+ 1)4

Γ
(
`+ 1

2

)2
Γ
(
`+ 5

2

)2

∫ 1

0
dz̄z̄g`+6,`(z̄)dDisc[G[0040]

R|R (zz̄, 1− z̄)
∣∣∣
z3 log z

] .

(3.26)
For R|R4 we have a similar expression, except without the tree level terms in (3.25) since
for R4 they only have support for ` = 0.

To apply these inversion integrals, we need to compute the leading z term of the DD
in various channels for R|R and R|R4, which is given by the coefficient of log2(1 − z̄)
according to

dDisc [f(z, z̄) log2(1− z̄)] = 4π2f(z, z̄) , (3.27)

for arbitrary f(z, z̄) analytic at z̄ = 1. We compute the log2(1− z̄) term by taking the U -
slices h(n),[0ab0](V ) in section 3.1 that multiply log2 U , applying the 1↔ 3 crossing (3.2) to
get expressions that multiply log2 V ∼ log2(1− z̄), resumming the slices, and reexpanding
in the Y[0ab,0](σ, τ) to get the DD in each irrep. For R|R4, we were able to find closed form
expressions, while for R|R the result is written in terms of an integral over an auxiliary
variable, see the Mathematica notebook attached as supplementary material for the explicit
expressions. For R|R we find that the inversion integrals with these explicit DDs converges
for ` > −1

2 for (3.20), for ` > 1
2 for (3.23), and for ` > 3

2 for (3.26), which allows us to
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compute the CFT data:

(λR|R(A,+)0
)2 = 285.32043668331375685394087 ,

(λR|R(A,+)2
)2 = 77.098186992813023177613926 ,

(λR|R(A,+)4
)2 = 48.536178605208049991881361 ,

(λR|R(A,2)1
)2 = 2239.9009500059848334084088 ,

(λR|R(A,2)3
)2 = 540.71435539680002180491475 ,

(λR|R(A,2)5
)2 = 328.90127928121821108070743 ,

γ
R|R
2,2 = 1645242368

1125π4 − 207785984
663π2 ,

γ
R|R
2,4 = 80811812224

25725π4 − 2170015744
6783π2 ,

γ
R|R
2,6 = 14459024425792

3678675π4 − 45500125184
115115π2 ,

(3.28)

where we could also compute higher spin data if desired.14 Note that the CFT data that we
cannot compute, namely γR|R2,0 , (λR|R(B,+)0

)2, and (λR|R(B,2)0
)2, is what is affected by the degree

4 contact term B
R|R
4 M4 in (1.1), as shown in table 2, which is analogous to the 4d [33] and

6d [44] cases. For R|R4 we find that the inversion integrals with the explicit R|R4 DDs
converges for ` > 7

2 for (3.20), for ` > 9
2 for (3.23), and for ` > 11

2 for (3.26), which allows
us to compute the CFT data:

(λR|R
4

(A,+)4
)2 =

22291954008064
(

2
3

)2/3

4357815π14/3 +
1561306511441920

(
2
3

)2/3

6298655363π8/3 ,

(λR|R
4

(A,2)5
)2 =

254814018760343552
(

2
3

)2/3

3277699425π14/3 +
281474976710656

(
2
3

)2/3

72177105π8/3 ,

γ
R|R4

2,6 = −
512640462848

(
2
3

)2/3

693π14/3 −
110655386419200

(
2
3

)2/3

2956811π8/3 ,

(3.29)

where we could also compute higher spin data if desired. The CFT data we cannot compute
is what is affected by the degree 8 and smaller contact terms in (1.1), as shown in table 2,
which is analogous to the 4d [34] and 6d [44] cases.

Finally, we can also extract CFT data from the entire correlator as written in Mellin
space in terms of the contact term ambiguities described before. We extract this data in the
lightcone expansion following [62], by taking the relevant s-pole, doing the t-integral, pro-
jecting against a block of the corresponding spin using the projectors introduced in [20], and
comparing against the lightcone expansion of the superblocks in (3.17), (3.18), and (3.19).

14From computing some higher spins values, we observed that the anomalous dimensions are not mono-
tonic in spin until ` = 6, unlike the case of 4d N = 4 SYM [34] and 6d (2, 0) [44] that was monotonic in
spin in general. Of course, monotonicity in spin is only required at sufficiently high spin [79].
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For R|R, we first demand that logU terms, which correspond to anomalous dimensions,
should only show up in the [0200], [0120], and [0040] channels starting with the appropriate
twists, which fixes 12 of the 24 coefficients ki of the polynomial ambiguity in the Mellin
amplitude (3.11). After fixing these, we find that γR|R2,` for ` ≥ 4, (λ(A,+)`

)2 for ` ≥ 2, and
(λ(A,2)`

)2 for ` ≥ 3 are unaffected by the remaining ki, so we could extract this data by
computing the double sums numerically and confirm the inversion results in (3.28). For
R|R4, we already completely fixed the Mellin amplitude up to the physical contact term
ambiguities in (1.1), so we can compute all CFT data, which confirms the inversion results
in (3.29), and also gives the complete result at order c−

8
3

T for the low spin data:

(λR|R
4

(B,+))
2 = −

59609927581958144
(

2
3

)2/3

14189175π14/3 + 256
35 B

R|R4

4 ,

(λR|R
4

(B,2))
2 = −

59609927581958144
(

2
3

)2/3

2837835π14/3 + 256
7 B

R|R4

4 ,

(λR|R
4

(A,+)0
)2 = −

7798563930112
(

2
3

)2/3

1216215π14/3 −
134217728

(
2
3

)2/3

429π8/3

+ 16384
1485 B

RR|R4

6 + 950272
6435 B

RR|R4

7 − 131396796416
467137125 B

RR|R4

8 ,

(λR|R
4

(A,+)2
)2 = −

148820650360832
(

2
3

)2/3

2786875π14/3 −
229076375699456

(
2
3

)2/3

56581525π8/3 + 67108864
557375 B

R|R4

8 ,

(λR|R
4

(A,2)1
)2 =

3402914332672
(

2
3

)2/3

218295π14/3 −
794568949760

(
2
3

)2/3

29393π8/3

+ 131072
1155 B

R|R4

6 + 21889024
15015 B

R|R4

7 − 3848847491072
1089986625 B

R|R4

8 ,

(λR|R
4

(A,2)3
)2 = −

3672876448219136
(

2
3

)2/3

2546775π14/3 −
614077244112896

(
2
3

)2/3

6292363π8/3 + 268435456
121275 B

R|R4

8 ,

γ
R|R4

2,0 =
5112797289066496

(
2
3

)2/3

45045π14/3 +
359760199680

(
2
3

)2/3

46189π8/3

− 192BR|R4

4 + 15360
11 B

R|R4

6 + 192000
11 B

R|R4

7 − 18059264
1521 B

R|R4

8 ,

γ
R|R4

2,2 =
12875118112768

(
2
3

)2/3

1365π14/3 +
162643071467520

(
2
3

)2/3

96577π8/3

− 1536BR|R4

6 − 18432B7R|R4 + 509591552
12675 B

R|R4

8 ,

γ
R|R4

2,4 =
1806876913664

(
2
3

)2/3

63π14/3 +
709927895040

(
2
3

)2/3

391π8/3 − 32768BR|R4

8 ,

(3.30)

where note that (λR|R
4

(B,2))
2 = 5(λR|R

4

(B,+))
2 as expected from (2.33).
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4 Fixing 1-loop contact terms

So far we computed the 1-loop Mellin amplitudesMR|R(s, t),MR|R4(s, t), andMR4|R4(s, t),
but we did not fix the polynomial in s, t contact terms ambiguities that appear in (1.1)
at orders c−2

T , c−
8
3

T , and c−
10
3

T , respectively. It is necessary to fix these contact terms if we
want to extract low spin CFT data at these orders that are affected by these ambiguities,
as summarized by table 2. We will fix the contact term ambiguities for MR|R(s, t) and
MR|R4(s, t) using two methods. First, we will propose a unique analytic continuation of
Lorentzian inversion below the spins where it was shown to converge in the previous section,
which will allow us to fix all CFT data at order c−2

T , and all but the CFT data affected by
the BR|R4

4 M4 contact term at order c−
8
3

T . We will then use the two localization constraints
from [10, 21] to confirm these results at order c−2

T , as well as fix BR|R4

4 and give an additional
nontrivial consistency check. Note that at order c−2

T , we will be able to extract all CFT data
even though we will not write down an explicit Mellin amplitude, because we have not yet
fixed all the coefficients ki in (3.11) that are in principle fixed by the superconformal Ward
identity. Also, we cannot similarly analyze the order c−

10
3

T term yet, because it receives
contributions not only from MR4|R4(s, t) but also from MR|D6R4(s, t), which has not yet
been computed.

4.1 Analytic continuation of Lorentzian inversion

Let us begin by discussing the inversion integral (3.20) for the [0040] channel, which we use
to compute λ2

(A,+)`
for even `. For R|R, we can see from the explicit expression for the DD

in the Mathematica notebook attached as supplementary material that it has the small z̄
expansion

dDisc[G[0040]
R|R (zz̄, 1− z̄)|z] = 3072

πz̄3/2 −
61952
27π
√
z̄

+ . . . . (4.1)

Since the measure in (3.20) scales as z̄`+1, we see that this integral converges for ` > −1
2 ,

which allowed us to compute all the (λR|R(A,+)`
)2 for even ` ≥ 0 in the previous section, but

did not allow us to compute (λR|R(B,+))
2 = 16

3 (λR|R(A,+)−2
)2 as given by (3.21). We can uniquely

analytically continue (3.20) to ` = −2 by writing it as

λ2
(A,+),` = 12(2`+ 5)Γ(`+ 3)4

Γ
(
`+ 5

2

)2
Γ
(
`+ 7

2

)2

[ ∫ 1

0

dz̄

z̄
g`+4,`+2(z̄)

[
dDisc[G[0040](zz̄, 1− z̄)|z]

− 3072
π

(1− z̄
z̄

)3/2
− 62464

27π

√
1− z
z

]
+ 3072

π
f(`, 3/2) + 62464

27π f(`, 1/2)
]
,

(4.2)

where we define the analytically continued integral

∫ 1

0

dz̄

z̄
g`+4,`+2(z̄)

(1− z̄
z̄

)p
= Γ(2(`+ 3))Γ(p+ 1)2Γ(`− p+ 2)

Γ(`+ 3)2Γ(`+ p+ 4) , (4.3)
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which can be computed using the integral expression for the hypergeometric function in
the lightcone block (3.16). The explicit z̄ integral in (4.2) as well as f(`,3/2) and f(`,1/2)
are now convergent for ` < −1

2 , which we can compute at high precision for ` = −2 to get

(λR|R(B,+))
2 = 16

3 (λR|R(A,+)−2
)2 = 32768

45π2 −
81920
9π4 . (4.4)

We can similarly analytically continue the inversion integrals in the [0120] (3.23) and
[0200] (3.22) channels to compute (λR|R(B,2))

2 = 4(λR|R(A,2)−1
)2, which is related to (λR|R(B,+))

2 by
a factor of 5 as expected from (2.33), which is evidence that our analytic continuation re-
spects superconformal symmetry. The analytic continuation of the inversion integral (3.26)
for the anomalous dimension then gives

γ
R|R
2,0 = 46224640

9π4 − 117698560
429π2 , (4.5)

which is the only other CFT data that was affected by the BR|R
4 M4(s, t) contact term, and

so could not be computed in the previous section.
We can then analytically continue the inversion integrals in the same way for R|R4.

In this case we find that the small z̄ expansion of the DD includes a term z̄−1, which
gives a f(`, 1) term after analytic continuation. From (4.3), we see that this f(`, 1) has a
logarithmic divergence at ` = −2, so we can only analytically continue for ` > −2, which
allows us to compute all (λR|R(A,+)`

)2 for even ` ≥ 0, but not (λR|R
4

(B,+))
2 = 16

3 (λR|R
4

(A,+)−2
)2. We

see a similar pattern in the other inversion integrals, where we can compute all CFT except
(λR|R

4

(B,2))
2 and all γR|R

4

2,0 , which would be affected by the BR|R4

4 M4(s, t) contact term. The
results for the other CFT data are15

(λR|R
4

(A,+)0
)2 = −

269877248
(

2
3

)2/3

45π14/3 −
134217728

(
2
3

)2/3

429π8/3 ,

(λR|R
4

(A,+)2
)2 = −

7322684358656
(

2
3

)2/3

91875π14/3 −
229076375699456

(
2
3

)2/3

56581525π8/3 ,

(λR|R
4

(A,2)1
)2 = −

167914766336
(

2
3

)2/3

315π14/3 −
794568949760

(
2
3

)2/3

29393π8/3 ,

(λR|R
4

(A,2)3
)2 = −

1634776490442752
(

2
3

)2/3

848925π14/3 −
614077244112896

(
2
3

)2/3

6292363π8/3 ,

γ
R|R4

2,2 =
166203518976

(
2
3

)2/3

5π14/3 +
162643071467520

(
2
3

)2/3

96577π8/3 ,

γ
R|R4

2,4 =
2257848479744

(
2
3

)2/3

63π14/3 +
709927895040

(
2
3

)2/3

391π8/3 .

(4.6)

15Curiously, the results for the anomalous dimensions for R|R4 become monotonic in spin at ` = 6, which
was the same value for R|R as discussed above.
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We can compare this against the CFT data in (3.30) that was extracted from the explicit
Mellin amplitude, which fixes the coefficients

B
R|R4

6 = −
128720195584

(
2
3

)2/3

819π14/3 , B
R|R4

7 =
775420813312

(
2
3

)2/3

68445π14/3 , B
R|R4

8 = −
655360

(
2
3

)2/3

3π14/3 .

(4.7)
We cannot yet fix the BR|R4

4 coefficient, because the analytic continuation of inversion did
not converge for the low spin data affected by M4(s, t).

4.2 Supersymmetric localization

We can also fix the Mellin amplitudes using the two localization constraints in [10, 21]. The
first constraint is simply the value of the short OPE coefficients λ2

(B,+) and λ2
(B,2), which

are shown to all orders in 1/cT in (2.32), and impose just one independent constraint on
the 4-point function due to the relation (2.33). For R|R, the localization values exactly
match the prediction in (4.4) from the analytically continued Lorentzian inversion formula,
which independently fixes the CFT data affected by M4(s, t) without needing to assume
the conjectured analytic continuation, and so gives a nontrivial check on that conjecture.
For R|R4 we use this constraint to fix the last contact term ambiguity

B
R|R4

4 =
65229926487808

(
2
3

)2/3

135135π14/3 ,
(4.8)

which we can then use to compute the last remaining unfixed CFT datum

γ
R|R4

2,2 =
25509449728

(
2
3

)2/3

15π14/3 +
359760199680

(
2
3

)2/3

46189π8/3 .
(4.9)

The second localization constraint involves a nontrivial integral [23]:

∂ logZ
∂m2

+∂m
2
−

∣∣∣∣∣
m±=0

= π2c2
T

211 I+−[Si] ,

I+−[Si] ≡
∫

ds dt

(4πi)2
2
√
π

(2− t)(s+ t− 2)M1(s, t)

× Γ
[
1− s

2

]
Γ
[
s+ 1

2

]
Γ
[
1− t

2

]
Γ
[
t− 1

2

]
Γ
[
s+ t− 2

2

]
Γ
[3− s− t

2

]
,

(4.10)

where M1(s, t) is the first element of the Mellin amplitude basis

M(s, t;σ, τ) = M1 + σ2M2 + τ2M3 + στM4 + τM5 + σM6 , (4.11)

and the mass derivatives of the partition function was computed to all orders in 1/cT in [21]
for k = 2 ABJ(M):

∂ logZ
∂m2

+∂m
2
−

∣∣∣∣∣
m±=0

= − π2

64cT
+

5π4/3
(

2
3

) 2
3

16c5/3
T

− 5
12c2

T

−
4
(

2π2

3

) 1
3

3c7/3
T

+
91
(

2
3π

)2/3

9c8/3
T

+O(c−3
T ) .

(4.12)
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For the Mellin amplitudes that appear at order c−
8
3

T in (1.1) we compute the integrals
in (4.10) to get

I+−[M4] = 8π2

7 , I+−[M6] = −448π2

33 , I+−[M7] = −529472π2

3003 ,

I+−[M8] = 49716397568π2

342567225 , I+−[MR|R4 ] = −
1861955980828672

(
2
3

)2/3

2837835π8/3 ,

(4.13)

where for the polynomial Mellin amplitudes we used the fact that they are all proportional
to (2− t)(s+ t− 2) as well as the Barnes lemma

∫ i∞

−i∞

ds

2πiΓ(a+ s)Γ(b+ s)Γ(c− s)Γ(d− s) = Γ(a+ c)Γ(b+ d)Γ(b+ c)Γ(a+ d)
Γ(a+ b+ c+ d) , (4.14)

while for MR|R4(s, t) we instead numerically computed the integral of the closed form
expression in the Mathematica notebook attached as supplementary material to high pre-
cision. Plugging (4.13) and (4.12) into (4.10), we find that MR|R4 with the values of BR|R4

i

fixed in (4.8) and (4.7) precisely satisfies the constraint, which is a nontrivial check that
the analytically continued Lorentzian inversion formula gives the correct CFT data and
thus fixes the contact term ambiguities at 1-loop.

Finally, we can use both localization constraints and the explicit integrals in (4.13) to
fix two of the four coefficients BD8R4

i in the tree level D8R4 term in (1.1) to get

BD8R4
4 = −3200BD8R4

7
429 − 238578176BD8R4

8
1957527 , BD8R4

6 = −177BD8R4
7

13 + 10356296BD8R4
8

494325 ,

(4.15)

which will be useful in future attempts to fix this amplitude by independently computing
its CFT data.

5 Numerical bootstrap

In the previous sections we studied 〈2222〉 for the k = 2 ABJ(M) theory in the large cT ∼
N

3
2 limit to several orders. In this section, we will study this correlator non-perturbatively

using the numerical conformal bootstrap, and compute bounds on CFT data as a function of
cT as was done in previous work [52, 58, 63, 64], but now to much higher numerical accuracy
using subsequent technical improvements to the bootstrap software [80]. Previously, the
tree level supergravity correction [55, 62] was found to saturate the lower bounds [58, 63]
for all CFT. These lower bounds were conjectured to correspond to k = 2 ABJ(M) theory
in [58], because they were found to be approximately saturated by the values of the short
(B, 2) and (B,+) OPE coefficients as computed all orders in 1/N in [58]. We now find that
the R|R correction continues to saturate these lower bounds for those semishort (A, 2)`
and (A,+)` OPE coefficients where the asymptotic large cT expansion is well converged.
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5.1 Setup

We start by briefly reviewing how the numerical bootstrap can be applied to the stress-
tensor multiplet four-point function in N = 8 theories, for further details see [52]. In-
variance of the four-point function (2.2) as expanded in superblocks (2.8) under 1 ↔ 3
crossing (3.2) implies crossing equations of the form∑

M∈{Id, Stress, (B,+), (B,2), (A,+)`, (A,2)`, (A,0)∆,`}
λ2
M
~VM = 0 , (5.1)

whereM ranges over all the superconformal multiplets listed in table 1, ~VM are functions
of superconformal blocks, and λ2

M are squares of OPE coefficients that must be positive by
unitarity. As in [52], we normalize the OPE coefficient of the identity multiplet to λId = 1,
and parameterize our theories by the value of λStress, which is related to cT through (2.11)
for p = 2.

To find upper/lower bounds on a given OPE coefficient of a protected multiplet M′

that appears in the OStress ×OStress OPE, we consider linear functionals α satisfying

α(~VM′) = s , s = 1 for upper bounds, s = −1 for lower bounds ,

α(~VM) ≥ 0 , for all short and semi-shortM /∈ {Id, Stress,M′} ,

α(~V(A,0)∆,`
) ≥ 0 , for all ` with ∆ ≥ `+ 1 .

(5.2)

If such a functional α exists, then this α applied to (5.1) along with the positivity of all
λ2
M except, possibly, for that of λ2

M′ implies that

if s = 1, then λ2
M′ ≤ −α(~VId)− 256

cT
α(~VStress) ,

if s = −1, then λ2
M′ ≥ α(~VId) + 256

cT
α(~VStress) .

(5.3)

Note that we can get both upper/lower bounds because the protected multiplets are iso-
lated from the continuum of operators, unlike the long multiplets (A, 0)∆,` for which we
could only compute upper bounds on their OPE coefficients. To obtain the most stringent
upper/lower bound on λ2

M′ , one should then minimize/maximize the r.h.s. of (5.3) under
the constraints (5.2). In the above algorithms, we fixed the SCFT by inputting the value
of cT , which was computed to all orders in 1/N for ABJ(M) in [58]. We can further fix
the theory by also putting in the values of all the short OPE coefficients λ2

(B,2) and λ
2
(B,+),

which were also computed to all orders in 1/N . We should then remove these operators
from the second line of (5.2) and put them on the r.h.s. of (5.3) with their explicit OPE
coefficients, just like the stress tensor multiplet.

The numerical implementation of the minimization/maximization problem described
depends on five parameters: the number of derivatives parameter Λ used to construct α, the
range of spins of multiplets up to `max that we consider, the order rmax to which we expand
blocks, the parameter κ that parametrizes how many poles we keep when approximating
blocks, and the precision of the solver SDPB [81]. We used Λ = 83,16 `max = 90, rmax = 140,

16This is equivalent to nmax = 42, which must be some kind of record for 3d bootstrap!
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λ2
Stress
16 = 16

cT
λ2

(B,+) λ2
(B,2)

large N 0.20952 7.36854 7.43343
exact 0.20944 7.37115 7.45176

Table 3. Comparison of the large N formulae to the exact values from [64] for the OPE coefficients
of short operators that appear in 〈2222〉 for U(3)2 ×U(3)−2 ABJM.

κ = 70, and 1116 binary digits of precision. The most important parameter is Λ, which
should be compared to the previously highest value Λ = 43 used in [64].

5.2 Bootstrap bound saturation

The large cT expansion of CFT data is asymptotic, which means that after a few orders
the expansion will actually get worse, unless we look at very large values of cT . The larger
the value of cT , the more precise our numerics must be to make a meaningful comparison,
so we should focus on CFT data for which the asymptotic expansion is still pretty good
for the lowest few orders. In general, we observe that the convergence of the asymptotic
expansion is better for more protected operators. For instance, the short operators (B, 2)
and (B,+) are the most protected, and their expansion at large cT as shown to all orders
in [58] takes the form

λ2
(B,2) = 10.6667− 17.636916

cT
+ 7.26668

[16
cT

] 5
3
− 0.384051

[16
cT

]2
− 3.25726

[16
cT

] 7
3

+ 1.88158
[16
cT

] 8
3

+ . . . ,

(5.4)
and similarly for λ2

(B,+). We expand in 16/cT because the free N = 8 theory has cT = 16,
which makes this a natural quantity. Note that coefficient of each subsequent order is
in general getting smaller, which implies that this asymptotic expansion is expected to
be pretty good even to many orders. This expectation is supported by the fact that the
all orders in 1/N expansion matches the finite N values to the sub-percent level for the
U(3)2 × U(3)−2 ABJM theory, as computed in [64]17 and reviewed in table 3. Another
piece of evidence is that the all orders expression is close to saturating the lower bound
from the numerical bootstrap, as first observed in [58] with Λ = 43 accuracy, and now
further confirmed with Λ = 83 accuracy in figure 1. Note that there is still a discrepancy
between the all orders expression in solid red and the lower bound in solid gray, even
though the numerics seem well converged as can be seen from comparing to the old Λ = 43
value in dashed gray. This suggests that either the lower bound is not actually saturated
by the k = 2 ABJ(M) theory, even though it is very close to the curve for a large range
of cT as observed in [58], or that the non-perturbative in cT corrections to the all orders
expressions for λ2

(B,2) might account for this small discrepancy. Since we cannot rule out
either possibility at this stage, for subsequent plots we will show bounds where we inputed

17Actually, in [64] the values were computed directly for the interacting sector of U(4)1 ×U(4)−1 ABJM
theory, but this theory is dual to U(3)2 × U(3)−2 theory since in the UV they are both described by
SU(4) ∼= SO(6) SYM [82, 83].
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k = 2 ABJ

Analytic O(cT
-2)

Analytic All Perturbative cT
-1

Analytic O(cT
-1)

Analytic O(cT
-5/3)

Upper/Lower Bounds

Λ=83

Λ=43 Upper/Lower Bounds

0.00 0.02 0.04 0.06 0.08 0.10 0.12
16/cT
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10.0

10.5

λ(B,2)
2

Figure 1. Upper and lower bounds on the λ2
(B,2) OPE coefficient with Λ = 83 (solid gray) and

Λ = 43 (dashed gray) in terms of the stress-tensor coefficient cT in the large cT regime. The
red dotted line denotes the large cT expansion to order tree level supergravity O(c−1

T ), which is
independent of k, while the red dot-dashed line also includes the tree level R4 correction at order
O(c−5/3

T ) and the red dashed line furthermore includes the 1-loop R|R correction at order O(c−2
T ),

both of which depend on the value k = 2. The solid red line includes the all orders in 1/cT

expression, which only misses non-perturbative in cT corrections. The blue and brown vertical lines
denote the values of cT for various known k = 2 ABJM and ABJ theories, respectively, which are
summarized in table 4. Since there is still a small discrepancy in this very zoomed in plot (relative
to [58], which looked at 0 ≤ 16/cT ≤ 1) between the all orders result and the numerical bounds
even at very high Λ, we have imposed the value of λ2

(B,2) in subsequent plots, which should further
constrain the numerical bounds to match k = 2 ABJM.

the values of λ2
(B,2) and λ2

(B,+) as well as bounds with no assumptions, and as expected
these bounds differ by a small amount.

The next most protected operators are (A,+)` for even ` and (A, 2)` for odd `. In the
previous sections we computed the large cT expansion of their OPE coefficients to many
orders, which we summarize showing explicit numerical values for each term:

λ2
(A,+)0

= 7.11111 + 3.0280316
cT

+ 1.11453
[16
cT

]2
− 3.04011

[16
cT

] 7
3

+
[9199616

6435 BD8R4
7 − 120501022588928

5138508375 BD8R4
8

]
c
− 23

9
T − 20.4134

[16
cT

] 8
3

+ . . . ,

λ2
(A,+)2

= 13.3747 + 3.1966516
cT

+ 0.301165
[16
cT

]2
+ 67108864

557375 BD8R4
8 c

− 23
9

T − 268.868
[16
cT

] 8
3

+ . . . ,

λ2
(A,+)4

= 19.6506 + 3.2596716
cT

+ 0.189594
[16
cT

]2
+ 16.9909

[16
cT

] 8
3

+ . . . ,

(5.5)
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and

λ2
(A,2)1

= 9.75238− 6.1728116
cT

+ 8.74961
[16
cT

]2
− 75.0472

[16
cT

] 7
3

−
[262144

3003 BD8R4
7 + 2766298677248

2397970575 BD8R4
8

]
c
− 23

9
T − 1797.23

[16
cT

] 8
3

+ . . . ,

λ2
(A,2)3

= 16.2118− 6.4348816
cT

+ 2.11217
[16
cT

]2
+ 268435456

121275 BD8R4
8 c

− 23
9

T − 6491.08
[16
cT

] 8
3

+ . . . ,

λ2
(A,2)5

= 22.573− 6.5404116
cT

+ 1.28477
[16
cT

]2
+ 261.161

[16
cT

] 8
3

+ . . . ,

(5.6)
where we included the D8R4 at order c−

23
9

T term that we only know up to two as yet unfixed
coefficients. As the spin increases, we observe that the R|R term at order c−2

T becomes
increasingly smaller compared to the tree level supergravity term, which means that we
can trust it more for a larger range of cT . On the other hand, the R|R4 term at order c−

8
3

T

is much bigger than the previous terms, which means that we can only trust it at very
large cT . There is also a D6R4 term at order c−

7
3

T that only affects the lowest spin for each
multiplet, and also is roughly the same size as the supergravity term.

Lastly, the least protected multiplet is the long multiplet (A, 0)∆,`. In the previous
sections we computed the large cT expansion to the scaling dimension of the lowest twist
operator for the lowest few spins, which we summarize showing explicit numerical values
for each term:

∆2,0 = 2− 7.0924816
cT
− 38.1501

[16
cT

] 5
3

+ 97.378
[16
cT

]2
+ 21.3758

[16
cT

] 7
3

+
[
−222720

143 BD8R4
7 + 18902167552

1087515 BD8R4
8

]
c
− 23

9
T + 3993.9

[16
cT

] 8
3

+ . . . ,

∆4,2 = 4− 3.1206916
cT
− 65.3944

[16
cT

]2

+
[32256

13 BD8R4
7 + 1322266624

164775 BD8R4
8

]
c
− 23

9
T + 112035.

[16
cT

] 8
3

+ . . . ,

∆6,4 = 6− 2.0698516
cT
− 0.645987

[16
cT

]2
− 32768BD8R4

8 c
− 23

9
T + 120791.

[16
cT

] 8
3

+ . . . .

(5.7)

The asymptotic expansion for this quantity seems very poor, as the coefficient of each
subsequent term is growing rapidly.

These observations motivate us to focus on comparing to numerical bootstrap for λ2
(A,2)`

for ` > 1 and λ2
(A,+)`

for ` > 0 up to O(c−2
T ), where we can be reasonably confident that

the asymptotic expansion is well converged for a moderately large range of cT . In figures 2
and 3 we compare the large cT expansion of this CFT data to non-perturbative lower
bounds from the numerical bootstrap in the large cT regime, which includes many physical
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Figure 2. Upper and lower bounds on the λ2
(A,+)`

OPE coefficient for ` = 2 (top) and ` = 4
(bottom) in terms of the stress-tensor coefficient cT in the large cT regime. The black solid lines
are with the all orders in 1/cT values of λ2

(B,+) and λ2
(B,2) for k = 2 ABJ(M) inputed into the

bootstrap, while the gray solid lines are without any assumptions, and note that the allowed region
for the black bounds is much smaller than the gray bounds. The red dotted line denotes the large
cT expansion to order tree level supergravity O(c−1

T ), which is independent of k. The red dashed
line also includes the 1-loop R|R correction at order O(c−2

T ), which depends on the value k = 2,
and improves the saturation of the lower bound relative to O(c−1

T ). The blue and brown vertical
lines denote the values of cT for various known k = 2 ABJM and ABJ theories, respectively, which
are summarized in table 4. These plots were made with Λ = 83.
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k = 2 ABJ
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Figure 3. Upper and lower bounds on the λ2
(A,2)`

OPE coefficient for ` = 3 (top) and ` = 5
(bottom) in terms of the stress-tensor coefficient cT in the large cT regime. The black solid lines
are with the all orders in 1/cT values of λ2

(B,+) and λ2
(B,2) for k = 2 ABJ(M) inputed into the

bootstrap, while the gray solid lines are without any assumptions, and note that the allowed region
for the black bounds is much smaller than the gray bounds. The red dotted line denotes the large
cT expansion to order tree level supergravity O(c−1

T ), which is independent of k. The red dashed
line also includes the 1-loop R|R correction at order O(c−2

T ), which depends on the value k = 2,
and improves the saturation of the lower bound relative to O(c−1

T ). The blue and brown vertical
lines denote the values of cT for various known k = 2 ABJM and ABJ theories, respectively, which
are summarized in table 4. These plots were made with Λ = 83.
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N = 8 SCFT cT
λ2

Stress
16 = 16

cT

U(4)2 ×U(4)−2 ABJM 126.492 0.138133

U(5)2 ×U(5)−2 ABJM 172.058 0.0998481

U(6)2 ×U(6)−2 ABJM 221.97 0.0765165

U(7)2 ×U(7)−2 ABJM 275.879 0.0610587

U(4)2 ×U(5)−2 ABJ 115.831 0.12649

U(5)2 ×U(6)−2 ABJ 160.243 0.0929919

U(6)2 ×U(7)−2 ABJ 209.105 0.0720818

U(7)2 ×U(8)−2 ABJ 262.043 0.0579965

Table 4. Several values of cT and λ2
Stress/16 for k = 2 ABJM or ABJ theories, as computed from

the all orders in 1/N formulae in [58].

examples of k = 2 ABJ(M) theories as summarized in table 4. As discussed above, we
show bounds where we inputed the values of λ2

(B,2) and λ
2
(B,+) using their all orders in 1/cT

expressions, as well as bounds with no assumptions. The discrepancy between each type
of bound is small, and we observe that both are well approximated by the O(c−2

T ) analytic
expressions for the entire range of cT that we looked at, and that the discrepancy between
the two kinds of bounds is smaller than the improvement of the c−2

T term relative to the
O(c−1

T ) approximation. For the more protected 1
4 -BPS multiplet (A,+)`, the correction to

tree level supergravity is quite small, so it is somewhat harder to see the 1-loop correction,
but for the less protected 1

8 -BPS multiplet (A, 2)` we can very clearly see the improvement
from the 1-loop correction to tree level supergravity. We also show upper bounds, which
after imposing λ2

(B,2) and λ2
(B,+) become very close the lower bounds, which suggests that

the theory is almost completely fixed.

6 Conclusion

There are three main results of this work. Firstly, we computed the 1-loop terms R|R,
R|R4, and R4|R4 for k = 2 ABJ(M) theory up to contact term ambiguities, and checked
that they match the relevant terms in the 11d M-theory S-matrix in the flat space limit.
Secondly, we fixed the contact terms for R|R and R|R4 by combining two constraints from
supersymmetric localization with a conjectured analytic continuation of the Lorentzian
inversion formula, where localization confirms the inversion results for R|R and provides a
nontrivial check for R|R4. Finally, we found that the R|R, i.e. c−2

T , correction to semishort
CFT data saturates the numerical bootstrap bounds for k = 2 ABJ(M) in the large cT
regime.

One could try to perform the same analytic continuation of the Lorentzian inversion
formula for the other maximally supersymmetric holographic CFTs that have been studied
at 1-loop: 4d SU(N) N = 4 SYM dual to Type IIB string theory on AdS5 × S5, and 6d
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(2, 0) theory dual to M-theory on AdS7 × S4 for the AN−1 theories and AdS7 × S4/Z2 for
the DN theories. In the 4d case, general spin formulae were found for the R|R correction
in [38] and the R|R4 correction in [34]. The R|R formula can be analytically continued to
spin zero, which is the spin that is affected by the 4d analogue of the BR|R

4 M4 contact term
in (1.1), but it was shown using supersymmetric localization in [27] that B4 is nonzero,
unlike what we found here in 3d. The R|R4 formula has explicit poles for spins 0, 2, 4,
which are the spins affected by the 4d analogue of the O

(
c
− 8

3
T

)
contact terms in (1.1),

so we cannot analytically continue as we did in here in 3d. In 6d, one can check the
Lorentzian inversion formula results in [34] can be analytically continued to all CFT data
for both R|R and R|R4, which is even better than what we observed in 3d where R|R4 could
not be continued to CFT data affected by the BR|R

4 M4 contact term. Unlike 3d, however,
in 6d we have no localization results to check if this conjectured analytic continuation is
correct.

The similarity of ABJ(M) and 6d (2, 0) in contrast to N = 4 SYM suggests that the
analytically continued Lorentzian inversion formula can be applied to holographic CFTs
dual to 11d M-theory, but not those dual to 10d string theory. One could try to justify this
by observing that contact terms must always correspond to even powers of Planck length,
so they can affect 1-loop terms for 10d duals that are also even in Planck length, but they
cannot effect 1-loop terms for 11d duals that are odd in Plank length. On the other hand,
recall that we did not compute MR|R and MR|R4 using explicit Witten diagrams, so the
difference between a 1-loop diagram and a contact diagram at the same order in cT is not
entirely clear from our approach. One could tentatively define the 1-loop diagram MR|R

as whatever gives a formula for CFT data that is analytic in spin for all spins, as we did
in practice, and then define BR|R

4 M4 as a putative contact term, which we found was zero.
Unfortunately, this description would not make sense for MR|R4 , where there is no general
spin formula that converges for the spins that contribute to B

R|R4

4 M4, so it is hard to
distinguish between 1-loop diagrams and contact diagrams at the same order c−

8
3

T .
It would be nice to check if the analytically continued inversion formula at order c−

10
3

T

can be used to fix all the contact term ambiguities, perhaps when combined with super-
symmetric localization, and if the conjectured results could be checked with localization.
In this work we already computed the R4|R4 term that contributes at order c−

10
3

T , but we
did not yet compute the R|D6R4 term that also contributes at this order. To compute
this term we would need to know 〈22pp〉 for all even p at tree level D6R4, i.e. order c−

7
3

T .
Currently we only know this for p = 2, where we could fix the three coefficients in (1.1)
using the two localization constraints from [10, 58] and [21, 23] as well as comparison to
the known term (2.25) in the M-theory S-matrix in the flat space limit. For p > 2, we still
have the flat space limit constraint, and it is possible that we could generalize to p > 2 the
localization constraint in [10, 58], which is just the value of short operator OPE coefficients
that could in principle be computed from a k = 2 generalization of the 1d theory [60],
which is currently only known for k = 1 ABJM. On the other hand, the second localization
constraint [21, 23] is specific to p = 2, and also the p > 2 correlator has more coefficients
that need fixing than p = 2 because crossing constraints are weaker for mixed correlators.
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Perhaps the p > 2 term could be computed from the known p = 2 case, as both in princi-
ple arise from dimensional reduction of the same D6R4 term in the flat space 11d action
effective action for M-theory.

It would be also be very interesting if more terms in the analytic large cT expansion
of CFT data could be found to saturate the numerical bootstrap bounds, beyond the c−2

T

terms for semishort OPE coefficients that we considered in this work. In particular, if
we could successfully match the c−

8
3

T terms computed in this work, then this would allow
us to read off the D8R4 term at the lower order c−

23
9

T , which could then be used to fix
the corresponding unknown term in the 11d M-theory S-matrix as outlined in [10]. The
coefficients in the asymptotic large cT expansion start to grow drastically starting at c−

8
3

T

even for the best behaved case of semishort OPE coefficients, so to accurately compare them
to the numerical bootstrap we must look at very large cT , which requires a very accurate
numerical bootstrap. In this work we pushed the current numerical bootstrap to very
high accuracy, as parameterized by Λ = 83, which is twice the value used in the previous
study [64]. We found that the current numerical bootstrap has already started to converge,
so pushing to higher Λ will likely not improve matters. On the other hand, we observed in
this work that inputting the short OPE coefficients noticeably improved the bounds, such
that the lower bounds actually become very close to the upper bounds for the regime of cT
that we studied, so it is likely that imposing other exact quantities such as the integrated
constraint in [21, 23] will further improve the accuracy of the bounds, and maybe even fix
the theory by having upper and lower bounds approximately coincide. It is also likely that
a third localization constraint can be computed by considering derivatives of the squashed
sphere free energy, which was computed to all orders in 1/cT in [84] using the localization
results in [85, 86]. This additional constraint could both improve the numerical bootstrap,
as well as allow us to analytically fix another of the coefficients in (1.1) for D8R4, so there
would only be a single remaining unfixed coefficient to be fixed from numerics.

In this paper we focused on k = 2 ABJ(M) theory, because it is technically more
difficult to compute the 〈22pp〉 data for odd p that is needed to compute k = 1 ABJM at
1-loop. In particular, while the 〈22pp〉 tree level supergravity for even p could be written
in terms of a finite number of D̄r1,r2,r3,r4(U, V ), for odd p we require an infinite number. If
we could compute k = 1 ABJM at 1-loop, then we could perform another nontrivial check
of our conjectured analytic continuation of the Lorentzian inversion formula, and also try
to compare to numerical bootstrap bounds. The numerical bootstrap for k = 1 could be
more accurate than the k = 2 case in this work, because for k = 1 we could use the mixed
correlator setup in [64] that only applies to the k = 1 theory, and includes inputs from more
short OPE coefficients that can be computed to all orders in 1/cT using the localization
results of [76]. We look forward to reporting on the k = 1 case in the future.

Finally, it would be interesting to generalize our 1-loop derivation to N = 6 ABJ(M)
with k > 2, which at small k is dual to M-theory on AdS4 × S7/Zk and at large k is dual
to Type IIA string theory on AdS4 × CP3. The single trace operators in this case can
be either 1

2 or a 1
3 BPS [87], so the unmixing problem would be more complicated. In

particular, one would need to derive the superblock expansion of correlators of the various
single operator operators to extract the GFFT and tree level data needed to compute 1-
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loop. So far, the superblock expansion was only computed for the stress tensor multiplet
correlator [67], and it seems difficult to generalize that derivation to arbitrary correlators
of other 1

3 -BPS operators. Instead, it might be easier to compute the relevant CFT data
by directly imposing the superconformal Ward identity on 3-point functions, rather than
expanding 4-point correlators in superblocks. If one could compute the 1-loop term for
general k, then in the flat space limit one could interpolate between an 11d box diagram
at small k to a 10d box diagram at large k, just as the tree level R4 term computed in [23]
was found to interpolate between M-theory and string theory.
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A Conformal blocks and D̄r1,r2,r3,r4(U, V )

The SO(3, 2) conformal blocks G∆,`(U, V ) which appear in the decomposition of four-point
function of identical scalar operators are eigenfunctions of the quadratic Casimir of SO(3, 2).
These eigenfunctions are not known in closed form but there exists various expansions. In
what follows we present two such expansions which we used heavily for computations.

The first is the lightcone expansion which is a power series expansion around U = 0

G∆,`(U, V ) =
∞∑
n=0

U (∆−`)/2+ng
[n]
∆,`(1− V ) (A.1)

where g[n]
∆,`(1− V ) are the lightcone blocks that depend on the dimension ∆ and spin ` of

the exchanged operator. In our normalization, these lightcone blocks take the following
form [88]

g
[n]
∆,`(1− V ) = 1

4∆

(
1
2

)
`

`!
∑

m=0,2,4,...2n
An,mfn,m(1− V ) (A.2)

where the basis functions fn,m are 2F1 hypergeometric functions given by

fn,m(1− V ) = (1− V )`−m2F1

[
(∆ + `)/2 + n−m, (∆ + `)/2 + n−m

2((∆ + `)/2 + n−m)
; 1− V

]
(A.3)
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and the expansion coefficients An,m are

An,m =
n1∑

m1,m2=0
(−1)m+m1+14m1+m2

(−`)m (−n1)m1+m2
(n− n1 + 1/2)m1

m!m1!m2! (n−m+m1)!

×
(∆− 1)2n−m(3/2−∆)m−n−m1−m2(2−∆ + `)2(n1−m2)−m

((∆− `)/2 + 2`−m− 1)2n−m((∆ + `)/2 + 2)2(n+m1−n1)−m

×
(−1/2− `− n+m−m1 +m2) (n2 − `)m2

(1/2− `)−n+m+m2 (1/2 + `−m2)n−m+m1+m2+1

×
[(∆ + `

2

)
n−m+m1

(∆− `− 1
2

)
m2

]4

(A.4)

in which n1, n2 are defined as

n1 = bm/2c, n2 = b(m+ 1)/2c . (A.5)

Setting n = 0 in the above formulas gives us the leading lightcone block in (3.16). This
form of the conformal blocks was particularly useful for the extraction of the tree-level
CFT data and in computing the Un log2 U slices in section 3.1.

The second convenient representation of the conformal blocks is in terms of expansion
in Jack polynomials. In [70], it was shown that in three dimensions the conformal blocks
can be written as (in a normalization identical to those of the lightcone blocks)

G∆,`(z, z̄) = 1
4∆

(
1
2

)
`

`!
∑
m,n

rm,n(∆, `)J (∆,`)
m,n (z, z̄) (A.6)

where the Jack polynomials Jm,n in three dimensions are given in terms of Legendre poly-
nomials as follows

J (∆,`)
m,n (z, z̄) = (zz̄)

1
2 (m+n+∆)Pm−n+`

(
z + z̄√

4zz̄

)
. (A.7)

The expansion coefficients rm,n(∆, `) are given by

rm,n(∆, `) = −π4∆−2Γ
(

∆− 1
2

) Γ(`+ 1)
Γ(∆− 1)(2m− 2n+ 2`+ 1) csc(π(m+ `))

×
Γ
(

∆−`
2

)
Γ
(

1
2(`+ ∆ + 1)

)
Γ
(

1
2(2m+ `+ ∆)

)2
Γ
(

1
2(2n− `+ ∆− 1)

)2

m!n!Γ
(
`+ 1

2

)
Γ
(
m+ `+ 3

2

)
Γ
(

1
2(−`+ ∆− 1)

)
Γ
(
`+∆

2

)
Γ(m+ `+ ∆)

× 4F3

(1
2 ,−m+ n− `,−`,∆− 1; 1,−m− `, n+ ∆− `− 1

2; 1
)
. (A.8)

The poles from the csc(π(m+ `)) cancels with the corresponding zeros of 4F3 and therefore
the above coefficients are well defined in the allowed range of m and `. This representation
of the 3d conformal blocks was useful for computing the coefficients of the various N = 8
superconformal blocks which was discussed in section 2.1.
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Next, we discuss the D̄r1,r2,r3,r4(U, V ). They can be compactly written in Mellin space
as [17]

D̄r1,r2,r3,r4(U, V ) =
∫

ds dt

(4πi)2U
s
2V

t
2M(s, t)Γ

(
−s2

)
Γ
(
− t2

)
Γ
(
r2 + s+ t

2

)
Γ
(1

2(−r1− r2 + r3 + r4)− s

2

)
Γ
(1

2(r1− r2− r3 + r4)− t

2

)
Γ
(1

2(r1 + r2 + r3− r4) + s+ t

2

)
.

(A.9)
We would also like the position space expression of their logU terms for the purpose of
extracting the tree-level anomalous dimensions, which are given in [75] as18

D̄r1,r2,r3,r4(U, V )
∣∣
logU = −e

1
2 iπ(r1+r2−r3−r4)

∞∑
m,n=0

Um(1− V )n×

Γ(r1 +m)Γ(r2 +m+ n)Γ
(

1
2(r1 + r2 − r3 + r4) +m

)
Γ
(

1
2(r1 + r2 + r3 − r4) +m+ n

)
Γ(m+ 1)Γ(n+ 1)Γ(r1 + r2 + 2m+ n)Γ

(
1
2(r1 + r2 − r3 − r4 + 2) +m

) .

(A.10)

The arguments ri of the D̄ functions that appear in the 22pp tree-level correlator is such
that the overall phase is always real.

B Lorentzian inversion at large cT

In this appendix we explain how to extract the CFT-data at one-loop from the double
discontinuity (DD) of a 3d CFT using the Lorentzian inversion formula following the similar
4d case in [37]. The function that describes the CFT-data is given by

c(∆, `) = N (∆, `)
∫ 1

0
dzdz̄

z̄ − z
(zz̄)3G`+2,∆−2(U, V )dDisc[G(z, z̄)] , (B.1)

where N (∆, `) is some normalization factor that we can fix by comparing to GFFT, and
G(z, z̄) is the 4-point function with the usual x-dependence factored out as in (2.2). Note
that the inversion formula exchanges the roles of dimension and spin in the standard
conformal block G∆,`(U, V ).

An intermediate operator of a given twist t will produce a pole whose residue is related
to its three-point function. We can see this as follows. Its contribution to the DD in a
small z expansion is given by (recall the DD is taken in the z̄ variable around 1)

dDisc[G(z, z̄)] = zt/2h(z̄) + · · · , (B.2)

for some function h(z̄) that is analytic at z̄ = 1. On the other hand, the conformal block is
expanded at small z as in (3.15) in terms of the leading lightcone block g∆,`(z̄) in (3.16),
which for G`+2,∆−2(U, V ) in (B.1) gives

G∆,`(U, V ) = z2−(∆−`)/2g`+2,∆−2(z̄) + . . . , (B.3)
18In the case at hand, the D̄ functions involve half-integer arguments so one has to be careful in reading

off the logU pieces by paying attention to the location of the poles of Γ functions. However upon inspection
it is found that the arguments are such that formula (C.8) of [75] is still applicable.

– 40 –



J
H
E
P
0
2
(
2
0
2
2
)
0
0
5

where we dropped the superscript on the leading lightcone block for simplicity and at
leading order in z we set V = (1− z̄). Plugging these expansions into the inversion formula
we see that the integral over z produces a pole at ∆ − ` = t. If we now expand at large
cT , then we will have operators of even integer twist t and spin `, which are corrected by
anomalous dimensions γ` that depend on ` and go to zero as cT → ∞. The pole at t at
large cT then gives

c(∆, `) = a`
γ` + t− (∆− `) , (B.4)

where a` denotes the OPE coefficients squared for the operator with approximate twist
t, and we have assumed that the leading twist operators under consideration are non-
degenerate (which will be the case for our application). If we now expand the CFT data
as a` = a

(0)
` + c−1

T a
(1)
` + · · · and γ` = c−1

T γ
(1)
` + · · · we see that at higher orders in c−1

T we
get higher order poles. At order c−2

T we get19

c(∆, `) = − R0(t+ 2`)
((∆− `)/2− t/2)3 −

R1(t+ 2`)
((∆− `)/2− t/2)2 −

R2(t+ 2`)
(∆− `)/2− t/2 + · · · . (B.5)

These residues are related to the anomalous dimensions and OPE coefficients at fixed ` as

a
(0)
`

(
γ

(1)
`

)2
= 8R0(t+ 2`) ,

a
(0)
` γ

(2)
` + a

(1)
` γ

(1)
` = 4R1(t+ 2`) + 8∂`R0(t+ 2`) ,

a
(2)
` = 2R2(t+ 2`) + 4∂`R1(t+ 2`) + 4∂2

`R0(t+ 2`) .

(B.6)

From the inversion integral, these residues are computed as follows. To order O(c−2
T ) the

contribution to the DD from the operators of approximate twist t takes the form

dDisc[G(z, z̄)] = z
t
2
(
h0(z̄) log2 z + h1(z̄) log z + h2(z̄)

)
+ · · · (B.7)

for some functions hi(z̄). We can then perform the integral over z keeping the relevant
poles in a small z expansion to get

R0(t+ 2`) = 2N (t+ 2`)
∫ 1

0

dz̄

z̄2 g`+2,t+`−2(z̄)h0(z̄) ,

R1(t+ 2`) = N (t+ 2`)
∫ 1

0

dz̄

z̄2 g`+2,t+`−2(z̄)h1(z̄) ,

R2(t+ 2`) = N (t+ 2`)
∫ 1

0

dz̄

z̄2 g`+2,t+`−2(z̄)h2(z̄) ,

(B.8)

where the normalization coefficient N (t + 2`) can be fixed, for instance, by requiring the
correct CFT-data is recovered for the GFFT. In particular, the large cT GFFT is propor-
tional to20

GGFFT(z, z̄) ∝ z
(

z̄

1− z̄

)p∣∣∣∣
p=1

+ regular . (B.9)

19We can get an analogous formula also at other 1-loop orders such as c−
8
3

T .
20For the N = 8 theory in the main text, the precise formula for 〈2222〉 is GGFFT(U, V ) = 1+σ2U +τ2 U

V
.
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We can compute the DD as explained in [30] by first letting p be a general variable, using

dDisc
[(

z̄

1− z̄

)p]
= 2 sin2(πp)

(
z̄

1− z̄

)p
, (B.10)

and then computing z̄ integral in (B.8), which has a pole at p = 1 that cancels the zero
in (B.10) to give a finite nonzero answer for R0 in (B.8). We can then compare to the
expected GFFT values to fix the normalization.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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