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1 Introduction

Consistent Kaluza-Klein truncations are a precious tool for constructing compactifying so-
lutions to ten or eleven-dimensional supergravity using a simpler lower-dimensional theory.
Given a splitting of the higher-dimensional spacetime into an internal manifold M and an
external spacetime X, a consistent truncation selects a finite subset of the KK modes of
the higher-dimensional theory on M and provides an effective theory on X describing their
non-linear dynamics. The selected KK modes must form a protected sector, in the sense
that they do not mix in the equations of motion with the modes that have been truncated
out. In this way all solutions of the lower-dimensional theory on X are guaranteed to also
be solutions of the original higher-dimensional theory.

For such non-trivial reduction to be possible, the internal manifold M should have a
special geometric structure. The simplest case is when M admits a homogeneous action
of a group G , that is M = G /H for some subgroup H ⊂ G . Then one can decompose
all higher-dimensional fields into representations of G and truncate to the G -singlets. This
G -invariant truncation is consistent, since the singlet fields can never source the non-singlet
fields. When in particular M is a group manifold, M = G , one has a conventional Scherk-
Schwarz reduction [1]. Examples of such consistent truncations in the context of M-theory
— which is our principal interest in this paper — can be found in [2–5].

As a step towards more general classes of truncations, it is convenient to think about
reductions on homogeneous manifolds using the language of G-structures. Let us consider
Scherk-Schwarz reductions for definiteness. A group manifold M = G admits a basis of
globally defined left-invariant one-forms, {ea}, a = 1, . . . , dimM , that reduces the struc-
ture group to the identity (i.e. M is parallelisable). Furthermore, the group action implies
that dea = 1

2fbc
aeb ∧ ec, where fbca are the structure constants of the Lie algebra Lie G .

This means that the left-invariant identity structure has singlet, constant intrinsic torsion
(singlet because dea is expressed in terms of the invariant {ea} basis, and constant be-
cause the coefficients of the expansion are constant). The truncation ansatz is defined by
expanding all higher-dimensional fields in the basis of invariant tensors of the structure.
When this is plugged into the equations of motion, we can again invoke the argument that
only singlet tensors are generated and conclude that the truncation is consistent. Since the
spin bundle is also trivialised, Scherk-Schwarz reductions preserve the full supersymmetry
of the higher-dimensional theory. More generally, G -invariant consistent truncations on
coset manifolds M = G /H are based on the existence of an H structure with constant,
singlet intrinsic torsion, and preserve only a fraction of supersymmetry or none at all.

Interestingly, the argument based on G-structure applies also to internal manifolds M
that are not homogeneous. It is sufficient that M has a structure group GS with only
constant, singlet intrinsic torsion; then the truncation to the GS-singlets is guaranteed to
be consistent. This can preserve different fractions of supersymmetry, depending on how
many GS-invariant spinors exist on M . In fact the GS structure data determine the full
field content and gauge interactions of the truncated theory. Examples of this type in
M-theory are the truncations based on Sasaki-Einstein and weak-G2 holonomy manifolds
of [6], and the tri-Sasakian reduction of [7].
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However there are consistent truncations that are not captured by conventional G-
structures. Classic examples are the maximally supersymmetric consistent truncations on
spheres, such as eleven-dimensional supergravity on S7 [8] and S4 [9]. M-theory trunca-
tions preserving less supersymmetry and containing warped AdS solutions can be found
in [10–13].1 Building on the evidence emerging from these examples, a conjecture was for-
mulated in [11] stating that for any warped, supersymmetric AdSD×wM solution to higher-
dimensional supergravity, there is a consistent truncation on M down to D-dimensional
pure gauged supergravity with the same amount of supersymmetry.

Exceptional Generalised Geometry and Exceptional Field Theory offer an understand-
ing of these more complicated examples that unifies them with the conventional ones.
Exceptional Generalised Geometry uses an extension of the ordinary tangent bundle TM
to a larger bundle E on M , whose fibres transform in a representation of the exceptional
group Ed(d). In this way the diffeomorphism and gauge symmetries of higher-dimensional
supergravity are unified as generalised diffeomorphisms on E. The notion of generalised
GS structure, that is a GS structure of E, rather than of TM , leads to a new systematic ap-
proach to consistent truncations with different amounts of supersymmetry: one can argue
that there is a consistent truncation any time a supergravity theory is reduced on a mani-
fold M admitting a generalised GS structure with constant singlet intrinsic torsion [14]. In
particular, all maximally supersymmetric truncations, both conventional Scherk-Schwarz
reductions and sphere truncations, can be seen as generalised Scherk-Schwarz reductions on
generalised parallelisable manifolds [15–23]. This also provides a connection to Poisson-Lie
T-duality as described in [24] (see also [25]). Truncations preserving less supersymmetry
are based on generalised structures larger than the identity, the half-maximal case having
been explored rather extensively by now [14, 26–30]. Moreover, a proof of the conjecture
of [11] was given in this framework [14, 27], based on the fact that the conditions for a
supersymmetric AdSD ×w M vacuum can be rephrased as the requirement that M admits
a generalised GS structure with vanishing non-singlet intrinsic torsion [31–33].

Although the general ideas were illustrated in [14] for any amount of supersymme-
try, the Exceptional Generalised Geometry approach to consistent truncations has been
developed just for maximal and half-maximal supersymmetry so far. In this paper we en-
large this framework and discuss in detail truncations of eleven-dimensional supergravity
preserving minimal N = 2 supersymmetry in five dimensions.

While a strict USp(6) ⊂ E6(6) generalised structure leads to a truncation to minimal
N = 2 gauged supergravity in five dimensions, smaller GS ⊂ USp(6) structures lead to
matter coupled supergravity. We show how the GS ⊂ USp(6) structure defines a continuous
family of USp(6) structures, and identify the moduli space of this family with the vector
multiplet and hypermultiplet scalar manifolds in the truncated five-dimensional theory. We
also show how the generalised Lie derivative acting on the generalised tensors defining the
GS structure specifies the isometries of the scalar manifold that are being gauged. This
fully determines the truncated N = 2 supergravity theory.

1Note that whenever there is non-trivial warping the truncation falls out of the conventional G-structure
framework.
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We then derive general expressions that encode the uplift formulae for how the eleven-
dimensional bosonic fields are encoded in terms of the moduli and the generalised tensors
defining the GS structure. In order to make this truncation ansatz explicit we need to solve
a number of technical issues. One is that, in contrast to the maximal and half-maximal
case, the structure is not entirely characterised by the generalised vectors KI (i.e. sections
of E, transforming in the fundamental of E6(6)) which control the vector multiplet sector
of the truncated theory. We also need to consider generalised tensors JA belonging to the
E6(6) adjoint bundle, which eventually control the hypermultiplet sector. A related point,
that is crucial to derive the scalar truncation ansatz, is the construction of the generalised
metric on E, which receives contributions both from the KI and the JA. A significant
advantage of the formalism however, is that the expressions are universal. The ansatz can
be applied to any N = 2 background once one identifies the KI and JA singlets.

As application, we discuss M-theory truncations on geometries associated with M5-
branes wrapping a Riemann surface Σ. The near-horizon geometry of this brane configura-
tion is given by a warped AdS5×wM solution to eleven-dimensional supergravity, where M
is a fibration of a deformed S4 over Σ [34, 35]. The fibration corresponds to a topological
twist in the dual superconformal field theory on the M5-branes, where the holonomy of the
Riemann surface is cancelled by a U (1) in the SO(5) R-symmetry, which in the supergrav-
ity background is realised geometrically as the isometries of S4. Depending on which U (1)
is chosen, one obtains different AdS5×w M solutions, and correspondingly different U (1)S
generalised structures.

We start with the N = 2 background of Maldacena-Nuñez [34]: specifying its U (1)S
generalised structure and discussing its singlet intrinsic torsion, we obtain a consistent
truncation to five-dimensional N = 2 supergravity including four vector multiplets, one
hypermultiplet, and a non-abelian SO(3) × U (1) × R gauging. This extends the abelian
truncation of [36] (see also [10, 37] for previous subtruncations) by adding SO(3) vector
multiplets, which in the dual superconformal field theory source SO(3) flavour current
multiplets. We also spell out the full bosonic truncation ansatz. The same construction
also applies to the “BBBW” solutions [35, 38], as the corresponding generalised structure
is a simple deformation of the Maldacena-Nuñez one, controlled by a (discrete) parameter
describing the choice of U (1)S in SO(5). The corresponding truncation features only two
N = 2 vector multiplets, one hypermultiplet and an abelian gauging. We show that the
Maldacena-Nuñez truncation admits a new non-supersymmetric AdS5 solution when the
Riemann surface is a sphere, which turns out to be perturbatively unstable. We also find
new non-supersymmetric vacua in the BBBW truncations. Together with the consistent
truncation including the N = 4 solution of [34], whose U (1)S generalised structure embeds
in USp(4) ⊂ USp(6) and leads to half-maximal supergravity [14, 39], the present study
completes the landscape of what we believe are the most general consistent truncations that
can be derived from eleven-dimensional supergravity on known smooth solutions associated
with M5-branes wrapped over Riemann surfaces.2

2It may be possible to find other consistent truncations, that are not subsectors of the ones given here by
using large structure groups, in analogy with the consistent truncation on S7 viewed as a Sasaki-Einstein
manifold [6] rather than a generalised parallelised sphere. However such truncations will have fewer fields.
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The rest of the paper is organised as follows. In section 2 we characterise the generalised
structure relevant for M-theory truncations on a six-dimensional manifold preserving N = 2
supersymmetry. In section 3 we specify the truncation ansatz and discuss how the gauging
is determined from the generalised structure. In sections 4 and 5 we apply our formalism
to consistent truncations associated with M5-branes wrapping a Riemann surface, first
for Maldacena-Nuñez backgrounds and then for BBBW ones. We conclude in section 6.
The appendices contains a brief account of E6(6) generalised geometry, a summary of five-
dimensional N = 2 gauged supergravity and some technical details of our computations.

2 M-theory generalised structures and N = 2 supersymmetry

In this section we first recall some basic notions of Exceptional Generalised Geometry
for the case of interest here, namely eleven-dimensional supergravity on a six-dimensional
manifold, and then we illustrate how the general procedure described in [14] applies to
consistent truncations to five-dimensional N = 2 gauged supergravity. A more extended
review of the relevant generalised geometry can be found in appendix A.

2.1 The HV structure

Consistent truncations of eleven-dimensional supergravity on a six-dimensional manifold
M are based on E6(6) × R+ generalised geometry. This extends the tangent bundle TM
to the generalised tangent bundle E on M , and the corresponding structure group GL(6)
to E6(6). The group E6(6) contains GL(6) as its geometrical subgroup, and we can use the
latter to decompose the generalised tangent bundle as

E ' TM ⊕ Λ2T ∗M ⊕ Λ5T ∗M . (2.1)

Therefore the sections of E consist, locally, of the sum of a vector, a two-form and a
five-form on M ,

V = v + ω + σ . (2.2)

These are called generalised vectors and transform in the 27 of E6(6).
All geometric structures of conventional geometry onM , such as tensors, Lie derivative,

connections etc, admit an extension to E [40–42]. In particular, generalised tensors are
defined by considering bundles whose fibers transform in different representations of E6(6).
We can define dual generalised vectors Z as the sections of the dual tangent bundle

E∗ ' T ∗M ⊕ Λ2TM ⊕ Λ5TM , (2.3)

transforming in the 27 of E6(6). Locally the dual vectors are sums of a one-form v̂, a
two-vector ω̂ and a five-vector σ̂,

Z = v̂ + ω̂ + σ̂ . (2.4)

The adjoint bundle transforms in the 1 + 78 of E6(6) and, in terms of GL(6) tensors, is
defined as

adF ' R⊕ (TM ⊗ T ∗M)⊕ Λ3T ∗M ⊕ Λ6T ∗M ⊕ Λ3TM ⊕ Λ6TM , (2.5)
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with sections
R = l + r + a+ ã+ α+ α̃ , (2.6)

where, locally, l ∈ R, r ∈ End(TM), a ∈ Λ3T ∗M is a three-form, ã ∈ Λ6T ∗M is a six-form
and α ∈ Λ3TM and α̃ ∈ Λ6TM . This bundle plays an important role as the components
of the M-theory three-form and six-form gauge potentials are embedded in adF .

As we will see, the bosonic fields of eleven-dimensional supergravity can be unified
into generalised tensors. The supergravity spinors on the other hand arrange into repre-
sentations transforming under USp(8), the double cover of the maximal compact subgroup
USp(8)/Z2 of E6(6). For example the supersymmetry parameters are section of the gener-
alsied spinor bundle S, transforming in the 8 of USp(8). It will be this compact USp(8)
or more generally a subgroup of it, that determines the R-symmetry of the reduced five-
dimensional theory.

The manifold M admits a generalised structure, GS ⊂ USp(8)/Z2, when the structure
group E6(6) is reduced to the subgroup GS . Typically this can be characterised by the
existence of globally defined generalised tensors that are invariant under GS . The amount
of supersymmetry of the eleven-dimensional theory that is preserved by the GS structure
is given by the number of GS singlets in the spinor bundle, S.3

In this paper we are interested in structures preserving N = 2 supersymmetry. The
generic case is provided by what has been called an HV structure [33, 43, 44]. It consists
of a triplet of globally defined tensors in the adjoint bundle, Jα ∈ Γ(adF ), with α = 1, 2, 3,
satisfying

[Jα, Jβ ] = 2εαβγJγ , tr(JαJβ) = −δαβ , (2.7)

together with a globally defined generalised vector K ∈ Γ(E) having positive norm with
respect to the E6(6) cubic invariant,

c(K,K,K) := 6 κ2 > 0 , (2.8)

where κ is a section4 of (detT ∗M)1/2, and satisfying the compatibility condition

Jα ·K = 0 , (2.9)

where · denotes the adjoint action.5 See appendix A for a definition of the cubic invariant
and the other generalised geometry operations appearing in these formulae.

The HV structure {Jα,K} defines a reduction of the structure group to USp(6) ⊂ E6(6).
Indeed the vector K is stabilised by F4(4) ⊂ E6(6), while the Jα are invariant under the
subgroup SU∗(6). The compatible K and Jα have SU∗(6) ∩ F4(4) ' USp(6) as a common
stabiliser. The globally defined vector K ∈ Γ(E) with positive norm is called a vector-
multiplet structure, or V structure for short. A triplet of Jα ∈ Γ(adF ) that define the

3Here we will assume that either GS is simply connected or is U(1) so that it lifts to a GS subgroup of
USp(8).

4Recall that detT ∗M is just a different notation for the top-form bundle Λ6T ∗M that stresses that it is
a real line bundle. Here we are assuming that the manifold is orientable and hence detT ∗M is trivial and
so we can define arbitrary powers (detT ∗M)p for any real p.

5 Note that we are using slightly different conventions for the Jα tensors compared with [44]. In particular
JAW
α = κJhere

α ∈ Γ((detT ∗M)1/2 ⊗ adF ).
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highest root su2 subalgebra of e6(6) and satisfy the conditions (2.7) is called a hypermultiplet
structure, or H structure. This justifies the name HV structure for the compatible pair
{Jα,K}.

It is easy to check that the amount of supersymmetry preserved by a HV structure is
N = 2. Under the breaking

USp(8) ⊃ USp(6)× SU (2)H . (2.10)

the spinorial representation decomposes as 8 = (6,1) ⊕ (1,2) and we see that the are
only two USp(6) singlets. The SU (2)H factor in (2.10) is the R-symmetry of the reduced
theory so that the two singlets form an R-symmetry doublet, as expected for N = 2
supersymmetry parameters.

A strict USp(6) structure is not the only option to obtain N = 2 supersymmetry.
In fact, any subgroup GS that embeds in USp(6) in such a way that there are no extra
singlets in the decomposition of the spinorial representation of USp(8) does the job. Al-
though the number spinor singlets is unchanged, when the structure group is smaller than
USp(6) in general one finds more GS singlets in the decomposition of the 27 and the 78
representations. Let us denote by

KI , I = 0, . . . , nV , (2.11)

the set of independent generalised vectors corresponding to GS singlets in the 27, and by

JA , A = 1, . . . , dimH , (2.12)

the set of independent sections of the adjoint bundle corresponding to GS singlets in the
78 that also satisfy the condition6

JA ·KI = 0 ∀ I and ∀A . (2.13)

The latter generate a subgroup H ⊂ CE6(6)(GS), where CE6(6)(GS) is the commutant of GS
in E6(6), so that

[JA, JB] = fAB
CJC , (2.14)

with fABC being the structure constants of H. The generalised structure GS ⊆ USp(6) is
fully characterised as the group preserving the set

{KI , JA} . (2.15)

We can always normalise such that the nV + 1 generalised vectors satisfy

c(KI ,KJ ,KK) = 6 κ2CIJK , (2.16)
6Note that there are singlets in the adjoint bundle that do not satisfy (2.13). These are given by

KI ×ad K
∗
J , where K∗J is the dual of the generalised vector KJ and ×ad is the projection onto the adjoint

bundle, and will not play a relevant role in our construction.
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with CIJK a symmetric, constant tensor and κ is a section of (detT ∗M)1/2 fixed by the
structure. In addition we can normalise the adjont singlets to satisfy

tr(JAJB) = ηAB , (2.17)

where ηAB is a diagonal matrix with −1 and +1 entries in correspondence with compact
and non-compact generators of H, respectively.

Any generalised structure has an associated intrinsic torsion [31], which is defined as
follows. Let D̃ be a generalised connection compatible with the GS-structure, that is,
sastisfying D̃Qi = 0 for all i, where Qi is the set of invariant generalised tensors that
define the structure. Formally, the generalised torsion T of D̃ is defined by, acting on any
generalised tensor α, (

LD̃V − LV
)
α = T (V ) · α , (2.18)

where L is the generalised Lie derivative, LD̃ is the generalised Lie derivative calculated
using D̃ and · is the adjoint action on α.7 The intrinsic torsion is the component of T that
is independent of the choice of compatible connection D̃, and hence is fixed only by the
choice of generalised structure. In general, one can decompose the intrinsic torsion into
representations of GS . In particular, for a consistent truncation we will be interested in
the case where only the singlet representations are non-zero.

2.2 The generalised metric

An important ingredient to derive a consistent truncation is the generalised metric G on
M . This is a positive-definite, symmetric rank-2 tensor on the generalised tangent bundle,

G : E ⊗ E → R+

(V, V ′) 7→ G(V, V ′) = GMNV
MV ′N , (2.19)

that encodes the degrees of freedom of eleven-dimensional supergravity that correspond
to scalars in the reduced theory. We provide the explicit relation between the generalised
metric and the supergravity fields on M in eq. (3.19). The generalised metric is defined
in analogy to the ordinary metric: a metric g on M can be seen as an O(6) structure on
TM that at each point on M parameterises the coset GL(6)/O(6). Similarly, at each point
p ∈M a choice of a generalised metric corresponds to an element of the coset

G|p ∈
E6(6) × R+

USp(8)/Z2
. (2.20)

Since a GS ⊂ USp(8)/Z2, the GS structure will determine a GS-invariant generalised
metric, given in terms of the invariant tensors that are used to define the GS structure. The
expression of GMN that is relevant for truncations preserving maximal and half-maximal
supersymmetry was given in [14, 15, 22]. Here we will discuss the N = 2 case.

Consider first the case of a generic USp(6) structure. As discussed in the previous
section this is specified by an invariant generalised vector, K, together with an su(2) triplet

7We view the torsion as a map T : Γ(E)→ Γ(adF ) where adF is the Ed(d) × R+ adjoint bundle.
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of sections of the adjoint bundle Jα, α = 1, 2, 3. These objects define a USp(6)-invariant
generalised metric through the formula

G(V, V ) = 3
(

3 c(K,K, V )2

c(K,K,K)2 − 2 c(K,V, V )
c(K,K,K) + 4 c(K,J3 · V, J3 · V )

c(K,K,K)

)
. (2.21)

This formula can be motivated as follows. The globally defined K induces the splitting of
the 27 of E6(6) into orthogonal subspaces

V = V0 + V26 (2.22)

in the singlet and 26 representation of F4(4); correspondingly, the E6(6) cubic invariant on
the 26 reduces to the symmetric invariant form of F4(4)

c(K,V, V ) = c(K,V0, V0) + c(K,V26, V26) . (2.23)

This expression however is not positive definite, since the symmetric form of F4(4) has
signature (14, 12) and overall (2.23) has signature (14, 13). The first term in (2.21) contains
the contribution from the singlet component V0 and makes the metric positive definite in the
singlet. To do the same in the 26 we need the full HV structure. Under SU (2)H ×USp(6)
the 27 decomposes as

27 = 1⊕ (1,14)⊕ (2,6) , (2.24)

and the action Jα on V projects on the (2,6) part, as the rest is an SU (2)H singlet. Then
we can write the contribution to the metric in the (2,6) as

c(K,J3 · V, J3 · V ) , (2.25)

and add it in (2.21) to make it positive definite. Note that (2.21) only contains one element
of the triplet Jα, that we chose to be J3. This is because, for each Jα,

c(K,Jα · V, Jα · V ) = −c(K,V, (Jα)2 · V ) = c(K,V(2,6), V(2,6)) , (2.26)

where there is no sum over α and in the last equality we have used that (Jα)2 = −1 in
the V(2,6) subspace. We see that the action of each of the Jα gives the same result. This
reflects the fact that the generalised metric is independent of the action of the SU (2)H
supergravity R-symmetry.

For the purpose of constructing the truncation ansatz by comparing with (3.19), we
will also need the inverse generalised metric. We can exploit the isomorphism between
the generalised tangent bundle E and its dual E∗ provided by the generalised metric to
construct a USp(6) singlet K∗ ∈ Γ(E∗) as K∗(V ) = G(K,V ), where V is any generalised
vector. Then, denoting by Z ∈ Γ(E∗) a generic dual vector, the inverse generalised metric
is given by

G−1(Z,Z) = 3
(

3 c∗(K∗,K∗, Z)2

c∗(K∗,K∗,K∗)2 − 2 c∗(K∗, Z, Z)
c∗(K∗,K∗,K∗) + 4 c

∗(K∗, J3 · Z, J3 · Z)
c∗(K∗,K∗,K∗)

)
,

(2.27)
where the action of the cubic invariant c∗ and of the adjoint elements Jα on the dual
generalised vectors can be found in appendix A.

– 8 –



J
H
E
P
0
2
(
2
0
2
1
)
2
3
2

2.3 The HV structure moduli space and the intrinsic torsion

When the GS structure is a subgroup of USp(6) (and there is no supersymmetry enhance-
ment), it determines an USp(6) structure and hence by definition defines a generalised
metric. However, a given GS structure can determine several different USp(6) structures.
Thus one gets a family of generalised metrics that can be obtained from the GS-invariant
tensors, depending on which USp(6) structure one chooses. Concretely, we use the KI and
JA tensors characterising the GS structure to construct a generalised vector K and a triplet
of Jα satisfying (2.7)–(2.9), which then we use to build the generalised metric as in (2.21).
The parameterisation of K and Jα in terms of KI and JA provides a set of deformations
of a reference USp(6)-invariant metric, that correspond to acting on the structure with
elements of E6(6) that commute with GS , modulo elements of USp(8)/Z2 that commute
with GS . The resulting generalised metric thus parameterises the coset

M =
CE6(6)(GS)

CUSp(8)/Z2(GS) . (2.28)

This is the moduli space of our GS structure, namely the space of deformations of the
reference USp(6) structure that preserve the GS structure. For the N = 2 structures of
interest in this paper, this splits in the product

M =MV ×MH , (2.29)

whereMV is the V structure moduli space, corresponding to deformations of K that leave
Jα invariant, whileMH is the H structure moduli space, which describes deformations of Jα
that leave K invariant. The fact that these deformations are independent follows from the
requirement (2.13). When given a dependence on the external spacetime coordinates these
deformations provide the scalar fields in the truncated theory, with MV and MH being
identified with the vector multiplet and the hypermultiplet scalar manifolds, respectively.

We next outline how to construct the V and H structure moduli spaces. The procedure
will be further illustrated in sections 4 and 5, where concrete examples will be discussed
in detail.

The V structure moduli space. A family of V structures is obtained by parameterising
the generalised vector K as the linear combination

K = hIKI , (2.30)

where hI , I = 0, . . . , nV, are real parameters, and imposing the property (2.8). Using (2.16),
this is equivalent to

CIJKh
IhJhK = 1 , (2.31)

showing that the nV +1 parameters hI are constrained by one real relation and thus define
an nV-dimensional hypersurface,

MV = {hI : CIJKh
IhJhK = 1 } . (2.32)
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This is our V structure moduli space. It will be identified with the vector multiplet scalar
manifold in five-dimensional supergravity. The metric on MV is obtained by evaluating
the generalised metric on the invariant generalised vectors,

aIJ = 1
3 G(KI ,KJ) . (2.33)

Using (2.21), it is straightforward to see that this gives

aIJ = 3hIhJ − 2CIJKhK , (2.34)

where hI = CIKLh
KhL. Then gambient = 3

2 aIJdhIdhJ gives the metric on the ambient
space,8 and the metric onMV is obtained as the induced metric on the hypersurface.

The H structure moduli space. A family of H structures is obtained by parameterising
the possible su2 subalgebras of the algebra spanned by the JA. The fact that we only have
two singlet spinors means that CUSp(8)/Z2(GS) must contain an SU (2)H factor (as in (2.10))
that acts on the two singlet spinors. Furthermore, the corresponding su2 algebra must be
generated by a highest root in e6(6). The Lie algebra h = LieH generated by the JA is
the simple subalgebra of the Lie algebra of CE6(6)(GS) that contains the su2 factor. Since
h ⊂ e6(6) the su2 algebra is generated by a highest root in h.

The H structure moduli space is the space of choices of such highest root su2 algebras
in h, namely the symmetric space9

MH = H
SU (2)H × CH(SU (2)H) . (2.35)

Such spaces are known as “Wolf spaces” and are all quaternionic-Kähler, as expected from
the fact that MH is going to be identified with hyperscalar manifold in five-dimensional
supergravity. Points inMH can be parameterised by starting from a reference subalgebra
j ' su2 ⊂ h and then acting on a basis {j1, j2, j3} of j by the adjoint action of group
elements h ∈ H, defined as

Jα = adH jα = h jα h
−1 . (2.36)

Clearly, this action acts trivially on j if h ∈ SU (2)H ' exp(j), or if h belongs to the
commutant of this SU (2)H in H, that is h ∈ CH(SU (2)H). This way, we obtain a triplet
of “dressed” generalised tensors Jα, α = 1, 2, 3, which depend on the coset coordinates and
parameterise our family of H structures.

The intrinsic torsion. This picture that the GS-structure defines a family of HV struc-
tures also allows us to give a characterisation of the intrinsic torsion. As discussed in [44],
the intrinsic torsion of an HV structure is encoded in the three quantities

LKK, LKJα, µα (2.37)
8The normalisation is chosen so as to match standard conventions in N = 2 supergravity, see appendix B.
9Note the strictly the denominator group is not quite the product SU (2)H ×CH(SU (2)H) but generally

involves modding out correctly by terms in the centre of each factor. Here we will ignore these subtleties.
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where, given a generalised vector V ∈ Γ(E), one defines a triplet of functions10

µα(V ) = −1
2 εαβγ

∫
M

κ2 tr (Jβ(LV Jγ)) (2.38)

that formally are moment maps for the action of the generalised diffeomorphism group on
the space of H structures.

In general, if KGS is the space of GS-compatible connections, then the definition (2.18)
defines a map τ : KGS → W where now we view the generalised torsion T as a section of
W ⊂ E∗ ⊗ adF .11 The GS-intrinsic torsion is then an element of WGS

int = W/WGS where
WGS = Im τ . Now let p ∈ M be a particular point in the family of HV structures (2.28)
and USp(6)p ⊂ E6(6) be the corresponding structure group. By construction, GS is the
common subgroup of all the USp(6)p subgroups. This means that

KGS =
⋂
p

KUSp(6)p , (2.39)

that is, only a GS-compatible connection is compatible with every HV structure in the
family. Hence WGS = ⋂

pWUSp(6)p and so

WGS
int =

⋃
p

W
USp(6)p
int . (2.40)

In other words, knowing the intrinsic torsion of every HV structure in the family fixes the
intrinsic torsion of the GS structure.

Now, recall that each K in the family of HV structures is a linear combination of KI

(with constant coefficients), while each Jα is defined by the exponentiated adjoint action of
a linear combination of JA (with constant coefficients) on a fixed reference su(2) algebra.
Hence the intrinsic torsion components LKK and LKJα for the whole family are determined
by knowing

LKIKJ , LKIJA. (2.41)

These also determine µα(V ) when V has the form V = V IKI , even when the components
V I are functions because of the condition (2.13). Thus the final components of the GS
intrinsic torsion are determined by∫

M
κ2 tr(JA(LWJB)) , (2.42)

where we require c(KI ,KJ ,W ) = 0, which defines a generalised vector that is orthogonal
to those of the form V = V IKI . Note that the expressions (2.41) and (2.42) are in general
not independent, but are sufficient to determine the intrinsic torsion.

3 M-theory truncations to N = 2 supergravity in five dimensions

Any generalised GS structure on a manifold M with only constant, singlet intrinsic torsion
gives rise to a consistent truncation of eleven-dimensional or type II supergravity on M .

10Recall the change of conventions from those of [44] discussed in footnote 5.
11For E6(6) generalised geometry W transforms in the 27 + 351 representation.
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While the general ideas (along with the details for five-dimensional truncations preserv-
ing half-maximal supersymmetry) were given in [14], here we focus on the specific case
of truncations of eleven-dimensional supergravity leading to N = 2 supergravity in five
dimensions, based on GS ⊆ USp(6) structures.

Although some of the formulae giving the truncation ansatz in terms of the structure
are necessarily quite involved, a great advantage is that they are universal expressions
good for any N = 2 consistent truncation. One does not have to search for the correct set
of consistent modes on a case-by-case basis. All the particulars of the given truncations
are encoded in terms of the given GS structure defined by the set of KI and JA singlets.
For example, following the discussion in the previous section, the scalar matter content
is determined by the commutant of GS in E6(6), giving nV vector multiplets and nH hy-
permultiplets, whose scalar manifolds are identified with the V structure and H structure
moduli spaces, respectively. The gauge interactions of the truncated theory are determined
by the torsion of the GS-structure, which in turn depends only the generalised Lie deriva-
tives LKIKJ and LKIJA. Together this data completely specifies the full five-dimensional
supergravity.

3.1 The gauging

The gauge interactions of the truncated theory are determined by the intrinsic torsion of
the generalised structure GS . As already emphasised, we assume that the intrinsic torsion
takes values in the singlet representation of GS , with components that are constant on M .
As explained in [14], this means that the generalised Lie derivative along the invariant
vectors KI acting on any invariant tensor Qi, is given by

LKIQi = −Tint(KI) ·Qi , (3.1)

where Tint(KI) is a GS singlet in the adjoint bundle. This means that Tint(KI) is in the
Lie algebra of the commutant group G = CEd(d)(GS). Thus −Tint defines an “embedding
tensor” [45, 46], that is a linear map

Θ : span({KI})→ LieG . (3.2)

The image of this map defines the Lie algebra of the gauge group Ggauge of the truncated
theory and also how it embeds LieGgauge = Im Θ ⊆ LieG, thus giving Ggauge as a subgroup
of the commutant group

Ggauge ⊆ G = CEd(d)(GS) . (3.3)

For the structures of interest in the present paper, the relevant invariant tensors are
the vectors KI and the adjoint bundle singlets JA that generate H ⊂ G. The former are
the generators of the gauge algebra with structure constants f[IJ ]

L given by

LKIKJ = ΘI ·KJ = ΘI
A(tA)JLKL := fIJ

LKL , (3.4)

where (tA)JL are the representations of the generators of LieG acting on V. For the JA
singlets we have

LKIJA = ΘI · JA = [J(KI), JA] = ΘI
BfBA

CJC := pIA
BJB , (3.5)
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where fABC are the H structure constants, as in (2.14). For convenience we have also
defined the linear combination of the JA with constant coefficients,

J(KI) := ΘI
AJA , (3.6)

so that the action of the generalised vector KI on JA is represented by the adjoint action
of J(KI). Recall that generally the intrinsic torsion of the GS structure is captured by the
expressions (2.41) and (2.42). The condition that one has singlet, constant intrinsic torsion
is thus that (3.4) and (3.5) are satisfied with constant fIJK and pIAB and in addition that∫

M
κ2 tr(JA(LWJB)) = 0 , (3.7)

where the generalised vector W satisfies c(KI ,KJ ,W ) = 0. The condition on W implies
it transforms non-trivially under GS and hence, since JA are singlets, the corresponding
intrinsic torsion cannot be a singlet and so must vanish. Alternatively, recall from the
discussion in section 2.3 that (3.7) is equivalent to the vanishing of the moment maps
µα(W ) given in (2.38) for all H structures in the family of HV structures defined by the
GS structure. Any one H structure is related to another by the action of H, as in (2.36).
Furthermore it is straightforward to show that µα(W ) is invariant under this action. Hence
if µα(W ) = 0 with c(KI ,KJ ,W ) = 0 at any point in the family then it vanishes for all
and (3.7) holds.

We now show how the singlet intrinsic torsion determines the gauging of the lower-
dimensional N = 2 theory. The constants fIJL and ΘI

A, defined in (3.4) and (3.5) re-
spectively, can be identified with the embedding tensor components that encode generic
gaugings of five-dimensional N = 2 supergravity theories, including those involving vector
fields that transform in non-adjoint representations of the gauge group, as well as antisym-
metric rank-2 tensor fields.12 For simplicity, here we just discuss the case where (3.4) define
the structure constants of a Lie algebra, implying that it is not necessary to introduce an-
tisymmetric rank-2 tensor fields. These determine the symmetries of the scalar manifold
that are gauged, and hence all matter couplings of the N = 2 theory, completely fixing the
five-dimensional Lagrangian (see appendix B for a brief account of N = 2 supergravity in
five dimensions). In particular, the vector multiplet scalar covariant derivatives and the
gauge field strengths are given by

DhI = dhI + g fJK
IAJ hK , (3.8)

FI = dAI + 1
2 g fJK

IAJ ∧ AK , (3.9)

where g is the gauge coupling constant and AI = AIµdxµ are the five-dimensional gauge
fields. In order to obtain the hyperscalar covariant derivatives, we need the Killing vectors
on the H structure moduli space (2.35) that generate the gauged isometries. These can be
constructed from (3.6) using the standard formalism of coset spaces, see e.g. [49]. Given

12The embedding tensor formalism is most commonly used to describe the gauging of maximal and
half-maximal supergravity [45, 46], see however [47, 48] for its use in an N = 2 context.

– 13 –



J
H
E
P
0
2
(
2
0
2
1
)
2
3
2

the left-action of a generator J(KI) on the coset representative L ∈ H, the corresponding
Killing vector kI onMH is determined by the equation

L−1J(KI) L ∼ g ιkI (L−1dL) , (3.10)

where the symbol ∼ means that the equality holds up to an element of the algebra one
is modding out by, which in the present case is SU (2)H × CH(SU (2)H).13 Writing kI =
kXI

∂
∂qX

, where qX denote the coordinates on MH, the hyperscalar covariant derivatives
then read

DqX = dqX + gAIkXI . (3.11)

From the Killing vectors kI we can then compute the triholomorphic Killing prepo-
tentials PαI , α = 1, 2, 3, that determine the fermionic shifts and the scalar potential of
the N = 2 supergravity theory, see appendix B for the relevant formulae. These Killing
prepotentials are moment maps of the isometries being gauged, and as such can be nicely
computed from the generalised geometry formalism. Recalling the definition of the moment
map µ in (2.38), they are given by

g PαI = 1
8 ε

αβγ
∫
M

κ2 tr (Jβ(LKIJγ))
/∫

M
κ2

= 1
8 ε

αβγ tr (Jβ(LKIJγ)) .
(3.12)

In this formula, recall that the Jα are the dressed triplet, hence the resulting moment maps
are function of the H structure moduli. In the second line, we have used the fact that the
singlet torsion components tr (Jβ(LKIJγ)) are constant on M and hence the integrals over
κ2 cancel.

3.2 The truncation ansatz

Our conventions for eleven-dimensional supergravity are as in [42]. The eleven-dimensional
bosonic action is (we denote by a hat the 11d quantities)

Ŝ = 1
2

∫ (
R̂ ∗̂ 1− 1

2 F̂ ∧ ∗F̂ −
1
6Â ∧ F̂ ∧ F̂

)
, (3.13)

where F̂ = dÂ and Â is the three-form potential. The equations of motion are

R̂µ̂ν̂ −
1
12

(
F̂µ̂ρ̂1ρ̂2ρ̂3F̂ν̂

ρ̂1ρ̂2ρ̂3 − 1
12 ĝµ̂ν̂F̂

2
)

= 0 ,

d ∗̂ F̂ + 1
2 F̂ ∧ F̂ = 0 .

(3.14)

The six-form potential ˆ̃A dual to the three-form Â may be introduced via the first-order
relation

∗̂ dÂ+ 1
2 Â ∧ dÂ = d ˆ̃A , (3.15)

whose exterior derivative gives the Maxwell equation.
13A similar construction could be made for the Killing vectors that gauge isometries in the V structure

moduli space, starting from the sections of the adjoint bundle that generateMV mentioned in Footnote 6.
However, this will not be needed for our purposes.

– 14 –



J
H
E
P
0
2
(
2
0
2
1
)
2
3
2

As first step of the truncation procedure, we arrange the eleven-dimensional bosonic
fields into generalised tensors transforming in representations of GL(5,R) × E6(6), where
GL(5,R) gives the tensorial structure of the fields in the five-dimensional theory obtained
after reduction. Then we expand each E6(6) representation in terms of the GS invariant
tensors transforming in the same representation. We separate the eleven-dimensional coor-
dinates in coordinates xµ, µ = 0, . . . , 4, on the external spacetime X, and zm, m = 1, . . . , 6,
on the internal manifold M .

The bosonic fields of eleven-dimensional supergravity are decomposed as

ĝ = e2∆ gµν dxµdxν + gmnDz
mDzn ,

Â = 1
3!AmnpDz

mnp + 1
2Aµmndxµ ∧Dzmn + 1

2 Āµνmdxµν ∧Dzm + 1
3! Āµνρ dxµνρ ,

ˆ̃A = 1
6!Ãm1...m6Dz

m1...m6 + 1
5!Ãµm1...m5dxµ∧Dzm1...m5 + 1

2 · 4!
¯̃Aµνm1...m4dxµν∧Dzm1...m4

+ . . . , (3.16)

where Dzm = dzm − hµmdxµ, and all tensor field components may depend both on xµ

and zm, except for the external metric, for which we assume a dependence on the external
coordinates only, gµν = gµν(x).

The barred fields need to be redefined. In appendix C we provide a justification for
these redefinitions by studying the gauge transformations of the metric and three-form
potential. For the three-form components we introduce the new fields Aµνm, Aµνρ via

Āµνm = Aµνm − h[µ
nAν]nm , Āµνρ = Aµνρ + h[µ

nhν
pAρ]np . (3.17)

Similar redefinitions apply to the six-form components with at least two external indices,
however we will not discuss them in detail here.

The supergravity fields having all components on the internal manifold M arrange into
the inverse generalised metric

GMN ↔ {∆, gmn, Amnp, Ãm1...m6} , (3.18)

in the following way14

(G−1)mn = e2∆gmn

(G−1)mn1n2 = e2∆gmpApn1n2

(G−1)mn1...n5 = e2∆gmp(Ap[n1n2An3n4n5] + Ãpn1...n5)
(G−1)m1m2 n1n2 = e2∆(gm1m2,n1n2 + gpqApm1m2Aqn1n2])

(G−1)m1m2 n1...n5 = e2∆[gm1m2,[n1n2An3n4n5]

+ gpq(Apm1m2(Aq[n1n2An3n4n5] + Ãqn1...n5)]
(G−1)m1...m5 n1...n5 = e2∆[gm1...m5, n1...n5

+ gpq(Ap[m1m2Am3m4m5] + Ãpm1...m5)(Aq[n1n2An3n4n5] + Ãqn1...n5)] ,
(3.19)

14This expression follows straightforwardly from the elements of the conformal split frame given in [42].
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where gm1m2, n1n2 = gm1[n1g|m2|n2], and similarly for gm1...m5, n1...n5 . Since the generalised
metric is a scalar on the external spacetime, after imposing our truncation ansatz it will
provide the scalar fields of the reduced five-dimensional theory.

The density κ introduced in section 2.1 when defining the HV structure is related to
the determinant of the generalised metric and is an E6(6) invariant. For eleven-dimensional
metrics of the form (3.16), this is given by [42, 44]

κ2 = e3∆√det gmn . (3.20)

The tensors with one external leg arrange into a generalised vector Aµ on M , with
components

AµM = {hµm, Aµmn, Ãµm1...m5 } , (3.21)

and will provide the gauge potentials of the reduced theory. The tensors with two anti-
symmetrised external indices define a weighted dual vector Bµν on M , which is a section
of detT ∗M ⊗ E∗, with components

Bµν M = {Aµνm, Ãµνm1...m4 , g̃µνm1...m6,n} , (3.22)

and will give the two-form fields of the reduced theory. The last term in (3.22) is re-
lated to the dual graviton and we will not discuss it further here. The tensors with three
antisymmetrised external indices arrange into the generalised tensor

Cµνρα̂ = {Aµνρ, Ãµνρm1m2m3 , g̃µνρm1...m5,n} , (3.23)

which is a section of (a sub-bundle of) the weighted adjoint bundle detT ∗M ⊗ adF , whose
components are labeled by α̂ = 1, . . . , 57. See e.g. [50, 51] for more details on this tensor
hierarchy.

As discussed in [14], the bosonic part of the truncation ansatz is obtained by imposing
that the generalised tensors above are expanded in singlets of the GS structure. The
generalised metric is obtained by constructing the K and Jα parameterising a family of
HV structures as detailed in section 2.3, and plugging these generalised tensors in the
formula (2.27). The resulting generalised metric depends on the H and V structure moduli;
when given a dependence on the external coordinates xµ, these are then identified with the
hyperscalar and vector multiplet scalar fields of the truncated N = 2 theory, respectively.
Thus we have

K = hI(x)KI

Jα = L(x)jαL(x)−1

}
giving GMN (x) from (2.27) , (3.24)

where L is the representative of the cosetMH. Comparing the expression for the generalised
metric with its general form (3.19), we obtain the truncation ansatz for ∆, gmn, Amnp (as
well as Ãm1...m6 , whenever it is needed). Note that κ2 given in (3.20) is independent of the
scalar fields hI(x) and L(x), so it can be evaluated using any chosen representative of the
family of HV structures defined by the GS structure.
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The gauge potentials AµI(x) on the external space-time are defined by taking

Aµ = AµI(x)KI ∈ Γ(T ∗X)⊗ span({KI}) (3.25)

where span({KI}) ⊂ Γ(E) is the vector space spanned by the set of GS singlets KI ,
I = 0, 1, . . . , nV. Similarly the two-form fields are given by

Bµν = Bµν I(x)KI
[ ∈ Γ(Λ2T ∗X)⊗ span({KI

[ }) , (3.26)

where span({KI
[ }) ⊂ Γ(detT ∗M ⊗ E∗) is the vector space spanned by the weighted dual

basis vectors KI
[ , the latter being defined by KI

[ (KJ) = 3κ2 δIJ . We also have

Cµνρ = CµνρA(x) J [A ∈ Γ(Λ3T ∗X)⊗ span({J [A}) , (3.27)

where span({J [A}) ⊂ Γ(detT ∗M ⊗ ad(F )) is spanned by the GS singlets in the weighted
adjoint bundle, here denoted by J [A and given by J [A = κ2JA. In appendix C we show
that these expressions, together with the field redefinitions (3.17), lead to the correct five-
dimensional covariant objects, consistent with the expected gauge transformations.

4 N = 2 truncations on Maldacena-Nuñez geometries

We now apply the above formalism to consistent truncations of eleven-dimensional su-
pergravity based on generalised structures arising from M5-branes wrapping a Riemann
surface.

We start with the N = 2 AdS5 ×w M solution of Maldacena and Nuñez [34] and show
that the manifold M admits a generalised U (1) structure with singlet intrinsic torsion,
and therefore can be used to construct a consistent truncation. As we have stressed above,
once we identify the singlet KI and JA tensors defining the structure it is straightforward
to read off the form of the N = 2 supergravity.

We already observed in [14] that this process yields N = 2 supergravity with one
hypermultiplet and four vector multiplets. Here we give the details of the construction
and derive the gauging, which defines an SO(3) × U (1) × R gauge group. Our truncation
includes as a subtruncation the reduction to N = 2 supergravity with one vector multiplet,
one hypermultiplet and U (1)× R gauging recently obtained in [36].

4.1 The MN1 solution

We are interested in warped AdS5 solutions to eleven-dimensional supergravity that de-
scribe the near-horizon region of M5-branes wrapping supersymmetric cycles in a Calabi-
Yau geometry. The amount of supersymmetry of the solutions depends on how the cycle is
embedded in the ambient geometry. This corresponds to a topological twist of the world-
volume (0, 2) theory on the M5-branes. The simplest examples are the solutions found by
Maldacena and Nuñez [34] describing the near-horizon geometry of M5-branes wrapped on
a Riemann surface Σ of negative constant curvature. The topological twist of the (0, 2)
world-volume theory is realised by identifying the spin connection on Σ with a U (1) connec-
tion in the SO(5) R-symmetry group of the M5-brane theory. The theory preserves N = 2
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or N = 1 superconformal symmetry in four dimensions, depending on how the U (1) is
chosen inside SO(5). The corresponding supergravity solutions are warped products of
AdS5 times a six-dimensional manifold, M , which is the fibration of a deformed S4 over Σ.
The SO(5) is realised via the action of the isometry group of the round S4. The structure
of the fibration reflects the twist of the world-volume theory and determines the amount
of supersymmetry of the solutions, which in five-dimensional language is either N = 4 or
N = 2, respectively.

In this paper we focus on the N = 2 solution, which we call the “MN1 solution” in the
following. The eleven-dimensional metric is15

ĝ = e2∆ gAdS5 + g6 , (4.1)

where gAdS5 is the Anti de Sitter metric with radius ` = 3
2R, R being the length scale of

the internal space M . The metric on M takes the form

g6 = R2 31/3

24/3

(
3 + cos2 ζ

)1/3
[
gΣ + dζ2 + sin2 ζ

3 + cos2 ζ

(
σ2

1 + σ2
2 + (σ3 + υ)2

)]
. (4.2)

Here, gΣ is the uniform metric on (a quotient of) the hyperbolic plane Σ = H2, with Ricci
scalar curvature RΣ = −2, while υ is the spin connection on Σ satisfying

dυ = − volΣ , (4.3)

with volΣ the volume form on Σ.16 The deformed S4 is described as a foliation of a round
S3 over an interval, with the interval coordinate being ζ ∈ [0, π], while σα, α = 1, 2, 3, are
the standard SU (2)left-invariant forms on S3, expressed in terms of Euler angles {θ, φ, ψ}.
Their explicit expression can be found in appendix D, together with more details on the
parameterisation of S4.

The warp factor is

e2∆ =
(2

3

)2/3
(3 + cos2 ζ)1/3 , (4.4)

while the four-form reads

F̂ = R3

4

[
15 + cos2 ζ

(3 + cos2 ζ)2 sin3 ζ dζ ∧ σ1 ∧ σ2 ∧ (σ3 + υ)

+ sin ζ
(
−dζ ∧ σ3 + sin(2ζ)

3 + cos2 ζ
σ1 ∧ σ2

)
∧ volΣ

]
.

(4.5)

15We present the solution in a form similar to the one given in [52, Sect. 5]. The precise dictionary with
this reference is: α = ζ, ν = −φ, ψGMSW = ψ, e2λ = e2∆, m−1 = `AdS5 = 3

2R, where the variables on the
left-hand side are those of [52] while the variables on the right-hand side are those used here. The length
scale R that appears in our expressions is equal to the radius of S4 in the related AdS7 ×S4 Freund-Rubin
solution of eleven-dimensional supergravity. The four-form F̂ in (4.5) has an overall opposite sign with
respect to the one of [52], F̂ = −FGMSW; this sign does not affect the equations of motion, it just modifies
the projection condition satisfied by the supersymmetry spinor parameter.

16Choosing local coordinates x, y on the hyperbolic plane, one can write gΣ = dx2+dy2

y2 , volΣ = dx∧dy
y2 ,

and υ = −dx
y
.
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Note that the invariant volume form (3.20) is given by

κ2 = R2 volΣ ∧ vol4 , (4.6)

where vol4 is the volume form of the round S4 of radius R.
The solution has SU (2)left×U (1)right symmetry, which embeds in the SO(5) isometry

group of a round S4 as

SO(5) ⊃ SO(4) ' SU (2)left × SU (2)right ⊃ SU (2)left × U (1)right . (4.7)

This symmetry is manifest as the solution is given in terms of the σα. The globally-defined
combination (σ3 + υ) describes a fibration of S4 over Σ, such that the U (1)right action on
S4 is used to cancel the U (1) holonomy of Σ.

The U(1)right factor provides the R-symmetry of the holographically dual N = 1
SCFT, while SU (2)left corresponds to a flavour symmetry. The dual N = 1 SCFT has
been described in [53].

4.2 Generalised U (1) structure of the MN1 solution

The solution reviewed above admits a generalised U(1)S structure, which will be the basis
for constructing our consistent truncation. In order to characterise it we proceed in two
steps. The first is purely group theoretical: it consists in embedding the relevant U(1)S in
E6(6), computing its commutant and the corresponding decompositions of the generalised
tangent and adjoint bundles. To this end, it is convenient to decompose E6(6) according to
its maximal compact subgroup USp(8)/Z2. Since the usp(8) algebra can be given in terms
of Cliff(6) gamma matrices (see appendix E.1), this reduces the problem to gamma matrix
algebra. The details of the derivation can be found in appendix E; here we will just give
the results. Once the relevant U(1)S singlets are identified, the second step is to express
them in terms of the geometry of the six-dimensional manifold M .

The generalised U(1)S structure of the MN1 solution is the diagonal of the ordinary
geometrical U (1) ' SO(2) ⊂ GL(2,R) structure on the Riemann surface and a U (1) factor
in the SO(5) ⊂ SL(5,R) ' E4(4) generalised structure for the generalised tangent space of
the four-sphere. In terms of the isometry group decomposition (4.7) this can be identified
with U(1)right. If we denote by 1 to 4 the directions in M along S4 and by 5,6 those along
Σ, the generator of U (1)S can be written as a usp(8) element as

u(1)S = i Γ̂56 −
i
2(Γ̂12 − Γ̂34) , (4.8)

where Γ̂m are six-dimensional gamma matrices. The first term corresponds to the U (1)
holonomy of Σ while the second one is the U (1)right in SO(5). By computing the commu-
tators of (4.8) in USp(8) we find that the U (1)S structure embeds in USp(8) as17

USp(8) ⊃ SU (2)× SU (2)H × U (1)× U (1)S , (4.9)
17Here and below we give expressions ignoring subtleties involving the centres of each group; thus for

instance we will not distinguish between embeddings in USp(8) and USp(8)/Z2.
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where as above we distinguish the factor SU (2)H that gives the R-symmetry of the five-
dimensional supergravity theory. Under this splitting, the spinorial representation of
USp(8) decomposes as

8 = (1,2)0 ⊕ (2,1)1 ⊕ (2,1)−1 ⊕ (1,1)2 ⊕ (1,1)−2 , (4.10)

where the elements in the brackets denote the SU (2) × SU (2)H representations and the
subscript gives the U(1)S charge. We then see that there are only two spinors that are
singlets under U (1)S and that transform as a doublet of SU (2)H as required by N = 2
supersymmetry.

The embedding of the U(1)S structure in the full E6(6) is obtained in a similar way
(see appendix E.2 for details)

E6(6) ⊃ CE6(6)(U(1)S) = R+ × Spin(3, 1)× SU (2, 1)× U(1)S , (4.11)

where CE6(6)(U(1)S) is the commutant of U(1)S in E6(6). We can now determine how
many generalised vectors and adjoint elements are U(1)S singlets. Under (4.11) the 27
decomposes as

27 = (1,1)(0,8) ⊕ (4,1)(0,−4) ⊕ (2,1)(3,−2) ⊕ (2̄,1)(−3,−2)

⊕ (1,3)(2,−4) ⊕ (1, 3̄)(−2,−4) ⊕ (2̄,3)(1,2) ⊕ (2, 3̄)(−1,2) ,
(4.12)

where the first subscript denotes the U(1)S charge and the second one the R+ charge. We
see that there are five singlets KI , I = 0, 1, . . . , 4, where

K0 ∈ (1,1)(0,8) (4.13)

is only charged under the R+, while

{K1,K2,K3,K4} ∈ (4,1)(0,−4) (4.14)

form a vector of SO(3, 1).
The singlets in the 78 adjoint representation are the generators of the commutant

CE6(6)(U(1)S). However only the generators of the SU (2, 1) subgroup are relevant for the
structure. Indeed, (4.12) shows that the generators of R+ × SO(3, 1) do not leave the
singlet vectors invariant, and therefore, as discussed in section 2.1, do not contribute to the
truncation. As shown in (E.40) and (E.41), they can be obtained as products KI ×ad K

∗
J .

We denote by JA, A = 1, . . . , 8, the elements of the adjoint bundle generating su2,1. Four
of them are in the 36 of USp(8) and generate the compact subalgebra su2 ⊕ u1, and four
more are in the 42 of USp(8) and generate the rest of su2,1.

The U(1)S structure is then defined by

{KI , JA} , I = 0, . . . , 4 , A = 1, . . . , 8 . (4.15)

The derivation of the explicit expressions for these generalised tensors relies on the
way the solution of [34] is constructed by deforming the AdS7×S4 background dual to flat
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M5-branes so as to describe their backreaction when wrapping a Riemann surface Σ. The
world-volume theory on the wrapped M5-branes is made supersymmetric by a topological
twist, where the spin connection on the Riemann surface is cancelled by switching on
a background gauge field for a U(1) subgroup of the SO(5) R-symmetry. On the dual
background the topological twist implies that M is an S4 fibration over Σ

S4 M

Σ

i

π (4.16)

The generalised tangent bundle for S4 is given by

E4 ' TS4 ⊕ Λ2T ∗S4 , (4.17)

and transforms under SL(5,R) ' E4(4). It is generalised parallelisable, meaning it admits
a globally defined frame [15]. The idea is then to consider first the direct product Σ× S4,
express the E6(6) generalised tensors on this manifold in terms of the frame on Σ and the
parallelisation on S4, and then implement the twist of S4 over Σ so as to make globally
well-defined objects. In the decomposition

E6(6) ⊃ GL(2,R)× SL(5,R) , (4.18)

where GL(2,R) is the structure group of the conventional tangent bundle on Σ and
SL(5,R) ' E4(4) is the structure group of the generalised tangent bundle on S4, the E6(6)
generalised tangent bundle on Σ× S4 decomposes as

E ' TΣ⊕ (T ∗Σ⊗N4)⊕ (Λ2T ∗Σ⊗N ′4)⊕ E4 , (4.19)

and the adjoint bundle as

adF ' adF4 ⊕ (TΣ⊗ T ∗Σ)⊕ (T ∗Σ⊗ E4)
⊕ (Λ2T ∗Σ⊗N4)⊕ (TΣ⊗ E∗4)⊕ (Λ2TΣ⊗N∗4 ) .

(4.20)

In the expressions above E4 is the generalised tangent bundle on S4 introduced in (4.17),
adF4 is the adjoint bundle on S4,

adF4 ' R⊕ (TS4 ⊗ T ∗S4)⊕ Λ3T ∗S4 ⊕ Λ3TS4 , (4.21)

and N4 and N ′4 are the following bundles on S4,

N4 ' T ∗S4 ⊕ Λ4T ∗S4 ,

N ′4 ' R⊕ Λ3T ∗S4 .
(4.22)

The bundles E4, N4 and N ′4 admit the globally defined generalised frames

Eij ∈ Γ(E4) , Ei ∈ Γ(N4) , E′i ∈ Γ(N ′4) , i, j = 1, . . . , 5 , (4.23)
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see appendix D for their expression in a coordinate basis and note that they include a
contribution from the three-form gauge potential AS4 of the flux on the S4. Geometrically
this defines a generalised identity structure on S4. Given the way U (1)S is embedded in
USp(8), we will find it useful to also introduce the following linear combinations of the
generalised frame elements Eij on S4,

Ξ1 = E13 + E24 , Ξ2 = E14 − E23 , Ξ3 = E12 − E34 ,

Ξ̃1 = E13 − E24 , Ξ̃2 = E14 + E23 , Ξ̃3 = E12 + E34 . (4.24)

Since their restriction to TM corresponds to the Killing vectors generating the SU (2)left×
SU (2)right ' SO(4) ⊂ SO(5) isometries of S4 (again see appendix D for their explicit
expression), Ξα and Ξ̃α, α = 1, 2, 3, may be seen as generalised Killing vectors generating
the corresponding generalised isometries.

As for the Riemann surface Σ, it can be (a quotient of) the hyperbolic plane H2 as
in the MN1 solution reviewed in section 4.1, but we can also take a torus T 2, or a sphere
S2. We introduce orthonormal co-frame one-forms e1, e2 on Σ, such that the constant
curvature metric and the compatible volume form on Σ are given by

gΣ = (e1)2 + (e2)2 , volΣ = e1 ∧ e2 . (4.25)

The metric is normalised so that the Ricci scalar curvature is RΣ = 2κ, where κ = +1 for
S2, κ = 0 for T 2 and κ = −1 for H2 (and quotients thereof). We also define the U(1) spin
connection, υ, on Σ as

d(e1 + i e2) = i υ ∧ (e1 + i e2) , dυ = κ volΣ . (4.26)

The decompositions (4.19) and (4.20) allow us to express the U(1)S invariant gener-
alised tensors in terms of tensors on Σ and the S4 generalised frames introduced above.
We provide the derivation in appendix E and here just present the resulting expressions.
Let us first focus on the singlet generalised vectors KI . These can be written as

K0 = eΥ · (R2 volΣ ∧ E′5) , K1,2,3 = eΥ · Ξ̃1,2,3 , K4 = eΥ · Ξ3 , (4.27)

where Υ is a section of the adjoint bundle implementing the twist of S4 over Σ as in (4.16),
ensuring that these are globally defined objects on the six-dimensional manifold. Recall
that in the MN1 solution, the U(1) that is used to twist the four-sphere and compensate
the spin connection υ on Σ is the Cartan of SU (2)right ⊂ SO(5). The E6(6) twist element
Υ is constructed in a way similar to the one used in [14], albeit with a different choice
of U (1) in SO(5). We embed the connection one-form υ in a generalised dual vector, the
Killing vector generating the Cartan of SU (2)right in the generalised vector Ξ3 introduced
above, and we project their product onto the adjoint of E6(6). That is,

Υ = −R2 υ ×ad Ξ3 , (4.28)
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where ×ad denotes the projection onto the adjoint and again R is the radius of S4. Evalu-
ating its action in (4.27), we find that this is trivial for all the KI ’s except for K4, and we
obtain our final expressions

K0 = R2 volΣ ∧ E′5 , K1,2,3 = Ξ̃1,2,3 , K4 = Ξ3 −Rυ ∧ E5 . (4.29)

A similar procedure applies to the singlets JA, A = 1, . . . , 8, in the adjoint bundle. In this
way we obtain (see appendix E for the derivation)

J1 = 1
2 eΥ ·

(
−Re1 ×ad Ξ1 −Re2 ×ad Ξ2 +R−1 Ξ∗1 ×ad ê1 +R−1 Ξ∗2 ×ad ê2

)
,

J2 = 1
2 eΥ ·

(
Re1 ×ad Ξ2 −Re2 ×ad Ξ1 −R−1 Ξ∗2 ×ad ê1 +R−1 Ξ∗1 ×ad ê2

)
,

J3 = 1
2 eΥ ·

(
ê1 ⊗ e2 − ê2 ⊗ e1 −Re2 ×ad Ψ15 +R−1 Ψ∗15 ×ad ê2

− E∗5[1 ×ad E2]5 + E∗5[3 ×ad E4]5
)
,

J4 = 1
2 eΥ ·

(
Re1 ×ad Ξ2 −Re2 ×ad Ξ1 +R−1 Ξ∗2 ×ad ê1 −R−1 Ξ∗1 ×ad ê2

)
,

J5 = 1
2 eΥ ·

(
Re1 ×ad Ξ1 +Re2 ×ad Ξ2 +R−1 Ξ∗1 ×ad ê1 +R−1 Ξ∗2 ×ad ê2

)
,

J6 = −1
3 eΥ ·

(
ê1 ⊗ e1 + ê2 ⊗ e2 +

4∑
i=1

E∗i5 ×ad Ei5 + 2
)
,

J7 = eΥ ·
(
Re2 ×ad Ψ15 +R−1 Ψ∗15 ×ad ê2

)
,

J8 = 1
2
√

3
eΥ ·

(
ê1 ⊗ e2 − ê2 ⊗ e1 − 3Re2 ×ad Ψ15 + 3R−1 Ψ∗15 ×ad ê2

− E∗5[1 ×ad E2]5 + E∗5[3 ×ad E4]5
)
,

(4.30)

where the superscript ∗ denotes dual generalised vectors, transforming in the 27, and we
introduced Ψ1i = Re1∧Ei and Ψ2i = Re2∧Ei. The adjoint action of eΥ is evaluated using
the formula (A.21); we do not show the resulting expressions as they are rather lengthy.
Evaluating the commutators [JA, JB] using again (A.21), we checked that the JA satisfy
precisely the SU (2, 1) commutation relations (see (F.4) for our choice of SU (2, 1) structure
constants).

4.3 The V and H structure moduli spaces

We now construct the V structure and H structure moduli spaces. Applying the general
discussion of section 2.3 we have

MV ×MH =
CE6(6)(GS)

CUSp(8)/Z2(GS) = R+ × Spin(3, 1)
SU (2) × SU (2, 1)

SU (2)H × U (1) , (4.31)

As we now show the first two factors give the V structure moduli space and the last factor
the H structure moduli space.
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The V structure. Evaluating (2.16) for the KI constructed above we obtain the con-
stant, symmetric tensor CIJK . Using the invariant volume (4.6), we find that the non-
vanishing components of CIJK are given by

C0IJ = CI0J = CIJ0 = 1
3 ηIJ , for I, J = 1, . . . , 4 , (4.32)

where
η = diag(−1,−1,−1, 1) . (4.33)

A family of V structures is then obtained by defining K as the linear combination (2.30)
and imposing the condition (2.31). It follows that our V structure moduli space is the
hypersurface

CIJKh
IhJhK = h0

(
−(h1)2 − (h2)2 − (h3)2 + (h4)2

)
= 1 . (4.34)

It will be convenient to redefine the hI in terms of the parameters

{Σ, H1, H2, H3, H4} (4.35)

as

h0 = Σ−2 ,

hI = −ΣHI , I = 1, . . . , 4 , (4.36)

so that
K = Σ−2K0 − Σ

(
H1K1 +H2K2 +H3K3 +H4K4

)
. (4.37)

From (4.34) we see that HI are coordinates on the unit hyperboloid SO(3,1)
SO(3) ,

− (H1)2 − (H2)2 − (H3)2 + (H4)2 = 1 , (4.38)

while Σ (that we assume strictly positive) is a coordinate on R+, whose powers in (4.36)
are dictated by the weight of the KI ’s under the action of the R+ that commutes with the
generalised structure. The resulting V structure moduli space thus is

MV = R+ × SO(3, 1)
SO(3) , (4.39)

and will determine nV = 4 vector multiplets in five-dimensional N = 2 supergravity.
Note that by identifying SU (2) ' Spin(3) this matches the first two factors in (4.31). The
isometry group is SO(3, 1) because the hI form a vector rather than a spinor representation
of Spin(3, 1).

The H structure. We next turn to the H structure moduli space, again following the
general discussion given in section 2.3. Since the commutant of SU (2)H in SU (2, 1) is
U (1), from (2.35) we obtain that the H structure moduli space is18

MH = SU (2, 1)
SU (2)H × U (1) . (4.40)

18More precisely one hasMH = SU (2, 1)/S(U (2)×U (1)).
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This is a simple quaternionic-Kähler manifold of quaternionic dimension nH = 1. We will
denote by

{ϕ, ξ, θ1, θ2} (4.41)
the coordinates on this space. In appendix F we give the explicit parameterisation chosen
for the coset space as well as the explicit form of the “dressed” su(2) elements Jα, depending
on {ϕ, ξ, θ1, θ2}, in terms of su(2, 1) elements. Below we will use this dressed triplet to
construct the generalised metric. In appendix F we also give the SU (2, 1) invariant metric
onMH , which will provide the hyperscalar kinetic term in the five-dimensional theory.

4.4 Intrinsic torsion and gauging

For the U(1)S structure constructed in the previous section to lead to a consistent trun-
cation, it must be checked that its intrinsic torsion only contains U(1)S singlets, and that
these are constant. In particular we need to show that equations (3.4), (3.5) and (3.7) hold.
For the first two conditions we evaluate the generalised Lie derivatives of the tensors KI

and JA in (4.29) and (4.30), using the action of generalised Lie derivative on a generalised
vector and on sections of the adjoint bundle given in appendix A.

Consider first the algebra of the generalised vectors (4.29). Using the fact that, under
the generalised Lie derivative, the S4 frames Eij generate an so(5) algebra

LEijEkl = −R−1 (δikEjl − δilEjk + δjlEik − δjkEil) , (4.42)

one can show that the only non-zero Lie derivatives are

LKαKβ = − 2
R
εαβγKγ , α, β, γ = 1, 2, 3 , (4.43)

so that the vectors Kα, α = 1, 2, 3, lead to an SO(3) factor in the gauge group in the five-
dimensional supergravity.19 This embeds in the SO(3, 1) factor of the global symmetry
group of the ungauged theory in the obvious way. Hence (4.43) determines the compo-
nents of the embedding tensor acting on the vector multiplet sector of the five-dimensional
supergravity theory.

We thus have that the non-vanishing structure constants are fαβγ = −2 εαβγ and the
gauge coupling constant is g = 1

R . Recalling (3.8), the non-trivial vector multiplet scalar
covariant derivatives are

DHα = dHα − 2
R
εαβγAβ Hγ , (4.44)

while the gauge field strengths read

F0 = dA0 , Fα = dAα − 1
R
εαβγAβ ∧ Aγ , F4 = dA4 . (4.45)

In order to determine the gauging in the hypersector we also need to compute the Lie
derivative of the JA along the generalised vectors KI . We find that the JA are neutral
under the action of the SO(3) generators Kα,

LKαJA = 0 , A = 1, . . . 8 , (4.46)
19For simplicity, we use the indices α, β = 1, 2, 3 both to label the generators of the SU (2)H entering in

the definition of the H structure and the generators of the SU (2) in the V structure, although these are
different subgroups of E6(6).
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consistently with the fact that the gauging in the vector multiplet sector does not affect
the hypersector. On the other hand, the remaining generalised vectors K0 and K4 act
non-trivially on the JA, and determine an abelian gauging of the SU (2, 1) generators. In
detail, the generalised Lie derivative of the JA along K0 gives

LK0(J1 − J5) = 0 ,

LK0(J1 + J5) = 1
R

(J2 + J4) ,

LK0(J2 + J4) = 0 ,

LK0(J2 − J4) = − 1
R

(J1 − J5) ,

LK0J3 = − 1
2RJ6 ,

LK0J6 = − 1
2R
(
J3 + 2J7 −

√
3J8

)
,

LK0J7 = 1
R
J6 ,

LK0J8 =
√

3
2RJ6 ,

(4.47)

while the one along K4 yields

LK4(J1 − J5) = − 2
R

(J2 + J4) ,

LK4(J1 + J5) = − 2
R

(J2 − J4)− κ

R
(J2 + J4) ,

LK4(J2 + J4) = 2
R

(J1 − J5) ,

LK4(J2 − J4) = 2
R

(J1 + J5) + κ

R
(J1 − J5) ,

LK4J3 = κ

2RJ6 ,

LK4J6 = κ

2R
(
J3 + 2J7 −

√
3J8

)
,

LK4J7 = − κ
R
J6 ,

LK4J8 = −
√

3κ
2R J6 .

(4.48)
The actions (4.47) and (4.48) can equivalently be expressed in terms of an adjoint action as

LK0JA = [J(K0), JA] , LK4JA = [J(K4), JA] , A = 1, . . . , 8 , (4.49)

where the sections of the adjoint bundle

J(K0) = 1
4R

(
J3 + 2J7 −

√
3J8

)
,

J(K4) = − κ

4R
(
J3 + 2J7 −

√
3J8

)
− 1
R

(
J3 + 1√

3
J8
)

(4.50)

correspond to SU (2, 1) generators acting on the H-structure moduli space (4.40) as isome-
tries. We denote by k0 and k4 the corresponding Killing vectors on MH. These can be
calculated applying (3.10) to the coset representative L given in appendix F, and read

k0 = ∂ξ ,

k4 = −κ ∂ξ + 2 (θ2∂θ1 − θ1∂θ2) . (4.51)

These Killing vectors specify the isometries ofMH that are gauged in the five-dimensional
supergravity. The hyperscalar covariant derivatives (3.11) are determined as

D(θ1 + i θ2) = d(θ1 + i θ2)− 2
R

iA4 (θ1 + i θ2) ,

Dξ = dξ + 1
R
A0 − κ

R
A4 . (4.52)
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The triholomorphic Killing prepotentials PαI obtained by evaluating the moment
maps (3.12) read

Pα0 =
{

0 , 0 , 1
4 e2ϕ

}
,

Pα4 =
{√

2 eϕθ1 ,
√

2 eϕθ2 ,−1 + 1
4 e2ϕ(2θ2

1 + 2θ2
2 − κ

) }
, (4.53)

with Pα1 = Pα2 = Pα3 = 0.
The information above completely characterises the five-dimensional N = 2 supergrav-

ity obtained upon reduction on M . This will be discussed in section 4.6. Before coming to
that, we provide the explicit bosonic truncation ansatz.

4.5 The truncation ansatz

The truncation ansatz is built following the general procedure described in section 3.2. We
compute the inverse generalised metric (2.27) out of the U (1)S invariant generalised tensors.
This depends on the V structure moduli {Σ, H1, H2, H3, H4} and on the H structure moduli
{ϕ, ξ, θ1, θ2}, which are now promoted to scalar fields in the external, five-dimensional
spacetime. Then we evaluate the generalised tensors Aµ,Bµν , Cµνρ using (3.25)–(3.27).
Separating the components of these tensors as described in section 3.2, we obtain the
ansatz for the eleven-dimensional metric ĝ and three-form potential Â.

We start from the covariantised differentials Dzm = dzm− hµmdxµ of the coordinates
on M , that appear in (3.16). From (3.21) and (3.25) we see that hµ = hµ

m∂m is given by

hµ = AIµKI |TM , (4.54)

where KI |TM is the restriction of KI to the tangent bundle of M . Evaluating the right
hand side using the explicit form (4.29) of the generalised vectors KI , we obtain

hµ = 2
R

(
Aαµ ξ̃α +A4

µ ξ3
)
, (4.55)

where we recall that ξα, ξ̃α, α = 1, 2, 3, are the pull-back to TM of the SU (2)left-
and SU (2)right-invariant vectors on S3, respectively, whose coordinate expression is given
in (D.2) and (D.3). It follows that Dzm, and thus both the eleven-dimensional met-
ric and three-form, contain the five-dimensional gauge potentials Aα, A4, gauging the
SU (2)left×U (1)right isometries of S3 inM . Notice that A0 does not appear in (4.55) as K0
does not have a component in TM , hence it will not enter in the eleven-dimensional metric.
However K0 will appear in the ansatz for the three-form, as it does have a component in
Λ2T ∗M .

In order to express our ansatz in a more compact way, it will be convenient to introduce
new one-forms Ωα and Ω̃α, α = 1, 2, 3, adapted to the symmetries of the problem, that
incorporate the covariantised differentials above but also include some more terms. Recall
that we describe S4 as a foliation of S3, parameterised by Euler angles {θ, φ, ψ}, over an
interval, parameterised by ζ. We define

Ω1 = cosψDθ + sinψ sin θDφ , Ω̃1 = cosφDθ + sinφ sin θDψ ,
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Ω2 = − sinψDθ + cosψ sin θDφ , Ω̃2 = sinφDθ − cosφ sin θDψ ,
Ω3 = Dψ + cos θDφ , Ω̃3 = Dφ+ cos θDψ , (4.56)

which are analogous to the left- and right-invariant forms σα, σ̃α given in (D.6) and (D.7),
but with the ordinary differential of the coordinates being replaced by the new covariantised
differential D. This extends the differential D given above and is defined as

Dzm = dzm − 2
R

(
Aαξmα + Ãαξ̃mα

)
, (4.57)

with

A1 = R√
2

(θ2e1 − θ1e2) , A2 = R√
2

(θ1e1 + θ2e2) , A3 = −R2 υ +A4 ,

Ãα = Aα , α = 1, 2, 3 , (4.58)

where the five-dimensional scalars θ1, θ2 are two of the H structure moduli, and we recall
that e1, e2 are the vielbeine on the Riemann surface Σ while υ is the connection on Σ.
The local one-forms Ãα,Aα gauge all the left- and right- isometries of S3, respectively, and
would correspond to SO(4) ' SU (2)left × SU (2)right gauge potentials in the reduction of
eleven-dimensional supergravity on S4 down to seven-dimensional supergravity. However,
in the further reduction on Σ of interest here only Aα,A4 become five-dimensional gauge
fields, while the rest of (4.58) implements the twist on the Riemann surface and introduces
the five-dimensional scalars θ1, θ2.

We are now in the position to give the truncation ansatz for the eleven-dimensional
metric

ĝ = e2∆gµνdxµdxν + gmnDz
mDzn . (4.59)

The warp factor is
e2∆ = ∆̄1/3 (eϕΣ)4/5 , (4.60)

while the part with at least one internal leg reads

gmnDz
mDzn =R2∆̄1/3(eϕΣ)−6/5 gΣ+R2∆̄−2/3e2ϕ/5Σ−3/5

[(
e−2ϕΣ3 sin2 ζ+H− cos2 ζ

)
dζ2

+ 1
4H+ sin2 ζ δαβΩα⊗Ωβ−

1
2 sin2 ζHα Ω̃α⊗sΩ3−cosζ sinζ dζ⊗sd6H+

]
,

(4.61)

where ⊗s is the symmetrised tensor product, defined as Ω ⊗s Ω̃ = 1
2(Ω ⊗ Ω̃ + Ω̃ ⊗ Ω). In

these expressions we introduced the function

∆̄ =
(
e−2ϕΣ3)−4/5 cos2 ζ +

(
e−2ϕΣ3)1/5H+ sin2 ζ , (4.62)

as well as

H± = H4 ±
(
H1 sin θ sinφ−H2 sin θ cosφ+H3 cos θ

)
,

d6H+ = H1 d(sin θ sinφ)−H2 d(sin θ cosφ) +H3 d cos θ . (4.63)
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Note that in the last expression the exterior derivative acts on the internal coordinates and
not on the scalars HI , which only depend on the external coordinates.

We next come to the eleven-dimensional three-form potential Â. We first give our
result and then make some comments. The ansatz for Â reads

Â = −1
8R

3 cos ζ
[
2 + sin2 ζ ∆̄−1(e−2ϕΣ3)−4/5 ]Ω1 ∧ Ω2 ∧ Ω3

+ 1
4R

3 sin3 ζ ∆̄−1(e−2ϕΣ3)1/5 dζ ∧Hα Ω̃α ∧ Ω3

+R3 cos ζ
(
Dξ − θ1Dθ2 + θ2Dθ1

)
∧ volΣ +1

4R
3 cos ζ

(
2θ2

1 + 2θ2
2 − κ

)
volΣ ∧Ω3

+ 1
2R

2 cos ζ
(
F4 ∧ Ω3 −Fα ∧ Ω̃α

)
+R cos ζ Σ4 ∗5 F0

+ 1
2
√

2
R3 cos ζ

[(
Dθ2 ∧ e1 −Dθ1 ∧ e2

)
∧ Ω1 +

(
Dθ1 ∧ e1 +Dθ2 ∧ e2

)
∧ Ω2

]
, (4.64)

where the five-dimensional gauge field strengths, F , and the covariant derivatives, D, of
the five-dimensional scalars were given in (4.45) and (4.52), respectively.

Equation (4.64) has been obtained by first computing Â through the general procedure
of section 3.2, then implementing a gauge shift by an exact three-form so as to obtain a
nicer expression (this is why derivatives of the external fields appear), and finally dualising
away the five-dimensional two- and three-forms, so that the only five-dimensional degrees
of freedom contained in the ansatz are scalar and vector fields, in addition to the metric
gµν . Let us outline how this dualisation is performed. Evaluating (3.26) and (3.27), we
find that only one external two-form B and one external three-form C appear in the ansatz
for Â. These are paired up with the generalised tensors E5 and E′5 on S4, which, as
generalised tensors on M , are sections of detT ∗M ⊗E∗ and detT ∗M ⊗ adF , respectively.
The combination entering in Â is[

BE5 + CE′5
]
3 = RB ∧ d cos ζ +R C cos ζ = (C − dB)R cos ζ + d (BR cos ζ) , (4.65)

where the subscript on the left-hand side indicates the restriction to the three-form part,
and the last term in the expression is removable via a gauge transformation of Â. Hence
B and C only appear in the combination (C − dB). This means that the two-form gets
eaten by the three-form via the Stuckelberg mechanism, giving it a mass. While a massless
three-form in five-dimensions is dual to a scalar field, here we dualise the two-form at the
same time and also obtain a vector field. The duality relation is obtained considering the
duality between the eleven-dimensional three-form Â and six-form ˆ̃A given in (3.15), and
looking at the relevant terms with three external indices. In this way we find that

C − dB = Σ4 ∗5 dA0 −A4 ∧ dA4 +Aα ∧ dAα − 1
3R εαβγAα ∧ Aβ ∧ Aγ . (4.66)

We have used this expression to eliminate (C −dB) completely from the truncation ansatz.
This explains the ∗5F0 term appearing in (4.64).

Our truncation ansatz reproduces the Maldacena-Nuñez solution given in section 4.1
upon taking κ = −1 and setting the scalars to

H1 = H2 = H3 = θ1 = θ2 = ξ = 0 , H4 = Σ = 1 , ϕ = 1
2 log 4

3 . (4.67)

– 29 –



J
H
E
P
0
2
(
2
0
2
1
)
2
3
2

The consistent truncation of [36] is recovered as a subtruncation that projects out the
fields transforming under SU (2)left, that is setting Ãα = Hα = 0, α = 1, 2, 3, which also
implies H4 = 1.20 The further truncation to minimal gauged supergravity is obtained by
setting the scalars to their AdS value (4.67) and taking A0 = −A4.

One can obtain a slightly larger subtruncation by projecting out only the modes
charged under U (1)left, rather than SU (2)left, namely setting Ã1 = Ã2 = H1 = H2 = 0.
This leaves us with two vector multiplets, one hypermultiplet and just the abelian gauging
generated by the Killing vectors (4.51), which is the same as the one in the truncation
of [36].21 A notable generalisation of this subtruncation will be discussed in section 5.

The truncation of [36] was obtained via a reduction of gauged seven-dimensional su-
pergravity on the Riemann surface Σ. Similarly, we can obtain our truncation ansatz by
combining the well-known truncation of eleven-dimensional supergravity on S4 [9], leading
to seven-dimensional maximal SO(5) supergravity, with a further truncation reducing the
seven-dimensional theory on Σ. Starting from the convenient form of the bosonic trunca-
tion ansatz on S4 given in [56], we have explicitly checked that this procedure works out
as expected and reproduces the ansatz above.

4.6 The five-dimensional theory

We now put together the ingredients defining the truncated five-dimensional theory and
discuss it in more detail. This is an N = 2 gauged supergravity coupled to four vector
multiplets and one hypermultiplet. The vector multiplet scalar manifold is

MV = R+ × SO(3, 1)
SO(3) , (4.68)

while the hypermultiplet scalar manifold is

MH = SU (2, 1)
SU (2)H × U (1) . (4.69)

As discussed before, these have a geometric origin as the V and H structure moduli spaces
of the internal manifold. At the bosonic level, the vector multiplets are made of gauge
fields AI and constrained scalar fields hI , I = 0, 1, . . . , 4, which we have parameterised
in terms of Σ and HI , I = 1, . . . , 4, in (4.36). The latter scalars satisfy the constraint
ηIJH

IHJ = 1, with η = diag(−1,−1,−1, 1). We have also found that the non-vanishing
components of the symmetric tensor CIJK are given by

C0IJ = CI0J = CIJ0 = 1
3 ηIJ , I, J = 1, . . . , 4 . (4.70)

20Then the one-forms Ωα essentially reduce to those in [36], up to slightly different conventions, while Ω̃α
drop out of the ansatz. When comparing our truncation ansatz with the one given in section 4.1 of [36], one
should take into account that Âhere = −ÂFNR (this is seen from comparing our 11d Maxwell equation with
the one in [54], which provides the 7d to 11d uplift formulae used in [36]). Moreover ζhere = ζFNR + π/2 ,
A4 ∝ AFNR, A0 ∝ χFNR

1 , Σ = 21/3ΣFNR, e2ϕ = 2(e2ϕ)FNR, |θ1,2| = 1√
2 |θ1,2|FNR, ξ = 1

2ξ
FNR.

21Curiously, this five-dimensional supergravity with two vector multiplets and one hypermultiplet looks
closely related to the N = 2 “Betti-vector” model obtained in [55, Section 7] as a consistent truncation of
IIB supergravity on T 1,1. The two models are not the same though, as the details of the couplings between
the fields are different.
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The kinetic terms in the vector multiplet sector are controlled by the matrix aIJ , given by
the general formula (2.34), which in our case reads

a00 = 1
3 Σ4 ,

a0J = 0 ,

aIJ = 2
3 Σ−2

(
2ηIKHKηJLH

L − ηIJ
)
, I, J = 1, . . . , 4 . (4.71)

The hypermultiplet comprises the scalars qX = {ϕ, ξ, θ1, θ2}, and the kinetic term is
given by the quaternionic-Kähler metric onMH that we derived in appendix F,

gXY dqXdqY = 2 dϕ2 + e2ϕ
(
dθ2

1 + dθ2
2

)
+ 1

2 e4ϕ (dξ − θ1dθ2 + θ2dθ1)2 . (4.72)

The gauge group is SO(3)×U (1)×R. The symmetries being gauged are the SO(3) ⊂
SO(3, 1) isometries of MV and two abelian isometries in MH, generated by the Killing
vectors (4.51). Note that the ∂ξ term generates the non-compact R factor and the θ2∂θ1 −
θ1∂θ2 term generates the compact U(1).

We recall for convenience the gauge field strengths

F0 = dA0 , Fα = dAα − g εαβγAβ ∧ Aγ , F4 = dA4 , α = 1, 2, 3 , (4.73)

and the covariant derivatives of the charged scalars,

DHα = dHα − 2
R
εαβγAβ Hγ ,

D(θ1 + i θ2) = d(θ1 + i θ2)− 2
R

iA4 (θ1 + i θ2) ,

Dξ = dξ + 1
R
A0 − κ

R
A4 , (4.74)

where the gauge coupling constant is given by the inverse S4 radius, g = 1
R . The scalars Σ,

H4 and ϕ remain uncharged. The gauging in the hypersector is the same as in [36], while
the gauging in the vector multiplet sector is a novel feature of our truncation.

Plugging these data in the general form of the N = 2 supergravity action given in
appendix B, we obtain the bosonic action for our model,

S = 1
16πG5

∫ [
(R− 2V) ∗ 1− 1

2 Σ4F0 ∧ ∗F0 − 3
2

4∑
I,J=1

aIJFI ∧ ∗FJ − 2Σ−2dΣ ∧ ∗dΣ

− 3
2

4∑
I,J=1

aIJD(ΣHI) ∧ ∗D(ΣHJ)− gXYDqX ∧ ∗DqY +
4∑

I,J=1
ηIJA0 ∧ F I ∧ FJ

]
,

(4.75)

where G5 is the five-dimensional Newton constant.22 The scalar potential V is obtained
from the Killing prepotentials of the gauged isometries as summarised in appendix B. The

22As discussed in [33], the five-dimensional Newton constant is given by (G5)−1 ∝
∫
M

e3∆ vol6 =
∫
M

κ2.
In the present case,

∫
M

κ2 = R2 VolΣ Vol4, where VolΣ = 4π(1−g)
κ

is the standard volume of a Riemann
surface of genus g and Vol4 = 8π3

3 R4 is the volume of a round S4 with radius R.
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Killing prepotentials were already given in (4.53). We can check this expression by starting
from the Killing vectors (4.51) and evaluating (B.15) using a standard parameterisation
for the universal hypermultiplet; we have verified that indeed the same result is obtained.
Then (B.17) gives for the scalar potential

V = 1
R2

{ e4ϕ

4Σ4 −
2H4 e2ϕ

Σ + Σ2
[
− 2 + e2ϕ

(
2
(
(H4)2 − 1

)(
θ2

1 + θ2
2
)
− κ

)
+ 1

8 e4ϕ(2(H4)2 − 1
)(

2θ2
1 + 2θ2

2 − κ
)2]}

. (4.76)

The supersymmetric AdS vacuum conditions summarised in eq. (B.18) are easily solved
and give the scalar field values

H1 = H2 = H3 = θ1 = θ2 = 0 , H4 = Σ = 1 , ϕ = 1
2 log 4

3 , (4.77)

that is precisely the values (4.67) that reproduce the MN1 solution reviewed in section 4.1.
The negative curvature κ = −1 for the Riemann surface arises as a positivity condition
for the scalars Σ and e2ϕ. The critical value of the scalar potential yields the cosmological
constant Λ ≡ V = − 8

3R2 , corresponding to an AdS5 radius ` = 3
2R, again in harmony with

the solution in section 4.1.
By extremising the scalar potential (4.76) we can search for further AdS5 vacua within

our truncation. Then, by analysing the mass matrix of the scalar field fluctuations around
the extrema we can test their perturbative stability. In the following we discuss the outcome
of this analysis for the three extrema that we have found.

• We recover the supersymmetric vacuum (4.77). Being supersymmetric, this is stable.
The supergravity field fluctuations source SU (2, 2|1) superconformal multiplets in the
dual N = 1 SCFT [53], with the supergravity mass eigenvalues providing the confor-
mal dimension ∆ of the operators in the multiplets. The field fluctuations that were
also considered in [36] correspond to the energy-momentum multiplet (containing the
energy-momentum tensor with ∆ = 4 and the R-current with ∆ = 3) and to a long
vector multiplet of conformal dimension ∆ = 1 +

√
7 (see [36] for more details). The

additional SO(3) vector multiplet included in this paper sources a conserved SO(3)
flavour current multiplet in the dual SCFT. The three scalar operators in this mul-
tiplet have conformal dimension ∆ = 2 (once) and ∆ = 4 (twice), while the SO(3)
flavour current has conformal dimension ∆ = 3, as required for a conserved current.
Another piece of information about the dual SCFT is given by the Weyl anomaly
coefficients; these are obtained from the five-dimensional Newton constant G5 and
the AdS5 radius ` through the formula a = c = π`3

8G5
.

• When κ = −1 we also recover the non-supersymmetric vacuum discussed in [36],
that was originally found in [57]. The analysis of the scalar mass matrix shows
that the fluctuation of H4 has a mass squared m2`2 ' −4.46, which is below the
Breitenlohner-Freedman bound `2m2

BF = −4. We thus establish that this vacuum
is perturbatively unstable. Note that the unstable mode lies outside the truncation
of [36].
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• For κ = +1, we find a non-supersymmetric vacuum with non zero value of the H-
scalars, given by

Σ = 21/3

51/6 , e2ϕ = 8
3 , H4 = 3

√
5

4 , θ1 = θ2 = 0 , ` = 3 21/6

55/6R , (4.78)

where ` is the AdS radius. This appears to be a new solution. It represents an SO(3)
worth of vacua really, since the scalars Hα, α = 1, 2, 3, can take any value such that√

(H1)2 + (H2)2 + (H3)2 =
√

(H4)2 − 1 =
√

29
4 . We find that a linear combination

of the fluctuations of Σ, ϕ and H4 has mass squared m2`2 ' −5.86 < m2
BF`

2, hence
this vacuum is perturbatively unstable. Nevertheless, it allowed us to perform a non-
trivial check of our truncation ansatz for non-vanishing H-fields, as we have verified
that its uplift does satisfy the equations of motion of eleven-dimensional supergravity.

5 Truncations for more general wrapped M5-branes

The N = 2 and N = 4 Maldacena-Nuñez solutions are special cases of an infinite family
of N = 2 solutions [35, 38],23 describing M5-branes wrapping a Riemann surface in a
Calabi-Yau geometry. These solutions, which we will denote as BBBW solutions, have
the same general features of the MN1 solution. In particular, they all admit a generalised
U(1)S structure, which we use to derive the most general consistent truncation to N = 2
gauged supergravity in five dimensions associated with such backgrounds. As we will
see, the truncated theory has two vector multiplets, one hypermultiplet and gauge group
U (1)× R. It generalises the U (1)right invariant subtruncation of the truncation presented
in the previous section: the matter content is the same and the gauging is deformed by
one (discrete) parameter. Our systematic approach allows us to complete the consistent
truncation derived from seven-dimensional maximal SO(5) supergravity on Σ previously
presented in [37] by including all scalar fields in the hypermultiplet and directly deriving
the gauging.24

5.1 The BBBW solutions

The BBBW solutions describe M5-branes wrapped on a Riemann surface Σ, such that the
(2, 0) theory on the branes has a twisting over Σ depending on two integer parameters p
and q. The way the Riemann surface is embedded in the ambient space determines the
local structure of the latter. The authors of [35, 38] showed that there is an infinite family
of allowed geometries, corresponding to the fibration L1 ⊕ L2 ↪→ Σ of two complex line
bundles over the Riemann surface, so that the total space is Calabi-Yau. The degrees of
these line bundles are identified with the integers that parameterise the twist of the M5
world-volume theory, p = degL1 and q = degL2. By the Calabi-Yau condition p and q

must satisfy p + q = 2g − 2, with g the genus of Σ. In this setup, the N = 1 and N = 2
twistings considered in [34] arise from setting p = q and q = 0 (or p = 0), respectively.

23See also [58], where a subset of the solutions was previously found.
24We thank Nikolay Bobev and Alberto Zaffaroni for pointing out this reference.
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The corresponding AdS5 ×w M supergravity solutions are generalisation of the MN1
solution reviewed in section 4.1. The eleven-dimensional metric is a warped product

ĝ = e2∆gAdS5 + g6 , (5.1)

with warp factor
e2∆ `2 = e2f0∆̄1/3 . (5.2)

where ` is the AdS radius. The six-dimensional manifoldM is still a fibration of a squashed
four-sphere over the Riemann surface, with metric

g6 = ∆̄1/3e2g0gΣ + 1
4 ∆̄−2/3g4 , (5.3)

where the Riemann surface metric gΣ satisfies (4.25), (4.26), and the metric on the squashed
and fibered S4 is

g4 = X−1
0 dµ2

0 +
∑
i=1,2

X−1
i

(
dµ2

i + µ2
i (dϕi +A(i))2) . (5.4)

The angles ϕ1, ϕ2 vary in [0, 2π],25 and

µ0 = cos ζ , µ1 = sin ζ cos θ2 , µ2 = sin ζ sin θ2 , (5.5)

with ζ, θ ∈ [0, π]. The two circles ϕ1 and ϕ2 are independently fibered over the Riemann
surface, with connections

A(1) = −1 + z

2 υ A(2) = −1− z
2 υ , (5.6)

where υ is again the connection on Σ and the discrete parameter z is related to the integers
p and q as

z = p− q
p+ q

. (5.7)

The warping function ∆̄ and the constants f0, g0 depend on z and on the curvature κ of
the Riemann surface as

∆̄ =
2∑
I=0

XIµ
2
I , ef0 = X−1

0 , e2g0 = −1
8 κX1X2 [(1− z)X1 + (1 + z)X2] , (5.8)

with

X0 = (X1X2)−2 ,

X1X
−1
2 = 1 + z

2z − κ
√

1 + 3z2
,

X5
1 = 1 + 7z + 7z2 + 33z3 + κ(1 + 4z + 19z2)

√
1 + 3z2

4z(1− z)2 .

(5.9)

25They are related to the angles of section 4.1 by ϕ1 = −(φ+ ψ)/2 and ϕ2 = (φ− ψ)/2.
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The four-form flux is given by

F̂ = −1
4 ∆̄−5/2

[ 2∑
I=0

(X2
Iµ

2
I − ∆̄XI) + 2∆̄X0

]
vol4

+ 1
16∆̄−1/2

2∑
i=1

X−2
i ∗4

[
d(µ2

i ) ∧ (dϕi +A(i))
]
∧ dA(i) , (5.10)

where the Hodge star ∗4 is computed using the metric (5.4).

The solution has two U(1) isometries corresponding to shifts of the angles ϕ1, ϕ2 that
parameterise the two diagonal combinations of the U(1)right and U(1)left subgroups of
SO(5). It turns out that neither of them corresponds to the superconformal R-symmetry
of the dual N = 1 SCFT, which is given by a linear combination involving X1, X2 [35, 38].

5.2 Generalised U (1)S structure

The construction of the generalised structure associated to the BBBW solutions follows
the same lines as for the MN1 solution. We first embed the ordinary U(1) structure in
E6(6) and then look for the invariant generalised tensors. The generalised U(1)S structure
of the solutions is determined by the topological twist of the M5 world-volume theory, as
a linear combination of the U(1) holonomy of Σ and the U(1)right and U(1)left subgroups
of the SO(5) R-symmetry group

U(1)S ∼ U(1)Σ − U(1)right − z U(1)left . (5.11)

This embeds in E6(6) as an element of its compact subgroup USp(8) with generator

u(1)S = i Γ̂56 −
i

p+ q

(
p Γ̂12 − q Γ̂34

)
, (5.12)

where Γ̂56 is the usp8 element generating U(1)Σ and 1
2(Γ̂12 ± Γ̂34) generate U(1)left/right.

When p = q we recover the U (1)S structure group of the MN1 solution, whereas q = 0 (or
p = 0) gives the MN2 structure considered in [14]. Below we assume that p, q are generic,
and do not fulfill these special conditions which as we have seen lead to a larger truncation.

By looking at the singlets under u(1)S in the 27 and 78 representations of E6(6), we
find that the U (1)S structure is defined by eight JA, A = 1, . . . , 8, in the adjoint bundle
and three generalised vectors KI , I = 0, 1, 2. The singlets in the adjoint bundle have the
same form (4.30) as for the MN1 solution, while the three singlet generalised vectors take
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the same form as a subset of the MN1 generalised vectors,26

K0 = eΥ · (R2 volΣ ∧E′5) ,
K1 = eΥ · Ξ̃3 ,

K2 = eΥ · Ξ3 .

(5.13)

However now the twisting element Υ has a more general form dictated by the embed-
ding (5.12), that is

Υ = − R

p+ q
υ ×ad (pE12 − q E34) . (5.14)

This makes our generalised tensors globally well-defined. We emphasise that these depend
on the integers p, q only through (5.14).

5.3 Features of the truncation

The number of U(1)S singlets in the 27 and 78 implies that the truncated supergravity
theory contains two vector multiplets and one hypermultiplet. The H structure moduli
space is the same as for the MN1 case,

MH = SU (2, 1)
SU (2)H × U(1) . (5.15)

As before, this is parameterised by real coordinates qX = {ϕ, ξ, θ1, θ2} and the metric
is given by eq. (4.72). The V structure moduli space is determined again following our
discussion in section 2, and is a subspace of the one for the MN1 truncation. Evaluating
the cubic invariant on the singlets KI as in (2.16), we obtain that the non-zero components
of the CIJK tensor are

C0IJ = CI0J = CIJ0 = 1
3 ηIJ , for I, J = 1, 2 , (5.16)

with η = diag(−1, 1) . Parameterising the V structure moduli as in (4.36), with I = 1, 2,
the constraint (2.31) gives the equation of the unit hyperboloid SO(1, 1),

− (H1)2 + (H2)2 = 1 , (5.17)

while again Σ parameterises R+. Thus the V structure moduli space is

MV = R+ × SO(1, 1) . (5.18)
26Before acting with Υ, the singlets for the BBBW solutions are related to those used for the MN1

solutions as
K0 = KMN1

0 , K1 = KMN1
3 , K2 = KMN1

4 ,

and to the structure of the MN2 solution in [14] as

K0 = 1
2(KMN2

5 −KMN2
8 ) , K1 = KMN2

0 + 1
2 (KMN2

5 +KMN2
8 ) ,

K2 = KMN2
0 − 1

2 (KMN2
5 +KMN2

8 ) .
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The kinetic matrix aIJ then takes the same form (4.71), that is

a00 = 1
3 Σ4 ,

a01 = a02 = 0 ,

aIJ = 2
3 Σ−2

(
2(H1)2 + 1 −2H1H2

−2H1H2 2(H2)2 − 1

)
, I, J = 1, 2 . (5.19)

The gauging of the reduced theory is obtained from the generalised Lie derivative LKI
acting on the KJ and the JA. The Lie derivatives among vectors are now trivial,

LKIKJ = 0 , I, J = 0, 1, 2 . (5.20)

As discussed in section 2, the Lie derivatives LKIJA are conveniently expressed as the
adjoint action of SU(2, 1) generators,

LK0JA = [J(K0), JA] , LK1JA = [J(K1), JA] , LK2JA = [J(K2), JA] . (5.21)

Evaluating the generalised Lie derivatives we find

J(K0) = 1
4R

(
J3 + 2J7 −

√
3J8

)
,

J(K1) = 1
4R κz

(
J3 + 2J7 −

√
3J8

)
,

J(K2) = − 1
4R κ

(
J3 + 2J7 −

√
3J8

)
− 1
R

(
J3 + 1√

3
J8

)
. (5.22)

Eq. (5.20) implies that the vector multiplet sector is not gauged, so the field strengths are
all abelian,

FI = dAI , (5.23)

while (5.22) specifies the gauging in the hypermultiplet sector in terms of κ and z. The
SU (2, 1) generators act as isometries onMH; the corresponding Killing vectors can again
be computed using (3.10) and read

k0 = ∂ξ ,

k1 = κ z ∂ξ ,

k2 = −κ ∂ξ + 2 (θ2∂θ1 − θ1∂θ2) . (5.24)

It follows that the covariant derivatives of the charged scalars are

D(θ1 + i θ2) = d(θ1 + i θ2)− 2
R

iA2 (θ1 + i θ2) ,

Dξ = dξ + 1
R
A0 + 1

R
κ
(
zA1 −A2

)
, (5.25)

where again the inverse S4 radius 1
R plays the role of the gauge coupling constant. The

Killing prepotentials can be computed either from (3.12) or from (B.15), and read

Pα0 =
{

0 , 0 , 1
4 e2ϕ

}
,
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Pα1 =
{

0 , 0 , 1
4 κ z e2ϕ

}
,

Pα2 =
{√

2 eϕθ1 ,
√

2 eϕθ2 ,−1 + 1
4 e2ϕ (2θ2

1 + 2θ2
2 − κ

) }
. (5.26)

Notice that for z = 0 (that is p = q), the quantities above reduce to those obtained for the
MN1 structure in section 4.4.

The five-dimensional bosonic action is then determined to be

S = 1
16πG5

∫ [
(R− 2V) ∗ 1− 1

2 Σ4F0 ∧ ∗F0 − 3
2

2∑
I,J=1

aIJFI ∧ ∗FJ − 2Σ−2dΣ ∧ ∗dΣ

− 3
2

2∑
I,J=1

aIJ d(ΣHI) ∧ ∗d(ΣHJ)− gXYDqX ∧ ∗DqY −A0 ∧
(
F1 ∧ F1 −F2 ∧ F2)] ,

(5.27)

where the scalar potential reads

V = 1
R2

{ e4ϕ

4Σ4 −
2 e2ϕH2

Σ + Σ2
[
− 2 + e2ϕ

(
2(H1)2(θ2

1 + θ2
2
)
− κ

)
+ 1

8 e4ϕ((H1)2 + (H2)2)(2θ2
1 + 2θ2

2 − κ
)2

+ z κ
(
zκ (H1)2 + zκ (H2)2 + 4H1H2(2θ2

1 + θ2
2 − κ

)) ]}
. (5.28)

It is straightforward to analyse the supersymmetric AdS5 vacuum conditions (B.18).
The hyperino equation gives

θ1 = θ2 = 0 ,

Σ−3 = κ
(
zH1 −H2

)
, (5.29)

where we assume κ = ±1 (hence leaving aside the case κ = 0). The gaugino equation gives

2Σ−3 Pα0 +H1Pα1 +H2Pα2 = 0 ,
H2Pα1 +H1Pα2 = 0 . (5.30)

Plugging the Killing prepotentials (5.26) and using (5.29) we obtain

3κ e2ϕ
(
zH1 −H2

)
− 4H2 = 0 ,

κ e2ϕ(z H2 −H1)− 4H1 = 0 . (5.31)

Taking into account the allowed range of the scalar fields, the solution to these equations is

H1

H2 = 1 + κ
√

1 + 3z2

3z , e2ϕ = 4√
1 + 3z2 − 2κ

. (5.32)

For κ = 1, well-definiteness of the fields requires |z| > 1, as in [35], while z can be generic
for κ = −1. The MN1 case z = 0 is recovered as a limiting case after fixing κ = −1. The
critical value of the scalar potential determines the AdS radius ` as

` =
(
κ− 9κz2 + (1 + 3z2)3/2

4z2

)1/3
R . (5.33)
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Although we do not present the uplift formulae for this truncation, we have checked
that the supersymmetric vacuum identified above matches the BBBW solution summarised
in section 5.1. To do so, we have computed the inverse generalised metric G−1 associated
with the U (1)S structure under consideration; this depends on the V structure and H
structure parameters. From the generalised metric we have reconstructed the ordinary
metric g6 and the three-form potential on M , as well as the warp factor e2∆. Substituting
the values for the scalars found above, we find agreement with the solution in section 5.1
upon fixing the S4 radius as R = 1

2 and implementing the following dictionary:

e2ϕ = 1
4 e−2g0− 1

2f0 ,

Σ3 = 1
4 e−2g0+ 3

4f0 ,

H1 = 1
2X

1
4
0 (X1 −X2) ,

H2 = 1
2X

1
4
0 (X1 +X2) ,

(5.34)

with our AdS radius being given in terms of the quantities appearing there as

` = 22/3 ef0+ 2
3g0R . (5.35)

By extremising the scalar potential27 we recover the supersymmetric vacuum and also
find new non-supersymmetric vacua, where the scalar field values are rather complicated
functions of the parameter z. As an example, we give the numerical values for one chosen
value of z, that we take z = 1

2 . When κ = −1 we find a new extremum of the potential at

Σ ' 0.9388 , ϕ ' 0.1109 , H2 ' 1.0217 , θ1 = θ2 = 0 , ` ' 1.5276R , (5.36)

while when κ = 1 we find an extremum at

Σ ' 0.8631 , ϕ ' 0.2812 , H2 ' 1.5506 , θ1 = θ2 = 0 , ` ' 1.0644R , (5.37)

and another one at

Σ ' 1.1580 , ϕ ' 0.8455 , H2 ' 1.9847 , θ1 = θ2 = 0 , ` ' 0.6198R , (5.38)

where for each solution we have also indicated the corresponding AdS radius `.

6 Conclusions

In this paper we have illustrated the Exceptional Generalised Geometry approach to N = 2
consistent truncations of eleven-dimensional supergravity on a six-dimensional manifoldM .
We have argued that for the truncation to go through, M must admit a generalised
GS ⊆ USp(6) structure with constant singlet intrinsic torsion, and we have explained how
this completely determines the resulting five-dimensional supergravity theory. We have

27To do so, it is convenient to parameterise H1 = sinhα, H2 = coshα, and extremise with respect to α.
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also given an algorithm to construct the full bosonic truncation ansatz. This formalism
provides a geometric understanding of the origin of the truncations, in particular those
that are not based on invariants of conventional G-structures on the tangent bundle. It
also sidesteps the need to reduce the equations of motion in order to uncover the matter
content and couplings of the truncated theory.

The main technically involved part of this formalism is deriving the truncation ansatz.
However a significant advantage is that once this is done the relevant expressions can be
used to derive the uplift formulae for any N = 2 consistent truncation. One does not
have postulate the set of consistent modes case-by-case. Furthermore the structure of the
resulting gauged supergravity is then simply determined by the generalised structure.

To demonstrate the concrete effectiveness of the formalism we worked out the full
bosonic truncation ansatz on Maldacena-Nuñez geometries, leading to five-dimensional
N = 2 supergravity with four vector multiplets, one hypermultiplet and a non-abelian
gauging, having the N = 2 AdS5 solution of [34] as a vacuum solution. This extends the
truncation of [36] by SO(3) vector multiplets. For the BBBW geometries [35, 38], we
obtained a truncation featuring two vector multiplets, one hypermultiplet and an abelian
gauging, completing the truncation obtained in [37]. This can be seen as a one-parameter
deformation of the truncation obtained from the one on Maldacena-Nuñez geometry by
imposing invariance under the Cartan of SO(3). Although in this case we did not give all
details of the truncation ansatz, it should be clear that it can be obtained by following
precisely the same steps presented for the case of Maldacena-Nuñez geometry. Since the
generalised geometry tensors on S4 used in these trucations are a subset of those appearing
in the reduction of eleven-dimensional supergravity to maximal SO(5) supergravity in seven
dimensions, it should also be clear that our consistent truncations can equivalently be
obtained as truncations of maximal SO(5) supergravity on a Riemann surface.

Together with the half-maximal truncation presented in [14, 39], which is based on
the N = 4 solution of [34], this work provides the largest possible consistent truncations
of eleven-dimensional supergravity that have as seed known AdS5 ×w M supersymmetric
solutions describing M5-branes wrapped on a Riemann surface (larger truncations may be
possible by including degrees of freedom that go beyond eleven-dimensional supergravity,
such as membrane degrees of freedom).

It would be interesting to explore further the relatively simple five-dimensional super-
gravity models obtained in this paper and construct new solutions thereof. These would
have an automatic uplift to eleven dimensions, and may have an interpretation in the dual
SCFT. For the subtruncation with no SO(3) vector multiplet, solutions of holographic
interest have been discussed in [36]. Our larger consistent truncation may offer the possi-
bility to obtain solutions where non-abelian gauge fields are activated, which are quite rare
in holography. For instance, constructing a supersymmetric, asymptotically AdS5 black
hole with non-abelian hair would represent a qualitatively new type of solutions.

It will be natural to adapt our construction to truncations of eleven-dimensional su-
pergravity on a seven-dimensional manifold, leading to four-dimensional gauged N = 2
supergravity. This uses GS ⊆ SU (6) structures in E7(7) generalised geometry, and would
allow one to derive new consistent truncations based on the generalised structures under-
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lying the AdS4 ×w M7 solutions of [59, 60], which in terms of ordinary G-structures only
admit a local SU (2) structure. The solutions of [59] are the most general N = 2 AdS4
solutions to eleven-dimensional supergravity supported by purely magnetic four-form flux;
they represent the near-horizon region of M5-branes wrapping a special lagrangian three-
cycle in M7. The solutions of [60] have both electric and magnetic flux, and should arise
from M2-M5 brane systems. Analysing the respective generalised structure it will become
possible to enhance the truncation to minimal gauged supergravity obtained in [11] and [61]
(for the solutions of [59] and [60], respectively) by adding matter multiplets. One example
of this construction has been given in [62].

It will also be useful to extend our formalism to N = 2 truncations of type II su-
pergravity. Minimally supersymmetric AdS5 solutions of type IIB and massive type IIA
supergravity were classified in [63] and [64], respectively. It would be useful to reformu-
late the classification of explicit solutions in terms of generalised GS ⊆ USp(6) structures;
this would be a first step towards constructing consistent truncations to five-dimensional
supergravity using our approach. One concrete application would be to check if the IIB
solution of [65], given by a warped product of AdS5 and a deformed S5, admits a consis-
tent truncation to five-dimensional supergravity including (massive) KK modes that do not
belong to the well-known IIB truncation leading to maximal SO(6) gauged supergravity.
This would be somewhat analogous to the IIB consistent truncation on Sasaki-Einstein
structures [66, 67], where only a subset of the retained KK modes are also captured by
SO(6) gauged supergravity.

A more challenging generalisation of our formalism would be the one to truncations
preserving onlyN = 1 supersymmetry in four dimensions. Although a considerable amount
of work remains to be done, it should be clear that the generalised structure approach to
consistent truncations has the potential to classify all possible consistent truncations of
higher-dimensional supergravity that preserve any given amount of supersymmetry.
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A E6(6) generalised geometry for M-theory

In this section we briefly recall the main features of the generalised geometry of M-theory
compactifications on a six-dimensional manifoldM . For a more detailed discussion we refer
to [42] and [44, App. E].
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We use the following conventions for wedges and contractions among tensors on M

(v ∧ u)a1...ap+p′ = (p+ p′)!
p! p′! v[a1...apuap+1...ap+p′ ],

(λ ∧ ρ)a1...aq+q′ = (q + q′)!
q! q′! λ[a1...aqρaq+1...aq+q′ ],

(v yλ)a1...aq−p = 1
p!v

b1...bpλb1...bpa1...aq−p if p ≤ q,

(v yλ)a1...ap−q = 1
q!v

a1...ap−qb1...bqλb1...bq if p ≥ q,

(jv y jλ)ab = 1
(p− 1)!v

ac1...cp−1λbc1...cp−1 ,

(jλ ∧ ρ)a, a1...ad
= d!

(q − 1)!(d+ 1− q)! λa[a1...aq−1ρaq ...ad] . (A.1)

We will denote by · the gl(6) action on tensors: given a frame {êa} for TM and a co-frame
{ea} for T ∗M , a = 1, . . . , 6, the action, for instance, on a vector and a two-form is

(r · v)a = rabv
b (r · ω)ab = −rcaωcb − rcbωac . (A.2)

For M-theory on a six-dimensional manifold we use E6(6) × R+ generalised geometry.
The generalised tangent bundle E is

E ' TM ⊕ Λ2T ∗M ⊕ Λ5T ∗M , (A.3)

where, as customary, we decompose the various bundles in representations of GL(6), the
geometric subgroup of E6(6). The sections of E, the generalised vectors, transform in the
27 of E6(6) and can be written as

V = v + ω + σ , (A.4)

where v is an ordinary vector field, ω is a two-form and σ is a five-form.28

28The generalised tangent bundle E has a non-trivial structure that takes into account the non-trivial
gauge potentials of M-theory. To be more precise the sections of E are defined as

V = eA+Ã · V̌ , (A.5)

where A+Ã is an element of the adjoint bundle, V̌ = v+ω+σ, with v ∈ Γ(TM) are vectors, ω ∈ Γ(Λ2T ∗M)
and σ ∈ Γ(Λ5T ∗M), and · defines the adjoint action defined in (A.23). The patching condition on the
overlaps Uα ∩ Uβ is

V(α) = edΛ(αβ)+dΛ̃(αβ) · V(β) , (A.6)

where Λ(αβ) and Λ̃(αβ) are a two- and five-form, respectively. This corresponds to the gauge-transformation
of the three- and six-form potentials in (A.5) as

A(α) = A(β) + dΛ(αβ) ,

Ã(α) = Ã(β) + dΛ̃(αβ) −
1
2dΛ(αβ) ∧A(β) . (A.7)

The respective gauge-invariant field-strengths reproduce the supergravity ones:

F = dA ,
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The dual bundle E∗ is defined as

E∗ ' T ∗M ⊕ Λ2TM ⊕ Λ5TM , (A.9)

with sections
Z = v̂ + ω̂ + σ̂ , (A.10)

where v̂ is one-form, ω̂ is a two-vector and σ̂ is a five-vector. Generalised vectors and dual
generalised vectors have a natural pairing given by

〈
Z, V

〉
= v̂mv

m + 1
2 ω̂

mnωmn + 1
5! σ̂

mnpqrσmnpqr . (A.11)

We will also need the bundle N ' detT ∗M ⊗ E∗. In terms of GL(6) tensors, N
decomposes as

N ' T ∗M ⊕ Λ4T ∗M ⊕ (T ∗M ⊗ Λ6T ∗M) , (A.12)

and correspondingly its sections Z[ decompose as

Z[ = λ+ ρ+ τ . (A.13)

The bundle N is obtained from the symmetric product of two generalised vectors via the
map ⊗N : E ⊗ E → N with

λ = v yω′ + v′ yω ,

ρ = v yσ′ + v′ yσ − ω ∧ ω′ ,
τ = jω ∧ σ′ + jω′ ∧ σ .

(A.14)

The E6(6) cubic invariant is defined on E and E∗as29

c(V, V, V ) = − 6 ιv ω ∧ σ − ω ∧ ω ∧ ω ,
c∗(Z,Z,Z) = − 6 ιv̂ ω̂ ∧ σ̂ − ω̂ ∧ ω̂ ∧ ω̂ . (A.15)

The adjoint bundle is defined as

adF ' R⊕ (TM ⊗ T ∗M)⊕ Λ3T ∗M ⊕ Λ6T ∗M ⊕ Λ3TM ⊕ Λ6TM , (A.16)

with sections
R = l + r + a+ ã+ α+ α̃ , (A.17)

where locally l ∈ R, r ∈ End(TM), a ∈ Λ3T ∗M , etc. The ed(d) sub-algebra is obtained by
fixing the factor l in terms of the trace of r as l = 1

3 tr r. This choice fixes the weight of
the generalised tensors under the R+ factor. In particular it implies that a scalar of weight
k is a section of (detT ∗M)k/3: 1k ∈ Γ((detT ∗M)k/3).

F̃ = dÃ− 1
2A ∧ F . (A.8)

29This is 6 times the cubic invariant given in [44]. Because of this, we introduced a compensating factor
of 6 in the formulae (2.8) and (2.9).
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It is also useful to introduce the weighted adjoint bundle

(detT ∗M)⊗ adF ⊃ R⊕ Λ3T ∗M ⊕ (TM ⊗ Λ5TM) , (A.18)

whose sections are locally given by the sum

R[ = φ̃+ φ+ ψ , (A.19)

where φ̃, φ and ψ are obtained from the adjoint elements r ∈ TM ⊗ T ∗M , α ∈ Λ3TM ,
α̃ ∈ Λ3TM as

φ̃ = α̃yvol6 φ = αyvol6 ψ = r · vol6 , (A.20)

where vol6 is a reference volume form.
The action of an adjoint element R on another adjoint element R′ is given by the

commutator, R′′ = [R,R′]. In components, R′′ reads

l′′ = 1
3(α y a′ − α′ y a) + 2

3(α̃′ y ã− α̃ y ã′) ,

r′′ = [r, r′] + jα y ja′ − jα′ y ja− 1
3(α y a′ − α′ y a) 1 ,

+ jα̃′ y jã− jα̃ y jã′ − 2
3(α̃′ y ã− α̃ y ã′) 1 ,

a′′ = r · a′ − r′ · a+ α′ y ã− α y ã′ ,

ã′′ = r · ã′ − r′ · ã− a ∧ a′ ,
α′′ = r · α′ − r′ · α+ α̃′ y a− α̃ y a′ ,

α̃′′ = r · α̃′ − r′ · α̃− α ∧ α′ ,

(A.21)

where · denotes the gl(6) action defined in (A.2).
The action of an adjoint element R on a generalised vector V ∈ Γ(E) and on a dual

generalised vector Z is also denoted by · and is defined as

V ′ = R · V Z ′ = R · Z , (A.22)

where the components of V ′ are

v′ = lv + r · v + α yω − α̃ yσ ,

ω′ = lω + r · ω + v y a+ α yσ ,

σ′ = lσ + r · σ + v y ã+ a ∧ ω ,
(A.23)

and those of Z ′ are
v̂′ = −lv̂ + r · v̂ − ω̂ y a+ σ̂ y ã ,

ω̂′ = −lω̂ + r · ω̂ − α y v̂ − σ̂ y a ,
σ̂′ = −lσ̂ + r · σ̂ − α̃ y v̂ − α ∧ ω̂ .

(A.24)

The e6(6) Killing form on two elements of the adjoint bundle is given by

tr(R,R′) = 1
2

(1
3 tr(r)tr(r′) + tr(rr′) + α y a′ + α′ y a− α̃ y ã′ − α̃′ y ã

)
. (A.25)
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The combination of diffeomorphisms and gauge transformations by the three-form and
six-form potentials defines the generalised diffeomorphisms. The action of an infinitesimal
generalised diffeomorphism is generated by the generalised Lie (or Dorfman) derivative
along a generalised vector. The Lie derivative between two ordinary vectors v and v′ on
TM can be written in components as a gl(6) action

(Lvv′)m = vn ∂nv
′m − (∂ × v)mn v′n , (A.26)

where the symbol × denotes the projection onto the adjoint of the product of the funda-
mental and dual representation of GL(6). The generalised Lie derivative is defined in an
analogous way; we introduce the operators ∂M = ∂m as sections of the dual tangent bundle
and we define the generalised Lie derivative as

(LV V ′)M = V N∂NV
′M − (∂ ×ad V )MNV

′N , (A.27)

where VM , M = 1, . . . , 27, are the components of V in a standard coordinate basis, and
×ad is the projection onto the adjoint bundle,

×ad : E∗ ⊗ E → adF , (A.28)

whose explicit expression can be found in [42, Eq.(C.13)]. In terms of GL(6) tensors, (A.27)
becomes

LV V
′ = Lvv′ +

(
Lvω′ − ιv′dω

)
+
(
Lvσ′ − ιv′dσ − ω′ ∧ dω

)
. (A.29)

The action of the generalised Lie derivative on a section of the adjoint bundle (A.17) is

LVR = (Lvr + jα y jdω − 1
3 1α y dω − jα̃ y jdσ + 2

3 1α̃ y dσ) + (Lva+ r · dω − α y dσ)

+ (Lvã+ r · dσ + dω ∧ a) + (Lvα− α̃ y dω) + Lvα̃ . (A.30)

We will also need the action of LV on the elements of the bundle N . Given a section
Z[ = λ+ ρ+ τ of N , its Lie derivative along the generalised vector V = v + ω + σ is

LV Z[ = Lvλ+ (Lvρ− λ ∧ dω) + (Lvτ − jρ ∧ dω + jλ ∧ dσ) . (A.31)

Since Z[ = V ′ ⊗N V ′′, this is easily obtained by applying the Leibniz rule for LV .

LV (Z[) = LV V
′ ⊗N V ′′ + V ′ ⊗N LV V

′′ . (A.32)

It is also straightforward to verify that

dZ[ = LV V
′ + LV ′V , (A.33)

for any element Z[ = V ⊗N V ′ ∈ N .
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B Five-dimensional N = 2 gauged supergravity

In this appendix we summarise some essential features of matter-coupled five-dimensional
N = 2 gauged supergravity [68–70], following the conventions of [70].30 We limit ourselves
to the bosonic sector and only consider gaugings that do not require the introduction of
two-form fields, as these are enough to describe our examples in sections 4 and 5.

The fields of five-dimensional N = 2 supergravity arrange into the gravity multiplet,
nV vector multiplets and nH hypermultiplets. The bosonic content consists of the vielbein
eaµ, nV + 1 vector fields AIµ, I = 0, . . . , nV, together with nV vector multiplet scalars φx,
x = 1, . . . , nV, and 4nH hypermultiplet scalars qX , X = 1, . . . , 4nH. The φx parameterise a
‘very special real’ manifoldMV, with metric gxy, while the qX parameterise a quaternionic-
Kähler manifoldMH, with metric gXY . All together, the scalar manifold of the theory is
the direct product

M =MV ×MH . (B.1)

A very special real manifold MV is a hypersurface that is conveniently described in
terms of nV + 1 embedding functions hI(φ), I = 0, . . . , nV, satisfying the constraint

CIJKh
IhJhK = 1 , (B.2)

where CIJK is a completely symmetric constant tensor. The metric onMV is given by

gxy = hIxh
J
y aIJ , (B.3)

where
hIx = −

√
3
2 ∂xh

I , (B.4)

and
aIJ = 3hIhJ − 2CIJKhK , (B.5)

with the lower-index functions being

hI = CIKLh
KhL = aIKh

K . (B.6)

The matrix aIJ is assumed invertible, and also controls the gauge kinetic terms.
In the gauged theory, a subgroup of the isometries of the scalar manifoldM, which are

global symmetries of the Lagrangian, is promoted to a gauge group. The gauge generators
tI satisfy [tI , tJ ] = −fIJKtK , with the structure constants fIJK obeying fI(JHCKL)H = 0.
The gauge covariant derivatives of the scalars are given by

Dµφx = ∂µφ
x + g kxIAIµ ,

DµqX = ∂µq
X + g kXI AIµ ,

(B.7)

30However, in order to match the normalisations defined by our truncation ansatz, we rescale the gauge
fields appearing in [70] asAIhere = −

√
2
3A

I
there. Since we maintain the same form of the covariant derivatives,

it follows that the gauge coupling constant g is rescaled as ghere = −
√

3
2 gthere. This implies that the

expression for the scalar potential given in (B.13) below acquires a multiplicative 2/3 factor compared to
the one in [70].
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where kxI (φ) and kXI (q) are the Killing vector fields generating the gauged isometries in
the vector multiplet and hypermultiplet scalar manifolds, respectively. Equivalently, the
vector multiplet scalar covariant derivatives can be expressed in terms of the embedding
functions hI as

DµhI = ∂µh
I + g fJK

IAJµ hK = ∂xh
IDµφx . (B.8)

One also has the gauge field-strengths

FIµν = 2∂[µAIν] + g fJK
IAJµAKν . (B.9)

We now have all the elements to write down the bosonic Lagrangian. This reads

e−1L = 1
2 R− V −

3
8 aIJF

I
µνFJµν −

1
2 gxyDµφ

xDµφy − 1
2 gXYDµq

XDµqY

− 1
8 e
−1εµνλρσ CIJKAIµ

[
FJνλFKρσ + gfMN

JAMν ANλ
(
−1

2 F
K
ρσ + 1

10 gfHL
KAHρ ALσ

)]
.

(B.10)

The vector multiplet scalar kinetic term can also be written in terms of the constrained
scalars hI using the identity

gxyDµφxDµφy = 3
2 aIJDµh

IDµhJ . (B.11)

Using a differential form notation, the action reads

S =
∫ 1

2 (R− 2V) ∗ 1− 3
4 aIJF

I ∧ ∗FJ − 3
4 aIJDh

I ∧ ∗DhJ − 1
2 gXYDq

X ∧ ∗DqY

+ 1
8 CIJKA

I ∧
[
4FJ ∧ FK + g fMN

JAM ∧ AN ∧
(
−FK + 1

10 gfHL
KAH ∧ AL

)]
.

(B.12)

The scalar potential V is given as a sum of squares as

V = 4
3 g

2
(
−2~P · ~P + gxy ~Px · ~Py +NiAN iA

)
, (B.13)

where

~P = hI ~PI ,

~Px = hIx ~PI ,

N iA =
√

6
4 hIkXI f

iA
X , (B.14)

are the fermionic shifts, also appearing in the supersymmetry variations of the fermion
fields: ~P is the gravitino shift, ~Px is the gaugino shift, and N iA is the hyperino shift.
Here, the arrow symbol denotes a triplet of the SU (2)H R-symmetry, and f iAX are the
quaternionic vielbeins, satisfying f iAX fY iA = gXY . The Killing prepotentials ~PI onMH are
defined for nH 6= 0 by

4nH ~PI = ~JX
Y∇Y kXI , (B.15)
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where ~JXY is the triplet of almost complex structures defined on any quaternionic-Kähler
manifold. Plugging these expressions in (B.13) and using the identity (cf. [70, App. C])

gxyhIxh
J
y = aIJ − hIhJ , (B.16)

we can express the scalar potential as

V = 2
3 g

2
[(

2aIJ − 6hIhJ
)
~PI · ~PJ + 3

4 gXY k
X
I k

Y
J h

IhJ
]
. (B.17)

Notice that the Killing vectors kxI onMV do not appear here, i.e. the gauging in the vector
multiplet sector does not contribute to the scalar potential. This is true as long as we
restrict to gaugings that do not require the introduction of two-form fields.

Supersymmetric AdS5 vacua are obtained by setting all gauge fields to zero, all scalar
fields to constant, and imposing that the gaugino and hyperino shifts vanish,

hIx ~PI = 0 , hIkXI = 0 . (B.18)

Then the gravitino shift gives the AdS cosmological constant via

Λ ≡ V = −8
3 g

2 ~P · ~P . (B.19)

C Gauge transformations

In this appendix, we study the reduction gauge transformations of eleven-dimensional su-
pergravity to five dimensions. We first repackage them in terms of generalised geometric
objects and then use our truncation ansatz to derive the gauge transformations of five-
dimensional N = 2 supergravity.

The infinitesimal gauge transformations of the eleven-dimensional metric and three-
and six-form potentials are

δĝ = L̂v̂ ĝ ,
δÂ = L̂v̂Â− d̂λ̂ ,

δ ˆ̃A = L̂v̂ ˆ̃A− d̂ˆ̃λ+ 1
2dλ ∧A , (C.1)

where v̂ is a vector field, λ̂ a two-form and ˆ̃λ a five-form. The hat on the Lie and exterior
derivative operators emphasises that the derivatives are taken with respect to all the eleven-
dimensional coordinates. The fields g, Â and ˆ̃A are decomposed as in (3.16), while the gauge
parameters are expanded as

v̂ = v = vm
∂

∂zm
,

λ̂ = λ− λ̄µdxµ + 1
2 λ̄µνdxµν ,

ˆ̃λ = λ̃+ ¯̃λµdxµ + 1
2

¯̃λµνdxµν + 1
3!

¯̃λµνρdxµνρ + . . . , (C.2)
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where, in the last line we omitted the terms that are not relevant in what follows. We only
consider internal diffeomorphisms, as the external ones have the standard action dictated
by the tensorial structure of the field. That is why the vector v̂ has only components on
M . As in (3.16), we do not impose any restriction on the dependence of the fields on the
coordinates {xµ, zm}.

In (C.2) and the rest of this section we use a notation that manifestly displays the
external indices and always contracts the internal ones. For the metric components we
define

g = gmndzmdzn , hµ = hµ
m ∂

∂zm
, (C.3)

and for a generic p-form ω

ω = 1
p! ωm1...mpdzm1...mp ,

ωµ = 1
(p− 1)! ωµm1...mp−1dzm1...mp−1 ,

ωµν = 1
(p− 2)!ωµνm1...mp−2dzm1...mp−2 , (C.4)

We already mentioned in section 3.2 that the barred components of the three- and
six-form must be redefined as31

Āµν = Aµν − ιh[µAν] ,

Āµνρ = Aµνρ − ιh[µιhνAρ] ,
(C.6)

and similar redefinitions of the six-form. An analogous redefinition for the barred gauge
parameters will be given later.

As discussed in section 3.2, the components of the metric, warp factor, three and six-
form potentials and the dual graviton g̃ with the same number of external legs fit into E6(6)
representations

G−1 ↔ {∆, g, A, Ã} (C.7)
Aµ = hµ +Aµ + Ãµ , (C.8)
Bµν = Aµν + Ãµν + g̃µν , (C.9)
Cµνρ = Aµνρ + Ãµνρ + g̃µνρ , (C.10)

where GMN is the inverse generalised metric, Aµ ∈ E is a generalised vector, Bµν ∈ N is a
weighted dual vector and Cµνρ is a section of the weighted E6(6) adjoint bundle (detT ∗)⊗
adF . The same holds for the gauge parameter, which we arrange into a generalised vector

31The contractions are defined as follows

ιh[µAν] = h[µ
mAν]mndzn ιh[µAνρ] = h[µ

mAνρ]m ιh[µιhνAρ] = h[µ
mhν

nAρ]nm (C.5)
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Λ, a weighted dual vector Ξ̄µ and a section of a sub-bundle of the 78, Φ̄µν ,

Λ = v + λ+ λ̃ ,

Ξ̄µ = λ̄µ + ¯̃λµ + . . . ,

Φ̄µν = λ̄µν + ¯̃λµν + . . . .

(C.11)

In (C.7)–(C.10) we introduced the dual graviton to give the full E6(6) representation. How-
ever in this paper we will not discuss the dual graviton since it is not relevant for the
truncation we are interested in.

We can now decompose the gauge transformations given above. We find that the fields
with no or purely internal legs transform as

δ e2∆ = Lv e2∆ ,

δg = Lv g ,
δA = LvA− dλ ,

δÃ = LvÃ− dλ̃+ 1
2dλ ∧A , (C.12)

where the Lie derivative L and the exterior derivative d are taken with respect to the
internal coordinates only, although the fields and gauge parameters depend on both the
internal and external coordinates. When repackaging all the fields with no external legs
into the inverse generalised metric, the transformations (C.12) become the action of the
generalised Lie derivative along the generalised vector Λ,

δΛG
−1 = LΛG

−1 . (C.13)

Consider now the fields with one external leg. Their gauge transformations are

δhµ = −∂µv + Lvhµ ,
δAµ = −∂µλ+ dλµ − ιhµdλ+ LvAµ ,

δÃµ = −∂µλ̃+ dλ̃µ − ιhµdλ̃− dλ ∧Aµ + LvÃµ , (C.14)

and it is straightforward to verify that they can be recast into

δAµ = −∂µΛ + LΛAµ + dΞµ , (C.15)

where
LΛAµ = (Lvhµ) + (LvAµ − ιhµdλ) + (LvÃµ − ιhµdλ̃−Aµ ∧ dλ) ,
LAµΛ = (Lhµv) + (Lhµλ− ιvdAµ) + (Lhµ λ̃− ιvdÃµ − λ ∧ dAµ) .

(C.16)

By redefining the gauge parameters32

Ξµ = Ξµ −Aµ ⊗N Λ , (C.18)
32In components the redefinition (C.18) reads

λµ = λµ − ιhµλ− ιvAµ ,

λ̃µ = λ̃µ − ιhµ λ̃− ιvÃµ + λ ∧Aµ .
(C.17)
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with Aµ ⊗N Λ = (ιhµλ+ ιvAµ) + (ιhµ λ̃+ ιvÃµ − λ ∧Aµ), and using (A.33) to compute

dΞµ = dΞµ − LAµΛ− LΛAµ , (C.19)

we bring the variation (C.15) to an appropriate form to compare with five-dimensional
gauged supergravity

δAµ = −∂µΛ− LAµΛ + dΞµ . (C.20)

The variations of the fields with two external legs are

δAµν =− 2 ∂[µλν] − dλµν + ιh[µ∂ν]λ− ιh[µdλν] + LvAµν − ι∂[µvAν] ,

δÃµν = −2∂[µλ̃ν] − dλ̃µν + ιh[µ∂ν]λ̃− ιh[µdλ̃ν] + LvÃµν − ι∂[µv y Ãν]

+ (∂[µλ− dλ[µ) ∧Aν] + dλ ∧Aµν .

(C.21)

By a lengthy but straightforward computation (C.21) can be written as

δBµν = −2 ∂[µΞν] − 2LA[µΞν] +Hµν ⊗N Λ− δA[µ ⊗N Aν]

+ LA[µAν] ⊗N Λ + 2LA[µΛ⊗N Aν] + LΛA[µ ⊗N Aν]

− d[Φµν − 2A[µ ×ad Ξ̄ν] − Bµν ×ad Λ] ,

(C.22)

where we defined the field strength

Hµν = dBµν + LA[µAν] + 2∂[µAν] . (C.23)

Applying the Leibniz rule for the generalised Lie derivative and (A.33) one can show that

LA[µAν] ⊗N Λ + 2LA[µΛ⊗N Aν] + LΛA[µ ⊗N Aν] = d[A[µ ×ad (Aν] ⊗N Λ)] (C.24)

and the variation of Bµν can be written in a form compatible with five-dimensional gauged
supergravity

δBµν = −2 ∂[µΞν] − 2LA[µΞν] +Hµν ⊗N Λ− δA[µ ⊗N Aν] − dΦµν (C.25)

where we have made the following redefinition of the gauge parameters33

Φµν = Φµν + 2A[µ ×ad Ξν] + Bµν ×ad Λ−A[µ ×ad (Aν] ⊗N Λ) . (C.27)

Finally we should consider the variations of the fields with three external legs. To our
purposes it is enough to study the three-form

δAµνρ = LvAµνρ − 3∂[µλνρ] − 3ιh[µ(2 ∂[νλρ] + dλνρ])

+ 2ιh[µιhν (∂ρ]λ− dλρ])− 2 ι∂[µvιhνAρ] .
(C.28)

33In components

λµν = (λµν − ιvAµν − 2ιh[µλν] + ιh[µ ιhν]λ+ ιh[µ ιvAν]) ,

λ̃µν = (λ̃µν − ιvÃµν − 2ιh[µ λ̃ν + ιh[µ ιhν λ̃+ ιh[µ ιvÃν] − 2λ[µ ∧Aν] − λ ∧Aµν

− λ ∧ ιh[µAν] + (ιvA[µ) ∧Aν]) .

(C.26)

– 51 –



J
H
E
P
0
2
(
2
0
2
1
)
2
3
2

In generalised geometry (C.28) embeds in the lowest component of the variation of the
tensor Cµνρ in (C.10). We introduce the modified field strength for the three-form field
Cµνρ,

Hµνρ = −dCµνρ + 3∂[µBνρ] + 3LA[µBνρ] +A[µ ⊗N (3∂νAρ] + LAνAρ]) , (C.29)

and by manipulations similar to what we did previously we can recast the gauge varia-
tions as

δCµνρ = −3∂[µΦνρ] − 3LA[µΦνρ] + 3H[µν ×ad Ξρ] +Hµνρ ×ad Λ

− 3B[µν ×ad δAρ] −A[µ ×ad (Aν ×ad δAρ]) ,
(C.30)

up to terms involving a four-form gauge parameter, which would continue the tensor hier-
archy.

The five-dimensional gauge transformations are obtained by plugging the reduction
ansatz in the variations (C.20), (C.25) and (C.30). The fields AµI(x) are expanded as
in (3.25)

Aµ = AµI(x)KI , (C.31)
where KI are the generalised vectors that are singlets of the GS structure. In (3.26), the
two-from fields are expanded on the weighted duals KI

[ of the generalised vectorsKI . These
are elements of the bundle N and can also written as

KJ
[ = DIJKKJ ⊗N KK (C.32)

where the tensor DIJK satisfies DIKLCJKL = 1/2δIJ where CIJK is defined in (2.16). So
the two-forms are expanded as

Bµν = Bµν I(x)DIJKKJ ⊗N KK . (C.33)

The gauge parameters have a similar expansion

Λ = −ΛI(x)KI , Ξµ = −1
2Ξµ,I(x)DIJKKJ ⊗N KK . (C.34)

With the ansatze (C.31) and (C.34) for Aµ and the gauge parameters, the varia-
tions (C.20) of the one-forms become

δAµI(x) = ∂µΛI(x) + f IJKAJµ(x)ΛK(x)− f I(JK)D
JKLΞµ,L , (C.35)

where we used the algebra of the vectors KI (3.4) and (A.33).
The variations of two-forms are reduced in a similar way. We expand the field strength

HJµν as in (C.31) and use again the generalised Lie derivative of vectors KI given in (3.4).
In this way we obtain for the gauge variations of the five-dimensional two-forms Bµν,I(x)

δBµν,I = D[µΞν],I − 2CIJKHJµνΛK − 2CIJKδAJ[µAKν] −ΘI
AΦAµν , (C.36)

where Φµν = ΦAµνJ
[A and

D[µΞν],I(x) = ∂[µΞν],I(x) + 2XK
IJAJ[µ(x)Ξν],K(x) , (C.37)

with
XK
IJ = CILMD

KMNfLJN . (C.38)
This is in agreemement with five-dimensional supergravity. The variation δCµνρ reduces
analogously.
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D Parameterisation of S4 and generalised frames

The six-dimensional geometry of interest in this paper is given by a four-sphere S4 fibered
over a Riemann surface Σ. In this appendix we describe S4 as a foliation of S3 over an
interval and review the generalised frames on S4.

D.1 Parameterisation of S3

In terms of the standard Euler angles 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, 0 ≤ ψ ≤ 4π, the unit metric
on the round S3 reads

gS3 = 1
4
(
dθ2 + dφ2 + dψ2 + 2 cos θ dφ dψ

)
. (D.1)

The Killing vectors generating its SO(4) ' SU (2)left × SU (2)right isometries can be split
into SU (2)left-invariant Killing vectors ξα, α = 1, 2, 3, generating the SU (2)right isometries,
and SU (2)right-invariant Killing vectors ξ̃α, generating the SU (2)left isometries. The left-
invariant vectors read

ξ1 = − cot θ sinψ ∂ψ + cosψ ∂θ + sinψ
sin θ ∂φ ,

ξ2 = − cot θ cosψ ∂ψ − sinψ ∂θ + cosψ
sin θ ∂φ ,

ξ3 = ∂ψ , (D.2)

while the right-invariant ones are

ξ̃1 = sinφ
sin θ ∂ψ + cosφ∂θ − cot θ sinφ∂φ ,

ξ̃2 = −cosφ
sin θ ∂ψ + sinφ∂θ + cot θ cosφ∂φ ,

ξ̃3 = ∂φ . (D.3)

These satisfy

Lξαξβ = εαβγ ξγ , Lξ̃α ξ̃β = −εαβγ ξ̃γ , Lξα ξ̃β = 0 , (D.4)

where L is the ordinary Lie derivative. We also introduce the one-form counterparts of
these Killing vectors, namely left-invariant one-forms σα and right-invariant one-forms σ̃α.
These satisfy

ιξασβ = δαβ , ιξ̃α σ̃β = δαβ ,

dσα = −1
2 εαβγσβ ∧ σγ , dσ̃α = 1

2 εαβγ σ̃β ∧ σ̃γ , (D.5)

and their coordinate expression is

σ1 = cosψ dθ + sinψ sin θ dφ ,
σ2 = − sinψ dθ + cosψ sin θ dφ ,
σ3 = dψ + cos θ dφ ,

(D.6)
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σ̃1 = cosφ dθ + sinφ sin θ dψ ,
σ̃2 = sinφ dθ − cosφ sin θ dψ ,
σ̃3 = dφ+ cos θ dψ .

(D.7)

The metric (D.1) may also be expressed as

gS3 = 1
4
(
σ2

1 + σ2
2 + σ2

3

)
= 1

4
(
σ̃2

1 + σ̃2
2 + σ̃2

3

)
. (D.8)

We fix the orientation on S3 by defining the volume form as

volS3 = 1
8 σ1 ∧ σ2 ∧ σ3 = 1

8 σ̃1 ∧ σ̃2 ∧ σ̃3 = 1
8 sin θ dθ ∧ dφ ∧ dψ . (D.9)

D.2 Parameterisation of S4

The round four-sphere of radius R can be described via constrained R5 coordinates Ryi,
i = 1, . . . , 5, satisfying δijyiyj = 1. In these coordinates, the metric and the volume form
read

g4 = R2 δijdyidyj , vol4 = 1
4!R

4 εi1i2i3i4i5 y
i1dyi2 ∧ dyi3 ∧ dyi4 ∧ dyi5 . (D.10)

The constrained coordinates can be mapped into angular coordinates {ζ, θ, φ, ψ}, where
0 ≤ ζ ≤ π, and {θ, φ, ψ} are the Euler angles on S3 introduced above, as

y1 + i y2 = sin ζ cos θ2 e
i
2 (φ+ψ) ,

y3 + i y4 = sin ζ sin θ2 e
i
2 (φ−ψ) ,

y5 = cos ζ . (D.11)

Then the metric and volume form in (D.10) become

g4 = R2
(
dζ2 + sin2 ζ ds2

S3

)
,

= R2
[
dζ2 + 1

4 sin2 ζ
(
dθ2 + dφ2 + dψ2 + 2 cos θ dφ dψ

)]
,

vol4 = R4 sin3 ζ dζ ∧ volS3 = 1
8R

4 sin3 ζ sin θ dζ ∧ dθ ∧ dφ ∧ dψ . (D.12)

We denote by vij = v[ij] the Killing vector fields generating the isometries of S4. These
satisfy the so5 algebra,

Lvijvkl = R−1 (δikvlj − δilvkj − δjkvli + δjlvki) . (D.13)

Demanding that the constrained coordinates transform in the fundamental representation,

Lvijyk ≡ ιvijdyk = R−1 (yiδjk − yjδik) , (D.14)

and using the map (D.11), we can work out the expression for the Killing vectors in the
basis defined by the angular coordinates {ζ, θ, φ, ψ}. In particular, we obtain the following
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embedding of the SU (2)right and SU (2)left generators given in (D.2), (D.3) into the SO(5)
generators:

2
R
ξ1 = v13 + v24 ,

2
R
ξ2 = v14 − v23 ,

2
R
ξ3 = v12 − v34 ,

2
R
ξ̃1 = v13 − v24 ,

2
R
ξ̃2 = v23 + v14 ,

2
R
ξ̃3 = v12 + v34 . (D.15)

D.3 Generalised frames on S4

In generalised geometry all spheres are generalised parallelisable as they admit globally
defined frames on their exceptional tangent bundle [15]. In particular the generalised
tangent bundle on S4 is

E4 ' TS4 ⊕ Λ2T ∗S4 , (D.16)

and its fibres transform in the 10 of the structure group SL(5,R). We will also need the
bundles

N4 ' T ∗S4 ⊕ Λ4T ∗S4 ,

N ′4 ' R⊕ Λ3T ∗S4 ,
(D.17)

whose fibres transform in the 5 and 5′ representations, respectively. These bundles admit
globally defined frames, which in constrained coordinates read

Eij = vij +R2 ∗4(dyi ∧ dyj) + ιvijAS4 ∈ Γ(E4) ,
Ei = R dyi − yi vol4 +R dyi ∧AS4 ∈ Γ(N4) ,
E′i = yi +R ∗4dyi + yiAS4 ∈ Γ(N ′4) ,

(D.18)

where the Hodge star ∗4 is computed using (D.10), and the three-form potential AS4 must
satisfy

dAS4 = 3R−1 vol4 . (D.19)

This is the flux relevant for the AdS7×S4 supersymmetric Freund-Rubin solution to eleven-
dimensional supergravity; the twist over the Riemann surface discussed in the main text
will modify it. The Eij are generalised Killing vectors generating the so5 algebra via the
action of the generalised Lie derivative,

LEijEkl = −R−1 (δikEjl − δilEjk + δjlEik − δjkEil) . (D.20)

In the main text we will need the following linear combinations,

Ξ1 = E13 + E24 , Ξ2 = E14 − E23 , Ξ3 = E12 − E34 ,

Ξ̃1 = E13 − E24 , Ξ̃2 = E14 + E23 , Ξ̃3 = E12 + E34 . (D.21)

Using the map (D.11), the frame elements (D.18) can equivalently be expressed in
terms of angular coordinates on S4. In particular, choosing a gauge such that the potential
AS4 satisfying (D.19) is SU (2)left × SU (2)right invariant,

AS4 = 1
32R

3 (cos(3ζ)− 9 cos ζ) σ1 ∧ σ2 ∧ σ3 , (D.22)
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we find that the combinations (D.21) are expressed in terms of the SU (2)left and SU (2)right
invariant tensors as

Ξα = 2
R
ξα + R2

2 d (cos ζ σα) ,

Ξ̃α = 2
R
ξ̃α −

R2

2 d (cos ζ σ̃α) . (D.23)

The Ξα can be seen as left-invariant generalised Killing vectors generating the SU (2)right ⊂
SO(4) ⊂ SO(5) generalised isometries, while Ξ̃α are right-invariant generalised Killing
vectors generating the SU (2)left generalised isometries. We will also need the expressions
for Ei and E′i in terms of angular coordinates, in fact just for i = 5. These read

E5 = −R sin ζ dζ + R4

8 sin(2ζ) dζ ∧ σ1 ∧ σ2 ∧ σ3 , (D.24)

E′5 = cos ζ − R3

16 (cos(2ζ) + 3)σ1 ∧ σ2 ∧ σ3 . (D.25)

Notice that dE′5 = 1
R E5.

E Details on the generalised U(1) structure of MN1 solution

In this appendix we give the details of the construction of the U(1) structure discussed in
section 4.2. In order to identify the correct U(1) subgroup of E6(6)×R+ and its commutant
it is convenient to decompose E6(6) under its maximal compact subgroup USp(8) and then
express the USp(8) representations in terms of Cliff(6) gamma matrices. For the latter step
we also need the decomposition of E6(6) under SL(6)×SL(2). We first give a brief summary
of the decomposition of E6(6) under USp(8) and SL(6)× SL(2) and then we apply this to
the construction of the U(1) structure, which reduces to simple gamma matrix algebra.

E.1 USp(8) and SL(6)× SL(2) decompositions

In this section we mostly use the conventions of [71]. Consider first the decomposition
of E6(6) under USp(8). We denote by M,N, · · · = 1, . . . , 27 the E6(6) indices and by
α, β, . . . = 1, . . . , 8 the USp(8) ones.

The fundamental of E6(6) is irreducible under USp(8) and is defined by an anti-
symmetric traceless tensor

V αβ = V [αβ] V α
α = 0 . (E.1)

The USp(8) indices are raised and lowered by the USp(8) symplectic form Ωαβ and its
inverse. The dual vectors in the 27 are denoted by Zαβ . The adjoint of E6(6) decomposes as

78 = 36 + 42 , (E.2)

where the 36 is the adjoint of USp(8) and the 42 contains the non-compact generators.
The elements of the 36 are 8× 8 matrices µαβ satisfying

µαβ = µβα (E.3)
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with µαβ = (Ω−1)αγµγβ . The non compact generators µαβγδ ∈ 42 are anti-symmetric
tensors satisfying

µαβγδ(Ω−1)αβ = 0 . (E.4)

The adjoint action on the 27 is

(µV )αβ = µαγV
γβ − µβγV γα − µαβγδVγδ (E.5)

and the E6(6) commutators are

[µ, ν]αβ = µαγν
γβ − 1

3µ
αγδενγδε

β − (µ↔ ν) (E.6)

[µ, ν]αβγδ = −4µ[α
εν
βγδ]ε − (µ↔ ν) . (E.7)

Given the generalised vectors V , V ′, V ′′ and the duals Z, Z ′, Z ′′, the E6(6) quadratic
form becomes

〈V,Z〉 = V αβZαβ , (E.8)

and the cubic invariants are

c(V, V ′, V ′′) = V α
βV
′β
γV
′′γ
α ,

c∗(Z,Z ′, Z ′′) = Zα
βZ ′ γβ Z ′′αγ .

(E.9)

We will also need the projection into the adjoint of the product of a generalised vector
V and a dual generalised vector Z

(V × Z)αβ = 2V (α
γZ
|γ|β)

(V × Z)αβγδ = 6
(
V [αβZγδ] + V [α

εZ
|ε|βΩγδ + 1

3 tr(V Z)Ω[αβΩγδ]
)
.

(E.10)

Consider now the decomposition of E6(6) under SL(6)× SL(2). We denote the SL(6)
indices with m,n, . . . = 1, . . . , 6 and the SL(2) indices ı̂, ̂ . . . = 1, 2. Under SL(6)× SL(2)
the 27 and 27 decompose as

27 = (6̄,2) + (15,1) VM = (vı̂m, V mn) ,
27 = (6, 2̄) + (15,1) ZM = (zmı̂ , Zmn) ,

(E.11)

where V mn and Zmn are anti-symmetric. The components in (E.11) are related to the
GL(6) tensors (A.3) and (A.4) as follows

V = ω v1 = v v2 y vol6 = σ ,

Z = ω̂ z1 = v̂ol6 yσ z2 = v̂ .
(E.12)

The adjoint of E6(6) decomposes as

78 = (35,1)⊕ (1,3)⊕ (20,2) µMN = (µmn , µı̂ ̂ , µı̂mnp) , (E.13)

where µmn are real, traceless, 6×6 matrices generating SL(6), µı̂ ̂ are real and traceless and
generate SL(2) and µı̂mnp are a pair of real fully antisymmetric tensors in the (20,2). The
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matrices µmn are identified with the traceless part of the GL(6) matrix r, with the trace
given by the diagonal non-compact generator of SL(2), where we have also set l = 1

3 tr(r),

µmn = rmn −
1
6 tr(r)δmn µ1

1 = −µ2
2 = 1

2 tr(r) . (E.14)

The compact and remaining non-compact generator of SL(2) are identified with the com-
binations of six-form and six-vector transformation ã± α̃.

The tensors µı̂mnp correspond to the three-forms and three-vectors

µ1
mnp = αmnp , µ2

mnp = amnp . (E.15)

Using Cliff(6,R) gamma matrices one can relate USp(8) and SL(6)× SL(2) represen-
tations. We introduce the doublet of matrices

Γ̂mı̂ =
(
Γ̂m, i Γ̂mΓ̂7) , ı̂ = 1, 2 . (E.16)

Then the 27 and 27 of USp(8) are given in terms of SL(6)× SL(2) representation by

V αβ = 1
2
√

2
[
vı̂m(Γ̂mı̂ )αβ + i

2V
mn(Γ̂mn7)αβ

]
,

Zαβ = 1
2
√

2
[
zmı̂ (Γ̂ı̂m)αβ + i

2Zmn(Γ̂mn7)αβ
]
,

(E.17)

where Γmn7 denotes the anti-symmetric product of two gamma’s and Γ7. The 36 and the
42 of USp(8) are given

µαβ = 1
4
[
µmn(Γ̂mn) + i εı̂ ̂µı̂ ı̂Γ̂7 + 1

6 εı̂
̂µı̂mnpΓ̂mnΓ̂p̂

]
αβ
, (E.18)

µαβγδ = 1
8
[
−µmn(Γ̂ı̂m ⊗ Γ̂nı̂ − Γ̂mp7 ⊗ Γ̂pn7) + µı̂ ̂Γ̂mı̂ ⊗ Γ̂̂m + iµı̂mnpΓ̂mı̂ ⊗ Γ̂np7

][αβγδ]
where ⊗ denotes the tensor product of two gamma’s, µmn is traceless and µı̂mnp are anti-
symmetric in the three lower indices.

We take the Cliff(6,R) gammas Γ̂m with m = 1, . . . , 6 such that

Γ̂Tm = Ĉ−1Γ̂mĈ (E.19)

where Ĉ is the charge conjugation matrix satisfying ĈT = −Ĉ, which we identify with the
USp(8) symplectic invariant Ω. The chiral gamma is given by

Γ̂7 = i Γ̂1 · · · Γ̂6 . (E.20)

Since the six-dimensional manifolds we are interested in are S4 fibrations over
a Riemann surface, we further decompose the Cliff(6) gamma matrices according to
SO(4)× SO(2). We take m = 5, 6 to be directions along the Riemann surface

Γ̂m = 1⊗ Γm m = 1, 2, 3, 4 ,
Γ̂5 = γ1 ⊗ Γ5 ,

Γ̂6 = γ2 ⊗ Γ5 ,

(E.21)

where Γm are the SO(4) gamma matrices with Γ5 = Γ1234 and γ1, γ2 are the SO(2) ones.
Then the six-dimensional chirality matrix becomes

Γ̂7 = i γ12 ⊗ Γ5 . (E.22)
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E.2 The U (1) structure

We can now give the details of the construction of the U(1)S structure discussed in sec-
tion 4.2. The N = 2 solution of [34] has an U(1)S structure corresponding to the diagonal
of the SO(2) holonomy on the Riemann surface Σ, and the U(1)right subgroup of the SO(5)
isometry of the four-sphere, according to the embedding

SO(5) ⊃ SO(4) ' SU(2)left × SU(2)right ⊃ SU(2)left × U(1)right . (E.23)

Seen as an element of E6(6), the U(1)S corresponds to a compact generator and therefore
belongs to USp(8). Using the expression (E.18) for the generators of USp(8), and now
taking the indicesm = 5, 6 for the direction along the Riemann surface, the U(1)S generator
can be written as

u(1)S = i Γ̂56 −
i
2 (Γ̂12 − Γ̂34) , (E.24)

where Γ̂56 is the generator of the SO(2) holonomy of Σ and i
2(Γ̂12 − Γ̂34) generates

U(1)right ⊂ SO(5).
To embed this generator in E6(6) and determine the invariant generalised tensors it

is convenient to decompose all E6(6) representations into USp(8) one’s and then use the
parameterisation of USp(8) in terms of gamma matrices of section E.1. In this way the
computation of the commutant, CE6(6)(U(1)S), of U(1)S in E6(6) and the determination of
the U(1)S singlets reduce to simple gamma matrix algebra.

We first compute the commutators of U(1)S with the generic elements of the 36 and
42 in (E.18). This will allow to determine the number of U(1)S singlets in the 78 and the
commutant CE6(6)(U(1)S). Using (E.6) we find that there are eight singlets in the 36. Five
correspond to elements of SO(6) ⊂ SL(6),

S
(36)
1 = Γ̂56 ,

S
(36)
2 = Γ̂12 ,

S
(36)
3 = Γ̂34 ,

S
(36)
4 = 1

2(Γ̂24 − Γ̂13) ,

S
(36)
5 = 1

2(Γ̂14 + Γ̂23) ,
(E.25)

two are compact elements of (20,2) associated to

S
(36)
6 = 1

2(Γ̂135 + Γ̂146 − Γ̂236 + Γ̂245) ,

S
(36)
7 = 1

2(Γ̂136 − Γ̂145 + Γ̂235 + Γ̂246) ,
(E.26)

and the last one is the generator of SO(2) ⊂ SL(2) corresponding to the anti-symmetric
part of µ1

2,

S
(36)
8 = i Γ̂7 . (E.27)
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A similar computation gives the singlets in the 42: four are non compact elements of
SL(6)

S
(42)
1 = −1

4(Γ̂1 ⊗ Γ̂1 + Γ̂2 ⊗ Γ̂2 − Γ̂5 ⊗ Γ̂5 − Γ̂6 ⊗ Γ̂6)

S
(42)
2 = −1

4(Γ̂3 ⊗ Γ̂3 − Γ̂5 ⊗ Γ̂5 − Γ̂6 ⊗ Γ̂6)

S
(42)
3 = −1

2(Γ̂1 ⊗ Γ̂4 + Γ̂4 ⊗ Γ̂1 + Γ̂2 ⊗ Γ̂3 + Γ̂3 ⊗ Γ̂2)

S
(42)
4 = −1

2(Γ̂2 ⊗ Γ̂4 + Γ̂4 ⊗ Γ̂2 − Γ̂1 ⊗ Γ̂3 − Γ̂3 ⊗ Γ̂1) ,

(E.28)

two are the non-compact generators of SL(2)

S
(42)
5 = 1

4(Γ̂m ⊗ Γ̂m + Γ̂mΓ̂7 ⊗ Γ̂mΓ̂7)

S
(42)
6 = i

4(Γ̂m ⊗ Γ̂mΓ̂7 + Γ̂mΓ̂7 ⊗ Γ̂m) ,
(E.29)

and the remaining ones are in the (20,2)

S
(42)
7 = −1

4(Γ̂6 ⊗ Γ̂237 − Γ̂5 ⊗ Γ̂137 − Γ̂5 ⊗ Γ̂247 − Γ6 ⊗ Γ147)

S
(42)
8 = −1

4(Γ̂6 ⊗ Γ̂247 − Γ̂5 ⊗ Γ̂147 + Γ̂5 ⊗ Γ̂237 + Γ̂6 ⊗ Γ̂137) .
(E.30)

These singlets generate the commutant of U(1)S in E6(6). Given the number of singlets
this must be

CE6(6)(U(1)S) = R+ × Spin(3, 1)× SU (2, 1)× U(1)S . (E.31)

From the commutators (E.6) and (E.7) it is easy to see that the factor R+ is generated by
the combination

JR = S
(42)
1 + S

(42)
2 . (E.32)

Similarly it is straightforward to identify the generators of the group SO(3, 1) as

J
SO(3,1)
1 = i

2(S(36)
2 + S

(36)
3 ) ,

J
SO(3,1)
2 = i

2S
(36)
4 ,

J
SO(3,1)
3 = i

2S
(36)
5 ,

K
SO(3.1)
1 = i

4(S(42)
1 − S(42)

2 ) ,

K
SO(3,1)
2 = − i

4S
(42)
3 ,

K
SO(3,1)
3 = i

4S
(42)
4 .

(E.33)

The remaining singlets give SU(2, 1). The compact generators are defined as

J
SU(2,1)
1 = − i

2S
(36)
7

J
SU(2,1)
2 = i

2S
(36)
8

J
SU(2,1)
3 = − i

4(S(36)
1 + S

(36)
2 − S(36)

3 − S(36)
8 )

J
SU(2,1)
8 = − i

4
√

3
(S(36)

1 + S
(36)
2 − S(36)

3 + 3S(36)
8 ) ,

(E.34)
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while the non-compact ones are

J
SU(2,1)
4 = − i

2S
(42)
7

J
SU(2,1)
5 = i

2S
(42)
8

J
SU(2,1)
6 = − i

2S
(42)
6

J
SU(2,1)
7 = i

2S
(42)
5 .

(E.35)

The compact singlets give the commutant of U(1)S into USp(6),

CUSp(8)(U(1)S) = SU (2)× SU (2)H × U(1)× U(1)S . (E.36)

We also need the U(1)S singlets in the 27. Computing the action (E.5) of U(1)S on a
generic element of the 27, given in (E.17), we find five singlets

27 = (1,1)(0,8) ⊕ (4,1)(0,−4) ⊕ (2,1)(3,−2) ⊕ (2̄,1)(−3,−2)

⊕ (1,3)(2,−4) ⊕ (1, 3̄)(−2,−4) ⊕ (2̄,3)(1,2) ⊕ (2, 3̄)(−1,2) ,
(E.37)

One is a singlet of both SO(3, 1) and SU(2, 1) and has charge 8 under R+,

K0 ∼ i Γ̂56Γ̂7 = 1⊗ Γ5 , (E.38)

where in the second equality we used (E.21) for the gamma matrices. The other singlets
are invariant under SU(2, 1) and form a quadruplet of SO(3, 1) of charge −4 under R+

K1 ∼ i (Γ̂13 − Γ̂24)Γ̂7 = γ(2) ⊗ (Γ13 − Γ24) ,
K2 ∼ i (Γ̂14 + Γ̂23)Γ̂7 = γ(2) ⊗ (Γ14 + Γ23) ,
K3 ∼ i (Γ̂12 + Γ̂34)Γ̂7 = γ(2) ⊗ (Γ12 + Γ34) ,
K4 ∼ i (Γ̂12 − Γ̂34)Γ̂7 = γ(2) ⊗ (Γ12 − Γ34) .

(E.39)

The singlets in the 27 and 78 are all we need to specify the generalised U(1)S structure.
However, the generators of SO(3, 1) and R+ in (E.31) do not leave the singlets generalised
vectors invariant and hence do not belong to the U(1)S structure. Using (E.10), one can
show that they are obtained as products of the singlets in the 27 and their duals

JSO(3,1)
α = 2i εαβγ(Kβ ×ad K

∗
γ) , KSO(3,1)

α = −i (Kα ×ad K
∗
4 ) , α = 1, 2, 3 , (E.40)

and
JR = 4(K0 ×ad K

∗
0 )− 4(K4 ×ad K

∗
4 ) . (E.41)

In summary the generalised U(1)S structure is defined by the five generalised vectors
and the eight generators of SU(2, 1)

{KI , JA} I = 0, . . . , 4, A = 1, . . . , 8 . (E.42)

The last step is to derive explicit expressions for these generalised tensors in terms of
geometrical objects on the six-dimensional internal manifold M . We use the fact that, in
our case,M is a fibration of the four sphere over a Riemann surface and that the four-sphere
is generalised parallelisable as reviewed in appendix D.3.
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We decompose the six-dimensional bundles in representation of GL(2,R), the ordinary
structure group on the Riemann surface, and SL(5,R), the exceptional structure group of
S4. Under

E6(6) ⊃ GL(2,R)× SL(5,R) , (E.43)

the generalised tangent bundle decomposes as

E ' TΣ⊕ (T ∗Σ⊗N4)⊕ (Λ2T ∗Σ⊗N ′4)⊕ E4 ,

27 = (2,1)⊕ (2,5′)⊕ (1,5)⊕ (1,10) ,
(E.44)

where E4, N4 and N ′4 are defined in appendix D.3. Using (E.17) and defining Cliff(5,R)
gamma matrices as

Γi = {Γ1, . . . ,Γ5} , (E.45)

we can identify the components of the 27 in (E.44) as

{γ1 ⊗ 1, γ2 ⊗ 1} ∈ (2,1)
{γ1 ⊗ ΓI , γ2 ⊗ ΓI} ∈ (2,5)

1⊗ Γi ∈ (1,5)
γ(2) ⊗ Γij ∈ (1,10) .

(E.46)

In terms of generalised vectors, the elements of the (2,1) embed as

R−1
(
ê1
ê2

)
, (E.47)

while those in the (2,5) and (1,5) can be written as

Ψi = R

(
e1 ∧ Ei,
e2 ∧ Ei

)
and R2 volΣ ∧ E′i , i = 1, . . . , 5 , (E.48)

where volΣ = e1 ∧ e2 is the volume form on the Riemann surface, R is the S4 radius, and
Ei and E′i are the sections of N4 and N ′4 defined in appendix D.3. The elements of the
(1,10) are the Ξα, Ξ̃α, with α = 1, 2, 3, defined in (D.21), and Ei5 with i = 1, 2, 3, 4.

Comparing with (E.38) and (E.39), we see that

K0 ∈ (1,5) ∼ Λ2T ∗Σ⊗N ′4 , KI ∈ (1,10) ∼ E4 , for I = 1, . . . , 4 , (E.49)

and can then be written as generalised vectors on M as

K0 ∼ R2volΣ ∧ E′5 , Kα ∼ Ξ̃α , K4 ∼ Ξ3 , (E.50)

where α = 1, 2, 3. To have the final expressions for these five generalised vectors we still have
to implement the twist of S4 as described in section 4.2. The E6(6) element implementing
the twist is

Υ = −R2 υ ×ad Ξ3 ,
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= −ξ3 ⊗ υ −
1
4 R

3 υ ∧ d(cos ζ σ3) , (E.51)

and acts on the frames Eij , Ei as

eΥ · Eij = Eij + 1
2 υ ∧ E5(δ1[iδj]2 + δ3[iδj]4)− 1

2 δ5[iPj]
kυ ∧ Ek ,

eΥ · Ei = Ei + 1
2 υ ∧

(
E′[1δ2]i + E′[3δ4]i

)
, (E.52)

where Pij is the matrix

Pi
j =


−1

1
−1

1

 . (E.53)

It is then straightforward to check that only K4 is modified by the twist, and the expres-
sions (4.29) are obtained.

Finally we need the expressions for the singlets in the 78 generating SU (2, 1). Under
E6(6) ⊃ GL(2,R)× SL(5,R) as

adF ' adF4 ⊕ (TΣ⊗ T ∗Σ)⊕ (T ∗Σ⊗ E4)⊕ (Λ2T ∗Σ⊗N4)⊕ (TΣ⊗ E∗4)⊕ (Λ2TΣ⊗N∗4 )
78 ∼ (1,24)⊕ (4,1)⊕ (2,10)⊕ (1,5)⊕ (2,10)⊕ (1,5) (E.54)

where adF4 is the adjoint bundle on S4

adF4 ' R⊕ (TS4 ⊗ T ∗S4)⊕ Λ3T ∗S4 ⊕ Λ3TS4 . (E.55)

The expressions for the singlets are easily obtained from (E.10) as products of the 27 and
27. In this way we obtain precisely the expressions given in eq. (4.30), where the twisting
by Υ can be evaluated with the aid of (E.52).

F Parameterisation of the H structure moduli space

We discuss here our parameterisation of the coset space MH = SU(2,1)
SU(2)×U(1) that describes

the hypermultiplet structure moduli space. We model the generators of SU (2, 1) on the
matrices jA, A = 1, . . . , 8, defined as:

j1,2,3 = −iλ1,2,3 , j4,5,6,7 = λ4,5,6,7 , j8 = −iλ8 , (F.1)

where λA, A = 1, . . . , 8, are the standard Gell-Mann matrices generating the su3 algebra
in the fundamental representation. These generators satisfy

j†Am+m jA = 0 , with m = diag(−1,−1, 1) , (F.2)
tr
(

jA jB
)

= 2 ηAB with η = diag(−1,−1,−1, 1, 1, 1, 1,−1) , (F.3)

as well as the commutation relations

[j1, j2] = 2j3, [j3, j1] = 2j2, [j2, j3] = 2j1,
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[j4, j5] = −(j3 +
√

3j8)
[1

2(j3 +
√

3j8), j4
]

= 2j5,
[
j5,

1
2(j3 +

√
3j8)

]
= 2j4,

[j6, j7] = −(−j3 +
√

3j8),
[1

2(−j3 +
√

3j8), j6
]

= 2j7,
[
j7,

1
2(−j3 +

√
3j8)

]
= 2j6,

[j1, j4] = j7, [j7, j1] = j4, [j4, j7] = −j1,
[j2, j4] = j6, [j6, j2] = j4, [j4, j6] = −j2,
[j1, j5] = −j6, [j6, j1] = −j5, [j5, j6] = j1,
[j2, j5] = j7, [j7, j2] = j5, [j5, j7] = −j2,
[j1, j8] = [j2, j8] = [j3, j8] = 0,

[j4,
√

3j3 − j8] = [j5,
√

3j3 − j8] = [j6,
√

3j3 + j8] = [j7,
√

3j3 + j8] = 0, (F.4)

where the first three lines show the three su2 subalgebras. Note that {j1, j2, j3, j8} generate
the compact subgroup SU (2) × U (1) ⊂ SU (2, 1). It is convenient to choose a solvable
parameterisation for the remaining generators, describing the coset space SU(2,1)

SU(2)×U(1) . Fol-
lowing the appendix D of [72], we define34

T1 = 1
2
√

2
( j1 − j2 − j4 − j5) , T2 = 1

2
√

2
( j1 + j2 + j4 − j5) ,

T• = 1
4
(
2 j7 + j3 −

√
3 j8
)
, H0 = 1

2 j6 . (F.5)

These span the Borel subalgebra of the SU (2, 1) algebra and satisfy the commutation
relations

[H0, T•] = T• , [H0, T1] = 1
2 T1 , [H0, T2] = 1

2 T2 , [T1, T2] = T• . (F.6)

A parameterisation of the coset is obtained by exponentiating the Borel subalgebra as

L = e−(θ1+θ2)T1+(θ1−θ2)T2+ξ T• e−2ϕH0 , (F.7)

where {ϕ, ξ, θ1, θ2} are the four real coordinates. Starting from the coset representa-
tive (F.7), we compute the Maurer-Cartan form L−1dL and then identify the coset vielbeine
as the coefficients of its expansion in the coset generators,

L−1dL = −2 dϕH0−eϕ(dθ1+dθ2)T1+eϕ(dθ1−dθ2)T2+e2ϕ (dξ − θ1dθ2 + θ2dθ1)T• . (F.8)

In this way we obtain the following Einstein metric on SU(2,1)
SU(2)×U(1) ,

ds2 = 2 dϕ2 + e2ϕ
(
dθ2

1 + dθ2
2

)
+ 1

2 e4ϕ (dξ − θ1dθ2 + θ2dθ1)2 . (F.9)

The normalisation is chosen so that the Ricci scalar is R = −12, in agreement with our
five-dimensional supergravity conventions.

In the main text, we need the “dressed” su2 algebra constructed via the adjoint action
of the coset representative on the su2 algebra generated by {j1, j2, j3}, that is

ĵ1 = L j1 L−1 , ĵ2 = L j2 L−1 , ĵ3 = L j3 L−1 . (F.10)
34We rearrange the indices of their 3× 3 matrices as 1there → 3here, 2there → 1here, 3there → 2here.

– 64 –



J
H
E
P
0
2
(
2
0
2
1
)
2
3
2

An explicit evaluation using (F.7) gives

ĵ1 = 1
2 eϕ(j1+j5)+ 1

4 eϕ
(
θ2

2−3θ2
1 +2e−2ϕ)(j1−j5)+ 1

2 eϕ (ξ−2θ1θ2)(j2+j4)+ 1√
2

eϕθ2j6

− 1
2
√

2
eϕθ1

(
3j3+

√
3 j8
)
+ 1

4
√

2

[
eϕ(θ3

1 +θ1θ
2
2−2θ2ξ

)
−2e−ϕθ1

](
j3+2 j7−

√
3 j8
)
,

ĵ2 = 1
2 eϕ(j2−j4)+ 1

4 eϕ
(
θ2

1−3θ2
2 +2e−2ϕ)(j2+j4)− 1

2 eϕ (ξ+2θ1θ2)(j1−j5)− 1√
2

eϕθ1j6

− 1
2
√

2
eϕθ2

(
3j3+

√
3 j8
)
+ 1

4
√

2

[
eϕ
(
θ3

2 +θ2
1θ2+2θ1ξ

)
−2e−ϕθ2

](
j3+2 j7−

√
3 j8
)
,

ĵ3 =− 1
4
√

2

[
e2ϕ(θ3

1 +θ1θ
2
2 +2θ2ξ

)
−6θ1

]
(j1−j5)− 1

4
√

2

[
e2ϕ(θ3

2 +θ2
1θ2−2θ1ξ

)
−6θ2

]
(j2+j4)

+ 1
2
√

2
e2ϕ [θ1(j1+j5)+θ2(j2−j4)]− 1

2 e2ϕ(ξ j6+j7)+ 1
8
[
2−e2ϕ(θ2

1 +θ2
2
)(

3j3+
√

3 j8
)]

+ 1
32
[
e2ϕ(θ2

1 +θ2
2
)2+4e2ϕ(1+ξ2)−12

(
θ2

1 +θ2
2
)
+4e−2ϕ

](
j3+2 j7−

√
3 j8
)
. (F.11)

Now we can replace the matrices jA with the generalised tensors JA invariant under the
U (1) generalised structure. This provides our four-parameter family of H structures.
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