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1 Introduction

Quantum effects can make a classical symmetry anomalous. The interplay between anoma-
lies and supersymmetry has long been studied [1–7]. Here we are interested in N = 1
supersymmetric field theories in four dimensions. The possibility that supersymmetry may
be anomalous in these theories has been recently raised in [8–12]. These papers consid-
ered theories with a classical U(1) R-symmetry. The claim is that the presence of a ’t
Hooft anomaly in the R-current conservation equation, together with Wess-Zumino con-
sistency conditions, implies an anomaly in the conservation equation for the supercurrent.
This anomaly would then be present in very simple theories. For instance it would arise
in some Wess-Zumino model. In theories with higher amount of supersymmetry no such
anomalies arise since the R-symmetry is non-anomalous there. The explicit preservation
of supersymmetric Ward identities in these theories was shown long time ago [13].

Supersymmetry implies that conserved currents are part of multiplets. For instance
we will consider theories with a U(1) “flavor” global symmetry (not an R-symmetry). The
corresponding conserved current is part of a linear multiplet which can be coupled to a
background vector multiplet. We can gauge the U(1) symmetry preserving supersymmetry
by making the vector multiplet dynamical. When the U(1) current is anomalous the
symmetry cannot be gauged.

Similarly the supercurrent is part of a N = 1 multiplet together with the energy mo-
mentum tensor and other operators [14]. Generically this multiplet contains 16 bosonic
and 16 fermionic degrees of freedom [15]. In special cases the supercurrent multiplet can be
improved to a shorter multiplet. For instance the theory could allow for a (12+12) Ferrara-
Zumino (FZ) supercurrent [14]. Another special case arises when the theory possesses a
U(1) R-symmetry in which case there exists a (12+12) R-multiplet whose lowest compo-
nent is the R-current [16, 17]. Finally, if the theory is superconformal, the supercurrent
multiplet can be improved to the (8 + 8) superconformal current multiplet. The anomalies
in the conservation of these currents also reside in appropriate multiplets. The different
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supercurrent multiplets we reviewed dictate which supergravity theory can be coupled to.
Every N = 1 theory can be coupled to 16-16 supergravity (see for instance [17]). Theo-
ries with a FZ supercurrent couple to old minimal supergravity (see, e.g., [17, 18]) while
theories with a conserved R-symmetry can be coupled to new minimal supergravity [19].
Finally, superconformal theories can be coupled to conformal supergravity (see [20]). As
in the flavor case we can consider coupling a N = 1 theory to background supergravity
which can then be made dynamical when the corresponding multiplet is not anomalous.

If the anomaly described in [8–12] cannot be removed, it would imply that supersym-
metry cannot be gauged. This claim appears too strong. Firstly, one can regulate an N = 1
theory preserving supersymmetry. For instance at one loop (which is sufficient to address
the anomaly at hand) this can be accomplished by Pauli-Villars (PV) [21–25].1 Secondly
from the discussion above it follows that the presence of an R-symmetry is not required to
couple a theory to dynamical supergravity. Indeed the R-symmetry can be broken classi-
cally, in which case the theory is not superconformal nor possesses a R-multiplet, but can
still be coupled to old minimal supergravity or 16-16 supergravity.

Consider using a supersymmetric regulator. In the presence of a U(1) R-anomaly the
regulator breaks the U(1) R-symmetry explicitly and hence the regulated theory cannot be
coupled to background conformal or new minimal supergravity. Nevertheless, the effective
action would be invariant under supersymmetry transformations of the appropriate (old
minimal or 16-16) background supergravity. In such a scheme correlators of the supercur-
rent would display no anomaly.

A different perspective can be gained by considering the case of a theory with a U(1)
“flavor” global symmetry coupled to a background vector multiplet. Anomalies in the U(1)
symmetry and supersymmetry are then encoded in the effective action behavior under
gauge and SUSY transformations of the vector multiplet. The linear multiplet containing
a conserved U(1) current has (4+4) components which couple to the component fields of the
vector multiplet in Wess-Zumino gauge. A SUSY variation of the vector multiplet brings
out of Wess-Zumino gauge, which has to be restored by a (super)-gauge transformation.
As a consequence an anomaly in the U(1) symmetry implies an anomaly in supersymmetry.
However we can restore supersymmetry of the effective action by relaxing Wess-Zumino
gauge and coupling to all the components of the vector multiplet [2, 4, 28]. The case
of a theory coupled to background conformal supergravity is a similar. We can regard
restricting the background to the field content of conformal SUGRA as fixing a gauge for
the larger set of fields in old minimal supergravity (or 16-16 SUGRA). When the U(1)
R-symmetry is anomalous this leads to an anomaly in supersymmetry as above. However
supersymmetry can be restored by reintroducing the extra components of the background
supergravity [16, 28].

The presence of the anomaly should be reflected by the generating functional as well as
by the relevant correlation functions. This can be quantified by Wess-Zumino consistency

1Dimensional regularization breaks supersymmetry explicitly. Nevertheless it was shown to preserve
supersymmetric Ward identities for one-point insertions of composite operators provided suitable finite
counterterms were added to the action [26]. This analysis was extended to multiple correlators of Ferrara-
Zumino supercurrent components in [27].
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conditions that impose the algebra of global symmetries at the generating functional level.
The use of Wess-Zumino consistency conditions is the cornerstone of the original argument
presented in [11] for the existence of an anomaly in Q-supersymmetry. The argument relies
on the algebraic properties of the supercharges and their commutators with global sym-
metries. It implies that any admissible counterterm canceling the supersymmetry anomaly
must break diffeomorphisms. This purely algebraic argument is then in tension with the
existence of a superspace counterterm as proposed in [28]. Here we will argue that the
Wess-Zumino conditions are modified in the presence of anomalous global symmetries. In
particular we will demonstrate the existence of a non-anomalous supersymmetry current
that is consistent with diffeomorphism-invariant counterterms. The price to pay are some
extra terms in the supersymmetry Ward identities that were not considered before. We will
illustrate this mechanism on an explicit free-field example in two renormalization schemes,
that either break or preserve supersymmetry explicitly.

While supersymmetry can be gauged even in the presence of a U(1) R-anomaly, there
are interesting physical consequences of the anomaly of [8–12]. These arise when consid-
ering supersymmetric field theories on rigid supergravity backgrounds. Some interesting
backgrounds are exclusive to new minimal supergravity. For instance one can define a
supersymmetric index by placing a theory with a U(1) R-symmetry on S3×S1 preserving
supersymmetry and computing its partition function. This is accomplished by coupling the
theory to an off shell new minimal supergravity background. Supersymmetry then implies
that the index has certain holomorphy properties [29] that are found to be violated in ex-
plicit diffeomorphism-invariant schemes (see, e.g., [30, 31]). Furthermore in two dimensions
there are supersymmetry anomalies that lie in the same multiplet as gravitational ones [32].
These are physical in the sense that they cannot be removed by a local counterterm since
the supercharge squares to a diffeomorphism whose anomaly cannot be removed by any
local, two-dimensional counterterm.

The paper is structured as follows. In section 2 we consider a N = 1 theory with a
chiral U(1) flavor symmetry. We couple the theory to a background vector multiplet. We
show that working in Wess-Zumino gauge a ’t Hooft anomaly in the U(1) symmetry results
in an anomaly in supersymmetry. This supersymmetry anomaly can be removed by going
away from Wess-Zumino gauge.

In section 3 we consider a classically superconformal theory coupled to background
conformal supergravity. If the U(1) R-symmetry is anomalous this implies an anomaly in
supersymmetry. We show that this anomaly can be removed by introducing a chiral mul-
tiplet that plays the role of a compensator for the chiral U(1) R-symmetry and conformal
supersymmetry. Introducing this compensator is interpreted as coupling the theory to old
minimal supergravity.

In section 4 we review some aspects of Pauli Villars (PV) regularization. In particular
we summarize how the ABJ anomaly arises using PV regulators. We also discuss different
schemes to define conserved currents in PV regularization and how this choice is reflected
in the corresponding Ward identities. We consider in some detail the example of trace
anomalies.
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In section 5 we apply a PV regularization scheme to analyze Ward identities for the
supercurrent in a simple free theory model. The anomaly discussed in [8–12] arises in this
model. We show that the conservation of the supercurrent is not anomalous using PV.

Various appendices contain a summary of conventions and formulae used throughout.

Note added. Prior to submission we received [25] reaching similar conclusions to those
reported here. We thank the authors for sharing the draft of their work prior to publication
and for illuminating conversations.

1.1 Some conventions

In this paper we will consider a dynamical N = 1 supersymmetric theory in d = 4 spacetime
dimensions coupled to non-dynamical backgrounds. By doing so we have two types of
operators and their correlation functions to consider. If φk denotes a source, then we can
define the associated operator jk as

jk = δS

δφk

∣∣∣∣
all φj=0

. (1.1)

In general a given source φk may not only couple linearly to jk, but the action can
contain terms with more than a single source. Such terms will be called seagull terms.
Hence, with the generating functional of connected diagrams

W = −i log〈eiS〉 (1.2)

we can define correlation functions

〈Jk1(x1) . . . Jkn(xn)〉 = 1
in−1

δ

δφk1(x1) . . .
δ

δφkn(xn)W. (1.3)

Due to the presence of seagull terms, the correlation functions of the operators jk will
agree with the correlators defined as derivatives of the generating functional only up to
lower-point functions, which we also call seagull terms.

In momentum space correlation functions contain the momentum-conserving delta
function. For this reason we define the double bracket notation (omitting the momentum-
conserving delta function),

〈O1(p1) . . .On(pn)〉 = (2π)4δ(p1 + . . .+ pn)〈〈O1(p1) . . .On(pn)〉〉 (1.4)

for any operators O1, . . . ,On.

2 Flavor symmetry

The interplay between flavor and supersymmetry anomalies has been studied extensively.
As early as in [1, 2] it was argued that supersymmetry is non-anomalous in N = 1 super-
symmetric gauge theories. It was, however, pointed out in [2, 4] that supersymmetry and
the Wess-Zumino gauge condition can be incompatible so that a SUSY-anomaly emerges
once the Wess-Zumino gauge condition is imposed. This phenomenon underlies the results
of [9–11].

– 4 –



J
H
E
P
0
2
(
2
0
2
1
)
2
2
5

While supersymmetry is non-anomalous, flavor symmetry exhibits an anomaly. Ex-
plicit results on the structure of the chiral anomaly in supersymmetric theories were derived
in [3]. While the flavor anomaly in non-Abelian theories exhibits a non-polynomial struc-
ture [7] in the Abelian case simple expressions were derived in [5, 6]. Since only the ABJ
anomaly [33, 34] is physical, all other terms depend on the regularization method used.

2.1 Formulation

Let us consider a U(1) flavor symmetry sourced by a vector multiplet, (A.7). Among its
components, fields C,χ,M are compensators since they can be gauged away by a super-
gauge transformation. By choosing σ,Υ and f in the supergauge transformation (A.14)–
(A.19) one can fix Wess-Zumino gauge, where

C = χ =M = 0. (2.1)

In Wess-Zumino gauge the supersymmetry transformations of the physical fields are

δε,ε̄|WZAµ = iεσµλ̄+ iε̄σ̄µλ, (2.2)
δε,ε̄|WZλ

α = −εβσµν α
β Fµν + iDεα, (2.3)

δε,ε̄|WZD = −εσµ∂µλ̄+ ε̄σ̄µ∂µλ. (2.4)

The residual gauge symmetry is the standard non-supersymmetric gauge symmetry pa-
rameterized by a real function θ,

δθAµ = ∂µθ, δθλ
α = 0, δθD = 0. (2.5)

Let us review the argument of [9] for the appearance of a SUSY anomaly. Let Aθ
denote the flavor anomaly and Aε, Āε̄ SUSY anomalies i.e.,

δW =
∫

d4x
[
θAθ + εAε + ε̄Āε̄

]
. (2.6)

Here we will concentrate on Āε̄ and keep ε and ε̄ constant. The Wess-Zumino consistency
condition, [35], implies

[δε̄|WZ , δθ]W =
∫

d4x
[
θδε̄|WZAθ − ε̄δθĀε̄

]
. (2.7)

While most terms in the flavor anomaly are scheme-dependent and removable by countert-
erms, the ABJ anomaly is physical,

AABJ
θ = κ

4 ε
µνρτFµνFρτ = κεµνρτ∂µAν∂ρAτ , (2.8)

where the constant κ depends on the theory.2 Its supersymmetric variation reads

δε̄|WZAABJ
θ = iκεµνρτFρτ ε̄σ̄ν∂µλ. (2.9)

2In general one also has a mixed gravitational contribution proportional to the Pontrjagin density. The
analysis of this term is almost identical to the corresponding term in the R-symmetry anomaly (3.11) so
we will omit it in this section for brevity.
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Because the commutator on the left hand side of (2.7) vanishes we have an anomaly in su-
persymmetry. In order for the Wess-Zumino consistency condition to be satisfied one needs3

Ā(?)α̇
ε̄ = −iκεµνρτFρτAµσ̄α̇αν λα. (2.10)

It can be argued that (2.10) is not the supersymmetric variation of any local countert-
erm. Indeed, the only term producing Ā(?)α̇

ε̄ under δε̄|WZ would need to have the form
εµνρτFρτAµAν and hence vanishes.

Equivalently, anomalies appear in Ward identities. With the variations in (2.2)–(2.4)
as well as (2.5) the Ward identities read

∂µ〈J̄µα̇Q̄ 〉 = iσ̄α̇αµ λα〈JµA〉 −
[
σ̄κλα̇

β̇
Fκλ + iDδα̇

β̇

]
〈J̄ β̇
λ̄
〉

+ σ̄µα̇α∂µλα 〈JD〉 − Āα̇ε̄ , (2.11)
∂µ〈JµA〉 = −Aθ. (2.12)

If we want to see the tentative anomaly of (2.10) in a correlation function, we should take
functional derivatives with respect to Aµ (twice) and λβ and analyze the behavior of the
4-point function 〈(∂ · J̄ α̇

Q̄
)JµAJνAJλβ〉.

2.2 Wess-Zumino gauge

Working in Wess-Zumino gauge, in the previous subsection, we have found an anomaly in
supersymmetry (2.10). On the other hand, in a number of papers [2, 3, 5, 6] one can find
superspace expressions where the flavor anomaly is explicitly supersymmetric. All such
expressions can be regarded as supersymmetric completions of the ABJ anomaly (2.8) and
are necessarily scheme-dependent. By the anomaly being supersymmetric we mean that
it is the gauge variation of a supersymmetric functional. This does not necessarily imply
that δε,ε̄Aθ = 0, hence once again a nonzero supersymmetry anomaly would seem to arise
from (2.7). Nevertheless we will demonstrate that the Wess-Zumino consistency conditions
can be made consistent with a vanishing SUSY anomaly, Aε = Āε̄ = 0.

The apparent discrepancy follows from the use of Wess-Zumino gauge fixing as dis-
cussed in [2, 4]. In the discussion of the previous section we used Wess-Zumino gauge
throughout the calculations. However, the supersymmetry algebra in Wess-Zumino gauge
closes only up to a compensating supergauge transformation. Starting with C = χ =M =
0 the SUSY transformations (A.8)–(A.13) of the full multiplet break the gauge condition,

δε̄C = 0, δε̄χ
α = −iε̄α̇σ̄µα̇αAµ, δε̄M = 2ε̄λ̄. (2.13)

In order to keep the Wess-Zumino gauge condition, an appropriate compensating transfor-
mation, δΛcomp , must be added to the SUSY transformation, δε,ε̄|WZ . At first order around
the Wess-Zumino gauge condition (2.1) we have

δε̄ = δε̄|WZ + δΛcomp + . . . , (2.14)
3The supersymmetry anomaly also contains terms cubic in λ that we do not keep track of in (2.10).
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where δΛcomp is the supergauge transformation (A.14)–(A.19) with components,

σcomp = θcomp = 0, (2.15)

Υα
comp = 1√

2
ε̄α̇σ̄

µα̇αAµ, (2.16)

fcomp = iε̄λ̄. (2.17)

The original SUSY transformation δε̄|WZ in (2.14) acts on the physical fields Aµ, λ,D,
while δΛcomp acts only on χ and M. The omitted terms are “higher order terms” that
make the full δε̄ transformation close. These terms are higher order in the sense that they
produce more compensating terms. In total, δε̄ is the full supersymmetry transformation
acting on the full vector multiplet,

δε,ε̄Aµ = iε(σµλ̄−i∂µχ) + iε̄(σ̄µλ−i∂µχ̄), (2.18)
δε,ε̄λ

α = −εβσµν α
β Fµν + iDεα, (2.19)

δε,ε̄D = −εσµ∂µλ̄+ ε̄σ̄µ∂µλ, (2.20)
δε,ε̄χ

α = −iε̄α̇σ̄µα̇α(Aµ−i∂µC)+Mεα, (2.21)
δε,ε̄M = 2iε̄σ̄µ∂µχ+2ε̄λ̄, (2.22)
δε,ε̄C = i(εχ− ε̄χ̄). (2.23)

The black terms are the SUSY transformations in Wess-Zumino gauge (2.2)–(2.4). The
blue terms are the first order terms added through the compensating gauge transforma-
tion δΛcomp in (2.14). The green terms are the higher order terms, which produce more
compensating fields.

As long as one is interested only in operators sourced by Aµ, λ,D — for instance to
check the Ward identities — one can drop the higher order (green) terms. In other words,
it is enough to think about δΛcomp in (2.14) as the compensating transformation. This
point of view will be useful for the analysis of the case involving coupling to supergravity.
Nevertheless, it is essential to keep the first order (blue) terms. These are the physical
terms that result from the variation of compensating fields. In the spirit of “differentiation
before evaluation”, one should calculate SUSY variations before the Wess-Zumino gauge
condition (2.1) is fixed.

2.3 Consequences

Existence of a counterterm. The claim of [9] is that the supersymmetric anomaly (2.10)
is physical and hence it cannot be removed by counterterms. However, since the compensat-
ing supergauge transformation has non-vanishing Υ and f components, we have to include
the corresponding components of the vector multiplet. Using the compensators χ andM
we can cancel the SUSY anomaly (2.10). Indeed, the local counterterm

Sct = −κ
∫

d4x
[
Aµ λσ

µλ̄+ iFµν
(
χσµνλ− χ̄σ̄µν λ̄

)
+D

(
χλ+ χ̄λ̄

)
− i
(
Mλλ−M∗ λ̄λ̄

)]
(2.24)
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removes the anomaly, i.e.,

δε,ε̄Sct = −
∫

d4x
[
ε̄Ā(?)

ε̄ + εA(?)
ε̄

]
+O(C,χ, χ̄,M). (2.25)

We should remark that in general (2.24) is not unique: the addition of an arbitrary mani-
festly supersymmetric term does not alter the SUSY anomaly.

Wess-Zumino consistency condition. While in Wess-Zumino gauge the commutator
between SUSY and gauge transformations vanishes, [δε̄|WZ , δθ] = 0, this is no longer true
when δε̄ is used. Indeed, the compensating transformation δΛcomp in (2.14) now acts on χ,
which gives δθδΛcompχ = iσµε̄∂µθ. On the other hand δθχ = 0, which means that we have
a non-vanishing commutator,

[δε̄, δθ]χα = iε̄α̇σ̄µα̇α∂µθ. (2.26)

This is the only non-vanishing commutator [δε̄, δθ] when acting on the component fields of
the vector multiplet.4

Alternatively, we could simply start with the full set of SUSY transformations (2.18)–
(2.23) and calculate its commutator with the full supergauge transformations (A.14)–
(A.19). The commutator vanishes, [δε,ε̄, δΛ] = 0. Nevertheless, this does not imply that
the commutator vanishes in Wess-Zumino gauge because the parameters of the supergauge
transformations transform under supersymmetry as well. Therefore, if we pick the actual
gauge transformation parametrized by θ while setting Υ = f = 0 we have δθχ = 0 but
δθδε,ε̄χ = iσµε̄∂µθ. This results in (2.26).

The non-vanishing of the commutator (2.26) alters the Wess-Zumino consistency con-
dition. Let {φk} denote a set of sources for the operators Jk. By the chain rule and
(anti)commutativity of second derivatives

[δε,ε̄, δθ]W [φk] =
∑
k

∫
d4x ([δε,ε̄, δθ]φk) 〈Jk〉. (2.27)

As a consequence the commutator on the left hand side of the Wess-Zumino consistency
condition (2.7) no longer vanishes,

θδε̄Aθ − ε̄δθĀε̄ = i∂µθ ε̄α̇σ̄µα̇α〈Jχα〉. (2.28)

Hence, the presence of the flavor anomaly, Aθ 6= 0, does not imply a non-vanishing super-
symmetric anomaly, Āε̄.

We claim that there exists a scheme, where the supersymmetric anomaly is absent,
Āε̄ = 0. This is supported by the fact that there exists a supersymmetry preserving
regularization scheme, such as Pauli-Villars (PV) regularization. Hence, for constant ε, ε̄,
the (anti-holomorphic part of) Wess-Zumino consistency condition becomes

δε̄Aθ = −iε̄α̇σ̄µα̇α∂µ〈Jχα〉, Āε̄ = 0. (2.29)

In section 5.3 we will verify this new Wess-Zumino consistency condition in a free theory
model.

4While the SUSY variation of the component field M involves the physical field λ̄, the commutator
[δε̄, δθ]M = 0, due to the gauge-invariance of λ̄.
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Ward identity. Finally, we can see how an extra term in the Ward identity (2.11) ap-
pears. The supersymmetric variations of the vector multiplet are given in (2.18)–(2.23). We
have to include variations of compensating fields even if we consider correlation functions
of operators sourced only by Aµ, λ, λ̄, and D. Two relevant terms are

δε̄χ
α = −iε̄α̇σ̄µα̇αAµ +O(C), δε̄M = 2ε̄λ̄+O(χ). (2.30)

These terms mix the compensating fields χ,M with the physical fields Aµ and λ̄. This
is again the consequence of Wess-Zumino gauge breaking supersymmetry. With the extra
variations the Ward identity reads

∂µ〈J̄µα̇Q̄ 〉 = iσ̄α̇αµ λα〈JµA〉 −
[
σ̄κλα̇

β̇
Fκλ + iDδα̇

β̇

]
〈J̄ β̇
λ̄
〉+ σ̄µα̇α∂µλα 〈JD〉

− iσ̄µα̇αAµ〈Jχα〉+ 2λ̄α̇〈JM〉+O(C,M, χ). (2.31)

The terms O(C,M, χ) can be dropped if one considers insertions of operators sourced only
by Aµ, λ, λ̄ and D.

2.4 What is Jχ?

In the previous section we argued that the SUSY anomaly in (2.11) is eliminated by the ad-
dition of the 〈Jχα〉 and 〈JM〉 terms in (2.31). This, however, implies that these operators
must be ultralocal, i.e., as local as the anomaly itself. Indeed, the supergauge symme-
try (A.14)–(A.19) is the shift symmetry for their sources χ andM, which implies that

〈Jχ〉 = 〈JM〉 = 0 (up to anomalies). (2.32)

This is at least consistent, but it is possible that we did not remove any anomaly, but rather
disguised it by using compensators. Recall that any anomaly can be artificially removed
by introducing a compensator.

For example, consider a theory coupled to the background metric, gµν . Classically,
Weyl invariance, δσgµν = −2σgµν , implies the vanishing of the trace of stress tensor. In
a quantum theory, however, conformal anomalies may be present. The generating func-
tional, W , is not invariant under the Weyl transformation, δσW [gµν ] 6= 0, leading to the
anomalous trace Ward identity, gµν〈Tµν〉 = Aσ. The anomaly can be hidden by introduc-
ing a compensator. By coupling the dilaton, τ , to the trace of stress tensor T = gµνT

µν

and assigning the shift transformation δστ = σ, the generating function is made invari-
ant, δσW [gµν , τ ] = 0, and the Ward identity becomes gµν〈Tµν〉 = 〈T 〉, where the 1-point
function on the right hand side is obtained by varying W with respect to τ . The the-
ory, however, remains anomalous, because 〈T 〉 6= 0 in the quantum theory, while T = 0
classically. Another way to say this is that only Aσ is the genuine anomaly satisfying the
Wess-Zumino consistency conditions.

In the case of supersymmetry, the source for the supercurrents, jµQα, j̄
µα̇

Q̄
, is the grav-

itino, ψαµ , ψ̄µα̇. The compensators for supersymmetry, ε, ε̄, can be introduced by the sub-
stitution ψαµ 7→ ψαµ − ∂µε

α and its conjugate. Now εα couples to the divergence of the
supercurrent and the Ward identity becomes ∂µ〈jµQα〉 = 〈∂µjµQα〉.
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Is any of the fields C,χ,M the compensator for the supercurrent? No: C andM are
scalars, so only χ is suspect. However, the conformal dimension of the supercurrent equals
7
2 , its divergence has dimension 9

2 and therefore the compensator for supersymmerty has
conformal dimension equal to −1

2 . On the other hand the conformal dimension of χ equals
1
2 as it couples to the operator Jχ of dimension 7

2 . Hence, none of the compensating fields
is the compensator for supersymmetry. While χ is not a compensator for supersymmetry,
it turns out to be the compensator for S-supersymmetry in a specific example considered
in this paper (see section 5.1). In a generic case one should think about it as a fermionic
(shift-)symmetry.

2.5 Generating functional and scheme-dependence

While the Wess-Zumino consistency condition (2.28) is fixed purely by the superalgebra,
the form of the counterterm (2.24) is not. For example, any local term Sfin such that
[δθ, δε,ε̄]Sfin = 0 can be added to the counterterm (2.24). Such a term will contribute to
the anomalies in (2.29),

δε̄Aθ = −iε̄α̇σ̄µα̇α∂µ〈Jχα〉+ δε̄
δSfin
δθ

, δθAε̄ = δ

δθ
δε̄Sfin, (2.33)

while keeping the full Wess-Zumino consistency condition (2.28) intact. It is only in a
supersymmetric scheme, where Aε = Āε̄ = 0, that (2.29) is satisfied. As was already
remarked in [28], in such a scheme the flavor anomaly Aθ generally includes extra terms
on top of the “bare” ABJ anomaly, (2.8). In particular, in section 5.3.2 we will calculate
relevant parts of the flavor anomaly in the Pauli-Villars renormalization scheme in the free
Wess-Zumino theory. As the scheme is manifestly supersymmetric, ĀPV

ε̄ = 0, but the part
of the flavor anomaly quadratic in sources takes the form

APV
θ = − 1

192π2∂µ
[
εµνρτAν∂ρAτ + 3λσµλ̄+ 2iλσµσ̄ν∂νχ− 2i∂µ(λχ)

+O(C,M, χ2, λ̄)
]
. (2.34)

Furthermore, even in a supersymmetric scheme, the counterterm is not uniquely fixed.
Indeed, one can add another, explicitly supersymmetric, but not gauge-invariant, coun-
terterm Sloc, which modifies both the left and right hand side of (2.29) accordingly. An
example of such a manifestly supersymmetric counterterm can be written in terms of su-
perfields as

∫
d8zV D̄2V D2V , where V is the vector multiplet. The resulting counterterm

is non-invariant under the flavor symmetry. Such local terms are expected to appear since
PV regularization breaks the chiral invariance explicitly, by virtue of the mass term (we
will discuss this in more detail in section 5.6).

On the other hand, the Ward identity (2.32) shows that the operators Jχ and JM are
ultralocal in the sense that all their correlation functions are ultralocal. This means that
the generating functional W = Wloc[χ,M] as the function of the sources χ and M is a
local expression. We conclude that, in any renormalization scheme, both sides of (2.33)
are determined by a local generating functional Wloc and the ABJ anomaly. In particular,
in a supersymmetric scheme, such as the PV scheme, one has

δε̄

(
AABJ
θ + δWloc

δθ

)
= −iε̄α̇σ̄µα̇α∂µ

δWloc
δχα

. (2.35)
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3 Supergravity

In [11], see also [10, 12], it was argued that supergravity cannot be consistently coupled
to a N = 1 superconformal field theory due to an anomaly in the conservation of the
supercurrent. The argument follows the same route as the one introduced in section 2.1,
with the R-current in place of the flavor current. We will review it in the following section.

Anomalies in supersymmetry were discussed in [16], where it was shown how the
theory can be made consistent and anomaly-free by introducing a suitable compensator
field. Among a variety of different choices, only a single choice, leading to old minimal
supergravity, yields the theory consistent. This approach is very similar to the one we
adopted for the flavor anomalies in that we will introduce a compensator fermion field
which has similar properties to the χ field described in the previous section.

3.1 Formulation

When a N = 1 superconformal theory is coupled to supergravity, the gauge freedom allows
one to reduce the degrees of freedom to the vielbein, eaµ, sourcing the stress tensor, the
gravitino, ψµ, sourcing the supercurrent, and the gauge field, ARµ , sourcing the R-current.

In order to keep the notation consistent with the remainder of this paper, we will follow
the conventions of [18] and use 2-component, Weyl fermions. The original calculations,
however, were carried out using conventions of [20] with 4-component, Majorana fermions.
We keep those results in appendix C.

Among the superconformal transformations we will be interested in Q-supersymmetry
transformations, parameterized by fermions ε, ε̄, S-supersymmetry transformations, pa-
rameterized by fermions η, η̄ and R-transformations parameterized by a real scalar θR. For
completeness we also include Weyl transformations parameterized by σ and local Lorentz
parameterized by λab. The transformations of the sources are

δeaµ = i(ε̄σ̄aψµ + εσaψ̄µ)− σeaµ − λabebµ, (3.1)
δARµ = ∂µθ

R − i(εφµ − ε̄φ̄µ) + i(ηψµ − η̄ψ̄µ), (3.2)

δψµα = 3i
2 θ

Rψµα + 2Dµεα − 2iσµαα̇η̄α̇ −
1
2σψµα + 1

2λ
abσ β

abα ψµβ , (3.3)

where

φµα = 2i
3 σ

ν
αα̇

(
D[µψ̄ν] + i

4εµν
ρσDρψ̄α̇σ

)
(3.4)

and

Dµε =
(
Dω
µ −

3i
2 A

R
µ

)
ε, Dµψν =

(
Dω
µ −

3i
2 A

R
µ

)
ψν . (3.5)

By Dω
µ we denote the covariant derivative with connection ω given by

ωµab(e, ψ) = ωµab(e) + i
4
(
ψ̄aσ̄µψb + ψaσµψ̄b + ψ̄µσ̄aψb + ψµσaψ̄b − ψ̄µσ̄bψa − ψµσbψ̄a

)
(3.6)
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In particular,

δφµα =
(

iPµν − FRµν −
i
4ε

ρτ
µν FRρτ

)
σναα̇ε̄

α̇ + 2Dµηα −
3i
2 θ

Rφµα

+ 1
2σφµα + 1

2λ
abσabφµα, (3.7)

where

Dµη =
(
Dω
µ + 3i

2 A
R
µ

)
η, Pµν = 1

2

(
Rµν −

1
6gµνR

)
. (3.8)

Note that the transformations of conformal SUGRA have the algebraic property that

[δε, δε̄] 3 δθR , (3.9)

similarly to the SUSY transformations of the vector multiplet in Wess-Zumino gauge.
The conventions of [11] (denoted by superscript P ) are recovered by rescaling the

fermionic parameters, ε = εP /2 and η = ηP /2, as well as a rescaling of the gauge field
and the gauge parameter, ARµ = −2APµ /3 and θR = −2θP /3. Also, note the change of
the sign in the definition of φµ, (φµ = −φPµ ) as well as in the definition of the R- and
Q-SUSY-anomalies, AθR and Aε, Āε̄ respectively,

δW =
∫

d4x
√
−g

[
θRAθR + σAσ + εAε + ε̄Āε̄ + ηAη + η̄Āη̄

]
, (3.10)

where Aσ is the Weyl anomaly, while Aη, Āη̄ are S-SUSY anomalies.
In our conventions the ABJ form of the chiral anomaly for the R-current reads

AABJ
θR = 5a− 3c

16π2 εµνρτFRµνF
R
ρτ + c− a

32π2 ε
µνρτRµνκλR

κλ
ρτ . (3.11)

The first term is the ABJ anomaly with the coefficient determined by the a and c anomalies
and the second term contains a mixed gravitational anomaly proportional to the Pontrjagin
density. The Wess-Zumino consistency condition has the form identical to (2.7). As before,
the commutator on the left hand side of the equation vanishes. Hence, together with a
non-zero variation δεAθR , the Wess-Zumino condition implies that δθRAε does not vanish,
leading to an anomaly in supersymmetry. In [10, 11] the anomaly is evaluated to be

A(?)
εα = 3c− 5a

4π2 iεµνρτFRρτARµφνα + a− c
4π2 iελκρτ∇µ(ARρ R

µν
λκ )σ(ναα̇ψ̄

α̇
τ)

+ c− a
16π2 iεµνκλFRµνR

ρτ
κλ σραα̇ψ̄

α̇
τ +O(ψ3). (3.12)

Notice the similarity between the first term and (2.10) with φν in place of σνλ.

3.2 Compensators

In [16] it was argued that in the presence of anomalous superconformal symmetry one
has to introduce suitable compensator fields. If the anomalies break all of the main global
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symmetries (R, Weyl and S-SUSY) we need a compensator that includes a chiral multiplet.5
Hence we introduce a chiral multiplet (Z, χR,F) of Weyl weight w = 1 transforming as

δZ = (σ + iθR)Z +
√

2εχR , (3.13)

δχRα = 1
2(3σ − iθR)χRα + i

√
2DµZσµαα̇ε̄α̇ +

√
2Fεα + 2

√
2Zηα , (3.14)

δF = 2(σ − iθR)F + i
√

2ε̄σ̄µDµχR, (3.15)

where the local SUSY-covariant derivatives read

DµZ = ∂µZ − iARµZ −
1√
2
ψµχ

R , (3.16)

DµχRα =
(
Dω
µ + i

2A
R
µ

)
χRα −

i√
2
DνZσναα̇ψ̄α̇µ −

1√
2
Fψµα −

√
2Zφµα. (3.17)

Terms proportional to the SUSY parameters ε, ε̄ reproduce the transformations of the chiral
multiplet (A.4)–(A.6).

At linear level the compensators couple to the relevant anomalies through a term in
the effective action

Wcomp =
∫

d4x
√
−g

(
πAθR + τAσ + 1

2
√

2
χRAη + 1

2
√

2
χ̄RĀη̄

)
. (3.18)

The Ward identity associated with the S-symmetry reads

iψµα〈JµR〉+ 2iσµαα̇〈J̄µα̇Q̄ 〉 = Aηα, −iψ̄α̇µ〈J
µ
R〉+ 2iσ̄α̇αµ 〈J

µ
Qα〉 = Āα̇η̄ . (3.19)

The analogous expression in 4-component notation is given in (C.31).
The compensator fields in equation (3.18) transform according to (3.13)–(3.15) where

we use (Z = eτ+iπ, χR,F) and always set π = τ = χR = 0 at the end. From (3.13) we have

δθRπ = θR, δστ = σ, δηχ
R
α = 2

√
2ηα. (3.20)

Here we only include the terms linear in the compensators. In general one also has higher
order corrections from expanding eσ, etc. As we can see the compensating fields χR, χ̄R are
the compensators for the S-supersymmetry, while π, τ correspond to the pion and dilaton
respectively. From (3.18) and (3.19) we see that the compensators χR and χ̄R couple to
the gamma-contracted supercurrents,

JχRα = i√
2
σµαα̇J̄

µα̇

Q̄
+ i

2
√

2
ψµαJ

µ
R

J α̇χ̄R = i√
2
σ̄α̇αµ JµQα −

i
2
√

2
ψ̄α̇µJ

µ
R. (3.21)

However, since the S-supersymmetry anomaly belongs to same multiplet as the chi-
ral anomaly, we are not worried about introducing a compensator for the symmetry

5At a bare minimum we need a complex scalar to compensate R and Weyl anomalies as well as a
Majorana spinor to compensate the S-SUSY anomaly. Then we have to add other degrees of freedom to
close the supersymmetry algebra off-shell which corresponds to different choices of compensators.
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that we know is anomalous. Most importantly, we do not introduce a compensator for
Q-supersymmetry.

Finally, we are left with the complex field F , which does not represent any gauge
degrees of freedom. This is slightly different from the real vector multiplet, where the
analogous F -terms are gauge degrees of freedom w.r.t. the flavor transformations. Including
nonzero F is important for the closure of the SUSY algebra when coupling to old-minimal
or 16+16 SUGRA. At the linear level we have∫

d4x
√
−g (F〈JF 〉+ h.c.) , (3.22)

where JF is related to the so-called brane current, see [36, 37]. Just like JχR and JZ
the operator JF is ultralocal. This, in particular, implies that the generating functional,
W = W [Z, χR,F ], is a local functional of the three sources.

3.3 Consequences

As in the flavor case, the compensating field χR transforms into the physical field ARµ and
other compensators. There is a difference in the overall normalization between the two
cases, but the physics remains the same.

In order to derive the correct Wess-Zumino consistency condition as well as the Ward
identity for the supersymmetric current, we have to include the SUSY transformations of
the compensators in (3.13)–(3.15). As long as we are interested in the correlation functions
of the physical operators Tµa , J

µα
Q , and JµR sourced by eaµ, ψµα, and ARµ respectively, we

may substitute Z = 1 and χR = F = 0 only after the variations are taken. This gives

δε,ε̄Z|0 = 0, (3.23)
δε,ε̄χ

Rα|0 = −
√

2ARµ ε̄α̇σ̄µα̇α, (3.24)

δε,ε̄F|0 = −iε̄α̇
[
(σ̄µσν)α̇

β̇
ψ̄β̇µA

R
ν + 2σ̄µα̇αφµα

]
. (3.25)

Wess-Zumino consistency condition. Using (3.24) we can now derive the correct
Wess-Zumino consistency condition. In particular, the commutator of supersymmetry and
R-symmetry, when acting on the relevant compensators, reads,

[δε̄, δθR ]χRα =
√

2ε̄α̇σ̄µα̇α∂µθR. (3.26)

Up to a constant, this is the same relation as in the flavor case, (2.26). In general (3.25)
implies also a non-vanishing contribution from F . However, in the generating functional
W = W [F ] the source F necessarily couples to at least a pair gravitinos. To see that this
should be the case in general we invoke the reality of generating functional, which implies
that F has to couple to a complex scalar. At the linear level in compensators this scalar has
to be formed by the fields of conformal SUGRA. This leaves us with the bilinears formed
from ψ and ψ̄ (and their derivatives). This is analogous to the M field in the case of the
flavor anomaly, where the generating functional would have the form W [M] ∼ Mλλ, as
can be seen from (2.24). Thus, 〈JF 〉 = O(ψ2) and 〈JF 〉δε,ε̄F|0 = O(ψ3). This means that
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we can consistently drop all terms depending on 〈JF 〉, since they only contribute to O(ψ3)
terms to the SUSY anomaly. We will therefore not consider the effects of including F here.

As in the flavor case, the Wess-Zumino consistency condition (2.27) is now consistent
with the absence of the Q-SUSY anomaly, Aε = 0 and Āε̄ = 0. In such case the Wess-
Zumino consistency condition becomes

δε̄AθR = −i
√

2ε̄α̇σ̄µα̇α∂µ〈JχRα〉 Aε̄ = 0

= − i
2 ε̄σ̄

µ∂µAη +O(ψ3), (3.27)

where in the last line we used (3.21). This equation is identical to (2.29), up to the multi-
plicative constant. The constant is fixed here by the relation (3.21) between the supercur-
rent and JχR . Furthermore, our conventions are such that the U(1)-flavor current matches
the R-current and hence the two Wess-Zumino consistency conditions (3.27) and (2.29)
become equal. In particular, all of this is consistent with the absence of the Q-anomaly,
Aε = Aε̄ = 0, and represents the correct Wess-Zumino condition.

Ward identity. The variation of the compensators (3.13)–(3.15) produces extra terms
in the Ward identity. By setting Z = 1 and χRα = F = 0 only after taking the variations
we find

∂µ〈J̄µα̇Q̄ 〉 = iσ̄aα̇αψµα〈Tµa 〉+ iφ̄µα̇〈JµR〉 −
√

2ARµ σ̄µα̇α〈JχRα〉+O(ψ3,F). (3.28)

The last term introduces a piece proportional to the S-anomaly in the Ward identity, but
the Q-anomaly is absent.

Counterterm. Once again we can define a counterterm by adding terms linear in χR,
χ̄R, and F as well as some R-symmetry covariant terms quadratic in the gravitino. The
vielbein-independent part of the counterterm must resemble that of (2.24) with φµ playing
the role of λ. Indeed, the counterterm reads

SRct = 1
8π2

[
3(a− c)(P1 + P †1 )− 2a(P2 + P †2 )

]
, (3.29)

where

P1 = −
√

2χRα
(1

3W
ρσ

µν σ β
ρσα + iFRµνδβα

)
×
(
iσµβα̇φ̄

να̇ +Dµψνβ
)

− 2
3ε

µνρσARµφ
α
ν

(
2Dρψσα + iσραα̇φ̄α̇σ

)
(3.30)

and

P2 = −
√

2iχRα
[
2iFRµν −

1
4ε

ρσ
µν FRρσ − Pµν + 1

6Rgµν
]
σµαα̇φ̄

να̇

+ARν

(√
2DµχRα + φαµ

)
×
(
σµαα̇φ̄

να̇ + gµνσραα̇φ̄
α̇
ρ − iεµνρτσταα̇φ̄α̇ρ

)
+ARµA

R
ν P

µν , (3.31)
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where Pµν is the Schouten tensor defined in (3.8) and the Weyl tensor reads

W ρσµν =Rρσµν− 1
2(Rρνgσµ−Rρµgσν+Rσµgρν−Rσνgρµ)+ 1

6R(gρµgσν−gρνgσµ). (3.32)

In the expression for the counterterm we have omitted the terms proportional to F .6 We
have also dropped all terms of higher than quadratic order in ARµ , ψµ, which are necessary
for covariantization w.r.t. local SUSY. Furthermore, (3.29) is explicitly gauge-covariant
w.r.t. R-symmetry, so an equation analogous to (2.33) holds.

One can explicitly check that the SUSY-variation of (3.29) cancels the anomaly up to
higher order terms as explained above. This means that in the χR-dependent terms it is
enough to vary χR only. Similarly, in terms containing two fermions and the background
gauge field ARµ , the variation of ARµ results in 3-fermion terms, which we can drop. Finally,
while, after taking the variation, the parameters ε and ε̄ may appear under derivatives,
one can always combine the terms into commutators, for which the relevant terms read

[Dµ,Dν ]ε = −3
2iFµνε−

1
2σ

abRµνabε+ . . . (3.33)

There exists, however, a simpler method to derive the counterterm (3.29). In any
supersymmetric renormalization scheme, Aε = Āε̄ = 0, but the R-symmetry anomaly,
AθR , contains additional terms on top of the ABJ anomaly (3.11), i.e.,

AθR = AABJ
θR + δWloc

δθR
, (3.34)

where Wloc is the local part of the generating functional, which can be equated to a local,
finite counterterm. Then,

δε̄

(
AABJ
θR + δWloc

δθR

)
= −i

√
2ε̄α̇σ̄µα̇α ∂µ

δWloc
δχRα

= − i
2θ

R ε̄σ̄µ∂µAη, (3.35)

where we used (3.18). This is a gravity analogue of (2.35), with the r.h.s. being related to
the S-SUSY anomaly as expected from (3.27). Note that these expressions do not match
the ones obtained in [11], as our counterterm includes additional terms that are non-
invariant under S-, Weyl and R-transformations analogous to the Aµλσµλ̄ term in (2.24).
As before, the precise form of the R-symmetry anomaly can be changed by an additional
SUSY-invariant counterterm. Thus, different choices of counterterms will in general lead to
different expressions for Aη and Āη̄. Nevertheless, we verified that the χR-dependent part
of (3.29) corresponds to the component expansion of the counterterm given in [28]. Just
as in the flavor case, in order to define a supersymmetric scheme where the anomaly (3.12)
vanishes, we have to supplement the χR term with a gauge-dependent term bi-linear in
fermions. This extra term depends only on the fields of conformal SUGRA. In this sense
conformal SUGRA plays the role of Wess-Zumino gauge here, as explained in [28]. Finally,
note that the counterterm analogous to (3.29) can be defined in any formulation of SUGRA

6These terms are analogous to theMλλ term in (2.24).
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which contains a chiral supermultiplet as a compensator. For example the compensator
relevant for 16-16 SUGRA is the vector multiplet (see appendix A.2), which contains a
chiral multiplet.7

3.4 Old minimal SUGRA

One can combine the fields eaµ, ARµ and ψµα of conformal SUGRA with the compensators
τ, π, χR and F to construct fields invariant under Weyl-, S- and R-transformations. The
resulting gravitino, ψ̃µ, vielbein, ẽaµ, the R-current source, ÃRµ , and the scalar F̃ are defined
as follows,

ẽaµ = eaµ + τeaµ, (3.36)

ÃRµ = ARµ −
i

2
√

2
(χRψµ − χ̄Rψ̄µ)− ∂µπ , (3.37)

ψ̃µα = ψµα + i√
2
σµαα̇χ̄

Rα̇ − 1
2(3iπ − τ)ψµα , (3.38)

F̃ = F − 2(τ − iπ)F . (3.39)

We can now apply the variations (3.1)–(3.3) and (3.13)–(3.15) to (3.36)–(3.38). For exam-
ple, the relevant SUSY transformations are derived by using the transformation rule of χR
derived from (3.14)

δε,ε̄χ
R
α =
√

2
[
(ARµ − iχRψµ)σµαα̇ε̄α̇ + Fεα

]
. (3.40)

After the variations are taken, we substitute Z = 1 and χR = 0, but we keep F nonzero as it
has now become a part of the multiplet. It is precisely the role of the compensators to cancel
S-SUSY variations parametrized by η, η̄ as well as Weyl and R-symmetry transformations
parameterized by σ and θR. We end up with the SUSY transformations of old minimal
supergravity,

δẽaµ = i(ε̄σ̄aψ̃µ+εσa ¯̃ψµ)−λ̃ab ẽbµ, (3.41)

δÃRµ =−iεα
(
φ̃µα−

1
2Ã

R
ν σ

ν
αα̇

¯̃ψα̇µ+ 1
2 F̃ ψ̃µα

)
+iε̄α̇

(
¯̃φα̇µ+ 1

2Ã
R
ν σ̄

να̇αψ̃µα+ 1
2 F̃
∗ ¯̃ψα̇µ

)
, (3.42)

δψ̃µα = 2Dµεα−iÃRν (σµσ̄ν) β
α εβ+iF̃∗σµαα̇ε̄α̇+ 1

2 λ̃
abσ β

abα ψ̃µβ , (3.43)

δF̃ =−iε̄α̇
(
ÃRν (σ̄µσν)α̇

β̇
¯̃ψβ̇µ+F̃ σ̄µα̇αψµα+2σ̄µα̇αφµ

)
. (3.44)

where (3.4) results in
φ̃µ = φµ + 1√

2
DµχR (3.45)

and
λ̃ab = λab − 1

2
√

2

(
εσabχR + ε̄σ̄abχ̄R

)
. (3.46)

The terms involving λ̃ab can be removed by a Lorenz transformation.
7Albeit one scalar degree of freedom (the pion) is “hidden” inside the gauge field.
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Equations (C.23)–(C.25) can be used to deduce the linear couplings of the compen-
sators to the respective currents, [38],

Scoupling =
∫

d4x
√
−g

(
Ãµ〈J̃µR〉+ ẽaµ〈T̃µa 〉+ ¯̃ψµ〈J̃µQ〉

)
+O(χ2, π2, τ2,F) . (3.47)

Classically, the sources couple to the same currents as the ones of conformal SUGRA,
however here we included a tilde superscript to take into account the fact the relevant
expressions might differ by local and seagull terms. Using these equations we find the first
order “correction” to the action of conformal SUGRA reads

δSaux =
∫

d4x
√
−g

(
−Dµπ〈J̃µR〉 − τ〈T̃

µ
µ 〉 −

1√
2
χ̄Rγµ〈J̃µQ〉

)
+O(χ2, π2, τ2,F) , (3.48)

where we used a SUSY-covariant derivative Dµπ = ∂µπ + i
2
√

2 ψ̄µγ5χ
R. The theory with

compensators turned on is SUSY invariant, which is equivalent to saying that it is invariant
w.r.t. old minimal SUGRA. Thus, we should be able to rewrite the counterterm (3.29) in
terms of the variables of old minimal SUGRA

SRct = −
∫

d4x
√
−g χ̄RÃη + S̃Rct , (3.49)

where S̃Rct is a local functional of tilde fields only. The anomaly Ãη is absorbed in the
definition of the supersymmetry current and in general it will look different from the one
implied by (3.29). In this case S̃Rct will be manifestly invariant under the gauge symmetries
but not invariant w.r.t. SUSY of old minimal SUGRA. At a basic level S̃Rct can be obtained
by replacing un-tilded variables with tilded ones in the χR−independent part of (3.29).
This process clearly changes the χR term, which follows directly from (C.23)–(C.25). Fur-
thermore different choices of the counterterm (3.29) will lead to different expressions for
Ãη and S̃Rct.

4 Pauli-Villars renormalization

In section 5 we will carry out calculations in a free Wess-Zumino model. We will confirm
the Wess-Zumino consistency condition (2.29) by evaluating suitable correlation functions
and we will show the absence of the SUSY anomaly by evaluating both sides of the Ward
identity (2.31) in this model. To do it, however, certain momentum integrals require
renormalization. While any regularization scheme can be used in principle, we want to use
a scheme, where two conditions are satisfied: i) the scheme is explicitly supersymmetric,
and ii) the scheme can deal with chiral fields with ease. For this reason we will use Pauli-
Villars renormalization scheme with a cut-off regularization.

In this section we define and analyze the Pauli-Villars (PV) renormalization scheme
with cut-off regularization. In the context of anomalies, Pauli-Villars regularization is
used to evaluate the ABJ anomaly, [39], but it can be used in a wider context. In such
cases, however, a more detailed description is needed, in order to deal with non-logarithmic
divergences.
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In this section we present the analysis of the trace (conformal) anomaly in a 2-
dimensional free scalar field. We describe how the choice of the extension of the stress
tensor from the massless to the massive theory affects the structure of the anomaly. We
conclude that if the massive theory preserves a given symmetry (supersymmetry, general
covariance, etc.) the anomaly is absent in the massless theory.

4.1 Pauli-Villars renormalization

All correlators we will consider in the next section have the form of a 1-loop momentum
integral of the form∫ d4k

(2π)4
numerator(k;pj ;m)

(k2 +m2 + iε)(|k − p1|2 +m2 + iε) . . . (|k − p1 − . . .− pn−1|2 +m2 + iε) . (4.1)

By using Wick’s rotation and Feynman parameters the integral is brought to the sum of
terms of the form

Adnr(∆) =
∫
Eu

ddl
(2π)d

l2r

(l2 + ∆)n =
Γ(n− r − 1

2d)Γ(r + 1
2d)

(4π)d/2Γ(n)Γ(1
2d)

∆r−n+ 1
2d, (4.2)

where Eu denotes the fact that we consider a Euclidean integral. ∆ contains Feynman
parameters over which another integral will have to be carried out. The mass-dependence
enters through ∆ and ∆ = ∆0 +m2. Here ∆0 depends on the Feynman parameters xj as
well as quadratically on external momenta pi, but is mass-independent.

If r ≥ n − 1
2d, the integral is UV divergent and requires regularization. The most

popular regularization is dimensional regularization. While dimensional regularization can
deal with chiral terms, [40], here we will use a cut-off regularization, which is simpler in
execution in the presence of such terms. We cut the integral off at some Λ, so that the
integral is taken over momenta l < Λ. The integral reads

AΛ
dnr(∆) =

∫ Λ

Eu

ddl
(2π)d

l2r

(l2 + ∆)n = 1
(4π)d/2Γ(1

2d)
× 2
d+ 2r×

× Λd+2r

∆n 2F1

(
n,

1
2d+ r,

1
2d+ r + 1;−Λ2

∆

)
. (4.3)

If r < n − 1
2d, the Λ → ∞ limit can be taken and the expression simplifies to (4.2).

Otherwise, the expression diverges and we can expand it in powers of 1/Λ. The exact form
of the expansion depends on whether

k = r + 1
2d− n (4.4)

is a non-negative integer or not. If k is not a non-negative integer, then the terms diverging
in the Λ → ∞ limit are Λd+2r−2n−2j for j = 0, 1, . . . , bkc. If k is a non-negative integer,
then in addition to those terms a logarithmic divergence containing log Λ appears.

To deal with the divergences in the Λ→∞ limit two routes can be taken. In a more
operator-oriented approach the divergences can be removed by the introduction of the
counterterms built up with sources and operators under consideration. These counterterms
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are divergent in the Λ → ∞ limit precisely in such a fashion that the divergences cancel.
The terms with power divergences Λα are uniquely fixed and so are the corresponding
counterterms. The logarithmic terms, on the other hand, require logarithmic counterterms
of the form log(Λ/m), where m is the arbitrary renormalization scale. By introducing
such counterterms, correlation functions become scale-dependent and the scaling anomaly
emerges. In this approach anomalies in the conserved currents emerge from shifts in the
integration variable in loop integrals. However, since integrals with a cut-off are difficult
to evaluate, one usually chooses a different approach.

A different approach is the Pauli-Villars (PV) renormalization method. The idea
lies in the observation that the expansion of (4.3) around Λ = ∞ is equivalent to the
expansion around ∆ = 0. Physically, the ∆ → 0 limit can be arranged either as the zero-
momentum limit or the infinite mass limit. In standard textbooks [39, 41] the method is
usually applied to expressions where only a single logarithmic divergence appears. A given
amplitude T (p;m,Λ) can then be rendered finite by defining

TPV(p;m) = lim
Λ→∞

[
T (p;m,Λ)− lim

M→∞
T (p;M,Λ)

]
. (4.5)

This is sufficient for the analysis of the ABJ anomaly as well as the SUSY anomaly in
〈j̄ρα̇
Q̄
jµAj

ν
Ajλ〉. If higher order divergences appear, more terms must be subtracted.

In [42] the PV renormalization scheme is defined by successive subtractions of zero-
momentum terms. Equivalently, one can define the PV renormalization by subtracting
terms diverging in the infinite mass limit. If we abuse the mathematical notation a little
and denote

lim
M→∞

T (p;M,Λ) = terms non-vanishing in the M →∞ limit of T (p;M,Λ), (4.6)

then the amplitude regulated in the PV scheme is defined by (4.5). If one is interested in
the massless theory, then the expansion around m = 0 can be calculated withm interpreted
as the renormalization scale. If the amplitude is IR-divergent, then m can be regarded as
the IR regulator.

This prescription has an advantage of having a more physical implementation. For
every physical field ϕ one introduces a ghost field ϕ̃ with the wrong commutation relations
and very large mass M . The two theories do not interact, which means that for each loop
diagram in the original theory, one has the identical diagram in the ghost theory, but with
the opposite overall sign. Clearly, if we send the mass M of the ghost fields to infinity, the
physical amplitude takes form (4.5). In practice, however, this picture is little bit more
complicated. This is because in general one needs to introduce multiple massive fields to
regulate all divergences even in the free-field theory. For example the power divergences of
the type MnΛm clearly do not cancel between the massive and massless diagrams in (4.5)
so we have to introduce more massive PV fields to cancel those. If we denote the statistics
of the i-th regulator by si = ±1 (with si = +1 matching the statistics of the original field
and si = −1 standing for the opposite statistics) we have a general condition∑

i

si + s0 = 0 , (4.7)
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where s0 is the parity of the original field. This condition removes the divergent cosmolog-
ical constant, whereas further conditions are needed to cancel quadratic divergences etc.
Nevertheless we will show in the next section that as far the correlators relevant for this
paper go, it is enough to work with just one “effective” PV regulator.

If any of the original fields is charged under a global symmetry, so are the correspond-
ing PV fields. Therefore the PV fields should be coupled to the corresponding background
fields in the path integral. Integrating out these massive fields will leave us with finite,
source-dependent counterterms in the action. These terms can be thought of as a choice of
scheme forced on us by the regularization, see the paragraph under (2.34). The mass terms
of the ghosts will break some of these global symmetries classically, e.g., the conformal
and chiral symmetry. This is the source of the anomaly in the Pauli-Villars regulariza-
tion scheme. Nevertheless, we can keep diffeomorphisms or supersymmetry unbroken by
coupling the ghosts covariantly to the respective sources. This will lead to some mass-
dependent terms in the respective currents. As far as diffeomorphisms go, we will illustrate
the consequences thereof on the simple example of a 2D free scalar in the section 4.3.
To preserve supersymmetry classically we have to couple the ghosts to a formulation of
SUGRA consistent with the presence of a mass terms.

4.2 ABJ anomaly

The main advantage of the Pauli-Villars method for us is the fact that the anomalies can
be easily derived in the massless theory by taking the infinite mass limit. As an example,
we will consider the ABJ anomaly, [33, 34].

Consider the free Wess-Zumino model with the Lagrangian given by (B.1). The only
relevant part of the Lagrangian here is its fermionic part,

L0 = −iψ̄σ̄µDµψ, Dµψ =
(
∂µ + i

2Aµ
)
ψ, (4.8)

from which the axial current is

JµA = jµA = 1
2 ψ̄σ̄

µψ. (4.9)

In particular, seagull terms are absent. The naive Ward identity for the 3-point function
of the axial current is simply

p1µ〈〈JµA(p1)JνA(p2)JρA(p3)〉〉 = p1µ〈〈jµA(p1)jνA(p2)jρA(p3)〉〉 = 0 (up to anomaly). (4.10)

The 3-point function of the axial current jµA can be written as

〈〈jµA(p1)jνA(p2)jρA(p3)〉〉 = 1
8T

µνρ,κλτ
∫
Eu

d4k

(2π)4
kλ(k − p1)κ(k + p2)τ
k2(k − p1)2(k + p2)2 , (4.11)

where the tensor structure Tµνρ,κλτ is

Tµνρ,κλτ = Tr
[
σκσ̄µσλσ̄νστ σ̄ρ−σλσ̄µσκσ̄ρστ σ̄ν

]
= 4i

[
ηκλεµνρτ−ηµκενρλτ−ηµλενρκτ−ηντ εµρκλ−ηρτ εµνκλ+ηνρεµκλτ

]
(4.12)
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and the subscript Eu indicates that the integral should be carried out in the Euclidean
signature. This integral can be evaluated explicitly in dimensional regularization, [43], and
its divergence reads

p1µ〈〈jµA(p1)jνA(p2)jρA(p3)〉〉 = i
96π2 ε

νρκλp2κp3λ. (4.13)

On dimensional grounds, there are no counterterms contributing to the 3-point function,
at least to the parity-odd sector.8 Thus, the result must be a physical, scheme-independent
anomaly. Indeed, it is easy to check that this corresponds to κ = −1/(192π2) in the ABJ
anomaly (2.8).

We will now review the textbook derivation of the anomaly (4.13), which does not
require the explicit evaluation of the entire 3-point function. When the momentum p1µ is
applied to (4.11), many terms cancel and the only relevant term becomes

p1µ〈〈jµA(p1)jνA(p2)jρA(p3)〉〉 = − i
2ε

νρκλ
∫
Eu

d4k

(2π)4
(k − p1)κ(k + p2)λ
(k − p1)2(k + p2)2 . (4.14)

If one is allowed to shift the momenta according to k′ = k−p1, then the resulting integral
over k′ is ∫

Eu

d4k′

(2π)4
k′κ(k′ − p3)λ
k′2(k′ − p3)2 (4.15)

and vanishes when contracted with the Levi-Civita tensor. When the cut-off is introduced,
the shift is certainly allowed. Assume the original integral in (4.14) is cut off at about
k ∼ Λ. The integral in (4.15) must be cut off at |k′+p1| ∼ Λ′ instead of k′ ∼ Λ. Since the
integral is linearly divergent, the shift in the integration limits leads to a finite contribution,
as Λ′ − Λ ∼ p1.

This is how the anomaly emerges in cut-off regularization followed by the renormal-
ization method using explicit counterterms. However, in case of the ABJ anomaly there
are no counterterms available, so the anomaly must always emerge from the regulariza-
tion. In the case of cut-off regularization, the anomaly appears due to the shift in the
integration variable. The emergence of the anomaly in dimensional regularization is also
well-understood, [40].

The issue of momentum shifting can be entirely avoided in Pauli-Villars renormal-
ization. Indeed, any constant or divergent term emerging from the momentum shifts is
canceled by the identical ghost term present in the large mass term in (4.5). Hence the two
integrals in (4.14) and (4.15) are equal in the Pauli-Villars regularization. This, however,
does not imply that the anomaly vanishes. Instead, some additional, mass-dependent terms
will now be present. One can think that the emergence of the anomaly was moved from
the regularization phase to the renormalization phase. This happens because the ability
to freely shift the momenta in the integrand comes at the cost of the need to consider
correlation functions in the massive theory. The anomaly emerges from the infinite mass
terms in (4.5).

8Counterterms of the form AµA
µ∂νA

ν , while theoretically possible, do not produce the Levi-Civita
tensor.
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In the case of the ABJ anomaly, we have to analyze the massive theory where addi-
tional, mass-dependent terms arise. Indeed, the Lagrangian of the massive theory is

Lm = L0 + ∆Lm, ∆Lm = −m2 (ψψ + ψ̄ψ̄), (4.16)

where L0 is the massless Lagrangian (4.8). The axial current is no longer conserved in the
massive theory, but instead we find

∂µj
µ
A = iP, P = m

2 (ψ̄ψ̄ − ψψ), (4.17)

up to anomaly. While the contribution from the insertion of P vanishes in the m → 0
limit, the contribution from M → ∞ limit in (4.5) may be non-vanishing. Indeed, in the
massive theory we find

p1µ〈〈jµA(p1)jνA(p2)jρA(p3)〉〉m = 〈〈P (p1)jνA(p2)jρA(p3)〉〉m =

=− im2

16π2 ε
νρκλpλ1

∫ 1

0
dx1

∫ 1−x1

0
dx2

2x2p
κ
1 +pκ2−2x1p

κ
2

∆0(x1,x2)+m2 , (4.18)

where

∆0 = x1x2p
2
3 + x2x3p

2
1 + x3x1p

2
2, x3 = 1− x1 − x2. (4.19)

This is a finite integral, but we still have to apply the Pauli-Villars regularization scheme,
i.e.,

〈〈P (p1)jνA(p2)jρA(p3)〉〉PV = lim
m→0
〈〈P (p1)jνA(p2)jρA(p3)〉〉m

− lim
M→∞

〈〈P (p1)jνA(p2)jρA(p3)〉〉M . (4.20)

The first term vanishes, but the second does not, producing the anomaly. The result
matches (4.13).

Clearly, if the operator P in (4.17) were vanishing in the massive theory, there would
be no anomaly. In other words if the axial current jµA had an extension jµAm to the massive
theory in such a way that ∂µjµAm = 0, there would be no anomaly. This is the main
advantage of the Pauli-Villars regularization method: the anomaly emerges if the massive
theory breaks the symmetry generating the conserved current. In the next section we will
discuss this statement in more detail.

Before we move on let us comment on the implementation of the PV regulator described
above. The attentive reader will have noticed that formally (4.17) vanishes for commuting
field variables. To fix this issue one can instead introduce two commuting Weyl fermions
with a Dirac mass term and one anticommuting massive Majorana fermion as regulators.9
Their respective statistics was chosen to fulfill (4.7). Furthermore in accordance with the
global symmetries all of these massive fermions will have the same charges under the flavor
U(1) and so will contribute to P . In the large mass limit the contribution of the Dirac
fermion will be twice that of Weyl fermion given by the second line of (4.18). Therefore

9A related issue arises when using PV fields to regularize supersymmetric Wess-Zumino models [25].
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we can readily verify that adding up the contributions of the regulators (weighted by their
corresponding statistics factors) we get −2 + 1×(4.18), which is exactly the second line
of (4.20). This justifies the use of (4.17) at the diagrammatic level. A similar argument
holds for computation of any dimensionless quantity (eg. anomalies) so we will stick to a
single chiral PV regulator for the purposes of section 5.

4.3 Trace anomaly

The axial current discussed in the previous section is anomalous since the axial symmetry
cannot be extended to the massive theory. As the opposite case we will consider trace and
transverse anomalies in 2-dimensional free scalar theory.

We start with a free, massless, real scalar ϕ with Lagrangian L0 = −1
2∂µϕ∂

µϕ. The
stress tensor T (0)

µν reads

T (0)
µν = π̂αβµν ∂αϕ∂βϕ, π̂αβµν = 1

2(δαµδβν + δβµδ
α
ν − ηµνηαβ). (4.21)

Classicaly, the stress tensor is both conserved and traceless,

T (0)µ
µ = 0, ∂µT (0)

µν = �ϕ∂νϕ. (4.22)

Here we want to calculate its 2-point function, 〈T (0)
µν T

(0)
ρσ 〉 and show the textbook result:

the 2-point function is conserved but exhibits trace (conformal) anomaly.
In order to calculate the 2-point function, we regulate the theory by adding the usual

mass term to the Lagrangian,

Lm = L0 + ∆Lm, ∆Lm = −1
2m

2ϕ2. (4.23)

In the massive theory we have two natural choices for the stress tensor: the original T (0)
µν

and the actual stress tensor T (m)
µν of the massive theory,

T (m)
µν = T (0)

µν + ∆T (m)
µν , ∆T (m)

µν = −1
2m

2ηµνϕ
2. (4.24)

Both become T (0)
µν in the massless limit.

We will show now that the choice of extension of the massless stress tensor to the mas-
sive theory determines which anomalies appear. For example, notice that in 2 dimensions
ηµν π̂αβµν = 0 and therefore 〈〈T (0)

µν (p)T (0)
ρσ (−p)〉〉m must remain traceless both in the massive

theory and when the m → 0 limit is taken. We conclude that the massless theory has no
trace (conformal) anomaly! This seems to go against everything we know about conformal
field theories.

To see what is going on here let us compute the 2-point function 〈〈T (0)
µν (p)T (0)

ρσ (−p)〉〉
exactly. This correlation function, evaluated in the Pauli-Villars regularization scheme in 2
dimensions for the theory of a free Weyl fermion was studied in the context of gravitational
anomalies, [44–46]. Gravitational anomalies, which we will also call transverse anomalies,
result in the violation of the conservation of the stress tensor. Genuine gravitational anoma-
lies, which cannot be removed by local counterterms, appear in chiral theories only and are
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given by topological terms such as the Pontrjagin density term in (3.11). Here, however, we
consider a free scalar field, which is non-chiral. Thus, we expect that the only gravitational
anomalies present are removable by counterterms. Such counterterms, however, will break
conformal invariance and result in conformal anomalies.

Our subsequent discussion follows that of [42], where the 2-point function is calculated
for the Weyl fermions in the Pauli-Villars scheme within dimensional regularization. Unlike
there, however, we will study the scalar field and use cut-off regularization.

4.3.1 2-point function

In the massive theory we have

〈〈T (0)
µν (p)T (0)

ρσ (−p)〉〉m = −2iπ̂αβµν π̂γδρσ
∫
Eu

d2k

(2π)2
kα(k − p)β(k − p)γkδ

(k2 +m2) ((p− k)2 +m2) . (4.25)

We use the standard Feynman parameterization with x denoting the Feynman parameter,

〈〈T (0)
µν (p)T (0)

ρσ (−p)〉〉m = −2iπ̂αβµν π̂γδρσ
∫ 1

0
dx
∫
Eu

d2l

(2π)2
numαβγδ

(l2 + ∆)2 , (4.26)

where the relevant terms containing an even number of l’s in the numerator read,

numαβγδ = lαlβlγlδ + x2lβlγpαpδ + (x− 1)2lαlδpβpγ

+ (lαlβpγpδ + lαlγpβpδ + lβlδpαpγ + lγlδpαpβ)x(x− 1)
+ x2(x− 1)2pαpβpγpδ. (4.27)

Furthermore, ∆ = x(1− x)p2 +m2.
Integrals with two and four l’s in the numerator are UV divergent and require a

regulator. By cutting the integrals off at l = Λ we find∫ Λ

Eu

d2l

(2π)2
1

(l2 + ∆)2 = 1
4π∆ +O(Λ−1), (4.28)∫ Λ

Eu

d2l

(2π)2
l2

(l2 + ∆)2 = log Λ
2π − 1

4π (1 + log ∆) +O(Λ−1), (4.29)∫ Λ

Eu

d2l

(2π)2
l4

(l2 + ∆)2 = Λ2

4π −
∆
π

log Λ + ∆
4π (1 + 2 log ∆) +O(Λ−1). (4.30)

Next, integrals over Feynman parameters can be carried out explicitly. This results in a reg-
ulated 2-point function, which is not particularly interesting, but depends both on m and Λ.

Now the 2-point function can be renormalized in the Pauli-Villars scheme defined in
equation (4.5). Effectively, the renormalization amounts to the subtraction of all diver-
gences higher than logarithmic in (4.28)–(4.30) while simultaneously replacing log Λ with
logm. For example, the renormalized value of the integral (4.30) is

∫
PV

d2l

(2π)2
l4

(l2 + ∆)2 = ∆
4π

[
1 + 2 log

( ∆
m2

)]
. (4.31)
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The quadratic and logarithmic divergences are cured and the massless limit can be taken.
The 2-point function reads

〈〈T (0)
µν (p)T (0)

ρσ (−p)〉〉PV = − ip2

24π

[
log

(
p2

m2

)
− 8

3

]
Πµνρσ(p)

− i
48πp2

(
p2ηµν − 2pµpν

) (
p2ηρσ − 2pρpσ

)
, (4.32)

where π̂µνρσ = ηραησβπ̂
αβ
µν and Πµνρσ is the transverse-traceless projector, which in d di-

mensions reads

Πµνρσ(p) = πµ(ρ(p)πσ)ν(p)− 1
d− 1πµν(p)πρσ(p), (4.33)

πµν(p) = ηµν −
pµpν
p2 . (4.34)

It seems that the 2-point function contains a logarithmic term. This confusing fact can be
explained by the degeneracy of tensor structures. Using the argument of [47] we will argue
that the degeneracy of tensor structures in d = 2 implies Πµνρσ = 0 identically.

In general, having d linearly independent vectors in d (Euclidean) dimensions the met-
ric δµν is not an independent tensor. Having d−1 linearly independent vectors p1, . . . ,pd−1
in d (Euclidean) dimensions, one can find the unique (up to normalization) orthogonal vec-
tor, nµ = εµµ1...µd−1pµ1 . . . pµd−1 . In 2 dimensions this means that we can define nµ as
orthogonal to pµ and then back in Lorentzian signature we have

nµ = iεµαpα, p2ηµν = nµnν + pµpν . (4.35)

When substituting the expression for ηµν back to Πµνρσ we see that the projector vanishes.
Thus, the logarithmic term disappears and the 2-point function becomes

〈〈T (0)
µν (p)T (0)

ρσ (−p)〉〉PV = − i
48πp2

(
p2ηµν − 2pµpν

) (
p2ηρσ − 2pρpσ

)
= − i

48πp2 (nµnν − pµpν) (nρnσ − pρpσ) . (4.36)

4.3.2 Ward identities, compensators, and counterterms

Since in two dimensions π̂αβµν defined in (4.21) is a projector on traceless tensors, the 2-point
function (4.36) is manifestly traceless. On the other hand, since p · n = 0 we get

〈〈T (0)µ
µ (p)T (0)

ρσ (−p)〉〉PV = 0, (4.37)

pµ〈〈T (0)
µν (p)T (0)

ρσ (−p)〉〉PV = i
48πpν

(
p2ηρσ − 2pρpσ

)
. (4.38)

The trace (conformal) anomaly is absent. Instead we find a transverse (gravitational)
anomaly: the stress tensor is not conserved! The anomaly is local, but non-vanishing.10

10Note that this is not the chiral gravitational anomaly as discussed in [42, 44, 45], since the theory is
not chiral.
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While (4.36) violates conservation of the stress tensor, we can shuffle the anomaly
around by adding a suitable finite counterterm. This counterterm necessarily violates
general covariance exactly in such a way that it restores conservation.

First notice that, among all tensors of rank 4 and of mass dimension 2 built up with
the vector p and the metric ηµν , only a single term, pµpνpρpσ/p2, is non-local. Terms such
as pµpνηρσ and p2ηµνηρσ are local and hence can be adjusted at will by a counterterm.

We want to add the following contribution to (4.36) to make it transverse,

∆fin = i
24π (ηµνpρpσ + pµpνηρσ)− i

16πp
2ηµνηρσ. (4.39)

Let hµν denote the source for T (0)
µν . In the massive theory hµν is not exactly equal to the

metric gµν , since T (0)
µν is not the true stress tensor. For this reason, we treat hµν as a linear

coupling and T (0)
µν = 2 δS/δhµν , where we set hµν = 0 after the derivatives are taken. The

finite counterterm producing this contribution to the 2-point function reads

Sfin =
∫

d2x

[ 1
96πh

ρ
ρ∂µ∂νh

µν − 1
128πhµν∂

2hµν
]
, (4.40)

where raising and lowering is carried out with ηµν . This counterterm cannot be obtained
from a covariant term containing the actual metric in place of hµν . Indeed, the only such
term would be the “improvement term” proportional to √gR, where R is the Ricci scalar.
The variation of √gR, however, is transverse and hence √gR cannot reproduce Sfin.

With the contribution from this counterterm added to (4.36), the 2-point function
becomes

〈〈T (0)
µν (p)T (0)

ρσ (−p)〉〉′PV = − i
12πp2

(
p2ηµν − pµpν

) (
p2ηρσ − pρpσ

)
= − i

12πp2nµnνnρnσ. (4.41)

We put a prime on the 2-point function to indicate the inclusion of the finite counterterm
contribution. The 2-point function is now manifestly conserved but

〈〈T (0)µ
µ (p)T (0)

ρσ (−p)〉〉′PV = − i
12π

(
p2ηρσ − pρpσ

)
, (4.42)

pµ〈〈T (0)
µν (p)T (0)

ρσ (−p)〉〉′PV = 0. (4.43)

We obtain the standard form of the trace (conformal) anomaly, while the transverse (grav-
itational) anomaly is absent. By adding the counterterm (4.40) we killed the transverse
anomaly, but generated the trace anomaly. We have chosen “a lesser evil” by keeping the
stress tensor conserved on quantum level, but with non-vanishing trace.

Equivalently, one can achieve the same effect by introducing a suitable compensator.
This realizes the idea described in appendix B of [28]. First, we assign transformation
properties of the source hµν under diffeomorphisms and Weyl transformations,

δξhµν = −2ηα(µ∂ν)ξ
α, δσhµν = −2σhµν . (4.44)
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The associated Ward identities read

∂ν〈T (0)µν〉 = Aµξ , ηµν〈T (0)µν〉 = 0. (4.45)

The trace Ward identity is exact and anomaly-free, while the transverse Ward identity is
anomalous. From (4.38) the anomaly reads

Aµξ = 1
96π∂

µ
(
∂2hαα − 2∂α∂βhαβ

)
+O(h2). (4.46)

In order to move the anomaly from the transverse to the trace Ward identity, one can
use the counterterm (4.40). Here, however, we want to consider introducing compensators.
Since we want to break conformal symmetry, while keeping the stress tensor conserved, we
introduce a compensator τ for the Weyl symmetry. We assign the following transformations
to τ ,

δστ = σ, δξτ = −1
2∂µξ

µ. (4.47)

Clearly, τ is the compensator for the Weyl symmetry. The transformation under ξµ is such
that γµν = hµν +2τηµν satisfies ηµνδξγµν = 0. In other words, γµν is the first order term in
the expansion of the metric, ĝµν = ηµν + γµν +O(γ2) defined as ĝµν = e2τgµν . The metric
ĝµν , and thus γµν , are inert under Weyl transformations, δσγµν = 0. This corresponds to
old minimal SUGRA fields being inert under R-symmetry transformations.

The compensator τ should couple to the trace of the stress tensor. This is easy to
achieve in the massive theory, where τ couples (linearly) to T = −m2ϕ2. In the massless
theory this operator becomes null, in the same sense as jχ becomes null. Using equations
of motion, we can define T without involvement of the mass as T = −ϕ∂2ϕ. Just like jχ,
it is proportional to the equations of motion.

Now, varying both hµν and the compensator, the Ward identities read

∂ν〈T (0)µν〉+ 1
2∂

µ〈T 〉 = 0, ηµν〈T (0)µν〉 = −〈T 〉. (4.48)

The transverse Ward identity becomes anomaly-free. Indeed, by direct calculations one
finds

〈〈T (p)T (0)
ρσ (−p)〉〉PV = − lim

M→∞
〈〈−M2ϕ2(p) T (0)

ρσ (−p)〉〉M

= − i
48π (p2ηρσ − 2pρpσ). (4.49)

The compensating term took place of the anomaly, ∂µ〈T 〉 = −2Aµξ . On the other hand, the
trace Ward identity is now anomalous. Since τ is the compensator for Weyl transformations,
the expectation value of the operator it sources, T , represents the anomaly. Notice also
that while γµν is inert under Weyl transformations, it couples (linearly) to T (m)

µν . The trace
anomaly of this stress tensor is therefore expressible entirely in terms of the operator which
couples to the compensator τ .
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As we can see, the role of the compensator is not to remove the anomaly entirely, but
to move it from one Ward identity to another one. The anomaly cannot be removed. It
can, however, be removed from either one Ward identity and moved to the other one. Since
the conservation of the stress tensor is more fundamental and holds in massive theories as
well, it is natural to keep the anomalous terms in the trace.

4.3.3 Massive stress tensor

Instead of using T (0)
µν in the regulated theory, we could have been using the actual stress

tensor of the massive theory, T (m)
µν . This tensor is conserved and hence using it as a

regulator of the massless theory should yield the conserved 2-point function, free of the
transverse (gravitational) anomaly. Let us check this claim.

Since T (m)
µν is the sum of the previously analyzed T (0)

µν and the “correction” in (4.24),
we have to calculate two more correlators,

〈〈T (0)
µν (p)∆T (m)

ρσ (−p)〉〉m = im2π̂αβµν ηρσ

∫
Eu

d2k

(2π)2
kα(k − p)β

(k2 +m2) ((p− k)2 +m2) , (4.50)

〈〈∆T (m)
µν (p)∆T (m)

ρσ (−p)〉〉m = − i
2m

4ηµνηρσ

∫
Eu

d2k

(2π)2
1

(k2 +m2) ((p− k)2 +m2) . (4.51)

As before, we compute these correlators in the massive theory with a cut-off Λ and
sum everything together to get the regulated 〈〈T (m)

µν (p)T (m)
ρσ (−p)〉〉 in the massive theory.

We then apply (4.5). After subtracting the divergences according to the Pauli-Villars
regularization procedure the additional contribution from the “correction term” is

〈〈T (0)
µν ∆T (m)

ρσ 〉〉PV + 〈〈∆T (m)
µν T (0)

ρσ 〉〉PV + 〈〈∆T (m)
µν ∆T (m)

ρσ 〉〉PV = ∆fin, (4.52)

where ∆fin is exactly equal to the correction term (4.39). We end up with the 2-point
function of the conserved stress tensor in the massless theory, (4.41),

〈〈T (m)
µν (p)T (m)

ρσ (−p)〉〉PV = 〈〈T (0)
µν (p)T (0)

ρσ (−p)〉〉′PV (4.53)

In deriving this expression we used the actual stress tensor T (m)
µν in the regulated, massive

theory. Since the stress tensor is conserved in the regulated theory, the resulting 2-point
function is conserved as well. Instead, the 2-point function exhibits the scaling anomaly,

〈〈T (m)µ
µ (p)T (m)

ρσ (−p)〉〉PV = − i
12π

(
p2ηρσ − pρpσ

)
, (4.54)

pµ〈〈T (m)
µν (p)T (m)

ρσ (−p)〉〉PV = 0. (4.55)

As we can see, the choice of the regularization of the operator dictates which symmetries
become anomalous.
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4.3.4 Summary

Consider a massless theory with a conserved current jµ0 . If the current can be extended to
a conserved current jµm in the massive theory in such a way that jµm = jµ0 + O(m), then
the corresponding symmetry is non-anomalous. This argument is usually invoked for the
vector current, [39].

In general, consider any Ward identity of the form ∂µ〈jµ0 . . .〉 = r.h.s., where . . . denotes
the insertion of any operators. If the current jµ0 can be extended to the massive theory
and the Ward identity holds in the massive theory with the same right hand side, then the
anomaly is absent. If, on the other hand, the right hand side in the massive theory gets
modified by mass-dependent terms, the anomaly may emerge.

In particular, this argument holds for the conservation of the stress tensor and the
supersymmetry currents. In the previous section we have shown that by choosing T (m)

µν —
the true stress tensor of the massive theory — as the massive extension of the stress tensor of
the massless theory, the gravitational anomaly is eliminated. Analogously, if the massive
theory is supersymmetric, there is no anomaly in the conservation of the supercurrent
jµαQ , j̄µα̇

Q̄
in the massless theory. It is, however, necessary to pick the actual conserved

supercurrent of the massive theory as the massive extension of the massless supercurrent.
Furthermore, if other operators related to each other by supersymmetry are involved, their
extensions to the massive theory must also obey the SUSY algebra. This argument is
sufficient to argue that there is no SUSY anomaly in the massless Wess-Zumino model. We
will present detailed checks on this statement in the following section.

5 Wess-Zumino model

In this section we present various consistency checks in a free Wess-Zumino model. We
are interested in anomalies in the massless, superconformal theory. However, as we will be
employing the Pauli-Villars renormalization method, we are forced to consider the massive
Wess-Zumino model as well. The action of the massive model reads

S =
∫

d4x

[
−∂µϕ∗∂µϕ− iψ̄σ̄µ∂µψ + FF ∗ +m

(
ϕF + ϕ∗F ∗ − 1

2(ψψ + ψ̄ψ̄)
)]

. (5.1)

We couple this model to an external vector multiplet. The coupled action is

SV =
∫

d4xd4θ

[
Φ+eV Φ + 1

2m(ΦΦ + Φ+Φ+)
]
, (5.2)

where Φ = (ϕ,ψ, F ) is the dynamical chiral multiplet (A.2) and V is the vector multi-
plet of sources, (A.7). The component fields of the vector multiplet source corresponding
operators. These are as follows:

C χα M Aµ λβ D

jC jχα jM jµA jλβ jD
(5.3)

Note that the vector multiplet of sources couples to the mass-independent part only. This
means that the operators sourced by the component fields are identical both in the massive
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and massless theory. The relevant operators for us are

jµA = i
2 (ϕ∗∂µϕ− ϕ∂µϕ∗) + 1

2 ψ̄σ̄
µψ, (5.4)

jλβ = i√
2
ϕ∗ψβ , (5.5)

jD = 1
2ϕϕ

∗, (5.6)

jχα = 1√
2

(
ϕσµαα̇∂µψ̄

α̇ − iF ∗ψα
)
, (5.7)

jM = i
2F
∗ϕ. (5.8)

The operators listed come from the linear coupling of the component fields of the vector
multiplet to the dynamical chiral multiplet: the Lagrangian in (5.2) contains also seagull
terms. The fully expanded Lagrangian is given in (B.1).

5.1 Supercurrents

The supercurrents jµQα and j̄µα̇
Q̄

can be defined by the Noether theorem as

δε,ε̄S = −
∫

d4x
[
∂µε

α jµQα + ∂µε̄α̇ j̄
µα̇

Q̄

]
. (5.9)

The form of the supercurrents depends on the mass term and it will be useful to split the
massless and massive contributions. We define the currents jµQα and j̄µα̇

Q̄
as SUSY currents

in the massless theory, while jµQmα and j̄µα̇
Q̄m

denote supercurrents in the massive theory.
With the variations in (A.4)–(A.6) one finds

jµQmα = jµQα + ∆jµQα, j̄µα̇
Q̄m

= j̄µα̇
Q̄

+ ∆j̄µα̇
Q̄
, (5.10)

where

jµQα = −
√

2 ∂κϕ∗ (σκσ̄µ) β
α ψβ , j̄µα̇

Q̄
= −
√

2 ∂κϕ (σ̄κσµ)α̇
β̇
ψ̄β̇ , (5.11)

∆jµQα = mi
√

2ϕ∗σµαα̇ψ̄α̇, ∆j̄µα̇
Q̄

= mi
√

2ϕσ̄µα̇αψα. (5.12)

In general, however, the supercurrents obtained from coupling to supergravity contain addi-
tional improvement terms, analogous — and related via supersymmetry — to improvement
terms for the stress tensor. In d = 4 the improved supercurrent is

j̄µα̇
Q̄imp = −

√
2 ∂κϕ (σ̄κσµ)α̇

β̇
ψ̄β̇ +mi

√
2ϕσ̄µα̇αψα + 2

3
√

2(2σ̄)κµα̇
β̇
∂κ(ϕψβ̇). (5.13)

The last term is the improvement term. It has a vanishing divergence, so that it does not
alter the conserved charge Q̄α̇. Note that the above supersymmetry current can also be
defined by coupling the theory to old-minimal supergravity classically and extracting the
term linear in the gravitino.11 There will also be a superconformal R-current analogous to

11The theory in (5.1) also allows for a R-supercurrent multiplet. When m = 0 the R-charge of the chiral
multiplet is arbitrary. If m 6= 0 there is still a R-symmetry under which the fermions are uncharged. This
R-symmetry is not anomalous, hence (5.1) can be coupled to new minimal supergravity.
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jµ that can be obtained from the classical coupling to ÃRµ (see section 3.4 for the definition
of tilde fields). In the following analysis we will focus on the flavor anomaly so we will
not write the operators relevant for section 3 explicitly. The corresponding Ward identities
in the gravitational sector are completely analogous if we replace the flavor currents with
R-current insertions. A Pauli Villars regularization scheme is used in [25] to analyze (5.1)
coupled to background old minimal supergravity.

The massless Wess-Zumino model is superconformal and thus can be coupled to con-
formal supergravity. With the improvement term S-supersymmetry implies that the sigma-
contraction of the cupercurrent vanishes on-shell. Indeed, one finds

σµαα̇j̄
µα̇

Q̄imp|m=0 = 4jχα + 2
√

2iF ∗ψα, (5.14)

where jχα is sourced by the compensator field χ and given in (5.8). As promised, the
operator sourced by χ is effectively equal to the gamma-contracted supercurrent. In other
words χ is the compensator for S-supersymmetry but not for Q-supersymmetry.

5.2 1- and 2-point functions

In this section, as a warm-up exercise, let us calculate a pair of 2-point functions, 〈jµAjνA〉
and 〈j̄µα̇

Q̄
jνQβ〉 in the PV regularization scheme. Before we do it, however, let us first

remark that in the massless theory, in the PV scheme, all 1-point functions (of operators
of positive conformal dimension) vanish. This follows from the fact that in the massive
theory such 1-point functions may be non-vanishing, but must contain a positive power of
the mass. All such terms therefore are subtracted in (4.5). Thus, in the massless theory,
〈O〉PV = 0 for all operators other than identity. This agrees with conformality of the
massless Wess-Zumino model.

Let us now consider the 2-point function. Since 1-point functions vanish in the PV
scheme,

〈〈JµA(p)JνA(−p)〉〉PV = 〈〈jµA(p)jνA(−p)〉〉PV =
= 〈〈Jµϕ(p)Jνϕ(−p)〉〉PV + 〈〈jµψ(p)jνψ(−p)〉〉PV. (5.15)

The 2-point functions become

〈〈jµϕ(p)jνϕ(−p)〉〉PV = − i
192π2 p

2πµν
[
log

(
p2

m2

)
− 8

3

]
, (5.16)

〈〈jµψ(p)jνψ(−p)〉〉PV = − i
96π2 p

2πµν
[
log

(
p2

m2

)
− 5

3

]
+ i

192π2 p
2ηµν , (5.17)

where πµν is the transverse projector defined in (4.34). While the scalar current, jµϕ, is
conserved, the fermionic part, jµψ, is not. This is not unexpected: as we already now there
is no conserved extension of the axial current to the massive theory. We find a removable
flavor anomaly in the PV scheme. To write it down, we sum the 2-point functions above
and find

〈〈jµA(p)jνA(−p)〉〉PV = − i
64π2 p

2
{
πµν

[
log

(
p2

m2

)
− 2

]
− 1

3η
µν

}
. (5.18)
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Its divergence equals

pµ〈〈jµA(p)jνA(−p)〉〉PV = i
192π2 p

2pν . (5.19)

Using (2.12) we read off the linear term of the flavor anomaly in the PV scheme,

APV
θ = − 1

192π2∂
2∂µA

µ + . . . (5.20)

In principle, this anomaly could be removed by a finite counterterm

Sfin = − 1
96π2

∫
d4xAµ∂

2Aµ. (5.21)

We will not do it here, as we want to consistently apply the PV regularization scheme.
It is also worth mentioning that such a form of the flavor anomaly was found in [2] in an
explicitly supersymmetric scheme.

We end this section by checking that the 2-point function of the supercurrents is
conserved. This is once again consistent with the absence of the SUSY anomaly. In the
massive theory the SUSY currents are given by (5.10). As we will see now, it is essential
to include the correction terms. Indeed, the full 2-point function reads

〈〈j̄µα̇
Q̄m

(p)jνQmβ(−p)〉〉PV = i
24π2 p

2pτ σ̄
τα̇αεαβπ

µν

[
log

(
p2

m2

)
− 5

3

]

− 1
48π2 p

2pκσ̄
α̇α
τ εαβε

κτµν

[
log

(
p2

m2

)
− 2

3

]
(5.22)

and is conserved. However, the 2-point function involving the massless current in place of
the massive one has a non-vanishing divergence. With the correction terms given in (5.12)
one finds,

〈〈j̄µα̇
Q̄m

(p)jνQmβ(−p)〉〉PV = 〈〈j̄µα̇
Q̄

(p)jνQβ(−p)〉〉PV +
[
〈〈j̄µα̇

Q̄
(p)∆jνQβ(−p)〉〉PV

+〈〈∆j̄µα̇
Q̄

(p)jνQβ(−p)〉〉PV + 〈〈∆j̄µα̇
Q̄

(p)∆jνQβ(−p)〉〉PV
]
, (5.23)

where the correction terms read

〈〈j̄µα̇
Q̄

(p)∆jνQβ(−p)〉〉PV =− i
96π2 p

2σ̄α̇ατ εαβ [pµηντ−pνηµτ−pτηµν−iεµνκτpκ] , (5.24)

〈〈∆j̄µα̇
Q̄

(p)∆jνQβ(−p)〉〉PV =− i
96π2 p

2σ̄α̇ατ εαβ [pµηντ+pνηµτ−pτηµν−iεµνκτpκ] . (5.25)

Thus, the divergences read

pµ〈〈j̄µα̇Q̄m(p)jνQmβ(−p)〉〉PV = 0, (5.26)

pµ〈〈j̄µα̇Q̄ (p)jνQβ(−p)〉〉PV = i
96π2 σ̄

α̇α
τ εαβp

2
(
2pνpτ − p2ηντ

)
. (5.27)

Once again, we see how important it is to regulate the supercurrent in the SUSY-invariant
fashion.
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5.3 Wess-Zumino consistency condition

Here we want to check explicitly the Wess-Zumino condition (2.29), which we rewrite here
for completeness,

δε̄Aθ = −iε̄α̇σ̄µα̇α∂µ〈Jχα〉. (5.28)

This identity is consistent with the absence of the SUSY-anomaly, Āε̄ = 0. We want to
check it by taking some functional derivatives of both its sides and compare the resulting
correlation functions. In the course of the evaluation we have to stick to a SUSY-preserving
renormalization scheme, in order to keep Āε̄ = 0. Furthermore, since terms we are looking
for are local, it is crucial to include all scheme-dependent terms in our calculations.

Calculations of the flavor anomaly in an explicitly supersymmetry-preserving scheme
were carried out in [3] and explicit expressions were worked out in [2, 5, 6]. However,
in order to check (5.28) we would also need to calculate its right hand side in the same
scheme. To be consistent, we will use the Pauli-Villars regularization scheme throughout
the calculations. The flavor anomaly will then take form

APV
θ = AABJ

θ + δθS
PV
loc , (5.29)

where AABJ
θ is the ABJ anomaly (2.8) while δθSPV

loc is a scheme-dependent part. Its form,
however, is uniquely fixed by the choice of the Pauli-Villars regularization scheme.

Having calculated the flavor anomaly, we can take functional derivatives of the Wess-
Zumino condition (5.28) and compare the two sides. Since we are guaranteed to have the
ABJ anomaly present, we will obtain a non-trivial check by taking functional derivatives
with respect to Aµ and λβ . Hence, in order to test the Wess-Zumino consistency condition
we test the following identity,

〈〈JµA(p1)Jλβ(p2)∂Aθ
∂ε̄α̇

(p3)〉〉PV = σ̄ρα̇αp3ρ〈〈JµA(p1)Jλβ(p2)Jχα(p3)〉〉PV (5.30)

in the Pauli-Villars regularization scheme.

5.3.1 Correlator 〈JµAJχαJλβ〉

We start with the right hand side of (5.30). First, the seagull terms in the Lagrangian (B.1)
result in the relation,

〈〈JµA(p1)Jχα(p2)Jλβ(p3)〉〉m = 〈〈jµA(p1)jχα(p2)jλβ(p3)〉〉m −
i
2σ

µ
αα̇〈〈j̄

α̇
λ̄

(p12)jλβ(p3)〉〉m,
(5.31)

where p12 = p1 + p2. Next, since jχα is sourced by a compensator, it is proportional to
the equations of motion. In particular, if we define

j(eq)χα = i√
2

(
ϕ

δ

δψα
− ψα

δ

δF

)
S (5.32)
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then, in the massless theory, jχα = j
(eq)
χα |m=0. We can use the Schwinger-Dyson equations

to write

〈〈jµA(p1)jχα(p2)jλβ(p3)〉〉 = i
2σ

µ
αα̇〈〈j̄

α̇
λ̄

(p12) jλβ(p3)〉〉 (5.33)

in the massless theory, up to an anomaly. This, together with (5.31), shows that, up to an
anomaly, 〈〈JµAJχαJλβ〉〉 = 0. This is consistent with (2.32).

In order to find the anomaly in (5.33) we consider the massive theory. In the massive
theory, however, jχα is no longer proportional to the equations of motion. Instead

jχα = j(eq)χα + ∆jχα, ∆jχα = im
√

2ϕψα. (5.34)

This gives us the pseudo-Schwinger-Dyson identity,12

〈〈jµA(p1)jχα(p2)jλβ(p3)〉〉m = i
2σ

µ
αα̇〈〈j̄

α̇
λ̄

(p12) jλβ(p3)〉〉m − iεβα〈〈jµA(p1)jD(p23)〉〉m

+ im
√

2〈〈jµA(p1) :ϕψα : (p2) jλβ(p3)〉〉m. (5.35)

The second term on the right hand side vanishes, 〈jµAjD〉m = 0. When (5.35) is substituted
into (5.31) we find

〈〈JµA(p1)Jχα(p2)Jλβ(p3)〉〉m = 〈〈jµA(p1) ∆jχα(p2) jλβ(p3)〉〉m. (5.36)

This is the same mechanism for anomaly emergence as in the cases discussed in section 4.
Here, however, we discover the possibility of a new kind of anomaly: an anomaly in the
equations of motion. Notice also that, in principle, we could have declared j

(eq)
χα as the

regulated version of the massless jχα. This, however, would violate supersymmetry, which
requires that the form of the operator jχα remains the same regardless of the mass.

Now we proceed with the standard Feynman parameters,

〈〈JµA(p1)Jχα(p2)Jλβ(p3)〉〉PV =
= − lim

M→∞
〈〈jµA(p1) ∆jχα(p2) jλβ(p3)〉〉M

= − lim
M→∞

M2
∫
Eu

d4k

(2π)4
kµεβα + (2σ)κµ γ

β εγα
(
kκ − p1κ

2
)

(k2 +M2)(|k − p1|2 +M2)(|k + p2|2 +M2)

= 1
32π2

∫ 1

0
dx1

∫ 1−x1

0
dx2

[
(2σ)κµ γ

β εγα (p1κ(1− 2x2) + 2x1p2κ) + 2εβα(x1p
µ
2 − x2p

µ
1 )
]

= 1
192π2

[
(2σ)κµ γ

β εγα(p1κ + 2p2κ) + 2εβα(pµ2 − p
µ
1 )
]
. (5.37)

Note that the 3-point function in (5.30) requires swapping Jχα and Jλβ which swaps p2
with p3 and produces an additional minus sign by anticommuting the fermions. After some
algebra one finds

σ̄ρα̇αp3ρ〈〈JµA(p1)Jλβ(p2)Jχα(p3)〉〉PV = εβα
192π2

[
iεµκλτp1κp3λσ̄

α̇α
τ

+σ̄µα̇αp3 ·(p2−p3)+σ̄α̇ακ (pκ1p
µ
3 +2pµ1pκ3)

]
. (5.38)

12We call it a pseudo Schwinger-Dyson identity, since it relates its left hand side to correlation functions
that are not necessarily local.
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Terms: AµAν AµD λ̄β̇λβ χαλβ

Correlators: 〈∂jµAjνAj
ρ
A〉 〈∂j

µ
Aj

ν
AjD〉 〈∂j

µ
Ajλ̄β̇jλβ〉 〈∂j

µ
Ajχαλλβ〉

Table 1. The relevant terms in the flavor anomaly and the 3-point functions one needs to evaluate
to retrive their exact form and coefficients.

5.3.2 Flavor anomaly

Now we calculate the left hand side of (5.30). To do it, we first must calculate the relevant
terms in the flavor anomaly (5.29). These are terms that contain exactly two sources and
under the supersymmetry transformation δε̄ transform into expressions containing a single
Aµ and a single λβ . It is easy to see that there are four types of terms we have to worry
about, as listed in the table below. In order to recover the exact form of such terms, we
can evaluate various 3-point functions, as indicated in table 1.

The anomalies can be easily extracted from the 3-point functions obtained by the func-
tional differentiation of the generating functional, i.e., the correlators involving “capital”
operators Jk. Feynman calculus, on the other hand, provides means to calculate correlation
functions of the “small” operators jk. To relate the two, we have to resolve the seagull
terms, which are given in (B.19)–(B.23). As we can see, the 3-point functions of interest
have vanishing seagull terms.

The ABJ anomaly was calculated in section 4.2. Here we will calculate anomalous
terms in other relevant correlation functions. As discussed in section 4.1, these anomalous
terms — unlike the ABJ anomaly — can be removed by a finite counterterm. However,
since we use the single, consistent, supersymmetry-preserving, Pauli-Villars regularization
scheme, the specific form of these anomalous terms is fixed. While supersymmetric, the
scheme does not preserve the conservation of the axial current jµA. Hence, additional,
anomaly-like terms may appear in various correlation functions involving the divergence of
the current. For example, with the operator P defined in (4.17) we find

p1µ〈〈jµA(p1)j̄λ̄β̇(p2)jλβ(p3)〉〉PV =

= − lim
M→∞

〈〈P (p1) j̄α̇
λ̄

(p2)jλα(p3)〉〉M

= lim
M→∞

M2

2 p1κσ
κ
ββ̇

∫
Eu

d4k

(2π)4
1

(k2 +M2)(|k − p1|2 +M2)(|k + p2|2 +M2)

= i
32π2 p1κσ

κ
ββ̇

∫ 1

0
dx1

∫ 1−x1

0
dx2 lim

M→∞

M2

∆0 +M2

= i
64π2 p1κσ

κ
ββ̇
. (5.39)

For completeness we also list

p1µ〈〈jµA(p1)jνA(p2)jρA(p3)〉〉PV = i
96π2 ε

κλνρp2κp3λ, (5.40)

p1µ〈〈jµA(p1)jνA(p2)jD(p3)〉〉PV = 0. (5.41)

Finally, by contracting (5.37), which is the exact result in the PV scheme, we find

p1µ〈〈JµA(p1)Jχα(p2)Jλβ(p3)〉〉PV =− 1
96π2

[
(2σ)µν γ

β εγαp1µp2ν+εβαp1 ·(p1−p2)
]
. (5.42)
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All together we find the relevant terms in the flavor anomaly in the PV regularization
scheme,

APV
θ = − 1

192π2∂µ
[
εµνρτAν∂ρAτ + 3λσµλ̄+ 2iλσµσ̄ν∂νχ− 2i∂µ(λχ)

+O(C,M, χ2, λ̄)
]

(5.43)

and its supersymmetric variation,

δε̄APV
θ = 1

192π2 ε̄α̇∂µ

[
− i

2ε
µκλτFκλσ̄

α̇α
τ + σ̄α̇αν (∂µAν + ∂νAµ)

+ 2(σ̄µα̇α∂νAν + σ̄να̇αAν∂
µ)− 3iDσ̄µα̇α

]
λα. (5.44)

By taking functional derivatives with respect to Aµ and λβ we arrive at the left hand side
of (5.30),

〈〈JµA(p1)Jλβ(p2)∂Aθ
∂ε̄α̇

(p3)〉〉PV = εβα
192π2

[
iεµκλτp1κp3λσ̄

α̇α
τ

+σ̄µα̇αp3 · (p2 − p3) + σ̄κ(pκ1p
µ
3 + 2pµ1pκ3)

]
. (5.45)

This matches (5.38) exactly.
In this section we have shown that the relation (5.30) holds in the PV-regulated Wess-

Zumino model. This relation is a direct consequence of the correct Wess-Zumino consis-
tency condition (5.28) with no SUSY-anomaly, Āε̄ = 0.

5.4 Ward identity

We want to independently check the Ward identity (2.31), which reads,

∂µ〈J̄µα̇Q̄ 〉 = iσ̄α̇αµ λα〈JµA〉 −
[
σ̄κλα̇

β̇
Fκλ + iDδα̇

β̇

]
〈J̄ β̇
λ̄
〉+ σ̄µα̇α∂µλα 〈JD〉

− iσ̄µα̇αAµ〈Jχα〉+ 2λ̄α̇〈JM〉+O(C,M, χ) (5.46)

and show that it is non-anomalous. In particular, we want to show that the inclusion of the
operators Jχ and JM removes the suspected anomaly (2.10). The simplest correlator which
contains a non-vanishing contribution from the insertion of Jχα is 〈JχαJµAJλβ〉. Hence, we
take 3 functional derivatives of (5.46) with respect to λβ as well as Aµ and Aν to obtain

pQρ〈〈J̄ρα̇Q̄ (pQ)JµA(pA)JνA(pB)Jλβ(pL)〉〉 =

+ i(2σ̄)µρα̇
β̇
pAρ〈〈J̄ β̇λ̄ (pQA)JνA(pB)Jλβ(pL)〉〉+ (pA ↔ pB, µ↔ ν),

+ iσ̄µα̇α〈〈Jχα(pQA)JνA(pB)Jλβ(pL)〉〉+ (pA ↔ pB, µ↔ ν)
− iσ̄ρα̇αεαβpLρ〈〈JµA(pA)JνA(pB)JD(pQL)〉〉
+ iσ̄ρα̇αεαβ〈〈JAρ(pQL)JµA(pA)JνA(pB)〉〉, (5.47)

where we denote pIJ = pI + pJ . In the spirit of the SUSY transformations (2.18)–
(2.23) we highlight the line that would be missing if one used the gauge-breaking SUSY-
transformations (2.2)–(2.4). In this section we want to show that this Ward identity is
anomaly-free. We will use both the ancient method of shifting the momentum running in
the loop as well as the analysis in the Pauli-Villars regularization scheme.
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5.4.1 Canonical Ward identity

As we use the standard Feynman diagram methods, we will look for the anomaly in the
canonical Ward identity. To derive it, we need to work out SUSY transformations of
the operators involved. Since Φ = (ϕ,ψ, F ) fit into the chiral multiplet, their SUSY
transformations are given by (A.4)–(A.6). From this we find,

δε,ε̄j
µ
A = εα(2σ)µν β

α ∂νj
β
λ + (∂µεα)jλα + iεσµj̄χ̄

+ ε̄α̇(2σ̄)µνα̇
β̇
∂ν j̄

β̇

λ̄
+ (∂µε̄α̇)j̄α̇

λ̄
+ iε̄σ̄µjχ, (5.48)

δε,ε̄jλα = −jMεα + (∂µjD − ijAµ) ε̄β̇σ̄
µβ̇βεαβ , (5.49)

δε,ε̄jD = −iεjλ + iε̄j̄λ̄, (5.50)

where all the operators are listed in (5.4)–(5.8). This leads to the following Ward identity

pQρ〈〈j̄ρα̇Q̄ (pQ)jµA(pA)jνA(pB)jλβ(pL)〉〉 =

i
[
−δα̇

β̇
pµQ + (2σ̄)µρα̇

β̇
pQAρ

]
× 〈〈j̄β̇

λ̄
(pQA)jνA(pB)jλβ(pL)〉〉+ (pA ↔ pB, µ↔ ν)

+ iσ̄µα̇α〈〈jχα(pQA)jνA(pB)jλβ(pL)〉〉+ (pA ↔ pB, µ↔ ν)
− iσ̄ρα̇αεαβpQLρ〈〈jµA(pA)jνA(pB)jD(pQL)〉〉
+ iσ̄ρα̇αεαβ〈〈jµA(pA)jνA(pB)jAρ(pQL)〉〉, (5.51)

where we denote pIJ = pI + pJ . Other Ward identities involving the divergence of super-
current are presented in appendix B.4.

We will show that the Ward identity (5.51) is non-anomalous. Notice that in the
derivation of this statement we have not used the Ward identity (5.46). Therefore, if we
relate the “small” operators jk to the “capital” ones, Jk, we can derive (5.47) from (5.51)
and therefore confirm (5.46). To do it, we need to work out the seagull terms from the
Lagrangian in (B.1). These are presented in appendix B.3. This also provides an important
check on our results. We can check commutativity of the following diagram

〈J̄ρα̇
Q̄
JµAJ

ν
AJλβ〉

seagulls (B.26) //

∂ρ

��

〈j̄ρα̇
Q̄
jµAj

ν
Ajλβ〉+ local terms

∂ρ

��

∂ρ〈J̄ρα̇Q̄ JµAJ
ν
AJλβ〉

Ward identity (5.47)

��

∂ρ
[
〈j̄ρα̇
Q̄
jµAj

ν
Ajλβ〉+ local terms

]
Ward identities (5.51), (B.27), (B.28)

��
r.h.s. of (5.47) seagulls (B.19)–(B.23) & (B.24)–(B.25) // r.h.s. of (5.51)

(5.52)
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If one goes first to the right by using (B.26) and then down by means of the Ward
identities (5.51)–(B.28) one gets

pQρ〈〈J̄ρα̇Q̄ (pQ)Jµ(pA)JνA(pB)Jλβ(pL)〉〉 =

i(2σ̄)µρα̇
β̇
pAρ〈〈j̄β̇λ̄ (pQA)jνA(pB)jλβ(pL)〉〉+ (pA ↔ pB, µ↔ ν)

+ iσ̄µα̇α〈〈jχα(pQA)jνA(pB)jλβ(pL)〉〉+ (pA ↔ pB, µ↔ ν)
− iσ̄ρα̇αεαβpLρ〈〈jµA(pA)jνA(pB)jD(pQL)〉〉
+ iσ̄ρα̇αεαβ〈〈jµA(pA)jνA(pB)jAρ(pQL)〉〉
− ηµν〈〈j̄α̇

λ̄
(pQAB)jλβ(pL)〉〉

+ ηµν σ̄ρα̇αεαβpLρ〈〈jD(pAB)jD(pQL)〉〉. (5.53)

Now one can go over the diagram down first and confirm this Ward identity. In particular,
if a SUSY-anomaly is present in the Ward identity (5.47), it is equal to the SUSY-anomaly
in (5.51).

Note that if one replaces the third line of (5.51) containing jχα by the naive Schwinger-
Dyson identity (5.33), the anomaly reported in [9] reappears. However, there is no reason
to apply this substitution as the supersymmetric variation of jµA in (5.48) is uniquely
determined by the variations of the component fields of the chiral multiplet.

5.5 Anomaly by momentum shifting

In this section we explicitly check that the anomaly in absent in the Ward identity (5.51)
using the method of shifting the momentum running in the loop integrals.

5.5.1 The 4-point function

The full 4-point function is the sum of the 4 terms,

〈j̄ρα̇
Q̄

(pQ)jµA(pA)jνA(pB)jλβ(pL)〉 =

= 〈j̄ρα̇
Q̄

(pQ)jµϕ(pA)jνϕ(pB)jλβ(pL)〉

+ 〈j̄ρα̇
Q̄

(pQ)jµϕ(pA)jνψ(pB)jλβ(pL)〉+ (pA ↔ pB, µ↔ ν)

+ 〈j̄ρα̇
Q̄

(pQ)jµψ(pA)jνψ(pB)jλβ(pL)〉. (5.54)

We reverted here to correlation functions without the momentum conserving delta function
pulled out. It will be convenient to keep all Dirac deltas explicitly. We have

〈j̄ρα̇
Q̄

(pQ)jµϕ(pA)jνϕ(pB)jλβ(pL)〉= i(σ̄κσρσ̄λ)α̇αεαβ×

×
∏
I

∫
Eu

d4kI
(2π)4

kQκ
(
kA− pA

2
)µ (

kB− pB
2
)ν
kLλ

k2
Qk

2
Ak

2
Bk

2
L

×

×(2π)16δ(kL+pQ−kQ)δ(kQ+pA−kA)δ(kA+pB−kB)δ(kB+pL−kL)
+(pA ↔ pB,µ↔ ν). (5.55)
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〈j̄ρα̇
Q̄

(pQ)jµϕ(pA)jνψ(pB)jλβ(pL)〉=− i
2(σ̄κσρσ̄ξσν σ̄λ)α̇αεαβ×

×
∏
I

∫
Eu

d4kI
(2π)4

kQκ
(
kA− pA

2
)µ
kBξkLλ

k2
Qk

2
Ak

2
Bk

2
L

×

×(2π)16δ(kL+pB−kB)δ(kB+pQ−kQ)δ(kQ+pA−kA)δ(kA+pL−kL). (5.56)

〈j̄ρα̇
Q̄

(pQ)jµψ(pA)jνψ(pB)jλβ(pL)〉= i
4(σ̄κσρσ̄ξσµσ̄ησν σ̄λ)α̇αεαβ×

×
∏
I

∫
Eu

d4kI
(2π)4

kQκkAξkBηkLλ
k2
Qk

2
Ak

2
Bk

2
L

×

×(2π)16δ(kL+pB−kB)δ(kB+pA−kA)δ(kA+pQ−kQ)δ(kQ+pL−kL)
+(pA ↔ pB,µ↔ ν), (5.57)

where the products are taken over I = Q,A,B,L. All subsequent calculations and identities
will be checked term-by-term.

To evaluate the anomaly in (5.51) we move all terms to the left hand side and denote
the difference by Aµνα̇β . We will now check the absence of the anomaly by employing
the ancient method of shifting the integration momentum in the loop integrals. Such a
scheme almost certainly violates supersymmetry, but this is not a problem. If the anomaly
is absent, but the scheme is not supersymmetric, then the resulting difference, Aµνα̇β , will
be removable by a counterterm. On dimensional grounds only a single counterterm exists,

Sfin ∼
∫

d4xAµAµ λσ
κψ̄κ. (5.58)

Hence, if Aµνα̇β is proportional to pQκσ̄κα̇αεαβ , there is no SUSY anomaly.

5.5.2 Calculations
Now we act with pQρ on each term in the 4-point function (5.54). First, denote pIJ = pI +
pJ and look for the delta function of the form δ(kI+pQ−kQ) in each term. This means that
we can write pQ = kQ−kI underneath the integral and use the fact that σµσ̄νkµkν = −k2.
For example, in the term written explicitly in (5.55) we find δ(kL + pQ − kQ). Hence,
pQ = kQ − kL and the important part of the numerator of the integrand reads

σ̄κσρσ̄λpQρkQκkLλ = σ̄κσρσ̄λ(kQρ − kLρ)kQκkLλ
= σ̄κ

[
k2
LkQκ − k2

QkLκ
]
. (5.59)

We can cancel factors in the numerator and the denominator now and in total we find

pQρ〈j̄ρα̇Q̄ (pQ)jµϕ(pA)jνϕ(pB)jλβ(pL)〉 = iσ̄κα̇αεαβ×

×
∏
I

∫
Eu

d4kI
(2π)4

(
kA − pA

2
)µ (

kB − pB
2
)ν

k2
Ak

2
B

× (2π)4δ(kL + pQ − kQ)× [

kQκ
k2
Q

(2π)12δ(kQ + pA − kA)δ(kA + pB − kB)δ(kB + pQL − kQ)

−kLκ
k2
L

(2π)12δ(kL + pQA − kA)δ(kA + pB − kB)δ(kB + pL − kL)
]

+ (pA ↔ pB, µ↔ ν). (5.60)
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Analogous expressions hold for (5.56) and (5.57). We must compare now this expression
to the right hand side of the supersymmetric Ward identity (5.51). First, we rewrite its
right hand side in a way that is better suited for the comparison. The combinations of the
operators on the right hand side of the Ward identity in momentum space are

i
[
−δα̇

β̇
pµQ+(2σ̄)µρα̇

β̇
pQAρ

]
×j̄β̇

λ̄
(pQA)+iσ̄µα̇αjχα(pQA) =

=−
√

2
∫ d4k

(2π)4 :ϕ(k)ψ̄β̇(pQA−k):
[

1
2(σ̄κσµ)α̇

β̇
kκ+

(
kµ− p

µ
A

2

)
δα̇
β̇

]

+ 1√
2
σ̄µα̇α

∫ d4k

(2π)4 :ψα(k)F ∗(pQA−k): (5.61)

−iσ̄ρα̇αεαβjD(pQL)+iσ̄ρα̇αεαβjAρ(pQL) =

=−iσ̄ρα̇αεαβ
∫ d4k

(2π)4kρ :ϕ(k)ϕ∗(pQL−k): +i
∫ d4k

(2π)4 :ψ̄α̇(pQL−k)ψβ(k): . (5.62)

Using these expressions one can write down the momentum integrals representing the right
hand side of the Ward identity. This is a little long, but expressions on both sides split
into a set of simpler terms that must match each other. This happens because:

• the terms corresponding to bosonic and fermionic parts jµϕ and jµψ of the current jµA
match separately and

• the 3-point function-like terms depend on 3 momenta, one of which is pQA, pQB, or
pQL. Again, such terms must match each other on both sides of the Ward identity.

A further simplification comes from the fact that, in order to calculate the anomaly,
we do not have to keep track of all terms. First, in the method of momentum shifting
the anomaly emerges from momentum shifting in linearly divergent integrals. Since the
4-point function (5.54) has dimension zero in momentum space, its divergence is linearly
divergent at most. The linearly divergent integrals in (5.60) are those with exactly three
loop momenta k in the numerator. This means we drop all external momenta in the
numerator.

Secondly, the integrals that require shifting are exactly those which have k2
Q in their

denominators. Concentrating on (5.60) and using (5.61) we can easily guess which terms
in (5.51) correspond to two bosonic currents jµϕ and jνϕ on the right hand side of the Ward
identity. Dropping all explicit external momenta in the numerator these terms are

iσ̄κα̇αεαβ ×
∏
I

∫
Eu

d4kI
(2π)4

kµAk
ν
B

k2
Ak

2
B

× (2π)4δ(kL + pQ − kQ)×[
kLκ
k2
L

(2π)12δ(kL + pA − kA)δ(kA + pB − kB)δ(kB + pQL − kL)

−kLκ
k2
L

(2π)12δ(kL + pQA − kA)δ(kA + pB − kB)δ(kB + pL − kL)
]

+ (pA ↔ pB, µ↔ ν), (5.63)
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The integrals in the second line above and the second line of (5.60) match exactly. However,
to match the first lines we have to shift the loop momentum. Hence, the difference be-
tween (5.60) and the corresponding part of the right hand side of the Ward identity (5.51) is

i
∏

I∈{Q,A,B,L}

∫
Eu

d4kI
(2π)4

kµAk
ν
Bk

κ
Q

k2
Ak

2
Bk

2
Q

×

× (2π)16δ(kQ + pA − kA)δ(kA + pB − kB)δ(kB + pQL − kQ)δ(kL + pQ − kQ)

− i
∏

J∈{Q,A,B}

∫
Eu

d4kJ
(2π)4

kµAk
ν
Bk

κ
L

k2
Ak

2
Bk

2
L

× δ(kL + pA − kA)δ(kA + pB − kB)δ(kB + pQL − kL) =

= i(2π)4δ(pQABL)
[∫

Eu

d4kL
(2π)4

(kL + pQ)κ(kL + pA + pQ)µ(kL + pA + pB + pQ)ν
(kL + pQ)2(kL + pA + pQ)2(kL + pA + pB + pQ)2

−
∫
Eu

d4kL
(2π)4

kκL(kL + pA)µ(kL + pA + pB)ν
k2
L(kL + pA)2(kL + pA + pB)2

]
= (2π)4δ(pQABL)Aκµν . (5.64)

The difference between the two integrals equals

Aκµν = i
192π2

(
pκQη

µν + pµQη
κν + pνQη

κµ
)
, (5.65)

which follows from the textbook shift identity.
Now we repeat the procedure for the divergence of all terms (5.55)–(5.57). We find the

difference between the left and right hand sides of (5.51), i.e., the anomaly, to be equal

Aµνα̇β = 2σ̄κα̇αεαβAµν κ −
1
2
(
(σ̄κσν σ̄λ)α̇αεαβAµλκ + (µ↔ ν)

)
+ 1

4
(
(σ̄κσµσ̄ησν σ̄λ)α̇αεαβAηλκ + (µ↔ ν)

)
= i

64π2 η
µνpQκσ̄

κα̇αεαβ . (5.66)

This anomaly is readily removable by a finite counterterm,

Sfin = 1
64π2

∫
d4xAµAµ λσ

κψ̄κ. (5.67)

Hence, we have shown that both canonical Ward identity (5.51) as well as (5.47) are free
of genuine SUSY anomalies. Consequently, we confirm the Ward identity (5.46). Notice,
however, that the above counterterm is not invariant under the flavor symmetry and hence
will generate a mixed gravitational contribution to the ABJ anomaly (2.8).

5.6 Anomaly in the Pauli-Villars regularization

The fact that the massless Wess-Zumino model has the explicit supersymmetric extension
to the massive theory is sufficient for the absence of the SUSY anomalies. Nevertheless, we
have checked that the both sides of the Ward identity (5.51) match in the massive theory.
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As discussed in section 4 the mechanism behind the emergence of anomalies in the
Pauli-Villars renormalization scheme is the appearance of non-local mass-dependent terms
in the massive Ward identity. The left hand side of the Ward identity (5.51) contains two
4-point functions involving the massless supercurrent j̄ρα̇

Q̄
and its massive correction term

∆j̄ρα̇
Q̄

given in (5.10). Both correlator are evaluated in the massive theory now. We want
to show that their sum equals exactly to the right hand side of the Ward identity (5.51)
and contains only 3- and lower-point functions. In particular it is enough to show that no
non-trivial 4-point functions are present, but we can recover the right hand side exactly.
Furthermore, we already know that the leading, mass-independent terms reproduce the
3-point functions on the r.h.s. of (5.51) for the massless theory.

This is a straightforward, although long calculation. As an example, we will show the
cancellation of such terms in the correlation function with one scalar and one fermionic
flavor current, 〈j̄ρα̇

Q̄m
jµϕj

ν
ψjλβ〉m.

5.6.1 Left hand side
We split the supercurrent into its massless form and the massive correction, j̄µα̇

Q̄m
= j̄µα̇

Q̄
+

∆j̄µα̇
Q̄

. First consider the correlation function of the massless supercurrent in the massive
theory. We find

〈j̄ρα̇
Q̄

(pQ)jµϕ(pA)jνψ(pB)jλβ(pL)〉m = − i
2(σ̄κσρσ̄ξσν σ̄λ)α̇αεαβ×

×
∏
I

∫
Eu

d4kI
(2π)4

kQκ
(
kA − pA

2
)µ
kBξkLλ

(k2
Q +m2)(k2

A +m2)(k2
B +m2)(k2

L +m2)×

× (2π)16δ(kL + pB − kB)δ(kB + pQ − kQ)δ(kQ + pA − kA)δ(kA + pL − kL)

+ i
2m

2(σ̄κσρσ̄ν)α̇αεαβ×

×
∏
I

∫
Eu

d4kI
(2π)4

kQκ
(
kA − pA

2
)µ

(k2
Q +m2)(k2

A +m2)(k2
B +m2)(|pQ − kQ|2 +m2)×

× (2π)16δ(kL + kB)δ(pB − kB + pQ − kQ)δ(kQ + pA − kA)δ(kA + pL − kL),
(5.68)

where, as before, the index I runs over Q,A,B,L. The first term is equal to the expres-
sion (5.56) but with massive propagators. The second term comes from the fact that in the
massive theory contractions of any two spinors are non-vanishing, see propagators (B.15)–
(B.17). In this case ψ̄ present in j̄ρα̇

Q̄
is contracted with ψ̄ in jνψ, while ψ there can be

contracted with ψ in jλβ .
Now we apply pQρ to (5.68) and we rework the numerator of the first term analogously

to (5.59). We apply the split, pQ = kQ − kB but now we have to take the mass into
consideration when cancelling factors,

σ̄κσρσ̄ξσν σ̄λpQρkQκkBξ = σ̄κσρσ̄λ(kQρ − kBρ)kQκkBξ
= σ̄κσν σ̄λ

[
(k2
B +m2)kQκ − (k2

Q +m2)kBκ +m2(kBκ − kQκ)
]

= σ̄κσν σ̄λ
[
(k2
B +m2)kQκ − (k2

Q +m2)kBκ
]
−m2σ̄κσν σ̄λpQκ.

(5.69)
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The first term cancels the corresponding factors in the denominator as before. Since all
operators retain their form in the massive theory, these terms reproduce the appropriate
terms on the right hand side the Ward identity by the same calculations as in the previous
sections. Hence, we are left with the second term, which has the form of a mass-dependent
4-point function-like expression. In total, we find the mass-dependent terms in the diver-
gence of (5.68)

pQρ〈j̄ρα̇Q̄ (pQ)jµϕ(pA)jνψ(pB)jλβ(pL)〉m = i
2m

2(σ̄ρσν σ̄λ)α̇αεαβpQρ×

×
∏
I

∫
Eu

d4kI
(2π)4

(
kA − pA

2
)µ
kLλ

(k2
Q +m2)(k2

A +m2)(k2
B +m2)(k2

L +m2)×

× (2π)16δ(kL + pB − kB)δ(kB + pQ − kQ)δ(kQ + pA − kA)δ(kA + pL − kL)

+ i
2m

2(σ̄κσρσ̄ν)α̇αεαβpQρ×

×
∏
I

∫
Eu

d4kI
(2π)4

(
kA − pA

2
)µ
kQκ

(k2
Q +m2)(k2

A +m2)(k2
B +m2)(|pQ − kQ|2 +m2)×

× (2π)16δ(kQ + pA − kA)δ(kA + pL − kL)δ(pQ − kQ + pB − kB)δ(kB + kL)
+O(m0). (5.70)

Now the question is whether the 4-point functions are canceled by the correction term
involving ∆j̄µα̇

Q̄
. If this is the case, the anomaly is absent. We find

〈∆j̄ρα̇
Q̄

(pQ)jµϕ(pA)jνψ(pB)jλβ(pL)〉m = − i
2m

2(σ̄ρσν σ̄λ)α̇αεαβ×

×
∏
I

∫
Eu

d4kI
(2π)4

(
kA − pA

2
)µ
kLλ

(k2
Q +m2)(k2

A +m2)(k2
B +m2)(k2

L +m2)×

× (2π)16δ(kL + pB − kB)δ(kB + pQ − kQ)δ(kQ + pA − kA)δ(kA + pL − kL)

− i
2m

2(σ̄ρσκσ̄ν)α̇αεαβ×

×
∏
I

∫
Eu

d4kI
(2π)4

(
kA − pA

2
)µ (pQκ − kQκ)

(k2
Q +m2)(k2

A +m2)(k2
B +m2)(|pQ − kQ|2 +m2)×

× (2π)16δ(kQ + pA − kA)δ(kA + pL − kL)δ(pQ − kQ + pB − kB)δ(kB + kL).
(5.71)

Now we apply pQρ to this expression and add it to (5.70). The first lines cancel each other,
while the combination of the numerators of the second lines is

σ̄κσρσ̄νkQκpQρ − σ̄ρσκσ̄νpQρ(pQκ − kQκ) = σ̄ν
[
(|pQ − kQ|2 +m2)− (k2

Q +m2)
]
. (5.72)

Hence the sum of (5.70) and (5.71) produces a 3-point function-like contribution. As we
can see, the 4-point function-like mass-dependent contributions are indeed canceled by the
mass correction to the supercurrent. There is no SUSY anomaly.
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5.6.2 Exact match

If we want to, we can also match the remaining 3-point function-like terms to the right hand
side of the Ward identity (5.51). In section 5.5.2 we have already shown that the terms
leading in mass match. Here we have found two additional terms in (5.72) proportional to
m2, which can be written as

pQρ〈j̄ρα̇Q̄m(pQ)jµϕ(pA)jνψ(pB)jλβ(pL)〉m = i
2m

2σ̄να̇αεαβ×

×
∏
I

∫
Eu

d4kI
(2π)4

[ (
kA − pA

2
)µ

(k2
Q +m2)(k2

A +m2)(k2
B +m2)×

× (2π)16δ(kQ + pA − kA)δ(kA + pL − kL)δ(pQ − kQ + pB − kB)δ(kB + kL)

− (pA ↔ pB)
]

+O(m0). (5.73)

The two terms can be matched to the right hand side of the Ward identity. One term
appears when the contraction of F ∗ with ϕ∗ is taken into account while evaluating the
3-point function 〈jχα(pQA)jνϕ(pB)jλβ(pL)〉. The other term appears in the evaluation of
〈jχα(pQA)jνψ(pB)jλβ(pL)〉 and 〈j̄α̇

λ̄
(pQA)jνψ(pB)jλβ(pL)〉. In the massive theory ψ present

in jλβ can be contracted with ψ in jνψ, while ψ̄ there can be contracted with ψ̄ in the first
operator. Notice that all these additional massive terms appear in 3-point functions to
which the counterterm (2.24) contributes. This is the manifestation of the fact that when
the PV regularization scheme is applied, the large mass limit contributes additional local
terms to the generating functional.

Analogous calculations follow for the remaining two correlation functions in (5.54). All
terms that could contribute in the infinite mass limit match between the two sides of the
Ward identity (5.51). This is simply a consequence of the fact that the Ward identity holds
in the massive theory with the conserved SUSY current. We conclude that there is no SUSY
anomaly in the canonical Ward identity (5.51) in the Pauli-Villars renormalization scheme.

As a final remark let us underline the connection between the correction term ∆j̄µα̇
Q̄

and scheme-dependence. In section 4.3.3 we have shown that local terms following from
the counterterm (4.40) are equivalent to the large mass limit contribution from ∆T (m)

µν . In
the same fashion we can show that the inclusion of the correction term ∆j̄µα̇

Q̄
parameter-

izes scheme-dependence of the SUSY anomalies and is equivalent to the inclusion of the
counterterm (5.67). Indeed, by taking the large mass limit one finds

lim
M→∞

〈〈∆j̄µα̇
Q̄

(pQ) jµA(pA) jνA(pB) jλβ(pL)〉〉 = i
192π2 η

µνpQρσ̄
ρα̇αεαβ , (5.74)

the expression proportional to the removable SUSY anomaly (5.66) we have found in the
non-SUSY invariant scheme. Thus, an extension of the massless supercurrent to the massive
theory of the form j̄µα̇

Q̄m
= j̄µα̇

Q̄
+ ξ∆j̄µα̇

Q̄
for any ξ 6= 1 would result in an anomaly in PV

regularization.
Similarly if we tried to use dimensional regularization we would encounter additional

supersymmetry-breaking finite ε
ε terms that are to be removed by local counterterms of the

type (5.67). Indeed this was demonstrated by explicit calculation in a recent work [27].
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6 Summary

In this paper we have addressed recent claims [8–12] that supersymmetry is anomalous
in the presence of a flavor or R-symmetry anomaly. In order to investigate the claim, we
carry out detailed calculations in an explicitly supersymmetric Pauli-Villars renormaliza-
tion scheme. Our analysis supports the results of [28]. Our conclusions are as follows:

1. In the context of a N = 1 theory with a chiral U(1) flavor symmetry we show
that in Wess-Zumino gauge the presence of the chiral ’t Hooft anomaly implies an
anomaly in supersymmetry. By going away from Wess-Zumino gauge the anomaly
can be removed from supersymmetry at the cost of generating specific terms in the
flavor anomaly on top of the ABJ anomaly. Coupling the theory to the full vector
supermultiplet the compensating fields can be used to transfer the anomaly from
supersymmetry to the chiral flavor symmetry. Additionally, we derive the suitable
counterterm (2.24) as well as the correct Wess-Zumino consistency condition (2.28)
and SUSY Ward identity (2.31).

2. In section 3 we show a similar mechanism in the context of coupling a N = 1 theory
to background conformal supergravity. The anomaly in the SUSY Ward identity can
be removed at the cost of modifying other Ward identities. To do it, we introduce
an additional chiral multiplet, whose fields couple to the conformal, R-, and S-SUSY
anomalies. In this way we remove the Q-SUSY anomaly and generate additional
contributions to the anomalies in the aforementioned symmetries. The procedure
only affects the symmetries that have already been broken by anomalies, thus only
additional constraints, such as a priori choice of current multiplet, can deem it in-
applicable. Similarly to the flavor case, we derived the suitable counterterm (3.29),
as well as the modified Wess-Zumino consistency condition (3.27) and the Q-SUSY
Ward identity (3.28). The introduction of the extra chiral multiplet is tantamount
to coupling the theory to old minimal supergravity.

3. The simpler model of the interplay between trace and transverse anomalies in the
theory of a free massless real boson displays similar features. As reviewed in sec-
tion 4.3, the two anomalies are two faces of the same transverse-trace anomaly. In
particular, one can reshuffle the anomalous contribution from the transverse Ward
identity to the trace Ward identity and vice versa. Similarly the anomalies considered
here can be moved from supersymmetry to other symmetries. However in the SUSY
case one cannot restore any other symmetry at the cost of introducing an anomaly in
supersymmetry. If some additional constraints, a specific current multiplet, or gauge
conditions are imposed, it may be impossible to remove the anomalous contributions
from the SUSY Ward identity.

4. In section 5 we have presented a detailed analysis of various correlation functions
for the free massless Wess-Zumino theory coupled to a background vector multi-
plet. We analyzed a number of correlators, which are susceptible to the SUSY Ward
identities (2.31), (5.51) and flavor Ward identity (2.12) as well as the Wess-Zumino
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condition (2.29). We show that in the explicitly supersymmetric Pauli-Villars renor-
malization scheme the SUSY anomaly is absent. Instead, the flavor anomaly picks
up a number of specific terms on top of the usual ABJ anomaly, (5.43).
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A Multiplets and variations

Conventions follow [18]. In particular, all spinors are anti-commuting and their contractions
are

ψχ = ψαχα, ψ̄χ̄ = ψ̄α̇χ̄
α̇, ψσµχ̄ = ψασµαα̇χ̄

α̇, ψ̄σ̄µχ = ψ̄α̇σ̄
µα̇αχα. (A.1)

For more details, consult appendices A and B of [18]. Fermionic functional derivatives act
from the left.

A.1 Chiral multiplet

The chiral multiplet Φ = (ϕ,ψ, F ) consist of the physical fields ϕ,ψ and auxiliary field F .
It is given by

Φ = ϕ+
√

2θψ + iθσµθ̄∂µϕ+ θθF + i√
2
θθθ̄σ̄µ∂µψ + 1

4θθθ̄θ̄�ϕ, (A.2)

Φ+ = ϕ∗ +
√

2θ̄ψ̄ − iθσµθ̄∂µϕ∗ + θ̄θ̄F ∗ + i√
2
θ̄θ̄θσµ∂µψ̄ + 1

4θθθ̄θ̄�ϕ
∗. (A.3)

The supersymmetry transformations of the component fields are

δε,ε̄ϕ =
√

2εψ, δε,ε̄ϕ
∗ =
√

2ε̄ψ̄, (A.4)
δε,ε̄ψα = i

√
2σµαα̇ε̄α̇∂µϕ+

√
2εαF, δε,ε̄ψ̄α̇ = −i

√
2εασµαα̇∂µϕ∗ +

√
2ε̄α̇F ∗, (A.5)

δε,ε̄F = i
√

2ε̄σ̄µ∂µψ, δε,ε̄F
∗ = i

√
2εσµ∂µψ̄. (A.6)

A.2 Vector multiplet

The vector multiplet V = (C,χ,M, Aµ, λ,D) consist of the fields Aµ, λ,D compensators
fields C,χ,M. It is given by

V = C + iθχ− iθ̄χ̄+ i
2θθM−

i
2 θ̄θ̄M

∗ − θσµθ̄Aµ + iθθθ̄
[
λ̄+ i

2 σ̄
µ∂µχ

]
− iθ̄θ̄θ

[
λ+ i

2σ
µ∂µχ̄

]
+ 1

2θθθ̄θ̄
[
D + 1

2�C
]
. (A.7)
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The supersymmetry transformations of the component fields are

δε,ε̄Aµ = iε(σµλ̄− i∂µχ) + iε̄(σ̄µλ− i∂µχ̄), (A.8)

δε,ε̄λ
α = −1

2ε
β(2σ)µν α

β Fµν + iDεα, (A.9)

δε,ε̄D = −εσµ∂µλ̄+ ε̄σ̄µ∂µλ, (A.10)
δε,ε̄χ

α = −iε̄α̇σ̄µα̇α(Aµ − i∂µC) +Mεα, (A.11)
δε,ε̄M = 2iε̄σ̄µ∂µχ+ 2ε̄λ̄, (A.12)
δε,ε̄C = i(εχ− ε̄χ̄). (A.13)

The supergauge transformations of the vector multiplet are given by

δΛC = σ, (A.14)
δΛχ = −i

√
2Υ, (A.15)

δΛM = −2if, (A.16)
δΛAµ = ∂µθ, (A.17)
δΛλ = 0, (A.18)
δΛD = 0, (A.19)

where Λ = (1
2σ + i

2θ,Υ, f) is the chiral multiplet, σ and θ are real and θ is identified with
the usual gauge transformation parameter.

B Wess-Zumino model

B.1 Lagrangian

The Lagrangian of the Wess-Zumino model coupled to the vector multiplet of sources is

L = Φ+egV Φ|g=1 + Lm

= egC
[
L0 + gL1 + g2L2 + g3L3 + g4L4

]
g=1

+ Lm, (B.1)

where

L0 = 1
4 (ϕ�ϕ∗ + ϕ∗�ϕ− 2∂µϕ∗∂µϕ)− i

2
(
ψ̄σ̄µ∂µψ − ∂µψ̄σ̄µψ

)
+ FF ∗, (B.2)

L1 = i
2Aµ (ϕ∗∂µϕ− ϕ∂µϕ∗) + 1

2Aµ ψ̄σ̄
µψ

+ 1
2
√

2

(
ϕχσµ∂µψ̄ − ϕ∂µχσµψ̄ + ϕ∗ ∂µχ̄σ̄

µψ − ϕ∗ χ̄σ̄µ∂µψ

+∂µϕ∗ χ̄σ̄µψ − ∂µϕχσµψ̄ + 2iF χ̄ψ̄ − 2iF ∗χψ
)

+ i√
2

(
ϕ∗ λψ − ϕ λ̄ψ̄

)
+ i

2F
∗ϕM− i

2Fϕ
∗M∗ + 1

2ϕϕ
∗
(
D + 1

2�C
)
, (B.3)
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L2 = −1
4AµA

µϕϕ∗ − i
2
√

2
Aµ

(
ϕχσµψ̄ + ϕ∗χ̄σ̄µψ

)
− i

4ϕϕ
∗ (χ̄σ̄µ∂µχ− ∂µχ̄σ̄µχ) + i

4 (ϕ∂µϕ∗ − ϕ∗∂µϕ) χ̄σ̄µχ

+ 1
2ψχ ψ̄χ̄+ 1

4 (Fϕ∗ χ̄χ̄+ F ∗ϕχχ)

− 1
2ϕϕ

∗
(
λχ+ λ̄χ̄

)
− 1

2
√

2
ϕ ψ̄χ̄M− 1

2
√

2
ϕ∗ ψχM∗ + 1

4ϕϕ
∗MM∗ (B.4)

L3 = 1
4Aµϕϕ

∗ χ̄σ̄µχ+ i
4
√

2

(
ϕ ψ̄χ̄ χχ− ϕ∗ ψχ χ̄χ̄

)
+ i

8ϕϕ
∗ (χ̄χ̄M− χχM∗) , (B.5)

L4 = 1
16ϕϕ

∗χχ χ̄χ̄, (B.6)

Lm = m

(
ϕF + ϕ∗F ∗ − 1

2(ψψ + ψ̄ψ̄)
)
. (B.7)

Non-dynamical source are in bold. In the Wess-Zumino gauge χ = C =M = 0 and we find

LWZ
0 = L0, (B.8)

LWZ
1 = i

2Aµ (ϕ∗∂µϕ− ϕ∂µϕ∗) + 1
2Aµ ψ̄σ̄

µψ

+ i√
2

(
ϕ∗ λψ − ϕ λ̄ψ̄

)
+ 1

2ϕϕ
∗D, (B.9)

LWZ
2 = −1

4AµA
µϕϕ∗, (B.10)

LWZ
3 = LWZ

4 = 0. (B.11)

B.2 Propagators

Non-vanishing propagators are

〈ϕ(p)ϕ∗(p′)〉 = (2π)4δ(p+ p′) −i
p2 +m2 , (B.12)

〈ϕ(p)F (p′)〉 = (2π)4δ(p+ p′) im
p2 +m2 , (B.13)

〈F (p)F ∗(p′)〉 = (2π)4δ(p+ p′) ip2

p2 +m2 , (B.14)

〈ψα(p)ψ̄β̇(p′)〉 = (2π)4δ(p+ p′)
−iσµ

αβ̇
pµ

p2 +m2 , (B.15)

〈ψα(p)ψβ(p′)〉 = (2π)4δ(p+ p′) −imδβα
p2 +m2 , (B.16)

〈ψ̄α̇(p)ψ̄β̇(p′)〉 = (2π)4δ(p+ p′)
−imδα̇

β̇

p2 +m2 . (B.17)
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B.3 Seagull terms

Using the Lagrangian (B.1) we can express the correlation functions of the operators Jφk
through the correlators of the jφk . We write pIJ = pI + pJ .

2-point functions are identical,

〈Jφ1Jφ2〉 = 〈jφ1jφ2〉. (B.18)

Relations between 3-point functions are

〈〈JµA(p1)JνA(p2)JρA(p3)〉〉 = 〈〈jµA(p1)jνA(p2)jρA(p3)〉〉, (B.19)
〈〈JµA(p1)JνA(p2)JD(p3)〉〉 = 〈〈jµA(p1)jνA(p2)jD(p3)〉〉

+ iηµν〈〈jD(p12)jD(p3)〉〉, (B.20)
〈〈JµA(p1)J̄λ̄β̇(p2)Jλβ(p3)〉〉 = 〈〈jµA(p1)j̄λβ̇(p2)jλβ(p3)〉〉, (B.21)

〈〈JµA(p1)Jχα(p2)Jλβ(p3)〉〉 = 〈〈jµA(p1)jχα(p2)jλβ(p3)〉〉

− i
2σ

µ
αα̇〈〈j̄

α̇
λ̄

(p12)jλβ(p3)〉〉, (B.22)

〈〈JD(p1)Jχα(p2)Jλβ(p3)〉〉 = 〈〈jD(p1)jχα(p2)jλβ(p3)〉〉
− iεαβ〈〈jD(p1)jD(p23)〉〉. (B.23)

By coupling the theory to gravitino, ψ̄µα̇, [48], one can also find,

〈〈J̄ρα̇
Q̄

(pQ)JD(pD)Jλβ(pL)〉〉 = 〈〈j̄ρα̇
Q̄

(pQ)jD(pD)jλβ(pL)〉〉

+ iaσ̄ρα̇αεαβ〈〈jD(pQL)jD(pD)〉〉, (B.24)
〈〈J̄ρα̇

Q̄
(pQ)JµA(pD)Jλβ(pL)〉〉 = 〈〈j̄ρα̇

Q̄
(pQ)jµA(pA)jλβ(pL)〉〉

− i(σ̄µσρ)α̇
β̇
〈〈j̄β̇

λ̄
(pQA)jλβ(pL)〉〉. (B.25)

Finally, for the 4-point function of interest,

〈〈J̄ρα̇
Q̄

(pQ)JµA(pA)JνA(pB)Jλβ(pL)〉〉 = 〈〈j̄ρα̇
Q̄

(pQ)jµA(pA)jνA(pB)jλβ(pL)〉〉

− i(σ̄µσρ)α̇
β̇
〈〈j̄β̇

λ̄
(pQA)jνA(pB)jλβ(pL)〉〉+ (pA ↔ pB, µ↔ ν)

+ iηµν〈〈j̄ρα̇
Q̄

(pQ)jD(pAB)jλβ(pL)〉〉

+ iσ̄ρα̇αεαβ〈〈jµA(pA)jνA(pB)jD(pQD)〉〉
− ηµν σ̄ρα̇αεαβ〈〈jD(pAB)jD(pQD)〉〉. (B.26)

B.4 Ward identities

The following 3-point functions are useful as well,

pQρ〈〈j̄ρα̇Q̄ (pQ)jD(pD)jλβ(pL)〉〉 = +i〈〈j̄α̇
λ̄

(pQD)jλβ(pL)〉〉,

− iσ̄ρα̇αεαβpQLρ〈〈jD(pD)jD(pQL)〉〉 (B.27)

and

pQρ〈〈j̄ρα̇Q̄ (pQ)jµA(pA)jλβ(pL)〉〉 = +i
[
−pµQδ

α̇
β̇

+ (2σ̄)µρα̇
β̇
pQAρ

]
〈〈j̄β̇

λ̄
(pQA)jλβ(pL)〉〉

+ iσ̄ρα̇αεαβ〈〈jµA(pA)jAρ(pQL)〉〉. (B.28)

– 50 –



J
H
E
P
0
2
(
2
0
2
1
)
2
2
5

C Results in 4-component notation

We want to convert from 4-component Majorana spinors of [20] to 2-component Weyl
spinors of [18]. Both books use the mostly plus convention for the metric ηµν ∼ (−1, 1, 1, 1)
and the standard expressions for the Pauli matrices σi = σi, i = 1, 2, 3. They differ in the
definition of conjugation, though, as well as the definition of σ0. By FVP we denote the
conventions of [20] and by WB the conventions of [18]. One has

σ0
FVP = −σ0

WB, σiFVP = σiWB, (C.1)
σ̄0
FVP = σ̄0

WB, σ̄iFVP = −σ̄iWB. (C.2)

While in both conventions gamma matrices are defined in the same way, they satisfy
different Clifford algebra conditions,

γµ =
(

0 σµ

σ̄µ 0

)
, {γµ, γν} = ±2ηµν1, (C.3)

with plus sign for FVP and minus for WB. To convert from one convention to another
one could expand everything in components, but that is obviously not a convenient way
to proceed. Instead, we want to reproduce the FVP Clifford algebra with the WB sigma
matrices. This means that we substitute,

γµFVP 7−→
(

0 iσµWB
iσ̄µWB 0

)
. (C.4)

Note that the matrix on the right hand side is not equal to γµFVP, but it obeys the same
algebra as γµFVP, thus all invariants are identical. With the conjugation in [20] defined as
Ψ̄ = iΨ†γ0

FVP we obtain the following conversion rules.

Ψ 7→
(
ψ

ψ̄

)
, Ψ̄ 7→ (ψ, ψ̄), (C.5)

PLΨ 7→
(
ψ

0

)
, PRΨ 7→

(
0
ψ̄

)
, (C.6)

γµ 7→
(

0 iσµ
iσ̄µ 0

)
, γ5 7→

(
1 0
0 −1

)
, (C.7)

γµν 7→ −
(

(2σ)µν 0
0 (2σ̄)µν

)
. (C.8)

We dropped indices FVP andWB on the left and right hand sides respectively. In particular

Ψ̄X 7−→ ψχ+ ψ̄χ̄, iΨ̄γ5X 7−→ iψχ− iψ̄χ̄, (C.9)
Ψ̄γµX 7−→ iψ̄σ̄µχ+ iψσµχ̄, iΨ̄γ5γ

µX 7−→ ψ̄σ̄µχ− ψσµχ̄. (C.10)

All those bi-linears are self-adjoint.
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C.1 Supergravity

Here we present our results in 4-component notation. Conventions of [11] are recovered by
rescaling of the gauge field and the gauge parameter, ARµ 7→ −2ARµ /3 and θR 7→ −2θR/3.
Note the change of the sign in the definition of φµ. In this subsection we keep the fermionic
parameters divided by two w.r.t. to the remainder of the paper. In order to match the rest
of the paper, one must rescale here ε 7→ 2ε and η 7→ 2η.

The SUSY variations are

δeaµ = 1
2 ε̄γ

aψµ − σeaµ − λabebµ, (C.11)

δARµ = ∂µθ
R + 1

2iε̄γ5φµ + 1
2iη̄γ5ψµ, (C.12)

δψµ = 3
2iθRγ5ψµ +

(
Dω
µ −

3
2iARµ γ5

)
ε− γaeaµη −

1
2σφµ −

1
4λ

abγabψµ, (C.13)

where
φµ = 2

3γ
ν
(
D[µψν] −

i
4εµν

ρσγ5Dρψσ
)

(C.14)

and

Dµψν =
(
Dω
µ −

3
2iγ5A

R
µ

)
ψν . (C.15)

By Dω
µ we denote the covariant derivative with connection ω given by

ωµab(e, ψ) = ωµab(e) + 1
4
(
ψ̄aγµψb + ψ̄µγaψb − ψ̄µγbψa

)
. (C.16)

Finally the SUSY transformation rule for the derived field φ reads

δεφµ = 1
2

(
iγ5F

R
µν −

1
4εµν

ρσFRρσ

)
γνε+ 1

2Pµνγ
νε . (C.17)

Variations of the compensators are

δZ = (σ + iθR)Z + 1√
2
ε̄PLχ

R ; (C.18)

δPLχ
R = 1

2(3σ − iθR)PLχR + 1√
2
PL(γµDµZ + F)ε+

√
2ZPLη ; (C.19)

δF = 2(σ − iθR)F + 1√
2
ε̄γµPL

[(
Dω
µ + 1

2iARµ
)
χR − 1√

2
(γνDνZ + F)ψµ −

√
2Zφµ

]
,

(C.20)

where

DµZ = ∂µZ − iARµZ −
1√
2
ψ̄µPLχ

R , (C.21)

DµPLχR = PL

(
Dω
µ + i

2Aµ
)
χR − 1√

2
(γνDνZ + F)ψµ −

√
2Zφµ (C.22)
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The fields in old minimal SUGRA are defined as

ψ̃µ = ψµ + 1√
2
γµχ

R − 1
2(3iπγ5 − τ)ψµ , (C.23)

ẽaµ = eaµ − τeaµ, (C.24)

ÃRµ = ARµ −
1√
2

iχ̄Rγ5ψµ − ∂µπ , (C.25)

and their variations read

δẽaµ = −λ̃baebµ + 1
2 ε̄γ

aψ̃µ ; (C.26)

δÃRµ = − i
2 ε̄γ5φ̃µ + 1

4 ε̄(γ
νÃRν − iγ5M̃ − Ñ)ψ̃µ ; (C.27)

δψ̃µ = −1
4 λ̃

abγabψ̃µ +
(
Dω
µ −

3i
2 Ã

R
µ γ5 + 1

2γµ(−iγ5γνÃ
Rν + M̃ + iγ5Ñ)

)
ε , (C.28)

where F = M̃ + iÑ and we defined

φ̃µ = φµ + 1√
2
Dµχ̄R (C.29)

The reported SUSY anomaly reads

Aε = 3c− 5a
8π2 iεµνρτFRρτARµ γ5φν + a− c

8π2 ε
λκρτ∇µ(ARρ R

µν
λκ )γ(νψτ)

+ c− a
32π2 ε

µνκλFRµνR
ρτ

κλ γρψτ +O(ψ3). (C.30)

The S-anomaly is defined in terms of currents as

Aη = 1
2iγ5ψµ〈JR

µ〉+ γµ〈JQ
µ〉 . (C.31)

The suitable counterterm in the 4-component notation reads

SRct = 1
8π2 [3(a− c)P1 − 2aP2] , (C.32)

where

P1 = −
√

2χ̄R
(
−1

6γρσWµν
ρσ + iγ5F

R
µν

)
(γ[µφν] +D[µψν])

−ARµ εµνρσ
(4

3 φ̄νDρψσ + 2
3 φ̄νγρφσ

)
(C.33)

and

P2 = −
√

2χ̄R
(

2iγ5F
R
µν −

1
4εµν

ρσFRρσ − Pµν + 1
6Rgµν

)
γµφν

− iARν
(√

2Dµχ̄R + φ̄µ
)

(γ5γ
νφµ − γµγ5γ

νγρφ
ρ) + 2ARµARν Pµν , (C.34)

where Pµν = 1
2(Rµν − 1

6gµνR) and we have omitted the terms proportional to F . In the
above equations we have defined the Weyl tensor

W ρσµν =Rρσµν− 1
2(Rρνgσµ−Rρµgσν+Rσµgρν−Rσνgρµ)+ 1

6R(gρµgσν−gρνgσµ) (C.35)
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and make an extensive use of the following identity

F̃ µ
ρ G̃νρ = 1

2FρσG
ρσgµν + F ν

ρ Gµρ , (C.36)

with the convention
G̃µν = 1

2ε
µνρσGρσ . (C.37)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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