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1 Introduction

The pure spinor formalism [1] has become a real contender for computations in string per-
turbation theory. It has some noticeable advantages over the more traditional approaches
based on the RNS and the Green-Schwarz formalisms, given that it is manifestly space-
time supersymmetric and Lorentz covariant. As the formalism does not make use of any
world-sheet spinors, one does not have to sum over spin structures. This is a significant
simplification in calculations of higher loop amplitudes compared to the RNS formalism.
Thus it should not come as a surprise that certain calculations were first (or even only)
performed using the pure spinor formalism. This includes the computation of the complete
quartic effective action of type II string theory at sphere level (including the RR fields of
the RNS formalism) [2], the calculation of an arbitrary n-point amplitude of massless open
strings on the disk in type I string theory [3] and the computation of the closed string
four-point 3-loop amplitude in type II string theory at low energy [4].

However, the calculation of purely closed string amplitudes at the disk level seems
to be lacking in the literature on the pure spinor formalism and it is the purpose of this
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note to fill this small gap.1 The case of one closed and two open strings was discussed
in [6, 7]. However, the case with only closed string vertex operators on the disk presents new
questions, given that fixing the conformal Killing group (CKG) of the disk only allows to fix
one and a half closed string vertex operators. Moreover, the disk amplitude with a single
closed string vertex operator would naively vanish with the usual tree level prescription
of dealing with the fermionic zero modes in the pure spinor formalism. Both of these
issues will be addressed in the following. The answers are already hidden in the literature
and we are going to collect and apply these known results to the mentioned closed string
amplitudes on the disk. More concretely, we are going to calculate a two-point function of
closed string states which would correspond to massless NSNS states in the RNS formalism
(i.e. the graviton, dilaton and Kalb-Ramond field) by following the gauge fixing procedure
described in [8, 9]. Afterwards we calculate the disk one-point function of the same states
using the alternative zero mode prescription introduced in [10].2

Needless to say that the results agree with the corresponding calculations performed
in the RNS formalism. In that formalism the closed string two-point function on the disk
in superstring theory was calculated in [12–16] (see also [17, 18] which revisited the topic
more recently). The dilaton one-point function, on the other hand, was calculated for the
bosonic string in [19, 20] and a generalization to the superstring was performed in [21].

2 The pure spinor formalism

Let us begin with a short introduction to those aspects of the pure spinor formalism that
are relevant for our question.

2.1 Matter and ghost CFT of the pure spinor formalism

The action of the pure spinor formalism is given by3

S = 1
2π

∫
d2z

(1
2∂X

m∂Xm + pα∂θ
α + pα∂θ

α − wα∂λα − wα∂λ
α
)
. (2.1)

It leads to the holomorphic energy momentum tensor

T (z) = −1
2∂X

m∂Xm − pα∂θα + wα∂λ
α (2.2)

and a similar expression for the anti-holomorphic energy momentum tensor.4 The theory
has a vanishing central charge in ten spacetime dimensions [1].

1Of course, these amplitudes could be obtained indirectly from purely open strings on the disk, applying
the relations found in [5] in the context of the RNS formalism. What we mean here is a direct calculation
of the closed string disk amplitudes in the pure spinor formalism.

2A different approach to calculating low point functions, using the usual zero mode prescription, was
employed in [11], which deals with the open string two-point function on the disk. It would be interesting
to better understand the relation between the two methods.

3See appendix A for our conventions and notation.
4Of course, all the formulas in the rest of this subsection have an obvious antiholomorphic counterpart.
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It is convenient to introduce the supersymmetric fields

Πm = ∂Xm + 1
2(θγm∂θ) , (2.3)

dα = pα −
1
2

(
∂Xm + 1

4(θγm∂θ)
)

(γmθ)α , (2.4)

because these conformal primaries of weight h = 1 appear in the vertex operators of
massless fields and, thus, play an important role in the calculation of scattering amplitudes
in the pure spinor formalism, as we will review below. We will need the following OPEs:

Xm(z, z)Xn(w,w) = −ηmn ln |z − w|2 , pα(z)θβ(w) = δ β
α

z − w
,

Πm(z)Πn(w) = −ηmn

(z − w)2 , dα(z)dβ(w) = −
γmαβΠm(w)
z − w

, (2.5)

dα(z)Πm(w) = (γm∂θ)α(w)
z − w

, dα(z)θβ(w) = δ β
α

z − w
.

In the pure spinor formalism λα is a commuting SO(1, 9) Weyl spinor. Therefore, it
contributes to the Lorentz current and the total contribution from the spacetime fermions
is given by

Mmn = 1
2(pγmnθ)− 1

2(wγmnλ) ≡ Σmn −Nmn . (2.6)

The relative sign between the two fermionic contributions can be traced back to the relative
sign in the action (2.1). The Lorentz current (2.6) is determined by demanding

δΨα = εmn
2 Resz=w

(
Mmn(z)Ψα(w)

)
= −εmn4 (γmn)αβΨβ(w) , Ψα ∈ {θα, λα} . (2.7)

Note that the sign is in line with

δψk = εmn
2 Resz=w

(
ψmψn(z)ψk(w)

)
= −εkmψm(w) (2.8)

for the Lorentz current ψmψn of the world-sheet fermions in the RNS formalism. Equa-
tion (2.7) implies the OPE

Nmn(z)λα(w) =
(γmn)αβλβ(w)

2(z − w) . (2.9)

Moreover, the OPEs of two Ns and two Ms are given by5

Nmn(z)Npq(w) = −η
p[nNm]q(w)− ηq[nNm]p(w)

z − w
− 3 η

m[qηp]n

(z − w)2 , (2.10)

Mmn(z)Mpq(w) = ηp[nMm]q(w)− ηq[nMm]p(w)
z − w

+ ηm[qηp]n

(z − w)2 . (2.11)

5Formula (2.10) has a sign for the simple pole terms which differs from much of the literature. How-
ever, it is consistent with our conventions. Moreover, it is the full Mmn which appears in the vertex
operator (2.16) below, if one combines the contributions from the 3rd and 4th term in (2.16).
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Finally, let us remind the reader that nilpotency of the BRST operator

Q =
∮ dz

2πi λ
α(z)dα(z) , (2.12)

i.e. Q2 = 0, implies that λ has to be a pure spinor, i.e.

(λγmλ) = 0 , (2.13)

and similarly for the right-movers.

2.2 Massless vertex operators in the pure spinor formalism

In this article we are interested in the scattering amplitudes of closed strings on the disk
(we actually always mean the upper half plane H+ when talking about the disk). More
precisely, we focus on those massless states whose polarization tensor can be obtained via a
tensor product of two vectors, i.e. εmn = ξm⊗ ξn. In the RNS formalism, these correspond
to the NSNS states, i.e. the graviton, the Kalb-Ramond field and the dilaton. The vertex
operator for such a state is given by

V (a,b)(z, z) = V (a)(z)⊗ V (b)(z) , a, b ∈ {0, 1} , (2.14)

where [1]

V (0)(z) = [λαAα(X, θ)] (z) , (2.15)

V (1)(z) =
[
∂θαAα(X, θ) + ΠmAm(X, θ) + dαW

α(X, θ) + 1
2N

mnFmn(X, θ)
]

(z) (2.16)

are related to the massless open string vertex operators.6 In (2.15) and (2.16), Aα, Am,Wα

and Fmn are all spacetime superfields (the superfields of super-Maxwell theory). The first
vertex operator V (0) is BRST closed, i.e.

QV (0) = 0 , (2.17)

and the second vertex operator V (1) fulfils

QV (1) = ∂V (0) . (2.18)

Hence it is in the BRST cohomology once we integrate it over the world-sheet. Conse-
quently, V (0) and V (1) are called the unintegrated and integrated vertex operator, respec-
tively. Analogous statements hold for the right-moving part of (2.14).

The fields Am,Wα and Fmn in (2.16) are not independent. Rather, they are the field
strengths given by [24]

Am = 1
8γ

αβ
m DαAβ , (2.19)

Wα = 1
10γ

αβ
m (DβA

m − ∂mAβ) , (2.20)

Fmn = ∂mAn − ∂nAm , (2.21)
6In (2.14) we made the fact explicit that the product of the open string vertex operators involves a

tensor product of the two polarization vectors. In the following we will omit the ⊗ symbol and leave it
implicit. Moreover, in the literature V (0) and V (1) are often denoted by V and U , respectively.
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where we introduced the superderivative

Dα = ∂

∂θα
+ 1

2(γmθ)α∂m . (2.22)

The superfields fulfil the following equations [24, 25]

2D(αAβ) = γmαβAm , DαAm = (γmW )α + ∂mAα ,

DαFmn = 2∂[m(γn]W )α , DαW
β = 1

4(γmn)αβFmn .
(2.23)

When calculating amplitudes one needs the θ-expansion of the superfields. Restricting
to the bosonic spacetime degrees of freedom (of a vector field with polarization vector ξm),
relevant for the concrete calculations in the later sections, and making the gauge choice
θαAα(X, θ) = 0, the expansions can be found, for instance, in (10.2.31) of [26]:7

Aα(X, θ) = eik·X
{
ξm
2 (γmθ)α −

1
16(γpθ)α(θγmnpθ)ik[mξn] +O(θ5)

}
,

Am(X, θ) = eik·X
{
ξm −

1
4 ikp(θγ

pq
m θ)ξq +O(θ4)

}
,

Wα(X, θ) = eik·X
{
−1

2 ik[mξn](γmnθ)α +O(θ3)
}
,

Fmn(X, θ) = eik·X
{

2ik[mξn] −
1
2 ik[pξq]ik[m(θγ pq

n] θ) +O(θ4)
}
. (2.24)

We only displayed the expansions up to the order in θ that is relevant for our purposes.
Moreover, we organized the Xm-dependence of the superfields into plane waves with mo-
mentum km. Note that all the superfields in (2.24) depend holomorphically on z, i.e.
Xm = Xm(z). This means that we use the separation of Xm(z, z) into left- and right-
movers, i.e. Xm(z, z) = Xm(z) + X

m(z). V (b) in (2.14) is obtained from (2.15), (2.16)
and (2.24) by replacing the left moving fields X(z), θ(z), λα(z) with their right moving
counterparts X(z), θ(z), λα(z) and ξm with ξm. In this way the full closed string vertex
operator (2.14) contains a factor eik·X(z,z).8

Note that we allow a 6= b in (2.14). When calculating closed string amplitudes on the
sphere, the corresponding conformal Killing group allows to fix three closed string vertex
operators, leaving all the others integrated. Thus, in that case the choice a = b is possible
and always made in the literature. However, the conformal Killing group of the disk does
not allow to fix the positions of two closed string vertex operators completely. Thus, when
calculating a disk amplitude with only closed strings, one has to allow the possibility a 6= b

in (2.14). We will see this more concretely in section 3. This possibility was also discussed
in [7, 27].

7The expansion in [26] is more general, allowing to describe also fermionic spacetime degrees of freedom.
Moreover, note that our momenta are real, i.e. they differ from the corresponding momenta of [26] by a
factor of i.

8A side comment: if one wanted to make the relation between the closed string vertex operator (2.14)
with two open string vertex operators precise, one would have to take into account that the closed string
momentum is split over the two open string vertex operators. This is well known from the RNS formalism,
cf. [14, 16], and in the context of the pure spinor formalism it was discussed in [6].
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In sections 3 and 4 we will calculate two- and one-point functions of closed strings
on this disk. For that purpose it is useful to rewrite the right-moving part of the vertex
operator (2.14) using the doubling trick, in order to allow for a unified treatment of the
left- and right-movers. This is done in the rest of this subsection.

Concretely, in the following we consider a type II theory in a flat ten dimensional
spacetime, which contains a Dp-brane that is spanned in the X1×X2× . . .×Xp plane. As
usual, we use the fact that the D-brane is infinitely heavy in the small coupling regime, i.e.
it can absorb an arbitrary amount of momentum in the Xp+1, . . . , X9 directions transversal
to the D-brane. Thus, momentum is effectively only conserved along the D-brane in the
perturbative regime that we are working in.

Left- and rightmovers separately have the standard correlators on the upper half plane

〈Xm(z)Xn(w)〉 = −ηmn ln(z − w) ,

〈pα(z)θβ(w)〉 = δ β
α

z − w
,

〈wα(z)λβ(w)〉 = δ β
α

z − w
,

(2.25)

where the antiholomorphic part is analogous. At the boundary of H+, i.e. at the real axis,
the first p+ 1 components of the world-sheet fields satisfy Neumann boundary conditions
and the remaining 9−p components Dirichlet boundary conditions. Both of these boundary
conditions impose non-vanishing correlators between the holomorphic and antiholomorphic
parts of the fields. We can simplify the calculations by employing the doubling trick, i.e.
we replace the right moving spacetime vectors and spacetime spinors by

vectors: Xm(z) = Dm
nX

n(z) , spinors: Ψα(z) = Mα
βΨβ(z) or Ψα(z) = N β

α Ψβ(z) ,
(2.26)

with Ψα ∈ {θα, λα} and Ψα ∈ {pα, wα} and constant matrices D,M and N . This corre-
sponds to extending the world-sheet fields to the entire complex plane and allows us to use
only the correlators in (2.25), leading to

〈Xm(z)Xn(w)〉 = −Dmn ln(z − w) ,

〈pα(z)θβ(w)〉 = Mβ
α

z − w
, 〈pα(z)θβ(w)〉 = N β

α

z − w
,

〈wα(z)λβ(w)〉 = Mβ
α

z − w
, 〈wα(z)λβ(w)〉 = N β

α

z − w
.

(2.27)

The matrix Dmn is the same as in the RNS formalism [14, 16]. Concretely, Dmn is given
by

Dmn =


ηmn m,n ∈ {0, 1, . . . , p}
−ηmn m,n ∈ {p+ 1, . . . , 9}

0 otherwise
, (2.28)

which fulfils
D−1 = DT = D . (2.29)

– 6 –
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As described above, only the momentum parallel to the brane is conserved. So for momen-
tum conservation, we have

N∑
i=1

(ki +D·ki)m = 0 . (2.30)

Concerning the matrices Mα
β and N β

α we will need that

N γ
α Mβ

γ = δ β
α i.e. N = (MT )−1 , (2.31)

Mγ
αγ

m
γδM

δ
β = Dm

nγ
n
αβ = N γ

α γmγδN
δ

β i.e. MTγmM = Dm
nγ

n = NγmNT , (2.32)

Mα
γγ

mγδMβ
δ = Dm

nγ
nαβ = N α

γ γmγδN β
δ i.e. Mγ̂mMT = Dm

nγ̂
n = NT γ̂mN. (2.33)

On the right hand side we give the corresponding relations in matrix notation. In order to
indicate whether we are talking about the gamma matrices with lower or upper indices, we
use the symbols γm and γ̂m, respectively. This is done in this subsection in order to make
it easier to follow the ensuing discussion of the right-moving vertex operators. In the rest
of the article, the position of the indices can be inferred from the context if they are not
given explicitly. The relations (2.31)–(2.33) are derived in appendix B. A similar analysis
in the context of the RNS formalism can be found for instance in appendix B of [14].

We can make the replacements (2.26) in the right-moving parts of the vertex opera-
tors (2.14). In this way the right-moving superfields can be expressed in terms of X and
θ. We would like to demonstrate this using Aα[ξ, k](X, θ) as an example. This can be
rewritten according to

Aα[ξ, k](X, θ) = Aα[ξ, k](D·X,Mθ)

= eik·D·X
{
ξm(γmMθ)α −

1
16(γpMθ)α(θMTγmnpMθ)ik[mξn]

}
= eik·D·X

{
ξm((MT )−1MT︸ ︷︷ ︸

=1

γmMθ)α −
1
16((MT )−1MT︸ ︷︷ ︸

=1

γpMθ)α(θMTγmnpMθ)ik[mξn]

}

= eik·D·X((MT )−1) β
α

{
(D·ξ)m(γmθ)β −

1
16(γpθ)β(θγmnpθ)i(D·k)[m(D·ξ)n]

}
= ((MT )−1) β

α Aβ [D·ξ,D·k](X, θ) , (2.34)

where we used

MTγmnpM = MTγ[mγ̂nγp]M = MTγ[mMM−1γ̂n(MT )−1MTγp]M

= MTγ[mMNT γ̂nNMTγp]M

= D[m
qD

n
rD

p]
sγ
qγ̂rγs = Dm

qD
n
rD

p
sγ

[qγ̂rγs]

= Dm
qD

n
rD

p
sγ
qrs . (2.35)

Moreover, note that in a contraction of fermions like (θγmnpθ) or λαAα etc., the left spinor
is implicitly a transposed spinor. This explains the appearance of MT in the second row
of (2.34). For the other superfields we find analogously

Am[ξ, k](X, θ) = D n
m An[D·ξ,D·k](X, θ) ,

W
α[ξ, k](X, θ) = Mα

βW
β [D·ξ,D·k](X, θ) ,

Fmn[ξ, k](X, θ) = D p
m D q

n Fpq[D·ξ,D·k](X, θ) .
(2.36)

– 7 –



J
H
E
P
0
2
(
2
0
2
1
)
2
0
6

We also have to transform the remaining right-moving world-sheet fields appearing in the
vertex operators. Analogously to (2.26), we have (cf. also appendix B)

dα = ((MT )−1) β
α dβ , λ

α = Mα
βλ

β , Πm = Dm
nΠn , N

mn = Dm
pD

n
qN

pq . (2.37)

Putting everything together we obtain the right-moving part of the vertex operators as

V
(0)(z) =

(
λ
α
Aα[ξ, k](X, θ)

)
(z) =

(
λαAα[D·ξ,D·k](X, θ)

)
(z) , (2.38)

V
(1)(z) =

(
∂θ

α
Aα[ξ, k](X, θ) + Πm

Am[ξ, k](X, θ)

+dαW
α[ξ, k](X, θ) + 1

2N
mnFmn[ξ, k](X, θ)

)
(z)

=
(
∂θαAα[D·ξ,D·k](X, θ) + ΠmAm[D·ξ,D·k](X, θ)

+dαWα[D·ξ,D·k](X, θ) + 1
2N

mnFmn[D·ξ,D·k](X, θ)
)

(z) . (2.39)

2.3 Calculating correlators

The prescription to calculate closed string amplitudes on the sphere and open string ampli-
tudes on the disk is well known and tested in the pure spinor formalism. Both world-sheets
do not have any moduli and their conformal Killing vectors (CKVs) allow the fixing of
three closed or open vertex operators, respectively. For an n-point function with n ≥ 3, it
is a convenient choice to fix the vertex operators i = 1, n−1 and n to the positions z1, zn−1
and zn:

Aclosed
S2 (1,2,...,n) =

〈
V

(0,0)
1 (z1,z1)

n−2∏
i=2

∫
d2ziV

(1,1)
i (zi,zi)V (0,0)

n−1 (zn−1,zn−1)V (0,0)
n (zn,zn)

〉
,

Aopen
D2

(1,2,...,n) =
〈
V

(0)
1 (z1)

n−2∏
i=2

∫ zn−1

zi−1
dziV (1)

i (zi)V (0)
n−1(zn−1)V (0)

n (zn)
〉
. (2.40)

For open superstrings the integrated vertex operator positions are ordered, such that z1 ≤
z2 ≤ z3 ≤ . . . ≤ zn−2 ≤ zn−1 ≤ zn, and integrated over the corresponding parts of the real
axis (if we perform the calculation on the upper half plane). Other orderings of the vertex
operators can then be inferred via relabelling. Almost all tree level calculations performed
in the pure spinor formalism so far are of these two types. The only exceptions that we are
aware of can be found in [6, 7] which calculate 3-point functions on the disk with one closed
and two open string vertex operators. However, as we mentioned in the introduction, the
case with only closed string vertex operators on the disk is more subtle, given that fixing
the CKG of the disk only allows to fix one and a half vertex operators. Moreover, the disk
amplitude with a single closed string vertex operator would naively vanish with the usual
tree level prescription as it does not contain three factors of λα (cf. section 2.3.2 below).
Both of these issues will be addressed in the following.
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2.3.1 Integrating out the non-zero modes

In this section we follow relatively closely the presentation in [26]. We introduce the short-
hand notation Aα(z) = Aα (X(z), θ(z)) and similarly for the other superfields. Moreover,
we denote by V any of the superfields, i.e. V ∈ {Aα, Am,Wα,Fmn}.

The h = 1 primaries ∂θα,Πm, dα, N
mn appearing in the integrated vertex opera-

tor (2.16) do not have any zero modes at tree level. Thus, they can be integrated out
by applying Wick’s theorem, employing the OPEs

Πm(z)V(w) = −ik
mV(w)
z − w

, (2.41)

dα(z)V(w) = DαV(w)
z − w

, (2.42)

Nmn(z)λαAα(w) = −1
2

(λγmn)α

z − w
Aα(w) , (2.43)

where in the last equality we used the fact that the matrix γmn is antisymmetric in the
spinor indices: (γmn) β

α = −(γmn)βα. It turns out that ∂θα does not contribute to the
closed string two- and one-point functions that we are going to calculate, given that it only
has a singular OPE with dα. In the two-point function there is only one integrated vertex
operator and for the one-point function its potential contribution vanishes due to the zero
mode integration, cf. section 2.3.2. Using (2.41)–(2.43) and the superfield equations of
motion (2.23), one infers the OPE of V (0)

i (zi) with V (1)
j (zj) via

V
(0)
i (zi)ΠmAjm(zj) = 1

zji
(−ikmi )λαAiαAjm(zi) = − 1

zji
iki·AjV (0)

i (zi) , (2.44)

V
(0)
i (zi)dαWα

j (zj) = − 1
zji
λα
(
DβA

i
α

)
W β
j (zi)

= − 1
zji
λα(−DαA

i
β + γmαβA

i
m)W β

j (zi)

= 1
zji

[
(QAiα)Wα

j −Aim(λγmWj)
]

(zi) , (2.45)

V
(0)
i (zi)

1
2N

mnF jmn(zj) = − 1
4zji

λα(γmn) β
α AiβF jmn(zi) = − 1

zji
Aiα(QWα

j )(zi) . (2.46)

The two terms (QAiαWα
j ) and −Aiα(QWα

j ) can be combined to the BRST exact expres-
sion Q(AiWj), which does not contribute to the two-point function that we are going to
calculate. Hence, we can effectively use

V
(0)
i (zi)V (1)

j (zj) = 1
zji

[
−iki ·AjV (0)

i −Aim(λγmWj)
]

(zi) . (2.47)

This is all we need for the two-point function, given that there is only one integrated
vertex operator and the non-zero modes of the unintegrated vertex operators only interact
via their plane wave-factors. Similarly, apart from the plane-wave factors, the terms on the
right hand side of (2.47) only depend on λ and θ, which do not have any non-trivial OPEs
with the remaining unintegrated vertex operators in the two-point calculation. Thus, aside
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from the plane wave factors, only the zero modes of λ and θ will contribute in the remaining
computation of the two-point function after employing (2.47). The zero mode integration
is discussed in the next section. Here, we would just like to recall that the interaction of
the plane waves contributes the Koba-Nielsen factor, which at tree level takes the form

In =
〈

n∏
i=1

eiki·X(zi)
〉

= CXD2

n∏
i,j=1
i 6=j

(zi − zj)ki·kj/2 . (2.48)

The constant CXD2
arises from the path integral over the non-zero modes of Xm, cf. [23].9

2.3.2 Integrating out the zero modes

At tree level only the conformal weight zero fields have zero modes. These are Xm, θα and
λα. The evaluation of the Xm zero modes is the same as for the RNS superstring and gives
a momentum preserving δ-function. The evaluation of the correlator of the remaining zero
modes of θα and λα is more subtle.

There exist actually two different zero mode prescriptions for tree level calculations
in the literature which are usually equivalent but can differ for very low point functions,
as we will see below. The usual prescription fixes the PSL(2,C) invariance on the sphere
and the PSL(2,R) invariance on the disk by utilizing three unintegrated vertex operators,
V

(0)
i V

(0)
i = λαAiαλ

βAiβ for closed strings on the sphere or V (0)
i = λαAiα for open strings on

the disk. When dealing with closed strings on the disk, one would also use V (0)
i = λαAiα,

albeit for three factors of the closed string vertex operators (2.14) (after rewriting the
right-movers according to (2.38)). This is the case we are going to discuss and apply in
the following.

After performing the integration of the non-zero modes of ∂θα,Πm, dα and Nmn as
described in the last subsection, one is left with an expression cubic in the ghosts λα:〈

V
(0)

1 (z1)
n−2∏
i=2

V
(1)
i (zi)V (0)

n−1(zn−1)V (0)
n (zn)

〉
=
〈
λαλβλγfαβγ(θ; zi)

〉
0
. (2.49)

The subscript on 〈. . .〉0 indicates that the bracket on the right hand side denotes a zero
mode prescription, as all the non-zero modes are already integrated out. The argument of
〈. . .〉0 in (2.49) has a finite power series expansion in θα and it was argued in [1] that only
terms involving five powers of θ contribute (at ghost number 3). Given that the tensor
product of three λ and five θ contains a unique scalar, all terms of this type are proportional
to each other (cf. the nice discussion in appendix A of [28]) and are determined by10

〈(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)〉0 = 2880 . (2.50)
9Strictly speaking, our usage of the symbol 〈. . .〉 is a bit ambiguous. Most of the time, we use it like

here to denote a path integral expectation value (and, thus, it contains constants like this CX
D2 from the

path integral over the world-sheet fields). However, sometimes (i.e. if 〈. . .〉 only has two world-sheet fields
as arguments) we also use it to denote the Green’s function, cf. for instance (2.25) and (2.27).

10We chose the normalization for convenience in order to simplify the explicit factors arising in the two-
point calculations of section 3. A different choice of this normalization could be absorbed in the constant
CD2 appearing in the final result, cf. (3.11) below. We follow here the convention used for instance in [29].
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Two further examples of zero mode expressions, which follow from (2.50) and which are
needed for the two-point function calculation of section 3, are

〈(λγmθ)(λγnθ)(λγpθ)(θγrstθ)〉0 = 24δ[m
r δns δ

p]
t , (2.51)〈

(λγmθ)(λγsθ)(λγptuθ)(θγfghθ)
〉

0
= 288

7 δ
[p
[mηs][fδ

t
gδ
u]
h] . (2.52)

These and additional zero mode expressions can be found, for instance, in appendix A
of [28].

As discussed in [10] there is an alternative zero mode prescription at tree level (cf.
also [30]), i.e.

〈1〉0 = 1 . (2.53)

In this zero mode prescription only terms involving no λ- and θ-zero modes contribute. In
other words, while at ghost number three, the unique element in the BRST cohomology is
proportional to θ5, at ghost number zero, it is proportional to the unit operator.

Using this alternative zero mode prescription, only integrated vertex operators con-
tribute to scattering amplitudes. Further, using (2.53) we can simplify the integrated vertex
operator if we are looking at a purely bosonic scattering amplitude. In that case the only
contribution to the amplitude comes from [10]

V (1)(z) = ∂XmAm(z)− 1
2M

mnFmn(z) , (2.54)

where Mmn is the Lorentz current (2.6) of the pure spinor formalism.11

We will need this alternative zero-mode prescription for calculating the closed string
one-point function on the disk in section 4.

3 Closed string two-point function on the disk

We now want to calculate the elastic scattering of two massless bosonic states off a Dirichlet
p-brane in a flat background using the pure spinor formalism. More precisely, we consider
states which would arise from the NSNS sector in the RNS formalism (i.e. the graviton,
dilaton and Kalb-Ramond field). We calculate the amplitude by inserting two closed string
vertex operators with appropriate boundary conditions on the disk. The corresponding
calculation in the RNS formalism can be found in [14, 16]. Further we recommend [18],
where a rather detailed presentation of the RNS calculation is given.

The two closed strings have polarizations ε1 and ε2 and momenta k1 and k2. These
strings are massless and have transverse polarizations, i.e.

k2
j = 0 , εjmnk

m
j = εjmnk

n
j = 0 . (3.1)

As a first step to calculate the scattering of two massless closed strings on the disk in
the pure spinor formalism, we need to formulate a correlation function. For closed strings
on the disk, we can not just use the tree level prescription (2.40). Whereas on the sphere the

11Compared to [10] we adjusted the sign of the Mmn-term to our conventions.
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six conformal Killing vectors allow us to fix three vertex operator positions, the situation
on the disk is different. Because we have only three conformal Killing vectors, we can only
fix one and a half vertex operator positions. Since we have two vertex operator insertions
at points z1 = x1 + iy1 and z2 = x2 + iy2, we are going to fix the positions x1 = 0, x2 = 0
and y2 = 1 and keep the integration over y1, which we will call y in the following.

The form of the correlator in this case can be inferred by employing the methods of [8, 9]
(which are based on [31]). As the discussion in those papers is rather technical and the final
result in (3.3) below is rather plausible (and similar to the RNS string, cf. formula (2.12)
in [18]), we refrain from reviewing the details of [8, 9, 31]. Suffice it to say that [8] introduces
anti-commuting BRST partners ζj = ζxj + iζyj of the complex vertex operator positions zj
(where j enumerates the vertex operators) and uses them to write the vertex operators as

Vj(zj , ζj) = V
(0)
j (zj) + ζjV

(1)
j (zj) . (3.2)

Applying the formulas of [8] to the case at hand leads then to12

Aclosed
D2 (1,2)=

= g2
c τp
2

2∏
j=1

∫
dxjdyj

∫
dζxj dζyj δ(x1)δ(x2)δ(y2−1)δ(ζx1 )δ(ζx2 )δ(ζy2 )

×
〈
V1(z1,ζ1)V 1(z1,ζ1)V2(z2,ζ2)V 2(z2,ζ2)

〉
= g2

c τp
2

2∏
j=1

∫
dxjdyj

∫
dζxj dζyj δ(x1)δ(x2)δ(y2−1)δ(ζx1 )δ(ζx2 )δ(ζy2 )

×
〈(
V

(0)
1 (x1+iy1)+(ζx1 +iζy1 )V (1)

1 (x1+iy1)
)(
V

(0)
1 (x1−iy1)+(ζx1−iζ

y
1 )V (1)

1 (x1−iy1)
)

×
(
V

(0)
2 (x2+iy2)+(ζx2 +iζy2 )V (1)

2 (x2+iy2)
)(
V

(0)
2 (x2−iy2)+(ζx2−iζ

y
2 )V (1)

2 (x2−iy2)
)〉

= g2
c τp
2

∫
dy1

∫
dζy1

〈(
V

(0)
1 (iy1)+iζy1V

(1)
1 (iy1)

)
×
(
V

(0)
1 (−iy1)−iζy1V

(1)
1 (−iy1)

)
V

(0)
2 (i)V (0)

2 (−i)
〉

= g2
c τp
2

∫
dy
〈
i
(
V

(0)
1 (iy)V (1)

1 (−iy)+V (1)
1 (iy)V (0)

1 (−iy)
)
V

(0)
2 (i)V (0)

2 (−i)
〉
. (3.3)

In the last equality we performed the Grassmann integral
∫
dζy1 ζ

y
1 = 1 and used the fact

that V (0)
i and ζy1 are anticommuting. Moreover, we inserted the coupling constant gc = e〈Φ〉

for closed strings and the physical tension τp = e−〈Φ〉(2π)−pα′−(p+1)/2 of the Dp-brane in
the definition of the amplitude.

12To be a bit more concrete, formula (5.8) in [8] would take the form L2 = π1
xx1 + π2

xx2 + π2
y(y2 − 1) −

b1
xc

x(x1)− b2
xc

x(x2)− b2
yc

y(y2)− p1
xζ

x
1 − p2

xζ
x
2 − p2

yζ
y
2 + β1

xγ
x(x1) + β2

xγ
x(x2) + β2

yγ
y(y2), where πj

a and pj
a

are auxiliary fields, which lead to the delta functions in the first line of (3.3) when integrated out, while bj
a

and βj
a are antighosts which lead to factors of ca and δ(γa) when integrated out. Here, ca and γa are the

diffeomorphism ghosts and their (commuting) BRST partners. However, as shown in appendix B of [8] all
the ghost contributions cancel in the final correlator, thus leaving (3.3) when the dust settles.
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The gauge fixing in (3.3) is not complete yet. The amplitude is still invariant under
the PSL(2,R) transformation z1 → − 1

z1
which acts on y according to y → 1

y (to account for
this discrete unfixed conformal Killing transformation, we inserted the factor 1/2 in (3.3)).
This transformation maps the interval 0 < y < 1 to 1 < y < ∞. We can fix also this
discrete symmetry by restricting to only one of the two intervals and multiplying the result
by 2. For concreteness we choose 0 < y < 1, i.e.

Aclosed
D2 (1, 2) = ig2

c τp

∫ 1

0
dy
〈(
V

(0)
1 (iy)V (1)

1 (−iy) + V
(1)

1 (iy)V (0)
1 (−iy)

)
V

(0)
2 (i)V (0)

2 (−i)
〉
.

(3.4)
The two summands in (3.4) are actually equal, as we show in appendix C, and, thus,

we finally obtain

Aclosed
D2 (1, 2) = 2ig2

c τp

∫ 1

0
dy
〈
V

(0)
1 (iy)V (1)

1 (−iy)V (0)
2 (i)V (0)

2 (−i)
〉
. (3.5)

Using (2.38) and (2.39), the amplitude (3.5) becomes a standard correlation function
in the pure spinor formalism (i.e. one which can be evaluated using the standard correla-
tors (2.25))

Aclosed
D2 (1, 2) =

= 2ig2
c τp

∫ 1

0
dy
〈

(λA1[ξ1, k1])(iy)
(
∂θαA1α[D·ξ1, D·k1] + ΠmA1m[D·ξ1, D·k1] (3.6)

+dαWα
1 [D·ξ1, D·k1] + 1

2N
mnF1mn[D·ξ1, D·k1]

)
×(−iy)(λA2[ξ2, k2])(i)(λA2[D·ξ2, D·k2])(−i)

〉
.

The expression in (3.6) can be evaluated following the steps in section 2, resulting in

Aclosed
D2 (1, 2) = 2g2

c τpCD2

∫ 1

0
dy |2iy|k1·D·k1 |2i|k2·D·k2 |i− iy|2k1·k2 |i+ iy|2k1·D·k2

×
〈
− 1

2y
(
−i(λA1[ξ1, k1])k1·A1[D·ξ1, D·k1](λA2[ξ2, k2])(λA2[D·ξ2, D·k2])︸ ︷︷ ︸

=d′1

−A1m[ξ1, k1](λγmW1[D·ξ1, D·k1])(λA2[ξ2, k2])(λA2[D·ξ2, D·k2])︸ ︷︷ ︸
=d′′1

)

− 1
1 + y

(
−i(λA1[ξ1, k1])k2·A1[D·ξ1, D·k1](λA2[ξ2, k2])(λA2[D·ξ2, D·k2])︸ ︷︷ ︸

=d′2

−(λA1[ξ1, k1])(λγmW1[D·ξ1, D·k1])A2m[ξ2, k2](λA2[D·ξ2, D·k2])︸ ︷︷ ︸
=d′′2

)
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+ 1
1− y

(
−i(λA1[ξ1, k1])k2·D·A1[D·ξ1, D·k1](λA2[ξ2, k2])(λA2[D·ξ2, D·k2])︸ ︷︷ ︸

=d′3

+(λA1[ξ1, k1])(λγmW1[D·ξ1, D·k1])(λA2[ξ2, k2])A2m[D·ξ2, D·k2]︸ ︷︷ ︸
=d′′3

)〉
0
(3.7)

= 2g2
c τpCD2

∫ 1

0
dy
( 4y

(1 + y)2

)k1·D·k1
(

(1− y)2

(1 + y)2

)k1·k2 (
−d1

2y −
d2

1 + y
+ d3

1− y

)
, (3.8)

where in the last equality we used k1·D·k1 = k2·D·k2 and we defined di = d′i+d′′i . The di are
kinematic factors, which are calculated by using the first zero mode prescription described
in section 2.3.2 and fulfil the identity d1 + d2 + d3 = 0, which can be shown by explicitly
computing the di.13 Note that we dropped a factor (2π)p+1δp+1(k1 +D·k1 + k2 +D·k2) in
equation (3.7), which comes from the Xm zero-modes. This delta function describes the
momentum conservation along the world-volume of the D-brane. Moreover, CD2 is again
an overall constant arising from performing the path integral over the non-zero modes of
the world-sheet fields.

It is customary to evaluate the integral in (3.8) by performing the substitution [14, 16]

y = 1−
√
x

1 +
√
x
, (3.9)

yielding

Aclosed
D2 (1, 2) = g2

c τpCD2
Γ(k1·k2)Γ(k1·D·k1)

Γ(1 + k1·k2 + k1·D·k1)
(
d3 k1·D·k1 − d1 k1·k2

)
. (3.10)

Using momentum conservation and transversality, we can rewrite the kinematic factors.
Finally, we obtain the result

Aclosed
D2 (1, 2) = g2

c τpCD2
Γ(−t/2)Γ(2q2)

Γ(1− t/2 + 2q2)

(
2q2a1 + t

2a2

)
, (3.11)

where q2 = 1
2k1·D·k1 is the momentum parallel to the world-volume of the brane and

t = −(k1 + k2)2 = −2k1·k2 is the momentum absorbed by the p-brane.14 The kinematic
factors a1 and a2 are defined by

a1 = Tr(ε1·D)k1·ε2·k1 − k1·ε2·Dε1·k2 − k1·ε2·εT1 ·D·k1

−k1·εT2 ·ε1·D·k1 − k1·ε2·εT1 ·k2 + q2Tr(ε1·εT2 ) + {1↔ 2}, (3.12)
a2 = Tr(ε1·D)(k2·D·ε2·D·k2 + k1·ε2·D·k2 + k2·D·ε2·k1)

+k1·D·ε1·D·ε2·D·k2 − k2·D·ε2·εT1 ·D·k1 + q2Tr(ε1·D·ε2·D)

−q2Tr(ε1·εT2 )−
(
q2 − t

4

)
Tr(ε1·D)Tr(ε2·D) + {1↔ 2}. (3.13)

In the pure spinor formalism we obtained exactly the same kinematic factors as in the RNS
formalism [14, 16], which is another indication for the equivalence of these two formalisms.

13We used Cadabra2 [32] to perform these calculations.
14Note that d3 6= a1 and d1 6= a2, because d3 contains terms proportional to k1 · k2 which contribute to

the t
2a2-term.
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4 Closed string one-point function on the disk

One further interesting amplitude that was not calculated in the pure spinor formalism so
far, is the closed superstring one-point function on the disk. For this amplitude, the usual
zero-mode prescription, employed in the last section for the two-point function, can not
be used, given that there is only a single closed string vertex operator (or alternatively
two open string factors). Hence, our strategy is to make use of the alternative zero-mode
prescription of [10], reviewed in section 2.3.2. More concretely, we are not going to fix the
position of the single vertex operator, but divide by the volume of the CKG of the disk, i.e.
PSL(2,R) (we are working on the upper half plane again). Of course, this volume is infinite,
but we will see that the ratio of this volume and the integral over the position of the vertex
operator is finite. This is consistent with the fact that one could alternatively fix the posi-
tion of the vertex operator, leaving a residual subgroup of the CKG which has finite volume.

Therefore, we need to calculate

Aclosed
D2 (1) = gcτp

∫
H+

d2z

VCKG

〈
V (1)(z, z)

〉
= gcτp

∫
H+

d2z

VCKG

〈
V (1)(z)V (1)(z)

〉
. (4.1)

This seems the obvious guess for the one-point function, but it also comes out from an
analysis following [8], as we did for the two-point function above. Plugging in the vertex
operator (2.54), we obtain

Aclosed
D2 (1) = gcτp

∫
H+

d2z

VCKG
〈
(
∂XmAm[ξ, k](z)− 1

2M
mnFmn[ξ, k](z)

)
×
(
∂XrAr[D·ξ,D·k](z)− 1

2M
rsFrs[D·ξ,D·k](z)

)
〉

= gcτp

∫
H+

d2z

VCKG
〈∂XmAm[ξ, k](z)∂XrAr[D·ξ,D·k](z)

+1
4M

mnFmn[ξ, k](z)M rsFrs[D·ξ,D·k](z)〉 . (4.2)

Here we have already implicitly used the zero mode prescription to simplify the expression:
all terms containing only one Lorentz current vanish, because they will still contain either
λα or θα after computing the OPEs. The expression in (4.2) can now be evaluated by
following the same steps as for the two-point function, just using the zero mode prescription
〈1〉0 = 1. We have to compute the OPEs between the left and right moving fields, expand
the superfields in θα (the θ-expansions are given in (2.24)) and discard all terms which
contain any power of λα or θα. This results in

Aclosed
D2 (1) = gcτpCH+

∫
H+

d2z

VCKG

|z − z|k·D·k

(z − z)2

(
− ηmrξmD a

r ξa + kaD m
a ξmk

rD b
r ξb

−ηm[sηr]nk[mξn]D
a

[r D
b
s] kaξb

)
= gcτpCH+

∫
H+

d2z

VCKG

1
(z − z)2

(
− ηmrξmD a

r ξa + kmξmk
bξb − k[mξn]k

mDnbξb

)
= −gcτpCH+

∫
H+

d2z

VCKG

1
(z − z)2Tr(ε·D) . (4.3)
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To obtain the first equality in (4.3) we have used the OPE of Xm in (2.5) and of the Lorentz
current Mmn in (2.11). Transversality, masslessness and momentum conservation,

(k +D·k)m = 0 , (4.4)

allowed for further simplification. Moreover, CH+ is again an overall constant arising from
performing the path integral over the non-zero modes of the world-sheet fields.

What is left, is to calculate the volume of the conformal Killing group on the upper
half plane H+, i.e. PSL(2,R) = SL(2,R)/Z2. Such a transformation is given by

z → Az +B

Cz +D
, (4.5)

where
(
A B

C D

)
∈ SL(2,R) i.e.

{
A,B,C,D ∈ R ,
AD −BC = 1 .

(4.6)

The discussion is facilitated by making a Cartan decomposition of the group G =
SL(2,R) [33]

F : K ×A+ ×K −→ G

(k1, a, k2) 7−→ g = k1ak2 .
(4.7)

Here K is the isotropy group of z = i, i.e. it consists of all SL(2,R) transformations with

k(z = i) = Ai+B

Ci+D
= i . (4.8)

This leads to
D = A , C = −B , (4.9)

which, together with AD −BC = 1, implies

A2 +B2 = 1 , C2 +D2 = 1 . (4.10)

On the other hand, A+ is the group of all matrices of the from
(
a 0
0 a−1

)
with a > 1. The

map F defined in (4.7) is surjective. However, a Cartan decomposition g = k1ak2 with
a ∈ A+ and k1, k2 ∈ K is determined only up to a factor ±1 in k1 and a related factor in
k2 [33]. This means that F is of degree 2.

For the calculation of the volume of SL(2,R), we need to choose an explicit parametriza-
tion of an element g ∈ SL(2,R). In view of (4.9) and (4.10) and the definition of A+, this
can be chosen as

g =
(

cos(θ1) sin(θ1)
− sin(θ1) cos(θ1)

)(
et 0
0 e−t

)(
cos(θ2) sin(θ2)
− sin(θ2) cos(θ2)

)
, (4.11)

with t > 0 and 0 ≤ θi < 2π for i = 1, 2. With this parametrization a standard measure on
SL(2,R) is given by (cf. section VII, paragraph 2 in [33])15

dµ = dθ1dt dθ2 sinh(2t) . (4.12)
15The normalization of the measure is actually a matter of convention. A different overall factor can be

found, for instance, in formula (4.20) of [34]. Different choices for the overall normalization constant are
related by different values for CH+ .
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The volume of PSL(2,R) = SL(2,R)/Z2 is half the volume of SL(2,R). Thus, we finally
arrive at

VCKG = 1
2

∫ 2π

0
dθ1

∫ ∞
0

dt
∫ 2π

0
dθ2 sinh(2t) . (4.13)

In principle, we would have to regularize the volume of the conformal Killing group in (4.13),
because it is infinite. But actually, it cancels almost (up to a factor −π) against a similar
factor in the one-point function (4.3). This can be seen as follows:

∫
H+

d2z

(z − z)2

z=i 1−z′
1+z′= −

∫
D2

d2z′

(1− z′z′)2
z′=eiϕ tanh(b)= −

∫ 2π

0
dϕ
∫ ∞

0
db sinh(2b) . (4.14)

Thus, we obtain
Aclosed
D2 (1) = gcτpCH+

1
π
Tr(ε·D) . (4.15)

This agrees with the corresponding calculation in the RNS formalism, cf. appendix D.
To determine the constant CH+ we compare the graviton one-point function obtained

from (4.15) with the graviton one-point function obtained from the Dirac-Born-Infeld action
for the graviton (cf. formula (8.7.24) in [23])

S = τp
2

∫
dp+1ξ h

m‖
m‖ , (4.16)

where hmn = Gmn − ηmn = −4πgceik·Xεmn is only traced over the directions tangent to
the Dp-brane, which is denoted by the indices m‖.16 Using Feynman rules we find that

AgravitonD2
(1) = −2πgcτpε

m‖
m‖ . (4.17)

To calculate the graviton amplitude from (4.15), we have to make use of the fact that for
a graviton Tr(ε) = 0. Hence, we find Tr(ε·D) = 2εm‖m‖ . We can conclude that

AgravitonD2
(1) = gcτpCH+

2
π
ε
m‖

m‖ . (4.18)

Comparing the two results in equation (4.17) and (4.18), we can determine the factor
CH+ = −π2. Therefore, the final result for a closed string one-point function on the disk
is given by

Aclosed
D2 (1) = −πgcτpTr(ε·D) . (4.19)

5 Outlook

In this paper we showed how to use the pure spinor formalism in order to calculate purely
closed string amplitudes on the disk. We focused on the low point functions (i.e. the one-
and two-point functions) of massless states that would correspond to the NSNS sector in
the RNS formalism. A generalization to the massless states of the other RNS sectors would

16In defining hmn = −4πgce
ik·Xεmn we follow [23], cf. formula (3.7.11a).
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be straightforward. Moreover, the analog of (3.4) for higher n-point functions follows along
the same lines, resulting in

Aclosed
D2 (1,...,n) = ignc τp

∫ 1

0
dy
〈(
V

(0)
1 (iy)V (1)

1 (−iy)+V (1)
1 (iy)V (0)

1 (−iy)
)

(5.1)

×
n−1∏
j=2

∫
H+

d2zjV
(1,1)
j (zj ,zj)V (0)

n (i)V (0)
n (−i)

〉

= 2ignc τp
∫ 1

0
dy
〈
V

(0)
1 (iy)V (1)

1 (−iy)
n−1∏
j=2

∫
H+

d2zjV
(1,1)
j (zj ,zj)V (0)

n (i)V (0)
n (−i)

〉
.

In the last equality we used similar BRST arguments as for the two-point function, cf.
appendix C. It would also be interesting to generalize our analysis of the disk to the
projective plane. The corresponding two-point function of massless closed strings in the
RNS formalism was calculated in [35] (see also [18]) and the dilaton one-point function was
calculated in [20, 36] for the bosonic string and generalized to type I in [21].

The results of our paper, taken together with [3, 5], should allow us to calculate
explicitly higher point functions of closed strings on the disk and in this way learn more
about the low energy effective action on the world-volume of D-branes. Optimistically, this
might for instance pave the way to verify the existence of an ε10ε10R

4-interaction at disk
level, predicted in [37] using heterotic/type I duality. Such a term could have interesting
consequences for string theory model building, as it would lead to a disk level correction
to the Einstein-Hilbert term in four dimensions after compactification on a manifold with
non-vanishing Euler number [38]. For minimally supersymmetric four dimensional type IIB
orientifolds with D9-branes, this would constitute the leading gs-correction to the Einstein-
Hilbert term in four dimensions, dominant compared with the one-loop corrections obtained
in [39].17 Such a correction in the string frame could then lead, via a Weyl rescaling, to
a correction to the Kähler potential of the moduli and/or to a redefinition of the moduli
fields, as discussed for instance in [41, 42].

Acknowledgments

We would like to thank Marcus Berg, Carlos Mafra, Ingmar Saberi, Ivo Sachs, Oliver
Schlotterer, Dimitri Skliros and Stephan Stieberger for valuable discussions and email cor-
respondence. This work is supported by the Origins Excellence Cluster in Munich.

A Notation

In this appendix we summarize our notation. We use α′ = 2 throughout the paper, unless
α′ is made explicit. We use the following words as synonyms

holomorphic = left moving ,
antiholomorphic = right moving .

17A similar disk level correction to the four dimensional Einstein-Hilbert term was discussed in type IIB
orientifolds with D7-branes and O7-planes wrapping four-cycles with non-trivial first Chern form, cf. [40].
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Spacetime vector indices are denoted by the small Latin alphabet a, b, c, . . ., while we use
small Greek letters α, β, γ, . . . for spinor indices.

In expressions, where we have many indices that are symmetric or antisymmetric, for
both vector and spinor indices we use the convention that

A1
[α1
A2
α2 · · ·A

n
αn] = 1

n!
(
A1
α1A

2
α2 · · ·A

n
αn
± permutations

)
, (A.1)

A1
(α1
A2
α2 · · ·A

n
αn) = 1

n!
(
A1
α1A

2
α2 · · ·A

n
αn

+ permutations
)
. (A.2)

The Lorentz group in 10 dimensions has two inequivalent representations that are
denoted by 16 and 16′. Following [25, 43] we use the convention (common in the pure
spinor literature) that a spinor ψα with an upper index transforms in the 16 representation
while a spinor ψα with a lower index transforms in the 16′ representation. As stressed
in [25], there is no way to raise or lower the indices, as the two representations 16 and 16′

are inequivalent. The gamma matrices are symmetric, i.e. γmαβ = γmβα and γmαβ = γmβα,
and they fulfil the following algebra

γmαεγnεβ + γnαεγmεβ = 2ηmnδαβ , (A.3)

where ηmn is the Minkowski metric. In section 2.2, we use the notation γm and γ̂m

when suppressing the lower or upper indices of γmαβ and γmαβ , respectively. Moreover, for
antisymmetric products of gamma matrices we use a similar convention as before so that

γm1...mn ≡ γ[m1...mn] = 1
n! (γm1γm2 · · · γmn ± permutations) . (A.4)

Throughout the text we use round brackets in order to denote contractions of fermions
with (products of) gamma matrices, i.e.

(ψ1γ
mψ2) = ψα1 γ

m
αβψ

β
2 etc. . (A.5)

Note that it is implicitly understood here that ψα1 is a transposed spinor.

B Relations for the matrices Mα
β and N β

α

In this appendix, we would like to derive the formulas (2.31)–(2.33). The relation (2.31)
follows from the OPE

pα(z)θβ(w) = N γ
α pγ(z)Mβ

δθ
δ(w) = N γ

α Mβ
δ

δ δ
γ

z − w
=
N γ
α Mβ

γ

z − w
!= δ β

α

z − w
. (B.1)

The relations of (2.32) can be obtained by demanding

Πm(z) != Dm
nΠn(z) , dα(z) != N β

α dβ(z) . (B.2)

We show this exemplarily in the case of the relation involving M , as this is the one that
we actually use in the main text. From

Πm(z) =
(
Dm

n∂X
n + 1

2M
γ
αθ

αγmγδM
δ
β∂θ

β
)

(z) != Dm
nΠn(z) (B.3)
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we read off
Mγ

αγ
m
γδM

δ
β = Dm

nγ
n
αβ . (B.4)

It is straightforward to check that (2.31) and (2.32) imply consistency of all the OPEs
in (2.5) with the doubling trick (i.e. the remaining OPEs do not lead to any new conditions).

From the relations (2.33) we actually use the one involving N in the main text. That
relation follows from demanding

Σmn(z) != Dm
kD

n
lΣkl(z) . (B.5)

This holds if in addition to (B.4) we have

N α
γ γmγδN β

δ = Dm
nγ

nαβ (B.6)

because

Σmn(z) = −1
2(pγmnθ)(z) (B.7)

= −1
4pα(γmαδγnδβ − γnαδγmδβ)θβ(z) (B.8)

= −1
4N

ε
α pε(γmαδγnδβ − γnαδγmδβ)Mβ

ρθ
ρ(z) (B.9)

= −1
4pεθ

ρ
(
N ε
α γmασN γ

σ M ξ
γγ

n
ξβM

β
ρ −N ε

α γnασN γ
σ M ξ

γγ
m
ξβM

β
ρ

)
(z) (B.10)

= −1
4pεθ

ρ
(
Dm

kγ
kεγDn

lγ
l
γρ −Dn

lγ
lεγDm

kγ
k
γρ

)
(z) (B.11)

= −1
4D

m
kD

n
lpε(γkεγγlγρ − γlεγγkγρ)θρ(z) (B.12)

= Dm
kD

n
lΣkl(z) . (B.13)

In (B.10) we used (2.31) and in (B.11) we employed (B.4) and (B.6).

C Independence of the correlator of the localization of the integrated
vertex operator

If we make the dependence of the vertex operator on the polarization vector and the
momentum explicit, we can write (2.38) and (2.39) more explicitly as

V
(0)[ξ, k](z) = V (0)[D·ξ,D·k](z) , (C.1)

V
(1)[ξ, k](z) = V (1)[D·ξ,D·k](z) . (C.2)

Using this, we can rewrite the first summand of (3.4) according to∫ 1

0
dy
〈
V

(0)
1 [ξ1, k1](iy) V (1)

1 [ξ1, k1](−iy) V (0)
2 [ξ2, k2](i) V (0)

2 [ξ2, k2](−i)
〉

(C.3)

=
∫ 1

0
dy
〈
V

(1)
1 [ξ1, k1](iy) V (0)

1 [ξ1, k1](−iy) V (0)
2 [ξ2, k2](i) V (0)

2 [ξ2, k2](−i)
〉
,
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i.e. the correlator is independent of whether the integrated vertex operator is located at iy
or at −iy. This can be shown explicitly using Cadabra, or it can be seen as follows:

∫ 1

0
dy
〈
V

(0)
1 [ξ1,k1](iy)V (1)

1 [ξ1,k1](−iy)V (0)
2 [ξ2,k2](i)V (0)

2 [ξ2,k2](−i)
〉

=
∫ 1

0
dy
〈
V

(0)
1 [ξ1,k1](iy)V (1)

1 [D·ξ1,D·k1](−iy)V (0)
2 [ξ2,k2](i)V (0)

2 [D·ξ2,D·k2](−i)
〉

=
∫ 1

0
dy
〈∫ iy

−iy

dz∂V (0)
1 [ξ1,k1](z)V (1)[D·ξ1,D·k1]1(−iy)V (0)

2 [ξ2,k2](i)V (0)
2 [D·ξ2,D·k2](−i)

〉
(C.4)

=
∫ 1

0
dy
∫ iy

−iy

dz
〈
QV

(1)
1 [ξ1,k1](z)V (1)

1 [D·ξ1,D·k1](−iy)V (0)
2 [ξ2,k2](i)V (0)

2 [D·ξ2,D·k2](−i)
〉

(C.5)

=−
∫ 1

0
dy
∫ iy

−iy

dz
〈
V

(1)
1 [ξ1,k1](z)QV (1)

1 [D·ξ1,D·k1](−iy)V (0)
2 [ξ2,k2](i)V (0)

2 [D·ξ2,D·k2](−i)
〉

(C.6)

=
∫ 1

0
dy
∫ iy

−iy

dz
〈
V

(1)
1 [ξ1,k1](z)i∂yV

(0)
1 [D·ξ1,D·k1](−iy)V (0)

2 [ξ2,k2](i)V (0)
2 [D·ξ2,D·k2](−i)

〉
(C.7)

= i

∫ 1

0
dy∂y

〈∫ iy

−iy

dzV (1)
1 [ξ1,k1](z)V (0)

1 [D·ξ1,D·k1](−iy)V (0)
2 [ξ2,k2](i)V (0)

2 [D·ξ2,D·k2](−i)
〉

−i
∫ 1

0
dy
〈(

∂y

∫ iy

−iy

dzV (1)
1 [ξ1,k1](z)

)
V

(0)
1 [D·ξ1,D·k1](−iy)V (0)

2 [ξ2,k2](i)V (0)
2 [D·ξ2,D·k2](−i)

〉
(C.8)

= i

∫ i

−i

dz
〈
V

(1)
1 [ξ1,k1](z)V (0)

1 [D·ξ1,D·k1](−i)V (0)
2 [ξ2,k2](i)V (0)

2 [D·ξ2,D·k2](−i)
〉

−i
∫ 0

0
dz
〈
V

(1)
1 [ξ1,k1](z)V (0)

1 [D·ξ1,D·k1](0)V (0)
2 [ξ2,k2](i)V (0)

2 [D·ξ2,D·k2](−i)
〉

(C.9)

+
∫ 1

0
dy
〈(

V
(1)

1 [ξ1,k1](iy)+V (1)
1 [ξ1,k1](−iy)

)
V

(0)
1 [D·ξ1,D·k1](−iy)V (0)

2 [ξ2,k2](i)V (0)
2 [D·ξ2,D·k2](−i)

〉
=
∫ 1

0
dy
〈
V

(1)
1 [ξ1,k1](iy)V (0)

1 [D·ξ1,D·k1](−iy)V (0)
2 [ξ2,k2](i)V (0)

2 [D·ξ2,D·k2](−i)
〉
. (C.10)

In (C.4) we rewrote V (0)
1 [ξ1, k1] as an integral over ∂V (0)

1 [ξ1, k1] and used that there is no
contribution from the lower integration end due to the “cancelled propagator argument”,
which states that terms with vertex operators at the same position vanish, cf. p. 196
in [23]. In (C.5) and (C.7) we used (2.18), in (C.6) we deformed the BRST contour and
used (2.17), in (C.8) we performed a partial integration and in (C.10) we again used the
cancelled propagator argument.

The analysis above can be generalized to an n-point function with n > 2, i.e. to the
case when there are additional integrated closed string vertex operators in the correlation
function, cf. (5.1). When deforming the BRST contour in that case, the BRST charge Q
also acts on the integrated vertex operators V (1,1)

j for j = 2, . . . , n− 1. However, this does
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not give any additional contributions, as can be seen as follows:

Q

∫
H+
d2zV (1)[ξ,k](z)V (1)[D·ξ,D·k](z)

=
∫
H+
d2z

(
∂V (0)[ξ,k](z)V (1)[D·ξ,D·k](z)+V (1)[ξ,k](z)∂V (0)[D·ξ,D·k](z)

)
=
∫
H+
d2z

(
∂
[
V (0)[ξ,k](z)V (1)[D·ξ,D·k](z)

]
+∂

[
V (1)[ξ,k](z)V (0)[D·ξ,D·k](z)

])
∼
∫
R
dx
(
V (0)[ξ,k](x)V (1)[D·ξ,D·k](x)+V (1)[ξ,k](x)V (0)[D·ξ,D·k](x)

)
(C.11)

→ 0 . (C.12)

We used the divergence theorem in (C.11) (in the form of (2.1.9) in [23]) and the final van-
ishing result holds inside the correlator when applying the cancelled propagator argument
again.

D NSNS one-point function on the disk in the RNS formalism

For ease of comparison, in this appendix we include the calculation of the NSNS one-point
function on the disk in the RNS formalism, even though it is not new. As usual, we
could either map the one-point function from the disk to the upper half plane or calculate
it directly on the disk. We will perform the calculation on the upper half plane in this
appendix, as we did for the pure spinor formalism in the main text.

For the bosonic string the one-point function of a closed string on the disk was calcu-
lated in [19] and a generalization for the superstring can be found in [21].

On the upper half plane we need a total superghost charge q = −2. Hence, the vertex
operator has to be in the (−1,−1) picture. Therefore,we need to calculate

Aclosed
D2 (1) = gcτp

∫ d2z

VCKG
〈V(−1,−1)(z, z)〉 . (D.1)

As in (4.1) we did not fix the conformal Killing group symmetry (hence there are no
c-ghost insertions). Instead we kept the factor 1

VCKG
explicitly and we will show that

it cancels against a similar factor in the amplitude, leaving a finite result. Again we
can split the vertex operator into a holomorphic and an antiholomorphic part V (z, z) =
εmnV

m
−1(z)V n

−1(z), where
V m
−1(z) = e−φ(z)ψm(z)eik·X(z) (D.2)

and the antiholomorophic part can be determined via the doubling trick. Concretely, we
can extend the fields to the entire complex plane in the following way

Xm(z) =
{

Xm(z) for z ∈ H+

Dm
nX

n(z) for z ∈ H−
, (D.3)

ψm(z) =
{

ψm(z) for z ∈ H+

Dm
nψ

n(z) for z ∈ H−
. (D.4)
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The matrix Dmn was introduced in (2.28). It accounts for the boundary conditions. This
allows us then to make the replacement

X
m(z) −→ Dm

nX
n(z), ψ

m(z) −→ Dm
nψ

n(z), φ(z) −→ φ(z) . (D.5)

With this replacement we can express the vertex operator solely by (D.2):

V1(z1, z1) = ε1mnD
n
rV

m
−1(k1, z1)V r

−1(D·k1, z1) . (D.6)

For the calculation on the upper half plane, we need the correlators of the world-sheet
fields on H+, which are given by

〈Xm(z)Xn(w)〉 = −Dmn ln(z − w) ,

〈ψm(z)ψn(w)〉 = Dmn

z − w
,

〈e−φ(z)e−φ(w)〉 = 1
z − w

.

(D.7)

With these correlators we can evaluate

Aclosed
D2 (1) = gcτp

∫ d2z

VCKG
〈εmne−φ(z)ψm(z)eik·X(z)e−φ(z)ψ

n(z)eik·X(z)〉 (D.8)

to be
Aclosed
D2 (1) = gcτpC̃H+

∫
H+

d2z

VCKG

Tr(ε·D)
(z − z)2 . (D.9)

The Koba-Nielson factor |z − z|k·D·k is equal to one, because k·D·k = −k2 = 0 due to
momentum conservation (4.4) and the fact that we are looking at massless states. The
factor C̃H+ accounts for the functional determinants of the world-sheet fields, like in the
pure spinor formalism. Of course, there is no reason why C̃H+ should be equal to the corre-
sponding constant CH+ in the pure spinor formalism. And indeed, (D.9) agrees with (4.3)
only if C̃H+ = −CH+ . Assuming this, the two results are identical and, thus, (D.9) can be
treated in exactly the same way as in section 4.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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