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1 Introduction

Hydrodynamics provides an effective description of near-equilibrium thermal states, by
focusing on the conserved charges and their transport properties. However, despite its gen-
erality, hydrodynamics is incomplete as a true effective field theory (EFT), as it accounts
only for dissipation but not the stochastic fluctuations that are present even in equilibrium.
Over the past few years, there has been significant progress in our understanding of how
to combine the symmetries and the relevant fluctuation degrees of freedom into a complete
hydrodynamic EFT, building off the microscopic Schwinger-Keldysh (SK) formalism [1–7]
(see [8] for a pedagogical review). Proper consideration of stochastic fluctuations has al-
ready led to qualitatively new results in the non-equilibrium (non-hydrostatic) regime. For
instance, it was recently discovered that new “stochastic transport coefficients” emerge at
higher derivative orders due to stochastic interactions that have no analogue in “classical”
hydrodynamics, but nonetheless affect the low-energy behaviour of hydrodynamic correla-
tion functions [9]. EFT tools have also been recently used to revisit long-time tails due to
density fluctuations at one-loop order [10].
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Despite these qualitative departures from classical hydrodynamics, one expects that
the EFT results will still boil down to their well-known hydrostatic form as we dial back
to equilibrium. In particular, it has been appreciated that careful consideration of the
equilibrium limit provides a powerful set of consistency conditions on the hydrodynamic
framework [11, 12]. These conditions restrict the hydrodynamic constitutive relations in a
manner that was understood previously to be due only to a local formulation of the second
law of thermodynamics. Focusing on relativistic hydrodynamics with a conserved U(1)
charge, in a nutshell, one demands that the equilibrium values of the conserved energy-
momentum tensor Tµν and charge current Jµ can be derived from a hydrostatic generating
functional, W = T−1

0
∫
ddx
√
−gF(gµν , Aµ), expressed in terms of the background metric

gµν and gauge field sources Aµ. Here T0 is the constant temperature of the global thermal
state and d is the number of spatial dimensions. To wit,

δW[gµν , Aµ] = T−1
0

∫
ddx
√
−g

(1
2 T

µν
eq δgµν + JµeqδAµ

)
. (1.1)

The associated conservation equations ∇µTµν = F νλJλ and ∇µJµ = 0 follow directly from
the diffeomorphism and gauge invariance of W. An important ingredient in implementing
the ensuing constraints on the hydrodynamic constitutive relations is the finiteness of the
static correlation length. This feature is expected for generic thermal systems that are
not at second order critical points and do not have spontaneously broken symmetries, and
implies that retarded hydrostatic (time-independent) correlation functions should fall-off
exponentially at large distances. Equivalently, the Fourier space zero-frequency retarded
correlation functions must be analytic in an expansion in small spatial momentum. The
generating functional thus admits a derivative expansion, and one can obtain the hydro-
dynamic constitutive relations in the static limit order-by-order in this expansion.

Moving away from thermal equilibrium, the full EFT formalism of hydrodynamics
should capture the physics of small fluctuations about the hydrostatic equilibrium state.
Thus, hydrodynamic correlation functions should reduce to those derived from the equi-
librium generating functional on integrating out all the fluctuation modes. Of particular
interest is the requirement of analyticity at small spatial momenta noted above, that follows
directly from thermal screening and the finite static correlation length. In the presence of
stochastic interactions, it is known that hydrodynamic correlation functions are generically
non-analytic out of equilibrium due to the presence of long-time tails [13]. The requirement
that these long-distance or infrared non-analyticities must drop out at all loop orders as we
specialize to hydrostatic configurations, is quite non-trivial and poses a rigid consistency
check for the EFT framework. This question is particularly important because the tree-
level propagators for the fluctuation degrees of freedom in these EFTs lack any intrinsic
scale that could define the finite spatial correlation length. In fact, the lack of such a scale
is precisely what leads to the physics of long-time tails out of equilibrium.

A crucial ingredient in the EFT framework is the discrete Kubo-Martin-Schwinger
(KMS) symmetry [4]. It is motivated from its namesake KMS condition in thermal field
theory [14, 15], and ensures that the non-linear fluctuation-dissipation theorem [16] is sat-
isfied by the EFT framework. While the KMS condition captures the fact that the system
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in question is fluctuating around the thermal state, by itself it does not guarantee the
finiteness of the spatial correlation length. However, combined with the structure of hy-
drodynamic EFTs, we find that the KMS symmetry does, in fact, conspire in a nontrivial
way to ensure the analyticity of hydrostatic correlators. The goal of this paper is to illus-
trate how this analyticity emerges explicitly at one-loop order in relativistic hydrodynamics
for density-density two-point functions.

For simplicity, we will work in a kind of “incompressible limit”, where sound modes are
frozen and the theory only has longitudinal charge diffusion and transverse shear diffusion
modes in the low-energy spectrum (see [17] for an early discussion along this direction).
Since sound modes are typically “higher energy” compared to diffusive modes, we expect
that the simplified model faithfully captures the low-energy behaviour of the EFT. Existing
notions of “incompressibility” in the literature, however, are only consistent with linearised
hydrodynamics. As we include interactions, due care has to be taken while defining this
limit so as to not violate the underlying structure of the EFT, in particular the KMS
condition. To reaffirm the role of KMS symmetry in ensuring the analyticity of hydrostatic
correlators, for the majority of this paper we will lift the KMS symmetry by untying the
dissipative and stochastic fluctuation parameters in the EFT. The simplified model that
we develop in this paper, which we dub diffusive hydrodynamics, will also be helpful more
generally to probe stochastic signatures in hydrodynamics in the presence of interacting
momentum modes. In the remainder of this introductory section, we will elaborate further
on the analyticity features of interest, and also summarize our results.

1.1 Thermal correlators and summary of results

Recall that for a generic set of bosonic Hermitian operators OI , the retarded and symmetric
correlators are defined respectively as

GR
IJ(t− t′,x− x′) ≡ iθ(t− t′)〈[OI(t,x),OJ(t′,x′)]〉,

GS
IJ(t− t′,x− x′) ≡ 1

2〈{OI(t,x),OJ(t′,x′)}〉. (1.2)

The thermal expectation values are taken in the grand canonical ensemble with the Hamil-
tonian H ′ = H − µQ, where Q is a conserved charge. These correlators are not indepen-
dent. For example, working in Fourier space and specializing to the hydrodynamic regime
ω/T0 � 1, one can derive the relation

GS
IJ(ω,k) = 2T0

ω
ImGR

IJ(ω,k). (1.3)

This is an incarnation of the fluctuation-dissipation theorem, which ties together statistical
fluctuations in a thermal system to dissipation, and follows from the KMS periodicity
condition in Euclidean time for equilibrium states.

For generic systems in thermal equilibrium, at least away from second order critical
points and in the absence of any spontaneously broken symmetries, screening implies a
finite static or spatial correlation length. It follows that retarded (or Euclidean) correlation
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functions fall off exponentially at large distances, or equivalently the Fourier space retarded
correlators at zero-frequency are analytic at low spatial momentum k, i.e.

GR
IJ(ω = 0,k) is analytic as k→ 0. (1.4)

We refer to this condition as spatial analyticity. Importantly, it allows for a well-defined
derivative expansion, used previously to develop a hydrostatic generating functional for
hydrodynamics [11, 12]. In the hydrodynamic regime, where ω/T0 � 1, |k|/T0 � 1 and we
consider perturbations about an equilibrium state, the combination of eqs. (1.3) and (1.4)
implies a nontrivial structure for the retarded correlator.

In this paper, we will focus on the correlations of a conserved charge n = J0, which
is the time-component of a conserved U(1) current Jµ. We can investigate the above
features by looking at the symmetric and retarded correlators for n. At the tree level in
the hydrodynamic EFT (i.e. in the linear response theory), they are known to take the
form [18]

GR,tree
nn (ω,k) = iχDk2

ω + iDk2 =⇒ GR,tree
nn (ω → 0,k) = χ+ iχω

Dk2 +O(ω2),

GS,tree
nn (ω,k) = 2T σ̃k2

ω2 + (Dk2)2 =⇒ GS,tree
nn (ω → 0,k) = 2σ̃T

D2k2 +O(ω2). (1.5)

In terms of the chemical potential µ and conductivity σ, the coefficients appearing here
are the static charge susceptibility χ = ∂n/∂µ|T and the diffusion constant D = σ/χ. The
coefficient σ̃ controls the strength of stochastic interactions. In thermal equilibrium, the
KMS condition sets σ̃ = σ, leading to these tree-level correlators obeying the fluctuation-
dissipation theorem in eq. (1.3). We note that the symmetric correlator at ω = 0, which is
nothing but the tree-level static propagator of n, has a pole at k = 0. This is consistent with
our discussion above because symmetric correlators are not restricted by any analyticity
requirement. Such poles are, of course, a generic feature of gapless degrees of freedom. The
relevant point here is that despite the gapless nature of these tree-level correlations, the
retarded correlator is indeed analytic at zero frequency in accordance with eq. (1.4).

While the KMS condition does not play any role at tree-level in ensuring the analyticity
of the retarded correlator, it becomes crucial as we start to include loop corrections. In the
hydrodynamic EFT, upon accounting for density and transverse-momentum fluctuations
within diffusive hydrodynamics, and specializing to d = 3 spatial dimensions, we find that
the correlators in eq. (1.5) admit one-loop corrections that behave at ω = 0 as

GR
nn(ω = 0,k) = χ

(
Zχ + cR

1 |k|+ cR
2 |k|3 +O(k4)

)
, (1.6)

GS
nn(ω = 0,k) = 2Tχ

Dk2

(
ZΛ + cS

1 |k|+ cS
2 |k|3 +O(k4)

)
. (1.7)

Here Zχ,Λ are UV-sensitive renormalization factors with polynomial dependence on the
momentum-cutoff of the EFT. These are expected in the low-energy effective field theory
due to the irrelevant nature of hydrodynamic interactions. We shall not compute these
factors in detail in this paper; a thorough discussion restricted to the scalar diffusion
model can be found in [10].
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The remaining coefficients in eq. (1.7) are interesting physically, because they quantify
the infrared and non-analytic corrections to the hydrodynamic correlation functions. These
can be explicitly computed in terms of three hydrodynamic parameters: pressure p(T, µ),
shear viscosity η(T, µ), and conductivity σ(T, µ), and two stochastic parameters η̃(T, µ)
and σ̃(T, µ). The enthalpy density w(T, µ) and charge density n(T, µ) are defined using
the usual thermodynamic relations dp = (w−µn)/T dT +ndµ. The bulk viscosity ζ(T, µ)
and the associated stochastic parameter ζ̃(T, µ) do not appear in the diffusive limit of
hydrodynamics. Using the charge susceptibility χ = ∂n/∂µ|T and the diffusion constant
D = σ/χ from above, and further defining the shear diffusion constant γη = η/w and the
cross-susceptibility χε = ∂w/∂µ|T , we find

cR
1 = T

32πD2w

(
η̃

η
− σ̃

σ

)[2
√
γηD(D − γη)
(γη +D)2 + arccos

(
γη −D
γη +D

)]
,

cR
2 = −T

32πDχ

[
∂D

∂µ

∂(σ̃/σ)
∂µ

+ 1
w

∂(η̃/η)
∂µ

((3π − 2)χεD + (7π − 20/3)nγη)
]
,

cS
1 = T

32πD2w

σ̃

σ

η̃

η

[
2
√
γηD(D − γη)
(γη +D)2 + arccos

(
γη −D
γη +D

)]
,

cS
2 = −T

32πDχ
σ̃

σ

[
σ̃

σ

1
D

(
∂D

∂µ

)2
+ 1
w2γη

η̃

η

(
πχ2

εD
2 + (5π − 4)nχεDγη + 2(3π − 10/3)n2γ2

η

)]

− T

32πw2χDγη

η̃

η

(
η̃

η
− σ̃

σ

)(
πχ2

εD
2 − 2(3π − 10/3)n2γ2

η

)
+ T

16πwχD
σ̃

σ

∂(η̃/η)
∂µ

((3π − 2)χεD + (7π − 20/3)nγη) . (1.8)

All the coefficients here are understood to be evaluated on the equilibrium configuration.
The explicit functional form of these coefficients is not very important. The important
point is that both the retarded and symmetric correlators are generically non-analytic in
the static limit. However, upon imposing the KMS condition, which in this case requires
setting σ̃ = σ and η̃ = η, we find

cR
1

KMS= 0, cR
2

KMS= 0,

cS
1
KMS= T

32πD2w

[
2
√
γηD(D − γη)
(γη +D)2 + arccos

(
γη −D
γη +D

)]
,

cS
2
KMS= −T

32πDχ

[
1
D

(
∂D

∂µ

)2
+ 1
w2γη

(
πχ2

εD
2 + (5π − 4)nχεDγη + 2(3π − 10/3)n2γ2

η

)]
.

(1.9)

We see that in the presence of the KMS condition, which ensures that the correlators satisfy
the fluctuation-dissipation theorem, the non-analytic pieces in the retarded correlator drop
out in the hydrostatic limit, reaffirming the consistency of hydrostatic equilibrium in the
EFT framework. On the other hand, the symmetric correlator in the hydrostatic limit
remains non-analytic. Full analysis of the finite-ω behaviour of these correlation functions
and the ensuing long-time tails will appear in a companion paper [19].
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The discussion for arbitrary spatial dimensions follows in a similar manner. In d 6= 1, 2
spatial dimensions,1 the corrections inside the brackets in eq. (1.7) typically behave as
|k|d−2, |k|d, . . ., while in d = 2 spatial dimensions, they behave as log(k2), |k|2 log(k2), . . ..
While we will not derive the explicit form of the associated coefficients in general, we
will show in the course of this paper that the one-loop non-analytic corrections to the
retarded function drop out in arbitrary dimensions due to the KMS symmetry, maintaining
consistency with the existence of thermal equilibrium.

The paper is organized as follows. To sketch out the road-map and develop a qualita-
tive understanding of the results, we will first ignore the momentum modes altogether in
section 2, and start with a simplified EFT model of a single diffusive conserved charge as
proposed in [9, 10]. However, unlike the original references, we will lift the KMS symme-
try from the model and compute the one-loop corrections to the symmetric and retarded
correlation functions directly using the EFT generating functional. Note that we cannot
deduce the two correlators using one-another in the absence of KMS symmetry, because
the fluctuation-dissipation theorem in eq. (1.3) does not apply. We will then set up the
theory of diffusive hydrodynamics in section 3, and repeat the computation of one-loop
correlation functions in the presence of transverse momentum fluctuations. We will finish
with a discussion in section 4. In appendix A, we provide further details of the derivation
of the EFT for diffusive hydrodynamics and the explicit one-loop computations.

2 Density correlation functions in simple diffusion

In this section, we investigate the issue of spatial analyticity of hydrostatic correlators in
a simple EFT model with a single diffusive charge, which has all the relevant qualitative
features of the full problem. The generalization to full hydrodynamics will be presented in
the next section.

2.1 Simple stochastic diffusion

Thermal fluctuations are conventionally introduced into the hydrodynamic setup by in-
cluding stochastic noise sources in the constitutive relations with short-range Gaussian
correlations. One way to realize this effective theory is to add a fluctuation field for each
conserved hydrodynamic variable in the theory and require that the ensuing effective ac-
tion, when inserted inside a path integral, reproduces the full set of real-time correlation
functions in thermal equilibrium [21–23] (see [18] for a review). Focusing on a single con-
served charge n(µ) with the chemical potential µ, the respective classical conservation
equation at one derivative order is given by

∂tn(µ) + ∂iJ
i = 0, J i = −σ(µ) δij(∂jµ− Fjt), (2.1)

where J i is the charge flux expressed in terms of µ and its derivatives. In the following
we will often use the “covariant” current Jµ with J0 = n. Here Fit = ∂iAt − ∂tAi is the

1Note that in d = 1 spatial dimension, the leading correction to the retarded correlator goes as 1/|k|
and is relevant, signaling the fact that the hydrodynamic description does not apply [20].

– 6 –



J
H
E
P
0
2
(
2
0
2
1
)
2
0
0

electric field associated with the background gauge field Aµ coupled to Jµ. The charge
conductivity σ(µ) is an arbitrary function of µ, required to be non-negative by the second
law of thermodynamics. The equilibrium state is given by µ = µ0 being a constant.

In the EFT language, the chemical potential µ is related to the fundamental “chemical
shift” field Λβ as µ = T0Λβ +Art, where Arµ is one of the Schwinger-Keldysh background
gauge fields along with Aaµ.2 To account for stochastic fluctuations, we add an auxiliary
field ϕa to partner the hydrodynamic field Λβ . The effective action S of the theory is
fixed so that it reproduces all the two-point response functions at tree-level as predicted by
classical linearized hydrodynamics. Introducing the effective Lagrangian density through
S =

∫
dd+1xL, we have [4, 9]

L = Jµ (∂µϕa +Aaµ) + iT0σ̃(µ) (∂iϕa +Aai)
(
∂iϕa +Aia

)
. (2.2)

Here T0 is the constant temperature of the thermal equilibrium state. We have introduced
an arbitrary coefficient σ̃(µ) that characterizes the strength of stochastic fluctuations. This
is the most general Lagrangian consistent with the Schwinger-Keldysh EFT framework for
a single diffusive charge at one-derivative order. However, for this effective Lagrangian
to correctly reproduce the hydrodynamic response functions, we need to impose the con-
straint from the fluctuation-dissipation theorem. This equates the strength of stochastic
fluctuations σ̃ to the dissipative transport coefficient σ (see [18] for more details),

KMS : σ̃ = σ. (2.3)

Assuming the underlying microscopic theory to be CPT-invariant, in the Schwinger-
Keldysh (SK) effective field theory framework of [4], this follows as a consequence of the
dynamical KMS symmetry of the effective action

µ0 → −µ0, Λβ(x)→ −Λβ(−x), ϕa(x)→ ϕa(−x) + iΛβ(−x),
Arµ(x)→ −Arµ(−x), Aaµ(x)→ −Aaµ(−x)− iT−1

0 (∂tArµ)(−x). (2.4)

In addition, it implies the charge conjugation properties for the coefficients n(−µ) = −n(µ),
σ(−µ) = σ(µ), and σ̃(−µ) = σ̃(µ). In the following, we find that the KMS condition is
critical for ensuring the analyticity of retarded correlators in spatial momentum. Hence,
to keep track of the non-analytic behaviour explicitly, we will perform the majority of
forthcoming manipulations assuming σ̃ and σ to be independent.

2.2 Linear expansion and interactions

To be able to use this theory in a loop expansion, we need to expand the Lagrangian (2.2)
order-by-order in fluctuations about the equilibrium state Λβ = µ0/T0, ϕa = 0; see [9]
for details. It is practically easier to work with the fluctuations in the density δn =
n(T0Λβ) − n(µ0) rather than Λβ . Ignoring the background fields at first, and ignoring

2In the EFT language of [4], the true fundamental degree of freedom is the phase field ϕr, which is related
to Λβ above via the definition ΛβT0 = µ0 + ∂tϕr. For an ordinary fluid phase where the U(1) symmetry is
not spontaneously broken, the system respects a spatial chemical shift symmetry: ϕr(x) → ϕr(x) − λ(x),
and all the shift-invariant information in ϕr is contained in Λβ .
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certain total-derivative terms, we find the “free” Gaussian part of the effective Lagrangian
to be

Lfree = −ϕa
(
∂tδn−D∇2δn

)
+ iT σ̃∂iϕa∂iϕa, (2.5)

where D = σ/χ is the diffusion constant, with χ = n′(µ) being the charge susceptibil-
ity, and ∇2 ≡ ∂i∂i. We have dropped the subscript “0” for clarity and the coefficients
are understood to be evaluated at equilibrium, i.e. µ = µ0. This leads to the tree-level
propagators

〈δn(p)ϕa(−p)〉0 = 1
ω + iDk2 , p

〈ϕa(p)δn(−p)〉0 = −1
ω − iDk2 , p

〈δn(p)δn(−p)〉0 = 2T σ̃k2

ω2 +D2k4 = iTχσ̃/σ

ω + iDk2 −
iTχσ̃/σ

ω − iDk2 , p

〈ϕa(p)ϕa(−p)〉0 = 0. (2.6)

Here p = (ω,k) collectively denotes frequency and momentum. We have denoted δn by
solid and ϕa by wavy lines. Note that the 〈δnϕa〉 propagator is purely retarded, 〈ϕaδn〉
propagator is purely advanced, while 〈δnδn〉 propagator can be expressed as a sum of
retarded and advanced pieces. This observation generalizes to full hydrodynamics, and
will be important in the explicit loop calculations in the following discussion.

The free diffusive action (2.5) is well-known in the literature (see e.g. [18]), however, it
does not account for interactions. To this end, we can expand eq. (2.2) to the next order
in δn and ϕa to obtain3

L3ptint = 1
2λ δn

2∇2ϕa + iχT λ̃ δn ∂iϕa∂
iϕa, (2.7)

where the two coupling constants λ and λ̃ are defined via

λ = 1
χ

∂D

∂µ
, λ̃ = 1

χ2
∂σ̃

∂µ
. (2.8)

We can work-out the momentum-space Feynman rules for the associated vertices

p

p′

p′′

−i
2 λk2,

p

p′

p′′

Tχλ̃k′ · k′′. (2.9)

The same procedure can be iterated to arbitrarily high orders in fluctuations, depending
on the sensitivity required. This form of the effective action, albeit for energy diffusion
instead of charge diffusion, was derived recently in [10].

To be able to compute the correlations functions using the non-equilibrium generating
functional [4], we also need the structure of the background field couplings in the EFT.

3See [24, 25] for discussions along similar lines, involving the dependence of transport parameters on the
fluctuating fields.
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Since, in this work, we are only interested in density correlators, we only turn on the Art,
Aat components of the gauge fields. We directly borrow the results from [9], leading to

L2ptsource = δnAat + χ∂tϕaArt + χArtAat,

L3ptsource = χ′

χ
δnArtAat + 1

2χ
′∂tϕaA

2
rt + 1

2χ
′A2
rtAat

+
(
χ′

χ
δn ∂tϕa −

1
χ

∂σ

∂µ
∂iδn∂iϕa + iT

∂σ̃

∂µ
∂iϕa∂

iϕa

)
Art, (2.10)

where χ′ = ∂χ/∂µ. Denoting Art by a dotted and iAat by a dashed line, we can represent
these diagrammatically as

p
1,

p
− ωχ,

p
χ,

p

p′

p′′

χ′

χ
,

p

p′

p′′

1
2χ
′ω′′,

p

p′

p′′

1
2χ
′,

p

p′

p′′

χ′

χ
ω′ + i

χ

∂σ

∂µ
k′ · k′′,

p

p′

p′′

T
∂σ̃

∂µ
k′ · k′′. (2.11)

The first two of these are the usual linear couplings between operators and sources in quan-
tum field theories, while the remaining are non-linear couplings. Frequency and momenta
going away from the vertex are taken to be positive.

Let us briefly comment on the dimension counting scheme that we implement in the
following discussion. For diffusive processes, it is typically argued that ∂t ∼ ∂i∂i. Following
e.g. [26], we can demand that [∂i] = 1 and require that the couplings in spatial kinetic
terms in eq. (2.5) are dimensionless. If we take [∂t] = 2 to ensure consistent scaling,
and thus [L] = d + 2, we find [ϕa] = [δn] = d/2, and it follows that [λ] = [λ̃] = −d/2
and thus both interactions in eq. (2.7) are irrelevant. We therefore expect that loops will
induce power-like sensitivity to the UV cutoff. To count loops (L), we can use the relation
L = 1 + (N/2 − 1)V − E/2 for N th order vertices in diagrams with E external lines.
In the case of interest below, E = 2, and so at one-loop order, V = 2/(N − 2). Thus,
one-loop corrections require diagrams with 2 cubic vertices. In principle, diagrams with a
single quartic vertex can also contribute at this order, however the contributions from such
diagrams to the two-point functions are purely UV-cutoff dependent and only renormalize
the classical hydrodynamic parameters [9, 10].
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2.3 One-loop corrections from density fluctuations

Defining the Schwinger-Keldysh generating functional as [4]4

expW [Arµ, Aaµ] =
∫
DδnDϕa exp

(
i

∫
dd+1xL

)
, (2.12)

we can compute the retarded and symmetric correlators of n via

GR
nn(p) = −iδ2W

δAat(p)δArt(−p)
= χ− ωχ〈δn(p)ϕa(−p)〉+ (source coupling diagrams),

GS
nn(p) = −δ2W

δAat(p)δAat(−p)
= 〈δn(p)δn(−p)〉. (2.13)

Using the propagators in eq. (2.6), it is trivial to check that we reproduce the tree-level
results for the two correlation functions given in eq. (1.5).

We will now compute the stochastic loop corrections to the classical tree-level propaga-
tors in eq. (1.5). This amounts to integrating out the stochastic noise field ϕa at one-loop
order using the interaction vertices defined above in eqs. (2.7) and (2.10). Let us start
with the retarded function. At one-loop order, we have two diagrams contributing to the
〈δnϕa〉 propagator (see [9] for details)

(2.14a)

In addition, we have two diagrams involving non-linear background source couplings

(2.14b)

We can compute these diagrams to find the one-loop correction to the retarded density
correlator; see appendix B for calculational details. We find the one-loop correction to the
retarded correlator to be

GR,1-loop
nn (p) = iTλk2

(ω + iDk2)2

(
σ̃

σ
ωχ2λ− (ω + iDk2)σ∂(σ̃/σ)

∂µ

)
I1(p), (2.15)

where p = (ω,k) and I1(p) is the result of the loop momentum integral

I1(p) = k2

2

∫ Λ ddk′

(2π)d
1

iω −D(k′2 + (k − k′)2)
d=3= k2

32πD

√
k2 − 2iω

D
+O(Λ),

d=2= k2

16πD ln
(
k2 − 2iω

D

)
+O(ln Λ). (2.16)

4Technically, the EFT path integral should be performed over the phase field ϕr, with the field space
volume divided by the associated spatial chemical shift symmetry; see footnote 2. Passing over to δn or Λβ
might generically result in additional Jacobian factors that we shall ignore for now.
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The value of this integral depends on the UV-cutoff Λ and the number of spatial dimensions
d. Above, we have explicitly computed it for d = 2, 3 for reference. We see that, generically,
the one-loop corrections at finite frequency exhibit IR-sensitive non-analytic dependence on
ω, reflecting the physics of long-time tails, which invalidates the hydrodynamic derivative
expansion at a given order [27]. However, if we restrict to the hydrostatic (ω = 0) limit, we
have argued that thermal screening should render the correlator analytic. Setting ω = 0,
the one-loop correction reduces to

GR,1-loop
nn (0,k) = −Tχλ ∂(σ̃/σ)

∂µ
I1(0,k) KMS= 0, (2.17)

which vanishes trivially upon imposing the KMS condition σ̃ = σ, irrespective of the
dimensionality. Hence, we see that the KMS condition is crucial to reproduce the analyticity
of retarded correlators in the hydrostatic limit.

We can repeat the same procedure for the symmetric correlator. In this case, we do
not have any background coupling diagrams at one-loop order. We only need to consider
the seven diagrams correcting the 〈δnδn〉 propagator

(2.18a)

(2.18b)

(2.18c)

Relegating the explicit computations to the appendix, we find that

GS,1-loop
nn (p) = T 2χ2λ2k2

(ω + iDk2)2
σ̃2

σ2 I1(p) + T 2χ2λ2k2

(ω − iDk2)2
σ̃2

σ2 I1(−p). (2.19)

It can be explicitly checked that, on imposing the KMS condition, these corrections satisfy
the fluctuation-dissipation theorem (1.3) along with the retarded correlator corrections in
eq. (2.15). Finally, in the ω = 0 limit, the symmetric correlator behaves as

GS,1-loop
nn (0,k) = −2T 2χ2λ2

D2k2
σ̃2

σ2 I1(0,k), (2.20)

which survives the KMS limit σ̃ = σ. This indicates that IR-singular non-analytic terms are
generated in the hydrostatic limit, as a manifestation of the lack of any intrinsic mass scale
in the tree-level propagators (2.6). This may appear surprising, given the earlier discussion
of thermal screening. However, the symmetric correlator is not determined explicitly by the
hydrostatic generating functional and does not have to meet the analyticity requirement.
The leading IR-singularity, proportional to 1/k2, to the symmetric correlator is still given
by the tree-level propagator. Also, note that the one-loop correction to the symmetric
correlator in the static limit does not depend upon λ̃.
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3 Density correlation functions in diffusive hydrodynamics

The discussion of charge diffusion above can be extended to the full theory of relativistic
hydrodynamics. We will again focus on the transport of a single conserved charge, but
consistently incorporate additional hydrodynamic momentum modes in the thermal bath.
We will develop an effective field theory for diffusive hydrodynamics, where the sound
modes have been frozen and the theory only contains diffusive charge and shear modes.
This allows us to compute the hydrodynamic correlators in a slightly simpler setting, while
still incorporating the non-trivial effects of momentum modes. Our goal is not to provide
a comprehensive analysis, but to test the spatial analyticity of retarded charge density
correlators in a system with additional gapless modes, specifically those associated with
momentum fluctuations.

3.1 Stochastic diffusive hydrodynamics

The classical dynamical equations for relativistic hydrodynamics are given by charge and
energy-momentum conservation,

∂µJ
µ = 0, ∂µT

µν = F νλJλ, (3.1)

along with the constitutive relations expressing Jµ and Tµν in terms of the hydrodynamic
variables: temperature T , chemical potential µ, fluid four-velocity uµ, and their derivatives.
For instance, in the Landau frame up to first order in derivatives we have5

Jµ = n(T, µ)uµ − σ(T, µ)∆µλ
(
T∂λ

(
µ

T

)
− Fλνuν

)
, (3.2)

Tµν = ε(T, µ)uµuν + p(T, µ) ∆µν

− 2η(T, µ)
(
∆ρ(µ∆ν)σ∂ρuσ − 1

d∆µν∂λu
λ
)
− ζ(T, µ)∆µν∂λu

λ. (3.3)

We have introduced the background gauge field Aµ coupled to Jµ, and the associated field
strength Fµν = 2∂[µAν], but have avoided introducing the metric source for Tµν that we
do not require for our purposes. Here ∆µν = ηµν + uµuν is the projector transverse to
the fluid velocity. The thermodynamic pressure p, energy density ε, and charge density
n are functions of T and µ, and related to each other via the thermodynamic relations
dp = sdT + ndµ and ε+ p = Ts+ µn for some entropy density s. The charge conductivity
σ, shear viscosity η, and bulk viscosity ζ are non-negative functions of T and µ. We shall
be interested in fluctuations about an equilibrium state with µ = µ0 at a constant global
temperature T = T0 in the rest frame uµ = (1,0).

The EFT for hydrodynamics is formulated in terms of a thermal vector βµ and “chem-
ical shift” field Λβ , along with their stochastic noise partners Xµ

a and ϕa. These are related
to the aforementioned hydrodynamic fields as uµ/T = βµ and µ/T = Λβ + βµArµ. Similar
to the diffusive EFT, we introduce the Schwinger-Keldysh double copies of background

5The symmetrization of indices follows the convention A(µBν) = 1
2 (AµBν + AνBµ). Similarly, antisym-

metrization follows the convention A[µBν] = 1
2 (AµBν −AνBµ).
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gauge fields Arµ, Aaµ. With all the ingredients in place, the full non-linear effective action
for relativistic hydrodynamics takes the form [2]

L= Jµ (∂µϕa+Aaµ+£XaArµ)+ iT σ̃∆µν(∂µϕa+Aaµ+£XaArµ
)(
∂νϕa+Aaν +£XaArν

)
+Tµν∂µXaν + iT

(
2η̃∆µ(ρ∆σ)ν +(ζ̃− 2

d η̃)∆µν∆ρσ
)
∂µXaν∂ρXaσ+ · · · , (3.4)

where £Xa denotes a Lie derivative along Xµ
a . We have introduced the stochastic coeffi-

cients σ̃, η̃, and ζ̃, which are also arbitrary non-negative functions of T and µ. We can re-
cover the previous diffusive model in eq. (2.2) by simply setting Xµ

a = 0 and uµ/T = δµt /T0.
This is the most general effective action for relativistic hydrodynamics, in Landau frame,
compatible with the Schwinger-Keldysh framework of [4], truncated at one-derivative or-
der. We utilize the usual derivative counting scheme for relativistic hydrodynamics: in the
“r” sector we take uµ, T, µ,Arµ ∼ O(∂0), while in the “a” sector we have Xµ

a , ϕa ∼ O(∂0),
Aaµ ∼ O(∂1).

The dynamical KMS symmetry in eq. (2.4) generalizes to a covariant version,

µ0 → −µ0, βµ(x)→ βµ(−x), Λβ(x)→ −Λβ(−x),

ϕa(x)→ ϕa(−x) + iΛβ(−x), Xµ
a (x)→ −Xµ

a (−x)− i
(
βµ(−x)− T−1

0 δµt

)
,

Arµ(x)→ −Arµ(−x), Aaµ(x)→ −Aaµ(−x)− i(£βArµ)(−x), (3.5)

where £β denotes a Lie-derivative along βµ. In addition to the charge conjugation proper-
ties of various coefficients, the KMS symmetry relates the stochastic fluctuation coefficients
to the dissipative transport coefficients via

KMS : σ̃ = σ, η̃ = η, ζ̃ = ζ. (3.6)

However, we shall not implement these constraints for now to investigate the role of KMS
in ensuring the analyticity of hydrostatic retarded correlators.

Similar to our discussion in section 2, we can expand the Lagrangian order-by-order
in the hydrodynamic fluctuations δβµ = βµ − δµt /T0, δΛβ = Λβ − µ0/T0, and associated
noise Xµ

a , ϕa. The full theory turns out to be quite complicated in practice. To make
our lives simpler, we will focus on a sub-sector, which we call diffusive hydrodynamics,
where the temperature and the longitudinal velocity fluctuations have been frozen and so
can be ignored. This is similar to the well-known “incompressible limit” of non-relativistic
hydrodynamics and amounts to ignoring the sound modes and only focusing on the diffusive
modes. We take

δβt = 0, ∂iδβ
i = 0, Xt

a = 0, ∂iX
i
a = 0. (3.7)

The last two conditions are required for consistency with the KMS condition (3.5). This
removes the energy conservation equation and the trace of the spatial stress tensor from
the effective action. In terms of the original hydrodynamic variables, the first two condi-
tions imply6

δT ≡ T − T0 = T0
2 u

2 + . . . , ∂iu
i = 0 + . . . , (3.8)

6If we were to decompose the relativistic fluid velocity according to uµ = (1, v)/
√

1− v2, these conditions
will imply ∂ivi = 0 exactly, making contact with the incompressible limit of hydrodynamics.
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where u2 = uiui. We have suppressed terms that are cubic or higher order in δβi. To
impose these conditions in the EFT, we include additional constraint terms in the effec-
tive action

Lfixing = Ψa∂iδβ
i + Ψr∂iX

i
a, (3.9)

for arbitrary Lagrange multipliers Ψr, Ψa. For consistency with the KMS condition (3.5),
these multipliers must transform as

Ψr(x)→ Ψr(−x), Ψa(x)→ −Ψa(−x) + iΨr(−x). (3.10)

3.2 Linear expansion and interactions

It turns out to be more convenient to work with density fluctuations δn = J t|Ar=0−n(µ0)+
2iT σ̃ui∂iϕa and momentum fluctuations πi = T ti+2iT η̃(uk∂kXi

a+uk∂iXk
a ).7 The free part

of the effective Lagrangian (3.4), along with the Lagrange multiplier terms, takes the form

Lfree = −ϕa
(
∂t −D∇2

)
δn+ iT σ̃ ∂iϕa∂

iϕa −Xi
a

(
∂t − γη∇2

)
πi + iT η̃ ∂kX

j
a∂

kXaj

+ 1
Tw

Ψa∂iπ
i + Ψr∂iX

i
a. (3.11)

The explicit calculational details can be found in appendix A. As before, D = σ/χ is the
charge diffusion constant with χ = ∂n/∂µ|T being the charge susceptibility, while γη = η/w

is the shear diffusion constant with w = ε+ p being the enthalpy density. We still have the
same tree-level propagators in the charge sector, eq. (2.6), but we also find new momentum
dependent propagators given by

〈πi(p)Xj
a(−p)〉0 =

(
δij − kikj

k2

)
1

ω + iγηk
2 , pi j

〈Xi
a(p)πj(−p)〉0 =

(
δij − kikj

k2

)
−1

ω − iγηk2 , pi j

〈πi(p)πj(−p)〉0 =
(
δij − kikj

k2

)
2T η̃k2

ω2 + γ2
ηk

4 , pi j

〈Xi
a(p)Xj

a(−p)〉0 = 0. (3.12)

We have denoted πi with a bold and Xi
a with a coiled line. All the cross-propagators

between the momentum and the charge sectors are zero. This is a feature of the simplified
diffusive hydrodynamic theory eq. (3.7), and will not be the case in full hydrodynamics in
the presence of sound modes. These propagators are made transverse to momentum by the
presence of the Lagrange multipliers. The propagators for the multipliers themselves can
be computed, but they do not have any physical poles and drop out for our case of interest.

7These definitions of δn and πi, including the imaginary parts, are the true charge and momentum
densities that are conserved in the presence of stochastic fluctuations, unlike J0 and T 0i that are only
conserved classically; see appendix A for details.
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At the next order in fluctuations, we have the three-point interaction Lagrangian

L3ptint = 1
2λδn

2∇2ϕa + iTχλ̃ δn ∂iϕa∂
iϕa + 1

w
πiδn ∂iϕa + 1

w
πiπj∂iXaj

+ 1
2λππ

2∇2ϕa − ψ πjπi∂i∂jϕa − iTwψ̃
(
πj∂

iXj
a + πj∂

jXi
a

)
∂iϕa

− γ δn πj∇2Xaj − 2θ δn ∂(iπj)∂iXaj + 2iTwθ̃ δn ∂(iXj)
a ∂iXaj

− χε
Tχw2 Ψaπ

i∂iδn, (3.13)

which generalizes eq. (2.7). Various coupling constants are defined as

χε = ∂w

∂µ
, λ = 1

χ

∂D

∂µ
, λ̃ = 1

χ2
∂σ̃

∂µ
, λπ = − 1

w2 (χεD + nγη) ,

ψ = nη

w3 , ψ̃ = 2nη̃
w3 , γ = η(n+ χε)

χw2 , θ = 1
χw

(
ηn

w
+ ∂η

∂µ

)
, θ̃ = 1

χw

∂η̃

∂µ
. (3.14)

The vertices arising from the first two interactions in eq. (3.13) are the same as given in
eq. (2.9). In addition, we get six more vertices

p

p′

p′′
i

−1
w
ki, p

i
p′

j

p′′
k

−1
2w (kjδik + kkδij),

p

p′

i

p′′
j

−i
2 λπδijk

2 + iψ kikj , p

i
p′

p′′
j

iγδijk
2 + iθ(δijk · k′′ + kjk

′′
i ),

p

i
p′

j

p′′

− Twψ̃(δijk′ · k′′ + k′ik
′′
j ),

p

p′

i

p′′
j

Twθ̃ (δijk′ · k′′ + k′jk
′′
i ).

(3.15)

There is another interaction vertex involving the Lagrange multiplier Ψa. However, all the
loop diagrams involving this vertex include a purely retarded/advanced loop integral and
hence do not contribute to the problem at hand.

Finally, we need the coupling structure to the background fields. Turning on only the
Art, Aat components of the gauge fields, we find

L2ptsource = δnAat+χ∂tϕaArt+χArtAat,

L3ptsource = χ′

χ
δnArtAat+

1
2χ
′∂tϕaA

2
rt+

1
2χ
′A2
rtAat

+
(
χ′

χ
δn∂tϕa−

1
χ

∂σ

∂µ
∂iδn∂iϕa+ iT

∂σ̃

∂µ
∂iϕa∂

iϕa

)
Art+

(
χ

w
πi∂iϕa−Xi

a∂iδn

)
Art

+
(
χε
w
πi∂tX

i
a−

2
w

∂η

∂µ
∂(iπj)∂iXaj +2iT ∂η̃

∂µ
∂(iXj)

a ∂iXaj

)
Art. (3.16)

– 15 –



J
H
E
P
0
2
(
2
0
2
1
)
2
0
0

See the appendix A for details of the derivation. Most of these are the same as the
ones found in the diffusive case in eq. (2.10), but we do find four additional background
interaction vertices, given by

p

p′

p′′
i

−χ
w
k′i, p

p′

i

p′′

k′′i ,

p

p′

i

p′′
j

χε
w
ω′δij + i

w

∂η

∂µ
(δijk′ · k′′ + k′jk

′′
i ),

p

i

p′

i

p′′
j

T
∂η̃

∂µ
(δijk′ · k′′ + k′jk

′′
i ),

(3.17)

3.3 One-loop corrections from momentum fluctuations

We can use this theory to work out the corrections to the density correlation functions
arising from momentum fluctuations. The variational formulas in eq. (2.13) are still valid,
but with the modified generating functional (see footnote 4)

expW [Arµ, Aaµ] =
∫
DδnDϕaDπiDXi

aDΨrDΨa exp
(
i

∫
dd+1xL

)
. (3.18)

This still leads to the same tree-level two-point correlators as reported in eq. (2.6).

3.3.1 Retarded correlation function

For the retarded function at one-loop order in diffusive hydrodynamics, we still get contri-
butions from the previous diagrams in eq. (2.14). In addition, we have the following three
one-loop diagrams involving momentum fluctuations contributing to the 〈δnϕa〉 propaga-
tor:

(3.19a)

With the incorporation of momentum fluctuations, we also have four new background
coupling diagrams:

(3.19b)
We have ignored the possible diagrams which involve a purely retarded loop and hence do
not contribute to the final result. The first diagram in eq. (3.19a) and the first two diagrams
in eq. (3.19b) involve leading derivative non-dissipative couplings and dominate in the IR.
The remaining four diagrams here and the ones in eq. (2.14) lead to subleading corrections
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in k2. The explicit computation of these diagrams can be found in the appendix B. Com-
bining the result from eqs. (2.14) and (3.19), we find that the full one-loop correction to
the retarded density correlation function in diffusive hydrodynamics is given by

GR,1-loop
nn (p) = −Tk2

(ω + iDk2)2

[
χ

w

(
iω
σ̃

σ
+Dk2

(
η̃

η
− σ̃

σ

))
I0(p)

− λ
(
σ̃

σ
iωχ2λ− (iω −Dk2)σ∂(σ̃/σ)

∂µ

)
I1(p)

+ iω
n0η̃

w
(λπJ1(p) + λπJ2(p)− ψJ3(p)− ψJ4(p))

+Dk2
(
η̃

w
χε (λπJ1(p)− ψJ3(p)) + η

∂(η̃/η)
∂µ

(λπJ2(p)− ψJ4(p))
)

− 1
2
η̃

w
χε(λπ − ψ)(iω −Dk2)I3(0,k)

]
. (3.20)

The integral I1(p) is defined in eq. (2.16). We define three more similar integrals via

I0(p) = 1
k2

∫ Λ ddk′

(2π)d
k2 − (k · k′)2/k′2

iω − γηk′2 −D(k−k′)2

d=3= |k|
32πD

(
2
√
γηD(D − γη)
(γη +D)2 + arccos

(
γη −D
γη +D

))
+O(ω),

I2(p) = k2

2

∫ Λ ddk′

(2π)d
1

iω − γη(k′2 + (k − k′)2)
d=3= |k|3

32πD +O(ω),

I3(p) = k2

2

∫ Λ ddk′

(2π)d
−k2/k′2

iω − γη(k′2 + (k − k′)2)
d=3= |k|3

32γη
+ iω|k|

16πγ2
η

+O(ω2). (3.21)

For reference, we have computed these integrals explicitly in d = 3 for small ω, with a
hard momentum cutoff Λ. However, the analyticity results do not depend on the explicit
form of the integrals and are valid in arbitrary d. In terms of these, the J1,2,3,4(p) integrals
appearing in eq. (3.20) are defined as

J1(p) = (d− 2) iω

γηk
2I2(p)− (iω − γηk2)2

2γ2
ηk

4 I3(p),

J2(p) = −(d− 3) iω − γηk
2

γηk
2 I2(p) + γηk

2

iω

(
(iω − γηk2)3

γ3
ηk

6 I3(p) + I3(0,k)
)
,

J3(p) = iω(iω − γηk2)
γ2
ηk

4 I2(p) + (iω − γηk2)3

2γ3
ηk

6 I3(p),

J4(p) =
(

2ω2

γ2
ηk

4 −
3d− 1
dk2

(
k2 − 2iω

γη

))
I2(p)− γηk

2

iω

(
(iω − γηk2)4

γ4
ηk

8 I3(p)− I3(0,k)
)
.

(3.22)

While J2(p) and J4(p) have a 1/ω appearing in their definitions, they are perfectly regular
in the ω → 0 limit.
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These expressions are fairly involved. However, if we set ω = 0, the one-loop correction
to the retarded correlation function reduces to

GR,1-loop
nn (0,k) = T

D

[
χ

w

(
η̃

η
− σ̃

σ

)
I0(0,k)

− λσ∂(σ̃/σ)
∂µ

I1(0,k) + η
∂(η̃/η)
∂µ

(λπJ2(0,k)− ψJ4(0,k))
]
,

KMS= 0. (3.23)

Hence, we see that the non-analyticities drop out of the retarded correlator in the hydro-
static limit, even after the incorporation of momentum fluctuations, provided the KMS
condition is imposed.

3.3.2 Symmetric correlation function

We can repeat the same procedure for the symmetric correlation function as well. In
addition to the 7 diagrams in eq. (2.18), we find 10 more in the presence of momentum
fluctuations:

(3.24a)

(3.24b)

(3.24c)

(3.24d)

The first diagrams in eqs. (3.24a) to (3.24c) contribute to leading order corrections in k2,
while the remaining diagrams, along with those in eq. (2.18), contribute at the sublead-
ing order. We have computed these diagrams in appendix B, which yield a complicated
expression given by

GS,1-loop
nn (ω,k) =− T 2k2

(ω+ iDk2)2
σ̃

σ

[
χ

w

η̃

η
I0(p)− σ̃

σ
χ2λ2I1(p)+Dk2

iω

η̃χε
w

(λπJ1(p)−ψJ3(p))

+ n0η̃

w
(λπJ1(p)+λπJ2(p)−ψJ3(p)−ψJ4(p))

]
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− T 2η̃/wk2

ω2 +D2k4

(
η̃

η
− σ̃
σ

)[
χε
Dk2

iω
(λπJ1(p)−ψJ3(p))

+n0 (λπJ1(p)+λπJ2(p)−ψJ3(p)−ψJ4(p))
]

− 2iT 2ησ̃/χk4

(ω+ iDk2)(ω2 +D2k4)
∂(η̃/η)
∂µ

(λπJ2(p)−ψJ4(p))

+complex conjugate. (3.25)

When the KMS symmetry is respected, the result simplifies and the remaining contributions
match the relevant terms in the retarded correlation function, in accordance with the
fluctuation-dissipation theorem (1.3). We have computed these terms in the ω = 0 limit
and verified that the answer is well-defined and still non-analytic, even in the presence of
KMS. For d = 3, the results have been explicitly presented in the introduction.

4 Discussion

In this paper, we explored the spatial analyticity of hydrodynamic correlation functions
at loop-level, using the Schwinger-Keldysh EFT formalism that incorporates nonlinear
stochastic fluctuations consistent with the KMS condition. We computed the complete
one-loop correction to the retarded and symmetric two-point functions of charge density,
due to diffusive density and transverse momentum fluctuations. The symmetric correlation
function is found to be generically non-analytic, owing to the absence of a characteristic
mass scale in the EFT. Despite this, we find that the retarded correlation function non-
trivially respects the spatial analyticity requirement expected in the hydrostatic limit due to
thermal screening. Notably, the analyticity behaviour crucially depends on the dynamical
KMS symmetry in the EFT, that leads to a series of non-trivial cancellations of non-analytic
terms in the hydrostatic limit. Our final results are summarized in section 1.1.

We performed the majority of loop calculations in this paper in generic spatial dimen-
sions and away from the hydrostatic limit (ω 6= 0). This analysis can be recycled to study
the phenomenon of long-time tails at finite-ω finite-k in relativistic hydrodynamics in the
presence of momentum fluctuations, closely following a similar analysis for scalar diffusion
model in [10]. These results will appear in a companion paper [19].

During the course of our analysis, we developed a novel EFT model for “incompressible”
diffusive hydrodynamics that is consistent with the KMS condition beyond the linearised
fluctuations, accounting for the presence of arbitrary non-linear interactions. This model
can be understood as systematically integrating out the “higher-energy” sound modes from
the hydrodynamic setup and allows us to study the effects of momentum fluctuations in a
controlled setting, which is expected to have far-reaching applications beyond the context
of the present work.

Although not the focus of this paper, in computing the symmetric correlation func-
tions, we have exhibited specific non-analyticities that are computable, independent of
the UV cutoff, and determined by thermodynamic parameters and hydrodynamic trans-
port coefficients. As such, symmetric correlators are interesting quantities in themselves.
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One approach to computing transport coefficients within the microscopic theory utilizes
Euclidean correlators on a finite size lattice. Although the physical content of Euclidean
correlators most directly maps to Minkowskian retarded correlators, considering the static
limit of the symmetric correlator may be helpful for extracting transport coefficients via
finite size scaling.

In terms of future directions, its important to note that we have limited our consider-
ations in this paper to generic thermal systems that are assumed to have a finite screened
spatial correlation length. There are of course physical systems in which long-range correla-
tions survive and may lead to physical non-analyticities in retarded correlators. Examples
include conformal fixed points, and superfluids, which are known to require additional de-
grees of freedom within the hydrostatic generating functional. It would be interesting to
explore how spatial non-analyticities re-emerge in such theories. The analysis can also be
extended in the context of non-relativistic hydrodynamics using recently developed field
theory methods [7].

Finally, we have argued that the KMS condition, associated with the existence and
properties of the thermal equilibrium state, is the critical ingredient in ensuring the spatial
analyticity of the retarded correlators in the hydrostatic limit. While this is, of course,
consistent with the assumptions underlying the derivative expansion for the hydrostatic
generating functional, it is natural to ask whether it can be imposed in a more direct
and local manner within the EFT itself. Currently, the KMS condition is formulated as
a non-local discrete symmetry condition to be imposed on the Schwinger-Keldysh EFT,
and it would be interesting to understand if a more covariant formalism would allow for it
to be imposed directly in writing down the EFT Lagrangian. In particular, we have only
showed the analyticity of retarded correlators at one-loop level. It will be interesting to
explore whether such a result can be derived at the full non-perturbative level in the EFT
formalism of hydrodynamics.
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A The effective action for diffusive hydrodynamics

In this appendix, we provide further details on the computation of the perturbative effective
action for relativistic diffusive hydrodynamics presented in section 3.2, starting from the
Schwinger-Keldysh effective field theory.

Let us start with the effective action for full hydrodynamics in eq. (3.4), with the con-
straints eq. (3.7). We need to expand the effective action order-by-order in the dynamical
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fields δβµ, δΛβ , Xµ
a , ϕa, and the background fields Art, Aat. Segregating space and time

derivatives in the effective Lagrangian eq. (3.4), we can express it as

L = (n0 + δn̂)Aat − ϕa∂tδn̂−Xi
a∂tπ̂i + J i∂iϕa + T ij∂iXaj + δn̂Xi

a∂iArt

+ iT σ̃∂iϕa∂
iϕa + iT η̃

(
∂iXj

a∂iXaj + ∂jXi
a∂iXaj

)
+ Ψa∂i

ui

T
+ Ψr∂iX

i
a + . . . , (A.1)

where we have only kept terms up to cubic order in dynamical and background fields, and
defined

δn̂ ≡ J t − n0 + 2iT σ̃ui∂iϕa

= n− n0 + 1
2n0u

2 − σ0u
i (∂iµ− ∂iArt) + 2iT0σ̃0u

i∂iϕa + · · · ,

π̂i ≡ T ti + 2iT η̃
(
uk∂kX

i
a + uk∂

iXk
a

)
= w ui − η0

(
uk∂ku

i + uk∂
iuk
)

+ 2iT0η̃0
(
uk∂kX

i
a + uk∂

iXk
a

)
+ · · · . (A.2)

Here w = ε+ p is the enthalpy density. The subscript “0” denotes that the corresponding
quantity is evaluated at equilibrium. These are the true non-classical conserved charge and
momentum densities. We can further split these into

δn̂ = δn+ χArt + χ′

χ
δnArt + 1

2χ
′A2
rt + · · · ,

π̂i = πi + χε
w0
πiArt + · · · , (A.3)

with δn and πi being the respective versions in the absence of background fields,

δn = χδµ+ 1
2χ
′δµ2 + 1

2χεu
2 − σ0u

i∂iδµ+ 2iT0σ̃0u
i∂iϕa + · · · ,

πi = w0u
i + χεu

iδµ− η0

(1
2∂

iu2 + uj∂ju
i
)

+ 2iT0η̃0
(
uj∂

iXj
a + uj∂jX

i
a

)
+ · · · , (A.4)

where δµ = T0δΛβ and ui = T0δβ
i, and we have used

χ = ∂n

∂µ

∣∣∣
0
, χε = n0 + ∂ε

∂µ

∣∣∣
0

= n0 + µ
∂n

∂µ

∣∣∣
0

+ T
∂n

∂T

∣∣∣
0
, χ′ = ∂2n

∂µ2

∣∣∣
0
. (A.5)

Note that µ = µ0 +δµ+Art+µ0/2u2. In the following, we shall find it easier to work with
δn, πi instead of δµ, ui, because this eliminates time-derivative terms from the interaction
Lagrangian. We can find the inverted relations

δµ = 1
χ
δn− χ′

2χ3 δn
2 − χε

2χw2
0
π2 + σ0

χ2w0
πi∂iδn−

2iT0σ̃0
χw0

πi∂iϕa + · · · ,

ui = 1
w0
πi − χε

χw2
0
πiδn+ η0

w3
0

(1
2∂

iπ2 + πj∂jπ
i
)
− 2iT0η̃0

w2
0

(
πj∂

iXj
a + πj∂jX

i
a

)
+ · · · .

(A.6)

The divergenceless condition in eq. (3.7) implies that

∂iπ
i = χε

χw0
πi∂iδn+ . . . , (A.7)

where we have dropped the higher-derivative terms.
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Using these expressions, we can go back and express J i and T ij also in terms of the
fluctuations δn and πi, and the background fields Art and Aat. We obtain

J i = n(T, µ)ui − σ(T, µ)δij
(
T∂j

(
µ

T

)
− ∂jArt

)
− T0σ0u

i∂t

(
µ

T

)
+ . . .

= n0
w0
πi − σ0

χ
∂iδn−

(
n0χε
χw2

0
− 1
w0

)
πiδn+ n0η0

w3
0

(1
2∂

iπ2 + πj∂jπ
i
)

− 1
2χ

∂(σ/χ)
∂µ

∣∣∣
0
∂iδn2 + σ0χε

2χw2
0
∂iπ2 − 2iT0η̃0n0

w2
0

(
πj∂

iXj
a + πj∂jX

i
a

)
+ χ

w0
Artπ

i − 1
χ

∂σ

∂µ

∣∣∣
0
Art∂

iδn−
{
σ0
χw0

πi∂µJ
µ
}

+ . . . , (A.8a)

and

T ij =w0u
iuj+p(T,µ)δij−η(T,µ)

(
∂iuj+∂jui

)
−η0

(
ui∂tu

j+uj∂tui
)

+. . .

=−2η0
w0

∂(iπj)+ 1
w0
πiπj− 2

χw0

∂η

∂µ

∣∣∣
0
δn∂(iπj)+ 2η0χε

χw2
0
δn∂(iπj)+

(2η0(n0+χε)
χw2

0

)
π(i∂j)δn

− 2
w0

∂η

∂µ

∣∣∣
0
Art∂

(iπj)−
{2η0
w2

0
π(i
(
∂µT

j)µ−F j)λr Jλ
)}

+(. . .)δij+. . . . (A.8b)

We have not expanded the trace part of T ij as it couples to ∂iXi
a in the effective action

eq. (3.4) and does not contribute in the diffusive limit eq. (3.7). We have expressed the
terms involving time-derivatives using the equations of motion in the expressions above
(denoted in braces), which can be removed by redefining ϕa and Xi

a as

ϕa → ϕa −
σ0
χw0

πi∂iϕa , X i
a → Xi

a −
η0
w2

0

(
πk∂

iXk
a + πk∂kX

i
a

)
. (A.9)

Note that the imaginary part in J i is not true statistical flux (which will be obtained by
varying the action), but merely one of the contributions to the effective action.

The free, interaction, and background coupling part of the Lagrangian in section 3.2,
eqs. (3.11), (3.13), and (3.16), follow directly from here by substituting for T ij , J i, δn̂, and
π̂i into eq. (A.1).

B Loop calculations

In this appendix, we provide explicit details of the calculations involved in computing the
loop integrals presented in the main text.

One-loop corrections to the retarded and symmetric correlation functions of charge
density can be computed using the variational formulae in eq. (2.13). Starting with the
retarded function, we first need to compute the one-loop diagrams correcting the 〈δnϕa〉
propagator given in eqs. (2.14a) and (3.19a). Let us denote the amputated version, i.e.
diagrams ignoring the external legs, by iΓar(p). Next, we have diagrams involving a non-
linear background field coupling from eqs. (2.14b) and (3.19b), whose amputated version
is denoted by iΓ′ar(p). The full one-loop retarded correlation function is given in terms of
these as

GR,1-loop
nn (p) = iωχΓar(p)

(iω −Dk2)2 −
Γ′ar(p)

iω −Dk2 . (B.1)
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For completeness, we note that the one-loop correction to the advanced correlation function
will be given by its complex conjugate,

GA,1-loop
nn (p) = −iωχΓ∗ar(p)

(iω +Dk2)2 + Γ′∗ar(p)
iω +Dk2 . (B.2)

On the other hand, for the symmetric function, we need to compute the diagrams in
eqs. (2.18) and (3.24). Note that the diagrams in eqs. (2.18a) and (3.24a) are the same as
those for the retarded function in eqs. (2.14a) and (3.19a), except with different external
legs. Hence, their amputated version is still given by iΓar(p). Furthermore, the diagrams in
eqs. (2.18b) and (3.24b) are merely their complex conjugates, and hence their amputated
version is given by −iΓ∗ar(p). Therefore, the only diagrams that we need to compute for
the symmetric function are given in eqs. (2.18c), (3.24c) and (3.24d). We denote their
amputated version by Γaa. In total, the one-loop correction to the symmetric function is
given by

GS,1-loop
nn (p) = −Γaa(p)

ω2 +D2k4 −
2T σ̃k2Γar(p)

(iω −Dk2)(ω2 +D2k4)
+ 2T σ̃k2Γ∗ar(p)

(iω +Dk2)(ω2 +D2k4)
. (B.3)

In the remainder of this appendix, we explicitly compute Γar(p), Γ′ar(p), and Γaa(p).
For clarity, we use the following notation: F (p) = ω + iDk2, G(p) = ω + iγηk

2,
k̄′ij = δij−k′ik′j/k′2, k̄′′ij = δij−k′′ik′′j/k′′2, along with ω′′ = ω−ω′ and k′′i = ki−k′i. We
also denote the frequency-momentum integrals compactly as

∫
p′ =

∫
dω′ddk′/(2π)d+1, and

just the momentum integrals as
∫
k′ =

∫
ddk′/(2π)d. Momentum integrals are performed

with a hard UV-cutoff at |k′| = Λ and all the cutoff-dependent terms are ignored. We
make extensive use of the change of variables ω′ → ω′′, k′ → k′′ to simplify the integrals,
which leads to identities such as∫

p′

k′2

F (p′)F (p′′) = 1
2

∫
k′

k′2 + k′′2

iω −D(k′2 + k′′2)
= iω

2D

∫
p′

1
F (p′)F (p′′) ,∫

p′

k′ · k′′

F (p′)F (p′′) = 1
2

∫
k′

k2 − (k′2 + k′′2)
iω −D(k′2 + k′′2)

= −iF (p)
2D

∫
p′

1
F (p′)F (p′′) , (B.4)

up to cutoff-dependent terms.

B.1 Computation of Γar

Let us start with the contributions from the two density fluctuation diagrams in eq. (2.14a).
This is a generalization of the calculation in [9] to account for σ̃ 6= σ. We find

iΓar(p) ∼ −2T σ̃λ2k2
∫
p′

k′2k′′2

F (p′)|F (p′′)|2 − iTχλλ̃k
2
∫
p′

k′ · k′′

F (p′)F (p′′)

= −iTχλk2
∫
p′

λσ̃/σ k′2 + λ̃k′ · k′′

F (p′)F (p′′)

= − iTχλ
D

(
iωλ

σ̃

σ
− iF (p)λ̃

)
I1(p). (B.5)
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In the second step, we have split the tree “rr” propagator into a sum of “ra” and “ar”
propagators according to eq. (2.6), and noted that the “ar” piece does not contribute
due to a purely retarded loop. The integral I1(p) is defined in eq. (2.16). Next, we
have contributions coming from the single leading-order “mixed” fluctuation diagram in
eq. (3.19a)

iΓar(p) ∼
2T η̃
w2

∫
p′

k′2 k̄′ijkik
′′
j

|G(p′)|2F (p′′) = iT

w

η̃

η

∫
p′

k2 − (k · k′)2/k′2

G(p′)F (p′′) = iTk2

w

η̃

η
I0(p). (B.6)

The integral I0(p) is defined in eq. (3.21). Finally, we have two momentum-fluctuation
diagrams in eq. (3.19a) leading to

iΓar(p) ∼ 2T η̃
∫
p′

k′′2
(
λπk

2δij − 2ψkikj
)
k̄′ikk̄′′jl

(
γδklk

′2 + θ(δklk′ · k′′ + k′lk
′′
k)
)

G(p′)|G(p′′)|2

− iTwθ̃
∫
p′

(
λπk

2δij − 2ψkikj
)
k̄′ikk̄′′jl(δklk′ · k′′ + k′lk

′′
k)

G(p′)G(p′′)

= iTw

∫
p′

(
λπk

2δij − 2ψkikj
)
k̄′ikk̄′′jl

(
η̃
ηγδklk

′2 +
(
η̃
ηθ − θ̃

)
(δklk′ · k′′ + kkkl)

)
G(p′)G(p′′)

= iTwk2
(
η̃

η
λπγ J1(p) + λπ

(
η̃

η
θ − θ̃

)
J2(p)− η̃

η
ψγ J3(p)− ψ

(
η̃

η
θ − θ̃

)
J4(p)

)
.

(B.7)

The integrals J1,2,3,4(p) are defined as

J1(p) =
∫
p′

k′′2k̄′ikk̄′′jlδijδkl
G(p′)G(p′′) =

∫
p′

k′′2(d− 2) + (k′ · k′′)2/k′2

G(p′)G(p′′) ,

J2(p) =
∫
p′

k̄′ikk̄′′jlδij
(
k′ · k′′δkl + kkkl

)
G(p′)G(p′′) =

∫
p′

(k′ · k′′)((d− 3) + 2(k′ · k′′)2/(k′2k′′2))
G(p′)G(p′′) ,

J3(p) = 2
k2

∫
p′

k′′2k̄′ikk̄′′jlδijkkkl
G(p′)G(p′′) = 2

k2

∫
p′

(k′ · k′′)(−k′′2 + (k′ · k′′)2/k′2)
G(p′)G(p′′) ,

J4(p) = 2
k2

∫
p′

k̄′ikk̄′′jlkikj
(
k′ · k′′δkl + kkkl

)
G(p′)G(p′′)

= 2
k2

∫
p′

k′2k′′2 − 3(k′ · k′′)2 + 2(k′ · k′′)4/(k′2k′′2)
G(p′)G(p′′) . (B.8)

Employing identities similar to those in eq. (B.4), these four integrals can be related to
just two integrals I2(p), I3(p), as given in eq. (3.22).
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B.2 Computation of Γ′
ar

For the two density fluctuation background coupling diagrams in eq. (2.14b), we find

iΓ′ar(p) ∼
2T σ̃λ
χ

k2
∫
p′

k′′2(σ′k′ · k′′ + χ′iω′)
F (p′)|F (p′′)|2 − iTχ2λλ̃k2

∫
p′

k′ · k′′

F (p′)F (p′′)

= iTλk2
∫
p′

σ̃
σχ
′iω′ +

(
σ̃
σ
∂σ
∂µ −

∂σ̃
∂µ

)
k′ · k′′

F (p′)F (p′′)

= iTλ

D

(
σ̃

σ
χ′Diω + iF (p)σ∂(σ̃/σ)

∂µ

)
I1(p). (B.9)

The two leading-order mixed fluctuation diagrams in eq. (3.19b) lead to

iΓ′ar(p) ∼
2T η̃χ
w2

∫
p′

k′2k̄′ijk′′i k
′′
j

|G(p′)|2F (p′′) −
2T σ̃
w

∫
p′

k′′2k̄′ijkik
′′
j

G(p′)|F (p′′)|2

= iTχ

w

(
η̃

η
− σ̃

σ

)∫
p′

k2 − (k · k′)/k′2

G(p′)F (p′′)

= iTχk2

w

(
η̃

η
− σ̃

σ

)
I0(p). (B.10)

Finally, the remaining two momentum fluctuation diagrams in eq. (3.19b) evaluate to

iΓ′ar(p) = 2T η̃
w

∫
p′

k′′2
(
λπk

2δij − 2ψkikj
)
k̄′ikk̄′′jl

(
χεiω

′δkl + ∂η
∂µ(δklk′ · k′′ + k′lk

′′
k)
)

G(p′)|G(p′′)|2

− Tχwθ̃i
∫ dω′ddk′

(2π)d+1

(
λπk

2δij − 2ψkikj
)
k′ikk′′jl(δklk′ · k′′ + k′lk

′′
k)

G(p′)G(p′′)

= iT

∫
p′

(
λπk

2δij − 2ψkikj
)
k̄′ikk̄′′jl

(
η̃
ηχεiω

′δkl +
(
η̃
η
∂η
∂µ −

∂η̃
∂µ

)
(δklk′ · k′′ + klkk)

)
G(p′)G(p′′)

= iTλπk
2
(
η̃

w
χε

(
J1(p) + 1

2I3(0,k)
)

+ η
∂(η̃/η)
∂µ

J2(p)
)

− iTψk2
(
η̃

w
χε

(
J3(p) + 1

2I3(0,k)
)

+ η
∂(η̃/η)
∂µ

J4(p)
)
. (B.11)

These expressions can be combined with the ones for Γar to obtain the retarded correlation
function following eq. (B.1).

B.3 Computation of Γaa
We start with the three density fluctuation diagrams in eq. (2.18c), resulting in

Γaa(p) ∼ −2T 2σ̃2λ2k4
∫
p′

k′2k′′2

|F (p′)|2|F (p′′)|2 +
(

4iT 2χλλ̃σ̃

∫
p′

k′′2 k2(k · k′)
F (p′)|F (p′′)|2 + c.c.

)

= T 2χ2λk2 σ̃

σ

∫
p′

1
2λσ̃/σ k

2 − 2λ̃(k · k′)
F (p′)F (p′′) + c.c.

= T 2χ2λk2 σ̃

σ

(
σ̃

σ
λ− 2λ̃

)
I1(p) + c.c. (B.12)
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Here “c.c.” denotes complex conjugate. Note that the last two diagrams in eq. (2.18c)
are complex conjugates of each other. Similarly, we can compute the leading order mixed
fluctuation diagram in eq. (3.24c),

Γaa(p) ∼ −
4T 2σ̃η̃

w2

∫
p′

k′2k′′2 k̄′ijkikj
|G(p′)|2|F (p′′)|2

= T 2χ

w

σ̃

σ

η̃

η

∫
p′

k2 − (k · k′)/k′2

G(p′)F (p′′) + c.c.

= T 2χk2

w

σ̃

σ

η̃

η
I0(p) + c.c. (B.13)

This leaves us with three momentum fluctuation diagrams in eq. (3.24d), which can be
computed to obtain

Γaa(p)∼−2T 2η̃2
∫
p′

k′2k′′2
(
λπδijk

2−2ψkikj
)
k̄′ikk̄′′jl

(
λπδklk

2−2ψkkkl
)

|G(p′)|2|G(p′′)|2

−
(

2iT 2wψ̃η̃

∫
p′

k′′2(λπδijk2−2ψkikj)k̄′ikk̄′′jl(δklk ·k′+kkk
′
l)

G(p′)|G(p′′)|2 +c.c.
)

= T 2w2 η̃

η

∫
p′

(
λπδijk

2−2ψkikj
)
k̄′ikk̄′′jl

(
1
2λπ

η̃
η δklk

2 + 2n0η̃
w3 δklk ·k′+ n0η̃

w3 kkkl
)

G(p′)G(p′′) +c.c.

= T 2η̃k2

w

η̃

η

(
(λπJ1(p)−ψJ3(p))

(
n0−χε

Dk2

iω

)
+n0λπJ2(p)−n0ψJ4(p)

)
+c.c.

(B.14)

This result can be used in conjunction with Γar to obtain the symmetric correlation function
using eq. (B.3).
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any medium, provided the original author(s) and source are credited.
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