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1 Introduction

The observed pattern of neutrino masses implies new particles and interactions (New
Physics ≡ NP) in the lepton sector (beyond the Standard Model with left-handed neu-
trinos), so one of the best-motivated challenges in particle physics is to discover what it
is. Knowing where to search would be a useful input to this enterprise. One possibility
would to look everywhere where NP is not already excluded; another would be to explore
regions suggested by motivated models. However, the guidance from models can be am-
biguous, because they are legion, and for a given process, many models may predict rates
just beyond the current experimental reach. So this manuscript takes the agnostic view
that it is interesting to look for Lepton Flavour Violation (LFV) everywhere it is not ex-
cluded. The current aim is to identify where that is; once NP is detected, reconstructing
it becomes interesting.

This manuscript focuses on NP that changes lepton flavour µ ↔ e (for a review, see
e.g. [23]), for simplicity restricted to processes that are otherwise flavour diagonal, such as
µ→ eēe or µ→ eγγ, but not K → µ±e∓. In order to look for LFV “everywhere that it is
not excluded” among such processes, it would be interesting to list observables such that:

1. if µ ↔ e flavour-changing NP exists, it would contribute to at least one of the
processes. That is, the set of observables is “complete”.

– 1 –



J
H
E
P
0
2
(
2
0
2
1
)
1
7
2

2. the observables are complementary, in the sense that they give independent informa-
tion about the NP, and cannot be predicted one from the other. In particular, we
want to avoid searching for a branching ratio that is already excluded by the upper
bound on another observable.

Instead of trying to construct such a list, we ask a more pragmatic question: to what
degree are µ → eγ, µ → eēe and µ→ e conversion on nuclei (µA → eA) complete and
complementary? These processes are selected because the current experimental bounds on
the branching ratios are restrictive (. 10−12) [1–4], and experiments under construction
aim to improve the sensitivities to 10−14 → 10−16 [5–9] or better [10].

Ideally, a complete list of complementary processes should be independent of the the-
oretical formalism used to establish it — for instance, it should not apply only to some
models, or depend on a choice of operator basis in an Effective Field Theory (EFT).
Nonetheless, let us start by restricting to “heavy” NP models, where the new particle
masses are at a scale ΛNP & mW . Such models can be parametrised below ΛNP in an
EFT framework, which allows to separate “known physics” (the data and the Standard
Model), from the theoretical speculations above ΛNP. So LFV is described by operators
constructed out of Standard Model(SM) fields and respecting SM gauge symmetries.1 In
addition, ΛNP is assumed large enough to justify retaining only a few terms in the 1/ΛnNP
expansion, which in the case of LFV, starts at dimension six ∝ 1/Λ2

NP. In this EFT con-
text, a complete list of observables should contain at least as many members as there are
operator coefficients — otherwise there can be combinations of coefficients that are not
probed (sometimes called “flat directions”). Unfortunately, for µ→ e flavour change, there
are many flat directions: current data on µ → eγ, µ → eēe and µ→ e conversion impose
12 to 14 [11] bounds on the coefficients of the 80→90 operators listed in section 2.1.

A first step, is nonetheless to explore whether µ→ eγ, µ→ eēe and µ→e conversion
are sensitive to the coefficient of each operator in the basis of section 2.1. Such a study
is basis-dependent, and corresponds to calculating “one-operator-at-a-time” bounds, or
“sensitivities”(the word used in this manuscript): a coefficient smaller than such values
cound not have been seen. This is consistent with the original aim of identifying where
LFV is not excluded, and the results are given in the tables of appendix A. However, the
coefficients can be larger than these sensitivities, by sitting along various flat directions,
which are discussed in section 2.5.

Loop effects are the backbone of this discussion. This is because the contact interac-
tions which are induced at tree level in models, may not mediate the processes which are
stringently constrained by experiment. Consider, for instance, a NP model that induces
a tree-level contact interaction (bγαb)(eγαµ). This mediates the decay Υ → eµ [12], and
contributes at one-loop to µ→ eēe. But µ→ eēe will have better sensitivity, both because
the bound on the BR is more restrictive, and because the muon lifetime is longer, since
it decays via the weak interactions, whereas the Υ decays electromagnetically. SM loop
corrections to the contact interactions, are discussed in more detail in section 2.3.

1This overlooks the implications of possible of light NP in other sectors; for instance a light axion/ALP
or DM particle.
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Constraints on LFV contact interactions have been tabulated in many previous pub-
lications. This manuscript differs from earlier works, such as [13–17], which mostly listed
tree-level bounds, that is, constraints at the experimental scale on the coefficients of opera-
tors which contribute at tree level to the process. The sensitivities tabulated here are very
similar to those of [18], which apply to coefficients at a short-distance scale ∼ 1/mW and
include similar Standard Model loop corrections between mW and low energy; the results
here complete those of [18] (where some operators are missing from the tables), extend
them by a subset of τ ↔ ` operators, and also give the sensitivities in the SMEFT basis.

The “observable-vectors” are defined in section 3. When New Physics is parametrised
via operators in EFT, these are constructed along theoretical guidelines, and identify the
default basis of coefficient space. Observable-vectors could be an alternative basis, corre-
sponding to the directions in coefficient space probed by observables. They appear im-
plicitly in the results of section 2. Their misalignment quantifies the complementarity of
the observables: if the vectors are orthogonal, the observables are very complementary,
if the vectors are parrallel, the observables probe the same thing, so section 3 uses this
perspective to plot the complementarity of µ→ eγ, µ→ eēe and µ→e conversion.

2 Completeness

Ideally, a list of processes that is “complete” could include processes at any accessible energy
scale, and would allow to probe any LFV contact interaction. However in practise, it is
difficult to search for processes with more than four legs, and many restrictive constraints
come from low-energy processes. So we attempt to construct a list of processes that is
sensitive to all LFV contact interactions at “low” energies � mW that have three or four
legs. Section 2.1 lists a QCD×QED-invariant basis of operators constructed with three
or four lepton, quark photon or gluon fields, that change lepton flavour µ → e, and are
otherwise flavour-diagonal. A quark and gluon basis is used because they appear in loops
between mW and ∼ 2GeV. However, they live inside hadrons; the additional step of
matching quark operators onto nucleon operators is discussed with µ→ e conversion in
section 2.2. Section 2.2 gives the Branching Ratios for restrictively-bounded processes in
terms of the operator coefficients at the experimental scale, section 2.3 describes how SM
loop corrections are included in this analysis, and the branching ratios are given in terms
of weak-scale coefficients in section 2.4. Allowing one coefficient at a time to be non-zero in
these formulae, gives the “one-operator-at-a-time” bounds, or sensitivities, of each process
to each operator, which are collected in the tables in appendix A. The operators can be
matched onto the SMEFT at mW , sensitivities are also given in this basis. Finally, since
there are more operators than experimental constraints, section 2.5 discusses combinations
of coefficients that are not constrained.

2.1 Operators

There are ninety operators which are QCD×QED invariant, have three or four legs, and
which change flavour µ → e (and involve no other flavour change). These are suitable for
describing µ → e interactions at energies below mW , where the Higgs and SU(2) bosons
are not present as external legs. The operators here are constructed with chiral fermions,
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because this facilitates matching onto the chiral SMEFT operators at the weak scale,
and because in the lepton sector, the electron from muon decays is relativistic, so ≈ chiral,
implying that negligeable interference between operators involving eL vs eR. The operators
are added to the Lagrangian as

L = LSM +
∑
ζ

∑
Lor

CζLor
v2 O

ζ
Lor + h.c. (2.1)

where 1/v2 = 2
√

2GF (v ' mt), the operator subscript Lor gives the Lorentz structure
and chirality of the fermion bilinears, and the superscript ζ gives the flavour indices. Since
this manuscript only considers µ → e transitions, all the operators contain ē and µ (the
µ+ → e+ processes are described by the +h.c.), and the eµ indices are suppressed from
the superscript.

The 22 four-lepton operators are:

OllV,Y Y = (eγαPY µ)(lγαPY l), OllV,Y X = (eγαPY µ)(lγαPX l)
OllS,Y Y = (ePY µ)(lPY l) OττS,Y X = (ePY µ)(τPXτ) (2.2)
OττT,Y Y = (eσPY µ)(τσPY τ)

where l ∈ {e, µ, τ}, X,Y ∈ {L,R}, and X 6= Y . Then there are 50 operators withtwo
leptons and a quark bilinear:

OqqV,Y Y = (eγαPY µ)(qγαPY q) , OqqV,Y X = (eγαPY µ)(qγαPXq)

OqqS,Y Y = (ePY µ)(qPY q) , OqqS,Y X = (ePY µ)(qPXq)

OqqT,Y Y = (eσPY µ)(qσPY q) (2.3)

where q ∈ {u, d, s, c, b}. And finally, there are 18 operators with two leptons, which include
the dipoles and operators with two photons or gluons

OD,L = mµeRσ
αβµLFαβ mµeLσ

αβµRFαβ

OGG,Y = 1
v

(ePY µ)GαβGαβ , OGG̃,Y = 1
v

(ePY µ)GαβG̃αβ

OGGV,Y = 1
v2 (eγσPY µ)Gαβ∂βGασ , OGG̃V,Y = 1

v2 (eγσPY µ)Gαβ∂βG̃ασ

OFF,Y = 1
v

(ePY µ)FαβFαβ , O
FF̃ ,Y

= 1
v

(ePY µ)FαβF̃αβ

OFFV,Y = 1
v

(eγσPY µ)Fαβ∂βFασ , OFF̃V,Y = 1
v

(eγσPY µ)Fαβ∂βF̃ασ (2.4)

where σαβ = i
2 [γα, γb], X,Y ∈ {L,R}, and X 6= Y . The running of the muon mass

in the dipole operators is neglected here. The dimension seven operators OGG,L, OGG,R
were included in µ→e conversion in [19], and the other gluon operators will not be further
considered here. The µ→ eγγ rate due to the various two-photon operators was calculated
in [20], and the Crystal Box experiment [21] set the constraint BR(µ→ eγγ) ≤ 7.2×10−11.
The OFF,Y operators also contribute to µ→e conversion [22], and the SINDRUMII search
for µAu→ eAu currently has the best sensitivity to CFF,L and CFF,R.
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2.2 Experimental bounds

We now want to relate the coefficients of these operators to experimental decay rates. We
restrict to the bounds on µ→ eγ, µ→ eēe and µA→ eA because the current experimental
upper bounds BR . 10−12 [1–4] are restrictive, and will improve by orders of magnitude
in coming years [5–9]. Furthermore, the branching ratios compare to a weak decay, so
BR . 10−12 probes a new physics scale ΛNP . 100TeV.

The Branching Ratio for µ→ eγ [23], and the current experimental bound [1] are

BR(µ→ eγ) = 384π2(|CDL|2 + |CDR|2) < 4.2× 10−13 (2.5)

so the dipole coefficients at the experimental scale should be inside the circle in coefficient
space given by eq. (2.5), that is, should separately satisfy CD,X ≤ 1.05× 10−8.

The branching ratio for µ→ eēe is [23–25]

BR(µ→ eēe) ≤ 10−12

= 2|CV,LL + 4eCD,R|2 + 2|CV,RR + 4eCD,L|2

+ |CV,RL + 4eCD,L|2 + |CV,LR + 4eCD,R|2 (2.6)

+ |CS,LL|
2 + |CS,RR|2

8 +
(

64 ln mµ

me
− 136

)
(|eCD,R|2 + |eCD,L|2)

where ln mµ
me

= 5.35, so e2(64 ln mµ
me
−136) ' 204.8e2 ' 18.78. Measuring the polarisation of

the muon and the angular distribution of the electrons [24, 25], (and even the polarisation
of the electrons), could allow to discriminate among these various contributions.

Combining the µ → eēe and µ → eγ bounds in a covariance matrix allows to obtain
separate constraints on the dipole and vector coefficients (see [11]). Since the current
bound on BR(µ → eγ) is restrictive, this amounts to imposing the bound (2.5) on the
dipole coefficients, and then neglecting them in (2.6):

|CeeV,XX | ≤ 7.0× 10−7 , |CeeV,XY | ≤ 10−6

|CeeS,XX | ≤ 2.8× 10−6 (2.7)

where the coefficients are evaluated at the experimental scale.
The conversion of a muon to an electron in nuclei is a sensitive probe of µ→ e flavour

change in the presence of quarks. The µ− is captured into the 1s state of the nucleus,
and can then convert to an electron by interacting with the nucleons or electric field of the
nucleus. The SINDRUMII experiment at PSI, with a continuous muon beam, searched for
µ→e conversion on Titanium and Gold [3, 4], setting bounds BR(µA → e+ A) . 10−12.
The theoretical rates for (Spin Independent) conversion on many targets are given in [26],
and can be written [11]:

BRSI(µA→ eA) = Γ(µA→ eA)
Γcap(A) = BA

[
|v̂A · ~CL|2+|v̂A · ~CR|2

]
≤
{

4.3× 10−12 Ti
7× 10−13 Au

, (2.8)

where the Branching Ratio is normalised to the capture rate µA → νµA
′ on the same

nucleus, and is expressed in terms of the coefficients {C̃} of operators constructed with a
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nucleons. Several comments:

1. The coefficient subscript gives the Lorentz structure (V or S), then the chiral pro-
jector of the lepton current, but the nucleon current is not chiral because its more
useful in the non-relativistic limit to use a scalar(S), pseudoscalar(P ), vector (V ),
axial vector (A) and tensor (T ) basis, where the P,A, T components contribute to
the Spin Dependent rate [27, 28] so are neglected here. The non-chiral coefficients
can be written in terms of chiral coefficients as, eg

CffV,Y = 1
2
(
CffV,Y R + CffV,Y L

)
, CffA,Y = 1

2
(
CffV,Y R − C

ff
V,Y L

)
(2.9)

2. The formula after the last equality is given in the normalisation of [11], where the
coefficients of nucleon operators have been assembled in vectors

~CL =
(
C̃D,R, C̃

pp
S,R, C̃

pp
V,L, C̃

nn
S,R, C̃

nn
V,L

)
(2.10)

(and similarly for ~CR), and the overlap integrals of Kitano, Koike and Okada [26] for
target A have been assembled in unit-normalised “target vectors”

~vA =
(
DA

4 , S
(p)
A , V

(p)
A , S

(n)
A , V

(n)
A

)

whose normalisation is absorbed into the BA = 32G2
Fm

5
µ|~vA|2

Γcap(A) .

The vectors and normalisation factors for Titanium and Gold are

v̂T i = (0.250, 0.426, 0.458, 0.503, 0.541) , BT i = 250
v̂Au = (0.222, 0.289, 0.458, 0.432, 0.686) , BAu = 300 . (2.11)

Since these vectors are misaligned, Titanium and Gold can measure independent
combinations of coefficients [11].

2.2.1 Translating µ→e conversion bounds onto quark operators

The nucleon coefficients can be written in terms of the quark coefficients (that we wish to
constrain) using the expectation values of quark-currents in the nucleus {GN,qΓ }, defined as,
eg 〈N |q̄(x)q(x)|N〉 = GN,qS ūN (Pf )uN (Pi)e−i(Pf−Pi)x, and given in table 1. For the vector
and scalar coefficients:

C̃NNV,Y =
∑

q∈u,d,s
GN,qV CqqS,Y

C̃NNS,Y =
∑

q∈u,d,s
GN,qS CqqS,Y +

∑
Q

GN,QS CQQS,Y −
8πmN

9αsmt
CGG,Y (2.12)

where Q ∈ {c, b}. For the scalars, the first term is the tree contribution of light quarks in
the nucleon, the second is the one-loop contribution of heavy quarks to the gluon density
(which contributes to the scalar nucleon current), so the explicit gluon contribution given in
the last term only contains contributions from mW or above (such as the (tt)(ēµ) operator).
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Gp,uV = Gn,dV = 2 Gp,dV = Gn,uV = 1 Gp,sV = Gn,sV = 0

Gp,uS = mp
mu

0.021(2) = 9.0 Gp,dS = mp
md

0.041(3) = 8.2 Gp,sS = mN
ms

0.043(11) = 0.42

Gn,uS = mn
mu

0.019(2) = 8.1 Gn,dS = mn
md

0.045(3) = 9.0 Gn,sS = mN
ms

0.043(11) = 0.42

GN,cS = 2mN
27mc GN,bS = 2mN

27mb

Table 1. This table is taken from [28]. It gives matching coefficients between nucleon and light-
quark-flavour-diagonal operators. The parenthese gives the uncertainty in the last figure(s). The
GN,qS were obtained via EFT methods [33, 34], and an average of lattice results [35] is used for the
strange quark. The heavy quark scalar GSs are from [36]. In all cases, the MS quark masses at
µ = 2GeV are taken as mu = 2.2MeV, md = 4.7MeV, and ms = 96MeV [39]. The nucleon masses
are mp = 938 MeV and mn = 939.6 MeV.

This allows to translate the upper bound on the Branching ratio on Gold BRAu to a
bound on the quark-level coefficients at a scale ∼ 2GeV:

4.9× 10−8 =

√
BRexpAu

BAu

&
∣∣∣0.222CD,R + 1.60CuuV,L + 1.83CddV,L + 6.10CuuS,R + 6.258CddS,R (2.13)

+ 0.303CssS,R + 0.721 2mN

27mc
CccS,R + 0.721 2mN

27mb
CbbS,R − 0.7218πmN

9αsv
CGG,R

∣∣∣
where v ' mt, and CbbS,R is at mb rather than 2GeV. The same bound applies for L↔ R.

The SINDRUMII upper bound on the Branching ratio on Titanium, (see eq. (2.8)),
is slightly less sensitive to individual operator coefficients, but constrains a different linear
combination. In the formulation of [11], a target nucleus of charge Z can be viewed as
unit vector v̂Z in the space of operator coefficients, such that BR ∝ |v̂Z · ~C|2. This
allows to write the direction probed by Titanium as the direction probed by Gold plus an
orthogonal vector:

v̂T i = v̂Au cosφ+ v̂⊥ sinφ

where cosφ = v̂T i · v̂Au. So one can solve for v̂⊥, and with a covariance matrix obtain that
the SINDRUM bound on Titanium gives a constraint on |v̂⊥ · ~C|:√

BRexpT i

BT i sin2 φ
= 6.24× 10−7 &

∣∣∣0.155CD,R − 0.506CuuV,L − 1.168CddV,L (2.14)

+ 9.21CuuS,R + 9.02CddS,R + 0.446CssS,R

+ 1.062 2mN

27mc
CccS,R + 1.062 2mN

27mb
CbbS,R − 1.0628πmN

9αsv
CGG,R

∣∣∣
and the same bound applies for L↔ R.

2.3 Accounting for loop effects

In a Wilsonian sense, the coefficients in the branching ratios of the previous section are
evaluated at a scale Λlow near the experimental scale. In order to estimate sensitivities to
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coefficients at ΛNP, loop corrections on scales Λlow → ΛNP must be “peeled off”. These
loops corrections are evaluated here in an EFT perspective, where only SM particles are
dynamical below ΛNP, and new particle propagators are expanded in p2/Λ2

NP around a
contact interaction.2 These SM loops are then independent of the New Physics, and only
need to be calculated once as Renormalisation Group running of operator coefficients, and
possibly as matching coefficients as discussed below. As usual with the Renormalisation
Group, a one loop calculation generates the (log /16π2)n terms for all n, a 2 loop calculation
generates the (logn−1 /(16π2)n) terms, and so on. Provided that ΛNP is sufficiently large,
only a few terms in the 1/Λ2

NP expansion are required.
The log-enhanced loops included here arise from the one-loop Renormalisation Group

Equations (RGEs) of QED and QCD, which can be written in matrix form as

µ
d

dµ
~C = αs(µ)

4π
~CΓs + αe

4π
~CΓ , (2.15)

where the operator coefficients are lined up in the row vector ~C. The diagonal anomalous
dimension matrix Γs of QCD only renormalises the scalar and tensor operators involving a
quark bilinear. Since the QCD coupling αs is large and runs significantly, its one-loop ef-
fects are resummed: C(µf ) = (αs(µf )

αs(µi) )γ/2β0C(µi) [40]. Two-loop QCD effects are neglected
— although this gives an uncertainty of O(10%) — because QCD is less interesting than
QED: QED mixes operators, allowing to transform an operator that is difficult to probe
experimentally, into one that is tightly constrained. Finally, Γ is the well-populated anoma-
lous dimension matrix of QED, augmented by two-loop QED mixing3 of vector operators
into the dipole [18].

The RGEs are solved analytically as an expansion in αe, which is approximated not
to run; we retain the O(αe log) terms, and some of the O(α2

e log2) and O(α2
e log) terms.

The aim is to include effects that are & 10−3. The solution is formally a scale-ordered
exponential, which can be expanded in αe by defining dt = dµ/µ, and substituting αs

4πΓs =
−iH0, αe4πΓT = −iHint, into the solution for the time-translation operator given in chapter
4 of [41]. At O(αe), this gives:

~C(µf ) ' ~C(µi)Ds

[
I + αe

4π Γ̃ ln µf
µi

+ . . .

]
Γ̃KJ = ΓeKJ(µf )

1 + aJ − aK − ad
1− λaJ−aK−ad+1

1− λ ≡ fKJΓeKJ (2.16)

where there is no sum on KJ in fKJΓeKJ , Ds =diag{1, . . . λ−aS,T } describes the diagonal
QCD running of scalar or tensor operators involving quarks with λ = αs(µf )

αs(µi) , aT = −4/23,
aS = 12/23, aJ = 0 for J 6= S, T , and ad describes the running of ΓeKJ in the case where
it includes a running QCD parameter (eg ad = aS for anomalous dimensions mixing quark
tensor operators to the dipole). At O(α2

e), the scale-ordered exponential gives . 10% QCD
corrections to the mixing of scalars to the dipole (“Barr-Zee”), so these QCD corrections
are neglected in the analytic solutions given later.

2This allows to implement Wilsonian intuition about Renormalisation Group running of operator coef-
ficients, while computing loops in dimensional regularisation.

3The two-loop effects are included in the ’Hooft-Veltman scheme for γ5, where the one-loop matching
contributions vanish, so should give a scheme-independent result.
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The particle content of the EFT changes when the scale crosses a particle mass, so the
operator basis changes too. At each such threshhold, the Greens functions in the theory
above and below must be identical, which allows to match coefficients from the basis
above onto below. (Matching at the weak scale is recently discussed in [43].) Frequently,
this matching can be performed at tree level in both theories; in some cases, the leading
contribution of an operator arises via loop diagrams of the theory above, in which case
these are included (hopefully after checking that they are scheme-independent, which is not
always the case [42]). So for instance, the one-loop matching of scalar b, c quark operators
onto the gluon operators, at the quark mass scale, is included as given in eq. (2.12).

What level of accuracy is required? The aim is to include the dominant contribution
of each operator (at ΛNP) to each process. Since almost every operator contributes to each
observable (see the tables of appendix A), the question is whether the largest contributions
have been included. This is difficult to demonstrate, because the dominant contribution
may not be the lowest order in every perturbative expansion (loops, couplings, scale ratios);
an example is the two-loop Barr-Zee diagrams, which give the dominant contribution of
flavour-changing Higgs couplings to radiative decays like µ → eγ. However, the selection
of terms included here has been checked against various models [44, 45]. Notice also that
including effects & 10−3 does not mean the calculation is accurate to three figures; rather,
the resulting constraints on operator coefficients have uncertainties & 10%.

Missing from the results given here, are most strong interaction effects beyond Leading
Order, below 2GeV. For example, quark loop contributions to µ → eγ and µ → eēe are
included at scales above 2GeV, but should be replaced by pion loops or resonances from
2GeV tomµ. An interesting study in this direction is [46]. The µ→e conversion calculation
is also at Leading Order in χPT.

2.4 Constraints at mW

This section gives the experimental constraints of eqs. (2.5), (2.7) and (2.8) expressed in
terms of operator coefficients at the weak scale.

2.4.1 µ → eγ

The MEG bound on coefficients at mW is

1.05× 10−8 &
∣∣∣CD,X (1− 16αe4π ln mW

mµ

)
− αe

4πe

(
−8mτ

mµ
CττT,XX ln mW

mτ
+ CµµS,XX ln mW

mµ
+ CeeS,XX

me

mµ
ln mW

mµ
+ C2loop ln mW

mτ

)
+ 8 α2

e

e(4π)2 ln2 mW

mτ

(
mτ

mµ
CττS,XX

)
− 8λaT αe

4πe ln mW

2 GeV

(
−ms

mµ
CssT,XX + 2mc

mµ
CccT,XX −

mb

mµ
CbbT,XX

)
fTD

+ 8 α2
e

3e(4π)2 ln2 mW

2 GeV

∑
u,c

4mq

mµ
CqqS,XX +

∑
d,s,b

mq

mµ
CqqS,XX

 ∣∣∣ (2.17)
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where all the coefficients are to be evaluated at mW , but the masses are on-shell (=
mψ(mψ)). Several comments are in order:

1. At one loop, all the tensor operators, and the scalars involving 3 muons or electrons,
can mix to the dipole by closing same-flavour legs and attaching a photon. (However,
the 3e scalar coefficient can be neglected, because µ → eēe sets a more stringent
bound on this operator.)

(a) The τ -tensor is in the second parenthese, the quark tensors are in the fourth
(the light quark tensors are neglected, because they contribute at one loop to
SI µ → e conversion, unsuppressed by mq/mµ). QCD causes CqqT,XX to run,
and also the quark mass that appears in the anomalous dimension mixing the
tensor to the dipole is taken running. These QCD effects are described by
λ = αs(2GeV)/αs(mW ) ' 2.18, and

fTD =
(

1
1− aT − aS

1− λ1−aT−aS

1− λ

)
(2.18)

where aT = −4/23, aS = 12/23 are respectively the anomalous dimensions of
tensors and scalars/masses in QCD, and λaT ' 0.873 and fTD ' 0.862. In
eq. (2.17), the quark masses are at low energy: mq(mq).

(b) It is interesting that the coefficients of the dipole and tensor operators can be
comparable, allowing for unexpected cancellations. Numerically, the bounds of
eq. (2.17) is

CD,X(mµ) &
∣∣∣0.938CD,X(mW )+0.981CττT,XX(mW )−0.75CccT,XX + . . .

∣∣∣ (2.19)

2. C2loop is a combination of vector operator coefficients that mix to the dipole via the
2-loop RGEs [42]

C2loop = −αe4π

58
9 C

ττ
V,Y Y + 116

9
∑
l=e,µ

C llV,Y Y + 64
9 (CuuV,Y Y + CccV,Y Y ) + 22

9
∑

q=d,s,b
CqqV,Y Y

−80
9 (CuuV,Y X + CccV,Y X)− 14

9
∑

q=d,s,b
CqqV,Y X −

50
9

∑
l=e,µ,τ

C llV,Y X

+4
∑

f=b,c,s,τ
CffS,Y X

Q2
fNfmf

mµ

 (2.20)

where the chirality of the electron outgoing from these operators must be the same
as that of the dipole operator into which they mix — so the combination above mix
into CD,X for X 6= Y .
The C2loop term in eq. (2.17) is compact but not quite correct: in reality, the lower
cuttoff of the logarithm should be mτ for the ττ operators, mb for the bb operators,
2GeV for the cc,ss,uu and dd operators, and mµ for the µµ and ee operators.

3. the τ and (heavy) quark scalar operators mix to the tensor at one loop, and therefore
the dipole at two-loop. Since the tensor-to-dipole mixing is O(1) for heavy fermions
because enhanced by the mass, the scalar-dipole mixing is included for the τ on the
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third parenthese, and for the heavy quarks in the last parenthese. The QCD running
is . 10%, if the heavy quark masses are taken at low energy mQ(mQ), so neglected.
The lower cutoff of the logarithm for quark operators is approximated as 2GeV to
given a shorter formula, but should be chosen as a function of the quark flavour —
eg mb for the b quark, and 2GeV for u, d, s.

2.4.2 µ → eēe

The decay µ → eēe constrains the magnitude of several combinations of coefficients, as
given in eq. (2.6). At one-loop, there are no operators that mix into the scalar operators
OeeS,.... All vector operators OffV,XY and OffV,XX can mix to OeeV,XR + OeeV,XL by closing the
f legs and attaching a photon to the loop, then attaching the photon to e+e−. These
“penguin” diagrams mix the combination

QeCping1,X = Qe
4
3
∑
f

NfQf
(
CffV,XL + CffV,XR

)
f ∈ {e, µ, τ, u, d, s, c, b} (2.21)

into both CeeV,XR and CeeV,XL. The 3e and 3µ vector operators also mix to the 3e vectors via
a second penguin diagram which closes a different selection of legs, and the 3e operators
are renormalised by photon exchange between the legs. As a result, the constraints from
µ → eēe (see eq. (2.7)), combined with the MEG bounds on µ → eγ, give the following
bounds on coefficients evaluated at mW :

7×10−7>CeeV,XX

(
1−12αe4π ln mW

mµ

)
− αe

4π

(
4
3

(
CµµV,XX+CeeV,XX

)
ln mW

mµ
+Cping1,X ln mW

mτ

)
10−6>CeeV,XY

(
1+12αe4π ln mW

mµ

)
− αe

4π

(
4
3

(
CµµV,XX+CeeV,XX

)
ln mW

mµ
+Cping1,X ln mW

mτ

)
2.8×10−6>CeeS,XX

(
1+12αe4π ln mW

mµ

)
(2.22)

where X ∈ {L,R} and X 6= Y . The overall logarithm multiplying Cping1,X is an approxi-
mation to shorten the formula; more correctly, the bb coefficients in Cping1,X should be mul-
tiplied by a logarithm cut off at mb, and the logarithm for the ee or µµ coefficients should
end at mµ (the correct logs are implemented in the numerical bounds in the appendix).
(And as usual, there should be hadronic loops to replace the light quarks below 2GeV.)

2.4.3 µ→e conversion
The SINDRUMII bound on µAu→ e+Au, given in eq. (2.8) for out-going left-handed
electrons, can be expressed as the bound on coefficients at mW :

4.9× 10−8 &
∣∣∣ (0.222CD,R(mµ) + 1.602CuuV,L + 1.830CddV,L − 0.721 8πmN

9αsmt
CGG,R

)
+ λaS

(
1 + α

4π l̃n
) (26

3

[
6.10CuuS,R + 1.44mN

27mc
CccS,R

]
+20

3

[
6.26CddS,R + 0.303CssS,R + 1.44mN

27mb
CbbS,R

])
− 16fTSλaT

α

4π l̃n
(
2[6.100CuuT,RR + 1.44mN

27mc
CccT,RR]

−6.258CddT,RR − 0.303CssT,RR −
1.44mN

27mb
CbbT,RR

)
(2.23)

− α

2π l̃n
(
3.66CddA,L + 6.41CuuA,L − 0.305[CµµV,L − C

µµ
A,L] + 0.228Cping,1

)
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where l̃n = ln(mW /mlow) should be inside the square brackets because mlow ∈
{mb, 2 GeV,mµ} depends on the coefficient, the masses are on shell (mψ(mψ)) and the
dipole contribution is given at the experimental scale (it can be written in terms of coeffi-
cients at mW with eq. (2.17)). A similar bound applies with L and R interchanged.

The bound from Titanium on an orthogonal combination of coefficients, given in
eq. (2.14), can be written with the same conventions as√

BRexpTi

BTi sin2 φ
= 6.24× 10−7 &

∣∣∣ (0.155CD,R − 0.506CuuV,L − 1.17CddV,L − 1.068πmN

9αsv
CGG,R

)
+ λaS

(
1 + α

4π l̃n
) (26

3

[
9.21CuuS,R + 2.12mN

27mc
CccS,R

]
(2.24)

+20
3

[
9.02CddS,R + 0.446CssS,R + 2.12mN

27mb
CbbS,R

])
− 16fTSλaT

α

4π l̃n
(
2[9.21CuuT,RR + 2.12mN

27mc
CccT,RR]

−9.02CddT,RR − 0.446CssT,RR −
2.12mN

27mb
CbbT,RR

)
− α

2π l̃n
(
2.576CddA,L − 2.024CuuA,L − 0.0346[CµµV,L − C

µµ
A,L] + 0.32Cping,1

)∣∣∣
where l̃n is defined after eq. (2.23) and the masses are on shell (mψ(mψ)).

2.5 What is not probed?

This section gives an incomplete list of coefficient combinations that are not probed by
µ → eγ, µ → eēe, and µ → e conversion. There are 45 µ → eL operator coefficients
in section 2.1, upon which the current bounds on µ → eγ, µ → eēe, µAu → eLAu and
µTi → eLTi set 1+3+1+1 = 6 constraints [11]. Including µ → eγγ, which was searched
for by Crystal Box [21] would give an additional constraint (on a γγ operator) [20, 22],
but there remain . 40 unconstrained directions in coefficient space. The case of operators
that produce an outgoing eR is the same and independent, because the Branching Ratios
independently constrain both processes.

This section does not give a list of three (or six) dozen flat directions. The subset of
flat directions listed here are selected because they are relatively stable under RG running,
or “natural”, according to the notion introduced it [11] (for cancellations among operator
coefficients). It assumes that model parameters at the New Physics scale ΛNP do not know
the experimental scale, so coefficients should not cancel against logarithms of scale ratios
— because the scale ratio could be chosen by the observer but the coefficient is determined
by the theory.

An elegant way to implement this notion of naturalness, is to only admit cancellations
which are RG-invariant. For instance, if one restricts to operators containing a quark
bilinear, and only considers their one-loop diagonal QCD running, then cancellations among
the vector coefficients, or among the scalars, or the tensors, are RG-invariant. This could
be generalised to include the one-loop QCD and QED running, by diagonalising the full
anomalous dimension matrix. However, the diagonalisation would be difficult, and the
eigenvectors would be curious combinations of different Lorentz structures and external legs
— as opposed to the usual “intuitive” basis of section 2.1, where the operators correspond
to potentially distinguishable interactions of physical particles. Furthermore, the only
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degenerate eigenvalues might be among vector operators involving fermions of the same
electric charge (because scalars mix to tensors whose mixing to the dipole is proportional
to the fermion mass).

A more pragmatic implementation of this notion of “natural” cancellations is to use
the perturbative solution of the RGEs given in eq. (2.16), and allow cancellations among
coefficients which 1) run with the same QCD anomalous dimension, and 2) multiply a
similar αem lnµf/µi factor. The formulae for the constraints on coefficients at the weak
scale, given in eqs. (2.17), (2.22), (2.23), and (2.24), are arranged to display these “natural”
cancellations, or flat directions: each parenthese of the formulae satisfies the two condi-
tions. So any combination of coefficients that causes a parenthese to vanish is a “natural”
flat direction.

An example of flatish directions, or operators which are poorly constrained by µ →
eγ, µ→ eēe and µ→e conversion are the axial vector operators of the form

(eγαPXµ)(fγαγ5f) , f ∈ {s, c, b, τ}

which contribute to µ → eγ at 2-loop with a mass enhancement (see eq. (2.20)). There
should be three combinations of these operators, orthogonal to eq. (2.20), which are “flat”
to the order calculated here. (The axial vector operators with f ∈ {u, d, µ} are not in the
list, because they contribute at one QED loop to µ→ e conversion.) A second example
would be any combination of vector operators∑

f

Cf (eγαPXµ)(fγαf) , f ∈ {s, c, b, τ}

where the {Cf} are chosen orthogonal to Cping,1 (see eq. (2.21)), and also to C2loop if one
wishes large Cf .

Reference [11]’s notion of naturalness precludes cancellations among the combinations
of coefficients in parentheses in eqs. (2.17), (2.22), (2.23), and (2.24), so it could be inter-
preted as transforming the single constraint from µ→ eγ into a constraint on each of the
five parentheses, and the 2 bounds from µ→e conversion into eight. However, “unnatural”
cancellations can occur, see for instance eq. (2.19).

3 Complementarity

The aim of this section is to show that the observables considered here (µ→ eγ, µ→ eēe

and µ→ e conversion) give independent information about models. To do this, an alter-
native basis is proposed for coefficient space. This basis is constructed from observables,
spans the subspace they probe, and can be defined at all scales.

In an EFT framework, a modelM can be represented by the vector ~CM(Λ) of operator
coefficients it induces,4 which is scale-dependent but relatively simple to calculate at the
New Physics scale ΛNP. An observable can be represented as one or several combinations

4Since models usually have parameters, there would be a vector for each choice of parameters, and
varying the model parameters would scan over the vectors of coefficients that can represent the model.
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of operators whose coefficients it probes. This also depends on the scale, and is relatively
simple to establish at the experimental scale Λexpt — for instance, µ → eLγ probes the
operator OD,R(mµ). However, to obtain the rate for an observable, one must evaluate the
matrix element of the operators and integrate phase space. So it is convenient to define
observable-vectors ~vobs(Λ) to live in the vector space of the coefficients, such that the rate
for an observable can be written

Γ ∝
∑
| ~CM(Λ) · ~vobs(Λ)|2 (3.1)

at a common scale Λ. For instance, at the experimental scale, eq. (2.5) implies that the
two observable-vectors for µ→ eγ point in the dipole directions, so one can choose

~vµ→eLγ(mµ) = ûD,R

~vµ→eRγ(mµ) = ûD,L , (3.2)

where ûD,R, ûD,L are unit vectors such that ~C · ûD,R = CD,R. Some observable-vectors for
µ→e conversion at the experimental scale are already given in eq. (2.11).

By assumption, the dynamics below ΛNP is Standard Model, so the model and ob-
servable vectors can be translated in scale by the SM RGEs. Since models are legion and
observables are few, it might be more efficient to translate the observable vectors to ΛNP,
rather than calculating ~CM(Λexpt), as is commonly done. Indeed, if the observable-vectors
were known as a function of ΛNP, then the predictions of a New Physics model would be
simple to obtain from eq. (3.1). Part of the translation ~vobs(Λexpt) → ~vobs(ΛNP) appears
in section 2, where the combination ~CM(mW ) · ~vµ→eLγ(mW ) is given by eq. (2.17) with
X = R, ~CM(mW ) ·~vµAu→eLAu(mW ) appears in eq. (2.23), and the appropriate inner prod-
uct for the orthogonal constraint from µTi→ eLTi is given in eq. (2.24). Similar formulae
apply for outgoing eR, but the focus below is mostly on eL. Matching onto the SMEFT,
and running up to ΛNP is left for a later work.

The observable vectors corresponding to µ→ eēe can also be constructed. For this, it
is convenient to take an idealised theoretical perspective, imagining that the chirality of the
four leptons can be observed. Combined with the electron angular distributions [24, 25],
this allows to define “observable” vectors for µ→ eēe at the experimental scale

~vµL→eLeLeL(mµ) =
√

2[ûeeV,LL + 4eûD,R]

~vµR→eLeReL(mµ) = 1
2
√

2
ûeeS,LL

~vµR→eReLeL(mµ) = ûeeV,RL(mµ) + 4eûD,R (3.3)

plus another three vectors with L ↔ R, and the dipoles. These vectors can be expressed
at mW using eqs. (2.17) and (2.22).

These vectors corresponding to µ → eγ, µ → eēe and µA → eA, allow to quantify
the complementarity of these processes at any scale. If, at the chosen scale, the vectors
remain “relatively orthogonal”, then the observables are complementary. If the vectors are
aligned, then the observables become identical probes of New Physics. It is interesting
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to study complementarity at ΛNP, because we are looking for information about the New
Physics. However, as an illustrative exercise, we start at the experimental scale.

Notice that the complementarity of observables is a theoretical question, unrelated
to the magnitude of current experimental bounds. In this it differs from the correlation
matrix that can be constructed from the experimental constraints, which defines the allowed
ellipse in coefficient space; the direction and magnitude of the axes of the ellipse depend
on the relative magnitude of the constraints. Complementarity is also model-independent,
and unrelated to correlations between observables that could arise in some models. Such
correlations would occur if the projections of ~CM onto the observable vectors have similar
scaling with the parameters of modelM:

~CM · ~vobs1
~CM · ~vobs2

= independent of model parmeters .

The notion of “model discriminating power”, present in the literature [19, 47, 48], is re-
lated to complementarity, but compares the projection of different observable vectors, onto
different model vectors. The discriminating power of observables therefore depends on the
models considered, whereas their complementarity is model-independent.

At the experimental scale, µ → eγ, µ → eēe and µ → e conversion have different
external particles, so naively appear complementary. However, the dipole contributes to
all three processes, preventing the observable-vectors from being orthogonal even at the
experimental scale. Indeed, at Λ ∼ mµ, CD,R(mµ) and CV,LL(mµ) contribute about equally
to µL → eLeLeL, so ~vµL→eLeLeL(mµ) is misaligned with respect to ~vµR→eLγ(mµ) by ∼ π/4:

~vµL→eLeLeL · ~vµR→eLγ
|~vµR→eLγ ||~vµL→eLeLeL |

(mµ) ∼ cos(π/4) . (3.4)

The dipole also contributes to µ→e conversion, but with a smaller weight (see eq. (2.13)),
such ~vµR→eLγ(2GeV) and ~vµAu→eLAu(2GeV) are almost orthogonal (separated by an angle
of ∼ 88 degrees). So at low energy, an approximately orthogonal basis for the observable-
vector subspace can be constructed with the two dipoles, and the remaining observable-
vectors with the dipole subtracted. For instance,

~uµ→eLγ(Λ) = ~vµ→eLγ(Λ)
~uµAu→eLAu(2 GeV) = ~vµAu→eLAu(2 GeV)− 0.222~vµR→eLγ(2 GeV)
~uµL→eLeLeL(mµ) = ~vµL→eLeLeL(mµ)− 4

√
2e~vµR→eLγ(mµ) (3.5)

which are called ~u to distinguish them from the observable-vectors ~v.
This situation at low energy is illustrated in figure 1, where low energy is taken to

be 2GeV in order to use quark operators for µ → e conversion. The plot is in polar
coordinates in the subspace probed by µ→ eLγ, µAu→ eLAu and µ→ eLeLeL, where the
vertical z-axis corresponds to the dipole ~uµ→eLγ(2GeV), and the x and y axes respectively
to ~uµL→eLeLeL(2GeV) and ~uµAu→eLAu(2GeV). This subspace corresponds to a Lagrangian
at the experimental scale of

Leff(mµ) = 1
Λ2

NP

[
cθmµeσ · FPRµ+ sθcφ(eγαPLµ)(eγαPLe) + sθsφOAu

]
(3.6)
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where OAu is the combination of quark operators probed on Gold, sθ = sin θ, cφ = cosφ
and so on, and the radial coordinate is taken | ~C| = v2/Λ2

NP, so that

2
√

2GF | ~C|2 = 1
Λ2

NP
.

This is the complete low-energy Lagrangian for the considered observables; the only “toy”
aspect is that chirality of the electrons is fixed to make the parameter space of plot-
table dimension.

The resulting BRs are:

BR(µ→ eLγ) = 384π2|~vµ→eLγ · ~C|
2 = 384π2| ~C|2| cos θ|2

BR(µ→ eLeLeL) = |~vµL→eLeLeL · ~C|2 + 18.76|~vµ→eLγ · ~C|2

= | ~C|2(2| sin θ cosφ+ 1.2 cos θ|2 + 18.76| cos θ|2) (3.7)

BR(µAu→ eAu) = 300|~vµA→eLA · ~C|
2 = 300| ~C|2|0.222 cos θ + 9.08 sin θ sinφ|2 .

Setting the BRs equal to their experimental limits (given in section 2.2), gives a bound
on | ~C| which is plotted in figure 1 as a function of θ, φ; the coefficient space below the
curves is experimentally excluded. The angular dependence of the bounds illustrates that
the observables are the complementary at the experimental scale. The BR(µ → eLeLeL)
vanishes at φ = π/2 in the second plot (where θ = π/2) because both the dipole and
four-fermion contributions vanish; the BR does not quite vanish at θ = π/2 in the first
plot because the subdominant four-fermion contribution is present at φ = π/4. One also
sees that µ→e conversion gives the best bound on ΛNP, for comparable coefficients of all
three operators. This is because the conversion process is coherent on the nucleus (so is
enhanced at large atomic number), and because the scalar quark densities in the nucleon
are large (∼ 9, see table 1 — the Branching Ratio due to a vector quark current would be
∼ 10→ 100 smaller).

Consider now the complementarity of these observables at mW , mW being a simple,
although inadequate, substitute for ΛNP. In their evolution from the experimental scale
to the weak scale, the basis vectors, like observable-vectors, will rotate in coefficient space
and change length (the non-unitary matrix that evolves coefficients in scale can be written
as a rotation, a diagonal matrix, and another rotation). The degree of orthogonality
between the vectors can be obtained by taking inner products; at the weak scale, the
basis vectors for the processes plotted here (= dipoles, plus observable-vectors with their
dipole components subtracted) are still orthogonal to three figures despite their significant
rotations (this is understandable; the vector space has ∼ 90 dimensions). But their lengths
change; in particular the dipole vectors grow by more than a factor two, due to the large
loop contributions shown in eq. (2.17).

The observables nonetheless remain complementary atmW , as shown in figure 2. These
plots are similiar to those of figure 1, but differ in that the operator coefficients are at mW

(standing in for ΛNP). The first plot shows ΛNP as a function of the angle θ between the
model vector ~C(mW ), and the direction probed by the dipole ~uµ→eLγ(mW ) (at φ = π/4,
that is a model with identical coefficients in the directions ûµL→eLeLeL and ûµAu→eLAu).
The shaded regions are excluded by current constraints. The second plot is the projection
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Figure 1. The bound on the New Physics scale ΛNP from current constraints on µ → eLγ (thick
black), µ→ eLeLeL (dot-dashed blue) and µA→ eLA (thin red), for New Physics parametrised at
the experimental scale by the effective Lagrangian given in eq. (3.6). The first figure is as a function
of θ for sinφ = cosφ = 1/

√
2, and the second is as a function of φ for cos θ = 0.

of the model-vector onto the plane perpendicular to the dipole. Were this figure at ΛNP,
rather than mW , and if the three Branching Ratios were observed, it would allow to extract
the all the information these rates give about New Physics (via dimension six operators
and leading order RGEs), at the New Physics scale, so without the blurring effect of SM
loops. As expected, µ → eγ is maximal at θ = 0, π, and vanishes for θ = π/2, and
µ→ e conversion is larger when the model vector is more orthogonal to the dipole. The
BR(µ→ eLeLeL) follows BR(µ→ eLγ) due to the enhanced (by RG running) contribution
of the dipole operator to µ → eLeLeL; it does not vanish with ~C · ~uµ→eLγ at θ = π/2 due
to the four-fermion contribution. Similiarly, BR(µAu → eLAu) vanishes at θ . π where
there is a cancellation between the negative ~C · ~uµ→eLγ and positive ~C · ~uµAu→eLAu.

4 Discussion and summary

Reconstructing New Physics (NP) from data is a dream for many phenomenologists. If New
Physics is heavy, then Effective Field Theory can be a tool in pursuing this dream, because
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Figure 2. The bound on ΛNP from current constraints on µ → eLγ (black; vanishes at θ = π/2),
µ → eLeLeL (blue; dips atθ, φ ∼ π/2) and µA → eLA (red; vanishes atθ, φ ∼ π), as a function of
coefficients at mW . Dotted lines indicate possible bounds from future experimental sensitivities.
The operator coefficients are parametrised in spherical coordinates in the subspace probed by the
experimental processes: the vertical axis is the direction probed by µ → eLγ (see eq. (2.17)) and
the xy plane is spanned by ~uµAu→eLAu(mW ) and ~uµL→eLeLeL

(mW ), see eq. (3.5). The first plot is
for φ = π/4, and the second for θ = π/2 (where the dipole vanishes). See discussion at the end of
section 3.

it allows to separate what is known — the Standard Model(SM) and low energy data about
NP — from the NP that is pursued. In particular, it allows theoretical travels in energy
scale, from the experimental scale towards the NP scale ΛNP, because the dynamical degrees
of freedom are by assumption in the SM. However, in this manuscript, the experimental
constraints are translated only as far as mW ; reaching ΛNP is left for later work.

The processes considered here are µ → eγ, µ → eēe, and µ→ e conversion, because
current experimental constraints are stringent (BR . 10−12) and are expected to improve
significantly in coming years (→ 10−16). These are low-energy processes, occuring at
an energy-transfer ∼ mµ, whose experimental Branching Ratios (BRs) are reviewed in
section 2.2. Together, they set ∼ a dozen constraints on µ↔ e contact interactions at the
experimental scale.

We would like to know what these processes can tell us about NP, with as few assump-
tions about the NP as possible. A first assumption is that the new particles are heavy,
with masses at a scale ΛNP & mW (possibly � mW ). Furthermore, they are assumed to
generate some three or four-particle, µ→ e flavour-changing contact interactions (a list is
given in section 2.1).

With these assumptions, section 2 explores whether, if µ ↔ e flavour-changing NP
exists, we should see µ → eγ, µ → eēe and/or µ → eγ? In order to reach the short-
distance NP interaction that mediates a low-energy µ ↔ e transition, the intermediate-
scale SM loop corrections must be peeled off, for instance using the Renormalisation Group
Equations (RGEs) summarised in section 2.3. This scale evolution can transform one µ↔ e

interaction into another, so at short distances/high scales, the experimental constraints
apply to lengthly combinations of coefficients. These are given in section 2.4 at the scale
mW , and the appendix tabulates the sensitivities to individual operator coefficients (one-
at-a-time bounds), both in the basis of section 2.1 and in the SMEFT. These results
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include one-loop and some two-loop effects, and should give the leading contribution of
each operator to each process (see discussion in section 2.3). The tables show that at this
accuracy, µ→ eγ, µ→ eēe and µ→e conversion are sensitive to (almost) all the operators
or section 2.1 (the possible exceptions are a few µ-e-gluon-gluon operators — see eq. (2.4)
and following discussion). Recall that the operator list represents all QED×QCD-invariant
LFV three or four-legged contact interactions, in a chiral representation for fermions.

It is unclear if this is reassuring, because cancellations in a matrix element can occur
among different coefficients. Such directions in coefficient space are sometimes refered to as
flat directions. There are many such flat directions in the coefficient space for µ→ e flavour
change, after imposing the dozen bounds from µ → eγ,µ → eēe and µ→ e conversion,
because there are O(100) operators. Indeed, there are so many flat directions, some one
could be motivated to introduce a limit on how much cancellation can be “naturally”
allowed. The flat directions are discussed in section 2.5.

However, more interesting that the flat directions, are the directions that the observ-
ables do constrain, because these are what we can use to discriminate among models. So
section 3 introduces vectors in coefficient space, which correspond to observables (these
are patterned on the “target vectors” of [11, 28]). At the experimental scale, there can be
several observable-vectors for a give process, each selects a combination of coefficients who
interefere in the rate:

Γ ∝
∑
| ~CM(Λexpt) · ~vobs(Λexpt)|2

where ~CM(Λexpt) is the vector of coefficients corresponding to model M, evaluated at
the experimental scale Λexpt. For instance, for µ → eγ, whose BR is given in eq. (2.5),
the two observable-vectors at the experimental scale are the unit vectors that select the
coefficients of the dipole operators in the vector ~CM(Λexpt). The vectors for the remaining
observables are given in section 3. The observable-vectors are interesting, because they are
scale-dependent, and can be translated to ΛNP with the Renormalisation Group Equations.
Then there would be no need to run operator coefficients down to the experimental scale
for every model; rather, rates could be computed from coefficients at ΛNP, by dotting them
into ~vobs(ΛNP) This is left for future work in the lepton sector.

In section 3, the observable vectors are used to study the complementarity of ex-
perimental processes. The vector(s) corresponding to a given observable indentifies the
subspace of coefficients that the observable probes, so the misalignment angle between the
observable-vectors of different processes, quantifies the complementarity of the processes.
When the vectors evolve in scale, this misalignment angle can grow or shrink, indicating
that the observables become more, or less, complementary at high scales. For the purpose
of learning about New Physics, clearly it is desirable for observables to be complemen-
tary at ΛNP. This manuscipt only reaches the weak scale in RGE evolution, so figure 2
illustrates the complementarity of µ→ eγ, µ→ eēe and µ→e conversion at the scale mW .

A Tables of sensitivities

The tables in this appendix give the sensitivities of various processes (listed in the first row
of the tables) to the operator coefficients given in the left column and evaluated at mW .
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The “sensitivity” of an (unobserved) process to a coefficient is calculated by allowing only
that coefficient to be non-zero at mW . Coefficients smaller than these values are too small
to have been observed, but larger coefficients could be allowed, if their contributions cancel
against other coefficients.

The tabulated results arise from the experimental bounds given in eqs. (2.5), (2.6), (2.8)
for muon decays, and in table 2 for τ decays.

Tables 3, 4, 8 and 9 contain the QED×QCD-invariant operators relevant below the
weak scale, and listed in section 2 for µ → e flavour change The operators are added to
the Lagrangian with the normalisation given in eq. (2.1):

L = LSM + 2
√

2GF
∑

CζLorO
ζ
Lor + h.c. , 2

√
2GF = 1

v2 , v ' mt

where the subscript is the Lorentz contraction, and the superscript ζ represents the flavour
indices. Notice that in the normalisation used here, all operators annihilate muons (or τs)
and create electrons; the reverse process is assured by the +h.c. So the coefficients of an
operator and its conjugate have the same magnitude.

At the weak scalemW , the low energy operator basis can be matched onto the SMEFT,
so the sensitivities can be expressed in this basis. Tables 5 to 7 (for µ ↔ e) and 10 (for
τ ↔ e) apply to operators in the SMEFT basis, added to the Lagrangian as:

L = LSM + 2
√

2GF
∑

CζJO
ζ
J + h.c. (A.1)

where the sum is over all dimension six operators and all flavour indices. In the usual
SMEFT formulation, the +h.c. is not included for hermitian operators; here there is +h.c.
for all operators but the hermitian operators are defined with a factor 1/2 (which gives the
usual normalisation for coefficients, because the operator and its conjugate contribute to
the Feynman rule.). The SMEFT convention of summing all flavour indices causes some
four-lepton operators to appear several times:

Oeµ``LL = O``eµLL = O`µe`LL = Oe``µLL

OeµττLL = OττeµLL , OτµeτLL = OeττµLL

OeµllRR = OlleµRR = OlµelRR = OellµRR (A.2)

for ` ∈ {e, µ} and l ∈ {e, µ, τ}. So the coefficients of these identical operators are also
identical, and the bounds in table 6 apply to the appropriate sum of coefficients:∑

Ceµ``LL = Ceµ``LL + C``eµLL + C`µe`LL + Ce``µLL = 4Ceµ``LL∑
CeµττLL = CeµττLL + CττeµLL = 2CeµττLL∑
CτµeτLL = CτµeτLL + CeττµLL = 2CeττµLL∑
CeµllRR = CeµllRR + C lleµRR + C lµelRR + CellµRR (A.3)

Finally, the CKM matrix was neglected in matching, so eg, low energy operators OuuV,RL
and OddV,RL both match onto the SMEFT operator OddEQ.
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Tables 3, 4, and 5 to 7 give the sensitivity of µ→ eγ, µ→ eēe and µ→e conversion to
µ↔ e operators. Since the dipole receives loop contributions from almost all operators, it
is sensitive to most coefficients. It also contributes to both µ→ eēe and µ→e conversion;
when the only contribution of a coefficient to these processes is via the dipole, the sensitivity
is in parentheses in tables 3 and 4,.

The µ ↔ e sensitivities are given to three figures to mitigate rounding uncertainty;
modulo misprints and factors of 2, they are expected to have a ∼ 10% uncertainty due to
the one-loop QCD running, and a ∼ 50% uncertainty for scalar, tensor and GG operators
in µA→ eA, where the lattice and χPT determinations of the scalar quark current in the
nucleon differ by ∼ 50% [32, 33].

For comparaison, tables 8, 9 give estimated sensitivities of a selection of LFV τ decays
to operator coefficients in the QED×QCD-invariant basis. In addition, table 10 gives the
sensitivities of some hadronic τ decays to 2`2q operators of SMEFT — this illustrates, in
the case of SMEFT operators involving quark doublets, the cancellations that can arise
between the u and d quark contributions in τ decays to isotriplet mesons.

Note added. During the completion of this manuscript, appeared a comprehensive study
of LFV in hadronic τ decays [49]. The authors calculate decays to a variety of final
states using χPT with resonances, and perform some loop matching calculations in order
to include the interesting operators OGG,Y [47]. The results in this manuscript are less
precise, include τ → `γ and τ → 3` but fewer hadronic decays, and include QED loops
in the RG running up to the weak scale. (QED effects are interesting, because they can
change the external legs and Lorentz structure, transforming difficult-to-detect operators
into well-constrained ones.) Husek et al. include the numerically significant QCD running
via HEPfit [50], and obtain constraints an SMEFT coefficients, and a correlation matrix.

A.1 Including a selection of tau decays

A few τ decays are included here, to illustrate the differences between LFV involving τs
and the µ ↔ e sector. Firstly, the experimental bounds are more restrictive for muon
decays: B̃R(µ → eX) . 10−12, to be compared with B̃R(τ → `X) . 10−7. So there is
sensitivity to smaller coefficients in the muon sector. Furthermore, the loop contributions
of some operators involving heavy fermion (ψ ∈ {c, τ, b}) bilinears, can be enhanced by the
mass ratio mψ/mµ,τ . This, for instance, enhances the sensitivity to OccT,LL of µ→ eγ with
respect to τ → eγ. Both these effects can be seen in the tables.

An advantage of LFV τ decays is the multitude of different hadronic final states, which
each constrain a specific combinations of quark operator coefficients. This differs from µ→
e conversion, where many quark operators contribute in interference. There are therefore
fewer “flat directions” for τ → e than for µ → e. This advantage is exploited in [49], but
not here, where only a few decays are considered. Also, only τ → e results are listed; the
sensitivities to τ → µ operators can be obtained by rescaling, as given in eq. (A.5).

The limits here are a first attempt to include QED loop effects in some LFV τ decays,
allowing to estimate the sensitivity of these processes to operators that contribute via log-
enhanced loops. Previous works have included a wider range of τ decays, but focus mostly
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on operators that contribute at tree level. The prospects for discriminating among operator
coefficients by studying asymmetries and angular distributions was studied in [51, 52] for
leptonic decays (see also [48, 53]) and using hadronic decays was considered in [47]. Black
et al. [54] give the sensitivity of various rare decays to a subset of SMEFT coefficients that
contribute at tree level; a more complete study in the SMEFT was performed recently
in [49]. The intermediate-state contribution of heavy quark mesons to leptonic LFV τ

decays is considered in [17].
Only the ∆F = 1 decays such as τ → eēe are included here; the operator basis

and anomalous dimension matrices for such processes differ from the µ → e case only
by permutation of lepton flavour indices. ∆F = 2 decays (eg τ → eµ̄e) would require
additional operators and a dedicated RGE analysis.

Three ingredients are required to calculate the sensitivities tabulated here: the exper-
imental upper bounds on the BRs, the theoretical formulae for the BRs as a function of
a complete set of operator coefficients at the experimental scale, and the matrix which
accounts for loop contributions by expressing the coefficients at the experimental scale in
terms of coefficients at the weak scale. The experimental BRs are in table 2, and the
remainder of this appendix gives theoretical formulae for the BRs. The matrix is obtained
by solving the RGEs for the LFV operator coefficients (between mW and mτ ), and since
we restrict to ∆F = 1 operators, these RGEs are the same as for µ→ e decays and conver-
sion [18, 45] (with some index changes). A dedicated analysis would be required to obtain
reliable sensitivities, and “observable-vectors” for τ -LFV.

The τ can decay hadronically, so it is convenient to rescale its LFV Branching Ratios:

B̃R(τ → `X) ≡ BR(τ → `X)
BR(τ → `ν̄ν) , (A.4)

where BR(τ → µν̄ν) = .174 and BR(τ → eν̄ν) = .178 [55]. The experimental bounds on
the considered B̃Rs are given in table 2.

The masses of the final state leptons are neglected in the rates. This simplification
means that the theoretical BRs and RG evolution are identical for the τ → µ and τ → e

sectors, after interchanging µ and e indices. Therefore in the tables, only the four-fermion
operators describing τ → e transitions are listed; for operators with two lepton indices, the
sensitivities to τ → µ coefficients can be obtained by rescaling:

Cµτ...Lor . Ceτ...Lor

√√√√B̃R(τ → µX)
B̃R(τ → eX)

(A.5)

where . . . are the indices corresponding to the final state X, and the Lorentz structure
subscripts should be identical for both coefficients. ICI In the case of four-lepton operators,
all the µ and e indices should be interchanged, e.g. CµτeeLor → CeτµµLor , and so on.

The decays τ → µēe and τ → eµ̄µ are mediated by the τ → e and τ → µ opera-
tors considered here, but are not included due to temporary discrepancies in the tensor
contribution, between my calculation and [51].

The calculation of τ decays to mesons is pedagogically introduced in [54], and a careful
study considering many final states has recently appeared [49]. The decays considered
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B̃R current bound B̃R current bound
τ → µγ 2.5× 10−7 τ → eγ 1.9× 10−7

τ → µµ̄µ 1.2× 10−7 τ → eēe 1.5× 10−7

τ → µπ 6.3× 10−7 τ → eπ 4.5× 10−7

τ → µη 3.7× 10−7 τ → eη 5.2× 10−7

τ → µρ 6.9× 10−8 τ → eρ 1.0× 10−7

Table 2. Current bounds on selected τ lepton flavour violating branching ratios, from Refer-
ences [56, 56–61], normalised to leptonic weak decays as in eq. (A.4).

here are τ → e{π0, η, ρ}; the results for τ → µ{π0, η, ρ} can be obtained as in eq. (A.5).
These mesons are interesting because they probe complementary combinations of operator
coefficients at tree level.

The decays to π0 mesons probe axial vector/pseudoscalar operators, in the isospin=1
combination u− d. In the notation of [62], where

〈0|dγµγ5u|π+(P )〉 = iPµ
√

2fπ , Γ(τ → πν) = G2
F f

2
πm

3
τ

8π
with fπ ' 92.2 MeV, the Branching Ratio in the presence of (axial) vector operators is

B̃R(τ → `π0) = 3π2f2
π

m2
τ

|CuuV,XR − CuuV,XL − CddV,XR + CddV,XL|2 , (A.6)

because
〈0|JµA−|π

0(P )〉 = iPµfπ (A.7)

where JµA− = 1
2(uγµγ5u − dγµγ5d), and the coefficient of 2

√
2GF (¯̀γµPXτ)JµA− in the La-

grangian is5 CA− = 1
2(CuuV,XR−CuuV,XL−CddV,XR +CddV,XL). RG mixing vanishes for the axial

current, but it is renormalised (when attached to a chiral current) so at mW this becomes
the “constraint”

2.3× 10−3 & |CuuV,XR − CuuV,XL − CddV,XR + CddV,XL

− αe
π

(2CuuV,XR + 2CuuV,XL + CddV,XR + CddV,XL)| ln mW

mτ
(A.8)

The correct constraint, and “observable-vector”(s) for this decay, could be obtained from
the expression for the BR in terms of all coefficients that can contribute (including e.g.
the pseudoscalar operators). However, eq. (A.8) allows to calculate sensitivities, and see
cancellations, such as between CuuV,XL and CddV,XL, due to which the SMEFT operators OEQ
and OLQ1 do not contribute to τ → `π0 at tree level.

It is interesting to also include LFV τ decays to the isosinglet η, because there is a
contribution from s quarks, and not a cancellation between the us and ds. Still in the
notation of [62], with the approximation fη ∼ fπ [64, 65], one obtains the contribution

B̃R(τ → `η) = π2f2
π

m2
τ

|(CuuV,XR − CuuV,XL) + (CddV,XR − CddV,XL)− 2(CssV,XR − CssV,XL)|2 . (A.9)

5There is a factor 1/2 is missing in [63].
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At mW , this becomes

4.4× 10−3 & (CuuV,XR − CuuV,XL) + (CddV,XR − CddV,XL)− 2(CssV,XR − CssV,XL)

− αe
π

(CddV,XR + CddV,XL − 2(CuuV,XR + CuuV,XL + CssV,XR + CssV,XL) ln mW

mτ

Pseudoscalar operators can also contribute to the decays τ → `π0, `η. The operator
expectation values

〈0|12(ūγ5u− d̄γ5d)|π0〉 = fm2
π

(mu +md)

〈0| 1
2
√

3
(ūγ5u+ d̄γ5d− 2s̄γ5s)|η〉 = fm2

π

(mu +md)
=

3fηm2
η

(mu +md + 4ms)
(A.10)

give a contribution of pseudoscalar coefficients to the Branching Ratios of

B̃R(τ → e{π0, η}) = 96π2
(
mπ0

mτ

)4 ( fπ
mu +md

)2
|Cη,π|2 (A.11)

where in the normalisation of eq. (2.1), the coefficients of the operators of eq. (A.10) are
Cπ = 1

2(CuuS,XR−CuuS,XL−CddS,XR+CddS,XL), and Cη = 1
2
√

3(CuuS,XR−CuuS,XL+CddS,XR−CddS,XL−
2CssS,XR + CssS,XL). QED loops can mix tensor operators into (pseudo)scalars, so this will
give some sensitivity to the u, d, s tensor operators.

Finally, decays to the vector ρ meson are normalised to BR(τ → ρν), assuming ρ→ ππ

(as in [63]; see [49] for a more sophisticated solution) and with the usual factor of 2 for the
normalisation of neutral and charged particles:

B̃R(τ → `ρ0) ≈ BR(τ → νρ)
BR(τ → `νν̄)

Γ(τ → `ρ0)
Γ(τ → νρ)

≈ 1.43
|(CuuV,XR + CuuV,XL)− (CddV,XR + CddV,XL)|2

8|Vud|2
(A.12)

In the second expression, the contribution of the dipole operator (analogous to the dipole
contribution to τ → eēe) is neglected, because the current experimental bounds on τ → eγ

and τ → eρ0 are comparable. QED loops mix vector operators of different quark flavour
via penguin diagrams, giving this decay some sensitivity to the coefficients at mW of vector
operators with a heavy quark current:

7.5× 10−4 & (CuuV,XR + CuuV,XL)− (CddV,XR + CddV,XL)

+ αe
3π (2CuuV,XL − 10CuuV,XR − (CddV,XR − 5CddV,XL)) ln mW

mτ

+ 2αe
3π (2CeeV,XL + CeeV,XR + 2CττV,XL + CττV,XR) ln mW

mτ
(A.13)

+ 2αe
3π (CµµV,XR + CµµV,XL + CssV,XR + CssV,XL − 2(CccV,XR + CccV,XL)) ln mW

mτ

+ 2αe
3π (CbbV,XR + CbbV,XL)
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coefficient µ→ eγ µ→ eēe µA→ eA

|CD,X | 1.12× 10−8 2.21× 10−7 2.35× 10−7

|CGG,X | 5.3× 10−7

|CeeV,XX | 1.10× 10−4 7.80× 10−7 1.86× 10−5

|CeeV,XY | 2.55× 10−4 9.31× 10−7 3.77× 10−5

|CeeS,XX | 1.73× 10−4 2.8× 10−6 (3.64× 10−3)

|CµµV,XX | 1.10× 10−4 5.64× 10−5 1.85× 10−5

|CµµV,XY | 2.56× 10−4 1.11× 10−4 3.77× 10−5

|CµµS,XX | 8.24× 10−7 (1.63× 10−5) (1.73× 10−5)

|CττV,XX | 3.84× 10−4 1.94× 10−4 3.72× 10−5

|CττV,XY | 4.45× 10−4 1.94× 10−4 3.72× 10−5

|CττS,XX | 5.33× 10−6 (1.05× 10−4) (1.12× 10−4)

|CττS,XY | 3.62× 10−5 (7.28× 10−4) (7.75× 10−4)

|CττT,XX | 1.07× 10−8 (2.11× 10−7) (2.25× 10−7)

Table 3. Current sensitivities of the processes in the first row to the coefficients, at mW , of
QCD×QED-invariant 2- and 4-lepton operators defined in section 2.1. X,Y ∈ {L,R}, X 6= Y .
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coefficient µ→ eγ µ→ eēe µA→ eA

|CddV,XX | 1.04× 10−3 2.03× 10−4 5.40× 10−8

|CddV,XY | 1.64× 10−3 2.01× 10−4 5.30× 10−8

|CddS,XX | 5.79× 10−3 (1.14× 10−1) 1.03× 10−8

|CddS,XY | 1.03× 10−8

|CddT,XX | 5.57× 10−6 (1.10× 10−4) 1.90× 10−7

|CuuV,XX | 3.59× 10−4 1.00× 10−4 6.03× 10−8

|CuuV,XY | 2.87× 10−4 1.02× 10−4 6.25× 10−8

|CuuS,XX | 3.09× 10−3 (6.71× 10−1) 1.03× 10−8

|CuuS,XY | 1.03× 10−8

|CuuT,XX | 5.95× 10−6 (1.17× 10−4) 9.65× 10−8

|CssV,XX | 1.01× 10−3 2.03× 10−4 3.73× 10−5

|CssV,XY | 1.64× 10−3 2.01× 10−4 3.73× 10−5

|CssS,XX | 2.92× 10−4 (5.77× 10−3) 2.13× 10−7

|CssS,XY | 1.41× 10−2 (2.78× 10−1) 2.13× 10−7

|CssT,XX | 2.82× 10−7 (5.56× 10−6) 2.33× 10−6

|CccV,XX | 3.59× 10−4 8.99× 10−5 1.68× 10−5

|CccV,XY | 2.87× 10−4 9.05× 10−5 1.67× 10−5

|CccS,XX | 5.23× 10−6 (1.03× 10−4) 1.83× 10−6

|CccS,XY | 2.37× 10−5 (4.68× 10−4) 1.80× 10−6

|CccT,XX | 1.01× 10−8 (1.99× 10−7) 2.13× 10−7

|CbbV,XX | 1.32× 10−3 2.56× 10−4 4.71× 10−5

|CbbV,XY | 2.05× 10−3 2.54× 10−4 4.71× 10−5

|CbbS,XX | 1.01× 10−5 (1.98× 10−4) 7.10× 10−6

|CbbS,XY | 4.04× 10−5 (7.98× 10−4) 6.92× 10−6

|CbbT,XX | 7.81× 10−9 (1.52× 10−7) 1.64× 10−7

Table 4. Current sensitivities of the processes in the first row to the coefficients, evaluated at mW ,
of QCD×QED-invariant 2-lepton-2quark operators defined in section 2.1. X,Y ∈ {L,R}, X 6= Y .
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coefficient µ→ eγ µ→ eēe µA→ eA

Ceµeγ , C
µe ∗
eγ 1.12× 10−8 2.21× 10−7 2.35× 10−7

CeµHE 1.18× 10−5 1.20× 10−6 1.42× 10−7

CeµHL1 1.57× 10−5 1.17× 10−6 1.61× 10−7

CeµHL3 1.57× 10−5 1.17× 10−6 1.61× 10−7

CeµEH 7.52× 10−7 1.48× 10−5 5.36× 10−5

Table 5. Current sensitivities of the processes in the first row to the coefficients of SMEFT
operators at mW , added to the Lagrangian as in eq. (A.1). Ceµeγ = cWC

eµ
EB − sWC

eµ
EW .

coefficient µ→ eγ µ→ eēe µA→ eA

ΣCeµeeEE ,ΣCeµeeLL 1.10× 10−4 7.87× 10−7 1.85× 10−5

CeeeµLE ,CeµeeLE 2.55× 10−4 9.31× 10−7 3.77× 10−5

ΣCeµµµEE ,ΣCeµµµLL 1.10× 10−4 5.67× 10−5 1.85× 10−5

CµµeµLE , CeµµµLE 2.55× 10−4 1.11× 10−4 3.77× 10−5

ΣCeµττEE ,ΣCeµττLL 3.84× 10−4 1.95× 10−4 3.72× 10−5

ΣCeττµLL 3.84× 10−4 1.95× 10−4 3.72× 10−5

CττeµLE , CeµττLE 4.40× 10−4 1.91× 10−4 3.75× 10−5

CeττµLE , CτµeτLE 1.80× 10−5 3.64× 10−4 3.88× 10−4

Table 6. Current sensitivities of the processes in the first row to the coefficients of SMEFT
operators at mW , added to the Lagrangian as in eq. (A.1).

∑
CζLL and

∑
CζRR are defined in

eq. (A.3).
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coefficient µ→ eγ µ→ eēe µA→ eA

CeµuuEU 3.59× 10−4 1.00× 10−4 6.03× 10−8

CeµuuLU 2.87× 10−4 1.02× 10−4 6.25× 10−8

CeµuuLEQU 3.09× 10−3 6.71× 10−1 1.03× 10−8

CeµuuT,LEQU 5.95× 10−6 1.17× 10−4 9.65× 10−8

CeµddLQ1 2.67× 10−4 1.98× 10−4 2.85× 10−8

CeµddLQ3 5.47× 10−4 6.71× 10−5 5.09× 10−7

CeµddEQ 2.44× 10−4 2.05× 10−4 2.87× 10−8

CeµddED 1.04× 10−3 2.03× 10−4 5.40× 10−8

CeµddLD 1.64× 10−3 2.01× 10−4 5.30× 10−8

CeµddLEDQ 1.01× 10−8

CeµccEU 3.59× 10−4 8.99× 10−5 1.68× 10−5

CeµccLU 2.87× 10−4 9.10× 10−5 1.67× 10−5

CeµccLEQU 5.23× 10−5 1.03× 10−4 1.83× 10−6

CeµccT,LEQU 1.01× 10−8 1.99× 10−7 2.09× 10−7

CeµssLQ1 2.67× 10−4 1.60× 10−4 3.02× 10−5

CeµssLQ3 5.47× 10−4 6.20× 10−5 1.15× 10−5

CeµssEQ 2.44× 10−4 1.64× 10−4 2.98× 10−5

CeµssED 1.04× 10−3 2.03× 10−4 3.73× 10−5

CeµssLD 1.64× 10−3 2.01× 10−4 3.73× 10−5

CeµssLEDQ 1.41× 10−2 2.78× 10−2 2.09× 10−7

CeµbbED , CeµbbLQ1 1.32× 10−3 2.56× 10−4 4.71× 10−5

CeµbbLQ3 1.32× 10−3 2.56× 10−4 4.71× 10−5

CeµbbLD , CeµbbEQ 2.07× 10−3 2.51× 10−4 4.72× 10−5

CeµbbLEDQ 4.04× 10−5 7.98× 10−4 6.92× 10−6

Table 7. Current sensitivities of µ → eγ, µ → eēe, and µA → eA to the coefficients of SMEFT
operators at mW .
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coefficient τ → eγ τ → eēe τ → eρ

|CD,X | 7.35× 10−6 6.36× 10−5 . . .

|CeeV,XX | 1.29× 10−1 2.83× 10−4 6.55× 10−2

|CeeV,XY | 3.00× 10−1 3.78× 10−4 1.31× 10−1

|CeeS,XX | 3.37 (1.06× 10−3)

|CµµV,XX | 2.59× 10−1 7.65× 10−2 1.31× 10−1

|CµµV,XY | 3.00× 10−1 7.49× 10−2 1.31× 10−1

|CµµS,XX | 9.76× 10−1 (8.46)

|CµµS,XY | 4.17× 10−1 (3.61)

|CµµT,XX | 2.03× 10−3 (1.76× 10−2)

|CττV,XX | 1.29× 10−1 3.82× 10−2 6.55× 10−2

|CττV,XY | 3.00× 10−1 7.49× 10−2 1.31× 10−1

|CττS,XX | 9.68× 10−4 (8.39× 10−3)

Table 8. Current sensitivities of the processes in the first row, to the coefficients Ceτ...Lor , evaluated
at mW , of τ ↔ e flavour-changing, QCD×QED-invariant 2- and 4-lepton operators, defined as in
section 2.1 with µ→ τ . X,Y ∈ {L,R}, X 6= Y .
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coefficient τ → eγ τ → eēe τ → eρ τ → eπ τ → eη

|CddV,XX | 7.03× 10−1 7.84× 10−2 7.61× 10−4 2.32× 10−3 4.44× 10−3

|CddV,XY | 1.10 7.79× 10−2 7.48× 10−4 2.28× 10−3 4.36× 10−3

|CddS,XX | 66.0 (572) 3.74× 10−4 6.96× 10−4

|CddS,XY | 3.74× 10−4 6.96× 10−4

|CddT,XX | 6.28× 10−2 (5.44× 10−1) 6.92× 10−3 1.29× 10−2

|CuuV,XX | 2.42× 10−1 3.88× 10−2 7.46× 10−4 2.26× 10−3 4.33× 10−3

|CuuV,XY | 1.94× 10−1 3.93× 10−2 7.72× 10−4 2.34× 10−3 4.48× 10−3

|CuuS,XX | 35.3 (305) 3.73× 10−4 6.93× 10−4

|CuuS,XY | 3.73× 10−4 6.93× 10−4

|CuuT,XX | 6.71× 10−2 (5.81× 10−1) 3.46× 10−3 6.44× 10−3

|CssV,XX | 7.03× 10−1 7.84× 10−2 1.31× 10−1 2.22× 10−3

|CssV,XY | 1.11 7.79× 10−2 1.31× 10−1 2.18× 10−3

|CssS,XX | 3.23 (28.0) 3.48× 10−4

|CssS,XY | 15.9 (138) 3.48× 10−4

|CssT,XX | 3.08× 10−3 (2.66× 10−2) 6.44× 10−3

|CccV,XX | 2.42× 10−1 3.46× 10−2 5.84× 10−2

|CccV,XY | 1.94× 10−1 3.50× 10−2 5.84× 10−2

|CccS,XX | 6.11× 10−2 (5.29× 10−1)

|CccS,XY | 2.68× 10−1 (2.32)

|CccT,XX | 1.06× 10−4 (1.01× 10−3)

|CbbV,XX | 8.80× 10−1 9.80× 10−2 1.64× 10−1

|CbbV,XY | 1.38 9.73× 10−2 1.64× 10−1

|CbbS,XX | (1.16× 10−1) (1.00)

|CbbS,XY | 4.57× 10−1 3.96

|CbbT,XX | 8.82× 10−5 (7.65)

Table 9. Similar to table 8, but for 2-lepton-2-quark operators.
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coefficient τ → eγ τ → eρ τ → eπ τ → eη

CeτddLQ1 1.80× 10−1 3.74× 10−2 8.93× 10−2 2.19× 10−3

CeτddLQ3 3.69× 10−1 3.77× 10−4 1.14× 10−3 1.71× 10−1

CeτddLD 1.10 7.48× 10−4 2.28× 10−3 4.36× 10−3

CeτddEQ 1.65× 10−1 2.38× 10−2 8.93× 10−2 2.21× 10−3

CeτddED 7.04× 10−1 7.61× 10−4 2.32× 10−3 4.44× 10−3

CeτddLEDQ 3.74× 10−4 6.96× 10−4

CeτuuEU 2.42× 10−1 7.46× 10−4 2.26× 10−3 4.33× 10−3

CeτuuLU 1.94× 10−1 7.72× 10−4 2.34× 10−3 4.48× 10−3

CeτuuLEQU 35.3 3.73× 10−4 6.93× 10−4

CeτuuT,LEQU 6.71× 10−2 3.46× 10−3 6.44× 10−3

CeτssLQ1 1.80× 10−1 1.05× 10−1 2.22× 10−3

CeτssLQ3 3.69× 10−1 4.04× 10−2 2.22× 10−3

CeτssLD 1.06 1.31× 10−1 2.18× 10−3

CeτssEQ 1.65× 10−1 1.05× 10−1 2.18× 10−3

CeτssED 7.04× 10−1 1.31× 10−1 2.22× 10−3

CeτssLEDQ 16 3.48× 10−4

CeτccEU 2.42× 10−1 5.84× 10−2

CeτccLU 1.94× 10−1 5.84× 10−2

CeτccLEQU 6.11× 10−2

CeτccT,LEQU 1.16× 10−4

CeτbbLQ1 8.79× 10−1 1.64× 10−1

CeτbbLQ3 8.79× 10−1 1.32× 10−3

CeτbbLD 1.38 1.64× 10−1

CeτbbEQ 8.79× 10−1 1.64× 10−1

CeτbbED 8.79× 10−1 1.64× 10−1

CeτbbLEDQ 4.57× 10−1

Table 10. Current sensitivities of selected hadronic τ decays to the coefficients evaluated at mW

of 2`2q SMEFT operators.
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