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1 Introduction

Entanglement entropy is a non-local quantity that permits us to study non-perturbative
phenomena of quantum field theories. Despite of its simple definition, it turns out to be
very difficult to compute in interacting field theories. The situation is also conceptually
challenging in gauge field theories due to the lack of local tensor product decomposition of
the physical Hilbert space of gauge invariant states HphysHH→HA ⊗ HB [1]. In holography,
the Ryu-Takayanagi (RT) formula [2] is conjectured to provide us with the entanglement
entropy for a given field theory at strong coupling and in the limit of large-N . The RT
formula states that the entanglement entropy associated with a region A is given by the
minimal area of a co-dimension two bulk surface exploring the dual 10-dimensional classical
background geometry, anchored onto ∂A at the boundary of the bulk spacetime.

Our main interest in this paper is the question of whether the holographic entangle-
ment entropy as given by the RT prescription can reveal if a gauge field theory is confining.
This question was raised by several works which found evidence for phase transitions in
entanglement entropies as functions of relevant length scales in different confining back-
grounds at large-N [3–6]. The phase transitions additionally share some resemblance with
the deconfinement phase transitions happening in the same models at finite temperature.
This pronounces the expectation that entanglement entropy probes confinement. Inter-
estingly, a number of studies have scrutinized the AdS/CFT results by a comparison to
entanglement entropies calculated from 4d pure glue non-Abelian Yang-Mills theories on a
lattice with a small number of colors [7–10].
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In the paper at hand we wish to challenge this paradigm. To do so, we will make
clear what we mean by confining behavior. We will say that a theory is confining if it
exhibits linearly growing potential between quarks and anti-quarks at large separation. As
is well-known, there are also other notions of confinement which do not need to agree with
this. For example, one could insist on the spectrum only containing color singlets [11]. It
is important to keep in mind that in the presence of flavor degrees of freedom there is no
local order parameter for confinement since these phases can be continuously connected
with Coulomb and Higgs phases (see, however, recent work [12]). At large-N , however,
one could consider the pressure p to play the role of the order parameter for deconfine-
ment [13, 14]: p ∼ O(1) for confining phase while p ∼ O(N2) in the deconfining phase in
the theories that we consider in this paper. Indeed, the abrupt “vanishing” of some quan-
tity counting the number of degrees of freedom has been widely considered a hallmark of
confinement in holographic literature. We will revisit the question whether the vanishing
of the (regularized) holographic entanglement entropy should be considered as an imprint
of the underlying deconfinement-confinement phase transition.

Because the quark-antiquark potential is given by an appropriately chosen Wilson
loop, we are essentially going to discuss how both holographic quantities, namely the
entanglement entropy and the Wilson loop, should be viewed on a different footing. Let us
first recall the more familiar case at finite temperature. From the holographic computation
we learn that whenever there is a horizon, the RT surfaces have maximal extensions from
the boundary towards the interior of bulk spacetime. On the other hand, at sufficiently high
temperature, hanging strings associated with various Wilson loops do not probe the deep
interior of the bulk spacetime, since they tend to break apart reflecting thermal creation of
quark-antiquark pairs in the gauge theory side. The RT surfaces, on the other hand, cannot
similarly break apart due to homology constraint and they keep creeping towards the black
hole horizon at large distances, eventually matching with the Bekenstein-Hawking entropy
density per unit area. This is on par with the common lore that boundary measurements
are insensitive to acausal events beyond the entanglement wedge [15].1 Then, holographic
entanglement entropy seems to be the ideal tool for bulk reconstruction from boundary
measurements of lattice simulations of strongly coupled gauge theories [18], since the RT
surfaces have maximal extensions from the boundary towards the interior of bulk spacetime.

Keeping in mind that the geometric realizations of the Wilson loops and entanglement
entropies behave rather differently at large temperature we wish to examine what can be
learned at the opposite limit of small temperature. We assume that the temperature will be
much smaller than any other energy scale of the system and will specifically be interested
in gauge field theories which are not scale free. We will probe these gauge theories with
Wilson loops and entanglement measures and ask if the linear quark-antiquark potential
aka confinement is captured uniquely by the entanglement entropy and, more importantly,
whether the analysis of the entanglement entropy dictates if the underlying gauge theory
is confining.

1Recent attempts at probing beyond the entanglement wedge include explicit construction of judicious
Wilson loop configurations [16] and entanglement islands in the context of black hole evaporation in JT
gravity (see [17] for a nice review).
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We will consider a one-parameter family of three-dimensional gauge theories via their
gravity duals. Even though these gauge theories do not explicitly follow from D-brane
constructions in Type IIA language, we understand their most important features relevant
to the present study. The interactions of the theories are Yang-Mills like, associated to a
two-sites quiver, similarly to the Klebanov-Witten (KW) theory [19]. Both gauge groups
are in addition supplemented with Chern-Simons (CS) terms. The parameter distinguishing
the members of this family, denoted by b0 ∈ [0, 1], is related to the inverse squared couplings
of each of the two gauge groups. The gravity duals preserve N = 1 supersymmetry and can
be described both in Type IIA and M-theory frameworks, though only the latter enjoys a
regular prescription. Based on earlier work by [20, 21], these gravity duals were recently
studied in [22].

The family of solutions as parametrized by b0 allows us to smoothly deform the IR
properties. As a result, and depicted in figure 1, the single SYM-CS theory at the UV
follows different trajectories along the renormalization group (RG) down to a phase with
a mass gap (except for b0 = 0) with the possibility of also being confining at the limiting
case b0 = 1. The qualitatively different behaviors for the quark-antiquark potentials for
0 < b0 < 1 versus b0 = 1 is later shown in figure 2, with only the latter case showing
linear dependence on the separation of the pair. This dissimilarity was attributed in [22]
to the fact that when b0 = 1 the CS interactions disappear. When b0 6= 1, however, CS
interactions are turned on and it is a natural expectation [23] that they give a mass to the
gauge bosons, in which case the color charge is consequently screened [24].

Previous works have emphasized that the phase transition of the entanglement entropy
at large-N signals the deconfinement transition of the underlying gauge theory and can be
used as a diagnostic for gauge theories with varying degree of resemblance to QCD, see,
e.g., [6, 25–28]. However, sometimes the mere presence of an energy scale leads to a phase
transition of the entanglement entropy [29, 30] in phases with no link to confinement.
One of the main results of this work is to demonstrate by explicit examples that various
entanglement entropy measures, while being sensitive to the presence of a mass gap, do not
distinguish confining from non-confining theories contrary to the quark-antiquark potential.
This means that the mass gap fixes the maximum typical distance between entangled states,
which a priori is independent from the interactions between infinitely massive and very
distant quarks. None of the entanglement measures we investigate is able to distinguish
between the confining theory from those that are only gapped. Similarly, we can assert
that entanglement measures are not sensitive to the presence of CS interactions. On the
contrary, we show that the near-proximity of the conformal fixed point at some intermediate
energy scale is clearly captured, in addition to by the entanglement entropy itself, by the
mutual information and the F -functions counting the numbers of degrees of freedom in
(2 + 1)-dimensional field theories.

The rest of the paper is organized as follows. First, in section 2 we review the properties
of the gravitational solutions [22] and outline salient details of their gauge theory duals.
In section 3 we apply standard holographic techniques to compute entanglement entropies
for strips and in disks. Having computed these quantities for several representatives of
the family, we show how the two limiting b0 = 0, 1 behaviors are attained in section 4.
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We finally discuss the results and conclude in section 5. Many technicalities are relegated
to appendices.

2 Background solution

Our starting point is the one-parameter family of supersymmetric gravity solutions con-
structed in [22], whose salient features we review in this section. Along the way, we will
also discuss their gauge theory duals. We choose these background geometries as our arena
since they provide us with explicit realizations of gravity duals of theories possessing phases
that are gapped but not necessarily confining. We believe that our message below can be
adapted more generally, however.

The solutions of [22] are induced by a stack of N coincident M2-branes with a trans-
verse space which is one of the eight-dimensional manifolds belonging to the B8 class,
found originally in [20, 21]. They have Spin(7) holonomy so that they preserve N = 1
supersymmetry and form a one-parameter family of solutions, characterized by a scale
arising from the fact that there is a four-cycle whose size remains finite while the geometry
smoothly caps off. The size of this four-cycle maps to a non-vanishing mass gap in the
dual field theory.

In “cigar-like” geometries such as here, the natural expectation is that the dual field
theory is in a confining phase in the sense of that an external quark-antiquark pair feels a
linear attractive potential at large separation [31]. This expectation stems from the fact
that in the holographic computation of the potential between the quark pair [32, 33], in
which one considers a string attached to them at the boundary of spacetime, the potential is
essentially given by the length of the string: the geometry ending smoothly causes the string
to find it advantageous to dive steeply and stretch in the spatial direction only at the bottom
of the geometry, once the quark and the antiquark are sufficiently separated. A crucial
ingredient in this way of reasoning is that a string cannot break into two disconnected
pieces due to charge conservation. This is because the string endpoints carry charges and
therefore they need to end on branes. The string cannot end on thin air. This holographic
description hence provides us with a nice geometric picture of the notion that a quark or
an antiquark cannot exist in isolation in a confining phase.

The gauge theories studied in [22] provide a counterexample to such an expectation,
as we shall explain next. The key reason is that the regular low-energy supergravity
description is available in eleven-dimensional M-theory but not in ten-dimensional Type
IIA theory. The technical reason behind this is that in eleven dimensions isolated quarks
are described by membranes wrapping the M-theory circle, that would from string picture
correspond to endpoints carrying charges. Membranes have boundaries. If the M-theory
circle caps off smoothly at the end-of-space, the membranes wrapping this cycle can loose
one of their boundaries in a smooth manner. In such a situation, issues that would otherwise
be related to charge conservation are avoided and “separated” pairs of quarks are allowed.
This phenomenon leads to a theory with a mass gap but with no obvious signal of confining
behavior. From the field theory point of view, what seems to be allowing the quarks to be
in isolation is the presence of CS interactions. It is well known that in three dimensions CS
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OP | CFT

Confinement | R3 × S1 × S4
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8
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B∞8
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8

Figure 1. Pictorial representation of the B8 family of solutions. The asymptotic UV regime
is given by the 3D super Yang-Mills theory with Chern-Simons interactions for the gauge fields
(SYM-CSM). As we come down in energy (descending in the plot) the RG flow generically drives
the theory to an IR regime with a mass gap. Only for extreme value of b0 = 1 do we flow to a
confining theory, as depicted on the bottom-right corner of the plot. For b0 = 0 the IR is governed
by an Ooguri-Park (OP) conformal fixed point. The hue or the warmth of the curves will be roughly
in one-to-one correspondence with the values of b0 on the horizontal axis; in the figures to follow
we will try to maintain this mapping.

interactions induce a mass for the gauge bosons. This causes the screening of color charges
and allows the fluxtube between quarks to break. Let us next review the construction of the
geometry and then explain how these phenomena are geometrically realized in these models.

Bearing in mind that the regular description is only provided within 11d supergravity,
we are nevertheless going to work in type IIA supergravity since the UV of these solutions
is better understood in ten dimensions. The string-frame metric takes the form:

ds2
st = h−

1
2 dx2

1,2 + h
1
2

(
dr2 + e2fdΩ2

4 + e2g
[(
E1
)2

+
(
E2
)2
])

, (2.1)

together with a non-trivial dilaton eΦ = h
1
4 eΛ. In (2.1), r is the holographic radial coor-

dinate, E1 and E2 describe a two-sphere S2 fibration over the four-sphere S4. This four
cycle is the key player in our analysis and corresponds to the one that does not pinch off
in the IR of the M-theory realization, the volume form of which is dΩ2

4 (see appendix A
for more details). In this Ansatz, the UV of the entire family of geometries is nothing but
that induced by the stack of N coincident D2-branes in the decoupling limit:

e2f = 2 e2g ∼ r2 , eΦ ∼ h
1
4 , h ∼ N r−5 . (2.2)

Notice that since ef 6= eg, the internal manifold is described by the squashed Fubini-
Study metric of CP3. Notice also that the squashing is radially dependent with asymptotic
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Figure 2. Quark-antiquark potential for a non-confining theory with a mass gap B0
8 (Left) and

for the confining theory Bconf
8 (Right). Solid curves stand for the value of the potential for the

dominant configuration whereas dashed curves depict those of unstable configurations. The string
breaks in the B0

8 theory when the curve crosses zero, signaling the splitting of a meson into two
quarks in the gauge theory. As explained in the main text, splitting cannot happen in the confining
case Bconf

8 , where consequently the connected configuration is always the dominant one, leading
to the linear growth of the potential for large values of the separation between the quark and the
antiquark. Plot adapted from [22] and in the units used therein.

boundary value e2f−2g = 2 for all the solutions, corresponding to the nearly Kähler point
of CP3. As proposed in [34], the gauge theory dual of it consists of a two-sites Yang-Mills
quiver with U(N)×U(N) gauge group and bifundamental matter, reminiscent to the KW
quiver in four dimensions [19]. In the system at hand, the non-trivial fibration of the circle
on which we reduce gives us a non-vanishing internal two-form, generating CS interactions
in the gauge theory dual. On top of that, additional internal three- and four-form fluxes in
our setup signal the presence of fractional D2-branes, which we expect to produce a shift
M in the rank of one of the gauge groups [35]. Consequently, these gravity solutions are
describing RG flows in a

U(N)k ×U(N +M)−k (2.3)

quiver gauge theory with CS interactions at level k while preserving N = 1 supersymmetry.
Finally, the one-parameter family of solutions is labeled by a parameter denoted by

b0. This is the asymptotic UV value of the NS two-form flux on a two-cycle within CP3.
It has a direct interpretation in the gauge theory side, controlling the difference between
the microscopic Yang-Mills couplings of each of the two factors in the gauge group

b0 ∼
1
g2

1
− 1
g2

2
. (2.4)

Following the conventions in [22], this quantity takes values in b0 ∈ [0, 1] and allows us to
pictorially represent the family of solutions using b0 as the horizontal axes, as in figure 1.

For a generic value of this parameter, the geometries end smoothly at a certain value
rs of the radial coordinate. This leads to gapped behavior in the corresponding gauge
theories due to inherent mass scale in the system. As depicted in figure 2 (Left), for a
generic b0 the quark-antiquark potential does not show linear growth for large separation,
watering down signals for confinement. In fact, from the IR expansion of the metric (A.24)
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it is easy to check that the string tension vanishes at rs, despite the absence of a horizon
in the geometry. This is the technical reason for the quark pair to split apart.

One could argue though that the limiting values 0 or 1 for b0 are special and should be
considered on a different footing, since they lead to qualitatively different IR physics. But
this is precisely at the heart of the matter. When b0 = 1 we do actually find a confining
theory in the sense of a linear growth of the quark-antiquark potential, as depicted in
figure 2 (Right). This theory was originally found in [36]. The geometric understanding
stems from the fact that in this case the S1 is trivially fibered over the rest of the geometry
and consequently does not contract at the IR. This can be attributed to the vanishing of
the CS level in [22], in accordance with the arguments of [37]. This solution is referred to
as Bconf

8 . This also leads to the fact that CS interactions are absent, which means that in
this case the color charge is not screened from the field theory perspective. It should be
noted that we do not claim that this phase is confining in the strict sense. In addition to
mapping out the full spectrum, one should also study ’t Hooft loops and other higher-rank
Wilson loops. These investigations are beyond the scope of this paper, however.

On the other hand, when the difference between the couplings vanishes for the opposite
limiting value b0 = 0, the mass gap is lost and the theory flows to an IR fixed point
described by the Ooguri-Park CFT [38], which is a deformation of the ABJM theory [39]
preserving N = 1 supersymmetry. In this case, the flow is denoted as B∞8 . Interestingly,
we can pick arbitrarily small but non-vanishing values of b0 in such a way that the RG
flow will pass arbitrarily close to the fixed point before deviating towards the gapped IR.
This leads to quasi-conformal dynamics in some range of energies, and we shall investigate
in section 4 whether any imprint of walking behavior is captured by the analysis of the
entanglement measures.

3 Entanglement entropy

In order to address the question of whether the entanglement entropy is sensitive to the
fact that a theory is confining, we are going to consider different entangling surfaces in
the family of solutions we have been discussing in the previous section. Although in the
end we want to consider entanglement entropy of strips and disks, we plan to explain first
the general setup and specialize to those cases afterwards. Following [2], the entanglement
entropy of a QFT region A bounded by ∂A is given by the area of a minimal surface ΣA

anchored on ∂A at the spacetime boundary. This minimal surface ΣA is co-dimension
two, i.e., an eight-dimensional submanifold embedded in our ten-dimensional type IIA
geometry (2.1), wrapping completely the internal part of the geometry. For simplicity, we
will refer to this embedding as the Ryu-Takayanagi (RT) surface associated to A. The
holographic entanglement entropy in string frame reads

SA = 1
4G10

∫
ΣA

d8σ e−2Φ√det g , (3.1)

where the σ’s are coordinates on ΣA, the constant G10 = (16π)−1(2π)7gs`
8
s is the ten-

dimensional Newton’s constant, the function Φ is the dilaton, and g is the induced metric
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on ΣA in string frame:
gαβ = ∂xµ

∂σα
∂xν

∂σβ
gµν . (3.2)

Since we require that ΣA wraps the whole internal space, integration over six of the eight
σ’s coordinates gives a factor of V6 = 32π3/3 in (3.1), which is the volume of CP3. The
embedding of the surface is determined by the equations of motion for the scalar fields that
we will choose to present as follows

t = constant , x1 = x1(σ1, σ2) , x2 = x2(σ1, σ2) , r = r(σ1, σ2) . (3.3)

We then vary (3.1) with respect to the fields and obtain the Euler-Lagrange equations

∂L
∂φi
− ∂µ

(
∂L

∂(∂µφi)

)
= 0 , for φi ∈ {x1, x2, r} and µ = σ1, σ2 , (3.4)

which comprise three second order partial differential equations. These equations are the
equations of motions that a surface has to fulfil in order to be extremal. We will stick to the
entanglement entropy between strips and disks because in that case the problem simplifies
and we just have to solve second order ordinary differential equations. Our expectation
is that these two cases capture the main features one might encounter considering other
shapes for A.

This system is quite similar to that of [40], which we followed to perform our com-
putations. We relegate the most technical details to the appendices and refer there for
further details.

3.1 Entanglement entropy of the strip

Let us now specialize our setup and pick a particular boundary region A. Let A be a strip
of width l. For this choice, we will find two possible embeddings that extremize the area of
the RT surface, depicted in figure 3. First, there is the configuration denoted by ∪, which
is specified by the choice

t = constant, x1 = σ1 ∈ [−l/2, l/2], x2 = σ2 ∈ R, r = r(σ1) ∈ [r∗,∞) , (3.5)

where r∗ (> rs) is the value of the radial coordinate at which the RT surface has a turning
point. Recall that rs is the value of the radial coordinate at the end-of-space. When
substituting this Ansatz in the equations of motion (3.4), we are left with a unique second
order differential equation. Focusing on the induced metric obtained by substituting (3.5)
into (2.1), and taking the squared root of its determinant as specified by (3.1), we obtain
an expression for the entanglement entropy in this case

S∪(l) = V6Ly
4G10

∫ l
2

− l
2

dσ1 Ξ
1
2
(
1 + h ṙ2

) 1
2 , (3.6)

where the dot stands for differentiation with respect to σ1, Ly =
∫
R dσ2, and

Ξ = h2e8f+4g−4Φ . (3.7)
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t configuration∪ configuration

Figure 3. The two possible and competing configurations of the RT surface we have to consider
when computing entanglement entropies of strips: for small widths of the strip, a “connected”
configuration ∪, which does not reach the bottom of the geometry (left), competes with the “dis-
connected” configuration t, which reaches the end-of-space (right).

In (3.6) there is a conserved quantity that allows us to solve the remaining second order
equation and will help us to perform the integrals involved in the computation of the
entanglement entropy. We relegate these details to appendix B.

There is also a second possible configuration we denoted by t in figure 3. This extremal
surface consists of three pieces: two of them extend from the UV all the way down to the
IR, whereas the third one lays at the bottom of the geometry connecting the two. The
embeddings for the two former ones are specified by demanding

t = constant , x1 = ± l2 = constant , x2 = σ2 ∈ R , r = σ1 ∈ [rs,∞) , (3.8)

which automatically fulfill the equations of motion (3.4). As we pointed out, these embed-
dings are describing two submanifolds that hang from the UV, where they are attached to
one of the edges of the strip; towards the IR, where they end at the regular bottom of the
geometry at r = rs. Note that on their own they do not yet constitute a valid RT surface
for the strip, since they are not homologous to the boundary region A unless they are
connected at the bottom with the third piece mentioned above. This last piece is located
at the bottom of the geometry and specified in the following way:

t = constant , x1 = σ1 ∈ [−l/2, l/2] , x2 = σ2 ∈ R , r = rs = constant . (3.9)

It also fulfils equations (3.4). Additionally, it has zero area due to the fact that it is wrap-
ping the four-cycle which contracts smoothly at the end-of-space. Thus, the action (3.1)
in this second RT surface t consequently leads to the expression

St = 2 V6Ly
4G10

∫ ∞
rs

dr Ξ
1
2h

1
2 (3.10)

for the entanglement entropy. Notice that (3.10) does not explicitly depend on l. The
dependence on l is only through the boundary conditions (3.8) by anchoring the surface
to the boundary region A. The configuration of a single dipping surface of the form (3.8),
connected to a semi-infinite bottom embedding, would lead to the entanglement entropy
of spacetime divided in half. It is immediate that the corresponding entanglement entropy
cannot depend on the position of the domain wall; similar argument applies to (3.10).
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Figure 4. Entanglement entropy of a single strip as a function of the width of the strip in the
gapped non-confining theory B0

8 (Left) and in the confining one Bconf
8 (Right). We plot the rescaled

quantity (B.6) defined in appendix B as a function of the strip width normalized to the value above
which the “disconnected” configuration t becomes the dominant one.

Notice that for a given strip of width l we have two candidate RT surfaces (although
we will see that the configuration ∪ is only present below some critical value of l), so we
need to infer which one is the minimal one. The correct choice can be expressed as:

Sstrip(l) = min{S∪(l), St} . (3.11)

Notice that both (3.6) and (3.10) are UV divergent. However, instead of regulating the
entropy functionals for each case, which comes with its own subtleties, we are content with
comparing the on-shell actions. To be more precise, we will consider the following object

∆S(l) = S∪(l)− St . (3.12)

Then, while (3.6) and (3.10) are UV divergent quantities, since their divergence structure
is the same due to homogeneity, (3.12) is a finite quantity. Moreover, there will be values
for the width of the strip at which ∆S(l) will flip sign, signalling a critical value above
which the “disconnected” configuration t becomes preferred. In fact, we can see that
happening in figure 4, where we show the value of a dimensionless version of (3.12) defined
in appendix B as a function of the width of the strip. Above a certain critical value of the
width of the strip l = lc the disconnected configuration becomes the dominant one. On top
of that, ∆S(l) has a turning point causing the disconnected configuration to be the only
existing one for large enough widths l.

Once the entanglement entropy of a single strip as a function of its width is known,
it is straightforward to compute an entropic c-function that is conjectured to measure
the number of degrees of freedom at scale l [41]. Generalizations to higher dimensions,
within holography, include the original (3 + 1)-dimensional proposal of [4] as well as those
conjectured in arbitrary dimensions [42–44]. Our field theory is (2 + 1)-dimensional, in
which case our function is linked with the F-theorem and we compute an object that we
denote by F:

Fstrip(l) = l2

Ly

∂Sstrip
∂l

= l2

Ly

∂∆S
∂l

, (3.13)
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Figure 5. Function F(l) for a single strip as a function of strip width in the gapped non-confining
theory B0

8 (Left) and the confining one Bconf
8 (Right). Both quantities are normalized to their

value at the point where the “disconnected” configuration t becomes dominant, above which it is
strictly zero.
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Figure 6. Phase diagram of mutual information of entanglement entropy of strips in the gapped
non-confining theory B0

8 (Left) and the confining one Bconf
8 (Right). Solid black curves consist

of points where mutual information (3.16) vanish and a phase transition takes place. Separation
between strips s is shown in the vertical axes and their width l is shown in the horizontal axes,
both quantities normalized to the value of the width lc at which the “disconnected” configuration
t becomes dominant in each case.
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where in the last equality we took into account (3.12) and the fact that St does not
explicitly depend on l. We plot this quantity in figure 5. The behavior of this quantity is
an immediate consequence of the behavior of ∆S: it decreases continuously until the point
where the connected configuration is disfavored, where it suddenly jumps to zero. For
values of the widths bigger than lc, Fstrip(l) is identically zero. In this case the RT surface
is probing IR scales and is not sensible to massive degrees of freedom which are gapped.

Let us pause to make a technical comment. Taking numerical derivatives in (3.13)
can be demanding. One can completely circumvent this procedure by using the chain rule
explained in [18] to find that2

∂∆S
∂l

= Ξ
1
2
∗ . (3.14)

From this expression it is manifest that the computation of Fstrip only involves finite quanti-
ties and no UV regularization is invoked. We have explicitly checked that results following
from (3.14) and (3.13) agree to great accuracy.

Another interesting quantity to compute is the mutual information between two en-
tangling strips A and B, given by

I(A,B) = SA + SB − SA∪B . (3.15)

The mutual information characterises the amount of information shared by the two do-
mains [45]. If we consider mutual information between two strips of the same width l

which are separated by a distance s, the expression (3.15) can be written as

I(A, Ã) = 2∆S(l)−∆S(2l + s)−∆S(s) . (3.16)

It is possible then to draw a phase diagram of the dominant phases, the phase boundaries
given by the locii where the mutual information vanishes. This is shown in figure 6, where it
can be seen that four different regions arise, depending on which is the dominant configura-
tion in each case. The result is analogous to those of [46, 47] discussing cigar-like geometries.
Interestingly, similar four-zone phase diagram is present in anisotropic non-confining ge-
ometries [30, 48], pronouncing the fact that it is the presence of internal mass scale behind
the entanglement entropy phase transitions and not necessarily the confinement.

3.2 Entanglement entropy of the disk

Similarly, we can study the case in which the entangling region is a disk of radius R to
inspect which lessons from the preceding subsection are intact. In the case of a disk,
we perform a change of coordinates to polar coordinates in the gauge theory directions,
namely x1 = ρ cosα, x2 = ρ sinα. This choice will reduce our system of three second order
differential equations obtained from (3.4) to a single second order differential equation.
Taking that into account, the embedding of the RT surface in our background solutions is
going to be determined by the choice

t = constant , ρ = σ1 = [0, R] , α = σ2 ∈ [0, 2π] , r = r(σ1) ∈ [r∗,∞) , (3.17)
2Note the usage of the rescaled dimensionless quantities in favor of ∆S, l and Ξ as defined in appendix B

and C.
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(c)(b)(a)

Figure 7. Three types of embeddings found when solving the equation of motion found when
computing entanglement entropy on disks. When the radius of the disk is sufficiently small, the
embedding does not reach the IR part of the geometry (a). For large values of the radius of the disk,
the embedding reaches the end-of-space (b). Additionally, when considering mutual information
between disks, embeddings like (c) should be taken into account.

and such that
lim
ρ→R

r(ρ) =∞ , (3.18)

which essentially tells us that the embedding is attached to the circumference of the cor-
responding disk. Satisfying these conditions, there are two distinct types of embeddings,
depicted in figure 7 (a) and (b). One possibility, happening when the radius of the disk
is sufficiently small, is that the RT surface does not reach the bottom of the geometry,
leading to the condition

r(0) = r∗ , ṙ(0) = 0 . (3.19)

This is what happens in figure 7(a). Another option is that the embedding does enter all
the way down to the IR part of the geometry, in which case the condition is that

lim
ρ→ρ∗

r(ρ) = rs . (3.20)

Recall rs is the value of the radial coordinate r at the end-of-space. In this case, similarly
to the strip configuration, as represented in figure 7(b), we need an extra piece of surface
laying at the bottom of the geometry in order to complete the RT surface. We already
argued above that this piece, specified by (3.9), fulfils the equations of motion.

When substituting (3.17) into (3.1) we get

Sdisk = V6
4G10

∫ 2π

0
dσ2

∫ R

0
dρ (1 + h ṙ2)

1
2 ρ Ξ

1
2 (3.21)

and the first integral immediately gives us a factor of 2π. The (3.21) is UV divergent and
we will need to regularize it using counterterms, as shown in appendix C. Having done so,
we will refer to the renormalized quantity as Sreg

disk. An analogous quantity to (3.13) can be
defined for the disk to measure the change in the degrees of freedom [43]

Fdisk(R) = R · dSreg
disk

dR − Sreg
disk . (3.22)

In figure 8 we plot a rescaled version of this quantity, again for the two theories B0
8 and

Bconf
8 . We cannot rule out the possibility that Fdisk is discontinuous: from our numerical
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Figure 8. Measure of the flow of the degrees of freedom in the gapped non-confining theory B0
8

(Left) and in the confining one Bconf
8 (Right). Notice that we plot rescaled quantities as explained

in appendix C, as a function of the radius of the disk normalized to the smallest radius for which
the RT surface reaches the end-of-space.

computations it seems there is a tiny jump when the transition between the two configu-
rations happens. This could in principle happen when the embedding starts reaching the
IR bottom of the geometry, where the altered boundary conditions can lead to a discon-
tinuity in the derivative of the entropy with respect to the radius. A discontinuity would,
however, be in conflict with statements in [29], where this analysis was done in a differ-
ent albeit similar system to ours and it was claimed that this function has a second-order
phase transition. Numerics are quite involved when the transition occurs, so it is difficult
for us to distinguish small discontinuities from numerical errors. It would be interesting to
generalize the chain rule argument of [30] that was used in the case of strip configurations
to bypass numerical artifacts.

Apart from the embeddings we just mentioned, there is another profile for the embed-
ding that satisfies the equation of motion and is important to be taken into account. We
depict this in figure 7(c). It naturally emerges when one imposes the boundary conditions

r(ρ∗) = r∗ , ṙ(ρ∗) = 0 , (3.23)

with r∗ 6= rs and ρ∗ 6= 0. Although the picture is self-explanatory, the way in which the
equation of motion with the boundary conditions (3.23) is solved is slightly involved and
hence explained in detail in appendix C. The relevant outcome is that this embedding is
attached to two disks at the boundary, thus allowing us to compute mutual information as
we did in (3.16). We can therefore map out the phase diagram in terms of the two radii
(R1, R2) where the mutual information (3.15) associated with disk configurations vanishes
and showing the regions where each configuration is dominant. This phase diagram is
plotted in figure 9. We note that the result is on par with the work in [49], where a similar
study for concentric circles was carried out in the gapped solution from [50].
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Figure 9. Phase diagram stemming from the analysis of mutual information of entanglement
entropy of disks in the gapped non-confining theory B0

8 (Left) and in the confining one Bconf
8 (Right).

On the axes we show the radius (R1, R2) of the corresponding disks normalized to the value Rc of
the minimum radius for which the RT surface reaches the end-of-space.

4 Limiting cases

Having discussed the generic features and compared the confining and the non-confining
theories, we now narrow down the scope and discuss specific cases close to the limiting
values for the parameter b0. As described in section 2, these limiting values of b0 are
interesting because they lead to radically different IR dynamics. In this section we want
to study these different limits from the point of view of information probes and illustrate
their power in revealing interesting physics.

4.1 Quasi-confining regime

Let us start with the case b0 = 1, which corresponds to the confining theory Bconf
8 . If we

aim to understand this solution as a limit of the B8 family of theories, the charge Qk —
related to the CS level by (A.13) — must be rescaled. This is needed in order to obtain
vanishing Chern-Simons level [22, 51]. After performing this rescaling, in the limit b0 → 1,
all quantities will approach the values that can be obtained directly in the case Bconf

8 . This
fact is illustrated in figure 10 (Top), where we find that the entanglement entropy of the
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Figure 10. (Bottom) Entanglement entropy of a single strip (multiplied by width l) as we dial the
parameter b0 to zero. In all cases for non-vanishing b0 we find that this quantity vanishes, contrary
to the case b0 = 0 where we find precisely the CFT result. Notice, that closer the RG flow passes
the OP fixed point, the wider the entanglement plateau, before the entanglement entropy plunges.
(Top) Entanglement entropy of a strip as we increase b0 and hence creeping towards the confining
theory. Note that for the penultimate value for b0, the curve is overlapping with that of Bconf

8 .

strip smoothly approaches the one for the confining case as b0 is gradually raised towards
unity. We also show the same expected behavior for the number of degrees of freedom, i.e.,
for FD function in figure 11 (Left) for disk configurations.

4.2 Quasi-conformal regime

On the opposite limit, for b0 = 0 the ground state RG flow, denoted by B∞8 , ends at a fixed
point, as indicated by the leftmost arrow in figure 1. Flows with b0 > 0 approach the fixed
point but never reach it. We will investigate the imprints that this passage close to the
conformal fixed point leaves on information theoretic quantities.

To start with, the OP conformal point has the standard expression for the finite part
of the entanglement entropy, which is readily available by analytic methods. For strips,
the full expression reads

∆SOP(l) = − 9 λ Ly V6
28π4 ·

|k|
(
M̄2 + 2|k|N

)
N

× 200 π3

729 · Γ
[

1
4

]4
√

5
3 ·

1
l
. (4.1)
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Figure 11. (Right) Function FD from the entanglement entropy of a disk as a function of its
radius R. Dots stand for the transition of the embedding, namely those represented in figure 7(a)
to 7(b). (Left) Same quantities in linear scale as we approach the confining theory. In both cases,
when the transition happens, there is a visible change in the behavior of the curves. This signals
the proximity of the IR gapped phase. See legends in figure 10.
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Figure 12. Ratio of the values of the width of strips l which are separated by a distance s at the
point, where mutual information vanishes. Right plot extends the range of the left plot to larger
strip widths. Notice that the numerics match analytic results both for small l at the UV (4.3) and
large l at the IR (4.2). See legends in figure 10.

Note that ∆SOP(l) · l is a constant depending on the number of degrees of freedom and
we denote this as a plateau in the following. As a consequence, flows with small b0 pass
close to the CFT also induce plateaux, which are wider the closer we are to the fixed point.
Interestingly, it has been noted that the proximity to fixed points causes “walking regime”,
i.e., a regime of energy where some dimensionless quantities are approximately constant,
even when such fixed points reside in the complex plane [52, 53].

The entanglement entropy of a single strip times its width for different values of b0
approaching zero is shown in figure 10 (Bottom). Note again that we plot the rescaled
quantities as defined in appendix B. It is easy to see that the closer we are to b0 = 0, the
wider the range where ∆S · l traces the conformal value given by (4.1). As soon as the
quasi-conformal regime is departed, the curve abruptly decreases towards zero.
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The near-proximity of the conformal fixed point will leak to the behavior of many other
quantities. Perhaps most prominently this fact is captured by the c-functions. Indeed, let
us consider the function that measures the degrees of freedom for the disk configurations.
Quasi-conformal regime is clearly visible in figure 11 (Right). Note, however, that FD
vanishes asymptotically: the way we see this in that plot is that, once the embedding
reaches the IR of the geometry, the behavior of FD rapidly renders into a straight line in
the log-log plot. From its slope we can conclude that, for large values of R, the function
FD decreases as 1/R for any b0, which agrees with [29].

Finally, we would like to show another quantity where quasi-conformal regime becomes
manifest, arising from the computation of mutual information. Recall from above the
computation of the mutual information between two parallel strips of the same width l

which are separated by a distance s in (3.16). The values (s, l) for which it vanishes are
represented in plot figure 6. Interestingly, this critical ratio in a CFT is universal and given
by the golden ratio [46, 54]

s

l

∣∣∣
CFT

= ϕ−1 = −1 +
√

5
2 ≈ 0.618 . (4.2)

Moreover, in the UV this ratio is also fixed in all cases by D2-brane asymptotics [55],
leading to

s

l

∣∣∣
D2

= −1 +
√

1 + β ≈ 0.663 , (4.3)

where β is the (unique) real root of the polynomial

b(x) = 64x11−64x10+16x9−400x8+x7+191x6+768x5+744x4−192x3−704x2−1024x−512 .
(4.4)

As we analyze the mutual information I(s, l), and in particular the boundary where it
vanishes and defines the critical ratio s/l for different theories, we find rich behavior revealed
in figure 12 that can be interpreted as follows. Let us consider small b0 values, so that the
flows approach the OP fixed point. At the UV, i.e. for small widths l, the critical ratio
s/l starts from the UV value (4.3), decreasing and developing a global minimum before
increasing again towards IR (large l). For even smaller values of b0 the critical s/l curve
can get arbitrarily close to the CFT value (4.2), eventually diverging from it. However,
only in the strict b0 = 0 case, corresponding to B∞8 will we reach (4.2) in the asymptotic
IR regime. Our results are suggestive that the CFT value acts as a lower bound on critical
s/l and it would be interesting to understand the reason behind this.

5 Conclusions and discussion

The main message of this paper is that holographic entanglement entropy and Wilson
loops cannot be considered interchangeably as mediators of the fact whether the theory
is confining. Whereas the quark-antiquark potential is sensitive to the fact that the flux
tube between two infinitely massive quarks cannot break apart, entanglement entropy
seems to be signaling the presence of a mass gap, capping off the flow of information. An
observation worth highlighting, in the current context, is that the entanglement measures
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Figure 13. Ratios between scales stemming from quark-antiquark potentials and entanglement
entropy of strips as a function of b0. The solid curve is the ratio between the critical lengths
where the disconnected strings and t-RT-surface become dominant for the Wilson loop and for
entanglement entropy of a strip, respectively. The dashed curve stands for the ratio between the
turning points of hanging string configurations and the RT embeddings. The last part of this curve,
drawn fainter and below the gray dot, stands for extrapolation.

are insensitive to the Chern-Simons interactions, which may be of relevance. This aspect
deserves to be more properly understood. To this end, we hope to make closer contact with
recent important studies of entanglement entropies in (2 + 1)-dimensional Chern-Simons
field theories [56].

A natural question to address is how the scales that we identify in entanglement entropy
measures relate to the physical scales given by the mass gap.3 For that, one possibility
would be to compare entanglement entropy scales to the masses of the lightest states in
the spectrum of spin-2 and spin-0 particles obtained in [51]. It is not completely clear,
however, how to make this comparison and it is furthermore not evident if the states
found in [51] actually are the lightest ones. In the paper at hand, we are content with
comparing to the scales that arise from quark-antiquark potentials. Taking figures 2 and 4
into consideration, there are several scales that could be considered. The first one is the one
we denoted by lc, the width of the strip at which the t configuration becomes preferred.
This scale roughly indicates above which width there is some region (in the middle) of
the strip which is not entangled with the complement. It is natural to compare this scale
to the length at which the fluxtube between quarks breaks apart, which sets the length
above which the quarks become screened by CS interactions. It is therefore expected to
be related to some correlation length of the ambient field theory. Taking into account that
the quark-antiquark potential in [22] (see also figure 2 (Left)) is given by the difference
between the energy of the meson and that of a disconnected pair of quarks, the critical
length is one where the quark-antiquark potential vanishes.

In figure 13 we depict the ratio set by the entanglement measure to the one resulting
from quark potential. We find that this ratio is around lc/lqq,c ≈ 0.5 for all theories. The

3We thank Anton Faedo for bringing up this issue.
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fact that both scales are of the same order is a manifestation of the fact that the correlation
length induced by the screening of the quark is linked with the separation between entangled
states. An interesting question is in how general this statement holds. One can address
this in other theories possesing phase transitions for entanglement measures by extracting
the corresponding correlation lengths, and comparing them to the critical length resulting
from string breaking.

There is another useful comparison to be discussed. The turning points of the RT
surfaces and the string embeddings will give rise two additional numbers. We refer to them
as lt and lqq,t, respectively. These are defined as the locii of the maxima as depicted in
figure 2 (Left) and figure 4, respectively. As one dials b0 → 1, i.e., we approach the confining
Bconf

8 , the value of lqq,t diverges; see figure 8 (Right) in [22]. As shown in figure 10 (Top),
lt however saturates to the value given by the turning point of the confining theory. This
causes the ratio lt/lqq,t to vanish in the limit b0 → 1. This yields another manifestation
that entanglement entropy measures are not sensitive to confining dynamics.

A motivation for the claim that entanglement entropy probes confinement in [3] was
the similarity between the phase transition from connected to disconnected configuration of
strip entanglement entropy and the first-order finite temperature deconfinement transitions
which is typically found in gravitational duals of confining gauge theories. We feel that
this proposal should be viewed with caution. To be concrete, although all the B8 theories
studied in this paper presented the same qualitative behavior as far as entanglement entropy
is considered (except for B∞8 ), their finite temperature physics appears richer. In [57] the
thermodynamic phase diagram was mapped out with lavish transitions of first and second
order, including a triple point and a critical point. It would be interesting to extend our
analysis to finite temperature and similarly map out the phase diagram following from
entanglement thermodynamics. It would be particularly compelling to make a thorough
study of the entanglement phase diagram around the thermodynamic critical point of
these theories. Such a top-down computation could further be compared to the analogous
computation carried out in a holographic model of QCD [26].

Since the entanglement entropy does not seem to single out confining geometries from
those that are not, one could raise to concern if some other set of boundary data would
be better suited to bulk reconstruction. A particularly compelling option would be to lean
on Wilson loops [18, 58], for example. In fact, in [58] (see also [59]) it was argued that the
linear quark-antiquark potential necessary leads to an “IR bottom” in the in deep interior
of bulk spacetime. This, however, is not yet completely satisfactory due to a technical
reason: having an regular “IR bottom” (typically realized by cigar-like geometries) is not
in one-to-one correspondence with linear potential. This statement follows from the models
we discussed. Then, the obstacle present at finite temperature is faced here as well, whence
the hanging string breaks due to pair creation and therefore reconstruction of the IR part
of the geometry is not possible. We feel that these issues can be resolved upon closer
inspection and hope to address them in future works.

A natural extension of our work would be to consider multiparty entanglement, be-
tween strips [46], or disks, for example, and analyze more refined probes of information
flows. It would be particularly interesting to analyze how the extensivity of the mutual
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information [54] behaves under the RG flow in our family of geometries and whether some
intermediate length scales are more super-extensive than the CFT at the OP fixed point.
A further investigation of entanglement measures for mixed states [47, 60–64], contrary to
pure states as studied in this paper, might shed more light on why entanglement wedge cross
sections behave non-monotonically under RG flows [47], specifically in confining geometries.
Moreover, a particularly compelling scenario would be to add a magnetic (Kondo) impu-
rity [65–67] and study how the entanglement entropy behaves in our family of solutions,
and in particular if some form of g-theorem holds. Finally, it would be interesting to make
some contact with a phenomenon called partial deconfinement [68–70] and investigate if
entanglement measures can lead to some new interesting insights.
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A Details of the background solutions

In this appendix we review the main features of Type IIA supergravity solutions dual
to the family of gauge theories we have been considering in this paper. As mentioned
in section 2, these solutions are regular only in eleven dimensions, we review the ten-
dimensional setup instead since the geometric picture is cleaner. For the detailed discussion
on eleven dimensions, see [22].

The internal compact space is squashed CP3 and the UV geometry coincides with that
induced by a stack of D2-branes. We therefore describe the geometry given the Ansatz

ds2
st = h−

1
2
(
− dt2 + dx2

1 + dx2
2

)
+ h

1
2

(
dr2 + e2fdΩ2

4 + e2g
[(
E1
)2

+
(
E2
)2
])

eΦ = h
1
4 eΛ , (A.1)

for the metric and the dilaton field. The dilaton Φ and the functions f , g, h, and Λ are
functions of the radial coordinate r. Also, the complex projective plane is seen as the coset
Sp(2)/U(2), consisting of a S2 (described by the vielbeins E1 and E2) fibered over S4, with
metric dΩ2

4. A convenient choice of coordinates is the following [71, 72]. Let ωi be a set
of left-invariant one-forms on the three-sphere. The metric of the four-sphere with unit
radius can be written as

dΩ2
4 = 4

(1 + ξ2)2

[
dξ2 + ξ2

4 ω
iωi
]
, (A.2)
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where ξ is a non-compact coordinate. Choosing θ and ϕ as angles to parametrize the
two-sphere, the non-trivial fibration is described by the vielbeins

E1 = dθ + ξ2

1 + ξ2

(
sinϕω1 − cosϕω2

)
E2 = sin θ

(
dϕ− ξ2

1 + ξ2ω
3
)

+ ξ2

1 + ξ2 cos θ
(
cosϕω1 + sinϕω2

)
. (A.3)

For our purposes, it is better to consider a rotated version of (A.3) in the four-sphere,
namely

S1 = ξ

1 + ξ2

[
sinϕω1 − cosϕω2

]
S2 = ξ

1 + ξ2

[
sin θ ω3 − cos θ

(
cosϕω1 + sinϕω2

)]
S3 = ξ

1 + ξ2

[
cos θ ω3 + sin θ

(
cosϕω1 + sinϕω2

)]
S4 = 2

1 + ξ2 dξ . (A.4)

Even though Si depend on the angles of the two-sphere, it holds that SnSn = dΩ2
4. Using

these vielbeins we can construct a set of left-invariant forms on the coset. This set contains
the two-forms

X2 = E1 ∧ E2 , J2 = S1 ∧ S2 + S3 ∧ S4 , (A.5)

as well as the three-forms

X3 = E1 ∧
(
S1 ∧ S3 − S2 ∧ S4

)
− E2 ∧

(
S1 ∧ S4 + S2 ∧ S3

)
J3 = −E1 ∧

(
S1 ∧ S4 + S2 ∧ S3

)
− E2 ∧

(
S1 ∧ S3 − S2 ∧ S4

)
. (A.6)

These are related by exterior differentiation as

dX2 = dJ2 = X3 , dJ3 = 2 (X2 ∧ J2 + J2 ∧ J2) . (A.7)

Additionally, we can construct higher forms by wedging these which will also be left-
invariant. Then we have the two four-forms X2∧J2 and J2∧J2, appearing in the equation
above, together with the volume form Ω6 = −(E1∧E2)∧ (S1∧S2∧S3∧S4). There are no
left-invariant one- or five-forms. The fluxes can be written in terms of these left-invariant
forms, since this symmetry ensures the consistency of the Ansatz. By this we mean that
all the internal angles will drop from the resulting equations, leading to dependence just
on the radial coordinate. Therefore, we take the following forms

F4 = d3x ∧ d(h−1e−Λ) +G4 +B2 ∧ F2 , F2 = Qk(X2 − J2)
G4 = d(aJJ3) + qc (J2 ∧ J2 −X2 ∧ J2) , B2 = bXX2 + bJJ2 ,

(A.8)

where

aJ =
e2g(QkbJ − qc)− 2e2f+g−Λ(bJ + bX

)
+ e2f

[
qc +Qk

(
bX − bJ

)]
2
(
e2f + e2g) . (A.9)
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The parameters Qk and qc are constants which will be related to gauge theory parameters
as we shall see later. Moreover, bJ , bX , and aJ are functions that depend on the radial
coordinate which will satisfy first order equations as we argue next.

The system is N = 1 supersymmetric and the resulting BPS equations from the super-
gravity action can be solved in three consecutive steps. First, we can solve the equations
for the metric functions, which follow directly from [40, 71] and read

Λ′ = 2Qk eΛ−2f −Qk eΛ−2g

f ′ = Qk
2 eΛ−2f − Qk

2 eΛ−2g + e−2f+g

g′ = Qk e
Λ−2f + e−g − e−2f+g . (A.10)

Once the functions of the metric are known, one turns to solve the equations for the
fluxes [22]

b′X = 2 e−4f+2g+Λ(qc + 2 aJ −Qk bJ
)

b′J = e−2g+Λ
[
Qk (bJ − bX) + 2 aJ − qc

]
, (A.11)

where aJ is given by (A.9). The warp factor h follows by direct integration of(
eΛ h

)′
= −e2Λ−4f−2g

[
Qc +Qk bJ (bJ − 2bX) + 2qc (bX − bJ) + 4aJ (bX + bJ)

]
. (A.12)

Here, Qc appears as an integration constant. Together with Qk and qc it relates to gauge
theory parameters via the quantization of the Page charge [73], which leads to [22, 74]:

Qc = 3π2`5sgsN, Qk = `sgs
2 k, qc = 3π`3sgs

4 M̄ = 3π`3sgs
4

(
M − k

2

)
. (A.13)

In the previous expression, N is the number of D2-branes and matches the rank of the
gauge group on the field theory. The parameter Qk gives rise to D4-brane charge and k is
consequently expected to be the CS level of the dual gauge theory. Finally, qc is related
to the number of fractional D2-branes that is needed to obtain a regular geometry [36],
where M represents the shift in the gauge group due to fractional branes [35]. In addition,
notice that the string length `s and the string coupling constant gs are related to the gauge
coupling constant via λ = `−1

s gsN , which is dimensionful ∼(length)−1 in three dimensions.
For non-vanishing CS level |Qk| 6= 0 the dependence on the different charges can be

factored out of the equations by writing them in terms of dimensionless functions F , G,
BX , BJ , and h defined through4

ef = |Qk| eF , eg = |Qk| eG , h = 4q2
c + 3|Qk|Qc
|Qk|6

h

bJ = − 2qc
3|Qk|

−
√

4q2
c + 3|Qk|Qc
3|Qk|

BJ , bX = 2qc
3|Qk|

+
√

4q2
c + 3|Qk|Qc
3|Qk|

BX ,
(A.14)

4A similar factorization of charges with an appropriate radial coordinate can be performed when |Qk| = 0,
see [22].
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together with the dimensionless radial coordinate

u = |Qk|
r

. (A.15)

In [22] a different radial coordinate y was used. It is defined via

dr = − P

Qk v (1− y2)dy (A.16)

where v and P are solutions of the following differential equations:

2 (1− y2) dv
dy = y v + 2 , 1

P

dP
dy = v + 1

v (1− y2) . (A.17)

In terms of y, all the functions of the metric except h are expressed analytically. Never-
theless, we preferred to use (A.15) because it simplifies the UV expansion, which will be
crucial to renormalize the entanglement entropy of disks. In fact, the UV expansion of our
system can be directly read off from [57], where finite temperature states of these theories
where constructed. Setting the parameter that renders the temperature b5 there to zero,
one arrives at

e2F = 1
2u2

[
1−2u−4u2−6u3 +

(77
4 +2f4

)
u4 +

(65
2 −2f4 +2f5

)
u5 +O(u6)

]

e2G = 1
4u2

[
1−4u−4u2−

(
−109

2 −4f4

)
u4 +

(821
2 +14f4 +2f5

)
u5 +O(u6)

]

eΛ = 1−4u2−16u3−48u4 +
(
−71

10 + 6
5f4 +2f5

)
u5 +O(u6)

BJ = b0

[
1+4u+8u2−16u3 + b4

b0
u4 +O(u5)

]

BX = b0

[
1+4u+12u2 +32u3−

(
64+ b4

2b0

)
u4 +O

(
u5
)]

h= 16
15(1−b20) u5

[
1+ 20(1−2b20)

3(1−b20) u+ 4(581b20−201)
21(−1+b20) u2 +O(u3)

]
.

(A.18)

Note that there are several undetermined parameters in this expansion, some of which are
going to be fixed now by supersymmetry. For example, f5 is fixed in terms of f4,

f5 = −3f4 −
411
4 . (A.19)

Similarly, there are additional higher order undetermined terms present in [57] which we
can fix here in terms of f4, b0, and b4 by supersymmetry:

b6 = 2
5 ( b0 ( 200 f4 + 709 ) + 98b4 )

b9 = 1
140

(
28b4 ( 104f4 + 26441 ) + b0

(
3008f2

4 + 1202736f4 − 1641593
))

f10 = − 1
1120

(
6472f2

4 + 1028728f4 + 33459213
)
. (A.20)
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So in the end there are three UV parameters, namely b0, b4, and f4. On one hand, b0 is the
parameter distinguishing the different solutions appearing in figure 1. On the other hand,
once b0 is fixed, b4 and f4 are fixed by requirement of regularity at the IR.

Let us mention that when the coordinate y given by (A.16) is considered, a parameter
y0 arises, which is its value at the end of space. The parameter y0 is in a one-to-one
(numerical) correspondence with b0 and was the one used in [22] for labeling the B8 theories.
Even though y0 does not appear in our analysis, let us relate it with the parameters we
have just found for the sake of completeness. For that we give the expressions for f4 and
b4 in terms of y0, so that the interested reader has the precise link to [22]. Concretely,5

f4 = 1
24(−423− w4

±(y0)) , b4 = b0 β4
2 , (A.21)

where the subscript in w±(y0) consistently refers to either B+
8 (when b0 ∈ (0, 2/5)) or B−8

(when b0 ∈ (2/5, 1)) and their expressions in each case are given by6

w+(y0) =
Γ
[

1
4

]2
√

8π
+ 2

(
1− y2

0

) 1
4 − y0 2F1

(1
2 ,

3
4; 3

2; y2
0

)
(A.22)

w−(y0) =
√

8π ·
Γ
(

5
4

)
Γ
(

3
4

) + 2
(
y2

0 − 1
) 1

4 − 2
√
y0

2F1

(1
4 ,

3
4; 5

4; 1
y2

0

)
. (A.23)

Apart from the UV expansion, we also need the IR expansion of the metric when setting
the boundary conditions for the RT embeddings reaching the bottom of the geometry. After
a straightforward calculation, the first few orders of the IR expansions for b0 ∈ (0, 1) read:

e2F = f2
s

u2
s

(us − u) +
( 3
u4
s

+ f2
s λs

)
(us − u)2

+ 3f4
s λ

2
su

8
s + 10f2

s λsu
4
s + 8f2

s us + 6
3f2
s u

6
s

(us − u)3 +O(us − u)4

e2G = 1
u4
s

(us − u)2 + 2
u6
s

(
us −

1
f2
s

)
(us − u)3 +O(u− us)4

eΛ = 1
u2
s

(us − u) + λs (us − u)2

+ 3f4
s λ

2
su

8
s + 4f2

s us
(
λsu

3
s − 1

)
+ 9

3f4
s u

6
s

(u− us)3 +O(us − u)4

BJ = 1− us − u
f2
s u

2
s

+ 2− f2
s us

f4
s u

4
s

(us − u)2

− 2f2
s us

(
λsu

3
s − 31

)
+ 15f4

s u
2
s + 72

15f6
s u

6
s

(us − u)3 +O(us − u)4

BX = 1− 3
f4
s u

4
s

(us − u)2 + 2
(
f2
s us

(
λsu

3
s − 4

)
+ 9

)
f6
s u

6
s

(us − u)3 +O(us − u)4

5The parameter β4 here was called b4 in [22].
6Note that w±(y0) are related to P±

0 from [22] via 4P±
0 = |Qk|2w±(y0).
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h = hIR ·
1

us − u
−
(
hIRλsu

2
s + 7

3f8
s

)
+ 28u2

s

(
f2
s us

(
λsu

3
s − 1

)
+ 4

)
− 3hIRf

6
s

(
4f2
s us

(
λsu

3
s − 1

)
+ 9

)
9f10
s u

4
s

(us − u)

+O(us − u)2 . (A.24)

For b0 = 0 the corresponding expansion is not needed in our paper, since the RT surface
will not reach the bottom of the geometry. For the confining b0 = 1 theory, for which
the coordinate u is not valid, an alike IR expansion can be found. It follows directly
from the analytic expression of the solution [22, 36], and we omit it here for the sake of
brevity. Moreover, note that in (A.24) we found four IR parameters which are not fixed by
regularity in the IR expansion. For us, fs and λs it is easy to find expressions as a function
of the parameter y0 from [22]:

f2
s = (1 + y0) 3

4

(±(1− y0))
1
4
· w±(y0)

2 , λs = 1
u3
s

± 2y2
0 + 2y0 − 4

w±(y0)u4
s

(
±(1− y2

0)
) 3

4
, (A.25)

us = 6
w±(y0)

−23/4 (y0 ± 1)
3
4 2F1

(1
4 ,

3
4; 7

4; 1± y0
2

)
+3

(1 + y0) 3
4

(±(1− y0)) 1
4

+ 6
√
πσ±

Γ
(

3
4

)
Γ
(

1
4

)
−1

.

Again, the sign depends on whether the theory belongs to B+
8 or B−8 . Also σ+ = 1 and

σ− = 0 and
hIR = 64

w3
±(y0)u

2
s HIR . (A.26)

Here HIR is the parameter appearing in [22].

B Computation of the entanglement entropy of the strip

In this appendix we give more details on the computation of the entanglement entropy of
the strip. Let us first discuss the connected configuration, whose embedding (3.5) leads to
expression (3.6) which we collect here for ease of reference

S∪(l) = V6Ly
4G10

∫ l
2

− l
2

dσ1 Ξ
1
2 (1 + h ṙ2)

1
2 , (B.1)

where Ξ = h2e8f+4g−4Φ. There is a conserved quantity in this integral, which can be used
to find a simple expression for the embedding:

ṙ = ± h−
1
2

√
Ξ
Ξ∗
− 1 , (B.2)

where Ξ∗ = Ξ(r∗) and the dot indicates differentiation with respect to σ1. This allows us
to write (3.6) as

S∪ = 2V6 Ly
4G10

∫ ∞
r∗

Ξ h
1
2

√
Ξ− Ξ∗

dr . (B.3)

– 26 –



J
H
E
P
0
2
(
2
0
2
1
)
1
4
7

As alluded to in section 3.1, this quantity is UV divergent. Due homogeneity, (B.3) pos-
sesses the same divergence as the t configuration (3.10). Then, the difference between
them, defined in (3.12) as ∆S, can be computed by performing the integral

∆S = S∪ − St = V6 Ly
4G10

[
2
∫ ∞
r∗

[
Ξ 1

2
√

Ξ− Ξ∗
− 1

]
Ξ

1
2h

1
2 dr − 2

∫ r∗

rs

Ξ
1
2h

1
2 dr

]
. (B.4)

Interestingly, (B.2) also allows us to write the width of the strip as

l =
∫ l

2

− l
2

dx1 = 2
∫ ∞
r∗

Ξ
1
2∗√

Ξ− Ξ∗
h

1
2 dr , (B.5)

in such a way that scanning the parameter space of the turning point of the embedding
r∗ ∈ (rs,∞), we find the corresponding values of the entanglement entropy and the strip
width by simple integration of (B.4) and (B.5), respectively.

Again, for non-vanishing CS level, changing to the coordinate u (A.15) and performing
the rescalings (A.14), the charges can be factored out. This allows us to redefine ∆S in
such a way that it does not depend on the charges (or the rank of the gauge groups):

∆S = 4G10
|Qk|(4q2

c + 3Qc|Qk|)
× ∆S
LyV6

= 28π4

9λ ·
N

|k|
(
M̄2 + 2|k|N

) × ∆S
LyV6

. (B.6)

We can also define a dimensionless strip width (B.5), namely

l = |Qk|2

(4q2
c + 3Qc|Qk|)

1
2
· l = λ

6πN
|k|2

(M̄ + 2|k|N) 1
2
· l . (B.7)

Similar expressions can be written in order to factor charges out when CS level is vanishing.

C Computation of the entanglement entropy of the disk

Let us now discuss the computation of the entanglement entropy of disks. As in appen-
dices A and B, we will be discussing the case when |Qk| 6= 0 (i.e. the whole family of B8
excluding Bconf

8 ). An analogous analysis can be performed in the case of vanishing CS
level. Because the procedure is conceptually identical, we will not discuss it here, the main
difference being that the coordinate u is not well defined when |Qk| = 0 and a distinct
radial coordinate has to be used in that case.

First of all, it is useful to change to r as the integration variable in (3.21). Doing so,
the entanglement entropy of the disk reads

Sdisk = V6
4G10

2π
∫ Λ|Qk|

r∗
dr (ρ′2 + h)

1
2 ρ Ξ

1
2 . (C.1)

Note that, because (C.1) is UV divergent, we have explicitly introduced the cut-off Λ,
which after the regularization will be taken to infinity. The embedding is now given by the
function ρ(r), which satisfies the second order differential equation coming from (3.4)

d
dr

[
ρ′ ρ Ξ 1

2√
ρ′2 + h

]
− Ξ

1
2

√
ρ′2 + h = 0 . (C.2)
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As we mentioned in section 3.2, there are three types of solutions to (C.2) whose boundary
conditions will be discussed below. To simplify notation, it is convenient to define the
rescaled quantities

ρ = |Qk|2

(4q2
c + 3Qc|Qk|)

1
2
ρ

Sdisk = 4G10 |Qk|
(4q2

c + 3Qc|Qk|)
3
2
× Sdisk

V6
= 27π3 |k|

33 (M̄ + 2|k|N) 3
2
× Sdisk

V6
. (C.3)

Let us first explain how to solve the embedding equation (C.2) and then explain the reg-
ularization of (C.1). We use the u coordinate as defined in (A.15). We can first consider
the UV expansion of the metric functions (see appendix A) and solve (C.2) perturbatively
about the UV. Our solutions eventually deviate from the D2-brane metric and hence from
the expansion in [55], in particular by logarithmic terms. We obtain:

ρ = c0 −
8(1− b20)

45c0
u3 + 16(−2 + 7b20)

45c0
u4 +

(
c5 −

64(−1 + 21b20)
315c0

log u
)
u5 +

+
(

20c5
3 − 8

(
1− b20

) 2

2025c3
0
− 128

(
861b20 − 181

)
2835c0

− 256
(
21b20 − 1

)
189c0

log u
)
u6 + . . . .

(C.4)

Note there are two undetermined parameters, c0 and c5. Taking (3.18) into consider-
ation, we realize that c0 is the (rescaled) value of the radius of the disk, R = c0. This UV
expansion is valid for the three cases represented in figure 7, the difference between them
being determined by the other boundary condition, as explained in section 3.2, elaborated
upon here:

• The embedding from figure 7(a) has to satisfy the boundary condition (3.19), which
in the u coordinate reads

u(0) = u∗ , u̇(0) = 0. (C.5)

To this end, we solve ρ(u) about u = u∗ by using a series expansion

ρ(u) = (u− u∗)
1
2

∞∑
k=0

Bk(u− u∗)k . (C.6)

For a given theory of the B8 family (i.e. for a given b0), all the Bk coefficients are
determined in terms of u∗. For each choice of u∗ we use a shooting technique in
order to determine the corresponding value of the UV parameters c0 and c5. More
precisely, we impose the expansion (C.6) near u∗ and integrate up to some value εUV
where we can trust the UV expansion (C.4) within our numerical precision. Then,
using a Newton-Raphson routine, we fixed the values of c0 and c5 which render ρ(u)
continuous and differentiable at εUV. This procedure should then be repeated for
each u∗.
Since c0 is essentially the dimensionless radius R, scanning values for u∗ ∈ (0, us) we
get all the embeddings for the RT surfaces associated to disks of radius R ∈ (0, Rc).
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• Similarly, embeddings represented in figure 7(b) satisfy the analogous boundary con-
dition (3.19), which after changing to the u coordinate gives

lim
ρ→ρ∗

u(ρ) = us . (C.7)

We then need to solve the equation for ρ(u) about us, which leads to a series expansion
of the form

ρ(u) = ρ∗ +
∞∑
k=1

Ck(u− us)k . (C.8)

For a given theory, the only free parameter in this expansion is ρ∗. Consequently,
after imposing this expansion in the equation for ρ(u) near u = us, we can find the
corresponding values of c0 (i.e. R) and c5 imposed by a shooting procedure analogous
to the aforementioned one. In this case, scanning over all the values for ρ∗ ∈ (0,∞)
leads to the corresponding embeddings of RT surfaces of disks with radius R ∈(
Rc,∞

)
. Note that this type of embedding is not realized when b0 = 0, which is the

case of the theory which flows to an IR fixed point.

• Finally, there is one further type of embedding we are interested in, pictorially rep-
resented in figure 7(c). The boundary condition in this case is (3.23), which in the u
coordinate is given by

u(ρ∗) = u∗ , u̇(ρ∗) = 0 (C.9)

with u∗ 6= us and ρ∗ 6= 0. In this case, for the solution about u = u∗ we get

ρ(u) = ρ∗ +
∞∑
k=1

D±k (u− u∗)
k
2 . (C.10)

As the superscript in D±k suggests, there are two different series, depending on a
choice of sign that has to be made while solving the first coefficient. The rest of the
coefficients are fixed in each case as functions of ρ∗ and u∗. Each choice is giving a
distinct branch of the embedding corresponding to figure 7(c). For each of the two
branches, the shooting method gives a different value of c0, corresponding to the two
radius of the two disks to which this embedding is attached. We refer to them as R1
and R2. Scanning the parameters space u∗ ∈ (0, us) and ρ∗ ∈ (0,∞) we efficiently
get the embeddings corresponding to all possible values of R1 and R2.

Now that we understand the different embeddings we encounter, we can turn to the
issue of regulating the action functional. Knowing the UV expansion of all the functions
which are involved in the computation, it is possible to study the divergence structure of
the entanglement entropy in this particular problem. First, let us write the integral (C.1)
in the u coordinate:

Sdisk =
∫ Λ−1

u∗
du
(
− 1
u2 Ξ

1
2 ρ (h + u4ρ′2)

1
2

)
≡
∫ Λ−1

u∗
du LD , (C.11)
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where u∗ = |Qk| r−1
∗ is the value of the radial coordinate at the turning point (or u∗ = us

if the embedding reaches the bottom of the geometry) and Ξ is the dimensionless version
of Ξ, namely

Ξ = 4q2
c + 3Qc|Qk|
|Qk|6

h2e8F+4G−4Φ . (C.12)

Also, last equality in (C.11) defines LD. Replacing the functions by their UV expression
and performing the integral we get

Sdisk =
∫ Λ−1

u∗
du
(
− 1
u2 Ξ

1
2 ρ(h + u4ρ′2)

1
2

)

= c0

[
1
30
(
1− b20

)
Λ2 − 4

45
(
4b20 + 1

)
Λ− 4

63
(
21b20 − 1

)
log Λ + S0

+ 2
(
14b20

(
720c2

0 − 1
)

+ 7b40 − 480c2
0 + 7

)
4725c2

0

1
Λ +O(Λ−2)

]
.

(C.13)

A few important remarks are in order:

• The leading divergence in (C.13) is of the same order as the one found in [55],
namely Λ2.

• Because we deviate from D2-brane asymptotics eventually, there are new terms ap-
pearing. Nevertheless, the counterterms are readily available

S
ct
disk

(
Λ−1

)
= c0

[ 1
30
(
1− b20

)
Λ2 − 4

45
(
4b20 + 1

)
Λ− 4

63
(
21b20 − 1

)
log Λ

]
. (C.14)

• In (C.13) we see that the finite contribution S0 is just the integration constant and
we can set it to zero (or absorb it in (C.14)). One can show that this corresponds to
picking a particular renormalization scheme on the field theory [75, 76].

• Because there is a global c0 multiplying (C.14), this tells us that at the end of the
day Sct

disk is proportional to the perimeter of the disk, thus fulfilling and area law.

• Note also that the counterterms do not depend on the precise embedding. The
counterterms depend on c0, which is essentially the radius of the disk, but not on
c5, since its value is determined after solving the equation of the embedding and
therefore depend on the IR data.

• Finally, note that the counterterms not only are independent of c5, but also all
the subleading parameters f4 and b4 appearing in (A.18). This means that the
counterterms are indeed completely independent of the subleading parameters of the
UV expansions, which are associated to VEVs and determined by imposing some
IR condition.
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Taking into account that we can express the counterterms in (C.14) as

S
ct
disk(Λ−1) =

∫ Λ−1

u∗
du Lct

D + S
ct
disk(u∗)

where Lct
D ≡

(
b20 − 1

)
c0

15u3 + 4
(
4b20 + 1

)
c0

45u2 + 4
(
21b20 − 1

)
c0

63u ,

(C.15)

the regularized entanglement entropy of the disk can be written in a way that makes the
numerical computations easier. This yields

S
reg
disk = lim

Λ→∞

[
Sdisk − S

ct
disk(Λ−1)

]
=
∫ 0

u∗
du
(
LD − Lct

D

)
− Sct

disk(u∗) . (C.16)

Finally, we use (C.16) in order to define a version of Fdisk where the charges has been
factored out

Fdisk(R) = R · dSreg
disk

dR
− Sreg

disk . (C.17)
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